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Speech Recognition Architecture
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– Training
– Test                             MUST BE different
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Hidden Markov Models (HMMs).
Introduction (I)

• Problem:
– A process generates an observable sequence of symbols 

(vectors, heads or tails, ball colors in an urn, etc.)
– How a model that explains this sequence is built?
– Using that model a system for generation, recognition, 

identification, etc.,  can be designed
• Model types:

– Deterministic: exploit known characteristics of the signal
– Statistical: try to characterize the statistical properties of 

the signal
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Hidden Markov Models (HMMs).
Introduction (II)

• Statistical models:
– Gaussian, Poisson, Markov, Hidden Markov Models, etc.

• Assumed that the signal is correctly characterized by a random 
process 

• Example previous to the HMM definition:
– Urns and colored balls, a subject is hidden
– The subject selects an urn according to a random 

process (hidden process)
– Selects a ball and finally shows it according to a random 

process (visible process)
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Hidden Markov Models (HMMs).
Introduction (III)

• Objective: given the model and the observation sequence O
– How can the underlying state sequence Q be determined?
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Hidden Markov Models (HMMs).
Introduction (IV)

• Definition
– Double stochastic process:

• Hidden stochastic process, unseen
• Visible stochastic process, generates the observation sequence

• Parametric model able to describe acoustic events in 
an efficient way

• We assume that the transition depends only on the 
previous state and the observation only on the current 
state (first order)
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Hidden Markov Models (HMMs).
Discrete HMMs

• Elements of a discrete HMM 
– N states S = {S1, S2, ... SN} in t, qt   TOPOLOGY
– M observation symbols V = {v1, v2, ..., vM} in t, Ot

– State transition probability distribution 
A = { aij = p(qt+1=Sj|qt=Si) }

– Observation symbol probability distribution in state j
B = { bi(k) = p(Ot=vk|qt=Si) }

– Initial state distribution 
Π = { πi = p(q1=Si) }

• Notationally, an HMM is typically written as: 
λ = {A, B, π} 

• ≈ Probabilistic finite automata



8

Hidden Markov Models (HMMs). 
Example

• λ = { A, B, Π }
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Hidden Markov Models (HMMs). 
Generation of HMM Observations

1. Choose an initial state, q1= si, based on the initial state 
distribution, π

2. For t =1 to T : 
• Choose ot = vk according to the symbol probability distribution in 

state si, bi(k) 
• Transition to a new state qt+1 = sj according to the state transition 

probability distribution for state si, aij

3. Increment t by 1, return to step 2 if t ≤ T; else, terminate 
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Hidden Markov Models (HMMs). 
Typical topology for speech
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Hidden Markov Models (HMMs). 
Problems to be solved (I)

• Three basic problems:
– Evaluation: 

• Given the observation sequence O={O1, O2, ..., OT} and the 
model λ

• How do we compute p(O | λ) = the probability of sequence O
being generated by the model

• To know which model better represents O ⇒ recognition

– Segmentation: 
• Given the observation sequence O={O1, O2, ..., OT} and model λ

• How do we choose a state sequence Q={q1, q2, ..., qT} which is 
optimum in some sense?
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Hidden Markov Models (HMMs). 
Problems to be solved (II)

– Training or estimation: 
• Given the observation sequence O={O1, O2, ..., OT} 

• How do we adjust the model parameters λ to maximize p(O | λ)?

• Objective: optimize λ parameters to better describe the 
sequence

• Application to isolated speech recognition: training + 
evaluation
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Hidden Markov Models (HMMs). 
Evaluation (I)

• Evaluation using raw force
– Given the observation sequence 

O={O1, O2, ..., OT} and the model λ: ¿p(O | λ)?
– Compute all possible sequences Q = {q1, q2, ..., qT}:

– Very costly: O(NT)
– Underflow problems
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Hidden Markov Models (HMMs). 
Evaluation (II)

• Forward O(N2T)
– The forward variable is defined as: 

• The probability of the partial observation sequence up to time t and 
state si at time t, given the model λ. 

– Initialization 

– Recursion

– Finalization

– Computing cost: O(N2 T), instead of O(NT)
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Hidden Markov Models (HMMs). 
Evaluation (III)

• Forward



16

Hidden Markov Models (HMMs). 
Evaluation (IV)

• Forward:
– αt-1(i) aij = joint probability of being in state i in time t-1 and making a 

transition to state j
– The Σ for all previous states in t-1 = prob of being in state j in time t with 

the sequence until Ot-1 being generated
– With the final multiplication by bj(Ot) (prob of generating observation Ot in 

state j), we obtain αt(j).
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Hidden Markov Models (HMMs). 
Evaluation (V)

• Backward O(N2T)
– The backward variable is defined as: 

• The probability of the partial observation sequence from time 
t+1 up to T, and state si at time t, given the model λ. 

– Initialization

– Recursion

– Finalization
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Hidden Markov Models (HMMs). 
Evaluation (VI)

• Backward
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Hidden Markov Models (HMMs). 
Segmentation (I)

– Given the observation sequence O={O1, O2, ..., OT} and 
model λ

• How do we choose a state sequence Q={q1, q2, ..., qT} which is 
optimum in some sense? 

• Example: choose the most probable state sequence

– Viterbi algorithm
• Based in dynamic programming (optimization of sequential 

decision processes). Optimality principle.

• Similar to forward (maximization instead of addition)

• To retrieve the state sequence, we must keep track of the state 
sequence which gave the best path, at time t, to state si
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Hidden Markov Models (HMMs). 
Segmentation (II)

• Viterbi algorithm:
– Initialization

– Recursion (decision on a local optimum)

– Finalization                                Backtracking
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Hidden Markov Models (HMMs). 
Segmentation (III)

• Viterbi algorithm:
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Hidden Markov Models (HMMs). 
Segmentation (IV)

• Viterbi algorithm:
– The Segmentation problem is solved (the state sequence 

is obtained) 
– The Evaluation problem is also solved:

• Even though the probability is not exact (as in forward-backward) 
because maximizations instead of additions are made

• It can be used to compare the probabilities obtained for different 
models, 

– Which is the basic task in speech recognition 

• The recognized word is the one with the highest probability 


