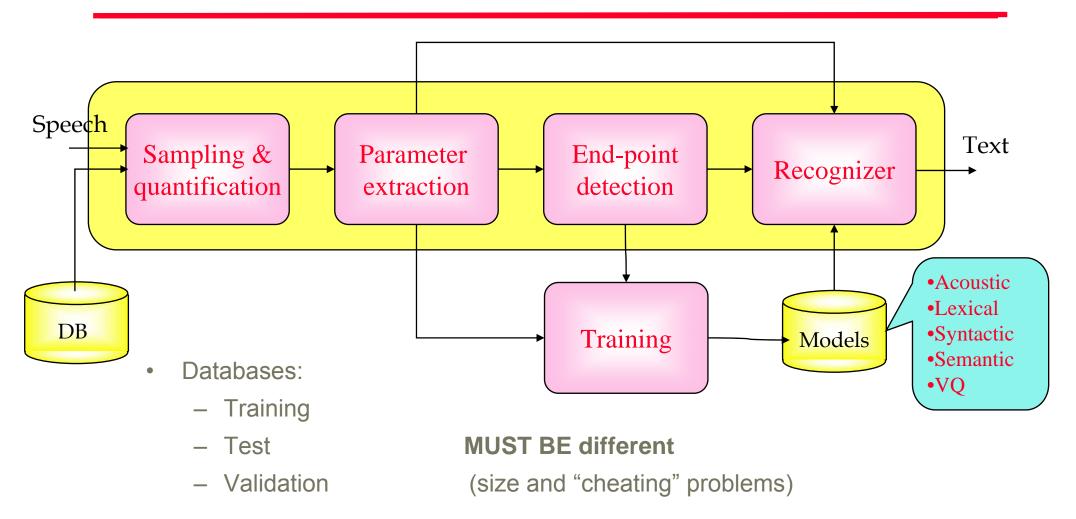


Hidden Markov Models applied to Speech recognition:

Basic algorithms Discrete, Continuous & Semicontinuous HMMs

> Ricardo de Córdoba Herralde Grupo de Tecnología del Habla Departamento de Ingeniería Electrónica. UPM



Hidden Markov Models (HMMs). Introduction (I)

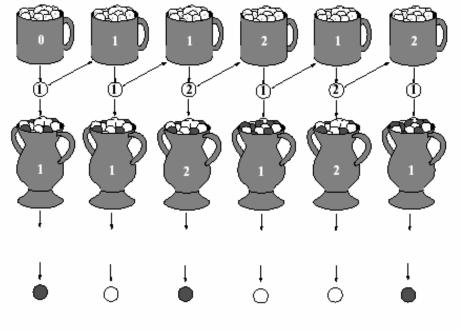
- Problem:
 - A process generates an observable sequence of symbols (vectors, heads or tails, ball colors in an urn, etc.)
 - How a model that explains this sequence is built?
 - Using that model a system for generation, recognition, identification, etc., can be designed
- Model types:
 - Deterministic: exploit known characteristics of the signal
 - Statistical: try to characterize the statistical properties of the signal

Hidden Markov Models (HMMs). Introduction (II)

- Statistical models:
 - Gaussian, Poisson, Markov, Hidden Markov Models, etc.
 - Assumed that the signal is correctly characterized by a random process
- Example previous to the HMM definition:
 - Urns and colored balls, a subject is hidden
 - The subject selects an urn according to a random process (hidden process)
 - Selects a ball and finally shows it according to a random process (visible process)

Hidden Markov Models (HMMs). Introduction (III)

- Objective: given the model and the observation sequence O
 - How can the underlying state sequence Q be determined?



 Observation Sequence:
 $O = \{B, W, B, W, W, B\}$

 State Sequence:
 $Q = \{1, 1, 2, 1, 2, 1\}$

Hidden Markov Models (HMMs). Introduction (IV)

- Definition
 - Double stochastic process:
 - Hidden stochastic process, unseen
 - Visible stochastic process, generates the observation sequence
- Parametric model able to describe acoustic events in an efficient way
- We assume that the transition depends only on the previous state and the observation only on the current state (first order)

Hidden Markov Models (HMMs). Discrete HMMs

- Elements of a **discrete** HMM
 - N states $S = \{S_1, S_2, \dots, S_N\}$ in t, q_t **TOPOLOGY**
 - *M* observation symbols $V = \{v_1, v_2, ..., v_M\}$ in *t*, O_t
 - State transition probability distribution

 $A = \{ a_{ij} = p(q_{t+1} = S_j | q_t = S_i) \}$

Observation symbol probability distribution in state j

 $B = \{ b_i(k) = p(O_t = v_k | q_t = S_i) \}$

Initial state distribution

 $\Pi = \{ \pi_i = p(q_1 = S_i) \}$

• Notationally, an HMM is typically written as:

 $\lambda = \{ \boldsymbol{A}, \ \boldsymbol{B}, \ \boldsymbol{\pi} \}$

• \approx Probabilistic finite automata

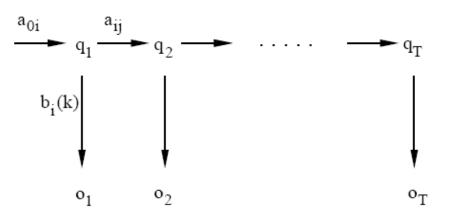
Hidden Markov Models (HMMs). Example



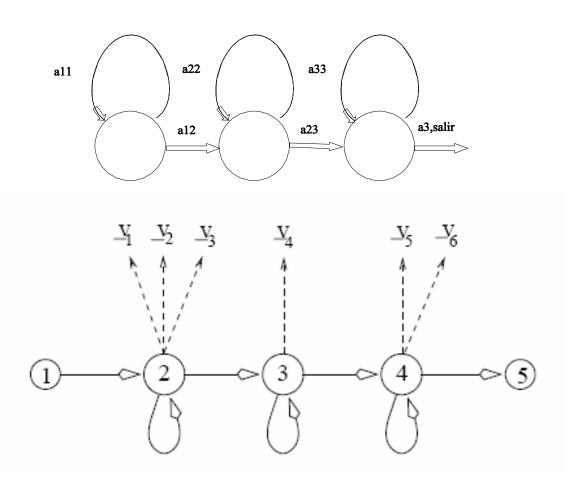
G THEF

Hidden Markov Models (HMMs). Generation of HMM Observations

- 1. Choose an initial state, $q_1 = s_i$, based on the initial state distribution, π
- 2. For *t* =1 to *T* :
 - Choose o_t = v_k according to the symbol probability distribution in state s_i, b_i(k)
 - Transition to a new state $q_{t+1} = s_j$ according to the state transition probability distribution for state s_j , a_{jj}
- 3. Increment *t* by 1, return to step 2 if $t \le T$; else, terminate



Hidden Markov Models (HMMs). Typical topology for speech



Hidden Markov Models (HMMs). Problems to be solved (I)

- Three basic problems:
 - Evaluation:
 - Given the observation sequence $O = \{O_1, O_2, ..., O_T\}$ and the model λ
 - How do we compute p(O | λ) = the probability of sequence O being generated by the model
 - To know which model better represents $O \Rightarrow$ recognition
 - Segmentation:
 - Given the observation sequence $O = \{O_1, O_2, ..., O_T\}$ and model λ
 - How do we choose a state sequence Q={q₁, q₂, ..., q_T} which is optimum in some sense?

Hidden Markov Models (HMMs). Problems to be solved (II)

- Training or estimation:

- Given the observation sequence $O = \{O_1, O_2, ..., O_T\}$
- How do we adjust the model parameters λ to maximize $p(O \mid \lambda)$?
- Objective: optimize λ parameters to better describe the sequence
- Application to isolated speech recognition: training + evaluation

Hidden Markov Models (HMMs). Evaluation (I)

- Evaluation using raw force
 - Given the observation sequence $O = \{O_1, O_2, ..., O_T\}$ and the model λ : $p(O \mid \lambda)$?
 - Compute all possible sequences $Q = \{q_1, q_2, ..., q_T\}$: $p(O|Q, \lambda) = \prod_{t=1}^{T} p(O_t|q_t, \lambda) = b_{q_1}(O_1)b_{q_2}(O_2)...b_{q_T}(O_T)$

$$p(Q|\lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \dots a_{q_{T-1} q_T}$$

$$p(O, Q|\lambda) = p(O|Q, \lambda) p(Q|\lambda)$$

$$p(O|\lambda) = \sum_{\forall Q} p(O, Q|\lambda) = \sum_{\forall Q} p(O|Q, \lambda) p(Q|\lambda)$$

- Very costly: $O(N^T)$
- Underflow problems

Hidden Markov Models (HMMs). Evaluation (II)

• Forward O(N²T)

$$\alpha_t(i) = p(O_1 O_2 \dots O_t, q_t = S_i | \lambda)$$

- The forward variable is defined as:
 - The probability of the partial observation sequence up to time t and state s_i at time t, given the model λ .
- Initialization $\alpha_1(i) = \pi_i b_i (O_1); \quad 1 \le i \le N$
- Recursion

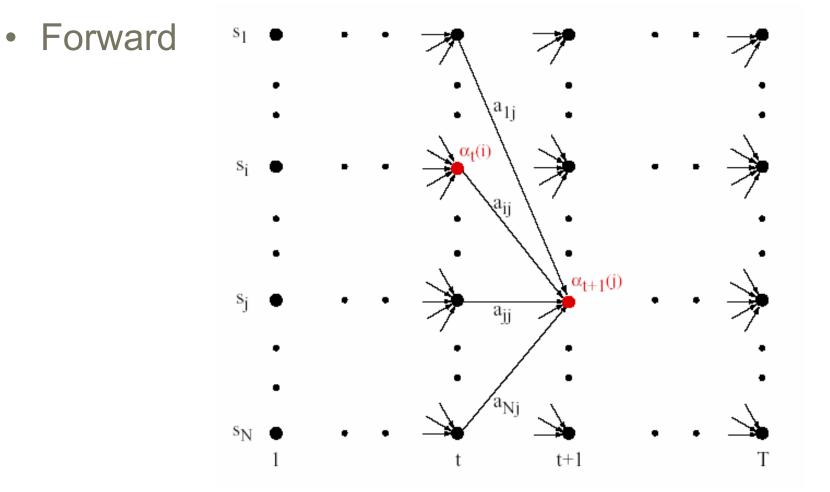
$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right] b_j(O_t); \quad \begin{array}{l} 1 \le t \le T \\ 1 \le j \le N \end{array}$$

Finalization

$$p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

- Computing cost: $O(N^2 T)$, instead of $O(N^T)$

Hidden Markov Models (HMMs). Evaluation (III)



Hidden Markov Models (HMMs). Evaluation (IV)

C'INTER

- $\alpha_{t-1}(i) a_{ij}$ = joint probability of being in state i in time t-1 and making a transition to state j
- The Σ for all previous states in t-1 = prob of being in state j in time t with the sequence until O_{t-1} being generated
- With the final multiplication by $b_j(O_t)$ (prob of generating observation O_t in state j), we obtain $\alpha_t(j)$. $1 \quad \begin{array}{ccc} O_t \\ 2 \quad O_t \\ \Lambda \\ t-1 \end{array}$

 $\alpha_i(t-1)$

a..

$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right] b_j(O_t); \quad \begin{array}{l} 1 \le t \le T \\ 1 \le j \le N \end{array}$$

 α_i (t-1) $a_{ii}b(o_t)$

G WIEF

Hidden Markov Models (HMMs). Evaluation (V)

• Backward O(N²T)

$$\mathcal{B}_t(i) = p(O_{t+1}O_{t+2}\dots O_T, q_t = S_i|\lambda)$$

- The backward variable is defined as:
 - The probability of the partial observation sequence from time t+1 up to T, and state s_i at time t, given the model λ .
- Initialization

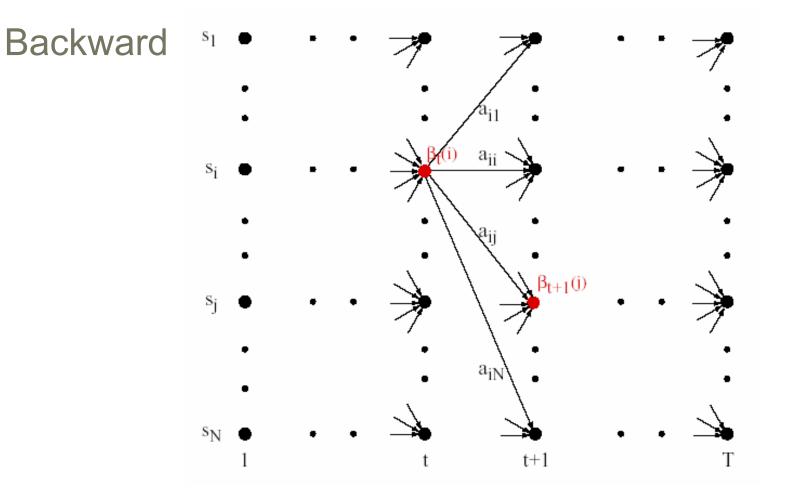
$$\beta_T(i) = 1; \quad 1 \le i \le N$$

- Recursion
$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j (O_{t+1}) \beta_{t+1}(j);$$

 $1 \le t \le T-1$
 $1 \le i \le N$

- Finalization
$$p(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i)$$

Hidden Markov Models (HMMs). Evaluation (VI)



Hidden Markov Models (HMMs). Segmentation (I)

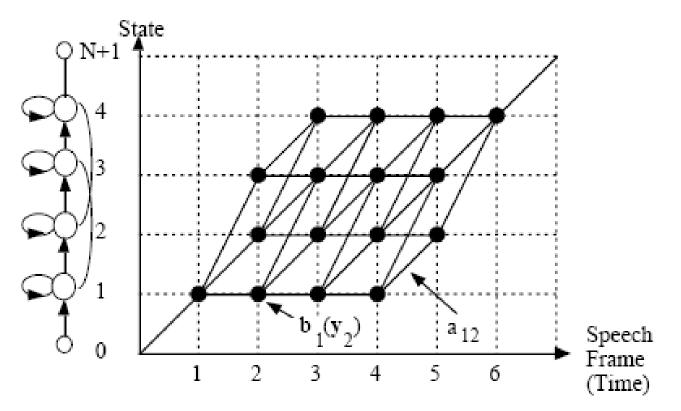
- Given the observation sequence $O = \{O_1, O_2, ..., O_T\}$ and model λ
 - How do we choose a state sequence Q={q₁, q₂, ..., q_T} which is optimum in some sense?
 - Example: choose the most probable state sequence
- Viterbi algorithm
 - Based in **dynamic programming** (optimization of sequential decision processes). **Optimality principle.**
 - Similar to *forward* (maximization instead of addition)
 - To retrieve the state sequence, we must keep track of the state sequence which gave the best path, at time t, to state s_i

Hidden Markov Models (HMMs). Segmentation (II)

 Viterbi algorithm: Not used in t=1 Initialization $\delta_1(i) = \pi_i b_i (O_1); \quad \psi_1(i) = 0; \quad 1 \le i \le N$ Recursion (decision on a local optimum) $\int \alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(Q_t)$ $\delta_t(j) = \max_{1 \le i \le N} \left[\delta_{t-1}(i) a_{ij} \right] b_j(O_t) \qquad 2 \le t \le T$ $\psi_t(j) = \operatorname{argm}(ax[\delta_{t-1}(i)a_{ij}]) \quad ; \quad 1 \le j \le N$ Backtracking Finalization $P^* = \max_{1 \le i \le N} \left[\delta_T(i) \right]$ $q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T - 1, T - 2, \dots, 1$ $q_{T}^{*} = argmáx[\delta_{T}(i)]$ $1 \le i \le N$

Hidden Markov Models (HMMs). Segmentation (III)

• Viterbi algorithm:



Hidden Markov Models (HMMs). Segmentation (IV)

- Viterbi algorithm:
 - The Segmentation problem is solved (the state sequence is obtained)
 - The Evaluation problem is also solved:
 - Even though the probability is not exact (as in forward-backward) because maximizations instead of additions are made
 - It can be used to compare the probabilities obtained for different models,
 - Which is the basic task in speech recognition
 - The recognized word is the one with the highest probability

