

Regression methods

Chapter 1

Carlos Rivero Rodríguez, UCM Madrid, July 9-13, 2007

A brief historical framework

- We can find antecedents of the regression methods on the Gauss (1777-1855) and Laplace`s (1749-1827) astronomical and physical models.
- The term "regression " firstly appears in the Galton's (1822-1911) biological works.
 - Galton analyzed the relationship between the size of different types of seeds and the size of the corresponding plant after one year growing.
 - "Regression Towards Mediocrity in Hereditary Stature," Journal of the Anthropological Institute, 15:246-263 (1886). Galton analyzed the heigths of 928 individuals and the mean heigths of their respective parentages, 205 in number.
- At present, regression methods are used in many scientific areas
 - Economy, biology, medicine, engineering, metheorology, sociology, psicology, etc

Regression and reverssion

• Galton works:

"children's heights tended to *reverse* to the average heigth of the population, rather than diverting from it"

- Difference between *data analysis* and *statistical inference*
- The relationship between some variables will be expressed in probabilistic terms. Consequences derived from this relationship will be also expressed in probabilistic terms.
- "The user of regression analysis attempts to discern the relationship between a dependent variable and one or more independent variables. The relation will not be a functional relation, nor can a *cause-and-effect relationship* necessarely be inferred"

Some applications and examples

- In Economy:
 - Relationship between salary (incomes) and education (Mincer, "Schooling, Experience and Earnings", 1974).
 - Relationship between yield on an stock and the yield of the stock market index (Sharpe).
- In Sociology
 - Relationship between delinquency rate, public security expendidure and number of polices.
- In Pshicology
 - Characteristics of individuals that are inclinated to the violency.
 - Characteristics of the indivuduals that tend to buy a specific product.
- In Medicine
 - Relationship between time of treatment and the ammount and type of medicines.
- In Industry
 - Optimal conditions to improve yield of an industry process, in relation with temperature, preasure and reaction time of the process.

Specification of a regression model

- Objetive: "Analyze the relationship between a response variable Y and k predictors $X_1, X_2, ..., X_k$ "
- Uniequational static model
 - Simple model (with one regresor X)
 - Linear model (chapters 2-3)
 - Non linear model (chapter 11)
 - Non parametric model (chapter 13)
 - Discrete response model
 - Y is a binary variable (chapter 9)
 - Y has more than two levels
 - Multiple model (with k regressors $X_1, X_2, ..., X_k$)
 - Linear model (chapters 4-8, 10, 12)
 - Non linear model (chapter 11)
 - Non parametric model
 - Discrete response model
 - Y is a binary variable (chapter 9)
 - Y has more than two levels
- Multiequational dymamic model

- We are interested in:
 - *"explain the variable Y as a function of X"* or equivalently,
 - "analyze the relationship between Y and X"

Objetive: detect the underling function (relationship) that generates the data

Data will allow us to find this underling relationship between Y (dependent variable) and X (independent variable), after deleting the perturbations effect

Specification of a regression model

- Simple model
 - Linear model
 - Non-linear model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + u_{i}, \quad i = 1,...,N$$
$$Y_{i} = g(\beta_{1},...,\beta_{r},X_{i}) + u_{i}, \quad i = 1,...,N$$
$$Y_{i} = e^{\beta_{0} + \beta_{1}X_{i}^{\beta_{3}}} + u_{i}$$

- Multiple model
 - Linear model
 - Non linear model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \dots + \beta_{k}X_{ki} + u_{i}, \quad i = 1, \dots, N$$

$$Y_{i} = g(\beta_{1}, \dots, \beta_{r}, X_{1i}, \dots, X_{ki}) + u_{i}, \quad i = 1, \dots, N$$

$$Y_{i} = \log(\beta_{0} + \beta_{1}X_{1i} + \dots + \beta_{k}X_{ki}) + u_{i}$$

Y = response scalar variable (**observable**) $X_1,...,X_k$ = regressors or independent scalar variables (**observable**) $\beta_1, ...,\beta_k$ = scalar parameters (**unknown**) u_i = random scalar perturbations (**non observables**): ADDITIVE perturbations

Organization of the regression analysis

- Detect the problem.
 - Define the variables that we will relate between
 - Find data. Data sources
- Specify an adequate model
 - Prior knowledgement. Specify a functional relationship: linear or non linear
 - No prior knowledgement. Use a non-parametric model to suggest a parametric functional relationship
 - **Estimate** the parameters $\beta_1, ..., \beta_k$ from the data
 - Validate the specificated model from current data or from new or historic data
 - Make predictions and interpret the real situation that we had modeled

Simple linear regression model

Chapter 2

Carlos Rivero Rodríguez, UCM Madrid, July 9-13, 2007

Introduction

- Relationship between a response or dependent variable Y and a single regressor or independent variable X.
- Linear regression does not mean that the relationship between Y and X can be represented as a straight line.
- Linear regression means that the model is linear in the parameters

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
$$Y_i = \beta_0 + \beta_1 X_i^2 + u_i$$

 u_i indicates the non-exact relationship between Y and X

We estimate with past to predict future Regression describes the relationship between Y and X

Interpretation

- <u>Parameter β_1 </u> represents the mean increasing of *Y* when *X* increases one unit.
- Parameter β_1 represents the mean differential increasing of *Y* as *X* increases.

 ∂Y

Data graphs

Salary=Y	Education=X	Salary=Y	Education=X	
0,8	8	6,4	12	
1,2	8	6,6	17	
1,8	11	7,0	15	
2,5	10	7,5	12	
3,0	8	7,8	17	
3,2	10	8,4	11	
4,0	8	Grafical display of data may help us to		
4,2	12	select (speci	fy) a useful mo	odel
4,5	10	9,0	•	•
4,8	11	7,0		• • •
5,0	17	5,0	•	•
5,2	12	3,0	• •	
5,6	11	1,0	* *	
5,8	15	0,0	5 10	15 20

Hypotesis of the model

$$Y_i = \beta_0 + X_i \beta_1 + u_i, \quad i = 1, ..., N$$

- The model is well specified
 - Linear model
 - *Y* depends on *X* and no other variables influences Y
 - Constant parameters
- Degrees of freedom (N > 2)
- Non stochastic regressors
- Mean zero errors:
- Homoskedasticity:
- Incorrelation:
- Normal distribution:

$$\begin{split} \overline{E(u_i) = 0} \\ \overline{V(u_i) = \sigma^2}, \quad i = 1, \dots, N \\ \overline{E(u_i u_j) = 0, \quad i \neq j} \\ u_i \equiv N(0, \sigma^2) \quad i.i.d. \end{split}$$

En lo sucesivo, **todas las hipótesis enunciads serán asumidas**, no siendo válidos los resultados que se expondrán si alguna de ellas no se cumple

Parameter estimation

- We need to obtain the β_0 and β_1 values that better fit the *N* available observations.

- We need to define the term "fitting".
- Depending on the definition of "fitting" we have fixed, we will have the diffent parameter estimation methods.
 - Ordinary Least Squares method
 - Maximum Likelihood method
 - Bayesian estimation method
 - Moments method

OLS estimation method

- Find the β_0 and β_1 values that minimize the sum of square deviations between the observed value Y_i and the prediction $\beta_0 + \beta_1 X$:

$$\left(\hat{\beta}_{0},\hat{\beta}_{1}\right) = \arg\min_{\beta_{0}\beta_{1}} SC\left(\beta_{0},\beta_{1}\right) = \arg\min_{\beta_{0}\beta_{1}} \sum_{i=1}^{N} \left(y_{i} - \beta_{0} - \beta_{1}x_{i}\right)^{2}$$

