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Abstract

We describe how to take a stable� ARMA� time series through the

various stages of model identi�cation� parameter estimation� and diag�

nostic checking� and accompany the discussion with a goodly number of

large scale simulations that show which methods do and do not work� and

where some of the pitfalls and problems associated with stable time series

modelling lie�

�� Introduction

There are three major stages in the now standard �Box�Jenkins� time series

modelling techniques for Gaussian time series� Model identi�cation� parameter

estimation� and diagnostic checking�

In many ways� the techniques behind these three stages really only involve

two bags of tricks� since most diagnostic checks rely on testing whether or not the

�tted residuals� after parameter estimation� behave like a white noise sequence�

This� of course� is tantamount to identifying a model for the residuals� and so

takes us� more or less� back to stage one�

In this paper we will concentrate on a variety of issues related to ARMA

model identi�cation in the stable setting� The paper by Calder and Davis� in

this volume� 	CD
� describes the parameter estimation problem� so that the two

papers� together� should give a good overview of the overall ARMA problem

and be of some assistance to a practitioner who wishes to analyse a particular

series� We shall also have something to say about parameter estimation� for one

speci�c technique�

There are no new theorems in this paper� or even really new ways of thinking

about things� Rather� we have tried to collect� in one place� a number of results

that are rather widely scattered� and to investigate their practical e�ciency on

replicates of synthetic data� Some of the results are somewhat surprising� and

some more than a little worrying� Many beg further� and deeper� theoretical

investigation�
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The bottom line will be that while� in principle� the standard Gaussian Box�

Jenkins techniques 	BJ
� 	BD
 do carry over to the stable setting� in practice a

great deal of care needs to be exercised�

Results in a similar vein can also be found in the paper 	R

 in this volume�

as well as 	R�
 and 	FR
� These papers treat real as well as synthetic data� and

general heavy tailed rather than purely stable series�

Finally� before we start� we should determine precisely what we mean by

the various stable parameters by de�ning a stable distribution with parameters

��� �� �� �� as usual via its characteristic functions� as follows�
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where � � � � 
� � � �� �� � � � �� and � � �� We shall denote such a

distribution by writing Z � S���� �� ���

�� Preliminary data analysis � Is it stable�

The �rst question that must be broached is whether or not our data is

�heavy tailed�� in some general sense� and� if so� whether or not it is stable� We

shall not be interested in the possibility of heavy tailed� but non�stable data�

for a number of reasons�

�� If the data is in the domain of attraction �cf� 	FE
� of a stable distribution�

then� in general� large sample techniques are identical to those for the

purely stable situation�


� In the domain of attraction case� the di�erence between a stable and non�

stable model lies in the central region of the distribution� If one is using

stable or other heavy tailed techniques� this is generally not the region of

interest�

�� In the case of heavy tails� not in a stable domain of attraction� there are

comparatively few reliable techniques around �see 	R�� FR
 for further

details and discussion��

We shall also make one signi�cant simpli�cation throughout this paper� We

shall virtually always work with examples in which� in terms of ������ � � � � ��

i�e� with centered and symmetric variables� This simpli�cation is common in

most of the theory that we quote� although� unfortunately� it is not always

justi�ed in practice� However� we doubt that it has much qualitative e�ect

on the phenomena we shall look at� That this is de�nitely the case in some

situations is born out by 	KN

�
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��� Graphing the series�

The simplest� most obvious� and often most powerful� techniques for detecting

stable data are also� unfortunately� ones with very little theory behind them�

They start� with a visual inspection of the data� in a search for highly �inho�

mogeneous� data� in the �non�technical� sense that one� or a few observations�

dominate the rest� This is generally so notable� that on graphing the time series�

most of the data is �squeezed� onto the horizontal axis by the automatic scaling

of the plotting routine�

An example of this is given if Figure �� where plots of four stable time series

are given� Each follows the AR��� model

Xt � ��Xt�� � Zt� �
���

where the fZtg are symmetric i�i�d� stables with scaling parameter � � �� It is

obvious that all three of the stable cases are qualitatively di�erent to the �nal�

Gaussian� case�
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Figure �� Four AR���� stable� time series� with increasing values of ��

�a� � � ���� �b� � � ��
� �c� � � ���� �d� � � 
��

Of course� in each of these cases� it would be hard to distinguish on a

graphical basis between a purely stable series and a Gaussian series with the

occasional outlier �cf� the examples in 	MI
�� This requires looking more carefully

at further distributional information�

��� The histogram�

Essentially the same information as is obtained by graphing the series can be

gleaned from the histogram of the data� What is lost in the histogram is� of



� Adler� Feldman and Gallagher

course� the temporal structure of the data� but what is more obvious is the

presence or absence of symmetry�

Figure 
 shows a histogram from data generated by the same model as in

�
���� but now only for two cases� � � 
 �Gaussian� and � � ���� and for series

of length ������ Two factors should be noted here� The �rst is that� despite the

fact that the sample size is quite large� the Gaussian case is much further from

the traditional bell curve than one would expect with i�i�d� data� But� this is

correlated data� so that the laws of large numbers take longer to come into play�

The second is a repetition of the phenomenon mentioned above� about au�

tomatic scaling �spoiling� the graph� In �b� a few outliers are so large that the

entire histogram is squeezed into a few bars in the center� When the largest

and the smallest �� of the data is truncated� as in �c�� the shape of the graph

changes dramatically�
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Figure 
� Histograms of �a� Gaussian� �b� Stable� � � ���� and �c� Truncated

stable time series�

��� The �converging variance� test�

One of the oldest tests for determining whether data has in�nite variance is the

trick of plotting the sample variance S�
n� based on the �rst n observations� as a

function of n� If the data comes from population with �nite variance� S�
n should

converge to a �nite value� Otherwise� it should diverge as n grows� and the

graph typically shows large jumps�

Although this test was originally designed for i�i�d� data� it also works well

for correlated data� as long as the order of the observations is �rst randomised�

so as to destroy dependencies that might lead to trends and jumps with other

explanations�

Figure � contains graphs for this test for two stable �� � ���� ����� Gaus�

sian� and �t� �with � degrees of freedom� processes� �By the last we mean an

ARMA process in which the innovations Zt have a Student t distribution� This

is an interesting case� since it gives a distribution with much heavier than Gaus�

sian tails� but in the Gaussian domain of attraction�� For variety� we took the

ARMA����� model Xt � ���Xt�� � Zt � ��Zt��� with series of length ������

The divergence of S�
n� as n grows� and the irregularity of the graphs in the

two stable cases are very marked�
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Figure �� Cumulative variance plots for �a� Gaussian� �b� � � ���� �c� � � ���

and �d� Student t ARMA����� processes�

��	 Preliminary estimation of the stable parameters�

One last� and natural� step before entering the time series arena proper� is the

estimation of the various stable parameters�

There are a number of techniques available for estimating tail decay� most

of which are built around the so�called �Hill estimator�� and many of which�

while based on sound theory� turn out to be far from satisfactory in practice�

�cf� 	R�� R

 or 	PDM
� in this volume� for details��

This� indeed� is one of the reasons for being prepared to assume a speci�cally

stable model� rather than one generically heavy tailed� For in the stable case

there exists an excellent estimator of the parameters� due to Hu McCulloch

	MC
� This estimator� which is based in essence on �tting tabulated quantiles

of stable distributions� works for � � 	���� 
��
 and � � 	��� �
 �which covers

most of the cases met in practice� and all values of the other parameters� The

estimator of the location parameter however� can be inaccurate near � � ��

The McCulloch estimator was originally designed for� and indeed works

best on� i�i�d� data� Nevertheless� some initial information on the parameters�

especially �� is generally required for model identi�cation� so that one has no

choice but to work with the time series data�

A typical example of the precision of the McCulloch estimator of � is given

in Table �� in which the results for estimating � from ����� observations from

the MA�
� model Xt � Zt � ��Zt�� � ��Zt�� are presented for various �� The

accuracy of the estimator is� we believe� truly impressive�

For each iteration we estimate � from the simulated innovations� and then
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from the time series� For the �nal column� we estimated the MA parameters

using Whittle�s estimator� described in Section �� and computed the residuals�

We then estimated � a third time using these residuals� expecting �incorrectly�

that this estimation would be better than from the raw time series� We repeated

this process ������ times� Clearly the estimates obtained from the innovations

are the best� but� perhaps rather surprisingly� McCulloch�s technique seems to

work better when applied to the original time series rather than to the residuals�

Estimation of alpha
 MA���

� Innovations Time series Residuals

�� ����� �������� ����� �������� ����� ��������

�� ����� �������� ����� �����
�� ���

 ��������

� ����
 �������� ����� �������� ����� ��������

��
 ��
�� �������� ��
�� �������� ��
�� �����
��

��� ����
 ������
� ����� �������� ����� ��������

��� ����� �������� ����� �������� ����� ��������

��� ����� �������� ����� �������� ����
 �����
��


 ����� �������� ����� �������� ����
 ��������

Table �� Mean and standard deviation �in parentheses� of ������ estimates of

alpha using simulated innovation sequence� corresponding time series and

estimated residuals�

Interestingly� however� McCulloch�s estimator does not seem to work as well

for AR processes as it does for pure moving averages� at least for small values

of �� the main problem being in the substantially increased sample variance�

rather than in the bias�

There are a number of possible explanations for this� although we are not

certain which� if any� is real� Two candidates for consideration are�

�i� It may simply be due to divergences� numerical and other� as � becomes

close to the region where the estimator is not supposed to work�

�ii� In the Gaussian case� the correlation structure is much stronger in the AR�
�

model than in the MA�
�� and this should a�ect estimator variance� Translating

�correlation� to �dependence� in the stable case� may create a similar problem�

However� when estimating � from the residuals obtained from the Whittle

parameter estimates� the simulations indicate that the estimates are superior in

the AR case �at least for � � ���

Table 
 gives the result of a similar study for the model Xt � ��Xt�� �

��Xt�� � Zt�

Note that these positive results become less than satisfactory when one

leaves the permissible parameter region for the estimator� and in the region of

� � �� We simulated a sample of length ���� from a of symmetric Cauchy

distribution �� � �� � � �� and used McCulloch�s estimator to estimate the
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location parameter �� The mean of �� of such independent estimates of location

was ������

Similarly� estimates of � for values of � � ��� also give poor and misleading

results� For example� the average of ��� estimates of � based on independent

samples of ���� was ��
� for � � ���� and ���� for � � ����

Estimation of alpha
 AR���

� Time series Residuals

�� ����� �����

� ����� ��������

�� ����� ���
���� ����� ���
�

�

�� ����� �������� ����� ������
�

� ����� �������� ����� ��������

��
 ��
�� �������� ��
�� ��������

��� ����� �������� ����� ��������

��� ����
 ������� ����� ��������

��� ����� �������� ����� ��������


 ����� �������� ����� ��������

Table 
� Mean and standard deviation �in parentheses� of ������ estimates of

alpha using simulated time series and estimated residuals�

�� Model Identi
cation

The �rst step when �tting data fX�� X�� � � � � Xng into a linear ARMA�p� q�

time series model

Xt � ��Xt�� � � � � � �pXt�p � Zt � 	�Zt�� � � � �� 	qZt�q� �����

with i�i�d� innovations fZtg� normal or stable� is the identi�cation of the lag

parameters p and q�

In the Gaussian case model identi�cation techniques are based on analysis

of the sample autocorrelation function �ACF�

�
�h� �
n�hX
t��

XtXt�h�
nX
t��

X�
t � h � �� 
� � � � � ���
�

or its mean�corrected version�

�
�h� �

n�hX
t��

�Xt �  X��Xt�h �  X��

nX
t��

�Xt �  X��� �����

where  X � n���X� � � � � � Xn�� and of the equally familiar sample partial

autocorrelation function �PACF�� which� to make some details below easier to

follow� we de�ne in detail�
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Consider the AR�p� model

Xt � ��Xt�� � � � � � �pXt�p � Zt� �����

� � ��z � � � � � �pz
p �� �� jzj � �� Let Rp � 	Ri�j 


p
i�j�� � 	
�i � j�
pi�j��

be the p 	 p matrix of ACFs computed under a �nite variance assumption�

� � �
���� � � � � 
�p���� � � ���� � � � � �p�
�� Then the Yule�Walker matrix equation

is

Rp� � �� �����

and the Yule�Walker estimate of � is then de�ned as solution of

�Rp
�� � ��� �����

where �Rp � 	�
�i� j�
pi�j�� and �� � ��
���� � � � � �
�p����

To de�ne the PACF in the AR case� we consider vectors ��m � ����� � � � � �
�
m��

where ��i � �i for i � p and ��i � � when i � p� For this vector we write Yule�

Walker equation ����� as Rm�
� � �m� where �m � �
���� � � � � 
�m��� The

PACF at lag m� �mm� is then de�ned as the m�th component of the vector

��m � R��
m �� Similarly� the sample PACF function at lag m� ��mm� is de�ned as

the m�th component of the vector

��
�

m � �R��
m ��� �����

In the heavy tailed case the ACF and PACF do not exist� but we can still use

equations ���
� ! ����� to de�ne their sample equivalents�

In the general ARMA case� the PACF at lag h is de�ned as the sample

correlation between the residuals of Xt�h and Xt after linear regression �under

a �nite variance assumption� on Xt��� Xt��� � � � � Xt�h���

We shall use the notation ��kk for the PACF�s when the centered ACFs �
�s

of ����� are used in the Yule�Walker equation ����� instead of the non�centered

�
�s of ���
�� For most of the simulations we shall prefer to use the centered

variables� and so will need to assume that � � ��

We shall see� basically via simulation� that both the ACF and PACF provide

excellent tools for studying stable time series� It is perhaps rather surprising

that although second moments are in�nite in the stable case� the tools that

we are used to from the Gaussian case are still available� albeit with some

modi�cations�

The following subsection sets up the theory underlying the use of the ACF

and PACF� We then provide some tables for hypothesis testing� followed by

two sections on numerics� The �nal subsection looks at the use of the Akaike

Information Criterion in the stable setting�

��� The basic theory�

The theoretical basis for the usage of the sample ACF for the identi�cation of

the order q of a MA�q� time series is the following fundamental result of 	DR



�we follow here 	BD
 Theorem ��������
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Theorem ��� Let fZtg be an iid symmetric sequence of ��stable random vari�

ables and let fXtg be the strictly stationary process�

Xt �

�X
j���


jZt�j � �����

where
�X

j���

jjjj
j j� �
 for some � � ��� �� � 	�� �
�

De	ne for such a process an analogue of the ACF function� namely


�h� �
X
j


j
j�h�
X
j


�
j � h � �� 
� � � � � �����

Then� for any positive integer h�

�n� lnn������
���� 
���� � � � � �
�h�� 
�h��� � �Y�� � � � � Yh�
�� ������

where

Yk �

�X
j��

�
�k � j� � 
�k � j�� 

�j�
�k�� Sj�S�� ������

Here S�� S�� � � � are independent stable variables
 S� is positive with S� �
S����C

����
��� � �� ��� and the Sj � S��C

����
� � �� �� where

C� �

�
���

������cos���� �
if � �� �

�
� if � � ��

����
�

The marginal distribution of each Yk is somewhat simpler� and we have

Yk �

�
	 �X

j��

j
�k � j� � 
�k � j�� 

�j�
�k�j�


A

���

U�V� ������

where V and U are independent stable random variables with the same distri�

butions as S� and S� in �������

When � � � then ������ is also true when �
�h� is replaced by its mean�corrected

version� �
�h��

We consider now an example of this theorem in practice� Let Xt be the

symmetric stable MA�q� process�

Xt � Zt � 	�Zt�� � � � �� 	qZt�q � ������

Then the above theorem implies that

�n� lnn������
�h�� 
�h���
�
	� � 


qX
j��

j
�j�j�


A

���

U�V� h � q� ������
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where the right hand side reduces to U�V if q � ��

Thus one can use the above results to plot con�dence intervals for the ACF

function and identify the parameter q� once the distribution of U�V is known�

A similar result also holds for the distribution of the PACF� Since ��
p
 �

and �Rp
p
 Rp� the consistency of the Yule�Walker estimates follows� In fact�

the mean value theorem gives

��� � � D���� �� � op���� ���

where D is the p 	 p matrix of partial derivatives of vector function ��z� ��

Rp�z�
��z� Here Rp�z� � 	zji�jj


p
i�j��� z� � � and � � ����� Theorem ��� then

yields that

�n� lnn�������� ��� D�Y�� � � � Yp�
� ������

where the vector �Y�� � � � Yp� has distribution described by ������ � �������

The limiting distribution of the PACF�s is now given by ������ and ������

� ������� and so is� in general� rather complicated� However� when p � �� the

right hand side of ������ reduces to U�V � which is the same limit as for the ACF

of white noise� Since in the null hypothesis case this is what is required to test

which of the �mm are zero� we are in the fortunate situation of being able to

use the same distribution twice�

��� Some important quantiles�

In practice� the distribution of U�V cannot be computed theoretically� but only

via simulation or numerical integration of the joint density of the vector �U� V �

over an appropriate region�

Figure � gives the density of U�V for two values of �� Note the high tails

of the distribution� which are high even in relation to stable distributions�

Table � contains the ����� quantiles of U�V �the distribution of U�V is

symmetric� which for � � 
 were found via simulation of ������� values of U�V

using a corrected version of the S�plus routine for generating stable random

variables� �cf� 	ST
 p��� The S�plus routine does not quite deliver what you

might expect in the asymetric case"� Our value for � � � coincides with the

value quoted in 	BD
� p���� and found via numerical integration�
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Figure �� Kernel density estimates of U�V for x � 	�
� 

 and � � ��� and ����

Table �� ����� quantiles of U�V

� ����� quantile � ����� quantile

��� �����e��� ��� �����e���

��� ���
�e��� ��� 
����e���

��� �����e��
 ��� 
����e���

��� �����e��
 ��� �����e���

��� �����e��� ��� �����e���

��� �����e��� ���� ��
��e���

��� 
���
e��� ��� �����e���

��� ��
��e��� ��� �����e���

��� �����e��� 
�� �����e���

��
 ����
e���

��� Estimating the lag parameters via the ACF and PACF�

To see how useful the above results are� and to compare them to an attempt to

estimate the parameters p and q assuming normality� we conducted the follow�

ing� rather illuminating� double blind study�

We simulated ��� time series of length n � ���� with symmetric stable in�

novations with � � ��
� The models were selected at random from the following

�ve models�

Xt � Zt�

Xt � Zt � ��Zt���

Xt � Zt � ��Zt�� � ��Zt���
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Xt � ��Xt�� � Zt�

Xt � ��Xt�� � ��Xt�� � Zt�

We plotted the ACF and PACF for each of these series� and then used these

plots to try to identify the true model using the standard time series technique

of looking at the plots and seeing how they behave relative to the ��� con�dence

intervals under a white noise null hypothesis� Since we did not want to assume

� to be known� we used con�dence intervals corresponding to the Gaussian

�� � 
� and Cauchy �� � �� cases� �In fact� the con�dence intervals for the

true � � ��
 and Cauchy cases were indistinguishable to the human eye� The

Gaussian intervals� however� were about 
�� shorter�� The conclusions were

then compared against the true models�

The procedure showed ��� error when Gaussian limits were used and ���

error using Cauchy limits� Although the error rate clearly depends on experience

of a person doing identi�cation� it is clear from this study that using stable limits

for heavy�tailed data reduces the error rate signi�cantly�

��	 On asymptotics or �a funny thing happenned on the way to 
��

A fact often touted by stable time series theorists as a compensation for the

di�culties generally associated with stable rather than Gaussian analysis is that

the rate of convergence of �
�h�� 
�h� to zero is of the order O�	n� ln n
����� �

o�n����� for all � � �� which is considerably faster than in Gaussian case when

the rate is on the order of O�n������

However� despite this comforting fact� there are some other� rather problem�

atic� phenomena associated with this convergence� since the rate of convergence

of the distribution of �
�h� � 
�h� to the limiting distribution is actually very

slow�

Before we mention some theory� consider Table �� which indicates how fast

�or slow� the distribution of �
��� converges to the theoretical one for the white

noise model� For values of � � ���� ���� ����� and ��� and sample size n we

computed ������ coe�cients �
��� from independent white noise sequences with

corresponding values of � and n and checked the percentage of times the co�

e�cient was not within the nominal ��� con�dence interval� �Of course� this

should be ���� For determining con�dence intervals we used three di�erent

distributions� a stable distribution with the correct � �as described above�� a

Cauchy distribution and Gaussian distribution� �i�e� we used either the correct

value of �� or behaved as if � � � or 
�� The results show that when the correct

stable distribution is used� the convergence to theoretical �� error is very slow�

and that for �small� sample sizes of the order of ���� the Cauchy based limits

actually give the best results�

The main reason behind this phenomenon seems to be the slow convergence

of the distributions of stable averages to their limiting distributions� a fact that

has a well documented history� �cf� 	CH� HA� HW� JM
 although none of these

quite treats our setting��
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Table �� Percent error for ��� con�dence interval of �
���� white noise

� n � ���� n � ������ n � ������� n � ���������

�i� ��stable limits

��� ���� 
�
� ���� ��
�

��� ���� ���� ���� ����

���� ���� ���� ���� ����

��� ����� ���� ���� ��
�

�ii� Cauchy limits

��� ��
� ���
 �
�
� �����

��� ���� ����� ����� �����

���� ���� ����� ����� �����

��� ���� ����� ����� �����

�iii� Gaussian limits

��� 
��� 
��� ���� ����

��� ���� ���� 
��� ����

���� ���� ��
� 
��
 
��


��� ��

 ���� 
��� 
���

#From the practical point of view� this phenomenon shows up in an inter�

esting way in the numerics� Figure � shows the values of the upper limits of the

con�dence intervals for ��
���� 
���� for various � and n� based on the limiting

distribution of Theorem � and a white noise time series� Note how� for �small�

n� the con�dence interval shrinks to a point as �
 
�

We are not certain of the reason for this� One possibility is that for small

n the limiting distribution of U�V is not appropriate� What seems more rea�

sonable� however� is that the norming constants used to obtain the limiting

distribution� while asymptotically correct� are too large �in an � dependent

fashion� for small and intermediate values of n�

It is not totally clear how to get around this problem without using� perhaps�

something like a bootstrap� However� there is growing evidence that in the stable

situation bootstrapping is also problematic �cf� 	LPPR
 in this volume��

One possible approach comes out of Table �� which explores the n � ����

case for di�erent ��s� Our model is again white noise� and we record the per�

centage of times when the sample coe�cient �
��� is outside the ��� con�dence

interval� i�e� the percentage of wrong identi�cations of the model when the iden�

ti�cation procedure is done by computer and is based on the value of �
��� only�

The con�dence levels were computed based on the true ��stable distribution� as

well as Cauchy and Gaussian distributions� The number of simulations for each

case was m � ��� ����

It seems that the Gaussian limits perform the most poorly� at least for

� � ��� and that for all � Cauchy limits not only perform better than the

others� but do quite well on an absolute scale� �The error here is never larger
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Figure �� Con�dence intervals for ��
����
���� for � � � � 
 and various values

of n� �a� n � �� ���� �b� n � �� ���� �c� n � ���� ���� �d� n � �� ���� ���

than ��
���� Furthermore� for small � there is no signi�cant bene�t in using

the con�dence limits based on the true stable distribution� However� for large

�� the rate of the rate of convergence of �
��� to its theoretical distribution is

so slow that Cauchy or Gaussian distribution should be used� Comparison with

Table � strengthens this point�

Table �� Percent error for ��� con�dence interval of �
���� n � ����� WN

� true ��stable distribution Cauchy limits Gaussian limits

��� ���
 ���
 
���

��� ��
� ��
� 
��


��
 ���� ��

 
���

��� ��
� ��
� 
���

��� ���� ��
� 
���

��� ���� ���� ��
�

��� 
��� ���� ����

��� ���� ���� ����

��� ����� ���� ��



��� 
���� ���
 ����


�� ���� ���� ����

In Table � we continue the theme of using Cauchy based bounds� regardless

of the true value of �� While this clearly gives a conservative test� it turns

out that in practice it is not overly so� and the results here illustrate how

amazingly well the Cauchy bounds perform in the identi�cation of the MA���
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model Xt � Zt���Zt��� Again� each speci�c case was runm � ��� ��� times� In

each run for sample size n � ���� and given � we computed �
���� � � � � �
���� and

recorded an �error� when �
��� was within the con�dence limits for white noise or

when �
��� was outside these limits but one of the coe�cients �
�
�� � � � � �
���� was

also outside the limits� so identi�cation as MA��� would not be called for� The

con�dence limits were taken to be �i� �lnn�n�����U�V � with U and V coming

from the true distribution� �ii� as in �i� but with U and V corresponding to

Cauchy distribution and with � � �� �iii� �����
p
n� �iv� according to Bartlett�s

formula for MA��� model with true value of 
���� The whole procedure was

performed by computer without human intervention�

It is clear� although perhaps somewhat surprising� that Cauchy limits work

the best and that the identi�cation procedure works better for heavy�tailed

series than for their �nite variance counterparts�

Table �� Percent of wrong identi�cations of MA��� model

� true ��stable Cauchy Gaussian Bartlett

��� ����� ����� ����� �
���

��� ����� �
��� 
���� �����

��
 ����� �
��� 

��� �����

��� �
��� �
��� 
���� �����

��� ����� �
��� 
���� �����

��� 
���� ����� ����� �����

��� 
���� ����� ����
 
����

��� ����� ����� ����� 

��


��� ����� ����� ����� 
����

��� ����� ����� ����� 
����


�� �
��� ���
� �
��� 
����

We close this subsection with a some brief information on the asymptotic

behaviour of the PACF� which� not surprisingly� is similar to that of the ACF�

Table � is a PACF version of Table �� generated in the same fashion� however

with data on ���� rather than �
��� being tabulated�
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Table �� Percent error for ��� con�dence interval of ����� n � ����� WN

� true ��stable distribution Cauchy limits Gaussian limits

��� ���� ���� ����

��� ��
� ���� 
���

��
 ���� ��
� 
���

��� ���� ���� 
��


��� ���� ��
� ����

��� ���� ���� ��
�

��� 
��� ���� ����

��� ���� ���� ����

��� ����
 ���� ����

��� 
���� ���� ����


�� ���� ���� ����

��� The AIC criterion�

In the �nite variance case the prime criterion for automated model selection

recommended by 	BD
 is the AICC� a modi�ed version of Akaike�s AIC crite�

rion� An investigation of the AIC criterion in the in�nite variance situation was

carried out by 	BH
 and 	KN�
�

For an autoregressive model the AIC statistics are de�ned by

AIC�k� � n ln ����k� � 
k�

where n is the sample size� and ����k� is the estimate of the innovation variance

obtained from Yule�Walker estimates for k�th order autoregressive sequence �cf�

������� Then

�p � argmink�KAIC�k��

where K is an acceptable upper bound for p� is the corresponding estimate of

the order p� 	KN�
 showed that this procedure is consistent for heavy tailed

situations�

To see how the AIC criterion works in practice for stable AR series we

performed ���� simulations of the AR��� model

Xt � ���Xt�� � Zt� ������

for � � ���� ���� ����� 
��� The sample size was �xed at n � 
��� which is rather

small by stable standards� where larger sample sizes are required than in the

Gaussian case�

In each run we assumed that we were looking for the best AR model� i�e�

we looked for order p which minimised the AIC criterion� We then recorded the

number of times that the correct order �p � �� was correctly identi�ed�

To check how the AIC criterion works for a MA model� we used the S�plus

arima�mle routine which de�nes AIC as ��
� times the log Gaussian likelihood
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plus two times the number of parameters �t �see the de�nition in 	BD
� p� ���

or consult the S�plus manual�� We performed ���� runs for model�

Xt � Zt � ���Zt�� ������

with � � ���� ���� ����� 
��� n � 
��� Again� in each run we assumed that

we were looking for the best MA model� and recorded the number of correct

identi�cations� The results of simulations for both models are given in Table

� and the conclusion is that in both cases the AIC criterion works better the

heavier the tails"

The MA case is particularly interesting� since we have no theoretical justi�

�cation for applying the AIC based on the Gaussian likelihood to heavy�tailed

data�

	� Parameter estimation for ARMA models� The Whittle estimator�

Paper 	CD
 of this volume gives an extensive review of estimation techniques

for linear processes with stable innovations� They present convincing evidence

to the e�ect that LAD and MLE estimators are superior� in the heavy tailed

setting� to the estimators traditionally used in �nite variance time series� such

as least square or Whittle �periodogram� estimators� However� for both of these

cases� the sampling distribution of the parameter estimates is� at least at the

moment� numerically as well as theoretically intractable�

Table �� Percent of correct model identi�cations made by AIC�

� AR��� � ����
� MA��� � ������

��� ���� �
��

��� ���� ����

���� ���� ����


�� ���
 �
��

However� for the Whittle estimator� we have the following result of 	MGKA
�

Theorem 	�� Let fXtg be a causal� invertible� ��stable� ARMA�p� q� process�

with parameters � � ���� � � � � �p� 	�� � � � � 	q�
�� Let C denote the space of per�

missable parameter values� i�e� C � f� � �p�q � ��z� � 	�z� �� � for jzj � � and

����� 	��� have no common zeroesg� De	ne the polynomials

��z� � �� ��z � � � �� �pz
p� 	�z� � � � 	�z � � � �� 	qz

q �����

and� for all �� � � � �� the �power transfer function�

g����� �

��	�e�i�����
j��e�i��j�

� ���
�
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Denote the self�normalized periodogram by

In�X ��� �

��Pn
t��Xte

�i�t
���Pn

t��X
�
t

� �� � � � �� �����

The periodogram� or �Whittle� estimator  �n of the true� but unknown� parameter

��� is found by minimizing

��n��� �

�

n

X
j

In�X��j�

g��j ���
�����

with respect to � � C� where the sum is taken over all frequencies �j � 
�j�n �
���� �
� Then�

� n

lnn

����� �
 �n � ��

�� ��W������
�

S�

�X
k��

Skbk� �����

where the S�� S�� � � � are as in Theorem �� W������ is the inverse of the matrix

W ���� �

Z �

��

�
�ln g������

��


�
�ln g������

��


T
d��

and

bk �
�


�

Z �

��

e�ik�g������
�g��������

��
d��

where g�� denotes the reciprocal of g�

Self�normalization of the periodogram� as in ������ is essential for the proof

of the above Theorem� However� in practice� in order to �nd the estimator
 �n we minimize expression ����� when self�normalized periodogram In�X ��� is

replaced by

�In�X��� �

�����n����
nX
t��

Xte
�i�t

�����
�

�����

One of the useful aspects of this result is that the asymptotic sample dis�

tribution involved here is closely related to that which arises in the study of

the ACF and PACF� so that simple extensions of the numerics required to �nd

con�dence intervals there also work here�

To see how close the theoretical asymptotic distribution of Whittle estima�

tor is to the true sample distribution when n is �xed� we simulated data using

the AR��� model ������� We ran three di�erent sample sizes n � 
��� ����

and ��� ��� and two values of � � ���� ����� For comparison we also simulated

Gaussian data and used con�dence intervals for the MLE� the asymptotic dis�

tribution of which coincides with the distribution of Whittle estimates in the

�nite variance case� We ran m � ��� ��� simulations for each particular case�

The results� described in Table � and on Figure �� show that the con�dence

intervals based on the limiting distribution ����� work very well even for the
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relatively small sample size of n � 
��� The entries in Table � are the percent

of estimates  �n � f ��gn which fall into the ��� con�dence interval centered

around the true parameter value� Although� the numbers in the Gaussian row

are the closest to theoretical ���� the results for � � ���� are impressive and

unexpected� given the slow convergence rate of the distributions of the sample

ACF and PACF� Figure � gives histograms for the Whittle estimate f ��gn for

� � ���� and the three di�erent sample sizes used� The vertical bars represent

��� con�dence levels�

Table �� Percent of f ��gn�s within ��� con�dence interval� model ������

� sample size n���� sample size n����� sample size n������

��� ����� ����� �����

���� �
��� ����� �����


 ����� ����� �����
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Figure �� Histograms and theoretical ��� con�dence intervals for Whittle esti�

mate f ��gn of �� in model ������� �a� n � 
��� �b� n � ����� �c� n � ��� ����

�� Diagnostic checking

After identifying and estimating the parameters of times series model� it is

always nice �although sometimes disconcerting� to see if the estimated model

is really a good �t to the data� This is where diagnostic checking procedures

come in� This usually involves identifying the residuals and seeing how well

they match the distribution originally assumed for the innovations� In our case�

this involves checking whether the residuals are i�i�d� under the assumption of

an S�S distribution�

For in�nite variance series we recommend the four following steps�

�i� Graph the residuals� the pattern should follow a white noise model�

�ii� Check that the ACF and PACF of the residuals are those of white noise�

The results and recommendations of Section � all apply here�

�iii� The Durbin�Watson test of 	PL
�

�iv� Various non�parametric tests� see 	BD
� p���
�����

We ran a small simulation to see how well the second of these techniques ac�

tually worked� For models ������ and ������� stable parameters � � ���� ����� 
�
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and sample sizes n � 
��� ����� ��� ��� we simulated data� identi�ed a model

using the techniques of Section �� estimated parameters �using the Whittle es�

timator� and then checked whether the residuals were consistent with stable

white noise model�

Table ��� Diagnostic checking based on ACF$PACF� models ������!������

Model n Ident� ��n Diag� Check �C� Diag� Check�G�

� � ���

������ 
�� AR��� �C� ���� WN NOT WN

������ 
�� MA��� �C�� ���� WN NOT WN

������ ���� AR����C�� ���� WN WN

������ ���� MA��� �C� ���� WN WN

������ ����� AR��� �G� ���
 N$A WN

������ ����� MA��� �G� ���� N$A WN

� � ����

������ 
�� AR��� �C� ���� WN WN

������ 
�� MA��� �C�	 ���� WN NOT WN

������ ���� AR��� �C� ���� WN WN

������ ���� MA��� �C�
 ��
� WN NOT WN

������ ����� AR��� �G� ���� N$A WN

������ ����� MA��� �G� ���� N$A NOT WN

� � 
���

������ 
�� AR��� �G� ���� WN WN

������ 
�� MA��� �C�� ���� WN WN

������ ���� AR��� �G� ���� WN WN

������ ���� MA��� �C� ��

 WN WN

������ ����� AR��� �G� ��
� N$A NOT WN

������ ����� MA��� �G� ���� N$A WN

� Gaussian and true ����stable limits indicate MA����� AIC indicates MA����
� Cauchy limits indicate AR��� or ARMA������ AIC indicates AR����
	 Gaussian and true �����stable limits indicate MA���� AIC indicates MA����

 Gaussian limits indicate MA���� True �����stable limits indicate possibly

MA���� AIC indicates MA��� or MA����the value is almost the same�� For

reasons of parsimony we chose MA����
� True Gaussian limits indicate MA����� while Cauchy limits indicate correct

model MA���� AIC indicates MA����

Model identi�cation was based on ACF$PACF analysis� unless more than

one model seemed acceptable� in which case we di�erentiated between the mod�

els via the AIC� For the �small� sample sizes of n � 
��� ���� we used Cauchy

based con�dence limits for the ACF$PACF analysis� while for n � ��� ��� we

used Gaussian limits� In �tting the residuals� with sample sizes n � 
��� ����
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we used both Cauchy and Gaussian limits�

The results summarized in Table �� show that diagnostic checking based

on ACF$PACF works as well in stable case as in the Gaussian� The letters

�C� or �G� in the table indicate that� respectively� Cauchy or Gaussian based

con�dence limits were used� The coe�cient estimate ��n is  �� in the AR���

������ case� and  	� in the MA��� ������ case�

As a guide to reading the table� consider the �rst line� which indicates

that an AR��� series of length n � 
�� and stable innovations with � � ��� was

generated according to the model ������� It was correctly identi�ed as an AR���

model� using Cauchy con�dence intervals for the ACF and PACF� The estimate

of the the AR coe�cient was ����� �The actual value was ���� cf� �������� The

residuals were then investigated� Using Cauchy con�dence intervals they were

judged to be white� which was not the case with Gaussian con�dence intervals�

Although we have not studied it� we note that a stable analogue of the

Durbin�Watson statistic has been developed in 	PL
� Since this statistic essen�

tially checks that the ACF of the residual sequence at lag � is that of white

noise� its asymptotic distribution is given by Theorem ����

Unfortunately no other� stronger� tools �such as the �� test in the �nite

variance case� are currently available for diagnostic checking in the stable situ�

ation� This would seem to be a promising and important direction for further

research�
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Appendix� McCulloch�s quantile estimator of stable parameters

In this section we describe the estimator developed by McCulloch �	MC
�

for the indices � �of stability� and � �of skewness� of a stable distribution� which

have been referred to in the body of the paper�

Let X � S���� �� �� and denote the p�th quantile of this distribution by

Xp� McCulloch�s estimator uses �ve quantiles to estimate � � 	���� 
��
 and

� � 	��� �
� and is structured as follows�

Set

%���� �� �
X	�� �X	��

X	
� �X	��
�

%���� �� �
X	�� �X	�� � 
X	��

X	�� �X	��
�

Since %� is monotonic in � and %� is monotonic in � �for �xed �� we can we
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can invert these functions to obtain

� � &��%��%���

� � &��%��%���

McCulloch tabulated &� and &� for various values of %� and %��

To form an estimator� take a random sample from a stable distribution

and de�ne �%� and �%� by replacing the quantiles Xk by the corresponding sam�

ple quantiles �Xk� Since the sample quantiles are consistent for the population

quantiles� �%� and �%� are consistent estimators of %� and %�� De�ne

�� � &���%�� �%���

�� � &���%�� �%���

Given a random sample from a stable distribution� we can now use the tables

to �nd �� and ���

To obtain estimates of the scale and location parameters� McCulloch de�ned

similar functions using these same � quantiles� which were also tabulated for

various scale and location values� These tables can be used in a similar fashion

so as to obtain estimates for � and for ��
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