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1 Chapter 1

Kreyszig, 1.1.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE )
Yy +ze”T =0

Solution:

By separating variables

and integrating

Kreyszig, 1.1.5
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
y' = 4e”7 cos(x)

Solution:
,_dy

o 4e™" cos(x)

Y

By separating variables
dy = 4e™ " cos(z)dx

/ dy — / 4e7 cos(z)dz

and integrating

Let’s integrate by parts:

L = fe*“?c s(z)dx [u=e %, dv = cos(x)dzx]
= sm(x) — [sin(x)(— xdm)
= e “sin(z) + [sin(z) _””dx [u=e"" dv = sin(x)dx]
= e xsm(sc) +e 7(— Cos(x)) — [ (=cos(z))(—e *dx)
= e "sin(z) — e *cos(z) — [ cos(xz)e”“dx
= e Tsin(x) — e *cos(x) — I =

2I; = e *sin(z) — e *cos(z) =

I, efzsm(a:) cos(x)

Finally

=4L+C = ’ 2(sin(z) — cos(x))e ™ 4+ C ‘

Kreyszig, 1.1.6



Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
1

y =Yy

Solution: Let us try a particular solution of the form

y = e)\x
y/ — /\e)\z
y// — )\26)\1:

Then, substituting these functions in the ODE
)\26)@ — _eAa:

AN =—1= A=

So the two functions
and

are solutions of the ODE. Actually, any function of the form

T —ix
= c1y1 + cay2 = | c1€"” + cae

is also a solution. In fact, it is the general solution of the ODE. Let us check
this statement

Yy =ici1e’® —icge™™®
y// = —c1€® — ey~
Substituting in the ODE
"
y ==Yy
—c1e" — coe™" = — (16" + coe™ ')

As can be easily seen the function
y=c1e 4+ coe T+ C
with C' # 0 is not a solution of the ODE
—c1€ — e £ (1€ + e 4 C)
Kreyszig, 1.1.7
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
y" = cosh(5.13z)

Solution: To solve the proposed ODE we rewrite it as

Z—Z = cosh(5.13z)



Consequently
dy = cosh(5.13x)dx

/dy: /cosh(5.13x)dx
1

sinh(5.13z) + C

Integrating

Y

513

Kreyszig, 1.1.8
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE

Solution: Let us define

yé _ 670‘21,
whose solution is
dys = e 2% dx
1
V2 =53 2670'21 +ep =570 4 ¢

Now we solve the equation
Yi =ys = —be " 4 ¢

dy; = (=5e " + ¢y)dx
y1 =25 % + crw + o
And, finally, the equation

Y =y =25 0% + 1z + 2
dy = (25792 4 ey + cp)dx
y=—125e" 2% 4 %xg + cox + 3

Since ¢; is an arbitrary constant, we can absorb the % factor into ¢q, so that the
general solution is

y=—125¢7%% 4+ ;2% 4 coz + c3

Kreyszig, 1.1.10
Carlos Oscar Sorzano, Aug. 31st, 201}



1. Verify that y = ce=257" ig a solution of the ODE
y' +5ry =0
2. Determine from y the particular solution of the ODE that satisfies the
initial condition y(0) = 7.
3. Graph the solution of the IVP.
Solution:

1. Let us calculate ¢’ and substitute it into the ODE

y = —5cxe 257"
(—561:6’2'512) + 5z (6672'512) =0
=0

2 2
—5cxe™ 29" 4 Bexe 207

0=0

So y is actually a solution of the ODE.

2. To satisfy the initial condition we need
y(0) =m = ce 250" = ¢e0 = ¢

that is, we need ¢ = w. The particular solution fulfilling the initial condi-
tion is

_ 2
e 2.5z

Yyp =T

3. In MATLAB:

x=[-3:0.001:3]; plot(x,pi*exp(-2.5*x.72)); xlabel(’x’);

35

15F

0.5r

Kreyszig, 1.1.12
Carlos Oscar Sorzano, Aug. 31st, 201}



1. Verify that y? — 422 = C is a solution of the ODE
yy = da
2. Determine from y the particular solution of the ODE that satisfies the
initial condition y(1) = 4.
3. Graph the solution of the IVP.
Solution:
1. Let us differentiate the equation defining the implicit function

Dx(yQ — 4x? = C)
2yy’ — 8x =0
yy' =4z

that is exactly the ODE, so the implicit function defined by y? — 422 = C
is actually a solution of the proposed ODE.

2. To satisfy the initial condition y(1) = 4 we need
v -4 =C
(4)? —4(1)*=C
C=16—-4=12

So the particular solution satisfying the given initial condition is

yf) —4x® =12

3. In MATLAB:

h=ezplot (’y."2-4*x.72-127,[-3 3 -10 101);
set(h,’Color?’,’b’)

10




Kreyszig, 1.1.16
Carlos Oscar Sorzano, Aug. 31st, 201}

An ODE may sometimes have an additional solution that cannot be obtained
from the general solution and is then called a singular solution. The ODE
(y")? — a2y’ +y = 0 is of this kind. Show by differentiation and substitution
that it has the general solution y = cxz — ¢? and the singular solution y = +a?.

Explain the following figure.

IS
|
]
% =R W
&~
=

-3
_4

Solution: Let us calculate the derivative of the proposed solution
y=cxt—c* =y =c
Substituting in the ODE
(y)? =y +y=0
(¢)* —x(c) + (cx —*) =0
0=0

So the proposed solution is a solution of the ODE. However, the function y =

ixQ is also a solution as can be easily verified

*1x2¢ ’*1x
Y=13 Y73

W) —ay' +y=0

() () () -

1 1 1
11:2 — §x2—|— 1x2 =0

0=0

The explanation of the proposed figure is the following. The different lines
correspond to different values of ¢ in the general solution

y=cx—c*

The function y = ixQ is the upper envelope of all these functions.

Kreyszig, 1.1.18



Carlos Oscar Sorzano, Aug. 31st, 201}

Radium 22%Ra has a half-life of about 3.6 days.
1. Given 1 gram, how much will still be present after 1 day?
2. After 1 year?

Solution: Radioactive desintegration responds to the linear ODE

dA
— =Kt
dt

whose general solution is
At) = A0)e K t>0

Note that the units of K are [time™!]. We can also write the general solution

as )
A(t)=A0)e™ 7 t>0
where the units of 7 are now [time].
A half-life of 3.6 days implies that

A(3.6) = @ = A(0)e
—log(2) = —¥
3.6
"= Toa@) = 1937ldays]

At this point we can answer the two questions:

1. After 1 day there is: A(1) = A(0)e~* = le~ 51937 = 0.8249]g].

5

2. After 1 year there is: A(365) = A(0)e™ """ = le~ 510w = 3-1073[g].

Kreyszig, 1.1.19
Carlos Oscar Sorzano, Aug. 31st, 201}

In dropping a stone or an iron ball, air resistance is practically negligible.
Experiments show that the acceleration of the motion is constant (equal to
g = 9.80[m/s?], called the acceleration of gravity). Model this as an ODE for
y(t), the distance fallen as a function of time ¢. If the motion starts at time
t = 0 from rest (i.e., with velocity v = ¢y’ = 0), show that you obtain the familiar

law of free fall
g
y= 29

Solution: Let us understand the physical meaning of each of the variables
involved:

e y(t) is the distance fallen at time ¢

e y/(t) is the speed of the object at time ¢



e y”(t) is its acceleration at time ¢
The fact that acceleration is constant along the fall implies
Yy =g

Let us define the variable
!
v=y

Then, the free fall ODE can be written as

=g
dv = gdt
v=gt+c

But the object is at rest at t = 0, that is
v(0)=0=g(0)+c=c=0

Now we solve the equation

v=y
for y
dy = vdt = gtdt
Lo ¢
== c
Y 29

At time t = 0 the object had not moved, that is

1
y(O):ozig(O)Mc;»c:o

Finally, the solution of the falling ODE is

]‘2
=gt
y=59

Kreyszig, 1.2.4
Carlos Oscar Sorzano, Aug. 31st, 201}

Graph a direction field (by a CAS or by hand) for the ODE
y =2y -y’

In the field graph several solution curves by hand, particularly those passing
through the points (0,0), (0, 1), (0,2), (0, 3).
Solution: In MATLAB

[x,y]=meshgrid(-1:0.25:5,-2:0.25:4) ;
f = 0(x,y) 2*y-y." 2;
dy=feval(f,x,y);

dx=ones(size(dy));
quiver(x,y,dx,dy);

axis([-1 5 -2 4])



xlabel (?
ylabel (?

hold on

% (0,0)
[xa,yal
[xb,yb]

plot(xa,
plot(xb,

% (0,1)
[xa,yal
[xb,yb]

plot(xa,
plot(xb,

% (0,2)
[xa,yal
[xb,yb]

plot(xa,
plot(xb,

% (0,3)
[xa,ya]
[xb,yb]

plot(xa,
plot(xb,
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Kreyszig, 1.2.5
Carlos Oscar Sorzano, Aug. 31st, 201}

x?)

y’)

= ode45(f,[0,5],0);

ode45(f, [0,-11,0);
ya,’b’,’LineWidth’,2)
yb,’b?, ’LineWidth’,2)

ode45(f, [0,5],1);
ode45(f, [0,-1],1);
ya,’r’,’LineWidth’,2)
yb,’r’,’LineWidth’,2)

ode45(f, [0,5],2);

= ode45(f,[0,-1],2);
ya,’k’,’LineWidth’,2)
yb,’k’,’LineWidth’,2)

= ode45(f,[0,5],3);

ode45(f,[0,-1],3);
ya,’g’,’LineWidth’,2)
yb,’g’,’LineWidth’,2)




Graph a direction field (by a CAS or by hand) for the ODE

, 1
Yy =z--
Y
In the field graph several solution curves by hand, particularly that one passing
through the point (1, 3).
Solution: In MATLAB

[x,y]=meshgrid(-2:0.15:2,0.15:0.15:2);
f = e(x,y) x-1./y;

dy=feval(f,x,y);

dx=ones(size(dy));

quiver(x,y,dx,dy) ;

axis([-2 2 0.15 2])

xlabel (’x?)

ylabel(’y?)

hold on

% (1,0.5) [xa,yal = oded45(f,[1,1.2],0.5);
[xb,yb] = oded5(f,[1,-2],0.5);
plot(xa,ya,’r’,’LineWidth’,2)
plot(xb,yb,’r’,’LineWidth’,2)
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Kreyszig, 1.2.11
Carlos Oscar Sorzano, Aug. 31st, 201}

An ODE is autonomous if it does not show x (the independent variable)
explicitly in f
v =f(z,y)
For instance,
y' = sin’(y)

10



y = —5y*

What will the level curves f(z,y) = const (also called isoclines, of equal incli-
nation) of an autonomous ODE look like? Give reason.

Solution: They are lines parallel to the x axis, since all points with the same x
have the same inclination (slope of the tangent). For example, for the equation

y' = sin®(y)
we would have in MATLAB

[x,y]l=meshgrid(-pi:0.25:pi,-pi:0.25:pi);
= @(x,y) (sin(y))."2

dy=feval(f,x,y);

dx=ones (size(dy));

quiver(x,y,dx,dy);

axis([-pi pi -pi pil)

xlabel(’x?)

ylabel(’y?)

hold on

% Isoclines
contour(x,y,dy./dx,0.25,’r’,’LineWidth’,2)
contour(x,y,dy./dx,0.75,’g’,’LineWidth’,2)
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Kreyszig, 1.2.15
Carlos Oscar Sorzano, Aug. 31st, 201}

Two forces act on a parachutist, the attraction by the earth mg (m is the
mass of person plus equipment, g = 9.8[m/s?] the acceleration of gravity) and
the air resistance, assumed to be proportional to the square of the velocity v(t).
Using Newton’s second law of motion (mass x acceleration = resultant of the

11



forces), set up a model (an ODE for v(t)). Graph a direction field (choosing
m and the constant of proportionality equal to 1). Assume that the parachute
opens when v = 10[m/s]. Graph the corresponding solution in the field. What is
the limiting velocity? Would the parachute still be sufficient if the air resistance
were only proportional to v(¢)?

Solution: The following equation for the velocity v reflects the physical knowl-
edge of the problem

mv’ = mg — vv?

With m = 1[kg] and v = 1[Ns?/kg|, we have

’U/Zg—UZ

If the parachute opens at v = 10[m/s] it means
v(0) = 10
we would have in MATLAB (see red curve)

[x,v]=meshgrid(0:0.1:2,0:0.5:10);
f = e(x,v) 9.8-v."2;
dv=feval(f,x,v);
dx=ones(size(dv));
quiver(x,v,dx,dv);

axis([0 2 0 10])

xlabel(’t?)

ylabel(’v?)

hold on

% Solution

[t10,v10]=0de45(f,[0 2],10);
plot(t10,v10,’r’, ’LineWidth’,2)

If the air resistance were proportional to v(t), then (see black curve)
vV =g—v

It can be seen that the decrease of speed is much slower:

12
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Kreyszig, 1.2.17
Alvaro Martin Ramos, Dec. 25th, 201}

Apply Euler’s method to the ODE

/

Yy =y

with h = 0.1 and y(0) = 1.
Solution: The method applied to this case would give

vo = y0)=1

v = Yo+ hf(zo,yo)=1+01(y)=1+01(1)=11

yo = y1+hf(r,y)=11401(y1) =1140.1(1.1) = 1.21

ys = o+ hf(a,ys) = L11+0.1(yz) = 1.21 + 0.1(1.21) = 1.331

Kreyszig, 1.2.20
Carlos Oscar Sorzano, Aug. 31st, 201}

Apply Euler’s method to the ODE
y' = —bxz'y® y(0)=1
with A = 0.2. The true solution is
1
V= o
Solution: The method applied to this case would give

yo=y(0) =1

Y1 = Yo + hf(zo,90) = 1 +0.2(=5xgyd) = 1+ 0.2(=5(0)*(1)2) =
yo =y1 +hf(z1,y1) = 1+ 0.2(=5xiy?) = 1+ 0.2(-5(0.2)4(1)?)
ys = 0.9729

ys = 0.8502

13



In MATLAB

f = @(x,y) -5*x.74.xy."2;

% Euler

y=zeros(10,1);

x=zeros (10,1);

x(1)=0; y(1)=1; % y(0)=1
h=0.2;

for k=1:length(y)-1

y (k+1)=y (k) +h*f (x (k) ,y(k)) ;
x(k+1)=x(k)+h;

end

% ODE45
[xRK,yRK]=ode45(f, [0,1.8],1);

% True solution

xt=0:0.01:1.8;

yt=1./((xt+1).75);

plot(x,y,xRK,yRK,xt,yt)

legend (’Euler solution’,’Runge-Kutta 45’,’True solution’)
xlabel(’x?)

ylabel(’y?)

T T
Euler solution h=0.2
Runge-Kutta 45 B
True solution

0.9F
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0.7

0.6

0.4}

0.3F

0.2}

0.1}

Kreyszig, 1.3.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve

14



Solution: We can rearrange the equation as

We see that the equation has the form

_

so that it can be reduced to a separable form by making the change of variables

u:giy:xuﬁy'zu’x—&-u
T

Substituting in the ODE

, 1
uwr+u= Y]
- 1) u'+1
ur=—|u-+ e T
Separating variables
u? 1
——du = ——dzx
ut+1 x

Integrating
3
1
/Ldu =— / —dx
ut +1 x

1 4u?

Solving for u
1
Zlog|u4+1| = —log|z|+C

log |u* + 1|7 = —log |z| + C

C
lut + 1] =
x
C
4
u + 1 E
And undoing the change of variable
y ) 4
1 =
(ac + x4
y* 4ot =C

Kreyszig, 1.3.7
Carlos Oscar Sorzano, Nov. 2nd, 201}

Solve
zy =y + 223 sin? (g>
x

15



by making the change of variables ¥ = v
Solution: The change of variables £ = v implies

Yy =ux
y =u'z+u
Substituting in the differential equation we get
z(u'z 4 u) = ux + 223 sin® (u)

z2u/ = 22° sin® (u)

Integrating we get

_ .2
tan(u) DR

1

tan(u) = m

u = arctan
-
Undoing the change of variable

1
= uxr = rarctan ———
Y C — a2

Kreyszig, 1.3.8
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
y = (y +4x)?

by making the change of variables y + 4z = v
Solution:
y+dr=v=9y +4=0 =9y =0 —4

Substituting in the ODE

v —4=v
v =0v%+4
!
R
v2 +4
Separating variables
dv d
Y dx
v2+4

Integrating
d
[ o= [
vZ+4

16



1 dv
/4@y+1—x+0

1 %dv B
Q/Qy+1_x+c

1 v
,t - —
Qaan2—x—|—0

Solving for v
v =2tan(2z + C)

Undoing the change of variables

y+ 4z = 2tan(2z + C)

y = —4z + 2tan(2z + C) ‘

Kreyszig, 1.3.9
Carlos Oscar Sorzano, June 15th, 2015

Solve
ay' =y*+y
by making the change of variables u = £.
Solution:

u=Ysy=ur=y =uz+u
T

Substituting in the ODE
z(u'z +u) = (uz)? + ux

Dividing by x
Wr4u=ulr+u

uxr=u‘c
u/ _ u2
du
e dx
Integrating
—ut=z+C
_ 1
- z+C
Undoing the change of variables
y 1
r x+C
Finally,
B x
4 z+C

Kreyszig, 1.3.19

17



Carlos Oscar Sorzano, Aug. 31st, 201}

If the growth rate of the number of bacteria at any time ¢ is proportional
to the number present at ¢ and doubles in 1 week, how many bacteria can be
expected after 2 weeks? After 4 weeks?

Solution: The growth rate of the number of bacteria is A’(¢). If it is propor-
tional to the number of bacteria, we have

A=A

whose solution can be obtained by separating variables

dA = pAdt
dA

— = pdt
A K

Integrating
log |A| = ut+C

Solving for A
A=Ce'

If the number of bacteria doubles every week, we have
At +7) = 2A(t)
Ce'u(t+7) = 206'ut
6”722:>u:@:0.0990
After 2 weeks we will have
A(t + 14) | = CertH14) = Celterld = A(t)e 5714 = A(t)e215() = A(t)(e°8()? = A(t)22 =[4A(t)

Similarly, after 4 weeks, we will have

A(t+28) | = A1) = A(t)et1°5@) = A(1)(5@)* = A(t)2* =[16A(2)

Kreyszig, 1.3.20
Carlos Oscar Sorzano, Aug. 31st, 201}

1. If the birth rate and death rate of the number of bacteria are proportional
to the number of bacteria present, what is the population as a function of
time.

2. What is the limiting situation for increasing time? Interpret it.
Solution:

1. The following model describes the situation

A=A — paA = (p — pa)A
Similarly to Problem 1.3.19, its solution is

A = Celmv—ra)t — A(o)e(#rud)t

18



2. If up = w4, the number of bacteria stays stable from ¢t = 0. If up > pa,
the number of bacteria grows exponentially. On the contrary, if u, < pq,
the number of bacteria exponentially decreases to O.

Kreyszig, 1.3.23
Carlos Oscar Sorzano, Aug. 31st, 201}

Boyle—Mariotte’s law for ideal gases. Experiments show for a gas at
low pressure P (and constant temperature) the rate of change of the volume
V(P) equals —%. Solve the model.

Solution: The following ODE models the system

v
Vi=——
P
v__1
v P
Separating variables
av __dp
v P
Integrating
C
log |V| = —log|P| + C =log P’
C
V==
P
Kreyszig, 1.3.26
Carlos Oscar Sorzano, Aug. 31st, 201}
Gompertz growth in tumors. The Gompertz model is y' = —Aylog(y)

(A > 0), where y(t) is the mass of tumor cells at time ¢. The model agrees
well with clinical observations. The declining growth rate with increasing y > 1
corresponds to the fact that cells in the interior of a tumor may die because
of insufficient oxygen and nutrients. Use the ODE to discuss the growth and
decline of solutions (tumors) and to find constant solutions. Then solve the
ODE.

Solution: Let us solve the equation

y' = —Aylog(y)

W g
ylog(y)
1
g
v _ —Adt
log(y)
log |log(y)| = —At+ C

log(y) = Ce™

= exp(Cexp(~At)) = | exp(log(y(0)Jexp(~ A1) |
The following figure shows the growth for y(0) = 0.01 and A =1

19
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Kreyszig, 1.4.4
Carlos Oscar Sorzano, Nov. 2nd, 201}

Solve
e (dr + 3rdh) =0

Solution: We rewrite the differential equation as
e30dr + 3re®?do = 0

which is of the form
Pdr+Qdf =0

To check if it is an exact equation we calculate

oP

_9.30
ol =3¢
0Q ., 3
or =3¢

Since both partial derivatives are equal, the equation is exact and we look for a
solution of the form

U= /Pdr +C(0) = /63% + C(0) = r + C(0)

To determine the constant C(6) we differentiate this function with respect to 6

87U_ 360 4
20 =3re +C'(9)

and compare it to )
3re® +C'(0) = Q

3re3? 4 C'(0) = 3re?
C'(0)=0

20



Integrating with respect to 6

co)=c
Finally, the implicit solution of the differential equation is
r+C =0
or explicitly
r=—Ce %

Kreyszig, 1.4.8
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
e”(cos(y)dx — sin(y)dy) =0

Solution: We may rewrite the ODE as
e” cos(y)dx — e sin(y)dy = 0

That is of the form
P(z,y)dz + Q(z,y)dy = 0

To see if it is exact we calculate

OP
Biy = e"(—sin(y))
9@ _ —e” sin(y)
or Y
Since %—5 = %, the ODE is exact. To find the solution, u that satisfies
ou ou
J— P P
ox Jy @
we integrate P with respect to x
u(z,y) = [e”cos(y)dz = cos(y)e” + C(y)

If we now differentiate v with respect to y we should obtain @

ou

y e”(=sin(x)) + C'(y) = —e"sin(y) = C'(y) =0=C(y) = C

So the solution to the problem are all functions of the form

u(z,y) = C = cos(y)e® = ’ y = acos(Ce™™)

Kreyszig, 1.4.9
Alvaro Martin Ramos, Dec. 25th, 201}

Solve the ODE
e** (2 cos(y)dx — sin(y)dy) =0
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Solution: We may rewrite the ODE as
e**2 cos(y)dx — €** sin(y)dy) = 0

That is of the form
P(z,y)dz + Q(z,y)dy = 0

To see if it is exact we calculate

P
aa—y = —2e*" sin(y)
% = —2e** sin(y)
Since
0Q _or
or Oy
the ODE is exact. To find the solution, u, that satisfies
Ju
t_p
ox
Ju
=0

we integrate P with respect to x

u(z,y) = /62””2 cos(y)dx = cos(y)e** + C(y)

If we now differentiate v with respect to y we should obtain

du

ay sin(y)e*” + C'(y) = —e*"sin(y) = C'(y) = 0= C(y) = C

So the solution to the problem are all functions of the form

2x 21)

u(z,y) = C = cos(y)e

= ‘ y = acos(Ce™

Kreyszig, 1.4.10
Carlos Oscar Sorzano, Jan. 13th, 2015

Solve the differential equation
ydz + (y + tan(z + y))dy = 0

knowing that cos(xz + y) is an integrating factor.
Solution: Let us multiply the whole equation by cos(x + y)

ycos(z + y)dz + (ycos(x + y) +sin(z +y))dy =0
which is of the form

P(z,y)dx + Q(z,y)dy =0
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Let us check if this is an exact equation:

P, = OP(x,y) = cos(z + y) — ysin(z + y)
dy
0
Q. = % = —ysin(z +y) + cos(z + )

Since Py, = @., the equation is exact. We can solve it by integrating with
respect to one of the variables

U(z,y) = /P(ac,y)dx = /ycos(m + y)dx = ysin(z + y) + C(y)

We now differentiate U with respect to y

U (z,y)

Qx,y) = oy

yeos(w +y) +sin(x + y) = sin(x + y) + ycos(z + y) + C'(y)
C'(y) =0
Cly)=C
Finally, the implicit solution of the differential equation is

U(z,y)=0

’ysin(x+y)+C:0‘

Kreyszig, 1.4.11
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
2 cosh(z) cos(y)dz = sinh(x) sin(y)dy
Solution: We may rewrite the ODE as
2 cosh(x) cos(y)dx — sinh(z) sin(y)dy = 0

That is of the form
P(z,y)dx + Q(z,y)dy =0

To see if it is exact we calculate

P
g—y = 2 cosh(z)(—sin(y))
g—cj = — cosh(z) sin(y)
Since %—5 %, the ODE is not exact. For finding an integrating factor, we

start by calculating

Py, — Qg = 2cosh(z)(—sin(y)) — (— cosh(x) sin(y)) = — cosh(z) sin(y)
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We note that

Qs — Py  cosh(z)sin(y) 1
P = 2 cosh(z) cos(y) 2tan(y)

is a function of y, f(y). The integrating factor comes

F = exp (/ ;tan(y)dy> = exp <; log(cos(y))> = C;S(y)

We now multiply the ODE by the integrating factor

(2 cosh(z) cos(y)dx — sinh(z) sin(y)dy) = 0

1
V/cos(y)
2 cosh(z)+/cos(y)dx — sinh(x)mdy =0

cos(y)

At this point, the ODE is exact. We find its solution by integrating P with
respect to x

u(z,y) = /2 cosh(z)+/cos(y)dx = 2sinh(x)+/cos(y) + C(y)

Differentiating with respect to y we should obtain F'Q

Ou _ —sinh(z _sin(y) "(y) = —sinh(z _sin(y) "(y) =
- h(z) ) +C'(y) h(z) ) = C'(y) =0

So the solutions of the ODE are of the form

u(z,y) =|C = 2sinh(x)+/cos(y)

Kreyszig, 1.5.7
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
xy =2y + xde”
Solution: We may rewrite the ODE as

2
y/_iy:xQex
X

That is of the form
Y +p(x)y =r(z)

This is a linear, non-homogeneous equation, whose solution is given by

Yn = e_h(/ ehrdx 4 C)

where
h = [pde=—[2de=—2log|z|

Pt — e210g|z\ — 22

[elrde = [(27%)(2%e")dz = e®
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Finally

y = 2%(e” 4+ O)

Kreyszig, 1.5.13
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
y' = 6(y — 2.5)tanh(1.5x)

Solution: We may rewrite the ODE as

y' — 6tanh(1.52)y = —15tanh(1.5z)

That is of the form
Y +plx)y =r(z)

This is a linear, non-homogeneous equation, whose solution is given by

Yn = eih(/ ehrdx 4 C)

where
h = [pder=—6[tanh(l.5z)dz = —Gw = —4log(cosh(1.5z))
eh = etloslcosh(152)) — ¢osh?(1.5x)
[errdez = [ (cosh™*(1.5x))(—15tanh(1.5z))dz = ng)
Finally

2.
= COSh4(1.51‘) <h4(515) + C) = 25 =+ OCOSh4(1.5$)
COS O

Kreyszig, 1.5.15
Carlos Oscar Sorzano, Aug. 31st, 201}

Let H be the homogeneous problem
y' +p@)y=0
and N H be the non-homogeneous problem
y' +p(x)y =r(2)

Show that the sum of two solutions and of the homogeneous equation (H) is a
solution of (H), and so is a scalar multiple for any constant a. These properties
are not true for the non-homogeneous problem (NH).

Solution: Let y; and y2 be two solutions of the homogeneous problem so that

Yy +p@)yr =0

Yo +p(@)y2 =0
Adding both equations we have

Yy + o+ @)y +p(x)y2 =0
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(y1 +y2)" +p(@)(y1 +y2) =0

This last equation proves that y; + y2 is also a solution of the homogeneous
problem. Similarly if we multiply the first equation by a we have

a(y) +p(x)y1) =0
ay; + ap(z)yy =0

(ay1)" + p(x)(ayr) = 0

which proves that ay; is also a solution of the homogeneous problem.
However, this is not true for the non-homogeneous problem. Let us assume
that y; and yo are solutions of the non-homogeneous problem

Yy +p(x)y = r(x)

Yo + p(x)ys = r(x)

Let us check if y; + - is also a solution. For doing so, we substitute y; + yo
into the ODE

(y1 +y2)" +p(@)(y1 +y2) = (y1 + p()y1) + (v + p(x)y2) = 2r(x) # r(z)

The same happens with ay;

(a1)" + p(x)(ayr) = a(yy + p(x)y1) = ar(x) # r(z)

Kreyszig, 1.5.17
Carlos Oscar Sorzano, Aug. 31st, 201}

Show that the sum of a solution of the non-homogeneous problem and a
solution of the homogeneous one is a solution of the non-homogeneous problem.
Solution: Let y, be a solution of the non-homogeneous problem

Yp +p(@)yp = ()
and yp, be a solution of the homogeneous problem
Y +p(x)yn =0
Let us check if y, + v is a solution of the non-homogeneous problem
(p +yn)" + p(@)(Yp + yn) = (¥, + p()yp) + (Wh, + p(@)yn) = () + 0 = r(z)

That is, y, 4+ yn is indeed a solution of the non-homogeneous problem.

Kreyszig, 1.5.18
Carlos Oscar Sorzano, Aug. 31st, 201}

Show that the difference of two solutions of the non-homogeneous problem
is a solution of the homogeneous problem.

Solution: Let y,, and y,, be two solutions of the non-homogeneous problem

Yp, +2(T)yp, = 7(2)
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Yps + P(@)Yp, = 7()

Let us check if y,, — y;, is a solution of the homogeneous problem

(Ypr = Yps) +0(2) Ypy —Ups) = Wp, T0(2)Yp, ) — (U, +0(2)yp,) = r(2) —7(x) =0

That is, yp, — Yp, is indeed a solution of the homogeneous problem.

Kreyszig, 1.5.21
Carlos Oscar Sorzano, Aug. 31st, 201}

Variation of parameter. Another method of obtaining the solution y =
e ([ e"rdz 4 C) of a non-homogeneous problem

Y +plx)y = r(z)

results from the following idea. Write the solution of the homogeneous problem
as
Yy = Ce=JPdr — Ce=h = Cy*

where y* is the exponential function, which is a solution of the homogeneous
linear ODE

") +p(x)y" =0
Replace the arbitrary constant C' in the homogeneous solution with a function
u to be determined so that the resulting function y = uy™* is a solution of the
nonhomogeneous linear ODE.
Solution: Let us introduce the function uy* into the non-homogeneous ODE
to see the requirements that « must meet

(uy*) +pluy*) = u'y* +uly*) + puy*
= vy +u((y*) +py*)
= uy*+u0
— uly*
= r

That is, we need

Wyt =r=u =" =re = u= [retde+C

e~h T

So the solution of the non-homogeneous problem is
y=uy" = </rehdx+C) e
Kreyszig, 1.5.24

Carlos Oscar Sorzano, Aug. 31st, 201}

Solve ¢y +y = -
Solution: This is a Bernouilli equation of the form

Y + )y = g(z)y*
with p(z) =1, g(z) = —x and a = —1. We do the change of variable

w=yl=® = yl=(D — 2
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Differentiating
u =2y =2y(—y—ay ') = —29* — 22 = —2u — 2z

u +2u=—2x

This is now a linear, non-homogeneous equation system of the form
u Fpu=r

whose solution is given by

h:/pdaﬁ:/2dm:2w

efh(f ehT’dSL' + C’) —e 2 (f 621(—21')6113 + O)
= e (g2t — L2 4 O) =g — L4 Ce

S
I

Now we undo the change of variable

y? = 1/.13—%—}-062:”
Kreyszig, 1.5.25

Alvaro Martin Ramos, Dec. 25th, 201}

Solve
Y = 3.2y — 10>

Solution: We may rewrite the ODE as
Y — 3.2y = —10y>
This is a Bernouilli equation of the form
Y + )y = g(z)y*
with p(z) = —3.2, g(x) = —10 and a = 2. We do the change of variable

w= gyl =y =yl
Differentiating
/ —1y/ 1 / 1 2 -1
u=(y ) =5y =-—50B2y-10y°) = =32y +10=-3.2u + 10
) Y
u +3.2u = 10

This is now a linear, non-homogeneous equation system of the form
uFpu=r

whose solution is given by

h= /pdm = /(—3.2)dac =—-3.2z
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u = e "([errdr+ C)=e32([e32%10dx + O)

3.2¢(10e~5-2® _ 10 3.2z
e (Fg5— +C) = —35 + Ce

Now we undo the change of variable

1 1

7= =| 7 oo
_ 1Y 3.2z
U 35 T Ce

Kreyszig, 1.5.28
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve 2xyy’ + (x — 1)y? = x%e®. Hint: set z = 3>
Solution: If we do the change of variable

z=y? =2 =2y

then the ODE is transformed to

2 4 (x— 1)z = 22e”

r—1 .

2+ z=2xe

This is now a linear, non-homogeneous equation system of the form
!
2 +pz=r

whose solution is given by

-1
h:/pdm:/x dx =z — log|z|
x

z = e "([elrdr+ C) = emzHoslal ([ er—loglel(zem)dx + C)
= e "z (fe*de+C) =e "z (562 +O)
set +Ce™”

Now we undo the change of variable

y? = ngx + Ce®
Kreyszig, 1.5.33

Carlos Oscar Sorzano, Aug. 31st, 201}

Find and solve the model for drug injection into the bloodstream if, begin-
ning at ¢ = 0 a constant amount Alg/min] is injected and the drug is simul-
taneously removed at a rate proportional to the amount of the drug present at
time ¢.

Solution: The ODE

A =K — Koy A A0) =0
models the system. This can be rewritten as

A + KoutA = K’LTL
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which is a linear, non-homogeneous ODE whose solution is

h
A

f Kourdt = Koyt
e M ([ehrdt + O) = e Kow® ([ eXovlt K, dt + C)

— —-K it . 1 K t _ Kin —-K it
= e Tou (KmKoute O“t—i-C) =g+ Cem e

Now we impose the initial condition

K; K;
A)=0=""+C=C=-"
( ) Kout * Kout
Finally, the solution is
Kin

A(t) = (1—e Foutyl (t>0)

Kout

Kreyszig, 1.5.34
Carlos Oscar Sorzano, Aug. 31st, 201}

A model for the spread of contagious diseases is obtained by assuming that
the rate of spread is proportional to the number of contacts between infected
and noninfected persons, who are assumed to move freely among each other.
Set up the model. Find the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the proportion of infected persons
as t — oo and explain what it means.

Solution: Let us call y the proportion of infected persons. The growth of
infected persons is proportional to the number of contacts means that

Y =ky(1—y) v(0)=wo

The two equilibrium solutions are y = 0 (unstable) and y = 1 (stable) as can
be seen in the figure below

L

=== == ===

b = = = = = = = = =
g = = = = = = =
L= = = = = == == = @@= @@=
g = = = = =
L= = = = = = = = = =
4 ——— = = = = = = =
L= == = == = == = = @@= @ =
02— = == = = = = =

e |

0 — — — —

0 0.2 0.4 0.6 0.8 1

We can rewrite the ODE as

y —ky = —ky?
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This is a Bernouilli equation of the form
y' +py=gy"
with p = —k, g = —k, a = 2. We do the change of variable

u = yl—a — y1—2 _ y—l

u = ,y72yl = ,y72(ky _ ky2) _ *(ky71 _ k) —k— ku
u +ku=k
This is a linear, non-homogeneous equation whose solution is

h o= [kdt=kt
u = eh (f ehrdt + C) = ekt (f ektkdt + C) = ekt (ekt +C)=1+ Cekt

We undo now the change of variable

1
YT CeHt
Imposing the initial condition
1 1 L —wo
=—=C=—-1=—-—
PTTve Yo Yo

Finally

— 1 — Yo
1 ekt | yo + (1 —yo)e M

The following figure shows the curve for yo = 0.1, kK = 0.8.

09F

0.8

0.7F

0.6

> 05

0.4F

0.3F

0.2F

0.1

Kreyszig, 1.6.9
Carlos Oscar Sorzano, Jan. 13th, 2015

Which is the set of orthogonal trajectories to the curve family

_p2
y=ce *
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Solution: To find the orthogonal trajectories, we differentiate the set of curves

_ 2
y = —2xce” ™

That we may rewrite as
y' = —2zy = f(z,y)
The set of orthogonal curves must fulfill

L1
flz,9)  —2zy
1
~~f _
9 = —5-
1
jdj = ——d
ydj = —5-dw

Which is a separable differential equation that can be directly integrated

1, 1
|
59 20g(:ﬂ)+0
§* = —log(z) + C
652:9
x

Finally, the curve family can be rewritten as

z=Ce™Y

Kreyszig, 1.6.12
Carlos Oscar Sorzano, Aug. 31st, 201}

Electric field. The lines of electric force of two opposite charges of the
same strength at (—1,0) and (1,0) are the circles through (—1,0) and (1,0).
Show that these circles are given by

2+ (y—c)=1+c

Show that the equipotential lines (which are orthogonal trajectories of those
circles) are the circles given by

(x+c)?+7° = (")’ -1
(dashed in the following figure).




Solution: The curve
P y—c)P=14+¢

is the family of all circles pasing by (—1,0) and (1,0). To show this statement
we show that (—1,0) and (1,0) fulfill this equation

(-1 +(0—c)?=1+¢

(1)*4+(0—c)* =1+¢?

Obviously this family is a set of circles.
To find the orthogonal trajectories, we differentiate the curve

20 +2(y—c)y' =0

r+(y—c)y =0

This curve contains the parameter ¢ which should not be there. To eliminate
it, we manipulate the original set of curves to get

224+ —2yc=1+¢
w2yt —2yc=1

x2+y2—1
2y

So the differential equation becomes
2 2 _ 1
-~ (y _ fﬂ/) J =0
2y
2yr + (29> — (2* +y* — 1))y’ =0
2yr + (y* — 2+ 1)y =0
/ 2yx

¥y = —m = f(z,y)
The set of orthogonal curves must fulfill
S 1 :g2—x2+1 _ 1 11-a®_,
F(z,9) 2 207" 2 Y

~/ ~
Y 2xy 2 2
This ODE is a Bernouilli equation of the form

1 711—:&7},1

7' +pl)y = g(x)y"
with a = —1. So we make the change of variable

U= :[jlfa — gl*(fl) _ g? = ul _ 2:&@/
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, 1., 1—2a?

u = -y +
T
, 1 1— a2
U =—-u-+
x T
, 1 1—a2
u — —u=
T x
This is a linear equation whose solution is
h = [—Ldz=—loglz|
P — eflog\z| _ %
u = e "(ferrde+c*)
= x f%%dm—i—c*)
_Z2;-1 +C*)

—z2 -1+ c'z

Undoing the change of variable

Kreyszig, 1.6.13
Carlos Oscar Sorzano, Aug. 31st, 201}

Temperature field. Let the isotherms (curves of constant temperature) in
a body in the upper half-plane y > 0 be given by

4% + 9% = c.

Find the orthogonal trajectories (the curves along which heat will flow in
regions filled with heat-conducting material and free of heat sources or heat
sinks).

Solution: Let us analyze first the curves

422 + 9y = ¢
4 9
—? 4+ fy2 =1
c c

2 2
T Y N
2 3
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So they are ellipses of semiaxes V¢ and

Ve
2 3"
Their orthogonal trajectories can be determined by differentiating the family
of curves:

8z + 18yy’ =0
dr+9yy =0
4z
I———:
V=3, f(z,y)

The orthogonal trajectories fulfill the differential equation

1 1

§log|g| = Zloglw\ + K
9

log|g] = 7 log[a| + K

9
j=Kri=Kag*?
In MATLAB:

close all

h=ezplot(’y-x"2.25’,[-2 2 0 4])
set(h,’Color’,’red’)

hold on

h=ezplot (’y-2*%x~2.257,[-2 2 0 4])
set(h,’Color’,’red?’)

h=ezplot (’y-0.5%x"2.25°,[-2 2 0 4])
set(h,’Color’,’red’)

h=ezplot (’4*x~2+9xy~2=1",[-2 2 0 4])
set(h,’Color’,’blue’)

h=ezplot (?4*x"2+9%y~2=8’,[-2 2 0 4])
set (h,’Color’,’blue?)

h=ezplot (?4*x~2+9*y~2=20",[-2 2 0 4])
set(h,’Color’,’blue’)

axis square

title
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Problema
Carlos Oscar Sorzano, Nov. 4th, 2014

It starts snowing in the morning and continues steadily throughout the day.
A snow- plow that removes snow at a constant rate starts plowing at noon. It
plows 2 km in the first hour, and 1 km in the second. What time did it start
snowing?
Solution: Let us assume that the snowplow removes snow at a constant rate
afem?/h] and the snow falls at a fixed rate k[em?/h]. Assume that the width of
the snowplow is equal to the road width w[em]. Assume that it starts to snow
at t = —tg. Then, the height of the snow in the road must fulfill the differential
equation

1[cm]w[cm]%[cm/h] = k[em®/h]  h(—ty) =0
whose solution is L
dh = —dt
w
h=C+t
w
The constant C is obtained by the initial condition
h(=tg) =0

C_EtoZO:C:kﬂ
w w

So the height becomes
k
h=—(t+t
b+ to) o]

Let us call z(t) the distance that the snowplow has gone since t = 0. The speed
of the snowplow depends on the amount of snow that it can remove by unit of
time
dx 3
w[cm]h[cm]a[cm/h} = afem?®/h]
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dzr « «

dt — wh  k(t+to)

o dt
r = =
kt+to
«
x:Elog\t—i—to\-&-C

We have the initial condition z(0) = 0 from which
0= %log|to| +C=C = —%log|t0|

Consequently, the distance gone by the snowplow is

t

o o
z(t) = E(10g|t+to| —loglto]) = Elog & + 1‘

From the problem statement we know that z(1) = 2000 and x(2) = 3000, that
is
2(2) = 3000 = $log |2 +1
2000 = ¢ log % +1

Dividing both equations

3 log‘%-ﬁ-l‘

2 log %—i—l‘

1 2
3log +1’:210g +1‘

0 to

(1+1t0)*  (2+41)?

(1 +t0)® = to(2 + to)?
34362 + 3tg + 1 = t3 + 412 + 4t

_1_\/5
2
V5—1
2

t§+t0—1_0;»t0_{

The only valid solution is

to =

\/52* L 0.618[h] = 37[min]

So it started snowing at 11h 23> AM.
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2 Chapter 2

Kreyszig, 2.1.1
Carlos Oscar Sorzano, Aug. 31st, 201}

Show that
Fz,y/,y") =0
can be reduced to a first-order equation in z = ¥/.
Solution: If we do the change of variable
y = y/ = ZI — y//
Substituting in the original ODE, we have

F(x,2,2")=0

that is a first-order equation.
For example,

/!

1
y" + =y’ = cosh(z)
x

can be transformed into

1
2’ + =z = cosh(x)
T

Kreyszig, 2.1.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Show that
F(y,y,y")=0

can be reduced to a first-order equation in z = ¥/.
Solution: If we do the change of variable
, ,dy @ _dz

=y = =2 2 =", =
z=1y z dy dz dyz ZyZ

Substituting in the original ODE, we have

’F(y,z,zyz) :0‘

that is a first-order equation.
For example,

1
y//+§y/+y2:0

can be transformed into 1
Zyz+ —z = —y2
Y

Kreyszig, 2.1.4
Carlos Oscar Sorzano, Nov. 2nd, 201}
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Solve
!

2xy" = 3y

Solution: We make the change of variable

z=1y
P y//
The differential equation becomes
2x2' =3z
£_3
z 2
d: _ 3do
z 2

Integrating
3
log |z| = 3 log || + Cy

log |z] = log |x%\ +C

(S]]

z=Cx
Undoing the change of variable

/

y = Chx

Nlw

y=C1/$%dl‘+C2

2
Yy = 501l‘g + CQ
After absorbing constants, the general solution can be rewritten as

y:Clz% + Cy

Kreyszig, 2.1.5
Carlos Oscar Sorzano, Aug. 31st, 201}
Solve yy” = 3(y')?
Solution: If we do the change of variable
,_dy'dy  dz

2=y =z S d

Substituting in the original ODE, we have

y(zyz) = 322
zyy = 3z
ds _ 3y
2y
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log |z| = 3log |y| + C1

z = C’ly?’
Now we solve
y/ — Cly3
y3dy = Chdx
1
*@ = Clw + CQ

Cray? + Oy =1

Kreyszig, 2.1.12
Carlos Oscar Sorzano, Aug. 31st, 201}

Hanging cable. It can be shown that the curve y(z) of an inextensible
flexible homogeneous cable hanging between two fixed points is obtained by

solving

v = kT )
where the constant k depends on the weight. This curve is called catenary (from
Latin catena = the chain). Find and graph y(z), assuming that and those fixed
points are (—1,0) and (1,0) in a vertical xy-plane.
Solution: If we do the change of variable

z = y/ = Z/ — y//
Substituting in the original ODE, we have

2 =kv1+22
dz

V14 22

asinh(z) = kx + ¢

= kdx

z =1y =sinh(kx + ¢1)

Since the catenary is symmetric with respect to the middle point, at this point
we have no slope, that is

y'(0) = 0 =sinh(c1) = ¢; =0

Now we solve the ODE
y' = sinh(kx)

1
y= /Sinh(km)dx =7 cosh(kz) + co
Imposing the boundary condition

1 1 1
y(-1)=0= z cosh(—k) + ¢y = co = ~Z cosh(—k) = ~ cosh(k)

So the final curve is

1
y= %cosh(kx) % cosh(k)
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Kreyszig, 2.1.13
Carlos Oscar Sorzano, Aug. 31st, 201}

Motion. If, in the motion of a small body on a straight line, the sum of
velocity and acceleration equals a positive constant, how will the distance y(t)
depend on the initial velocity and position?

Solution: If the sum of velocity and acceleration equals a positive constant,
then

y/ _"_ y/l — k
We make the change of variable
o = y/ = Z, — 1
Then the ODE becomes
2+2 =k
whose solution is given by
h = [ldz=t
z = e "([elrrdt+er)=et([etkdt +c1) = e t(ke! +¢1) =k + cre

Now we solve
2=y =k+cret

y=kt—cie ' +co
We now impose the initial conditions
y(0) =yo = —c1 + c2
Y (0)=vo=k+ci =c1=v9—k
c2=Yo+c1=yYo+vo—k

So the final dependence of motion on the initial conditions is

y:kt+(k*00)€7t+y0+vo*k:’yo+kt+(k*vo)(67t71)‘
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Kreyszig, 2.1.17
Carlos Oscar Sorzano, Aug. 31st, 201}

3 1
Verify that the functions 2 and x~ 2 are a basis of solutions of the ODE
42%y" — 3y =0

Find the particular solution satisfying y(1) = —3, ¢/(1) = 0.
Solution: Let us calculate the derivatives of the two given functions

3
yl pry :[,’2

1
/ 3,.5
Y1 572 )
" 31,.—5 _ 3.~
L1 22315 2=4% 2
Yo 2

3

/ _ 1,.—5
Yo = —5T 2 .
"o 1 3 -5 _ 3,.— 95
Yy = (=3)(=5)z72=3272

We now substitute these two functions in the ODE to verify if they are solutions
of it

ApPyl — 3y, = Az?(3p72)— 323 = 3p2 — 323 —
yi —3y1 = 4a*(3772) 322 =322 — 322 =0

5 1 1 1
4$2y5 — 3y2 = 4.’1}2(%.'1}75) —3rxr 2=3xr"2-3xr"2=0

So they are two independent (one is not a multiple of the other) solutions of
a second-order ODE, consequently, they are a basis of solutions. The general
solution can be written as

3 _1
Y =C1Yy1 + C2Yy2 = €12 + cox 2

The solution satisfying the initial values must fulfill

y(l) = -3=c+c 3 9
=0 =——,09=——
y;(l) = 02301—%02 “ 4 2 4
So
33 9 _1
yp:fig;ingj 2

-3.05

-3.1r

-3.151

-3.251
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Kreyszig, 2.1.19
Alvaro Martin Ramos, Dec. 27th, 201}

Verify that the functions
e~ cos(x), e sin(x)

are a basis of the ODE
y'+2) +2y=0

Find the particular solution satisfying y(0)=0, y’(0)=15.
Solution: Let us calculate the derivatives of the two given functions

Y1 = COS(x)

Yy = —e Tcos(x)— e *sin(x)

Yy = [ *cos(z) +e” sm(m)] — [—e " sin(z) + e~ * cos(x)]
= 2e *sin(x)

Y2 = e "sin(z)

yhy = —e “sin(xz)+ e " cos(x)

yy = [e ®sin(x) — e cos(x)] + [—e ? cos(z) — e T sin(x)]
= —2e " cos(x)

We now substitute these two functions in the ODE to verify if they are solutions
of it
Yy + 2y +2y1 =0
2e™ " sin(z) 4+ 2[—e~ " cos(z) — e Tsin(z)] 4+ 2[e"F cos(z)] =0
0=0

Similarly
Yy + 2y + 2y =0

—2e7 % cos(x) + 2[—e “sin(z) + €% cos(x)] + 2[e” sin(z)]
0=0

So they are two independent(one is not multiple of the other) solutions of
a second-order ODE, consequently, they are a basis of solutions. The general
solution can be written as

Y = c1y1 + cayo = cre” T cos(x) + coe” ¥ sin(x)
The solution satisfying the initial values must fulfill
y(0)=0=¢
¥’ (0) = 15 = ¢1[—e cos(0) — € sin(0)] + c2[—€e?sin(0) + €° cos(0)] = —c1 + 2
—c1+ca=15=c =15
So

yp = 15 % sin(x)

Kreyszig, 2.2.11
Alvaro Martin Ramos, Dec. 27th, 201}
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Solve the ODE
y' —4y -3y =0

Solution: The characteristic equation is
40 —4N-3=0

whose solutions are

44++/16+4 4+ 1
- 6+ 8: 8:>)\1_§7)\2:_7
8 8 2 2
The general solution is
y=cre3? 4 cpel72)7
Kreyszig, 2.2.16
Carlos Oscar Sorzano, Aug. 31st, 201}
Find an ODE whose basis of solutions are €2* and e=43%.

Solution: We look for an ODE of the form
y' +ay +by =0
If the exponential e** is to be a solution of the ODE, it must fulfill
PA) =X +ar+b=0

But we already know that A\ = 2.6 and A = —4.3 are two solutions, so the
characteristic polynomial can be factorized as

PA) =(A=26)(A+4.3) = >4+ 1.7\ — 11.18

The corresponding ODE is

y' + 17y — 1118y = 0|

Kreyszig, 2.2.17
Carlos Oscar Sorzano, Aug. 31st, 201}

Find an ODE whose basis of solutions are eV and xeV?®,
Solution: As in the Problem 2.2.16, we know that the characteristic polynomial
can be factorized as

PO =A—-V5)2=X-2V6)+5

The corresponding ODE is

y" — 25y 4+ 5y =0

Kreyszig, 2.2.19
Alvaro Martin Ramos, Dec. 27th, 201}
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Find an ODE whose basis of solutions are e(=2+9% and e(=2-9z,

Solution: We look for an ODE of the form
vy +ay +by=0
If those are solutions of the ODE;, it must fulfill
PO\ =M +a\+b=0

We can solve it

1
)\125(—6%1- \/@2—41)):—%—1—2‘%

he=Lcam v m =22

Where
w = Va2 —4b

We now that the generic solutions of the differential equation are of the form

Y1 = @(7%+i%)r

Yo = 6(7%77‘.7)73

Our solutions are
(—24dz (—2—i)z
e ,e

So

a
2=—-——-—=a=4
5 a

And w
5:1:> 16—-4b=2=0=3

Therefore the corresponding ODE is

Y+ 4y +3y =0

Kreyszig, 2.2.31
Carlos Oscar Sorzano, Aug. 31st, 201}

Are the functions e** and xze** linearly independent on any interval?
Solution: Let us call
y1 =€
yo = we”
The two functions are linearly dependent if we can find two constants, not all
of them zero, such that

c1y1 +coy2 =0

If ¢, is different from 0, then

Bh_ &

Y2 B C1
If ¢5 is different from 0, then

2__4a

hn B C2
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That is if they are linearly dependent, one function must be a multiple of the
other or 0. The ratio
yo _ ael”

y1 ek

is not constant, and consequently, the two functions are linearly independent.

Kreyszig, 2.2.33
Alvaro Martin Ramos, Dec. 27th, 201}

Are the functions x? and z%In(z) linearly independent on the interval x > 1
o
Solution: The ratio
x? 1

x2in(x) B In(x)
is a function of  and not a constant, consequently, the two functions are linearly
independent. If they were linearly dependent, their ratio would be constant.

Kreyszig, 2.2.34
Carlos Oscar Sorzano, Aug. 31st, 201}

Are the functions log(z) and log(z3) linearly independent on the interval
x> 17
Solution: The ratio
log(z®)  3log(z)
log(@)  log(x)
is constant, and consequently, the two functions are linearly dependent (one is
a multiple of the other).
Kreyszig, 2.2.35
Carlos Oscar Sorzano, Aug. 31st, 201}

Are the functions sin(2z) and cos(z) sin(x) linearly independent on the in-
terval x < 07
Solution: The ratio

sin(2r)  2cos(x)sin(x)

cos(x)sin(z)  cos(z)sin(z)

is constant, and consequently, the two functions are linearly dependent (one is
a multiple of the other).

Kreyszig, 2.3.5

Carlos Oscar Sorzano, June 15th, 2015

Apply the operator (D — 2I)(D + 3I) to the functions €2*, ze?®, and e~3%.
Show all steps in detail.
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Solution:
(D —2I)(D+3I)(e*®) = (D —2I)(2e%** + 3¢2%)

(D — 21)(5¢2")
10e2® — 10e%®

— 0
(D —2I)(D + 3I)(ze**) = (D —2I)((1+ 2z)e*® + 3ze®)

= (D —2I)((1 + 5x)e®)

= (7+10z)e*® — 2(1 + 5x)e**

= 5%
(D —2I)(D+3I)(e3®) = (D —2I)(—3e73% 4 3e73%)

= (D -2D)(0)

= 0

Kreyszig, 2.3.14
Carlos Oscar Sorzano, Aug. 31st, 201}

If L = D? + aD + bl has distinct roots ¢ and )\, show that a particular

solution is

ehr _ e/\x

T
Obtain from this a solution ze** by letting p — X\ and applying L’Hopital rule.
Solution: Since p and A are roots of the polynomial s? + as + b and we know
that

(D? +aD +bI)et™ =0

(D? +aD + bI)e =0

Let us check whether the function y = e"” ™" is a solution of the ODE

pn—A
Ly=0
(D2+azr+bn(dj:§m> = 5(D*+aD +bl)et* — A5(D? + aD + bl)eM
= -L0--50
Iz ®
=0

So y is a solution.
Let us study the behaviour of y as u — A

. (k=XN)z _

= M Jjm e =1
n—A

— M lim 1+(u:A)?m—1
H—A H

= M lim 7(“1’\)?£
u—Xx M

= xe

pn—A

~ Kreyszig, 2.4.3
Alvaro Martin Ramos, Dec. 27th, 2014
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How does the frequency of the harmonic oscillation change if we (i) double
the mass, (ii) take a spring of twice the modulus?
Solution: By the Newton’s second law and Hooke’s law we know that

—ky = my"”

k
y'+—y=0
m

We can solve its characteristic equation

AM%:O:M:iW%:in

(i) If we double the mass

k k 1 k 1
M4 —=0=A=4i|/— =+i—/ — =F+i—
+2m Vom Z\/§ m Zﬂwo

So the frequency will be lower by a factor %

(ii) If we take a spring of twice the modulus

k [2k [k
M 422y =0= A= +iy/ — = +ivV2y/ — = +iv 2wy
m m m

So the frequency will be higher by a factor /2.
Kreyszig, 2.4.5
Carlos Oscar Sorzano, Aug. 31st, 201}

Springs in parallel. What are the frequencies of vibration of a body of
mass m = 5[kg] (i) on a spring of modulus k; = 20[N/m], (ii) on a spring of
modulus ke = 45[N/m)], (iii) on the two springs in parallel?

Solution: For the cases (i) and (ii), with a single spring, the differential equa-
tion governing the system is

k
F=—-ky=my’'=vy"+—=y=0
m

The frequency of vibration comes from the analysis of the characteristic poly-

nomial of the ODE

A2+£:0:>A:iiw0:imﬁ
m m
[ k1 [20[N/m] 4

frd —_— = R ————— 2
wo1 m 5[Kg] [s77]
_ Jka  [45[N/m] = |
woz =N\ T \/ 5(Kg] 3s™]

48
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If we put the springs in parallel, the system would be described by

Fi+ Fy = —kiy —kay =my" = y" + =0

_ [ki+ko|  [65[N/m] 1
wo3 = = 5[Kg] =3.6[s7"]

Kreyszig, 2.4.6
Carlos Oscar Sorzano, Aug. 31st, 201/

k1 + ko
Yy
m

Springs in series. What is the frequency of vibration if the two springs
are in series instead of in parallel?
Solution: The force applied on the mass must fulfill

F=—ky=—k(y1 +y2)

On another side,
F=—~kiy, = —kayo

Then we can write

Y=Y+ Y2
F__F F
ko k ko

1 1 1 kik
1 k 152

= — _— = =
Fok T k1 + ko

Then, we can calculate the frequency of oscillation as

(% kiks 4520 .
“o m \/(k1 + ko)m \/(45 +20)5 66[s™"]

Kreyszig, 2.4.7
Carlos Oscar Sorzano, Aug. 31st, 201}

Pendulum. Find the frequency of oscillation of a pendulum of length L,
neglecting air resistance and the weight of the rod, and assuming 6 to be so
small that sin(6) practically equals 6.

Solution: The movement of the pendulum is along an arch whose length is LO.
The acceleration is the second derivative of this variable (L©)”, and Newton’s
second law of motion states

F=ma

—mgsin(f) = m(L0)"
—gsin(f) = (LO)"”

For a small angle sin(f) ~ 0
—g0 = (L0)"

9”+%9=0
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The characteristic polynomial is

X+Z =0

A= Fiwg = :I:i\/g
Kreyszig, 2.4.8

Carlos Oscar Sorzano, Nov. 2nd, 201}

Archimedian principle. This principle states that the buoyancy force
equals the weight of the water displaced by the body (partly or totally sub-
merged). The cylindrical buoy of diameter 60 cm in the following figure is
floating in water with its axis vertical. When depressed downward in the water
and released, it vibrates with period 2 sec. What is its weight?

Water
level

Solution: Let y be the height of the cylinder that has been submerged. The
force that the buoy experiences is

F = p(rr?)y

where p is the specific weight of water (p = 980[(cm/s?)(g/em?)] = 980[g/(cm?s?)])
and r is the radius of the cylinder (60 cm). By Newton’s law:

"

my' = —p(mr?)y
my" + p(rr?)y =0
The oscillation frequency comes from the roots of the characteristic equation
mA\? + p(7r?) = 0

2
A= iry |25 = ey = + 25
m T

where T is the oscillation period. Solving for 7" we have

potr_ 2 2 [mm
wo /25 T\ op
Finally, the weight of the cylinder is
272
i — pr<T
47
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In this particular case

_— pr2T? _ 980[g/(cm?s%)]30%[cm?]22[s?]

= 280.75(k
47 47 [ g]

Kreyszig, 2.4.14
Carlos Oscar Sorzano, Aug. 31st, 201}

Shock absorber. What is the smallest value of the damping constant of a
shock absorber in the suspension of a wheel of a car (consisting of a spring and
an absorber) that will provide (theoretically) an oscillation free ride if the mass
of the car is 2000 [Kg] and the spring constant equals 4500 [Kg/s%]?
Solution: The equation defining motion is

my" = —ky — cy/
whose characteristic polynomial is
mA? = —k — ¢\

mAN +eA+k=0
—c++cZ —4dkm

2m

A=

Critical damping is attained if

¢ —4km = 0= ¢ = 2Vkm = 1/4500[K g/5s2]2000[K g] = 3000[K g/s]

If ¢ > 3000[K g/s], there are no oscillations in the car.
Kreyszig, 2.4.18
Carlos Oscar Sorzano, Aug. 31st, 201}

Logarithmic decrement. Show that the ratio of two consecutive maxi-
mum amplitudes of a damped oscillation

y(t) = Ce™* cos(wot — )

is constant, and the natural logarithm of this ratio called the logarithmic decre-

ment, equals

A=
wo

Find A for the solutions of y” + 2y’ +5 = 0. .
Solution: Let us calculate the maxima of the oscillation curve

d—"’t’ =0 = C(—ae " cos(wot — ) — e~ “wg sin(wot — §))

which implies that
a cos(wot — d) + wo sin(wet — ) =0

tan(wot — 9) = e
wo
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Let ¢; denote the time of a maximum and ¢ the time of the next maximum

t1 = w% 6 — atan wio —|—7rk1>
to = %0 J — atan wio +7T(k71+2))=t1+3%

Let us evaluate the oscillation curve at these two time points

y(t1) = Ce 1 cos (woty — 9)
= (Ce % cos wowio (5 — atan (wio) + 7rk1> - 5)
= Ce ™ cos | —atan (wio) + 7rk:1)

y(ta) = Ce 2 cos (wota — 9)
R (wo(tl +2m) 5)

or
= Cefa(tﬁwo) cos (wot1 — § + 2m)

= Ce_u<tl+%:> cos (wot1 — d)

Let us calculate now the ratio

y(t1) o Ce™ %1 cos(wot1—9) _ {"J—O‘l
y(t2) =€

o
Ceia(tlerO) cos(wot1—9)
The logarithm of this quantity is the logarithmic decrement

A = log y(ta) = 2ra
y(t2)  wo

The characteristic polynomial of the ODE
y// + 2y/ +5=0

is
AN L2A+5=0=>A=—-1+2=—a=+iwp

Consequently,

A =
So, from one maximum to the next, there is a factor

e 2 =0.043
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0.8

0.4

0.2

Kreyszig, 2.5.11
Alvaro Martin Ramos, Dec. 27th, 201}

Solve the ODE
(2°D?* = 3xD +10I)y = 0

Solution: We may rewrite the ODE as

%y — 3zy’ + 10y =0
Which is an equation of the form

22y +axy +by =0

The ODE is an Euler-Cauchy equation, so we try with a solution of the form

y=a"
whose derivatives are
y/ — mmm—l
y" = m(m—1)zm 2

Substituting into the ODE we get
z2(m(m — D)™ ?) = 3z(ma™ 1) + 102™ =0
mim—1)—3m+10=0
m?—4dm+10=0=mq,,.=2+iV6

y = 22 (1 cos (\/élog(q;)) + ¢o8in (V@log(x))

Kreyszig, 2.6.5
Carlos Oscar Sorzano, Aug. 31st, 201}
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Show that the functions 2 and 23 are linearly independent calculating their
ratio and their Wronskian.

Solution: The functions

2
h=

3
Y2 =

are linearly independent because their ratio

Y2 3
is not constant. This independence is confirmed because their Wronskian
2 3

T T
2z 3x2

‘yl Y2

=32 — 2t =2 +£0
vioYs 7

is not 0 for all z # 0.
Kreyszig, 2.6.12
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the ODE whose basis of solutions are the functions 2 and z?log(z).
Show the linear independence of the two functions and solve the initial value
problem that satisfies y(1) =4 and y'(1) = 6.

Solution: This basis is the basis of solutions of the Euler-Cauchy ODE with a
double root at m = 2. So the Euler-Cauchy auxiliary equation

m*+(a—1)m+b=0
must be equal to
(m—22=0=m?—4m+4
So a = —3 and b = 4. The corresponding ODE is

2%y — 3wy’ +4y =0

To show that the two functions are independent, we calculate their Wron-

skian
22 2?log(w)

2z 2zlog(x) +x

1 log(x) — 3
2 2log(z) +1

The solution of the Initial Value Problem must be of the form

3

yp = c12” + cox? log(x)

yp(l)=4d=¢c1
Yy, = 2c17 + 2cpxlog(x) + o
y,(1) =6=2c1 +cy =84 ¢y = co = -2

So the solution sought is

yp = *(4 — 2log(2))
Kreyszig, 2.7.6
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Carlos Oscar Sorzano, Aug. 31st, 201}
Find the real general solution of
Y +y + (7 + Ly = e 2 sin(nz)

Solution: The solution of the homogeneous problem is given by the character-
istic polynomial

“1+v1—4n2 -1 1
NHA+ri4+1i=0=>A= 5 T =g Fim

The real general solution of the homogeneous problem is
Yn = Ae"2 cos(mzx) + Be 3 sin(mx)

T
Since the excitation signal e™ 2 sin(wz) corresponds to one of the basis, we try
a particular function of the form

Yyp = K1x67% cos(mz) + Kg:ce*%‘ sin(mx)
Y, = 1672 [cos(mx)(2n Koz — K1 (z — 2)) — sin(n2) (2r Kz + Ko (z — 2))]
Yy = 1e72 [sin(mz) (47K (z — 2) + Ko(—4Amz + 2 — 4)) +

cos(mz) (K1 (—4m?z + 2 — 4) — 4nKs(z — 2))]
We now substitute in the original equation

Y +y + @+ Dy = 271'67%<K2 cos(mzx) — K sin(mz))

z
= e 2sin(mx)

From where

Ky=0
1
—27TK1 =1 =>K1 = ——
2
So the particular solution is of the form
Yp = 7%1'67% cos(mx)

And the general solution

Y=Yp+yn=

e 3 ((A — %) cos(mz) + Bsin(m;))

Kreyszig, 2.7.13
Carlos Oscar Sorzano, Jan. 15th, 2015

Find the real general solution of

8y" — 6y’ +y = 6cosh(z) y(0)=0.2,9'(0) =0.05
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Solution: The solution of the homogeneous problem is given by the character-
istic polynomial

1 1 11
2— 1: = —_ = —_ — = -, —
8\ 6\ + 0=8(A 1 A > = A 13

The real general solution of the homogeneous problem is

T z
Yp = C1€2 + coed

The excitation function 6 cosh(z) does not belong to the space function of the
homogeneous equation. We try a solution of the form

yp = Acosh(z)+ Bsinh(z)
y, = Asinh(z)+ Bcosh(z)
y, = Acosh(z)+ Bsinh(z)

Substituting into the differential equation
8(A cosh(z)+ B sinh(x))—6(A sinh(x)+B cosh(x))+A cosh(x)+ B sinh(z) = 6 sinh(x)

. . 9A—-6B =0 4 6
(9A—6B) cosh(z)+(9B—6A4) sinh(z) = 6sinh(z) = { OB—64—6 = A= E’B =%

The general solution is of the form
z z 4 6 .
y=oc1e2 +coed + E cosh(x) + 3 sinh(x)
We need now to determine ¢; and co using the initial values

y(O) = 02= c1+co+ % 17
- _4 = —
y’(O) = 0.05= %Cl + iCQ + g = C1 , C2 =

Finally, the solution of the IVP is

z 17 z 4 6
y=—4e2 + 364 + E cosh(z) + E sinh(z)

Kreyszig, 2.8.13
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the transient motion of the mass-spring system modeled by the ODE
(D? 4 Iy = cos(wt) w#1
Solution: The characteristic equation associated to this ODE is
NM+1l=0=\==i
So, the homogeneous response is of the form

yn = Acos(t) + Bsin(t)
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Note that the external excitation does not have the same frequency as the
internal natural frequency. For that reason, for the particular response to the
external excitation we look a solution of the form

yp = K7 cos(wt) + Ko sin(wt)
y, = —Kjwsin(wt) + Kow cos(wt)
Yy = —Kiw?® cos(wt) — Kow® sin(wt)
The ODE becomes

K1(1 — w?)cos(wt) + Ko(1 — w?) sin(wt) = cos(wt) = K; = T Ky =0
—w
So the general solution is
1
Yy =yn +yp = Acos(t) + Bsin(t) + T2 cos(wt)
—w

The graph below shows this function for w =15, A=B =1

-3

Kreyszig, 2.8.24
Carlos Oscar Sorzano, Jan. 15th, 2015

Gun barrel. Solve

v +y=F()
t2
where F(t) = { (1)_ w2 gtﬁeivfisz and y(0) = 0, ¢'(0) = 0. This models an

undamped system on which a force F' acts during some interval of time (see
figure below), for instance, the force on a gun barrel when a shell is fired, the
barrel being braked by heavy springs (and then damped by a dashpot, which
we disregard for simplicity). Hint: At 7 both y and y’ must be continuous.

k=1

m=1
- AN

57



Solution: The general solution of the homogeneous equation is given by the
roots of the characteristic equation

Ni1=0=\=+i

Yn = c1¢co8(t) + casin(t)

In the interval 0 < t < 7 we look for a particular solution of the form

yp = A+ Bt+Ct?
y, = B+20t
y, = 20

Substituting into the ODE

t2

20+(A+Bt+c752):1—P

(2C+A)+Bt+Ct2=1—i2t2
s

204+ A=1 9 1
B=0 =A=1+—5,B=0,C=—-—
C=_2 T T
The general solution in this interval is of the form
) 2 2
y =cicos(t) +cosin(t) + 1+ = — —
T T
To determine ¢; and ¢y we impose the initial conditions
y(0) = 0=c+1+Z=c=-(1+3)

y(0) = 0=c
Finally, the solution in this interval is
Y= (1 + :2) (1 —cos(t)) — %22
Note that at t = 7 we have
y(m) = (1+Z) (1—cos(m) - H =1+ %
y'(m) = (1+ %) sin(r) — 28 = -2

In the interval £ > 0 there is no external force, so the solution is given only by
the homogeneous solution. At ¢t = 7 the solution, and its derivative, must be
continuous, so we have the solution

y = ¢1 cos(t) + co sin(t)

with the initial values

y(r) = 1+ 4 = cos(m) + cosin(m) = ¢; = — (1 + %)
y'(m) = —% = —cysin(m) + cp cos(m) = co = %
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That is the solution in this interval is
4 2
=— (14— |cos(t) + —sin(¢
y=- (14 25 ) eostt) + 2sinte)
Note that this solution is oscillatory and never vanishes because we have disre-

garded damping.
Finally we can write the solution to the initial problem as

=] (&) (-cos(t) — &z 0<t<nm
Y %) cos(t) + 2sin(t) otherwise

Kreyszig, 2.9.1
Carlos Oscar Sorzano, Aug. 31st, 201}

Model the RC circuit of the figure below. Find the current due to a constant
E

R

M

E@t)

Q

Fig. 64. RC-circuit

Solution: To model the circuit we sum the drops of voltage along the RC loop

E(t)—iR—éQzO

t

E(t)—iR — é / i(r)dr =0

Differentiating
1
E —i'R——=i=0
i ok
1 1
i+ —i=—=F
"TRG'TR

If is constant, £ = Ey, then E' = 0 and the solution is given by the homogeneous
equation whose characteristic equation is

1 1
i(t) = Ae”we
If at t = 0 we have i(0), then
i(0) = A
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Finally,

Kreyszig, 2.10.6
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
—3x

e
D? +6D+91)y = 16———
( )y 241
by variation of parameters.
Solution: Let us find first the solution to the homogeneous problem. We need
the roots of the characteristic equation

M +6A+9=0= ) =-3-3
So the homogeneous solution is
-3z

Yn = 11 + coy2 = cre ¥ + come

The Wronskian of the y; and y, functions is

— (%

So the particular solution to the non-homogeneous problem is given by

e—Bz xe—3z

7367396 73I673x + 673z

1 T
-3 —-3x+1

W = —6x

’:e

Yp = *ylnyTdeFny Y dw
16¢ —3z 6673%
= —e 3 f ——= 2“ dx + e 3 f - 61?2“ d
= 716673‘” Ik 2+1dx + 16ze3 [ 2+1

= —8e 3 log(z% + 1) + 16xe 3 atan(x? —|— 1)

The general solution is

Y= yn -+ p :’ (c1 — 8log(x? +1))e 3" + (co + 16atan(x? + 1))ze 3*

3 Chapter 3

Kreyszig, 3.1.1
Carlos Oscar Sorzano, Aug. 31st, 201}

3 are solutions of

Show that the functions 1, z, 22, x
yiU — 0

and form a basis on any interval.
Solution: Let us calculate the fourth derivative of all these functions
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2 3

v | 1] ax | T
yl [ 0] 1] 2z ] 322
y? 10]0| 2 | 6z
y 10100 6
ywlo[o] o0 0

So, the proposed functions are solutions of the ODE. To see if they are linearly
independent, we calculate their Wronskian

1 =z =z T
0 1 2z 322

W= 0 0 2 6z =12
0 0 O 6

Since they are 4 independent solutions of a 4th order ODE, they are a basis of
solutions.

Kreyszig, 3.1.5

Carlos Oscar Sorzano, Aug. 31st, 201}

Show that the functions 1, e™® cos(2z), e~ * sin(2x) are solutions of
y//l Jr 2yl/ + 5y/ — 0

and form a basis on any interval.
Solution: Let us write the ODE as

(D*+2D*+5D)y =0

D(D? +2D +5)y=0

D(D+1)*+2%)y=0

The function y; = 1 is a solution of the first factor
Dy=0

while the functions yo = e~ cos(2z) and y3 = e ¥ sin(2x) are solutions of the
second
(D+1)*+2%)y=0

So, the proposed functions are solutions of the ODE. To see if they are
linearly independent, we calculate their Wronskian

1 e " cos(2x) e~ 7 sin(2x)
W=1]0 —e*(cos(x)+sin(z)) e ®(cos(z)—sin(x)) | =2 2®
0 2e~ % sin(x) —2e7% cos(x)

Kreyszig, 3.1.10
Carlos Oscar Sorzano, Jan. 15th, 2015

Are the functions e?*, ze?® and x%e?® linearly dependent or independent in
the interval z > 07?7
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Solution: Let us call fi(x) = €2*, fo(x) = xe** and f3(x) = x2%e**. For
checking the linear dependence or not of the three functions we calculate the
Wronskian of the three functions

fi(x) fo() f3() e ze® z2e?®
W(z) = | 4@ dele) db@) g2 (14 90)e2r 2(1 4 a)we
Chin) Lo Lo || e A1+ 3)e> 2200 + 4o+ 1)e
1 T x?
= 5|2 142 2(1 4 2)z = 2¢6¢

4 4(1+2x) 2222 +4x+1)

Since W(z) > 0 for = > 0, then the three functions f1, fo and f3 are linearly
independent in this interval. Kreyszig, 3.2.5
Alvaro Martin Ramos, Jan. 4th, 2015

Solve
(D* +10D* +9I)y =0

Solution: The characteristic polynomial of the ODE is
MA1002+9=0=(\2)%+ (10A%) +9
A= £i3,+i

So the general solution is

’ y = Acos(z) + Bsin(z) + C cos(3z) + D sin(3x) ‘

Kreyszig, 3.2.6
Carlos Oscar Sorzano, Nov. 14th, 2014

Solve the differential equation
(D5 +8D®* +16D)y = 0
Solution: Let us factorize the differential operator
(D° +8D* +16D) = D(D* 4+ 8D? + 16) = D(D? + 4)?
The characteristic equation is
A2 +4)2 =0
AN =202 A +20)?2 =0

The general solution of the differential equation is

’y = ¢y + (c2 + c3x) cos(2x) + (¢4 + c5x) sin(2x) ‘

Kreyszig, 3.2.7
Carlos Oscar Sorzano, Nov. 14th, 201}
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Solve the IVP
y" +3.2y" +481y =0 y(0) =34,y'(0) = —4.6,3"(0) =9.91
Solution: The characteristic equation is
AP 43207 +4.81A =0
AN +3.20 +4.81) =0
A=0,-1.6=+1.5¢
The general solution of the differential equation is
y = c1 + e 10%(¢y cos(1.5x) 4 ez sin(1.5z))
Let us calculate the first and second derivatives of the solution we have
y = e 107 ((—1.5¢co — 1.6¢3) sin(1.5x) + (1.5¢3 — 1.6¢5) cos(1.5x))
y" = e 15%((4.8¢y 4+ 0.31c3) sin(1.52) + (0.31co — 4.8¢3) cos(1.52))

Particularizing at * =0

y(O) = 34 = c¢1+co
y'(0) = —46 = 1.5¢3— 1.6¢9 =c =24,c0=1,c5=-2
y(0) = 991 = 0.3le;—4.8¢3

So the particular solution is

‘y =24+ e 1%%(cos(1.52) — 2sin(1.52)) ‘

3.6

18
0

Kreyszig, 3.2.14
Carlos Oscar Sorzano, Aug. 31st, 201}

Reduction of order. If a solution of a linear, constant-coefficient ODE is
known, y;, we can reduce its order by assuming that

Yy =uy1
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1. Extend the method to a variable-coefficient ODE

1"

y" +p2(2)y” + pi(x)y + po(x)y =0

Assuming a solution y; to be known, show that another solution is

Y2 = uy1

u = /z(m)dm

y12" 4+ (3yL + pav1)2 + (3y) + 2p2y) + p1ya)z =0

with

and z obtained by solving

2. Reduce
3y — 3%y + (6 — 2*)wy’ — (6 — 2y =0

using y; = x (perhaps obtainable by inspection).
Solution:

1. Let us assume that
Yy =uyn
then = gt
uyr +u'y) 'y + oy
uyr + 2u'yy + uyy
y" = Wy uyy £ 207+ 20y -y gy

1,11 "

= u"y + 3u"y; + 3u'y! + uyf
Substituting in the ODE

1"

y"" 4+ pay” 4+ p1y’ 4+ poy =0

n

(w1 + 3u"yy + 3u'yy +uy)”)+pe (Wyr 4 2u'y) + wy) ) +pr (uyrFuy))Fpouys = 0

(uy") + p2 (uy) + pr(u'ys + uyy) + pouyr =0
yru"" +(3y) +payr )u” +(3yY +2pay +p1y1 )u'+ (Y1 +payy +p1yi +poyi)u = 0
Since y; is a solution of the ODE, we have

"

v+ pay! + p1yy + poyr =0

Defining

we can write the ODE as

112" + (3y1 + pay1)?’ + Byl + 229+ payn)z =0

as required by the problem.
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2. Let us divide by 3

mo__ 2 n

Y
T

3 6
o5
T

We can now apply the formula derived in this exercise, in particular

(z)2"+ (3(1) + <—2) x) 2+ (3(0) +2 (

x2 —xz=0

2 —2=0

whose characteristic polynomial is

So the solution is

Yoo

AN _1=0= )=+l

z=c1e” + cpe”

T

6
51

U= /zdx = /(cleI + e P)dr = c1e” + cpe™”

and the solution sought

y=uy; = (c1€” + coe™")x = crwe” + cowe”

Finally, the general solution is

’ y = crxe® + core” " + c3x ‘

Kreyszig, 3.3.5

Alvaro Martin Ramos, Jan. 4th, 2015

Solve

(3D + 22D? — 22D + 21 )y = x>

Solution: We can rewrite the

3,1

Yy + Ty

The homogeneous ODE is an
the form

Y

/

/

"

y =

Substituting in the equation

I

ODE as

2,1

—2zy + 2y =2x"

2

x

)e)s=o0

Euler-Cauchy equation, so we try a solution of

l,m
mxmfl
m(m —1)
m(m — 2)

m—2

X

(

m— 1)z

m—3

3m(m —2)(m — 1)z™ 3 + 2?m(m — 1)2™ 2 — 2ema™ ' 422" =0

(m(m—=2)(m—-1)+m(m—1)—2m+2)a™ =0

m?—2m? —m+2=0=(m—2)(m—1)(m+1)
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So m = 2,1,—1 are the roots of the characteristic polynomial. The general

solution of the homogeneous problem is

Yy = C1T + 02113_1 + c3x

2

For finding a particular solution of the non-homogeneous problem we use the

method of variation parameters whose solution is

3
Wy
Yp = g yk/—rdx
P w

Where y;, are the 3 homogeneous solutions and W and W) are the following

matrices _
x x ! x? )
w = 1 —z72 22| = %
0 2273 2
0 z=b 22
W, = |0 —272 22| =3
1 273 2
z 0 22
Wy = 1 0 2z| =22 —222
0o 1 2
z z7! 0
Wy = |1 —a2 0| ==2
0 2273 1
We write the ODE in the standard form
3,1 2. 1 / .2 " 1 " 2 / 2 _ .—5
oy +aty' = 2zy +2y =" =y + -y - Sy + Zy=2
T T T
We now calculate the integrals
W 3 —323 tanh ™1 (Z) + 622 + 8
;de_/ i Z‘_Bd _ (2)
w 202 — 8 6423
Wa / L ztanh™' (% —2)
—rdr = T =
%% 202 — 8 16z
Ws _5 1 1 1 log(x)
—rdr = de = — — —— — —1 —4
w /2 2 _g" 6 322 1388 — D+ =g

Finally, the particular solution is

Yp = ) 6423 16z

T 1222

Finally, the general solution is of the form

—3z% tanh =1 (2) 4622 +8 _qztanh~'(Z -2 _
T x° tan (2) T +a 1z tan (2 )+£B2( 1

2

Yy =cCx + czafl + c3x” —

1222

Kreyszig, 3.3.6
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Carlos Oscar Sorzano, Aug. 31st, 201}

Solve (D3 4 4D)y = sin(x).
Solution: The homogeneous problem has a characteristic polynomial

NMraA=0= X\ +4)=\=0,£2
So the homogeneous solution is given by
Yn = ¢1 + c2 cos(2x) + c3 sin(2x)

To find a particular solution for non-homogeneous problem we try a function of
the form
yp = K cos(z) + Ky sin(x)

y;, = —Kj sin(x) + K5 cos(z)
y, = —K cos(x) — Ky sin(x)
y, = Kisin(z) — Ky cos(x)
Substituting in the ODE
(K1 sin(x) — Ky cos(z)) + 4(— Ky sin(z) + Ka cos(x)) = sin(x)
—3K; sin(x) + 3Ks cos(z) = sin(z)
K, = *%, Ky =0

Finally, the general solution is

1
Yy = 1 + ¢ cos(2x) + cgsin(2x) — 3 sin(z)

Kreyszig, 3.3.7
Alvaro Martin Ramos, Jan. 4th, 2015

Solve
(D* —9D? + 27D — 271 )y = 27sin(3x)

Solution: The homogeneous problem has a characteristic equation
N9\ £ 27N~ 27 =0= (A —3)> =0 = \ = 3(3 times)

So the homogeneous solution is given by

yn = (c1 + cox + c32?)e®”

To find a particular solution for non-homogeneous problem we try a function of
the form

yp = Kcos(3z)+ M sin(3x)

y, = —3Ksin(3z)+ 3M cos(3x)
Yy, = —9Kcos(3x)—9M sin(3z)
y, = 27Ksin(3x) —27M cos(3z)
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Substituting in the ODE

(27K sin(3x) — 27M cos(3z)) — 9(—9K cos(3z) — IM sin(3x)) + 27(—3 K sin(3z)
+3M cos(3x)) — 27(K cos(3z) + M sin(3z)) = 27 sin(3x)

27K sin(3z) — 27M cos(3x) + 81K cos(3x) + 81 M sin(3x) — 81K sin(3x)

+81M cos(3x) — 27K cos(3z) — 27M sin(3x) = 27sin(3z)

Dividing the equation by 27

K sin(3z) — M cos(3x) + 3K cos(3z) + 3M sin(3x) — 3K sin(3z) + 3M cos(3x)

—K cos(3z) — M sin(3z) = sin(3x)
(—2K 4 4M) sin(3z) + (2M + 2K) cos(3x) = sin(3x)

—2K +4M =1

2M +2K =0
1

M=tg-_1
4 4

Finally, the general solution is

. 1
y = (c1 + cox + c32?)e3” — Z(cos(3x) — sin(3z))

Kreyszig, 3.3.8
Carlos Oscar Sorzano, June 15th 2015

Solve the IVP 4
ym) _ 5y// +4y — 106—31‘

with y(0) = 1,4'(0) = y"(0) = 4" (0) = 0.
Solution: The solution of the homogeneous equation comes from the solution
of the characteristic equation

Mo 4+4=0=X\=41
AN =4V -1 =0=>N==42+1
So the homogeneous solution is of the form
yn = K1e7%" + Koe™® + Kse® + Kye™*

For the particular solution we look for a function of the form

yp = Ke™3®

y, = —3Ke 3
Yy, = 3PKe 3"
y;)// = _—33Ke 37
yIi)v — 34K6—31

Substituting in the differential equation

31 Ke™3" — 5(32Ke™3%) + 4Ke 3% = 10e™3®

68



1
(34—5~:)>2+4)K:10;»1(:Z

The general solution of the non-homogeneous equation is
y=yn+yp,=Kie * + Koe " + Kze” + Kqe** + Ze_?’*

To solve the IVP we calculate the derivatives of the general solution

y = —2Kie % — Koe™® + K3e® + 2K e*® — %6_395
Yy = 22Ke7% 4 Koe™® + Kge® + 22K 4e?® + %e*‘gz
y/// — 723K1672x _ ngim + K36z + 23K4e2:c _ %6731

and impose the initial value conditions

y(0)=1 = Ki+Ky+Ks+Kq+1
Y(0)=0 = —2K,—Ky+K3+2K,—3
y'(0) =0 = 22K, + Ky + K3+ 22K, + &
y"(0) =0 —23K) — Ko+ K3 + 23K, — &

The solution of this equation system is

3 1
1 s 12 97 3 4’ 4

Finally, the solution of the IVP is

y:—€_21+§6_m+161+1€_3r
2 4 4

Kreyszig, 3.3.10
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve

3, .1

Py oy —y=2" y(1)=1,9(1)=3,y"(1) =14

Solution: The homogeneous ODE is an Euler-Cauchy equation, so we try with
a solution of the form

= g™
y/ _ mxmfl
y' = m(m—1)zm?
y" = m(m—1)(m—2)z™3

Substituting in the equation
23(m(m — 1) (m —2)z™ 3) + x(ma™ ) —2™ =0

mim—1)(m—-2)+m—-1=0
(m—1)(mm—-2)+1)=0
(m—1)(m—-12=0
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So m =1 is a triple root of the characteristic polynomial. The general solution
of the homogeneous problem is

yn = c12 4 coxlog(x) + csxlog?(x)

For finding a particular solution of the non-homogeneous problem we use
the method of variation of parameters whose solution is

3
Wy
Yp = Zyk/—rdx
k=1 w

where y; are the 3 homogeneous solutions and W and W), are the following
matrices

x  xlog(x) zlog?(z)

W = |1 1+4log(z) 2log(z)+log(z) | =2
0 1 2 + 2og(z)
0 xlog(x) zlog?(z)

Wi = |0 1+log(z) 2log(z)+log*(z) | = xlog’(x)
1 1 2 4+ 2]og()
z 0 xlog?(x)

We = |1 0 2log(z)+log’(z) | = —2xlog(x)
0 1 2 + 2]og(x)
x  xlog(x) O

Ws = |1 1+log(z) 0 |=x
0 1 1

We write the ODE in the standard form

1 1 1
3,11 e el
+x2y 37T

By +xy —y=2>=y

"

We now calculate the integrals (with r = 1)

) %rdx S ;oggj@() %dx = 2llog’(z) -2 log(x)+2)
[grde = [—=2E01de = —z(log(z) — 1)
[erde = [Zldz=1%

Finally, the particular solution is

yp = w1 [ ¥rrde+yo [ W2rde +ys [ Nerde
g 2loe (@,22 log(@)+2) 4 xlog(z) (—x(log(z) — 1)) + :clog2(x)§

= g2

The general solution is of the form

y = c1x + coxlog(x) + czzlog?(x) +

Imposing the initial conditions

y(x) = cax+coxlog(z) +eszlog(z)+ 22 = y(l)=1l=c;+1=¢, =0
y'(x) = ¢4 co(l+1log(x)) + es(2log(x) 4+ log?(z)) + 22 = 3/ (1) =3 = ¢
y'(x) = coz4cz(2+2log(a))+2=y(1)=14=cr+2c3=c3="1
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So the particular solution sought is

2

11
y = 3zlog(z) + ?xlogz(m) +z

Problema
Carlos Oscar Sorzano, June 15th, 2015

Let S be the fraction of a population susceptible of getting a diphtheria
and [ the fraction of that population infected by diphtheria. An ill person can
disseminate the disease while he is not recovered. Assume that the number
of contacts between susceptible and infected people occurs at a rate a. The
daily fraction of susceptible population that is vaccinated is . Assume that
diphtheria is a disease that can be passed only once. Assume that diphtheria
has a daily death rate §; and a daily recovery rate 5. Assume also that the
population size is stable with daily birth and death rates §. Propose a disease
dissemination model.

Solution: Let us call NS(¢) the instant proportion of non-susceptible people.
The sum of proportions must be 1

St)+I(t)+NS(t) =

Additionally the proportions follow the equation system

S'(t) = —aSEH)I(t) + 5 — 68(t) — BS(t)
I'(t) = aS()I(t) —611(t) — 21(t) — 6I(¢)
NS'(t) = 55()+521() SN S(t)

The term «S(t)I(t) accounts for the proportion of susceptible people that gets
infected every day. The term ¢ in S’(t) accounts for the daily birth rate. The
terms 0S(t), 0I(t), INS(t) account for the daily rate of deaths non-related
to diphteria. The term (BS(t) is the proportion of people that becomes non-
susceptible by vaccination. The term 0;1(¢) accounts for the daily rate of deaths
caused by diphtheria, and finally d21(¢) accounts for the daily rate of people that
recovers from diphtheria and becomes non-susceptible.

We may eliminate one of the variables. For instance, we solve for S in the

first equation
S(t)=1-1I(t)— NS(t)

and substitute in the equation system

I'(t) = a(l—I(t) — NS@O)I(t) — 6 1(t) — 61(t) — 61(t)
NS'(t) = B(1—I(t)— NS(t))+6I(t) — SNS(t)

Grouping terms

I'(t) = (a(l—I(t)— NS(t) — 81 — s — 0)I(t)
NS'(t) = B—(6+B)NS(t)+ (02— B)I(t)
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4 Chapter 4

Kreyszig, 4.1.1
Carlos Oscar Sorzano, Aug. 31st, 201}

Find out, without calculation, whether doubling the flow rate in the following
example has the same effect as halfing the tank sizes.

100 gal
100 gal 150 Ib

2 gal/min

2 gal/min

System of tanks

Solution: Original case:

y; = inflow-outflow = 2 [lb} 2 [ gal } U1 [ b } 2 [ gal }

min| 100 ﬁ min
9] [B], 00
min 100 | gal min

yi = —0.02y; + 0.02y, } N (yi _ (0-02 0.02 ) (Zl) Ly = Ay
2

vy = inflow-outflow = ——

yh = 0.02y; — 0.02y9 0.02 —0.02
Doubling the flow rate:

. b gal 1 | 1b gal

! = inflow-outflow = —2 | ——| 4 Sy

y1 = mmflow-outliow = 5 [ al} [mm} 100 [gal} [mm
. l gal ya | b gal

! — inflow-outflow = & | 24 | I | _ B2 | 0 14| 90

Yo — HHowmoutiow = 4 gal min 100 | gal min

0
Yl = —0.04y; + 0.0y vy _ (004 004 [y /—
= 004y —0.0dys [~ \up) = Looa —004) \y, ) 7Y =AW

Halfing the tank sizes:

y; = inflow-outflow = Y2 [ b } 2 [gal} — g—(l) [ b } 2 [gal}

50 | gal min gal min

b [ ) l

vy = inflow-outflow = LA P & _ 20, &
50 | gal min 50 | gal min

y1 = —0.04y; + 0.04y, v\ _ (—0.04 0.04 Y1 ;o
vy = 0.04y1 —0.04ge [ = \uy) =\ 004 —0.04) \yp) TY =AY
Since A1 = A, the effect on the amount of salt in both tanks is the same if we

double the flow rate or halve the tank size. Kreyszig, 4.1.11
Alvaro Martin Ramos, Jan. 4th, 2015
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Solve
4y” — 15y —4y =0

Solution: To convert the ODE into an ODE system we do the following changes
of variables

Yy=mn
i =2
So that the original ODE can be written as

15
dyy — 15y —4yy = 0 = yy = Tt

Together the system ODE is
Y5 1 *14 Y2

!/

y = Ay

The eigenvalues and eigenvectors of A are:

That is of the form

Mo =4,vy = (1,47

i
S—
bﬂ

)\2 = _ivv2 = (17_

The general solution of the ODe system is

1 1 _z
y = c1vieMT 4 covae’® =| ¢ <4> et 4y ( 1> e 14
1

Kreyszig, 4.1.12
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
y/// + 2y// _ y/ _ 2y — O

by solving it directly and by reducing it to an ODE system.
Solution: The characteristic equation of the ODE is

N42X2 - 4+2=0=>)1=-2,-1,1
So that the general solution is
y=cre 2 4 coe " + cge”

To convert the ODE into an ODE system we do the following changes of variables

no=y
y2 = y1=1y
ys = yp=1y"

So that the original ODE can be written as

Y+ 2ys —y2 — 251 =0
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Ys = —2y3 + Y2 + 2y
Altogether the ODE system is

yi 01 0 Y1

v | =(0 0 1 Y2

Y5 2 1 -2/ \y3
y = Ay

The eigenvalues and eigenvectors of A are

A =-2 vi=(1,-2,4)7
Ao=—1 vy=(1,-1,1)T
A=1 wv3=(1,1,1)T

The general solution of the ODE system is

y = Cc1V1eMT 4 covget2® 4 03V36>‘3I
1 1 1
= ¢ | -2]e 4| -1)eT4cg|1]e”
4 1 1

c1€7%% 4 coe™% + cye”
—2¢1672% — coe™T + c3e”
de1e™ 2 4 o™ 4 c3e”

Finally, remind that y = y;, so we are mostly interested in its first component
that is
y=cre 2% 4 coe” " + cge”

That is, the same result as we obtained by the direct method.
Kreyszig, 4.3.1
Carlos Oscar Sorzano, Nov. 14th, 201}

Give the general solution of the equation system

i Y1+ Y2
Z/é = 3y1— Y2

Solution: Let us write the equation system as

iy _ (1 1\ (w»

Ya 3 —1)\»
The characteristic polynomial of the system matrix is

1—A 1
3 —1-A

‘:(1—>\)(—1—)\)—3:()\—2)()\+2):0

The eigenvector of A\; = 2 comes from the equation system

(A-2)x=0



whose eigenvector is x; = (1,1).
The eigenvector of Ay = —2 comes from

(A+2H)x=0

3 110y (3 110
3 1|0 0 0|0

whose eigenvector is xg = (—1, 3).
Finally, the solution of the differential equation system is

2t —2t
At Aot 1Y 2 1 —2t ci1€ C2€
y = c1X1€ + coxoe =C e +c e = _
11 272 1 <1> 2 < 3 1%t + 3cqe™ %t

Kreyszig, 4.3.6
Carlos Oscar Sorzano, Aug. 31st, 201}

Find a general solution of the ODE system

Yy = 2y1 — 2y
yh = 2y1 + 2y

Solution: We can write the ODE system as
yi\ _ (2 -2\ (w»
Y5 2 2 Y2

The eigenvalues and eigenvectors of A are

M =242 vi=(i,1)7
)\2:2—2i V2=(—i71)T

The general solution of the ODE system is

)\11 )\2{1}

Yy = c1vie + cavae

= ¢ G) e(2+20)e | ¢ (‘1@) e(2—2i)z

If we want the solution to be real, we must perform a change of basis. Instead
of the basis functions

7 .
_ (2420)x
Y1 1> e

i —27 *
y2 = 1 ) 6(2 2i)r Y3
we deﬁne the functions

- (242i)z _ L2z
- tys _ ie _ [(—e*"sin(2z)
y1 = 5 2” = Re{y:} = Re { (€(2+2i)a: ) } = ( o2 cos(2z)
€% cos(2)

< — Y1i—Y2 __ —
Y2 = 2 - Im{yl} - (62;8 5111(2:5))
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The general solution can be written as

e iter = —e2% sin(27) n e?® cos(2x)\ | o2 (—c1sin(2z) + co cos(2x)
yTmanTayz=al g cos(2x) €2\ g2 sin(2x) ) € ¢y cos(2z) + co sin(2x)

Kreyszig, 4.3.7
Carlos Oscar Sorzano, Aug. 31st, 201}

Find a general solution of the ODE system

Y1 = Yo
Yo = —y1+ U3
Z/é = Y2

Solution: We can write the ODE system as

v, 0 1 0

wl=[(-1 0 1 <y1)

vl 0 -1 0) \¥?
y' = Ay

The eigenvalues and eigenvectors of A are

A1=0 vi = (1,0,1)T
Ao =V2i  vo=(—i,v2,)T
A3 =—V2i vy =(i,v2,—i)T

The general solution of the ODE system is

y = C1V1EMT + cavaet2® 4 cavgets®
1 —1 i
= |0 +e | V2 eiV2e + c3 V2 e~iV2e
1 7 —1

If we want the solution to be real, we must perform a change of basis. Instead
of the basis functions

yo = [v2]ev

ys = [vV2]e V2 =y

we define the functions

—i sin(v/2x)
yo = % = Re{y2} =Re V2 eiV2e | \/icos(\/ﬁz)
i — sin(v/2z)
— cos(v/2x)
yz3 = 2520 =Tm{ys} = | V2sin(v2z)
cos(v/2x)
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The general solution can be written as

Yy = cay1+cy2+csys

1 sin(v/2x) — cos(V/2x)

er [0 +ca | V2cos(v22) | +e3 | V2sin(v2z)
1 — sin(v/2z) cos(v/2x)

c1 + casin(v/2x) — ¢3 cos(v/2x)

= c2v/2 cos(v2x) + 03\/§sin(\/§x)

1 — casin(v/2x) + c3 cos(v/2x)

Kreyszig, 4.3.18
Carlos Oscar Sorzano, Aug. 31st, 201}

Each of the two tanks contains 200 gal of water, in which initially 100 1b
(Tank T3) and 200 Ib (Tank 7%) of fertilizer are dissolved. The inflow, circula-
tion, and outflow are shown in the figure below. The mixture is kept uniform
by stirring. Find the fertilizer contents y (¢) in 77 and yo(¢) in To.

12 gal/min 4 gal/min
b — |

(Pure water)

Solution: We can model the system with the following differential equations:

Yy o= ;2%16222’%‘”0'12
Vo= #1012

Equivalently

16 4
Ya 200 200 Y2
The eigenvalues and eigenvectors of this matrix are

) )

T
DF

[N

A1:_%7 V1:(
AQZ_%7 V2:(

=

The general solution of the ODE system is
1 . 1 )
y = cavieM! 4 eovaet = ¢ ( 12> e 2 + e (i) e st

As stated in the problem at t = 0 we have

100 -1 i
y(0) = <200> =c < 12) + ¢ <i) = ¢ =0,c3 =200

So the solution sought is
) 1t
e 25

— ol

y:200<

7



Kreyszig, 4.4.1
Alvaro Martin Ramos, Jan. Jth, 2015

Determine the type and stability of the critical point of
Y1 =1

Yy = 2y2

Then find a real general solution.
Solution: The proposed ODE system is equivalent to

1 _ (1 0\ (w
Ya 0 2/ \»
The eigenvalues of the matrix are given by

1-A 0\ _ B
det(o 2_>\>_)\—3>\+2_0

p=3,(>0)
q=2(>0)
A=p*—4g=1(>0)

So it is an unstable improper node. The general solution is

t 2t
’yl = C1€ ,Y2 = C2€ ‘

Kreyszig, 4.4.3
Carlos Oscar Sorzano, Aug. 31st, 201}

Determine the type and stability of the critical point of

Y1 = Yo
Yy = =9

Then find a real general solution and sketch or graph some of the trajectories
in the phase plane.
Solution: The proposed ODE system is equivalent to

9-C 96)

Y =9 0/ \1

Critical points are points at which y’ = 0, in this case the only critical point is
y=0

whose eigenvalues and eigenvectors are

M =3 vi= (—%i,l)
)\2 = —3i, Vo = (gi, ].)

This corresponds to a center as can be clearly seen in the figure below
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To find a real solution we construct the functions
—LN
yi = vieM®= 13 > et3e
1, .
yo = V26>\21 _ 31 6713:1:
1 .
- yitys _ _ (s sin(3x)
Y1 i Re{y1} cos(3x)
1
o yicys _ _(—3 cos(3x)
y2 2 Im{yl} Sin(3$)

The general real solution is given by

Yy =c1y1 +cy2 = (

c1% sin(3z) — co 5 cos(3z)
¢1 cos(3z) + c2 sin(3z)

Kreyszig, 4.4.7
Alvaro Martin Ramos, Jan. 4th, 2015

Determine the type and stability of the critical point of

Y =y1+ 2y0

yé =21 + Yo

Then find a real general solution.
Solution: The proposed ODE system is equivalent to

()= D

The characteristic equation of the matrix is

U1
Y2

A2_20-3=0
p=2,(>0)
qg=-3(<0)
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So it is a saddle point, always unstable. The eigenvalues and eigenvectors of the
system matrix are
M o=3,vi = (1,1)7

Ao = —1,vy = (1,-1)T

The general solution is given by

y = cavieM’ + cpvae® = | ¢ <D €™+ <—11) °

Kreyszig, 4.4.14
Carlos Oscar Sorzano, Aug. 31st, 201}

Transformation of parameters. What happens to the critical point of

Y1 =1
Yy = 2y2
if you introduce 7 = —t as the new independent variable? trajectories in the

phase plane.
Solution:

i) _ (1 0\ (wn
Y5 0 2] \v
Its critical point is y = 0 and the eigenvalues of the matrix used to calculate the
derivative are 1 and 2, that is, it is an unstable node (because p = A\; + A2 > 0.
If we do the change of variable 7 = —t, then
dy; dy; dt dy;

dr dt dr =~ dt

So the equation system becomes

EY (-1 o) (m

) =\o —2) \p
That is the direction of motion changes, and the two eigenvalues become nega-
tive. Then we have p = A\; + Ay < 0 and ¢ = A1 A2 > 0, consequently a stable
node.
Kreyszig, 4.4.17
Carlos Oscar Sorzano, Aug. 31st, 201}

Perturbation. The system

, (0 1

has a center as its critical point. Replace each a;; by a;; + b. Find values of
b such that you get (a) a saddle point, (b) a stable and attractive node, (c) a
stable and attractive spiral, (d) an unstable spiral, (e) an unstable node.
Solution: The perturbed system is

, (b 1+
Y=\ a4 b )Y

80



The characteristic polynomial is
A= M| =(b—X)2?—(1+b)(—4+b) =X —20A+4+3b

This polynomial is of the form

A —pAtgq
=)
p=2b
g=4+3b

Saddle point: to get a saddle point we need

4
q<0:>4+3b<0¢b<—§

Stable and attractive node: to get a stable and attractive node we need

p < 0,q =0 (stable and attractive) and ¢ > 0, A = p* — 4q > 0 (node)

4

(20)> —4(4+3b) >0=0*—-3b—4>0=b € (—o0,—1] N [4,00)

The intersection of both sets gives b = 7%.

Stable and attractive spiral: to get a stable and attractive spiral we need

p < 0,q = 0 (stable and attractive) and A = p? — 4¢q < 0,p # 0 (spiral)

4
2b<0,4+3b=020#0= —5=b

(20)2 —4(4+3b) <0=b*-3b—-4<0=-1<b<4

Since {—3} N (—1,4) =0, there is no b satisfying all conditions.
Unstable spiral: to get an unstable spiral we need

p>0or ¢ <0 (unstable) and A = p? —4¢q < 0,p # 0 (spiral)
2b>0o0r4+3b<0=be (0,00)U(—00,—%) = (—00,—3) U (0,00)

(20)* —4(4+3b) <0=0*-3b—-4<0=-1<b< 4

Finally,
((—o0,—3) U (0,00)) N (—1,4) = (0,4)

Unstable node: to get an unstable node we need
p>0or ¢ <0 (unstable) and ¢ > 0, A = p> — 4¢ > 0 (node)
2b>0o0r4+3b<0=be (0,00)U(—00,—%) = (—00,—3) U (0,00)
443b>0,p°—4g> 0= b€ (—3,00)N((—00,—1]U[4,00)) = (-2, —1]U[4, 00)
Finally
((—00,—3) U (0,00)) N ((—3,—1] U [4,00)) = [4,00)
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Kreyszig, 4.5.5
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the location and all critical points by linearization of the ODE

yi:yz )
Yy =—y1 + 33

Solution: The ODE system can be rewritten as

’r_ Y2
Y <—:Ul + é?ﬁ)
Critical points are solutions of the equation system
Y2
=0=y1=0,2;90=0
<—y1 + é?ﬁ) 1 Y2

Case (y1,y2) = (0,0):
If we linearize around the point (0,0) we get

on on
2 2 — —
iy A N S A P AN

And the equation system behaves in the vicinity of (0,0) as

y = Ay

The charactertistic polynomial of A is

=X4+1=0

|A—>\I|:‘ ! ‘

1 =A
So,p=0,q =1and A = p?> — 4¢ = —4. Consequently, (0,0) is a stable
(p <0,9 > 0) center (p=0,A <0).

Case (y1,y2) = (2,0):
Let us make the change of variables

()= (")

- i )=, %)
(01 +2) + 5(51 +2)? 0+ 303

We now linearize around the point (g1, g2) = (0,0)

o on
_ 71 T2
A= 9fa  Ofa

091 092

Then

Now, the characteristic polynomial is



So,p=0,q= —1and A = p? — 4¢ = 4. Consequently, (2,0) is an unstable
(¢ < 0) saddle point (g < 0).

Kreyszig, 4.5.9

Carlos Oscar Sorzano, Jan. 15th, 2015

Find the location and type of all critical points by first converting the ODE
to a system and then linearizing it.

y' =9y +y° =0
Solution: Let us define

Vi =y
Y2 = U

Then we may rewrite the ODE as
! 3 _
Yo — 91 +y1 =0
or the ODE system

yi = Y2
Y 91 —yi =B —y1)B+u1)

There are three critical points at y = y; = 0,3, —3, y2 = 0. Let us linearize
the ODE at the three points. For doing so, let us rewrite the ODE system as a
vector differential equation:

y' =F(y)

Case y = 0:
oF, OF;
D1 Ove 0 1 0 1

y/:<g%12 gg> y:<9—3y2 o) y:<9 o)y
oy1 0y2 y1=0,y2=0 1 y1=0,y2=0

. 0 1 .
The eigenvalues of A = g ) ae A1 = 3 and Ay = —3. Since the two

eigenvalues are real and of opposite sign, the critical point is a saddle point.

Case y = 3:
y,_( 0 1) y_(o 1>y
= 5 =
9-3y; O 13,42 =0 —-18 0

whose eigenvalues are A\; = /18 and Ao = —/18i. Since the two eigenvalues
are pure imaginary, the critical point is a center.
Case y = —3:
v= (s o)v
y1=—3,y2=0 —18 0
Again, the critical point is a center.
Kreyszig, 4.5.11

;o 0 1
Y= \o-32 0
Carlos Oscar Sorzano, June 15th, 2015
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Find the location and type of all critical points by first converting the ODE
to a system and then linearizing it.

'+ cos(y) = 0

Solution: Let us define
g =y
Y2 = Y

Then we may rewrite the ODE as
ys + cos(y1) = 0

or the ODE system
Yvio= w2
Yy = —cos(y1)
There are three critical points at y = y; = § + nm, y2 = 0. Let us linearize the

ODE at the two different kind of points. For doing so, let us rewrite the ODE
system as a vector differential equation:

y' =F(y)

Case y = 7:
8F1 8F1
> 5 0 1 0 1

/ 0 I]
N T
<8912 Ty; y1=%,y2=0 sin(yr) 0 y1=%,y2=0 1o
. 0 1 . .
The eigenvalues of A = 10 are \; = —1, Ay = 1. Since the eigenvalues are

real and of opposite sign the critical point is a saddle point.

Case y = 3:
OF  OF
9F 0 1 0 1
/: 15 1 o 2 = =
Yy (6%2 81&“2) y <Sin(y1) O) y1,37‘rr yzfoy <_1 O) Y
=37 yo=

Oy By y1=3F ,42=0
. 0 1 , . .
The eigenvalues of A = _1 o) are A1 =i, A2 = —i. The eigenvalues are pure

imaginary and, consequently, the critical point is a center.
Kreyszig, 4.6.3
Alvaro Martin Ramos, Jan. jth, 2015

Find a general solution of
v =y2 + e

Yy =y1 — 3e™
Solution: Let us write the ODE system as

()= o) () + ()
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The eigenvalues and eigenvectors of the system matrix are
M =1vy=(1,-1)7

Ao =—1,vo = (1,1)T

So the general solution of the homogeneous problem is

B 1Y 1\ _y (e et [a)
Yn=oc1 (_1> e +c (1> e = (_et et \ey) = Yc

For the particular solution we now that

yp=Yu
Where
u=Y"lg
So \ ,
1 /et —e™
-1 _
(e )
, 1 et —et e\ [—e
=5\ ¢ et —3e3t | T\ 2%
_ 2t —e?t
[ (2)e- ()
2
et et —e* 0
yp=Yu= <_et e—t) P%t = (63t>
2
Finally,
1\ , N\ . [0
y=¥ntyp=ca|_y)e Tl ] + 3t

Kreyszig, 4.6.5
Carlos Oscar Sorzano, Aug. 31st, 201}

Find a general solution of

Yy =4y +y2 + 0.6t
yh = 2y1 + 3ya — 2.5t

Solution: Let us write the ODE system as

, (41 0.6t
y= (2 3) y+ <—2.5t)

The eigenvalues and eigenvectors of the system matrix are

A =5,vi = (1,1)T
Ay =2,vy = (—1,2)T
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So the general solution of the homogeneous problem is

1 -1
Yn = C1 (1> 65t+02 < 9 >€2t

For the particular solution, we try a solution of the type
y = ko + klt

Substituting into the ODE we get

41 0.6
ki = <2 3> (ko + kit) + (_2.5> t
41 0.6 ~0.43
(2 3) kot (2.5) =0=k = ( 1.12 )

41 —0.241
ko = (2 3)1‘0:1‘0: (0.534)

So, the general solution is

From where

and

(N “1\ g | (—0241\ _ (—043
y_cl(1>e +C2<2>e +<0.534)+<1.12>t

5 Chapter 5

Kreyszig, 5.1.7
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE
/ —

Yy = —2zy

using the power series method.
Solution: Let us expand the solution of the ODE as

oo
y = E amz™ = ap + a1z + asx?® + aza® + ...

m=0

Then
o0
y = Z mmz™ = ay 4 2a0x + 3azz? + ...

m=1

Let us write the ODE as
Yy +2zy =0

and substitute the two series

(i ammzm_1> + 2x (i amxm> =0
m=1

m=0
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<a1 + 2a91 + Z ammxm1> + 2a0x + <Z 2amxm+1> =0

m=3 m=1

Let us do the change of variable m’ = m — 2 in the first sum

0 oo
(al + 2a0x + Z am/+2(m’—|—2)xm/“> + 2a0x + (Z 2amxm+1> —0

m’=1 m=1

> o0
ay + 2(ap + az)x + Z A g2 (m’ + 2)l_m'+1 4 Z 90,21 = 0

m’/=1 m=1

ar + 2(ap + az)x + Z ((m + 2)amya + 2a,)z™ =0

m=1

Since the whole series is 0, all its terms must be 0
a1 = 0

ag+as =0= a9 = —ag

Let us analyze now the odd terms
m=1=3a3+2a1 =0=a3=0

m=3=5a5+2a3=0=a5=0

So all odd terms are null. Let us analyze now the even terms

2 1
m=2:>4a4+2a2:0:a4:_1a2:iao
2 11
m=4:>6a6+2a4:0:>a6:_6a4:—§§a0
2 111
= 2 = = —— = ———
m 6:>8CL8+ ag O:>a8 8a6 432(10

And in general, for m even, we have

The general solution is then

2! 3! 4

1 1 1
Yy = ag <1—x2—|—x4—x6+x8—...>

It can be easily checked that this is the Taylor expansion of

_ 2
y=age "
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Kreyszig, 5.1.11
Alvaro Martin Ramos, Jan. Jth, 2015

Solve the ODE
y//iyliny:()
using the power series method
Solution: Let us expand the solution of the ODE as

oo
y= E Amax™
m=0

Then
o0
y/ — Z ammszl
m;l
y' = > amm(m —1)z™m 2
m=2

Substituting the series in the ODE

(Zamm ) (Za - ) b a? (ﬂimmm> —0

Let us do the change of variable m’ = m + 1 in the second sum and m’ = m +4
in the third sum

iamm(m Zamrlm—l _2—|—Zam/ 2Mm 2 =0
m=2

m/=2 m'=4

((m — D)mam — (m — D)am_1+ @pm_4) ™ 2 =0

[M]8

2a9 + 6asz — (a1 + 2a22) +
4

3
Il

The whole series is 0, all terms must be 0

200 —a1 = 0= ay = —

as ay
6as —2a0 =0= a3 = — = —
43— 22 “B=3 T3
When m=4
3a3—a0 aq Qg
44 — a3 + ao a 12 412
When m—5
4a4—a1 aq a1
05— 204t 0 4 20 5 20
@ _a _a _ @ a G6a a0 Su _ a @
5. 60 20 60 5 5 60 5 60 4
The general solution is then
—a(l—ile—ix V4 ar(z+ —2? + =23 —|—lx —a2°..)
L DR WET Tyt Tyt TRt




Kreyszig, 5.1.20
Carlos Oscar Sorzano, Aug. 31st, 201}

In numerics we use partial sums of power series. To get a feel for the accuracy
for various x, experiment with sin(z). Graph partial sums of the Maclaurin
series of an increasing number of terms, describing qualitatively the “breakaway
points” of these graphs from the graph of sin(z).

Solution: We know that the MacLaurin series of sin(z) is

(oo}
e - (=™ 2m+1 _ @ a®
sm(ar)—z_:oigm_’_l)!m —x—§+§—

We may program this in MATLAB as follows x=[-2*pi:0.001:2%pi]

M=5;

yp=zeros(M+1,length(x));

for m=0:M

yp(mtl, :)=(-1) "m/factorial (2*m+1)*x." (2*m+1) ;
if m>0

yp@+l, :)=yp(m+1,:)+yp(m,:);

end

end

plot(x,sin(x),’LineWidth’,2)

axis([-2*pi 2xpi -2 21)

hold on

plot(x,yp)

legend(’sin(x)’,’m=0’,’m=1’,’m=2’,’m=3’, 'm=4’,’m=5’)

st
m=0

——m=1
——m=2 H

Kreyszig, 5.2.2

89



Carlos Oscar Sorzano, Aug. 31st, 201}

Show that
o= — (n— 1)(n—|—2)x3 n (n—3)(n— 1)(n—|—2)(n—|—4)m5 o
3! 5!
with n = 1 becomes
=P =x
and 1 2 1 3
PP GRS RS LIRSV URS

with n = 1 becomes

1 1 1
yp=1—2%— §x4 — 5366 —.=1- 55(:10@;(33)

Solution: Let’s start first with y. For a general n, ys is

(n—1)(n+2) 34 n=3)(n—1(n+2)(n+4) 5

Yo =T — T z° — ...

3! 5!

In particular for n = 1, it becomes

ygzz—(oggg)fur =] x° — ... =z = Pi(x)

as stated by the problem.
yp is for any n

=1 n(n2—‘|— 1)362 N (n— 2)n(n4—'|— 1)(n+3) A

that can be written as
Y1 = ap + agacQ + a4x4 + ...
In general, we have the recursion

(n—m)(n+m+1)
(m+2)(m+1)

Am+2 = — (0799

which for n = 1 becomes

(1—m)(m+2) (m—1)
Umppo = ———————Cyy = Am
(m+2)(m+1) (m+1)
In this way, we note that
apg — 1
as = ;1a0:—1
i 1
Ay = 09 = —3
a - B d1 g
© T RMT TR
as = 706 =775 = 77
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and, in general,

Then, we can wwrite y; as

1 1 1
ylzl—xz—gx‘l—g:rfs—?xg—

We know that the McLaurin series of 1 5 log 1+ 1*“" in the interval —1 < x < 1is

1 1+x +x3+x5+x7+
0 =z+ =+ =+ = +...
2 %1 2 375 7
If we now calculate
T CES 1135 ZL‘7
1—fzlogH2 = lfz(x+7+g+7+...>
_ 2 z? z° 28

which is equal to y; as stated by the problem.
Kreyszig, 5.2.11
Carlos Oscar Sorzano, Dec. 19th, 2014

Find a solution of
(a® —2?)y" — 229/ + n(n+ 1)y =0

by reduction to a Legendre equation.
Solution: Let us perform the change of variable

x
u=—
a

dy dy du dyl

dz  dudr dua
d2y_d dy 1 du_dyl
da? ~ du (du a) dx  du? o?

Substituting into the differential equation, we get

d?y 1 dy 1
2 _ 2 = ay 1 —
(a®* —a*u )d e 2(au)dua +nn+1ly=0
d2 d

whose general solution is

y(u) = c1y1(u) + caya(u)

or what is the same

y(z) = a1y ( ) + C2ye2 (x)

Kreyszig, 5.3.2
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Carlos Oscar Sorzano, Dec. 19th, 201/

Solve
(x+2)%" 4+ (+2)y —y=0
by the Frobenius method.

Solution: We can make the change of variable z = z + 2. Under this change
the equation can be written as

P+ 2y —y =0
R S |
g+ -y—5y=0
z z
We can apply the Frobenius method to this problem because it is of the form

. b(z). =
y+gy+(72)y:0
z z

being b(z) = 1 and ¢(z) = —1 analytical functions at z = 0. We look for a

solution of the form -
y=2z" Z amz™
m=0

Its derivatives are

o0

y = Z—Z =273 (mA4r)an ™
st

jo= =Y (metr)mtr—Laps”
m=0

Substituting into the differential equation:

22 <2T2 Z (m+r)(m+r— l)amzm> +z <zr1 Z (m+ r)amzm> — <zr Z_Oa

m=0 m=0

o0

(m+7r)Y(m+r—1an m+r+z m+r)am,z™ Zamz

m=0 m=0
Z m+r)(m+r—1)+m+r)—1anz™" =0
m=0

oo

S mAr+1D)(m+r—Damz™" =0

m=0

The indicial equation comes from the coefficient of lowest degree, i.e., m =0
(r+1)(r—1)=0
whose solutions are
= 1, Ty = -1
Casery =1
Substituting » = 1 in the differential equation we get
o0
(m+ 2)mamzm+1 =0=2-1a12°> 4+ 3-2a22> + 4 - 3asz* + ...

m=0
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which implies a1 = as = ag = ... = 0. So, any function of the form

o0
y=2z" Z amz™ = z(ag)
m=0

is a solution of the differential equation. In particular, we may choose any
constant ag, for instance, ag = 1, to obtain a basis function

y1 ==z

Case 1y = —1
Since the difference between ro and r; is an integer value

T‘2—T1:—1—1:—2

we must look for a solution of the form
oo
yo = kyilog(z)+ 2" > amz™
m=0

= kzlog(z)+ 271 > apz™
m=0

Let us first calculate

o = k(log(z) + 1) + 272 Z (m — 1Damz"

m=0
o0
o =kz b 4273 Z (m—1)(m — 2)a,z™
m=0
We now substitute into the differential equation
(o) o0
22 (k‘zl +273 Y (m—1)(m — 2)amzm> +z <k‘(10g(z) + D) +272Y (m— 1)amzm)
m=0

m=0
- (kz log(z) + 271 3 amzm) =0

(kz + mi:o (m—1)(m — 2)amzm_1> + (l:;_lzg(z) +kz+ mio (m — 1)amzm—1>
(ko) + 35 anmt) =0

m=0
2kz+ S m(m —2)a,z" " =0
m=0
00
(—1)0,1 + 2kz + Z m(m _ 2)amzm71 -0
m=3

So, a1 =k=a3=a4 =a5 =...=0. ag and as are free so any solution of the
kind

Yo = 2" Yag + a2z?) = agz " + agz
is a solution of the differential equation. Actually, we already knew that z was
a solution, so the only novelty brought by this solution is (with ag = 1).
Yo =2""
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Any solution of the differential equation is of the form

2
T+ 2

C
=cly1+02yz=clz+f= ciz+2)+

Kreyszig, 5.3.4
Carlos Oscar Sorzano, June 15th, 2015

Solve
zy' +y=0

by the Frobenius method.
Solution: Dividing by = we have

We can apply the Frobenius method to this problem because it is of the form
b(x c(x
yl/+ ()y/+ (Q)y:O
T T

being b(x) = 0 and ¢(x) = x analytical functions at z = 0. We look for a

solution of the form -
y=a" Z amx™
m=0

Its derivatives are

o0

y = % =z2" 1 Y (m+r)ana™
&

Yy’ = %:mr’z S (m4r)(m+r—1auz™
m=0

Substituting into the differential equation:

x <x7“2 Z (m+r)(m+r— l)amxm> + (:cr Z am$m> =0
m=0

m=0
Z (m+7r)(m+r—1Dapz™ "+ Z Azt =0
m=0 m=0

If we take out the first term from the first summation, we get

NE

o)
r(r — Dagz" ' + (m+7r)(m+7r—1Dapz™ "+ Z a2 =0
m=0

3
ﬂ‘

We now make a change of variable to make the first summation to start at
m=0
oo

r(r—1)agz™ ! + (m+r+1)(m+r)amaz2™" + Z Ayt =0

m=0

]2

3
I
=)
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r(r — Dagz™ ! + Z (m+7r+1)(m+r)amer +am)x™" =0

m=0

The indicial equation comes from the coefficient of lowest degree, i.e., the
first one

r(r—1)=0
whose solutions are

r = 07 ro = 1
Caser; =0
Substituting r = 0 in the differential equation we get

[e )

Z ((m+ Dmamy1 + am)z™ =0

m=0

Note that this is equal to

ag + Z ((m+ 1)mams1 + am)z™ =0

m=1

which implies ap = 0 and (for m > 1)

Am,
m+1mame1 +am =0=>a,01=———
( ) + + m(m+ 1)
The first terms are L
— _a _ _ 1
az = 12— 120
a = @ _ _1 .
3 23 1.2.2.3%1
— 43 - _ L
s = 34 = “122334M

We observe that the follow the general term (for m > 1)

(_1)m+1

ml(m — 1)1 "

m =

So, any function of the form
_1\ym—+1

_r = m __ = ( 1) m
y=a" ) ama™ =ar )y mi(m — )"
m=0 m=1 ’ :

is a solution of the differential equation. In particular, we may choose any
constant aq, for instance, a; = 1, to obtain a basis function

. — (—1m*! m_ I 1 3 4
1= 2 e T T
Casery =1

Since the difference between ro and r; is an integer value, we must look for a
solution of the form

o0
Yo kyilog(z) + 2™ > ama™

m=0

x> _qym+1 =)
b £ e ) oa(o) 40 ane”
m=1 m=0
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Let us first calculate the derivatives of ys

e _1\ym+1
yy =k (Z n”(z'(;”z—l)'(l + mlog(m))wm> +

m=1

(m+ 1apma™

Mz iMe

(m+ D)may,z™~

oo _1\ym+1
g =k (Z nﬂ(b!(;”z—l)!m@ + mlog(z))zm1> +

We now substitute into the equation

0

3
]

xyy +y2 =0

(i: ml 1mm+1;rm(2+mlog( )z >+ ioj (m+ 1)manz™+

S~ (=pmH !
k{2 s oye™ | log(z) + 2 32 ama™ =0
m=1 m=0
o0 (_1)m+1 9 o
2 Gy 2Rma Z Sasgm?klog(a)a™ + 3 (m+mana™+
x 7n+1 o'e) -
21 %klog(x)xm +x 20 ama™ = 0
mzﬂ %klog( )(1 + m2)z™+
m=0 0

From the first row of previous equatlon we learn that £ = 0, because all terms
in ™ log(x) must go (they are equal to 0 in the right-hand side). Then, the
previous equation simplifies to

(m+ D)ma,z™ + Z ™t =0

m=0

M i

(m+ Dmayz™ + Z amz™ Tt =0

m=0

3
&

m=0

Z m+ 2) m+l)am+1xm+ +Zamx mtl —
m=0

Z ((m+2)(m+ Damg1 + am)z™™ =0
m=0

From where

Qm
a. 1= 7,
mE (m +1)(m + 2)
The first terms are .
— _ G0 _— __ L1
a1 =—13 = 11-2“0
_ _71 _
a2 = =53 = 1.3.23%
aa = _ 82 fr— —71 a
3 34 1-2-2-:3-3-4%0
The general term is
(=pm
Ay = ——————Qo

m!(m + 1)!
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In this way, we see that any function of the form

(=)™

_ m

Y2 =do Z ml(m + 1)!z
m=0

is solution of the differential equation. In paticular, for ag = 1, we get

_ =™ 1 1, 1
=2 i =

General solution: Finally, the general solution of the ODE is

_ _ — =y — =)™ .
y =K+ Koy =| Ko Z mim =11 K2 Zom!(mﬂ)f”

By making the change of variable z = y/z in the original differential equation
zy’ +y=0
The equation is transformed into a Bessel’s equation whose general solution is

y = KavzJi(2Vz) + KpvV/aY1(2V7)

That is, both solutions (the series expansion and the Bessel’s solution) are equiv-
alent (i.e., given K; and Ko, one can always find K4 and Kp that gives the
same function; and viceversa).

Kreyszig, 5.4.3

Carlos Oscar Sorzano, Aug. 31st, 201

Solve

" / 1

by making the change of variable z = /.
Solution: If z = \/z, then

o 11,1
oz 2
/ d7y2,1 dfylzfl
Y dz/ T dz 2 )
" dy dz _ 1 —2dy -1d%y\ 1, -1
dz de — 2 z dz+z az2 ) 27
_ 1(,-2d% _ -3dy
- 4 22 dz

With these, we can rewrite the ODE as

1 d?y dy 1 dy 1
2 -2 -3 -1
- ¢J_ 3% s St AP
“ 1 (Z a2 7 a) v Ty
1d?y 1 _,dy 1 _,dy 1
L A St ATV e AT
1d2 47 4z +2 z +4y



Multiplying by 422, we get

d? d
zz—y + z—y

2
=0
dz? dz+zy

which is Bessel’s equation with v = 0. Since v is an integer, there is no solution
of form
y=c1dy(2) +cad_p(2)

Its general solution needs Bessel’s functions of the second kind (that will be seen
in next section). However, for the sake of completeness we already point out
that the general solution is

y = c1Jo(2) + c2Yo(2) = ’ a1 Jo(Vz) + Yo (V) ‘

Kreyszig, 5.4.5
Carlos Oscar Sorzano, Dec. 19th, 2014

Solve
2.1

22y +xy + (X222 =%y =0
by making the change of variables Az = z.
Solution: Let us write the different elements we need from the change of vari-

ables
dz

z/ >\dy dy dz
— — W — 9

Substituting in the differential equation
2 . 2 2 2
32 W)+ 3 (9) + (7 =)y =0
ity + (22 - )y =0

which is a Bessel’s equation of parameter v. Its general solution is (v ¢ Z)

=1y () +cad_y(2) = ’ ady(Ax) + o, (Ax) ‘

Kreyszig, 5.4.6
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
2’y + 1z +3)y=0

by making the change of variable y = u\/z, 2z = v/x.
Solution: If z = \/z, then

\
‘ ”

[
B
N[



On the other side

Y = UJT =uz
I dydz _ (du 1,1
vy = dzldx_(d ztu) 5z
o dy dz
Y - dz_dx
1 ]-1(d%u du | du =2\ (du 1.-1
- 2|:Z (dz2z+dz+dz)+( < )(d Z+u):| 2%
_ 1,-2(d% du) _ 1,-3(du
= 77 dzzz+2d> 1272 (R +u)
_ 1,-1d*uw , 1,-2du 1, ,-2du _1,-3
R L G S S
1,-1d%uw , 1 _-2du _ 1_-3
17 g tiF T T iF
So, we can rewrite the ODE as
d? du
4f1 -1 1,-2 1.-3 10,2, 3
25| 52 + 32— =32 u |+ 5+ F)uz=0
(33 12+ D)
d?u du
1.3 1.2 1 1.3 3.,
1% 5 T 1% E—Zzu—l—izu—i—ﬁuz—
d’u du
lz?’——l—lZQ——i—%z?’u—11—6uz:0

47 dz2 AT dz
Multiplying the whole equation by 427!, we get

d?u du

2 2 1

z @‘FZ@‘FZ U—ZU—O
d?u du

2 2 1

2 a2 T (Z Z)u—O

That is Bessel’s equation with v = % Since v is not an integer value, its general
solution can be written as

u= clJ%(z) +CQJ_%(Z) = clJ%(\/JE) +02J_%(\/5)

Finally, we undo the change of variable

y=ue=| () (VB + el (V2)) v

2 2

Kreyszig, 5.4.10
Carlos Oscar Sorzano, Jan. 13th, 2015

Solve
22y 4+ (1 = 20)zy + 0% (@ +1 -1y =0

by making the change of variables z = z”.
Solution: Let us perform the change of variables in two steps. We first make
the change of variable

z = I = xr=2zv
v—1

Z—Z = v l=vz v

y d dy dz v_1

’ y —

Y - dw_dz%_y(yzu)
1" dy _ d |, v=1\\ dz
Y= @& T 4 (’y(VZ v )) dx




Substituting into the ODE we get

2 202
v

22T v —1)2 ) + (1= 20)20 (grz v ) + 12 (22 + 1 — 1)y =0
(22" +yv(v — 1)z) + (1 — 2v)(gve) + 7 (22 + 1= 1)y =0
WPtz + 1P+ 1= 1)y =0
Pty + (22— (2 —-1)y=0

This is Bessel’s equation if ¥ — 1 > 0, in that case the general solution is given
(if % ¢ R?) by

= o1d =i (2) el yr=i(2) = | 1] =i (@) + ead_ i (a¥)

Kreyszig, 5.5.1
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve

22y +ay + (22 —16)y =0

Solution: This is Bessel’s equation with ¥ = 4. Since v is an integer value,

we have to write the general solution making use of Bessel’s functions of second
kind:

y = c1ds(x) + Yy (x)

Kreyszig, 5.5.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
2y’ +5y +ay=0

by making the change of variable y = 5.
Solution: If y = uz~2, then

y o= g2 py(—2279)
Y= Lt b (-2rmh) 4 (20 4 u(6r)
= x*2‘37’5 — 4x*3% + 6z %u

Substituting in the ODE we get

d2 d d
x (x_zdxg — x_3£ + 6m‘4u) +5 (de_2 + U(—2$_3)> +auz™? =0

d*u du du
’1@ — x’Qﬁ + 62 3u + 5:5’2% — 10z 3u+ 2 tu =0
d? d .
xild—;; + x72£ + (@7 =427 =0
Multiplying the equation by 3
d*u du
2 2 _
@+$dx+(x —4du=0



which is Bessel’s equation with v = 2. Since v is an integer value, the general
solution is given by
u=c1J2(xz) + c2Ya(x)

Undoing the change of variable

y=uxr 2= ’ c1x 2 Ja(x) + cax”2Ya(x) ‘

6 Chapter 6

Kreyszig, 6.1.4
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of cos?(wt).
Solution:

L{cos®*(wt)} = ;focos2 (wt)estdt

F1 2wt
_ f +COZ( w )e—stdt

0
= 3 [estdt+ 5 [ cos(2wt)e *tdt
0

N|—=

0 . .
[%e’“] + 1 [ cos(2wt)e~*tdt
0 0

% + % [ cos(2wt)e*tdt [Re{s} < 0]
0

N|—=

Now we make use of the Laplace transform

s
52 + w?

L{cos(wt)} =

to get

L{cos?(wt)} = 1 5

1
2 + im [RG{S} < 0]

Kreyszig, 6.1.20
Carlos Oscar Sorzano, Aug. 31st, 201}

Non-existence. Show that a function like ¢t” does not fulfill the condition

t2

et | < Mkt

Solution: For t > 0 we have e¢t” > 0 so that ‘et2’ — ¢, Let us show that for
any M and k, we can find ¢ such that

2
et > Mekt — elog(M)ekt
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Taking logarithms
t2 > log(M) + kt

t? — kt —log(M) > 0

Let us find the point at which the curve crosses 0

k+ /K2 + dlog(M
2~ kt —log(M) =0 =t = ; og(M)

That is for ¢t >

k++/k2+4log(M
%g() we have that

2
et > MeFt

Kreyszig, 6.1.22
Carlos Oscar Sorzano, Aug. 31st, 201}

{3} :

Conclude from this that the conditions for existence are sufficient but not nec-
essary for the existence of the Laplace transform.

Show that

Solution: - o
1 _ 1 —st _ —5 ,—st
E{ﬁ} = Ofﬁe —Oft 2e St
Let us make the change of variable
d
T:st:tzz,dtzl
s s

dr _ T —5.3 1
T = [T 2s2e Ts T
0

1
() 2
J7
0
So, there exists the Laplace transform of ﬁ although it is not well defined at
t=0.

Kreyszig, 6.1.26
Carlos Oscar Sorzano, Aug. 31st, 201}

ef} -

e

s =

e Tdr = 87%F (3) = s’%\f =/Z

(SIS

Il
»
rolm

Find the inverse Laplace transform of 3
Solution:
£t {75523:515} = 5£71 {ﬁ} + L1 {Szi%} = 5cosh(5t) + £ sinh(5¢)

where we have made used of the Laplace transforms

L 2—aZ COSh(CLt)
L3 =%5+ = sinh(af)

2_g2
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Kreyszig, 6.1.29
Alvaro Martin Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of

12 228
st 6
Solution:
12 228 3! 228 5!
—1 _op—1 -1 043 5
L {—84—?6 t=2L {—84 ~ L {—86}—275 — 1.9t

Kreyszig, 6.1.30
Alvaro Martin Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of
4s 4 32
s2—16

Solution:
4
} = 4 cosh(4t) + 8sinh(4t)

4s + 32 s
—1 _ —1 —1
£ {52—16}*4‘C {52—16}+8£ {32—16

Kreyszig, 6.1.33
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of t2e=3
Solution: We know that
ce) - 3
L{ef(t)} F(s—a)
Both together we have that
- 2!
L {t2€ St} - (s+3)3

Kreyszig, 6.1.39
Carlos Oscar Sorzano, Aug. 31st, 201/
21

(s+v2)*

Find the inverse Laplace transform of

Solution: We know that
L {tn} - S;Z!rl

L{e"f(t)} = F(s—a)

Then we have the inverse Laplace transform
—1 211 _ 2l p-1431) _ 743
H{H = L& =3t

and e
1 21 T3 V2t
e o B
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Kreyszig, 6.2.3
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the Initial Value Problem
y' —y —6y=0 y(0)=11,y(0) = 28

Solution: We know that

L{y} =Y
L{y'} = sY —y(0)
L{y"} = Y —sy(0) —y'(0)

Then, we can write the ODE as
(s%Y — 115 — 28) — (sY — 11) —6Y =0

(s —5—6)Y —11s —17=0
1s+17  1ls+17 1 10

$2—s5—6 (s—3)(s+2) s—|—2+s—3

Its inverse Laplace transform is

y=e 2 410>
which is the particular solution of the IVP satisfying the initial conditions.
Kreyszig, 6.2.12
Carlos Oscar Sorzano, Aug. 31st, 201
Solve the Initial Value Problem
y' -2 =3y=0 y(4)=-3,y'(4)=17
Solution: Let us define
g(&) =yt +4) & y(t) = y(t — 4)

Note that the relationship between the two time variables is

t=t—4
Then _
y(t) = ¥
y'(t) = 7't

Then we can rewrite the IVP as
' =2y =35=0 g(0)=-3,7(0) =17

We know that

Ly = ¥,
Ly} = sV —§0)
L{g"y = Y —s5(0) — 7' (0)



Then, we can write the ODE as
(s2Y 435 —17) — 2(sY +3) —=3Y =0

(2 =25 —3)Y +35—23=0
—3s+23  —3s+23 7 1 13 1
s2—25—3 (s—3)(s+1) 2s5—-3 2s+1

Its inverse Laplace transform is

}7:

oo T oap 13 ¢
y(t)—Qe 5 €

which is the particular solution of the IVP satisfying the initial conditions. If
we undo now the time shift, we get

1
y(t) =gt —4) = 263(“4) - ?367@,4)

Kreyszig, 6.2.15
Alvaro Martin Ramos, Jan. 11th, 2015

Solve the Initial Value Problem
y' +3y — 4y =6e*"" y(1.5) =4,4/(1.5) =5
Solution: We make a change of variable
t=t—15=t=t+15

Then
y'(t) =7'(f)

y'(t) =" (t)
Then, we can rewrite the IVP as
~11 ~7 7 ~ N _ p 2t~ A _
gr(t) +3y'(t) — 4y(t) = 6 §(0) =4,7'(0) =5

Making the Laplace transform of both sides we get

(s°Y —4s —5) +3(sY —4) —4Y =

s—2

6

) -
—4)YY —4s—-17=
(s +3s—4) s o

~ 6
(s+4)(s—1)Y:72+4s+17
s —

3 1

Y:
s—1+s—2

Its inverse Laplace transform is

§(0) = 3¢’ + %
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which is the particular solution of the IVP satisfying the initial conditions.

we undo now the time shift,we get

yt) =gt —1.5) = 3et—1:5 4 2(t=1.5)

Kreyszig, 6.2.16
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of ¢ cos(4t)
Solution: Let us define f = tcos(at) Let us differentiate f

f' = cos(at) — at sin(at)
f" = —asin(at) — asin(at) — a®t cos(at) = —2asin(at) — a*t cos(at)
If we now take the Laplace transform of f we get
2a?

52 4 a?

a
L{f"} = —QCLW

On the other side we know that
L{f"} = s"F = sf(0) = f'(0)
Substituting f(0) =0, f/(0) =1 we get
L{f'}=s"F -1

—a?L{tcos(at)} = —a®’F

Equating both expressions for £{f"} we get

22
—$_UJ2F:SQF_1
S a

Solving for F
2 _ 2

e
(52 + a2)2

In particular, for a = 4 (as in the problem statement, we get

2 — 42

L{tcos(4t)} = [EEvOE

Kreyszig, 6.2.24
Carlos Oscar Sorzano, Aug. 31st, 201}

20

Find the inverse Laplace transform of —=—

Solution: We may factorize F' as

1 20
s2s5— 27

The inverse Laplace transform of 23—

a double time integral. Let’s do it one by one:

t

1 2 2wt 1
P L g / 2062 dr = 20
Ss—2m 2T

0
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6271't -1
2m >

¢
1 20 20 20
-1 ) - — =Y 271'7'_1 dr == —¢
£ {828—271'} /271'(6 Jdr 27 +
0

Kreyszig, 6.3.3
Alvaro Martin Ramos, Jan. 11th, 2015

Find the Laplace transform of
t—2(t>2)
Solution: Let us write the function to transform as

f(t) =t —=2)u(t-2)

—2s

L{(t—2)u(t —2)} =e 2L{t} =

Kreyszig, 6.3.5
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of ¢! (0 <t < %)
Solution: Let us write the function to transform as

f)y=e" (u(t) —u(t—3%)) =eult) —e'u(t—

Let us transform each term separately

Altogether

3)

1 ~ _m 1 ud
E{f}zm—eZe_W = (1—6_2(8_1))

s—1 s—1

Kreyszig, 6.3.8
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of t* (1 <t < 2)
Solution: We can rewrite the function to be transformed as

f=t(ult—1) —u(t —2)) = t2u(t — 1) — t2u(t — 2)

Now, we transform each term separately

L{IPult -1} =e“L{(t+1)*}=e"L{> + 2t +1} =e*

L{Put —2)} = e 2 L{(t +2)*} = e 2 L{t? + 4t +4} = % (; + % + 4)
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The Laplace transform of f is

(2 2 1 o (2 4 4
E{f}:e <53+S2+S>_e (<93+<92+S)

Kreyszig, 6.3.13
Alvaro Martin Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of
6(1 —e™7™%)
s2+9

Solution:

-1 {6(1;271;”)} - 1 {ﬁ} . {i%::g} = 2sin(3t) — 2sin(3(t — 7))

Kreyszig, 6.3.17
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the inverse Laplace transform of (1 + e=27(s+1)) (s+31+)%+1

Solution: Let us find first the inverse Laplace transform of the function

s n s
241 s241 s2+1

—27s

G(s) = (1+e72™)

The inverse Laplace transform of this function is
g(t) = cos(t)u(t)+cos(t—2m)u(t—2m) = cos(t)u(t)+cos(t)u(t—2m) = cos(t)(u(t)—u(t—2m))

However, we are interested in

Kreyszig, 6.3.19
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the Initial Value Problem
y" +6y +8y = (e —eu(t) y(0)=0,y'(0)=0

Solution: Let us take the Laplace transform of the whole equation. Since
y(0) =0 and %'(0) = 0, we have

L{y'} =sY
L{y"} = s*Y
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Then the ODE becomes

s%Y 4+ 6sY +8Y = s—}—%_ 8i5
(s> + 65+ 8)Y = ‘?:f?))(f:5?’))
(s+4)(s+2)V = m

- (5+2)(5+3)2(s T 4)(s+5)
L 1 1 3

3 + .
s+2 s+3 s+4 s+5

Its inverse Laplace transform is

Kreyszig, 6.4.3
Carlos Oscar Sorzano, Jan. 15th, 2015

Sketch the solution of the IVP
y'+4y=0(t—m) y(0)=8,4'(0)=0
Solution: Let us take the Laplace transform of the differential equation
(s°Y(s) = sy(0) = 4/(0)) +4Y (s) = ™"

(82 +4)Y (s) =85+ e °7
8s 1
Y __°7 - s
(s) 52+4+52+4e
8s 1 2
Y — - —s7
)= a1 a7 4°

Now we take the inverse Laplace transform

y(t) = 8cos(2t) + %sin(Q(t —m))u(t — )
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| 8cos(2t)
y(t) 1

Kreyszig, 6.4.10
Carlos Oscar Sorzano, June 15th, 2015

Sketch the solution of the IVP
y'+5y +6y =4 (t — g) +u(t —m)cos(t) y(0)=0,y(0)=0
Solution: We first note that
cos(t) = —cos(t — )
Then, we can write the differential equation as
y" + 5y + 6y = (5(15— g) —u(t —7)cos(t —m)

Let us take the Laplace transform of the differential equation

5%V (s) 4+ 5sY (s) + 6Y (s) = e~ 25 + e*”ﬁ
T 1 s 1
Y — —53 —TS
) = 6 ¢ I P 15556

ys) = i [ L\ pmf(L s 1 1 21 31
s)=e — e —_—
s+2 s+3 10s24+1 10s24+1 5H5s+2 10s+3

Now we take the inverse Laplace transform

yt) = (e72t=/2 —e3C=m/2) y(t — 7/2)+
cos(t—m)+sin(t—m _ —r —3(t—m
( ( )10 ( )7%6 2(t )Jrl%e 3(t ))u(tfw)
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0.15

0.1f

0.05f

-0.05

Kreyszig, 6.5.6
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the convolution of e % e’ with a # b
Solution: Let us define f(t) = e and g(t) = €®. Their convolution can be
calculated thanks to the Laplace transform as

L{f(#) +g(t)}

|
!
—~
Va)
>
— Q
2
»
&

Kreyszig, 6.5.12
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the integral equation

t

y(t) + /y(T) COSh(t — T)dfr =t + et
0

Solution: If we take the Laplace transform of this equation we get

1_52+s—1

1 1
Y4V
o
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Now, we have the following inverse Laplace transforms

L{s+1} = et
¢

o) = ferar—1-e
0
t

c{=tt = [(1—e)dr=t+e ' —1=t—sinh(t) + cosh(t) — 1
0

Finally,

’y:t—&—e_t—l‘

Kreyszig, 6.5.18
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the inverse Laplace transform of ﬁ

Solution: Let us write

So its inverse transform is
f(t) — efat *efat

Let us calculate the convolution

t
e—at 4 p—at  — fefa‘refa(tfr)d,r
0

Finally

Kreyszig, 6.6.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Laplace transform of 3¢ sinh(4t)
Solution: We know the Laplace transform

L{3sinh(4t)} = 357 =
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Then, the required Laplace transform can be calculated as

L{3tsinh(4t)} = —F'(s) = f% <382 ig) - 3(32 — 42)2

Kreyszig, 6.6.3
Alvaro Martin Ramos, Jan. 11th, 2015

Find the Laplace transform of

—t —3t
5t
Solution: We know the Laplace transform of
1
5+3
Then, the required Laplace transform can be calculated as

L{e 3} =

2ds \s+3

Kreyszig, 6.6.20
Carlos Oscar Sorzano, Aug. 31st, 201}

sta
s+b

Find the inverse Laplace transform of log
Solution: Let us define

S+ a

F(s) =log e

= log(s + a) — log(s + b)

Let us calculate its derivative

Its inverse Laplace transform is
g(t) _ e—at _ e—bt

But we know that
g(t) = L7THF'(s)} = t£(t)
From which

_ g(t) - e—at _ e—bt
=202 =

Kreyszig, 6.7.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve the ODE system

y’1 +y =0
y1 + b = 2cos(t)
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with ¢1(0) =1, y2(0) = 0.
Solution: If we take the Laplace transform of both equations, we get

(SY1 — yl(O)) + YQ =0
Yl + (SYQ — yg(())) = 2%4_1

Taking into account the initial values

SY1—1+Y2=O
V) +sYy =255

which can be rewritten as

s
241
5241

Taking the inverse Laplace transform
y1) _ (cos(t)
y2)  \sin(t)
Kreyszig, 6.7.3

Carlos Oscar Sorzano, Dec. 19th, 2014

Solve the ODE system
Y1 = —y1+ 4y
ys = 3y1 — 4ys
with 41 (0) = 3, y2(0) = 4.
Solution: If we take the Laplace transform of both equations, we get

sY1 —11(0) = Y1 +4Ys
8Y2 — Y2 (0) = 3Y1 — 4}/2

Substituting the initial values

SY173:7Y1+4Y’2
sYy —4 =3Y; —4Y,

which can be rewritten as

50 6y = ()

3 -4
S s—|—4‘ 35428 35428
P lsl 4 [T S4B t16 0 (543)7 12
3 s+4
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s+1 3’

Y -3 4 45413 4s +13
2 = = B
s+1  —4 s 455 +16 (54 5)% 4 3
3 s+4

Their inverse Laplace transforms are

n(t) = £ 35428

= —1) __4s+13
pl) =k i(wz)zwf

= 4,71 S 132L71 2
I e +3) %

_ 39 26 39

= 4COS (?t + 3 Sin (?t)

7 Chapter 11

Kreyszig, 11.1.14
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Fourier series of the function 22 (between —m < z < 7) which is
assumed to be periodic outside with period 27
Solution: Since z? is an even function in the domain —7 < z < 7, we only
need to compute the ag and a,, terms, since the b,, terms will all be 0.

s

@ = L [a2de=L | -2
0 = o7 T2 3|, 3
—Tr
1 T 2 1 (n?z%—2)sin(nz)+2nz cos(nx) g
a, = = [ x*cos(nx)dx == .
™ ™ n

—r -
n 4

= Zcos(mn) = (-1)" 5

Finally, the Fourier series of 22 between —7 < z < 7 is

2 71'2 — n 4
o’ == + ,; (-1) o cos(nz)

Kreyszig, 11.1.15
Carlos Oscar Sorzano, Aug. 31st, 201}

115



Find the Fourier series of the function 2% (between 0 < z < 27) which is
assumed to be periodic outside with period 27
Solution: 22 is not an even or odd function in the domain 0 < z < 2, so we
need to compute all the terms of the Fourier series

LT T
J— _ X _ us
ag = 5 [2fde=5 %] =%
5 0
27 2 2 21
1 2 _ 1 (n“z*—2)sin(nz)+2nz cos(nz 4
am = + [z cos(nx)dx—;( (n3 )0 =5
0
2
b, = <+ fﬂxQ sin(nz)dz = 1 (2_n2w2)COS(”§)+2msm(m) T _am

Finally, the Fourier series of 22 between 0 < x < 27 is

877 | — 4
z? = %+;ﬁcos(nz)—;%sin(nm)

Kreyszig, 11.2.13
Carlos Oscar Sorzano, Jan. 15th, 2015

Calculate the Fourier series of period p = 1 of the function below

1
2

P = =
P = =

Solution: We apply the definition of the different coefficients, where L = 1

1
2

M

X

zdr = &

o=

0

Ol

L
ay = ﬁ_f;f(z):

1

L 3

an = 1 [ f(z)cos (%) dr =2 [ zcos (2nmz)dx
L 0

1
= o TG et P _ g () 1)

o1 0 n = 2
2m2n2 T _ﬁ n 7& 2
1

L
b, = % [ f(z)sin ("—L“:c) dr = 2f2xsin(2n7rx) dz
—L 0

1
2 _ 2 <77rn cos(mn) 0)

2,2
0 4mn

I~

- 9 sin(2wnz) —27nz cos(2mnx)
- 472n?
(

_qyn+l

2mn
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The Fourier series is, then

y(x)| = ao+ Z an, cos( ) + Z b, bm(%x)
n=1
|1 > -Hr =1 0 1)ntl
= 13 g ora cos (2mnx) + ; sin (2mnx)

Kreyszig, 11.3.4
Carlos Oscar Sorzano, Aug. 31st, 201}

Let us assume we have mass-spring system responding to the ODE
my" +cy’ + ky = 7(t)

Let r(t) be the function

The solution can be expressed as

n = Co+ Z C,, cos(nt + 4,)

n=1

What happens if we replace r(t) with its derivative, the rectangular wave?
What is the ratio of the new C,, to the old ones?
Solution: Let us consider the Fourier series of the input function r(¢)

o0
r(t) =co+ Z e cos(nt + 0,,)
n=1
Its derivative, assuming the series is convergent, can be calculated as
o0 o0
Z —cpnsin(nt +6,,)) = chncos(nt—i—ﬁn—i— 3)
n=1 n=1

Since the parameters m, c and k are constant, then the system is linear. For this
reason, for the input r(¢), each harmonic of the input excites the corresponding
harmonic of the output, that is

cn — Ch,

If now the amplitude of the input is nc,, then amplitude of the output is nC),

Kreyszig, 11.3.6
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Carlos Oscar Sorzano, Aug. 31st, 201}

Find a general solution of the ODE
y" + w?y = sin(at) 4 sin(Bt)

with w? # o2, 5.
Solution: The general solution of the homogeneous equation is

yp = c1 cos(wt) + co sin(wt)
For the particular solution, we look for a solution of the form
yp = asin(at) + beos(at) + Asin(St) + B cos(St)
y, = aacos(at) — basin(at) + Af cos(Bt) — Bf sin(pt)
yy = —ac’sin(at) — ba” cos(at) — AB*sin(Bt) — BB cos(t)
Substituting into the differential equation, we get

[—aa? sin(at) — ba? cos(at) — AB? sin(Bt) — B2 cos(Bt)]+
w?[asin(at) + beos(at) + Asin(Bt) + Bcos(Bt)] =
sin(at) + sin(St)
or what is the same
a(w? — a?) sin(at) + b(w? — a?) cos(at)+

+A(w? — B?)sin(Bt) + B(w? — 32) cos(pt) =
sin(at) + sin(St)

Equating coefficients we find that

b=B=0
1

4= 2_a2
1

A:wz_ﬁz

The general solution of the equation is

y = ¢1 cos(wt) + co sin(wt) +

w

5 sin(at) + wz%ﬁz sin(St)

— a2

Kreyszig, 11.3.11
Carlos Oscar Sorzano, June 15th, 2015

Find the eigenvalue and eigenfunctions of

(L) + 00 =0 4 =0 =0

x

The following strategy is suggested:
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e Do the change of variable x = ef.

e Find the general solution without considering boundary constraints.

e Apply the boundary conditions to find the eigenvalues and eigenfunctions
of the ODE.

Solution: 1) Change of variable
Let us analyze the change of variable

r=e' =t =log(x)

,_dy_dydr 1
4 dr dt dx ya: Y

Substituting in the differential equation:

d (yif_f> t Y
d (y-ef2t)
dt
(ye*% - 2ye*2t) e+ (A +1)ye 3t =0
§—29+(A+1y=0 y(0)=0=y(m)
2) Find the general solution

The general solution of this equation (without considering the boundary con-
straints) is given by the roots of the polynomial

et AN+ 1)ye 3t =0

225+ (A+1)=0—=s=1+V-)\

That is
y(t) = €t (Cle_‘/j)‘t + Cge‘/j)‘t)

3) Find the eigenvalues and eigenfunctions
Case A < 0: If A <0, then v/—X\ > 0 and the boundary conditions imply

5((2; _ ?(Zlf?f?ﬂ + CheV ) = 0 } TGO =6G=0
Case A = 0: If A =0, then the general solution is

y(t) = ¢'(C1 + Cat)
The boundary conditions imply

y(0) = Ci1=0

y(7r) _ €W(01+CQ7T):O }:>C1—C2—0

Case A > 0: Then the general solution becomes

y(t) = ' (Cy cos(VAL) + Cy sin(V/At)
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From the boundary conditions we get

y(0) = C1=0

y(r) = em(=Cy) =0 } = =0

Consequently, the eigenfunctions are the functions of the form
y(t) = e sin(VAt)

and the associated eigenvalue is A\. Undoing the change of variable we get the
eigenfunctions

y(z) = zsin(v/Mlog(z))

Kreyszig, 11.5.6
Carlos Oscar Sorzano, Aug. 31st, 201

Tranformation to Sturm-—Liouville form. Show that
y'+ 1y + (g + ARy =0
takes the form
(p(x)y') + (g(z) + Ar(z))y =0

if you set p = exp([ fdz), ¢ = pg and r = hp. Why would you do such a
transformation?

Solution: Let us substitute the proposed functions into the Sturm-Liouville
form

(py') + (pg + Ahp)y =0
'y +py" + (pg + Ahp)y =0

P = fexp (/fda:) — fp

foy' +py" + (pg + Ap)y = 0
Note that p is never 0, then dividing by p

Note that

Then

fY +y" + @+ h)y=0

y' + fy' +(g+ )y =0

that is the original ODE.
Kreyszig, 11.5.9
Carlos Oscar Sorzano, Aug. 31st, 201}

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problem:
v+ y=0 y(0)=0,y'(L) =0

Solution: We can rewrite the ODE as

@) +xy=0
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with the constraints
1y(0) +0y'(0) =0
Oy(L) +1y'(L) =0
That is, this is a Sturm-Liouville problem.

If A <0, A\ = —v2, then the general solution is

y=cre’" + coe” "

Imposing the two boundary conditions

y(O) =0 = c1+co

vL

Y(L)=0 = ce'l —core vt

Its unique solution is ¢; = ¢ = 0.
If A = 0, then the general solution is

Y =c1 + cx
Imposing the two boundary conditions

y(0)=0 =
Y(L)=0 = c

If A > 0, A = v/2, then the general solution is
y = ¢1 cos(vx) + cosin(va)

Imposing the two boundary conditions

y(O) =0 = C1
y(L)=0 = —cysin(vL)+ covcos(vL) = cavcos(vL) = vL = T + k = v = TH2k
That is the functions
y, =sin(vz) v= Ttk
are the eigenfunctions of the Sturm-Liouville problem and their eigenvalues are
A =12
Kreyszig, 11.5.11
Carlos Oscar Sorzano, Aug. 31st, 201}
Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problem:
AN y
= A+1) % =0 y(1)=0,y(e") =0
(L) + 00 =0 v =0
(Set z = €').
Solution: If we make the change of variable z = ¢! = t = log(z), then
_ dy _dydt _ dyl _ dy —
Y = LT da T @ = ae ] ]
/o= = () L (ke ) e e e
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We note that

d?y —2t  dy 72t) ¢t dy —t
AN " / =5 € — e e — 7€ 2
<y) _Ylr—y (dt2 dt dt B ﬂ(f:% B 2@67&

T x2 e2t Tde? dt

Then we can rewrite the problem as a function of y(t)

Py _y dy _s —3t
(dth —QEe > +A+1Dye™ =0 y(0)=0,y(m)=0

Py dy

We now check if the problem is a Sturm-Liouville problems using Kreyszig 11.5.6
with f = -2, g=1, h = 1. We calculate

p= ef(—Z)dt — 2
g=pg=e
h=hp=e?

So, in the Sturm-Liouville form the problem becomes

d _ordy —2t —2t
@ 9y Y -
g (e dt> + (e + Xy =0

We go back to the problem

?y dy
8 oM A1)y =
gz Zg tAHy=0

and look for solutions of the form y = et

2 —25+(A+1)=0=s=1+v-)\
If A <0, A\ = —2, then the general solution is of the form
y = cre®tt 4 cpes?!

with s =14 v and s3 = 1 — v. Imposing the two boundary conditions

= 1 +cCo

=0
=0 = c1e%7" 4 cge®7™

whose unique solution is ¢; = ¢ = 0.
If A =0, then the general solution is of the form
Yy = clet + cQtet
Imposing the two boundary conditions

y(()) =0 = C1
y(r) =0 = c1e™ + come™

whose unique solution is ¢; = co = 0.
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If A > 0, A = /2, then the general solution is of the form
y = cre’ cos(vt) + cael sin(vt)
Imposing the two boundary conditions

y(0)=0 = «
y(m) =0 = coe"sin(vn) =>v==~%

So, all the functions of the form

y = e sin(kt) = €8 sin(klog(z)) = ’ xsin(klog(z)) k€ Z‘

are eigenfunctions of the Sturm-Liouville problem, and their associated eigen-
value is A = k2.

Kreyszig, 11.6.2

Carlos Oscar Sorzano, Aug. 31st, 201}

Find the Fourier-Legendre series of the polynomial (z + 1)?
Solution: The Fourier-Legendre series of the function f is a series expansion

of the form -
f= (z)
Z HP H2

m=0

where
2

2m +1

and the Legendre polynomials are given by

1P 1 =

Po(z) = 1
Pi(x) = =z
(n+1)P,y1(z) = (2n+ DzP,(z) —nP,—1(x)
In particular
Py(z) = 1(3a?-1)
Py(z) = (52 —3x)

To perform the Fourier-Legendre expansion, let us perform the following
calculations

1
(z+ 1% Py(2)) = [(z+1)%dz=28
—1
||PO||2 = 2i02+1 =2
((x+1)2 Pi(2)) = [ (z+1)%2de=3
21
I1A? = 2112“ =2
(@+12P(x)) = [ (e+1)2L322 - 1)dz = &
21
1P* = 21.22+1 =2
((z+1)2%P3(z)) = [ (z+1)*3(52® —3a)dz =0
—1
1P = 5o =2



Actually, since f is a polynomial of degree 2, and Legendre polynomials are
a basis of polynomials in the domain [—1,1], we have that all coefficients for
m >3 are 0 ({(z + 1)2, Pp(x)) = 0).

Finally, the Fourier-Legendre expansion is

_ {(@+1)?,Po(2)) ((z4+1)2,P1(2)) ((z4+1)?,P2(x))
@+ = “EE o Pt mE o At e B
= %—F%x—l—?%(iﬁxz—l)
4 21
= |- 4224+ -(322 -1
3 + 2z + 3 2(3:5 )

Kreyszig, 11.9.6
Carlos Oscar Sorzano, Dec. 19th, 201}

Find the Fourier transform of f(z) = e~1*l (—o00 < 2 < 00) by integration.
Solution: The definition of the Fourier transform is

1 r —iwx
f<w>=\/§£ f(@)ewda

Substituting in this formula the value of f, we have

flw) = jo flx)eody
70 e~ lzle—iwe g

oo .
[ e Fem T dy;
0

‘7‘06—(1+iw)fcdx
0

i . |00
o~ (+iw)e

—(1+iw)

0

_1
1+iw

St o o o o

8 Chapter 12

Kreyszig, 12.1.2
Carlos Oscar Sorzano, Aug. 31st, 201}

Verify that the function
u =24 t*

is a solution of the wave equation
2
Ut = C Uy

for a suitable c.
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Solution: Let us calculate the different partial derivatives needed to substitute
in the wave equation

Uy = 2t
Uy = 2
U, = 2x
Upy = 2
The wave equation states
2 =c?2

which is true for ¢ = 1. In Matlab:
[x,t]=meshgrid(-2:0.15:2,0:0.15:2);
u=x."2+t."2;

surfc(x,t,u)

xlabel(’x?); ylabel(’t’); zlabel(’u’)

Kreyszig, 12.1.5
Carlos Oscar Sorzano, Aug. 31st, 201}
Verify that the function
u = sin(at) sin(bz)
is a solution of the wave equation
Uy = Cligy

for a suitable c.
Solution: Let us calculate the different partial derivatives needed to substitute
in the wave equation

ug = acos(at)sin(bx)
uyy = —a?sin(at)sin(bx)
uy, = bsin(at)cos(bx)
Uze = —b%sin(at)sin(bz)
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The wave equation states
—a? sin(at) sin(br) = ¢*(—b? sin(at) sin(bx))

which is true for ¢ = Z—j In Matlab:
[x,t]=meshgrid(-3*pi:0.1:3%pi,0:0.1:3%pi);
u=sin(t) .*sin(x);

surfc(x,t,u)

xlabel(’x?); ylabel(’t’); zlabel(’u’)
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Kreyszig, 12.1.19
Carlos Oscar Sorzano, Aug. 31st, 201}

Solve
Uy + y?u=0

Solution: Since the PDE is only depending on y, we can treat x as if it were
a parameter, then we can solve the PDE as if it were an ODE on y

uy = —y*u
du
_ = _y2
u
Y
logul = -+ ()
3
u=C(z)exp | —=

Kreyszig, 12.4.11
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Carlos Oscar Sorzano, Aug. 31st, 201}

Find the type, transform to normal form and solve
Ugy + 2Ugy + Uyy = 0

Solution: The prototypical equation for the method of characteristics is of the
form
Augy + 2Bugy + Cuyy = F(x,y, U, Uy, Uy)

which corresponds to the equation in the problem with
A=B=C=1

Consequently,
AC-B*=(1)(1)-1*=0

that is, the PDE is a parabolic PDE. Its characteristic equation is
A(y)? —2By +C =0
(V) -2y +1=0
(y=1)?=0

whose solution is
y=atz=¥Y(@,y=y-—r=0

We now do the change of variables
V=21

w=y—x

The standard form of a parabolic PDE is
U = 0

Integrating in w we have

Uy = P(w)
Integrating again in w

u= [ dwidv + v(w) = () + ¥(w) = n(w)
Undoing the change of variable
u=n(y—x)

being 1 any function.

Kreyszig, 12.4.19
Carlos Oscar Sorzano, Aug. 31st, 201}

Longitudinal Vibrations of an Elastic Bar or Rod. These vibrations
in the direction of the x-axis are modeled by the wave equation

2
Uty = C Ugy
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with ¢ = % (see Tolstov [C9], p. 275). If the rod is fastened at one end, x = 0,

and free at the other, x = L, we have u(0,t) = 0 and u,(L,t) = 0. Show
that the motion corresponding to initial displacement u(z,0) = f(z) and initial
velocity zero is

u = Z A, sin(prx) cos(ppet)

n=0
with
) L
A, = Z/f(m) sin(p,x)dx
0
and
_ (@2n+ )7
Pn = oL

Solution: Let us first check that the suggested solution satisfies the boundary
conditions:

u(0,t) =0
u(0,t) = iojo Ay, sin(p,0) cos(ppct) =0
n=
ug(L,t) =0
Uy = OOO Ay cos(pp) cos(ppct)
u,(L,t) = OOO Appr cos(pp L) cos(ppct) =0
But 2 1 2 1
onl = ( n2+L )’/TL: ( n; )
that is v 3x Er
pnl = 5 g g

and

cos(ppL) = 0= uy(L,t) =0

Let us check now the initial conditions u(z,0) = f(z)

oo oo
u(z,0) = > Apsin(pnx)cos(pnc0) = > Ay sin(prx)
n=0 n=0
That is u(x,0) is a Fourier sine series, but A,, are precisely the corresponding
Fourier coefficients, so the series add up to f(x).
Let us check now that w is a solution of the PDE

o0
ug = —c Y, Appnsin(p,x)sin(p,ct)
n=0
o0
Uy = —02 Z Anp727, Sln(pnx) COS(pnCt)
n=0
oo
Uy = Y. Appncos(ppx)cos(ppct)
n=0

Uz

oo
— 3 A,p? sin(p,z) cos(pnct)
n=0
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The PDE states

2
Uty = C Ugy

—c? Z App? sin(pnx) cos(p,ct) = ¢ (— Z Apnp? sin(pnx) cos(pnct)>

n=0 n=0
The equation above is obviously true, so the proposed function is a solution of
the PDE and it satifies the boundary conditions.
Kreyszig, 12.6.11
Carlos Oscar Sorzano, Aug. 31st, 201}

Show that for the completely insulated bar, u,(0,t) = 0, u,(L,t) = 0 and
u(z,0) = f(z) and separation of variables the solution of the heat equation

U = gy
gives the solution

u(z,t) = Ao+ZA”cos(nZI)e_(%)2t

n=1

with

2L
A, f/f cos )dm
0

Solution: Let us first check that the suggested solution satisfies the boundary
conditions:

Uy = — y, A, sin (Tx)e (e=)%
n=1
cnT 2
ug(0,t) = - Z A, 2 sin (21 )e*(T) t—0
n=1
Ua(Lyt) =0
cnT 2
uy(Lyt) = — Z A sin("zL)e_(T) t—_p
because

L

Let us check now the initial conditions u(x,0) = f(z)

sin (mrL) =sin(nm) =0

u(z,0) = Ag+ > A, cos (2FE) e~ (15)%0
n=1

= Ay + ij:l Ay, cos (272)
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That is u(z,0) is a Fourier cosine series, but A,, are precisely the corresponding
Fourier coefficients, so the series add up to f(x).
Let us check now that w is a solution of the PDE

u = - Z A, cos( T )(CZW)QB_(%)%
n 1
Uy = — Z A, MSID( ) F””)zt
Uy = — Z A (Tﬂ) COS(nzx)e,(%)Zt
The PDE states
Ut = C2umm

—;ARCOS(TTE) (%)267(67” ( ZA ( ) Cos(nzsr)e(“"f)%)

The equation above is obviously true, so the proposed function is a solution of
the PDE and it satifies the boundary conditions.

Kreyszig, 12.7.3

Carlos Oscar Sorzano, Aug. 31st, 201}

Using

/ (Ap cos(px) + By sin(px))e 62pztdp
0

with

oo

— % /OO f(v)cos(pv)dv B, =% / f(v)sin(pv)dv

solve the 1D heat equation
Uy = gy

when

u(e,0) = f) = 1=

Solution: We simply need to substitute f(z) = ﬁ in the formulas for A,
and B,

4, = 1% f Tz cos(pv)dv = £(meIPl) = eIl

700

f 1—&-% sin(pv)dv = 0

3

=
I
3 |=

So the solution of the 1D heat problem is

130



