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1. Goal
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Figure 1.1 Part of the Beveridge wheat price index series.

R
X[n] =trend[n]+ periodic[n]+ random[n]

Explained by statistical models (AR, MA, ...)
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The goal of the probability models for time series is to characterize the kind of
“randomness” of the random component. The figure on the right represent three
different stochastic processes, all of them are completely random. However, the
kind of randomness is different from one to the other. The difference comes from
their corresponding correlation structure, i.e., the autocorrelation function for
each time series is different. The objective of parametric models is to define a
controlled time series whose correlation structure is similar to the one of the input
process.
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Although, probably none of us will have to program any of this time series
models, it is necessary in order to use the programs to know exactly to what they
are referring when they are going to fit an ARX(na,nb,nk) model. For being able
of understanding what the program is exactly going to do is necessary to review
all the mathematics that follow.



2. A short introduction to system analysis
Xnl_| 7 yIn]=T(x) Transfer function
Difference equation M
bz ™*
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k=0 X(2) iakz—k
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Example: y[n]+ y[n—1] = x[n] - 0.5x[n—1]

Y(2)+Y(2)z =X (2)-05X(2)z" x[n+n,] szx (2)
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All linear systems can be expressed by a difference equation involving the input
series and the output series. If we Z-transform the difference equation, and
reorganize the equation we can compute what is called the transfer function of the
system. This function completely defines the behaviour of a LTI system. In
particular, it relates the spectral content of the input signal to the spectral content
of the output. Expliciting the definition of the Z transform falls outside of the
scope of this introductory course. The interested student may read
Oppenheim2000b.



2. A short introduction to system analysis

Poles/Zeros
z, isapole of H(z) iff [H(z,) =0
z, isa zero of H(z) iff H(z)=0 Im{z}

Example:  y[n]= X[n=1]+ x[n]+ x[n+1]

7=1
3 \%
H(z)=1z"+i+1z _Re{z}

Poles: z=0,0 Zeros: z=-1% j3 K/O/

Stability of LTI systems
A causal system is stable iff all its poles are inside the unit circle |z|<1

[

Invertibility of LTI systems

The transfer function of the inverse system of a LTI system whose transfer function
ISH(z) is L Therefore, the zeros of one system are the poles of its inverse, and
viceversa, H (Z

®cu

Poles and zeros play a key role in the analysis of LTI systems since they define
(up to a multiplying constant) the transfer function of a given system.
Furthermore, they define whether a causal LTI system is stable or not. An
interesting property of inverse LTI systems is that they are the reciprocal of the
original system. Thus, zeros of the original system become poles of the inverse
systems and viceversa. If we wonder about the stability of the inverse system, we
could say that the inverse of a given system is stable iff all the zeros of that
system are inside the unit circle.



2. A short introduction to system analysis

Downsampling
X[n] Xa[n]= XM ] s
—> lM — i\ f ".‘ |
Wl W
Upsampling
x[n/L] n=0%L,+2L,... &
x[n] L Xe[n]={ 0 s =k§0x[k]5[n—kL]




3. Moving average processes: MA(Q)

LTI, with memory,
invertible, causal, stable

Definition H(z)=by+bz" +b,z 2 +..+b,27" =B(z) —»

win] | ma(q) - XIn]=bywin]+bw[n—1]+...+b,wn-q]

win] x4ln] X0ln]
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A MA(q) stochastic process is one that is generated using a difference equation like the one shown in the slide. Note that it
only uses previous samples of the input signal. The main features of the associated generating system are that it is LTI,
causal and stable. The MA system is FIR and, therefore, an all-zero system.

Selecting the right b coefficients, many different correlation structures might be created. The more complex (and wider) is
the correlation we want to reproduce, the higher must be the g. In the examples shown the following b’s have been used

b1: [10.9]
b20: [-0.0438 -0.0151 -0.0079 0.0074 0.0304 0.0591 0.0899 0.1186 0.1408 0.1529
01529 0.1408 0.1186 0.0899 0.0591 0.0304 0.0074 -0.0079 -0.0151 -0.0438]

The MATLAB code used for generating these plots is:
function MA_process
N=200;

w=randn(1,N);

x1=generate_ MA1_process(w);

x20=generate_MA20_process(w);

subplot(231); stem(1:N/2,w(N/2+1:N)); title(w[n]);  xlabel(time’);
subplot(232); stem(1:N/2,x1(N/2+1:N)); title(x_1[n]"); xlabel(time");
subplot(233); stem(1:N/2,x20(N/2+1:N)); title('x_{20}[n]"); xlabel(‘time");

K=1000;
corr_w =xcorr(w,'coeff’);
corr_x1 =xcorr(x1,'coeff’);
corr_x20=xcorr(x20,'coeff’);
for k=1:K
w=randn(1,N);
x1=generate_ MA1_process(w);
x20=generate_ MA20_process(w);
corr_w =corr_w +xcorr(w,'coeff’);
corr_x1 =corr_x1 +xcorr(x1,'coeff’);
corr_x20=corr_x20+xcorr(x20, coeff');
end
corr_w =corr_w/(K+1);
corr_x1 =corr_x1/(K+1);
corr_x20=corr_x20/(K+1);
subplot(234); stem(-10:10,corr_w(N-10:N+10)); title(ACF_w[n_0]");
xlabel('lag"); axis([-10 10 -0.1 1.1]);
subplot(235); stem(-10:10,corr_x1(N-10:N+10)); title(ACF_{x_1}[n_01";
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3. Moving average processes: MA(Q)

Statistical properties q
win] — MA(Q) L, X[n]:kZ:(:)ka[n_k]

\4

q
N(0,02) N(0,y, > b?)
k=0

0 It has limited
4-n, support!!

Ty [No] = o, 61N, r[n,]= GWZb b, 0<n,<q

v

F ( Ny) n, <0
Proof
I [n,]1= E{X[n]x[n+n,]} = E{[Zq:bkw[n - k]J(Zq:bk.w[n +n, - k']} Zqzzq:bkbk,E{w[n —kwn+n, -k']}

=i2q‘,bkbkE{W[n Iwn'+n, —k'+k]} =2qjib b2 8N, — (k'=k)]

k=0 k'=0 k=0 k'=0

One of the most interesting things of stochastic processes is to characterize them
statistically. Normally, we are only interested on their characterization up to a
second order (mean, variance, and autocorrelation). If the input time series is
normally distributed with zero mean and a given variance, it is easy to show that
the output time series is also normally distributed with zero mean and whose
variance is a function of the input variance and the system coefficients as shown
in the slide.

The computation of the autocorrelation function is aq little bit more involved.
First, we show the final result and then we prove it. This proof will only be
performed for MA processes since for the rest of processes computations are
similarly carried out.



3. Moving average processes: MA(Q)

Statistical properties

Proof (contd.) 0 q<n,
9. 4a q-No

Lnel == > > bbeoy oln, — (k—k)] =1 oy, Zbkbk+n0 0<n,<q
k=0 k'=0 k=0

‘ r(n)  n,<0

cS[nO—(k'—k)]:{1 n—(k'-k)=0 —— k'=k+n,

0 n,—(k'—k)=0
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3. Moving average processes: MA(Q)

Invertibility

X[n] = ibkvv[n —K]

h 4

MA (q) M

winl | MA(q)

11
H(z) <&,
b z

H@=3 b2 v H, ()=

Im{z}
z]=1
O Be{z} q . q
0 kZ:(;bk\l\l[n—k]=x[n] — W[n]:bo(xm]_;bkw[n_k]J

X[n]+x[n-1]+ x[n—2] )
does not have a stable, causal inverse

Example: y[n]=

3
y[n]= x[n]+0.9x[n-1] has a stable, causal inverse
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Invertibility of a stochastic MA(Q) process is quite well understood in terms of
system analysis. The process is invertible iff all zeros of the MA(q) transfer
function are within the unit circle. If there are zeros on or outside the unit circle,
then the system is not invertible.

Invertibility is an important issue in stochastic processes because if a given
MA(q) is invertible, then there exist a bijective relationship between the process
and its corresponding autocorrelation function. That is, there exist a unique
MA(q) process that has a given ACF.

The reader interested in knowing more about MA(q) processes may read
Chatfield1996b.
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3. Moving average processes: generalizations

Model not restricted to be causal

x[n] = bqOW[n - qO] + bq0+1W[n —(q +1] + ...b1W[n —1] + bOW[n] Causal component

@+ 1+...+b, W[”@ Anticausal component

Model not restricted to be linear

1) xnl= Zq:bkw[n —K]+ Eq:ibk

k=0 k'=0

x[n]:zq:bkw[n—k]+zq:ib k.w[n—k]W[n—k']+Zq: ibkk
[ [ [ Volterra Kernels

Quadratic component

Depending on the application, the MA model needs not be causal and may use
future samples of the time series. This is possible for instance in recorded signals
or the a posteriori analysis of time series.

A further generalization makes use of nonlinear filtering. This can be performed
thanks to the following result:

If x[n] is strictly stationary with finite moments, then it can be represented as the
multi-order convolution of a set of causal, stable, non-linear, time-invariant
filters. Those interested in this result may read 1. W. Sandberg, “Expansions for
Discrete-Time Nonlinear Systems,” Circuits, Systems, and Signal Processing 3,
180-192, (1983).

The student interested in nonlinear time series may read Dwyer2003.

Another nonlinear generalization of the moving average is provided by an
expression similar to the linear MA except that, each term w[n-k] is affected by
nonlinear function f(x). This model is called GMA (generalized moving average).

12



4. Autoregressive processes: AR(p)

f ey _ 1 _ 1 LTI, with memory,
Definition H(2)= l-az'-az? _'___apZ*P - A(z) _> invertible, causal, stable
winl | ar(p) L, X[nI=win]+ax[n-1]+..+a,x[n-p]
winl Xgoln]
o 4

time

An AR(p) stochastic process is one that is generated using a difference equation like the one shown in the slide. This is a
quite general situation in which it is reasonable to think that a given sample of a time series, depends linearly on previous
samples plus some random error.

13



4. Autoregressive processes: AR(p)
1 1

f ey _ _ LTI, with memory,
Definition H(2) 1—aiz*1—azz’2—...—apz’p A(z) _> invertible, causal, stable

!

winl | AR(p) x[n] = win]+ax[n—1]+...+a,x[n- p]

Statistical properties
N(O,op) —— N(0,I[0])

p
T, [n,]= 050N, ]+ Z a Iy [n, —k] Yule-Walker equations

k=1

p
Whose solution is I [N 1= Az Z, = Poles of H(z)
k=1

. . 1 &
Relationship to MA processes H(z)= — - —=1+Y bz
l-az -az°-.-a,;zz" I =
Laurent series

®cu

The impulse response of the associated system is IR and its transfer function is
of the kind all-pole. Note that, this time, the autocorrelation is not limited and it
tends to 0 when the lag tends to infinity, only if the module of all its poles is
strictly smaller than 1. That means that if this condition is met, then the AR(p)
process is ergodic.

Any AR(p) process can be modelled by a MA process of infinite order. The
relationship between this two kind of processes is given by the power series
expansion of the transfer function.

The reader interested in knowing more about AR(p) processes may read
Chatfield1996b.
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4. Autoregressive processes: AR(p)

Determination of the constants A,

P P
el =Y Azl ——— 1 Inl=Y Az
k=1 k=1
p P
Iy [ny] =szv§[no]_zaer [n, —k] > 1 [n,] =Zaer [n, —k] n, >0
k=1 k=1

Example:
1

x[n]=w[n]+a,x[n-1]+a,x[n—2] — H(2)= m

_aEya)+4a,

Poles: z,,Z, =
2

> |z]<1=a,>-1a+a,<la-a,>-1

z,eR=>a’+4a,>0

r [y = Azl + Az —— r><[0]=:°?1+A2‘:1
A e [ = Az, + Az, = a1, [0]+a,r, [-1]

In general, it is difficult to solve for the Ai coefficients in the autocorrelation
function since that would imply a priori knowledge about the input noise power
(variance of W). However, it is possible to normalize the autocorrelation function
to obtain the correlation coefficients. These coefficients do not depend on the
input power and are normalized to 1. So, the first thing to do is to translate the
conditions and solution form of the autocorrelation function into conditions and
solution form for the correlation coefficients.

Once this is done, it is possible to find two equations to determine the Ai’
coefficients. One of the equations is always given by the normalization fact
(rX[0]=1), the rest of conditions are given by the p-1 first Yule-Walker equations.
One important thing to have a sensible solution is that the poles of the system
have a module smaller than 1. If the two poles are not real, then the correlation
coefficients follow a damped sinusoidal.

15



5. Autoregressive, Moving average: ARMA(p,q)

Definition b,—bzt-b,z?—..—-bz % B(z
H(Z):HMA(q)(Z)HAR(p)(Z): —— : 2 _B@

|

MA@) —— x[n]= Zq:bkw[n —K] +Zp:ak x[n—k]
k=0 k=1
Statistical properties

l-azt-a,z’—.—a,z" A()

winl | AR(p)

v

N(O,02) — N(0I[0])
g P
Iy[ne]= O'vzv Zbkh[k —-ng]- z a I[N, — K]
k=0 k=1

The ARMA(p,q) process corresponds to a mixture of AR(p) and MA(q) by
concatenating both systems (the order of the concatenation is not important since
both systems are LTI and can be interchanged). The process is ergodic (the
autocorrelation function goes to zero as the lag goes to inifnity) iff the module of
all system poles is smaller than 1. Note, that the poles of the ARMA system are
defined exclusively by the AR(p) process, therefore, the ergodic condition is
exclusively related to the AR part of the ARMA model.

The importance of the ARMA model is that it usually describes random processes
with fewer parameters than the AR and MA processes alone.

The reader interested in knowing more about ARMA(p,q) processes may read
Chatfield1996b.

16



6. Autoregressive, Integrated, Moving Average: ARIMA(p,d,q)

Definition d

X;[n]= Vi x[n] = (5[] - S[n—1])*...*(5[n] - 5[n ~11) *x[n]

_ X (2) 1
X =(1-z1X H = = — . Poles: z=1 (Multiplicity=
d(Z) ( z ) (Z):> Int(z) Xd(Z) (1_ Z_l)d oles: z (Multiplicity=d)
Unit t
H(z)= @d((zz)) = Hancp (2 e
I d € Q= FARIMA or

RFIMA
winl [ arma(p,q) XM [ ey [0 A

y (Z):x(z):Xd(z) X(z) _
ARIMA(p,d,q) W(z) W(z) X,(2)

H armacp.a) (2 H o) (2)

Example for d=1: (X[n]—x[n—1])= Zq:bkw[n —k]+ iak (x[n—k]—x[n—k -1])

®cu

One of the conditions for modelling a time series with AR, MA or ARMA
processes is that the time series is stationary. Remember that one of the
consequences of stationarity is that the mean and variance at each time instant n
is the same for all n. If the time series has a polynomial trend, then it is possible
to detrend it by differentiation at an apropriate order. The resulting differentiated
time series is now stationary. ARIMA models state that the differentiated time
series follow an ARMA model. After integrating, the output will be a reasonable
model of the time series being studied.

Usually it is not necessary to differentiate more than once (d=1), that would be
removing a linear trend. However, it is always difficult to decide how many times
we have to integrate. To elucidate these questions there is a number of tests we
can perform. All these tests are called “unit root tests”. Among the most famous
are the Dickey-Fuller test and the Perron test. The student interested in these tests
may read Kwiatkowski1992.

If d is a fraction, then the model is also called FARIMA or ARFIMA (Fractional
ARIMA). Fractional differentiation is not something that is intuitive in the time

domain. However, fractional differentiation is trivial in Fourier space. This will

be further studied in the next session.

The reader interested in knowing more about ARIMA(p,d,q) processes may read
Chatfield1996b.




7. Seasonal ARIMA: SARIMA(p,d,q)x(P,D,Q).
Definition

d-1 (I xin-10)= Y bx[n—KkI+ > a, (x[n k]~ x[n—k ~1])

e
~ o o N
D=1 (x[n]-x[n-s])=2 Bwn—ks]+ > A (x[n—ks]-x[n—(k-1)s])
k= =
N -
— —
winl | s J| ARIMA(P,D,Q) || 15 X000 [ ARiMA(p.d.q) 110
N —
——
X,(2) ; X,
W(2) = ARlMA(P,D,Q)(Z ) X((ZZ)) = HARlMA(p,d,q)(Z)
-
——
X s
H SARIMA(p,d,q)x(P,D,Q), (Z) = ng = ARIMA(P,D,Q)(Z )H ARIMA(p,d,q) (Z)

The Seasonal ARIMA is also called the Box-Jenkins model. This model takes
into account the possible seasonal component which might be random, too. The
seasonal period is assumed to be known, for instance yearly, quarterly, weekly,
etc. It will be referred to as s.

The way the time series is generated is by taking white noise, creating a seasonal
ARIMA model that would account for the relationship among years (if the
seasonality is yearly) and then creating an ARIMA model for what happens inside
each year.

The student interested in knowing more about the ARIMA model may read
Chatfield1996c.

18



7. Seasonal ARIMA: SARIMA(p,d,q)x(P,D,Q).
Example: SARIMA(1,0,0)x(0,1,1),,

winl | s J ARIMA(P,D,Q) || 1s X[ [ arivap.d.q) |10

_ _
—

(P,D,Q)=(0,11) X [n]—x,[n—-12] = B,w[n]+ Bw[n—12]

— | o

—
(p.d,a)=(10,0) x[n]=x[n]+ax[n-1] —— x,[n]=x[n]-ax[n-1]

|

(x[n]-a,x[n —1])-(x[n —12] - a,x[n ~13]) = Byw{n] + B;w{n ~12]

l

x[n]= x[n —12]+ B,w[n] + B,w{n —12] + &, (x[n —1] - x[n —13])

An example, let’s study the model (1,0,0)x(0,1,1) with s=12. The seasonal
ARIMA model yields xs[n] whose difference equation corresponds to the (0,1,1)
s=12 model as shown in the slide. xs[n] is the input to the within year ARIMA
model (1,0,0) whose difference equation is also shown in the slide. Eliminating
xs[n] in both equations give us the final model.

Note that this final model is something appealing when working with seasonal
data, it states that the current sample is what happened 12 months ago, plus some
random input (BOw[n]+B1w[n-12]) plus somthing that accounts for the
differences between the behaviour one month ago and 13 months ago.

19



8. Known external inputs: System identification

ARX
win] 1 x[n]= Zp: ax[n—k]+ Zq:bku[n —k]+w[n]
1 AQ) G% "= k=0
B(2) X(z)zigua)n\é)wa)
A(2)
TU[n]
ARMAX
win] | €@ x[n]:Zp:akx[n—k]+zq:bku[n—k]+ickw[n—k]
- " A(z) ‘C‘? > k=2 k=0 k=0
B ] @)= ig;U(zn (A:g;W(z)
Az)
TU[“]

There are situations in which the time series directly depends on a known input
plus some other random (unknown) effect. For instance, the price of natural gas
in international markets is computed as a factor of the current price of oil plus
some extra costs due to transporting, manufacturing, etc. A possible model for the
price of natural gas might be a linear function of the oil price (known), plus a
linear function of unknown costs. This problem is known as system identification.

Depending on the specific way in which these factors are combined, the model
receives a name or another.

The student interested in knowing more about these models may read Ljung1987.

20



9. A family of models

General model

wln] C(2) @ 1 X[n] X(z)= B(2) U(z)+ C(2) W(z)
R D(2) — () —— F(2)A(z) D(z)A(z)
T A(2)
B(2) Polynomials used Name of the model
_F(Z) A AR
T C MA
u[n] AC ARMA
ACD ARIMA
AB ARX
ABC ARMAX
ABD ARARX
ABCD ARARMAX
BFCD Box-Jenkins

Most of the models studied so far are part of a big family of linear models. The
scheme shown in the slide represents the most general situation one can think of
when using linear models. Depending on which polynomials we use, we have one

or another model.

The student interested in knowing more about these models may read Ljung1987.
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10. Nonlinear models

1860 1880 1900 1920 1940 1960 1986
Year

250

Sunspot number
aan
«
03888

Source: Tokyo Astronomical Observatory, Tokyo

Nonlinear AR: x[n] n=1],x[n-2],..., x[n— p])+w[n]

Time-varying AR:  x[n]= )@) [n—k]+wn]

k=1

p
Random coeff. AR:  X[n]= Z[n —k]+w[n]
k=1

p q
Bilinear models x[n]=>"axn-k]+Y o®> win]
k=1 k=1
& ceu

The plot in the slide shows the monthly average number of sunspots between
1850 and 1977. It can be seen that there is a cyclic component of 11 years, and
that the rising slope is higher than the dropping slope. This kind of assymmetry
cannot be modelled with a single sinusoidal seasonal component (if we try to do
so, we should use a non linear model). Alternatively, this kind of asymmetries
can be studied in Fourier space (harmonic analysis), but we will do this in the
next chapter.

There are a number of nonlinear models. Here, we only show a few of them:

-NLAR: Non linear AR, where the function that relates the current sample to past
samples is nonlinear

-Time varying parameter models: the combination coefficients change with time

-Random coefficient models: the combination coefficient is known up to a given
degree of certainty

-Bilinear models: where the time series can also be explained in terms of the
products of previous samples with the input white process.

22



10. Nonlinear models

Zp:aﬁl’x[n —k]+w[n] x[n- d@

Threshold AR (TAR):  x[n] =+ **
> a@x[n—k]+wn] x[n-d]>t
k=1

Smooth TAR (STAR): X[n]= iaﬁ”x[n —k]+ (i a?x[n— k] win]

le@

Heterocedastic model: X[n]= [nN] — Random walk

p
ARCH c’[n]=c¢[n]+ Y ax’[n-K]
k=1

P q
GARCH o’[n]=o[n]+ Y ax’[n-k]+ > bo’[n—K]
k=1 k=1

(Neural networks)
(Chaos)

®cu

More nonlinear models:

-Threshold AR: The time series can be explained by two independent models
depending on whether a previous sample is bigger than a given threshold or not

-Smooth Threshold AR: The time series can be continuously explained by two
models. S(X) acts as a smooth threshold. Usually S(x)=1/(1+exp((r-x)/t)).

There are some other models to handle, for instance, situations in which the
variance is changing with time (heteroscedasticity). After removing all trends and
seasonal components, the residual of the time series may have a time varying
variance. If this is the case, the time series may be explained by an ARCH model
(Autoregressive Conditional Heterocedastic)

The student interested in knowing more about nonlinear models may read
Chatfield1996a.



11. Parameter estimation

AR@) X[n]=ax[n-1]+wn]
Assume that we observe (X[l], x[2],.... X[N ])

Maximum Likelihood Estimates (MLE)

Xy=a X +W, — W, =X, -a,X; —-X,|X,,0—> N(amxvo'vzv)

The problem now is to estimate the model parameters from a set of observed time
series values. There are mainly two approaches: maximum likelihood and least
squares.

Maximum likelihood look for the model parameters that optimize the likelihood
of observing the observed values. For doing so, we must assume a certain
probability distribution for w[n]. Normally, it is assumed that it follows a
Gaussian distribution, with zero mean and constant variance. It is also assumed
that w[n] is uncorrelated to itself.

For computing the maximum likelihood solution, we need the joint distribution of
all the observed variables. We will treat separately X1 from the rest. X1 can be
proved to follow a normal whose parameters only depends on the variance of the
input process and the combination parameter al. Once x1, the particular
realization of X1, is observed, we can compute the conditional probability of
observing X2 provided that we have observed x1. It is easy to show that this
conditional probability is also a normal distribution with the parameters shown in
the slide.

X[n] = aix[n _1]+W[n] Xn = aixn—l +Wn = ai(aixn—Z +Wn—1) +Wn =
N(O.o2) T =W, +aW , +a’W, _,+aW_ , +...
Ly [ng]= o 6ng] E{X,}=0
E{x2}= E{(Wn +aW,  +a2W, , +aW, +...)2}=
2 0=1a, v%/ 2
X1|9|—>N(O,1f‘”2j « o) :aj,(1+af+af+af+...):1(_7";12
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11. Parameter estimation

Maximum Likelihood Estimates (MLE)
N

2
X1|6—>N(O, "sz
1-a

X, X,.0 - Nlax, o7 ) > ] T o (4 Xareen Xy ) =
X, | X,, X,,80 > Nlax,, 2
o1 X2 X,,0 > Nlaye, ) = 0 00) T () T %) P o (%)

Xy I Xy X1,60 = N(a1XN-1'O_va)

2

2
o X Nx —ax
L(0) =log fxlxz...xN\e(lexz ----- Xy) :_%IOQ(?-”)_%IOQ Wz _Z;V_VIOQ(ZEGV%I)_;Z[H?MJ

1_81 1-a2 n=2 Ow
" o~ oL(6 oL(0
4,0, =arg max L(O) = ©)_ 0= aa(z) |, Numerical, iterative solution
! w

|—> Confidence intervals

It is clearly seen, that the probability of observing X3 given X2 is independent
from X1. Therefore, the joint proabbility of all the observed variables is the
product of observing X1, times observing X2 given X1, times observing X3 given
X2, etc. The logarithm of this joint probability is called the likelihood function.

Maximum likelihood looks for the model parameters that maximize the
observation of the provided samples. This in turn boils down to solving a pair of
nonlinear equations that have to be solved numerically using some iterative
algorithm.

An important issue of the maximum likelihood approach is that we can compute
confidence intervals for the model parameters. In system identification, these
confidence intervals are usually translated into confidence regions for the system
poles and zeros.

The reader interested in the estimation of the model parameters using the
Maximum Likelihood approach may read Hamilton1994a.
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11. Parameter estimation

x[n] = a,;x[n—1] +w[n]
X[n] = a,x[n-1] x[n] = X[n]+w[n]

Least Squares Estimates (LSE)

w[n] = x[n] - X[n]

E{w[n]}=

ol = EW?[n]}=T,[0]+ 2a,T, [1] + T [0]

oo
o0a, Iy [0]

— ot 2r, (1] + 27, [0l & = | 1L B oE x[o](g 0 J

The least squares estimate minimizes the power of the input random signal. The rationale
behind it is that the input variance will not be minimum if I could have explained x[n]
using a better al. Minimizing the variance of the input signal with respect to the model
coefficients yield a set of equations (called the Yule-Walker equations already seen in the
explanation of the AR(p) model). Once all the model coefficients are estimated, we can
estimate the input variance. The reader interested in the LSE method to estimate the
model may read Proakis1988a.

Note that the solution of this approach need not be the same as the one provided by MLE,
although it much simpler to compute in practice. In engineering, the solution of this
equation system is performed using the Levinson-Durbin algorithm. The LSE has the
drawback that its accuracy relies on the accuracy of the determination of the time series
autocorrelation.
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12. Order selection

I | have to fit a model ARMA(p,q), what are the p and g values | have to supply?

* ACF/PACF analysis
» Akaike Information Criterion

2
AIC(p,q)=Iogaﬁ+(p+q)W

* Bayesian Information Criterion
log N
BIC (p,q) =log oy +(p+q)gT
*Final Prediction Error
FPE (p) = EJ“ P 2

The selection of the model order is a tricky topic. One is tempted to use the
model that better fits the data. However, there is a point at which increasing the
model order will marginally increase the fitting. Thus, it is also interesting to
keep the model order as low as possible as long as it fits reasonably well the data.
To choose such a model we must use some criterion. One that is quite intuitive is
to analyze the ACF/PACEF structure (this will be further explained in the next
slides). Another possibility is to use any of the parsimony criteria available. In the
slide we show three of them (AIC, BIC, FPE). They are designed to decrease as
long as we are significantly fitting the data better, and to increase when the
improvements are marginal.

The fit of the data is provided by the input variance which can also be seen as the
variance of the misfit error. N is the number of available samples in the time
series and p,q are the ARMA model orders.
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12. Order selection

Partial correlation coefficients (PACF, First-order correlations)

x[n] =g, XN =11+, X[N—=2]+...+ ¢,  X[n—ng]+Wwn]

fTny1= 3 h, o, 1

r[0]
r]
rf2]

rin, —1]

rf] r(2]
r[0] ri]
rf] r[0]

r[n(;”—Z] r[n(;”—3] r[n(;”—4]
ring—-1 r[n,—-2] ..

v 1[nyg=2] r[n,-1]
wo [Ny =3] r[n,-2]
. r[ng—=4] rn,-3]

r.[.C.)] r.[.ll]
[ r[0]

¢n0,1
¢no,2
¢n0.3

¢n0 No—1

rfi]
2 | Ik
Yule-Walker
3] equations
r[no _1]
rfn,]

The partial correlation coefficient is defined as the last coefficient of a partial
autoregression model of order n0. It is important that x[n] is zero mean.

The partial correlation between X_n and X_(n+n0) is the correlation between
these two variables after removing all the linear relationships between the
samples between X_n and X_(n+n0).
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12. Order selection
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Thumb rule

ARMA(1,0): ACF: exponential decrease; PACF: one peak
ARMA(2,0): ACF: exponential decrease or waves; PACF: two peaks
ARMA(0,1): ACF: one peak; PACF: exponential decrease
ARMA(0,2): ACF: two peaks; PACF: exponential decrease or waves
ARMA(1,1): ACF&PACF: exponential decrease

For knowing more about the thumb rules to select the model order using ACF and
PACF, please follow http://zoonek2.free.fr/UNIX/48 R/15.html
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Residual Analysis

13. Model checking

Example: ARMA (1,1)

X[n] = ax[n—1] + byw[n] + bywn —1] = W[n] = & (x[n] - ax{n —1] - b,A{n —1])

Assumptions

1. Gaussianity:
1.

2.

2. Stationarity: x[n] is stationary once that the necessary operations to produce a stationary
signal have been carried out.
3. Residual independency: the input random signal w[n] is independent of all previous

W[0]=0

The input random signal w[n] is univariate normal with zero mean
The output signal, x[n] (the time series being studied), is multivariate normal and its
covariance structure is fully determined by the model structure and parameters

samples.

Model checking is as important as model formulation and estimation. After fitting
our model we have to be sure that the model is valid and that none of the model
hypothesis are violated. This is usually done through the residual analysis. This
analysis aims at determining what is the one-sample-ahead prediction error which
is also interpreted as the system input w[n].

The main assumptions done in most models are: gaussianity, stationarity, residual
independency. Be careful, that ARIMA models can deal with nonstationary
signals because it explicitly considers multiple differentiation (d times) as a tool
to produce a stationary time series.
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13. Model checking

Diagnostic checking

=

Compute and plot the residual error

Check that its mean is approximately zero

3. Check for the randomness of the residual, i.e., there are no time intervals where the
mean is significantly different from zero (intervals where the residual is systematically
positive or negative).

4.  Check that the residual autocorrelation is not significantly different from zero for all

lags

Check that the residual is normally distributed.

Check if there are residual outliers.

7. Check the ability of the model to predict future samples

N

oo

Diagnostic checking is the general name used for all those different checkings
that might point out that the model we have fitted is not adequate. If this is the
case, you would have to revise the assumptions of your model, why they are not
met and, eventually, change the model.

If stationarity is not met, it can be easily handled by removing a trend or seasonal
component or by differencing enough times.

Many times residual gaussianity is not met, however, most of the times this is not
a severe problem as long as its distribution has zero odd moments and the model
still provide useful insight in the data structure.

A check that is particularly useful to test whether the model is overfitting or not is
to keep the last M samples for testing prediction accuracy. Thus, if there are N
samples in total in a time series, we use N-M for training and the last M for
testing. The residual analysis on these M samples should also pass all the
diagnostic checkings.
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Goal

A short introduction to system analysis

Moving Average processes (MA)

Autoregressive processes (AR)

Autoregressive, Moving Average (ARMA)

Autoregressive, Integrated, Moving Average (ARIMA, FARIMA)
Seasonal, Autoregressive, Integrated, Moving Average (SARIMA)
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Known external inputs: System identification
9. A family of models

10. Nonlinear models

11. Parameter estimation

12. Order selection

13. Model checking
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