Clustering (Data mining)

Session 1: Introduction

Carlos Óscar Sánchez Sorzano, Ph.D.
Madrid, July 23rd 2007

Course outline: Session 1

1. Introduction
1.1 Problem formulation
1.2 Types of features
1.3 Feature extraction
1.4 Graphical examination
1.5 Data quality
1.6 Distance measures
1.7 Preprocessing
1.8 Data reduction
1.9 Types of clustering: partitional, hierarchical, probabilistic

1.1 Problem formulation

1.1 Problem formulation

Find groups of points that are close to each other within the cluster and far from the rest of clusters

1.1 Problem formulation

1.1 Problem formulation

Application> Marketing segmentation

- Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
- Approach:
Feature
extraction

Distance
definition
:---
and lifestyle related information.
Cluster
algorithm
:---
customers.

Cluster
validation
:---

Measure the clustering quality by observing buying patterns of
customers in same cluster vs. those from different clusters.

1.1 Problem formulation

Application> Document clustering

- Goal:find groups of documents that are similar to each other based on the important terms appearing in them.
- Approach:

```
\(\begin{gathered}\text { Feature } \\ \text { extraction }\end{gathered} \longrightarrow-\) Identify frequently occurring terms in each document.
- Form a similarity measure based on the frequencies of
Distance
definition different terms.
\(\underset{\substack{\text { Clgorithm } \\ \text { Cluster } \\ \text { validation }}}{\text { Clust }} \longrightarrow\)
```


1.1 Problem formulation

Figure 1: The resulting partitions by (a) k-means, (b) single-link and (c) spectral clustering on this "globular-spiral" data set.

Figure 2: Results of k-means with $k=2$ for different re-sampled versions of two data sets. Dotted lines in the figures correspond to the cluster boundaries. The partitions of " 2 Gaussian" data set are almost the same for different re-sampled versions, suggesting that k-means with $k=2$ gives good clusters. The same cannot be said for the " 2 spiral" data set.

1.1 Problem formulation

How many clusters?
Six Clusters

Two Clusters
Four Clusters

1.2 Types of features

1.2 Types of features

Coding of categorical variables

Hair Colour		
\{Brown, Blond, Black, Red $\}$	No order	$\left(x_{\text {Brown }}, x_{\text {Blond }}, x_{\text {Black }}, x_{\text {Red }}\right) \in\{0,1\}^{4}$
Peter: Black	Peter: $\{0,0,1,0\}$	
Molly: Blond	Molly: $\{0,1,0,0\}$	
Charles: Brown	Charles: $\{1,0,0,0\}$	

$\underset{\text { Company size }}{\{\text { Small, Medium, Big }\}} \xrightarrow{\text { Implicit order }} x_{\text {size }} \in\{0,1,2\}$

Company A: Big
Company B: Small
Company C: Medium

Company A: 2
Company B: 0
Company C: 1

1.3 Feature extraction

- Most sensitive part of the process. If the right information for clustering is not present, no clustering algorithm will work.
- Specific to each field (available from Session1/Docs):
- Web navigation: Chen2002 and Lim2005
- Video processing: Chang1995 and Zhong1996
- Image processing: Szepesvari
- Character recognition: Liu2005
- Gait recognition: Dawson2002

1.4 Graphical examination

- Univariate distribution plots
- (Bivariate distribution plots)
- Pairwise plots
- Scatter plots
- Boxplots
- (Multivariate plots)
- (Chernoff faces)
- (Star plots)

1.4 Graphical examination: Univariate distribution

1.4 Graphical examination: Scatter plots

1.5 Data quality: Missing data

Types of missing data:

- Missing Completely At Random (MCAR)
- Missing at Random (MAR)

Strategies for handling missing data:

- use observations with complete data only
- delete case(s) and/or variable(s)
- estimate missing values (imputation):
+ All-available
+ Mean substitution
+ Cold/Hot deck
+ Regression (preferred for MCAR): Linear, Tree
+ Expectation-Maximization (preferred for MAR)
+ Multiple imputation (Markov Chain Monte Carlo, Bayesian)

1.5 Data quality: Outliers

Univariate detection

Multivariate detection

$$
d^{2}\left(\mathbf{x}_{i}, \overline{\mathbf{x}}\right)=\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{t}{\underset{c}{\text { Covariance }}}_{S_{\text {matrix }}}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)>\underset{\substack{\text { Number of } \\ \text { variables }}}{p+3 \sqrt{2 p}}
$$

1.5 Data Quality: Duplicate data

- Data set may include data objects that are duplicates, or almost duplicates of one another
- This is a major issue when merging data from heterogeous sources

Example:

- Same person with multiple email addresses

Data cleansing:

- Remove duplicates (by partial distance, by classification)

1.6 Distance measures: Generic

1-norm (Manhattan)

Most used \qquad p-norm (Euclidean $\mathrm{p}=2$) Minkowski

Infinity (Chebyshev) norm
$d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
$d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{s=1}^{n}\left|x_{i s}-x_{j s}\right|$
$d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\sum_{s=1}^{n}\left(x_{i s}-x_{j s}\right)^{p}\right)^{\frac{1}{p}}$
$d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\max _{s}\left|x_{i s}-x_{j s}\right|$

1.6 Distance measures: Generic

Matrix-based distance $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{t} M^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)$
Euclidean distance $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{t} I^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{t}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)$
Mahalanobis distance $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)$ San Pablo

1.6 Distance measures: Generic

Mahalanobis distance $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)$

$$
\begin{aligned}
\Sigma=\left(\begin{array}{cc}
\sigma_{\text {height }}^{2} & r \sigma_{\text {height }} \sigma_{\text {weight }} \\
r \sigma_{\text {height }} \sigma_{\text {weight }} & \sigma_{\text {weight }}^{2}
\end{array}\right)=\left(\begin{array}{cc}
100 & 70 \\
70 & 100
\end{array}\right) & d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\hline \text { Juan } & \text { Juan } \\
& \sigma_{\text {height }}=10 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\text {weight }} & =10 \mathrm{~kg} \\
r & =0.7
\end{aligned}
$$

1.6 Distance measures: Generic

Bregman divergence

$$
\begin{aligned}
& d_{\phi}(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})-\phi(\mathbf{y})-\langle\mathbf{x}-\mathbf{y}, \nabla \phi(\mathbf{y})\rangle \\
& \text { Strictly convex, differentiable } \\
& \phi(\mathbf{x})=\|\mathbf{x}\|^{2} \longrightarrow \text { Euclidean distance } \\
& d_{\phi}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|^{2} \\
& \phi(\mathbf{x})=\sum_{i=1}^{p}-x_{i} \log x_{i} \\
& d_{\phi}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p} x_{i} \log \frac{x_{i}}{y_{i}} \\
& \phi(\mathbf{x})=\sum_{i=1}^{p}-\log x_{i} \longrightarrow \begin{array}{c}
\text { Itakura-Saito } \\
\text { distance }
\end{array} \\
& d_{\phi}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p}\left(\frac{x_{i}}{y_{i}}-\log \frac{x_{i}}{y_{i}}-1\right)
\end{aligned}
$$

