Introduction	The Basic K-NN	Extensions	Prototype Selection	Summary

5. K-NEAREST NEIGHBOR

Pedro Larrañaga

Intelligent Systems Group Department of Computer Science and Artificial Intelligence University of the Basque Country

Madrid, 25th of July, 2006

Introduction	The Basic K-NN	Extensions	Prototype Selection	Summary
Outline				

Introduction	The Basic <i>K</i> -NN	Extensions	Prototype Selection	Summary
Outline				
	duction			
2 The E	Basic K-NN			
3 Exter	isions of the Basic <i>K</i> -N	IN		
4 Proto	type Selection			
5 Sumr	nary			

Basic Ideas

K-NN \equiv IBL, CBR, lazy learning

- A new instance is classified as the most frequent class of its K nearest neighbors
- Very simple and intuitive idea
- Easy to implement
- There is not an explicit model (transduction)
- K-NN ≡ instance based learning (IBL), case based reasoning (CBR), lazy learning

Introduction	The Basic <i>K</i> -NN	Extensions	Prototype Selection	Summary
Outline				
1 Introc	duction			
2 The E	Basic K-NN			
3 Exter	nsions of the Basic <i>K</i> -N	IN		
4 Proto	type Selection			
5 Sumr	nary			

・ロット (雪) (日) (日)

э

Algorithm for the basic *K*-NN

BEGIN

Input: $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\}$ $\mathbf{x} = (x_1, \dots, x_n)$ new instance to be classified FOR each labelled instance (x_i, c_i) calculate $d(\mathbf{x}_i, \mathbf{x})$ Order $d(\mathbf{x}_i, \mathbf{x})$ from lowest to highest, $(i = 1, \dots, N)$ Select the K nearest instances to \mathbf{x} : $D_{\mathbf{x}}^K$ Assign to \mathbf{x} the most frequent class in $D_{\mathbf{x}}^K$

END

Figure: Pseudo-code for the basic K-NN classifier

CEU

Algorithm for the basic *K*-NN

Example

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Algorithm for the basic K-NN

The accuracy is not monotonic with respect to K

The Basic <i>K</i> -NN	Extensions	Prototype Selection	Summary
duction			
Basic K-NN			
nsions of the Basic K-N	IN		
otype Selection			
	duction Basic <i>K-</i> NN	duction Basic <i>K</i> -NN nsions of the Basic <i>K</i> -NN	duction Basic <i>K</i> -NN nsions of the Basic <i>K</i> -NN

5 Summary

K-NN with rejection

Requiring for some guarantees

- Demanding for some guarantees before an instance is classified
- In case that the guarantees are not verified the instance remains unclassified
- Usual guaranty: threshold for the most frequent class in the neighbor

K-NN with average distance

Extensions

K-NN with weighted neighbors

Extensions

Prototype Selection

Summary

K-NN with weighted neighbors

	$d(\mathbf{x}_i, \mathbf{x})$	Wi
X ₁	2	0.5
x ₂	2	0.5
X 3	2	0.5
x ₄	2	0.5
x 5	0.7	1/0.7
x 6	0.8	1/0.8

Figure: Weight to be assigned to each of the 6 selected instances

CEU

K-NN with weighted variables

<i>X</i> ₁	<i>X</i> ₂	С
0	0	1
0	0	1
0	0	1
1	0	1
1	0	1
1	1	1
0	1	0
0	1	0
0	1	0
1	1	0
1	1	0
1	0	0

Figure: Variable X_1 is not relevant for C

K-NN with weighted variables

Introducti	on	The Basic K-NN	Extensions	Prototype Selection	Summary
Outl	ine				
1	Introduct	ion			
2	The Basi	c <i>K-</i> NN			
3	Extension	ns of the Basic <i>K-</i> I	NN		
4	Prototype	Selection			
5	Summary	1			

Eliminating rare instances

- The class of each labelled instance, (x₁, c⁽¹⁾), is compared with the label assigned by a *K*-NN obtained with all instances except itself
- If both labels coincide the instance in maintained in the file. Otherwise it is eliminated

Hart condensation

Maintaining rare instances

- For each labelled instance, and following the storage ordering, consider a *K*-NN with only the previous instances to the one to be considered
- If the true class and the class predicted by the K-NN are the same the instance is not selected
- Otherwise (the true class and the predicted one are different) the instance is selected
- The method depends on the storage ordering

Introduction	The Basic K-NN	Extensions	Prototype Selection	Summary
Outline				
	uction			
2 The Ba	asic K-NN			
3 Extens	ions of the Basic <i>K</i> -N	IN		

4 Prototype Selection

K-nearest neighbor

- Intuitive and easy to understand
- There is not an explicit model: transduction instead of induction
- Variants of the basic algorithm
- Storage problems: prototype selection

Introduction	The Basic K-NN	Extensions	Prototype Selection	Summary
	5. <i>K</i> -N	EAREST NE	EIGHBOR	

Pedro Larrañaga

Intelligent Systems Group Department of Computer Science and Artificial Intelligence University of the Basque Country

Madrid, 25th of July, 2006

