5. *K*-Nearest Neighbor

Pedro Larrañaga

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
University of the Basque Country

Madrid, 25th of July, 2006
Outline

1. Introduction
2. The Basic K-NN
3. Extensions of the Basic K-NN
4. Prototype Selection
5. Summary
Basic Ideas

K-NN ≡ IBL, CBR, lazy learning

- A new instance is classified as the most frequent class of its *K* nearest neighbors
- Very simple and intuitive idea
- Easy to implement
- There is not an explicit model (transduction)
- *K*-NN ≡ instance based learning (IBL), case based reasoning (CBR), lazy learning
Outline

1. Introduction
2. The Basic K-NN
3. Extensions of the Basic K-NN
4. Prototype Selection
5. Summary
Algorithm for the basic K-NN

BEGIN

Input: $D = \{(x_1, c_1), \ldots, (x_N, c_N)\}$

$x = (x_1, \ldots, x_n)$ new instance to be classified

FOR each labelled instance (x_i, c_i) calculate $d(x_i, x)$

Order $d(x_i, x)$ from lowest to highest, $(i = 1, \ldots, N)$

Select the K nearest instances to x: D_x^K

Assign to x the most frequent class in D_x^K

END

Figure: Pseudo-code for the basic K-NN classifier
Algorithm for the basic K-NN

Example

Figure: Example for the basic 3-NN. m denotes the number of classes, n the number of predictor variables, and N the number of labelled cases.
Algorithm for the basic K-NN

The accuracy is not monotonic with respect to K

Figure: Accuracy versus number of neighbors
K-NN with rejection

Requiring for some guarantees

- **Demanding for some guarantees** before an instance is classified
- In case that the guarantees are **not verified** the instance remains **unclassified**
- Usual guaranty: **threshold** for the most frequent class in the neighbor
K-NN with average distance
K-NN with weighted neighbors

Figure: K-NN with weighted neighbors
K-NN with weighted neighbors

<table>
<thead>
<tr>
<th>$d(x_i, x)$</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>2</td>
</tr>
<tr>
<td>x_2</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
</tr>
<tr>
<td>x_4</td>
<td>2</td>
</tr>
<tr>
<td>x_5</td>
<td>0.7</td>
</tr>
<tr>
<td>x_6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Figure: Weight to be assigned to each of the 6 selected instances
K-NN with weighted variables

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure: Variable X_1 is not relevant for C
K-NN with weighted variables

\[
d(x_l, x) = \sum_{i=1}^{n} w_i d_i(x_l, x_i) \quad \text{with} \quad w_i = MI(X_i, C)
\]

\[
MI(X_1, C) = p(x_1, c)(0, 0) \log \frac{p(x_1, c)(0, 0)}{p_x(0) \cdot p_c(0)} + p(x_1, c)(0, 1) \log \frac{p(x_1, c)(0, 1)}{p_x(0) \cdot p_c(1)} + \\
p(x_1, c)(1, 0) \log \frac{p(x_1, c)(1, 0)}{p_x(1) \cdot p_c(0)} + p(x_1, c)(1, 1) \log \frac{p(x_1, c)(1, 1)}{p_x(1) \cdot p_c(1)}
\]

\[
= \frac{3}{12} \log \frac{3}{12} \cdot \frac{3}{12} + \frac{3}{12} \log \frac{3}{12} \cdot \frac{3}{12} + \frac{3}{12} \log \frac{3}{12} \cdot \frac{3}{12} + \frac{3}{12} \log \frac{3}{12} \cdot \frac{3}{12} = 0
\]

\[
MI(X_2, C) = p(x_2, c)(0, 0) \log \frac{p(x_2, c)(0, 0)}{p_x(0) \cdot p_c(0)} + p(x_2, c)(0, 1) \log \frac{p(x_2, c)(0, 1)}{p_x(0) \cdot p_c(1)} + \\
p(x_2, c)(1, 0) \log \frac{p(x_2, c)(1, 0)}{p_x(1) \cdot p_c(0)} + p(x_2, c)(1, 1) \log \frac{p(x_2, c)(1, 1)}{p_x(1) \cdot p_c(1)}
\]

\[
= \frac{1}{12} \log \frac{1}{12} \cdot \frac{1}{12} + \frac{5}{12} \log \frac{5}{12} \cdot \frac{5}{12} + \frac{5}{12} \log \frac{5}{12} \cdot \frac{5}{12} + \frac{1}{12} \log \frac{1}{12} \cdot \frac{1}{12}
\]
Eliminating rare instances

- The class of each labelled instance, \((x_l, c^{(l)})\), is compared with the label assigned by a K-NN obtained with all instances except itself.

- If both labels coincide the instance is maintained in the file. Otherwise it is eliminated.
Hart condensation

Maintaining rare instances

- For each labelled instance, and following the storage ordering, consider a K-NN with only the previous instances to the one to be considered.
- If the true class and the class predicted by the K-NN are the same the instance is not selected.
- Otherwise (the true class and the predicted one are different) the instance is selected.
- The method depends on the storage ordering.
Outline

1. Introduction
2. The Basic K-NN
3. Extensions of the Basic K-NN
4. Prototype Selection
5. Summary
K-nearest neighbor

- **Intuitive** and easy to understand
- There is not an explicit model: *transduction* instead of *induction*
- **Variants** of the basic algorithm
- **Storage problems**: prototype selection
5. K-Nearest Neighbor

Pedro Larrañaga

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
University of the Basque Country

Madrid, 25th of July, 2006