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Inference

� By inference in BNs we refer to the task of computing a-posteriori
probabilities.

� This task can be found under different names: probability propagation, belief
updating, belief revision, ...

� Most of queries involve observations or evidence

Evidence on a variable is a statement of the certainties of its states, i.e.,
(flu=yes).

� Hard evidence. An evidence function that assigns a zero probability to all but
one state is said to provide hard evidence. Hard evidence e over a set of
variables E is often referred to as instantiation.

temperature=high, headache=no

� Soft evidence. An evidence function that assigns a probability distribution over
dom(Ei) for each Ei ∈ E is said to provide soft evidence.

- Example. If dom(temperature) = (no, ligth, high, very-high) and dom(headache)=(yes,no),
the we can have the following soft evidence:

- se(temperature) = (0,0,2,1) and se(headache) = (2,1)
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Type of queries

� The simplest query: to compute the evidence probability:

P(e) = ∑
Xi∈E

P(X1, . . . ,Xn,e)

� The most frequent query: compute the a-posteriori probability for a

given target or interest variable.

P(X |e) =
P(X ,e)

P(e)

To do this we only need to compute P(X ,e), because

P(e) = ∑
x∈dom(X)

P(X = x,e)

In general, we are not only interested in a single variable but in a set of

them, usually all the unobserved ones.
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Type of queries (II)

� Computing the a-posteriori probability of a given variable is useful in

different situations:

◮ Predictive or deductive reasoning: What is the probability of

observing a sympton knowing the presence of a given desease?

In this case the target variable usually is a descendant of the

evidence.

◮ Diagnostic or abductive reasoning: What is the probability of

desease D being the correct diagnosis given some symptoms?

In this case the target variable usually is an ancestor of the

evidence.

� That is, in the BNs framework the direction of the links between the

variables does not constraint the type of query to be posed.
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Type of queries (III)

Queries about sets of variables:

� A-posteriori probability of a subset of variables: P(X ,Y, . . . |e)

� Searching for the most probable explanation, the configuration of

maximal probabiity, belief revision or abductive inference:

◮ Total abduction or MPE: If X1, . . . ,Xn are the unobserved variables,

then the goal is to identify the configuration (x1, . . . ,xn) that

maximises P(X1, . . . ,Xn|e).

◮ Partial abduction or MAP: Given a subset {X1, . . . ,Xl} of the

unobserved variables, then the goal is to identify the configuration

(x1, . . . ,xl) that maximises P(X1, . . . ,Xl|e).

◮ In general, the goal is to look for the K most probable explanations.
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Basic operations

To get answers for the previous queries we only need a few operations:

� Projection. Given two sets of variables X and Y, such that, X∩Y 6= /0, then

Z = X↓Y

contains the variables of X that also are in Y.

- Projection also applies to configurations, thus, if x and y are configurations of
X and Y, then

z = x↓y

contains the sub-configuration of x restricted to the variables in X that also are
in Y.

� Combination. Given two pieces of information defined over X and Y, the goal
of the combination is to obtain a new information defined over the X∪Y.

- In our case the piece of information are probability functions or potentials, and
the result is a new probability function or potential obtained by point-wise
multiplication:
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Basic Operations (II)

- Combination Example: Assuming all variables are binary, then from f1(A,B)
and f2(A,C) we get:

f (A,B,C) = f1(A,B)× f2(A,C)






b b̄

a 0.5 0.8

ā 0.5 0.2




×






c c̄

a 1.0 0.4

ā 0.0 0.6




 =






b,c b, c̄ b̄,c b̄, c̄

a 0.50 0.20 0.80 0.32

ā 0.00 0.30 0.00 0.12






� Division. Point-wise division is used.

However, we distinguish two cases in order to take care with division by zero,
thus

(φ/ψ)(z) =

{

0 i f ψ(x↓Z) = 0

φ(x↓Z)/ψ(y↓Z) i f ψ(y↓Z) 6= 0

� In fact in the operations involved in probabilistic networks, ψ(x↓Z) = 0 implies
ψ(y↓Z) = 0 upon division of φ by ψ, and thus defining 0/0 = 0, the division
operator is always defined.
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Basic Operations (III)

� Marginalization. Given an information defined over a set of variables XI ,
marginalization restricts that information over a subset of XJ ⊆ XI .

In Belief revision variables not included in the interest set are marginalised out
by addition, while in belief revision or abduction they are marginalised out by
maximum.

Example:

f1(A) = ∑
B,C

f (A,B,C) = ∑
B,C






b,c b, c̄ b̄,c b̄, c̄

a 0.50 0.20 0.80 0.32

ā 0.00 0.30 0.00 0.12




 =

(

a 1.82

ā 0.42

)

f1(A) = max
B,C

f (A,B,C) = max
B,C






b,c b, c̄ b̄,c b̄, c̄

a 0.50 0.20 0.80 0.32

ā 0.00 0.30 0.00 0.12




 =

(

a 0.80

ā 0.30

)

Advanced Data Analysis and Modelling Summerschool – p.9/74
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Computing P(Xi|e): Brute-force approach

� We focus on the computation of P(X |e).

� By the moment we suppose that no evidence has been entered→ to

compute P(X).

� Given a BN with n variables {X1, . . . ,Xn} and their probability families

fi, i = 1, . . . ,n, then to compute P(Xi) (or P(Xi|e) is:

Conceptually easy

Computationally complex

� Brute-force approach:

P(Xi) = ∑
X1,...,Xi−1,Xi+1,...,Xn

(
n

∏
j=1

f j

)

,

Problem: this is the same to compute the j.p.d. ⇒ computationally very

inneficient and even intractable in most of cases.
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Improving brute-force approach

In order to improve the brute-force approach we will take advantage from two
sources:

� The factorisation encoded by the BN

� The distributive law

Distributive Law.

Let f and g to be potentials or probability fucntions defined over
dom(X) = {x1, . . . ,xm} and dom(Y) = {y1, . . . ,yn}, where X∩Y = /0, and given X′ ⊆ X
and Y′ ⊆ Y, then we get

∑X\X′∑Y\Y′( f ×g) = ∑x∈dom(X\X′) ∑y∈dom(Y\Y′)( f (x)×g(y))

= f (x1)g(y1)+ · · ·+ f (x1)g(yn)+ · · ·+

f (xm)g(y1)+ · · ·+ f (xm)g(yn)

= f (x1)[g(y1)+ · · ·+g(yn)]+ · · ·+

f (xm)[g(y1)+ · · ·+g(yn)]

= ∑x∈dom(X\X′) f (x)∑y∈dom(Y\Y′) g(y)

= ∑X\X′ f ∑Y\Y′ g
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Ordering the computations effectively

As we will see with the following example, the use of the distributive law can help a
lot in terms of reducing computations:

X1

X2

X3

X4

X5

f5 = P(X5 | X1)

f4 = P(X4)

f3 = P(X3 | X2, X4)

f2 = P(X2 | X1)

f1 = P(X1)

As commented before we suppose that any evidence has been observed. Our goal
is to compute P(X2). Thus, be brute-force approach we have:

P(X2) = ∑
X1,X3,X4,X5

(
5

∏
j=1

f j

)

=
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Ordering the computations effectively (II)

Σ
X1,X3,X4,X5

{P(X1) ·P(X2|X1) ·P(X3|X2,X4) ·P(X4) ·P(X5|X1)}

If |dom(X)|= 2 for all the variables, then this expression implies to construct a
probability table with 32 entries (i.e. the j.p.d.).

However, from the factorisation and the distributive law we can simplify the process
by moving in some additions:

P(X2) =

Moving the summation over X5.

= ∑
X1,X3,X4
















∑
X5

P(X5|X1)

︸ ︷︷ ︸

f1(X1)










·P(X1) ·P(X2|X1) ·P(X3|X2,X4) ·P(X4)






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Ordering the computations effectively (III)

Moving the summation over X3.

= ∑
X1,X4
















∑
X5

P(X5|X1)

︸ ︷︷ ︸

f1(X1)










·P(X1) ·P(X2|X1) ·









∑
X3

P(X3|X2,X4)

︸ ︷︷ ︸

f2(X2,X4)









·P(X4)







And now we can move the summation over X4.

= ∑
X1
















∑
X5

P(X5|X1)

︸ ︷︷ ︸

f1(X1)










·P(X1) ·P(X2|X1) ·















∑
X4









∑
X3

P(X3|X2,X4)

︸ ︷︷ ︸

f2(X2,X4)









·P(X4)

︸ ︷︷ ︸

f3(X2)




















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Ordering the computations effectively (summary)

� Brute-force approach:

Σ
X1,X3,X4,X5

{P(X1) ·P(X2|X1) ·P(X3|X2,X4) ·P(X4) ·P(X5|X1)}

This means to build a table with 5 variables and 32 entries. Then, we need:
◮ 160 multiplications (in most implementations)
◮ 52 multiplications (selecting the tables in the appropriate way).
◮ 30 additions for the marginalization of X1, X3, X4 and X5 (16, 8, 4 and 2).

� Taking advantage from the factorisation and the distributive law:

= ∑
X1

{(

∑
X5

P(X5|X1)

)

·P(X1) ·P(X2|X1) ·

[

∑
X4

(

∑
X3

P(X3|X2,X4)

)

·P(X4)

]}

This means to deal with a table of size 8 and three of size 4. Then, we need:
◮ 14 multiplications.
◮ 10 additions for the marginalization.
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Complexity of exact inference in BNs

� If the DAG no cycles in the underlying undirected graph (poly-trees),

inference is easy because we can move the additions in such a way

that we never create a table larger than those included in the BN

representation.

� In the general case (the underlying undirected graph has cycles)

inference is NP-Complete (Cooper, 1990)

� The complexity of the previous method is exponential in the width

(number of variables minus one) of the largest factor set involved in the

pocess.

� The key to efficient inference with this method lies in finding a good

summation order (or elimination order or deletion sequence or ...)
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Entering evidence

� Up to this moment we have supposed the lack of evidence. But, what

happens if we have some observations, i.e, e= (E1 = e1, . . . ,En = en)?.

� The answer is quite simple, before running our algorithm, for each Ei

we identify the potentials or prob. fucntions in which it is included, then:

f (x) =







f (x) if x is consistent withe

0 otherwise

� Sometimes we can use evidence absorption, which implies the

removal of the observed variable from the potential.
� Example: e= (B = b)







b,c b, c̄ b̄,c b̄, c̄

a 0.5 0.2 0.0 0.0

ā 0.0 0.3 0.0 0.0






←−







b,c b, c̄ b̄,c b̄, c̄

a 0.5 0.2 0.8 0.32

ā 0.0 0.3 0.0 0.12






−→







c c̄

a 0.50 0.20

ā 0.00 0.30






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Variable Elimination Algorithm

� Input: A BN over U = {X1, . . . ,Xn}, the evidence e and ONE target variable Xi.

� Output: P(Xi|e).

1. Let L be a list containing all the probability functions { f1, f2, . . . , fn}.

2. Enter the evidence e.

3. Select an elimination order σ containing all the variables but the target one (Xi).

4. For k = 1 to n−1 do

(a) Xk ← σ(k).

(b) Let F be the set of prob. functions in L that contains variable Xk.

(c) L = L−F .

(d) f ′ = Σ
Xk



Π
f∈F

f





(e) L = L ∪ f ′.

5. Combine in a single function f all the functions in L . Normalize f to obtain P(Xi).

This algorithm has to be repeated for each target variable.
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Examples

Let us consider the following BN (ASIA or chest-clinic) for the examples:

a

¬a
0.01
0.99

s

¬s
0.5
0.5

l 0.1 0.01
0.99¬l

s ¬s

0.9

s ¬s

¬b
b 0.6 0.3

0.4 0.7

e

¬e

l ¬l l ¬l
t ¬t

01 1 1

0 0 0 1

a ¬a

t
¬t

0.05 0.01
0.95 0.99

¬x
x

e ¬e

0.98 0.05
0.02 0.95 ¬d

e ¬e
¬b

0.2

d
e ¬e

b

0.9 0.8 0.7 0.1
0.1 0.3 0.9

Rayos-X (X)
Disnea (D)

Tub. o Cancer (E)

Bronquitis (B)

Asia (A)

Cancer de Pulmon (L)Tuberculosis (T)

Fumar (S)

Advanced Data Analysis and Modelling Summerschool – p.19/74
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Examples (cont.)

Example 1. Get the probability of having Dysnoea (D), using the following elimination order
σ1 = T,S,E,A,L,B,X .

1 L = { fA(A), fT (T,A)
︸ ︷︷ ︸

, fS(S), fL(L,S), fB(B,S), fE(E,T,L)
︸ ︷︷ ︸

, fX (X ,E), fD(D,E,B)}. Delete T.

g1(A,E,L) = ∑
T

( fT (A,T )× fE(E,T,L))

size = 16

2 L = { fA(A), fS(S), fL(L,S), fB(B,S)
︸ ︷︷ ︸

, fX (X ,E), fD(D,E,B),g1(A,E,L)}. Delete S.

g2(L,B) = ∑
S

( fS(S)× fL(L,S)× fB(B,S))

size = 8

3 L = { fA(A), fX (X ,E), fD(D,E,B),g1(A,E,L)
︸ ︷︷ ︸

,g2(L,B)}. Del. E

g3(X ,D,B,A,L) = ∑
E

( fX (X ,E)× fD(D,E,B)×g1(A,E,L))

size = 64
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Examples (cont.)

4 L = { fA(A)
︸ ︷︷ ︸

,g2(L,B),g3(X ,D,B,A,L)
︸ ︷︷ ︸

}. Delete A size = 32

g4(X ,D,B,L) = ∑
A

( fA(A)×g3(X ,D,B,A,L))

5 L = {g2(L,B),g4(X ,D,B,L)
︸ ︷︷ ︸

}. Delete L. size = 16

g5(X ,D,B) = ∑
L

g2(L,B)×g4(X ,D,B,L)

6 L = {g5(X ,D,B)
︸ ︷︷ ︸

}. Delete B. size = 8

g6(X ,D) = ∑
B

g5(X ,D,B)

7 L = {g6(X ,D)
︸ ︷︷ ︸

}. Delete X. size = 8

g7(D) = ∑
X

g6(X ,D)

8 return normalize(g7(D))
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Examples (cont.)

Ejemplo 2. Get the probability of having Dysnoea (D), by using the following
elimination order σ1 = A,X ,T,S,L,E,B.

fA(A), fT (T,A), fS(S), fL(L,S), fB(B,S), fE(E,T,L), fX (X ,E), fD(D,E,B)

Delete A Use: fA(A), fT (A,T ) New: g1(T ) 4

fS(S), fL(L,S), fB(B,S), fE(E,T,L), fX (X ,E), fD(D,E,B),g1(T )

Delete X Use: fX (X ,E) New: g2(E) 4

fS(S), fL(L,S), fB(B,S), fE(E,T,L), fD(D,E,B),g1(T ),g2(E)

Delete T Use: fE(E,T,L),g1(T ) New: g3(E,L) 8

fS(S), fL(L,S), fB(B,S), fD(D,E,B),g2(E),g3(E,L)
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Examples (cont.)

fS(S), fL(L,S), fB(B,S), fD(D,E,B),g2(E),g3(E,L)

Delete S Use: fS(S), fL(L,S), fB(B,S) New: g4(L,B) 8

fD(D,E,B),g2(E),g3(E,L),g4(L,B)

Delete L Use: g3(E,L),g4(L,B) New: g5(E,B) 8

fD(D,E,B),g2(E),g5(E,B)

Delete E Use: fD(D,E,B),g2(E),g5(E,B) New: g6(D,B) 8

g5(D,B)

Delete B Use: g6(D,B) New: g7(D) 4

g7(D)
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Query-based inference

� In a concrete scenary the network’s variables can be divided
into: interest (I ) variables, observed variables or evidence (E = e)
and the remaining ones (R).

� The question now is: do we need to consider all the variables in
R?

� Answer: usually no

� Then, prior to solving the query, the network can be pruned to
include only the variables relevant for the query.

To prune the network (i.e. to discard some variables in R) we will
use as tools the concepts of barren nodes and d-separation

� D-separation: We can prune all variables K such that I(I |E|K).
There exists efficient algorithms for this task (i.e. BayesBall
(Schacther, 1998)
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