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1 Chapter 1

Kreyszig, 1.1.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE

y′ + xe−
x2

2 = 0

Solution:

y′ =
dy

dx
= −xe− x

2

2

By separating variables

dy = −xe− x
2

2 dx

and integrating ∫
dy =

∫
−xe− x

2

2 dx

y = e−
x2

2 + C

Kreyszig, 1.1.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′ = 4e−x cos(x)

Solution:

y′ =
dy

dx
= 4e−x cos(x)

By separating variables
dy = 4e−x cos(x)dx

and integrating ∫
dy =

∫
4e−x cos(x)dx

Let's integrate by parts:

I1 =
∫
e−x cos(x)dx [u = e−x, dv = cos(x)dx]

= e−x sin(x)−
∫

sin(x)(−e−xdx)
= e−x sin(x) +

∫
sin(x)e−xdx [u = e−x, dv = sin(x)dx]

= e−x sin(x) + e−x(− cos(x))−
∫

(− cos(x))(−e−xdx)
= e−x sin(x)− e−x cos(x)−

∫
cos(x)e−xdx

= e−x sin(x)− e−x cos(x)− I1 ⇒
2I1 = e−x sin(x)− e−x cos(x)⇒
I1 = e−x sin(x)−cos(x)

2

Finally

y = 4I1 + C = 2(sin(x)− cos(x))e−x + C

Kreyszig, 1.1.6
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Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′′ = −y

Solution: Let us try a particular solution of the form

y = eλx

y′ = λeλx

y′′ = λ2eλx

Then, substituting these functions in the ODE

λ2eλx = −eλx

λ2 = −1⇒ λ = ±i

So the two functions
y1 = eix

and
y2 = e−ix

are solutions of the ODE. Actually, any function of the form

y = c1y1 + c2y2 = c1e
ix + c2e

−ix

is also a solution. In fact, it is the general solution of the ODE. Let us check
this statement

y′ = ic1e
ix − ic2e−ix

y′′ = −c1eix − c2e−ix

Substituting in the ODE
y′′ = −y

−c1eix − c2e−ix = −(c1e
ix + c2e

−ix)

As can be easily seen the function

y = c1e
ix + c2e

−ix + C

with C 6= 0 is not a solution of the ODE

−c1eix − c2e−ix 6= −(c1e
ix + c2e

−ix + C)

Kreyszig, 1.1.7
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′ = cosh(5.13x)

Solution: To solve the proposed ODE we rewrite it as

dy

dx
= cosh(5.13x)
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Consequently
dy = cosh(5.13x)dx

Integrating ∫
dy =

∫
cosh(5.13x)dx

y =
1

5.13
sinh(5.13x) + C

Kreyszig, 1.1.8
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′′′ = e−0.2x

Solution: Let us de�ne
y1 = y′

y2 = y′1 = y′′

Then the ODE can be rewritten as

y′2 = e−0.2x

whose solution is
dy2 = e−0.2xdx

y2 =
1

−0.2
e−0.2x + c1 = −5e−0.2x + c1

Now we solve the equation

y′1 = y2 = −5e−0.2x + c1

dy1 = (−5e−0.2x + c1)dx

y1 = 25e−0.2x + c1x+ c2

And, �nally, the equation

y′ = y1 = 25e−0.2x + c1x+ c2

dy = (25e−0.2x + c1x+ c2)dx

y = −125e−0.2x +
c1
2
x2 + c2x+ c3

Since c1 is an arbitrary constant, we can absorb the 1
2 factor into c1, so that the

general solution is

y = −125e−0.2x + c1x
2 + c2x+ c3

Kreyszig, 1.1.10
Carlos Oscar Sorzano, Aug. 31st, 2014
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1. Verify that y = ce−2.5x2

is a solution of the ODE

y′ + 5xy = 0

2. Determine from y the particular solution of the ODE that satis�es the
initial condition y(0) = π.

3. Graph the solution of the IVP.

Solution:

1. Let us calculate y′ and substitute it into the ODE

y′ = −5cxe−2.5x2(
−5cxe−2.5x2

)
+ 5x

(
ce−2.5x2

)
= 0

−5cxe−2.5x2

+ 5cxe−2.5x2

= 0
0 = 0

So y is actually a solution of the ODE.

2. To satisfy the initial condition we need

y(0) = π = ce−2.5(0)2 = ce0 = c

that is, we need c = π. The particular solution ful�lling the initial condi-
tion is

yp = πe−2.5x2

3. In MATLAB:

x=[-3:0.001:3]; plot(x,pi*exp(-2.5*x.�2)); xlabel('x');
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Kreyszig, 1.1.12
Carlos Oscar Sorzano, Aug. 31st, 2014
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1. Verify that y2 − 4x2 = C is a solution of the ODE

yy′ = 4x

2. Determine from y the particular solution of the ODE that satis�es the
initial condition y(1) = 4.

3. Graph the solution of the IVP.

Solution:

1. Let us di�erentiate the equation de�ning the implicit function

Dx(y2 − 4x2 = C)
2yy′ − 8x = 0
yy′ = 4x

that is exactly the ODE, so the implicit function de�ned by y2− 4x2 = C
is actually a solution of the proposed ODE.

2. To satisfy the initial condition y(1) = 4 we need

y2 − 4x2 = C

(4)2 − 4(1)2 = C

C = 16− 4 = 12

So the particular solution satisfying the given initial condition is

y2
p − 4x2 = 12

3. In MATLAB:

h=ezplot('y.�2-4*x.�2-12',[-3 3 -10 10]);

set(h,'Color','b')

x

y

y2−4 x2−12 = 0
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Kreyszig, 1.1.16
Carlos Oscar Sorzano, Aug. 31st, 2014

An ODE may sometimes have an additional solution that cannot be obtained
from the general solution and is then called a singular solution. The ODE
(y′)2 − xy′ + y = 0 is of this kind. Show by di�erentiation and substitution
that it has the general solution y = cx− c2 and the singular solution y = 1

4x
2.

Explain the following �gure.

Solution: Let us calculate the derivative of the proposed solution

y = cx− c2 ⇒ y′ = c

Substituting in the ODE
(y′)2 − xy′ + y = 0

(c)2 − x(c) + (cx− c2) = 0

0 = 0

So the proposed solution is a solution of the ODE. However, the function y =
1
4x

2 is also a solution as can be easily veri�ed

y =
1

4
x2 ⇒ y′ =

1

2
x

(y′)2 − xy′ + y = 0(
1

2
x

)2

− x
(

1

2
x

)
+

(
1

4
x2

)
= 0

1

4
x2 − 1

2
x2 +

1

4
x2 = 0

0 = 0

The explanation of the proposed �gure is the following. The di�erent lines
correspond to di�erent values of c in the general solution

y = cx− c2

The function y = 1
4x

2 is the upper envelope of all these functions.
Kreyszig, 1.1.18
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Carlos Oscar Sorzano, Aug. 31st, 2014

Radium 228
88 Ra has a half-life of about 3.6 days.

1. Given 1 gram, how much will still be present after 1 day?

2. After 1 year?

Solution: Radioactive desintegration responds to the linear ODE

dA

dt
= −Kt

whose general solution is

A(t) = A(0)e−Kt t > 0

Note that the units of K are [time−1]. We can also write the general solution
as

A(t) = A(0)e−
t
τ t > 0

where the units of τ are now [time].
A half-life of 3.6 days implies that

A(3.6) =
A(0)

2
= A(0)e−

3.6
τ

− log(2) = −3.6

τ

τ =
3.6

log(2)
= 5.1937[days]

At this point we can answer the two questions:

1. After 1 day there is: A(1) = A(0)e−
1
τ = 1e−

1
5.1937 = 0.8249[g].

2. After 1 year there is: A(365) = A(0)e−
365
τ = 1e−

365
5.1937 = 3 · 10−31[g].

Kreyszig, 1.1.19
Carlos Oscar Sorzano, Aug. 31st, 2014

In dropping a stone or an iron ball, air resistance is practically negligible.
Experiments show that the acceleration of the motion is constant (equal to
g = 9.80[m/s2], called the acceleration of gravity). Model this as an ODE for
y(t), the distance fallen as a function of time t. If the motion starts at time
t = 0 from rest (i.e., with velocity v = y′ = 0), show that you obtain the familiar
law of free fall

y =
1

2
gt2

Solution: Let us understand the physical meaning of each of the variables
involved:

• y(t) is the distance fallen at time t

• y′(t) is the speed of the object at time t

7



• y′′(t) is its acceleration at time t

The fact that acceleration is constant along the fall implies

y′′ = g

Let us de�ne the variable
v = y′

Then, the free fall ODE can be written as

v′ = g

dv = gdt

v = gt+ c

But the object is at rest at t = 0, that is

v(0) = 0 = g(0) + c⇒ c = 0

Now we solve the equation
v = y′

for y
dy = vdt = gtdt

y =
1

2
gt2 + c

At time t = 0 the object had not moved, that is

y(0) = 0 =
1

2
g(0)2 + c⇒ c = 0

Finally, the solution of the falling ODE is

y =
1

2
gt2

Kreyszig, 1.2.4
Carlos Oscar Sorzano, Aug. 31st, 2014

Graph a direction �eld (by a CAS or by hand) for the ODE

y′ = 2y − y2

In the �eld graph several solution curves by hand, particularly those passing
through the points (0, 0), (0, 1), (0, 2), (0, 3).
Solution: In MATLAB

[x,y]=meshgrid(-1:0.25:5,-2:0.25:4);

f = @(x,y) 2*y-y.�2;

dy=feval(f,x,y);

dx=ones(size(dy));

quiver(x,y,dx,dy);

axis([-1 5 -2 4])
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xlabel('x')

ylabel('y')

hold on

% (0,0)

[xa,ya] = ode45(f,[0,5],0);

[xb,yb] = ode45(f,[0,-1],0);

plot(xa,ya,'b','LineWidth',2)

plot(xb,yb,'b','LineWidth',2)

% (0,1)

[xa,ya] = ode45(f,[0,5],1);

[xb,yb] = ode45(f,[0,-1],1);

plot(xa,ya,'r','LineWidth',2)

plot(xb,yb,'r','LineWidth',2)

% (0,2)

[xa,ya] = ode45(f,[0,5],2);

[xb,yb] = ode45(f,[0,-1],2);

plot(xa,ya,'k','LineWidth',2)

plot(xb,yb,'k','LineWidth',2)

% (0,3)

[xa,ya] = ode45(f,[0,5],3);

[xb,yb] = ode45(f,[0,-1],3);

plot(xa,ya,'g','LineWidth',2)

plot(xb,yb,'g','LineWidth',2)

−1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

x

y

Kreyszig, 1.2.5
Carlos Oscar Sorzano, Aug. 31st, 2014
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Graph a direction �eld (by a CAS or by hand) for the ODE

y′ = x− 1

y

In the �eld graph several solution curves by hand, particularly that one passing
through the point (1, 1

2 ).
Solution: In MATLAB

[x,y]=meshgrid(-2:0.15:2,0.15:0.15:2);

f = @(x,y) x-1./y;

dy=feval(f,x,y);

dx=ones(size(dy));

quiver(x,y,dx,dy);

axis([-2 2 0.15 2])

xlabel('x')

ylabel('y')

hold on

% (1,0.5) [xa,ya] = ode45(f,[1,1.2],0.5);

[xb,yb] = ode45(f,[1,-2],0.5);

plot(xa,ya,'r','LineWidth',2)

plot(xb,yb,'r','LineWidth',2)
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Kreyszig, 1.2.11
Carlos Oscar Sorzano, Aug. 31st, 2014

An ODE is autonomous if it does not show x (the independent variable)
explicitly in f

y′ = f(x, y)

For instance,
y′ = sin2(y)
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y′ = −5y
1
2

What will the level curves f(x, y) = const (also called isoclines, of equal incli-
nation) of an autonomous ODE look like? Give reason.
Solution: They are lines parallel to the x axis, since all points with the same x
have the same inclination (slope of the tangent). For example, for the equation

y′ = sin2(y)

we would have in MATLAB

[x,y]=meshgrid(-pi:0.25:pi,-pi:0.25:pi);

f = @(x,y) (sin(y)).�2;

dy=feval(f,x,y);

dx=ones(size(dy));

quiver(x,y,dx,dy);

axis([-pi pi -pi pi])

xlabel('x')

ylabel('y')

hold on

% Isoclines

contour(x,y,dy./dx,0.25,'r','LineWidth',2)

contour(x,y,dy./dx,0.75,'g','LineWidth',2)
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Kreyszig, 1.2.15
Carlos Oscar Sorzano, Aug. 31st, 2014

Two forces act on a parachutist, the attraction by the earth mg (m is the
mass of person plus equipment, g = 9.8[m/s2] the acceleration of gravity) and
the air resistance, assumed to be proportional to the square of the velocity v(t).
Using Newton's second law of motion (mass × acceleration = resultant of the
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forces), set up a model (an ODE for v(t)). Graph a direction �eld (choosing
m and the constant of proportionality equal to 1). Assume that the parachute
opens when v = 10[m/s]. Graph the corresponding solution in the �eld. What is
the limiting velocity? Would the parachute still be su�cient if the air resistance
were only proportional to v(t)?
Solution: The following equation for the velocity v re�ects the physical knowl-
edge of the problem

mv′ = mg − νv2

With m = 1[kg] and ν = 1[Ns2/kg], we have

v′ = g − v2

If the parachute opens at v = 10[m/s] it means

v(0) = 10

we would have in MATLAB (see red curve)

[x,v]=meshgrid(0:0.1:2,0:0.5:10);

f = @(x,v) 9.8-v.�2;

dv=feval(f,x,v);

dx=ones(size(dv));

quiver(x,v,dx,dv);

axis([0 2 0 10])

xlabel('t')

ylabel('v')

hold on

% Solution

[t10,v10]=ode45(f,[0 2],10);

plot(t10,v10,'r','LineWidth',2)

If the air resistance were proportional to v(t), then (see black curve)

v′ = g − v

It can be seen that the decrease of speed is much slower:

12
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Kreyszig, 1.2.17
Álvaro Martín Ramos, Dec. 25th, 2014

Apply Euler's method to the ODE

y′ = y

with h = 0.1 and y(0) = 1.
Solution: The method applied to this case would give

y0 = y(0) = 1
y1 = y0 + hf(x0, y0) = 1 + 0.1(y0) = 1 + 0.1(1) = 1.1
y2 = y1 + hf(x1, y1) = 1.1 + 0.1(y1) = 1.1 + 0.1(1.1) = 1.21
y3 = y2 + hf(x2, y2) = 1.11 + 0.1(y2) = 1.21 + 0.1(1.21) = 1.331
...

Kreyszig, 1.2.20
Carlos Oscar Sorzano, Aug. 31st, 2014

Apply Euler's method to the ODE

y′ = −5x4y2 y(0) = 1

with h = 0.2. The true solution is

y =
1

(1 + x)5

Solution: The method applied to this case would give

y0 = y(0) = 1
y1 = y0 + hf(x0, y0) = 1 + 0.2(−5x4

0y
2
0) = 1 + 0.2(−5(0)4(1)2) = 1

y2 = y1 + hf(x1, y1) = 1 + 0.2(−5x4
1y

2
1) = 1 + 0.2(−5(0.2)4(1)2) = 0.9984

y3 = 0.9729
y4 = 0.8502
...

13



In MATLAB

f = @(x,y) -5*x.�4.*y.�2;

% Euler

y=zeros(10,1);

x=zeros(10,1);

x(1)=0; y(1)=1; % y(0)=1

h=0.2;

for k=1:length(y)-1

y(k+1)=y(k)+h*f(x(k),y(k));

x(k+1)=x(k)+h;

end

% ODE45

[xRK,yRK]=ode45(f,[0,1.8],1);

% True solution

xt=0:0.01:1.8;

yt=1./((xt+1).�5);

plot(x,y,xRK,yRK,xt,yt)

legend('Euler solution','Runge-Kutta 45','True solution')

xlabel('x')

ylabel('y')
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True solution

Kreyszig, 1.3.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
y3 + y′ + x3 = 0

14



Solution: We can rearrange the equation as

y′ = −x
3

y3
= −

(
x

y

)3

We see that the equation has the form

y′ = f
(y
x

)
so that it can be reduced to a separable form by making the change of variables

u =
y

x
⇒ y = xu⇒ y′ = u′x+ u

Substituting in the ODE

u′x+ u = − 1

u3

u′x = −
(
u+

1

u3

)
= −u

4 + 1

u3

Separating variables
u3

u4 + 1
du = − 1

x
dx

Integrating ∫
u3

u4 + 1
du = −

∫
1

x
dx

1

4

∫
4u3

u4 + 1
du = − log |x|+ C

Solving for u
1

4
log |u4 + 1| = − log |x|+ C

log |u4 + 1| 14 = − log |x|+ C

|u4 + 1| 14 =
C

x

u4 + 1 =
C

x4

And undoing the change of variable(y
x

)4

+ 1 =
C

x4

y4 + x4 = C

Kreyszig, 1.3.7
Carlos Oscar Sorzano, Nov. 2nd, 2014

Solve
xy′ = y + 2x3 sin2

(y
x

)

15



by making the change of variables y
x = u

Solution: The change of variables y
x = u implies

y = ux

y′ = u′x+ u

Substituting in the di�erential equation we get

x(u′x+ u) = ux+ 2x3 sin2(u)

x2u′ = 2x3 sin2(u)

u′

sin2(u)
= 2x

du

sin2(u)
= 2xdx

Integrating we get

− 1

tan(u)
= x2 + C

tan(u) =
1

C − x2

u = arctan
1

C − x2

Undoing the change of variable

y = ux = x arctan
1

C − x2

Kreyszig, 1.3.8
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
y′ = (y + 4x)2

by making the change of variables y + 4x = v
Solution:

y + 4x = v ⇒ y′ + 4 = v′ ⇒ y′ = v′ − 4

Substituting in the ODE
v′ − 4 = v2

v′ = v2 + 4

v′

v2 + 4
= 1

Separating variables
dv

v2 + 4
= dx

Integrating ∫
dv

v2 + 4
=

∫
dx

16



∫
1

4

dv

( v2 )2 + 1
= x+ C

1

2

∫ 1
2dv

( v2 )2 + 1
= x+ C

1

2
atan

v

2
= x+ C

Solving for v
v = 2 tan(2x+ C)

Undoing the change of variables

y + 4x = 2 tan(2x+ C)

y = −4x+ 2 tan(2x+ C)

Kreyszig, 1.3.9
Carlos Oscar Sorzano, June 15th, 2015

Solve
xy′ = y2 + y

by making the change of variables u = y
x .

Solution:

u =
y

x
⇒ y = ux⇒ y′ = u′x+ u

Substituting in the ODE

x(u′x+ u) = (ux)2 + ux

Dividing by x
u′x+ u = u2x+ u

u′x = u2x

u′ = u2

du

u2
= dx

Integrating
−u−1 = x+ C

u = − 1

x+ C

Undoing the change of variables

y

x
= − 1

x+ C

Finally,

y = − x

x+ C

Kreyszig, 1.3.19
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Carlos Oscar Sorzano, Aug. 31st, 2014

If the growth rate of the number of bacteria at any time t is proportional
to the number present at t and doubles in 1 week, how many bacteria can be
expected after 2 weeks? After 4 weeks?
Solution: The growth rate of the number of bacteria is A′(t). If it is propor-
tional to the number of bacteria, we have

A′ = µA

whose solution can be obtained by separating variables

dA = µAdt

dA

A
= µdt

Integrating
log |A| = µt+ C

Solving for A
A = Ceµt

If the number of bacteria doubles every week, we have

A(t+ 7) = 2A(t)

Ceµ(t+7) = 2Ceµt

eµ7 = 2⇒ µ =
log(2)

7
= 0.0990

After 2 weeks we will have

A(t+ 14) = Ceµ(t+14) = Ceµteµ14 = A(t)e
log(2)

7 14 = A(t)e2 log(2) = A(t)(elog(2))2 = A(t)22 = 4A(t)

Similarly, after 4 weeks, we will have

A(t+ 28) = A(t)e
log(2)

7 28 = A(t)e4 log(2) = A(t)(elog(2))4 = A(t)24 = 16A(t)

Kreyszig, 1.3.20
Carlos Oscar Sorzano, Aug. 31st, 2014

1. If the birth rate and death rate of the number of bacteria are proportional
to the number of bacteria present, what is the population as a function of
time.

2. What is the limiting situation for increasing time? Interpret it.

Solution:

1. The following model describes the situation

A′ = µbA− µdA = (µb − µd)A

Similarly to Problem 1.3.19, its solution is

A = Ce(µb−µd)t = A(0)e(µb−µd)t

18



2. If µb = µd, the number of bacteria stays stable from t = 0. If µb > µd,
the number of bacteria grows exponentially. On the contrary, if µb < µd,
the number of bacteria exponentially decreases to 0.

Kreyszig, 1.3.23
Carlos Oscar Sorzano, Aug. 31st, 2014

Boyle�Mariotte's law for ideal gases. Experiments show for a gas at
low pressure P (and constant temperature) the rate of change of the volume
V (P ) equals −VP . Solve the model.
Solution: The following ODE models the system

V ′ = −V
P

V ′

V
= − 1

P

Separating variables
dV

V
= −dP

P

Integrating

log |V | = − log |P |+ C = log

∣∣∣∣CP
∣∣∣∣

V =
C

P

Kreyszig, 1.3.26
Carlos Oscar Sorzano, Aug. 31st, 2014

Gompertz growth in tumors. The Gompertz model is y′ = −Ay log(y)
(A > 0), where y(t) is the mass of tumor cells at time t. The model agrees
well with clinical observations. The declining growth rate with increasing y > 1
corresponds to the fact that cells in the interior of a tumor may die because
of insu�cient oxygen and nutrients. Use the ODE to discuss the growth and
decline of solutions (tumors) and to �nd constant solutions. Then solve the
ODE.
Solution: Let us solve the equation

y′ = −Ay log(y)

dy

y log(y)
= −Adt

1
ydy

log(y)
= −Adt

log | log(y)| = −At+ C

log(y) = Ce−At

y = exp(Cexp(−At)) = exp(log(y(0))exp(−At))

The following �gure shows the growth for y(0) = 0.01 and A = 1
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Kreyszig, 1.4.4
Carlos Oscar Sorzano, Nov. 2nd, 2014

Solve
e3θ(dr + 3rdθ) = 0

Solution: We rewrite the di�erential equation as

e3θdr + 3re3θdθ = 0

which is of the form
Pdr +Qdθ = 0

To check if it is an exact equation we calculate

∂P

∂θ
= 3e3θ

∂Q

∂r
= 3e3θ

Since both partial derivatives are equal, the equation is exact and we look for a
solution of the form

U =

∫
Pdr + C(θ) =

∫
e3θdr + C(θ) = e3θr + C(θ)

To determine the constant C(θ) we di�erentiate this function with respect to θ

∂U

∂θ
= 3re3θ + C ′(θ)

and compare it to Q
3re3θ + C ′(θ) = Q

3re3θ + C ′(θ) = 3re3θ

C ′(θ) = 0
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Integrating with respect to θ
C(θ) = C

Finally, the implicit solution of the di�erential equation is

e3θr + C = 0

or explicitly
r = −Ce−3θ

Kreyszig, 1.4.8
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
ex(cos(y)dx− sin(y)dy) = 0

Solution: We may rewrite the ODE as

ex cos(y)dx− ex sin(y)dy = 0

That is of the form
P (x, y)dx+Q(x, y)dy = 0

To see if it is exact we calculate

∂P

∂y
= ex(− sin(y))

∂Q

∂x
= −ex sin(y)

Since ∂P
∂y = ∂Q

∂x , the ODE is exact. To �nd the solution, u that satis�es

∂u

∂x
= P

∂u

∂y
= Q

we integrate P with respect to x

u(x, y) =
∫
ex cos(y)dx = cos(y)ex + C(y)

If we now di�erentiate u with respect to y we should obtain Q

∂u

∂y
= ex(− sin(x)) + C ′(y) = −ex sin(y)⇒ C ′(y) = 0⇒ C(y) = C

So the solution to the problem are all functions of the form

u(x, y) = C = cos(y)ex ⇒ y = acos(Ce−x)

Kreyszig, 1.4.9
Álvaro Martín Ramos, Dec. 25th, 2014

Solve the ODE
e2x(2 cos(y)dx− sin(y)dy) = 0
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Solution: We may rewrite the ODE as

e2x2 cos(y)dx− e2x sin(y)dy) = 0

That is of the form
P (x, y)dx+Q(x, y)dy = 0

To see if it is exact we calculate

∂P

∂y
= −2e2x sin(y)

∂Q

∂x
= −2e2x sin(y)

Since
∂Q

∂x
=
∂P

∂y

the ODE is exact. To �nd the solution, u, that satis�es

∂u

∂x
= P

∂u

∂y
= Q

we integrate P with respect to x

u(x, y) =

∫
e2x2 cos(y)dx = cos(y)e2x + C(y)

If we now di�erentiate u with respect to y we should obtain Q

∂u

∂y
= − sin(y)e2x + C ′(y) = −e2x sin(y)⇒ C ′(y) = 0⇒ C(y) = C

So the solution to the problem are all functions of the form

u(x, y) = C = cos(y)e2x ⇒ y = acos(Ce−2x)

Kreyszig, 1.4.10
Carlos Oscar Sorzano, Jan. 13th, 2015

Solve the di�erential equation

ydx+ (y + tan(x+ y))dy = 0

knowing that cos(x+ y) is an integrating factor.
Solution: Let us multiply the whole equation by cos(x+ y)

y cos(x+ y)dx+ (y cos(x+ y) + sin(x+ y))dy = 0

which is of the form
P (x, y)dx+Q(x, y)dy = 0
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Let us check if this is an exact equation:

Py =
∂P (x, y)

∂y
= cos(x+ y)− y sin(x+ y)

Qx =
∂Q(x, y)

∂x
= −y sin(x+ y) + cos(x+ y)

Since Py = Qx, the equation is exact. We can solve it by integrating with
respect to one of the variables

U(x, y) =

∫
P (x, y)dx =

∫
y cos(x+ y)dx = y sin(x+ y) + C(y)

We now di�erentiate U with respect to y

Q(x, y) =
∂U(x, y)

∂y

y cos(x+ y) + sin(x+ y) = sin(x+ y) + y cos(x+ y) + C ′(y)

C ′(y) = 0

C(y) = C

Finally, the implicit solution of the di�erential equation is

U(x, y) = 0

y sin(x+ y) + C = 0

Kreyszig, 1.4.11
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE

2 cosh(x) cos(y)dx = sinh(x) sin(y)dy

Solution: We may rewrite the ODE as

2 cosh(x) cos(y)dx− sinh(x) sin(y)dy = 0

That is of the form
P (x, y)dx+Q(x, y)dy = 0

To see if it is exact we calculate

∂P

∂y
= 2 cosh(x)(− sin(y))

∂Q

∂x
= − cosh(x) sin(y)

Since ∂P
∂y 6=

∂Q
∂x , the ODE is not exact. For �nding an integrating factor, we

start by calculating

Py −Qx = 2 cosh(x)(− sin(y))− (− cosh(x) sin(y)) = − cosh(x) sin(y)
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We note that
Qx − Py

P
=

cosh(x) sin(y)

2 cosh(x) cos(y)
=

1

2
tan(y)

is a function of y, f(y). The integrating factor comes

F = exp

(∫
1

2
tan(y)dy

)
= exp

(
−1

2
log(cos(y))

)
=

1√
cos(y)

We now multiply the ODE by the integrating factor

1√
cos(y)

(2 cosh(x) cos(y)dx− sinh(x) sin(y)dy) = 0

2 cosh(x)
√

cos(y)dx− sinh(x)
sin(y)√
cos(y)

dy = 0

At this point, the ODE is exact. We �nd its solution by integrating P with
respect to x

u(x, y) =

∫
2 cosh(x)

√
cos(y)dx = 2 sinh(x)

√
cos(y) + C(y)

Di�erentiating with respect to y we should obtain FQ

∂u

∂y
= − sinh(x)

sin(y)√
cos(y)

+ C ′(y) = − sinh(x)
sin(y)√
cos(y)

⇒ C ′(y) = 0

So the solutions of the ODE are of the form

u(x, y) = C = 2 sinh(x)
√

cos(y)

Kreyszig, 1.5.7
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
xy′ = 2y + x3ex

Solution: We may rewrite the ODE as

y′ − 2

x
y = x2ex

That is of the form
y′ + p(x)y = r(x)

This is a linear, non-homogeneous equation, whose solution is given by

yh = e−h(

∫
ehrdx+ C)

where
h =

∫
pdx = −

∫
2
xdx = −2 log |x|

e−h = e2 log |x| = x2∫
ehrdx =

∫
(x−2)(x2ex)dx = ex
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Finally

y = x2(ex + C)

Kreyszig, 1.5.13
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′ = 6(y − 2.5)tanh(1.5x)

Solution: We may rewrite the ODE as

y′ − 6tanh(1.5x)y = −15tanh(1.5x)

That is of the form
y′ + p(x)y = r(x)

This is a linear, non-homogeneous equation, whose solution is given by

yh = e−h(

∫
ehrdx+ C)

where

h =
∫
pdx = −6

∫
tanh(1.5x)dx = −6 log(cosh(1.5x))

1.5 = −4 log(cosh(1.5x))

e−h = e4 log(cosh(1.5x)) = cosh4(1.5x)∫
ehrdx =

∫
(cosh−4(1.5x))(−15tanh(1.5x))dx = 2.5

cosh4(1.5x)

Finally

y = cosh4(1.5x)

(
2.5

cosh4(1.5x)
+ C

)
= 2.5 + C cosh4(1.5x)

Kreyszig, 1.5.15
Carlos Oscar Sorzano, Aug. 31st, 2014

Let H be the homogeneous problem

y′ + p(x)y = 0

and NH be the non-homogeneous problem

y′ + p(x)y = r(x)

Show that the sum of two solutions and of the homogeneous equation (H) is a
solution of (H), and so is a scalar multiple for any constant a. These properties
are not true for the non-homogeneous problem (NH).
Solution: Let y1 and y2 be two solutions of the homogeneous problem so that

y′1 + p(x)y1 = 0

y′2 + p(x)y2 = 0

Adding both equations we have

y′1 + y′2 + p(x)y1 + p(x)y2 = 0
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(y1 + y2)′ + p(x)(y1 + y2) = 0

This last equation proves that y1 + y2 is also a solution of the homogeneous
problem. Similarly if we multiply the �rst equation by a we have

a(y′1 + p(x)y1) = 0

ay′1 + ap(x)y1 = 0

(ay1)′ + p(x)(ay1) = 0

which proves that ay1 is also a solution of the homogeneous problem.
However, this is not true for the non-homogeneous problem. Let us assume

that y1 and y2 are solutions of the non-homogeneous problem

y′1 + p(x)y1 = r(x)

y′2 + p(x)y2 = r(x)

Let us check if y1 + y2 is also a solution. For doing so, we substitute y1 + y2

into the ODE

(y1 + y2)′ + p(x)(y1 + y2) = (y′1 + p(x)y1) + (y′2 + p(x)y2) = 2r(x) 6= r(x)

The same happens with ay1

(ay1)′ + p(x)(ay1) = a(y′1 + p(x)y1) = ar(x) 6= r(x)

Kreyszig, 1.5.17
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that the sum of a solution of the non-homogeneous problem and a
solution of the homogeneous one is a solution of the non-homogeneous problem.
Solution: Let yp be a solution of the non-homogeneous problem

y′p + p(x)yp = r(x)

and yh be a solution of the homogeneous problem

y′h + p(x)yh = 0

Let us check if yp + yh is a solution of the non-homogeneous problem

(yp + yh)′ + p(x)(yp + yh) = (y′p + p(x)yp) + (y′h + p(x)yh) = r(x) + 0 = r(x)

That is, yp + yh is indeed a solution of the non-homogeneous problem.
Kreyszig, 1.5.18
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that the di�erence of two solutions of the non-homogeneous problem
is a solution of the homogeneous problem.
Solution: Let yp1 and yp2 be two solutions of the non-homogeneous problem

y′p1 + p(x)yp1 = r(x)
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y′p2 + p(x)yp2 = r(x)

Let us check if yp1 − yp2 is a solution of the homogeneous problem

(yp1−yp2)′+p(x)(yp1−yp2) = (y′p1 +p(x)yp1)−(y′p2 +p(x)yp2) = r(x)−r(x) = 0

That is, yp1 − yp2 is indeed a solution of the homogeneous problem.
Kreyszig, 1.5.21
Carlos Oscar Sorzano, Aug. 31st, 2014

Variation of parameter. Another method of obtaining the solution y =
e−h(

∫
ehrdx+ C) of a non-homogeneous problem

y′ + p(x)y = r(x)

results from the following idea. Write the solution of the homogeneous problem
as

y = Ce−
∫
pdx = Ce−h = Cy∗

where y∗ is the exponential function, which is a solution of the homogeneous
linear ODE

(y∗)′ + p(x)y∗ = 0

Replace the arbitrary constant C in the homogeneous solution with a function
u to be determined so that the resulting function y = uy∗ is a solution of the
nonhomogeneous linear ODE.
Solution: Let us introduce the function uy∗ into the non-homogeneous ODE
to see the requirements that u must meet

(uy∗)′ + p(uy∗) = u′y∗ + u(y∗)′ + puy∗

= u′y∗ + u((y∗)′ + py∗)
= u′y∗ + u0
= u′y∗

= r

That is, we need

u′y∗ = r ⇒ u′ = r
e−h

= reh ⇒ u =
∫
rehdx+ C

So the solution of the non-homogeneous problem is

y = uy∗ =

(∫
rehdx+ C

)
e−h

Kreyszig, 1.5.24
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve y′ + y = −xy
Solution: This is a Bernouilli equation of the form

y′ + p(x)y = g(x)ya

with p(x) = 1, g(x) = −x and a = −1. We do the change of variable

u = y1−a = y1−(−1) = y2
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Di�erentiating

u′ = 2yy′ = 2y(−y − xy−1) = −2y2 − 2x = −2u− 2x

u′ + 2u = −2x

This is now a linear, non-homogeneous equation system of the form

u′ + pu = r

whose solution is given by

h =

∫
pdx =

∫
2dx = 2x

u = e−h(
∫
ehrdx+ C) = e−2x

(∫
e2x(−2x)dx+ C

)
= e−2x

(
xe2x − 1

2e
2x + C

)
= x− 1

2 + Ce2x

Now we undo the change of variable

y2 =

√
x− 1

2
+ Ce2x

Kreyszig, 1.5.25
Álvaro Martín Ramos, Dec. 25th, 2014

Solve
y′ = 3.2y − 10y2

Solution: We may rewrite the ODE as

y′ − 3.2y = −10y2

This is a Bernouilli equation of the form

y′ + p(x)y = g(x)ya

with p(x) = −3.2, g(x) = −10 and a = 2. We do the change of variable

u = y1−a = y1−2 = y−1

Di�erentiating

u′ = (y−1)′ = − 1

y2
y′ = − 1

y2
(3.2y − 10y2) = −3.2y−1 + 10 = −3.2u+ 10

u′ + 3.2u = 10

This is now a linear, non-homogeneous equation system of the form

u′ + pu = r

whose solution is given by

h =

∫
pdx =

∫
(−3.2)dx = −3.2x
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u = e−h(
∫
ehrdx+ C) = e3.2x(

∫
e−3.2x10dx+ C)

= e3.2x( 10e−3.2x

−3.2 + C) = − 10
3.2 + Ce3.2x

Now we undo the change of variable

y =
1

u
=

1

− 10
3.2 + Ce3.2x

Kreyszig, 1.5.28
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve 2xyy′ + (x− 1)y2 = x2ex. Hint: set z = y2

Solution: If we do the change of variable

z = y2 ⇒ z′ = 2yy′

then the ODE is transformed to

xz′ + (x− 1)z = x2ex

z′ +
x− 1

x
z = xex

This is now a linear, non-homogeneous equation system of the form

z′ + pz = r

whose solution is given by

h =

∫
pdx =

∫
x− 1

x
dx = x− log |x|

z = e−h(
∫
ehrdx+ C) = e−x+log |x| (∫ ex−log |x|(xex)dx+ C

)
= e−xx

(∫
e2xdx+ C

)
= e−xx

(
1
2e

2x + C
)

= x
2 e
x + Ce−x

Now we undo the change of variable

y2 =

√
x

2
ex + Ce−x

Kreyszig, 1.5.33
Carlos Oscar Sorzano, Aug. 31st, 2014

Find and solve the model for drug injection into the bloodstream if, begin-
ning at t = 0 a constant amount A[g/min] is injected and the drug is simul-
taneously removed at a rate proportional to the amount of the drug present at
time t.
Solution: The ODE

A′ = Kin −KoutA A(0) = 0

models the system. This can be rewritten as

A′ +KoutA = Kin
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which is a linear, non-homogeneous ODE whose solution is

h =
∫
Koutdt = Koutt

A = e−h
(∫
ehrdt+ C

)
= e−Koutx

(∫
eKouttKindt+ C

)
= e−Koutt

(
Kin

1
Kout

eKoutt+ C
)

= Kin
Kout

+ Ce−Koutt

Now we impose the initial condition

A(0) = 0 =
Kin

Kout
+ C ⇒ C = − Kin

Kout

Finally, the solution is

A(t) =
Kin

Kout
(1− e−Koutt) (t > 0)

Kreyszig, 1.5.34
Carlos Oscar Sorzano, Aug. 31st, 2014

A model for the spread of contagious diseases is obtained by assuming that
the rate of spread is proportional to the number of contacts between infected
and noninfected persons, who are assumed to move freely among each other.
Set up the model. Find the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the proportion of infected persons
as t→∞ and explain what it means.
Solution: Let us call y the proportion of infected persons. The growth of
infected persons is proportional to the number of contacts means that

y′ = ky(1− y) y(0) = y0

The two equilibrium solutions are y = 0 (unstable) and y = 1 (stable) as can
be seen in the �gure below
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We can rewrite the ODE as

y′ − ky = −ky2
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This is a Bernouilli equation of the form

y′ + py = gya

with p = −k, g = −k, a = 2. We do the change of variable

u = y1−a = y1−2 = y−1

u′ = −y−2y′ = −y−2(ky − ky2) = −(ky−1 − k) = k − ku

u′ + ku = k

This is a linear, non-homogeneous equation whose solution is

h =
∫
kdt = kt

u = e−h
(∫
ehrdt+ C

)
= e−kt

(∫
ektkdt+ C

)
= e−kt

(
ekt + C

)
= 1 + Ce−kt

We undo now the change of variable

y =
1

1 + Ce−kt

Imposing the initial condition

y0 =
1

1 + C
⇒ C =

1

y0
− 1 =

1− y0

y0

Finally

y =
1

1 + 1−y0
y0

e−kt
=

y0

y0 + (1− y0)e−kt

The following �gure shows the curve for y0 = 0.1, k = 0.8.
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Kreyszig, 1.6.9
Carlos Oscar Sorzano, Jan. 13th, 2015

Which is the set of orthogonal trajectories to the curve family

y = ce−x
2
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Solution: To �nd the orthogonal trajectories, we di�erentiate the set of curves

y′ = −2xce−x
2

That we may rewrite as
y′ = −2xy = f(x, y)

The set of orthogonal curves must ful�ll

ỹ′ = − 1

f(x, ỹ)
=

1

−2xỹ

ỹỹ′ = − 1

2x

ỹdỹ = − 1

2x
dx

Which is a separable di�erential equation that can be directly integrated

1

2
ỹ2 = −1

2
log(x) + C

ỹ2 = − log(x) + C

eỹ
2

=
C

x
Finally, the curve family can be rewritten as

x = Ce−ỹ
2

Kreyszig, 1.6.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Electric �eld. The lines of electric force of two opposite charges of the
same strength at (−1, 0) and (1, 0) are the circles through (−1, 0) and (1, 0).
Show that these circles are given by

x2 + (y − c)2 = 1 + c2.

Show that the equipotential lines (which are orthogonal trajectories of those
circles) are the circles given by

(x+ c∗)2 + ỹ2 = (c∗)2 − 1

(dashed in the following �gure).
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Solution: The curve
x2 + (y − c)2 = 1 + c2

is the family of all circles pasing by (−1, 0) and (1, 0). To show this statement
we show that (−1, 0) and (1, 0) ful�ll this equation

(−1)2 + (0− c)2 = 1 + c2

(1)2 + (0− c)2 = 1 + c2

Obviously this family is a set of circles.
To �nd the orthogonal trajectories, we di�erentiate the curve

2x+ 2(y − c)y′ = 0

x+ (y − c)y′ = 0

This curve contains the parameter c which should not be there. To eliminate
it, we manipulate the original set of curves to get

x2 + y2 + c2 − 2yc = 1 + c2

x2 + y2 − 2yc = 1

c =
x2 + y2 − 1

2y

So the di�erential equation becomes

x+

(
y − x2 + y2 − 1

2y

)
y′ = 0

2yx+
(
2y2 − (x2 + y2 − 1)

)
y′ = 0

2yx+
(
y2 − x2 + 1

)
y′ = 0

y′ = − 2yx

y2 − x2 + 1
= f(x, y)

The set of orthogonal curves must ful�ll

ỹ′ = − 1

f(x, ỹ)
=
ỹ2 − x2 + 1

2ỹx
=

1

2x
ỹ +

1

2

1− x2

x
ỹ−1

ỹ′ − 1

2x
ỹ =

1

2

1− x2

x
ỹ−1

This ODE is a Bernouilli equation of the form

ỹ′ + p(x)ỹ = g(x)ya

with a = −1. So we make the change of variable

u = ỹ1−a = ỹ1−(−1) = ỹ2 ⇒ u′ = 2ỹỹ′

u′ = 2ỹ

(
1

2x
ỹ +

1

2

1− x2

x
ỹ−1

)
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u′ =
1

x
ỹ2 +

1− x2

x

u′ =
1

x
u+

1− x2

x

u′ − 1

x
u =

1− x2

x

This is a linear equation whose solution is

h =
∫
− 1
xdx = − log |x|

eh = e− log |x| = 1
x

u = e−h
(∫
ehrdx+ c∗

)
= x

(∫
1
x

1−x2

x dx+ c∗
)

= x
(
−x

2+1
x + c∗

)
= −x2 − 1 + c∗x

Undoing the change of variable

ỹ2 = −x2 − 1 + c∗x

ỹ2 + x2 − c∗x = −1

ỹ2 + x2 − c∗x+

(
c∗

2

)2

= −1 +

(
c∗

2

)2

ỹ2 +

(
x− c∗

2

)2

= −1 +

(
c∗

2

)2

ỹ2 + (x− c∗)2
= −1 + (c∗)2

(x+ c∗)
2

+ ỹ2 = (c∗)2 − 1

Kreyszig, 1.6.13
Carlos Oscar Sorzano, Aug. 31st, 2014

Temperature �eld. Let the isotherms (curves of constant temperature) in
a body in the upper half-plane y > 0 be given by

4x2 + 9y2 = c.

. Find the orthogonal trajectories (the curves along which heat will �ow in
regions �lled with heat-conducting material and free of heat sources or heat
sinks).
Solution: Let us analyze �rst the curves

4x2 + 9y2 = c

4

c
x2 +

9

c
y2 = 1(

x
√
c

2

)2

+

(
y
√
c

3

)2

= 1
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So they are ellipses of semiaxes
√
c

2 and
√
c

3 .
Their orthogonal trajectories can be determined by di�erentiating the family

of curves:
8x+ 18yy′ = 0

4x+ 9yy′ = 0

y′ = −4x

9y
= f(x, y)

The orthogonal trajectories ful�ll the di�erential equation

ỹ′ = − 1

f(x, ỹ)
=

9ỹ

4x

dỹ

9ỹ
=
dx

4x

1

9
log |ỹ| = 1

4
log |x|+K

log |ỹ| = 9

4
log |x|+K

ỹ = Kx
9
4 = Kx2.25

In MATLAB:

close all

h=ezplot('y-x�2.25',[-2 2 0 4])

set(h,'Color','red')

hold on

h=ezplot('y-2*x�2.25',[-2 2 0 4])

set(h,'Color','red')

h=ezplot('y-0.5*x�2.25',[-2 2 0 4])

set(h,'Color','red')

h=ezplot('4*x�2+9*y�2=1',[-2 2 0 4])

set(h,'Color','blue')

h=ezplot('4*x�2+9*y�2=8',[-2 2 0 4])

set(h,'Color','blue')

h=ezplot('4*x�2+9*y�2=20',[-2 2 0 4])

set(h,'Color','blue')

axis square

title �
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Problema
Carlos Oscar Sorzano, Nov. 4th, 2014

It starts snowing in the morning and continues steadily throughout the day.
A snow- plow that removes snow at a constant rate starts plowing at noon. It
plows 2 km in the �rst hour, and 1 km in the second. What time did it start
snowing?
Solution: Let us assume that the snowplow removes snow at a constant rate
α[cm3/h] and the snow falls at a �xed rate k[cm3/h]. Assume that the width of
the snowplow is equal to the road width w[cm]. Assume that it starts to snow
at t = −t0. Then, the height of the snow in the road must ful�ll the di�erential
equation

1[cm]w[cm]
dh

dt
[cm/h] = k[cm3/h] h(−t0) = 0

whose solution is

dh =
k

w
dt

h = C +
k

w
t

The constant C is obtained by the initial condition

h(−t0) = 0

C − k

w
t0 = 0⇒ C =

kt0
w

So the height becomes

h =
k

w
(t+ t0)[cm]

Let us call x(t) the distance that the snowplow has gone since t = 0. The speed
of the snowplow depends on the amount of snow that it can remove by unit of
time

w[cm]h[cm]
dx

dt
[cm/h] = α[cm3/h]
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dx

dt
=

α

wh
=

α

k(t+ t0)

dx =
α

k

dt

t+ t0

x =
α

k
log |t+ t0|+ C

We have the initial condition x(0) = 0 from which

0 =
α

k
log |t0|+ C ⇒ C = −α

k
log |t0|

Consequently, the distance gone by the snowplow is

x(t) =
α

k
(log |t+ t0| − log |t0|) =

α

k
log

∣∣∣∣ tt0 + 1

∣∣∣∣
From the problem statement we know that x(1) = 2000 and x(2) = 3000, that
is

x(2) = 3000 = α
k log

∣∣∣ 2
t0

+ 1
∣∣∣

x(1) = 2000 = α
k log

∣∣∣ 1
t0

+ 1
∣∣∣

Dividing both equations

3

2
=

log
∣∣∣ 2
t0

+ 1
∣∣∣

log
∣∣∣ 1
t0

+ 1
∣∣∣

3 log

∣∣∣∣ 1

t0
+ 1

∣∣∣∣ = 2 log

∣∣∣∣ 2

t0
+ 1

∣∣∣∣
log

∣∣∣∣∣
(

1

t0
+ 1

)3
∣∣∣∣∣ = log

∣∣∣∣∣
(

2

t0
+ 1

)2
∣∣∣∣∣(

1

t0
+ 1

)3

=

(
2

t0
+ 1

)2

(1 + t0)3

t30
=

(2 + t0)2

t20

(1 + t0)3 = t0(2 + t0)2

t30 + 3t20 + 3t0 + 1 = t30 + 4t20 + 4t0

t20 + t0 − 1 = 0⇒ t0 =

{
−1−

√
5

2√
5−1
2

The only valid solution is

t0 =

√
5− 1

2
= 0.618[h] = 37[min]

So it started snowing at 11h 23' AM.
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2 Chapter 2

Kreyszig, 2.1.1
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that
F (x, y′, y′′) = 0

can be reduced to a �rst-order equation in z = y′.
Solution: If we do the change of variable

z = y′ ⇒ z′ = y′′

Substituting in the original ODE, we have

F (x, z, z′) = 0

that is a �rst-order equation.
For example,

y′′ +
1

x
y′ = cosh(x)

can be transformed into

z′ +
1

x
z = cosh(x)

Kreyszig, 2.1.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that
F (y, y′, y′′) = 0

can be reduced to a �rst-order equation in z = y′.
Solution: If we do the change of variable

z = y′ ⇒ z′ =
dy′

dy

dy

dx
=
dz

dy
z = zyz

Substituting in the original ODE, we have

F (y, z, zyz) = 0

that is a �rst-order equation.
For example,

y′′ +
1

y
y′ + y2 = 0

can be transformed into

zyz +
1

y
z = −y2

Kreyszig, 2.1.4
Carlos Oscar Sorzano, Nov. 2nd, 2014
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Solve
2xy′′ = 3y′

Solution: We make the change of variable

z = y′

z′ = y′′

The di�erential equation becomes

2xz′ = 3z

z′

z
=

3

2x

dz

z
=

3dx

2x

Integrating

log |z| = 3

2
log |x|+ C1

log |z| = log |x 3
2 |+ C1

z = C1x
3
2

Undoing the change of variable

y′ = C1x
3
2

y = C1

∫
x

3
2 dx+ C2

y =
2

5
C1x

5
2 + C2

After absorbing constants, the general solution can be rewritten as

y = C1x
5
2 + C2

Kreyszig, 2.1.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve yy′′ = 3(y′)2

Solution: If we do the change of variable

z = y′ ⇒ z′ =
dy′

dy

dy

dx
=
dz

dy
z = zyz

Substituting in the original ODE, we have

y(zyz) = 3z2

zyy = 3z

dz

z
=

3dy

y
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log |z| = 3 log |y|+ C1

z = C1y
3

Now we solve
y′ = C1y

3

y−3dy = C1dx

− 1

2y2
= C1x+ C2

C1xy
2 + C2y

2 = 1

Kreyszig, 2.1.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Hanging cable. It can be shown that the curve y(x) of an inextensible
�exible homogeneous cable hanging between two �xed points is obtained by
solving

y′′ = k
√

1 + (y′)2

where the constant k depends on the weight. This curve is called catenary (from
Latin catena = the chain). Find and graph y(x), assuming that and those �xed
points are (−1, 0) and (1, 0) in a vertical xy-plane.
Solution: If we do the change of variable

z = y′ ⇒ z′ = y′′

Substituting in the original ODE, we have

z′ = k
√

1 + z2

dz√
1 + z2

= kdx

asinh(z) = kx+ c1

z = y′ = sinh(kx+ c1)

Since the catenary is symmetric with respect to the middle point, at this point
we have no slope, that is

y′(0) = 0 = sinh(c1)⇒ c1 = 0

Now we solve the ODE
y′ = sinh(kx)

y =

∫
sinh(kx)dx =

1

k
cosh(kx) + c2

Imposing the boundary condition

y(−1) = 0 =
1

k
cosh(−k) + c2 ⇒ c2 = −1

k
cosh(−k) = −1

k
cosh(k)

So the �nal curve is

y =
1

k
cosh(kx)− 1

k
cosh(k)
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Kreyszig, 2.1.13
Carlos Oscar Sorzano, Aug. 31st, 2014

Motion. If, in the motion of a small body on a straight line, the sum of
velocity and acceleration equals a positive constant, how will the distance y(t)
depend on the initial velocity and position?
Solution: If the sum of velocity and acceleration equals a positive constant,
then

y′ + y′′ = k

We make the change of variable

z = y′ ⇒ z′ = y′′

Then the ODE becomes
z + z′ = k

whose solution is given by

h =
∫

1dx = t
z = e−h(

∫
ehrdt+ c1) = e−t(

∫
etkdt+ c1) = e−t(ket + c1) = k + c1e

−t

Now we solve
z = y′ = k + c1e

−t

y = kt− c1e−t + c2

We now impose the initial conditions

y(0) = y0 = −c1 + c2

y′(0) = v0 = k + c1 ⇒ c1 = v0 − k
c2 = y0 + c1 = y0 + v0 − k

So the �nal dependence of motion on the initial conditions is

y = kt+ (k − v0)e−t + y0 + v0 − k = y0 + kt+ (k − v0)(e−t − 1)
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Kreyszig, 2.1.17
Carlos Oscar Sorzano, Aug. 31st, 2014

Verify that the functions x
3
2 and x−

1
2 are a basis of solutions of the ODE

4x2y′′ − 3y = 0

Find the particular solution satisfying y(1) = −3, y′(1) = 0.
Solution: Let us calculate the derivatives of the two given functions

y1 = x
3
2

y′1 = 3
2x

1
2

y′′1 = 3
2

1
2x
− 1

2 = 3
4x
− 1

2

y2 = x−
1
2

y′2 = − 1
2x
− 3

2

y′′2 = (− 1
2 )(− 3

2 )x−
5
2 = 3

4x
− 5

2

We now substitute these two functions in the ODE to verify if they are solutions
of it

4x2y′′1 − 3y1 = 4x2( 3
4x
− 1

2 )− 3x
3
2 = 3x

3
2 − 3x

3
2 = 0

4x2y′′2 − 3y2 = 4x2( 3
4x
− 5

2 )− 3x−
1
2 = 3x−

1
2 − 3x−

1
2 = 0

So they are two independent (one is not a multiple of the other) solutions of
a second-order ODE, consequently, they are a basis of solutions. The general
solution can be written as

y = c1y1 + c2y2 = c1x
3
2 + c2x

− 1
2

The solution satisfying the initial values must ful�ll

yp(1) = −3 = c1 + c2
y′p(1) = 0 = 3

2c1 −
1
2c2

}
⇒ c1 = −3

4
, c2 = −9

4

So

yp = −3

4
x

3
2 − 9

4
x−

1
2

0.5 1 1.5
−3.45

−3.4

−3.35

−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

−3

−2.95

x

y
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Kreyszig, 2.1.19
Álvaro Martín Ramos, Dec. 27th, 2014

Verify that the functions

e−x cos(x), e−x sin(x)

are a basis of the ODE
y′′ + 2y′ + 2y = 0

Find the particular solution satisfying y(0)=0, y'(0)=15.
Solution: Let us calculate the derivatives of the two given functions

y1 = e−x cos(x)
y′1 = −e−x cos(x)− e−x sin(x)
y′′1 = [e−x cos(x) + e−x sin(x)]− [−e−x sin(x) + e−x cos(x)]

= 2e−x sin(x)
y2 = e−x sin(x)
y′2 = −e−x sin(x) + e−x cos(x)
y′′2 = [e−x sin(x)− e−x cos(x)] + [−e−x cos(x)− e−x sin(x)]

= −2e−x cos(x)

We now substitute these two functions in the ODE to verify if they are solutions
of it

y′′1 + 2y′1 + 2y1 = 0

2e−x sin(x) + 2[−e−x cos(x)− e−x sin(x)] + 2[e−x cos(x)] = 0

0 = 0

Similarly
y′′2 + 2y′2 + 2y2 = 0

−2e−x cos(x) + 2[−e−x sin(x) + e−x cos(x)] + 2[e−x sin(x)]

0 = 0

So they are two independent(one is not multiple of the other) solutions of
a second-order ODE, consequently, they are a basis of solutions. The general
solution can be written as

y = c1y1 + c2y2 = c1e
−x cos(x) + c2e

−x sin(x)

The solution satisfying the initial values must ful�ll

y(0) = 0 = c1

y′(0) = 15 = c1[−e0 cos(0)− e0 sin(0)] + c2[−e0 sin(0) + e0 cos(0)] = −c1 + c2

−c1 + c2 = 15⇒ c2 = 15

So
yp = 15e−x sin(x)

Kreyszig, 2.2.11
Álvaro Martín Ramos, Dec. 27th, 2014
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Solve the ODE
y′′ − 4y′ − 3y = 0

Solution: The characteristic equation is

4λ2 − 4λ− 3 = 0

whose solutions are

λ =
4±
√

16 + 48

8
=

4± 8

8
⇒ λ1 =

3

2
, λ2 = −1

2

The general solution is

y = c1e
3
2x + c2e

(− 1
2 )x

Kreyszig, 2.2.16
Carlos Oscar Sorzano, Aug. 31st, 2014

Find an ODE whose basis of solutions are e2.6x and e−4.3x.
Solution: We look for an ODE of the form

y′′ + ay′ + by = 0

If the exponential eλx is to be a solution of the ODE, it must ful�ll

P (λ) = λ2 + aλ+ b = 0

But we already know that λ = 2.6 and λ = −4.3 are two solutions, so the
characteristic polynomial can be factorized as

P (λ) = (λ− 2.6)(λ+ 4.3) = λ2 + 1.7λ− 11.18

The corresponding ODE is

y′′ + 1.7y′ − 11.18y = 0

Kreyszig, 2.2.17
Carlos Oscar Sorzano, Aug. 31st, 2014

Find an ODE whose basis of solutions are e
√

5x and xe
√

5x.
Solution: As in the Problem 2.2.16, we know that the characteristic polynomial
can be factorized as

P (λ) = (λ−
√

5)2 = λ2 − 2
√

5λ+ 5

The corresponding ODE is

y′′ − 2
√

5y′ + 5y = 0

Kreyszig, 2.2.19
Álvaro Martín Ramos, Dec. 27th, 2014
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Find an ODE whose basis of solutions are e(−2+i)x and e(−2−i)x.
Solution: We look for an ODE of the form

y′′ + ay′ + by = 0

If those are solutions of the ODE, it must ful�ll

P (λ) = λ2 + aλ+ b = 0

We can solve it

λ1 =
1

2
(−a+

√
a2 − 4b) = −a

2
+ i

w

2

λ2 =
1

2
(−a−

√
a2 − 4b) = −a

2
− iw

2

Where
w =

√
a2 − 4b

We now that the generic solutions of the di�erential equation are of the form

y1 = e(− a2 +iw2 )x

y2 = e(− a2−i
w
2 )x

Our solutions are
e(−2+i)x, e(−2−i)x

So
−2 = −a

2
⇒ a = 4

And
w

2
= 1⇒

√
16− 4b = 2⇒ b = 3

Therefore the corresponding ODE is

y′′ + 4y′ + 3y = 0

Kreyszig, 2.2.31
Carlos Oscar Sorzano, Aug. 31st, 2014

Are the functions ekx and xekx linearly independent on any interval?
Solution: Let us call

y1 = ekx

y2 = xekx

The two functions are linearly dependent if we can �nd two constants, not all
of them zero, such that

c1y1 + c2y2 = 0

If c1 is di�erent from 0, then
y1

y2
= −c2

c1

If c2 is di�erent from 0, then
y2

y1
= −c1

c2
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That is if they are linearly dependent, one function must be a multiple of the
other or 0. The ratio

y2

y1
=
xekx

ekx
= x

is not constant, and consequently, the two functions are linearly independent.
Kreyszig, 2.2.33
Álvaro Martín Ramos, Dec. 27th, 2014

Are the functions x2 and x2ln(x) linearly independent on the interval x > 1
?
Solution: The ratio

x2

x2ln(x)
=

1

ln(x)

is a function of x and not a constant, consequently, the two functions are linearly
independent. If they were linearly dependent, their ratio would be constant.

Kreyszig, 2.2.34
Carlos Oscar Sorzano, Aug. 31st, 2014

Are the functions log(x) and log(x3) linearly independent on the interval
x > 1?
Solution: The ratio

log(x3)

log(x)
=

3 log(x)

log(x)
= 3

is constant, and consequently, the two functions are linearly dependent (one is
a multiple of the other).
Kreyszig, 2.2.35
Carlos Oscar Sorzano, Aug. 31st, 2014

Are the functions sin(2x) and cos(x) sin(x) linearly independent on the in-
terval x < 0?
Solution: The ratio

sin(2x)

cos(x) sin(x)
=

2 cos(x) sin(x)

cos(x) sin(x)
= 2

is constant, and consequently, the two functions are linearly dependent (one is
a multiple of the other).
Kreyszig, 2.3.5
Carlos Oscar Sorzano, June 15th, 2015

Apply the operator (D − 2I)(D + 3I) to the functions e2x, xe2x, and e−3x.
Show all steps in detail.
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Solution:

(D − 2I)(D + 3I)(e2x) = (D − 2I)(2e2x + 3e2x)
= (D − 2I)(5e2x)
= 10e2x − 10e2x

= 0
(D − 2I)(D + 3I)(xe2x) = (D − 2I)((1 + 2x)e2x + 3xe2x)

= (D − 2I)((1 + 5x)e2x)
= (7 + 10x)e2x − 2(1 + 5x)e2x

= 5e2x

(D − 2I)(D + 3I)(e−3x) = (D − 2I)(−3e−3x + 3e−3x)
= (D − 2I)(0)
= 0

Kreyszig, 2.3.14
Carlos Oscar Sorzano, Aug. 31st, 2014

If L = D2 + aD + bI has distinct roots µ and λ, show that a particular
solution is

y =
eµx − eλx

µ− λ

Obtain from this a solution xeλx by letting µ→ λ and applying L'Hôpital rule.
Solution: Since µ and λ are roots of the polynomial s2 + as+ b and we know
that

(D2 + aD + bI)eµx = 0

(D2 + aD + bI)eλx = 0

Let us check whether the function y = eµx−eλx
µ−λ is a solution of the ODE

Ly = 0

(D2 + aD + bI)
(
eµx−eλx
µ−λ

)
= 1

µ−λ (D2 + aD + bI)eµx − 1
µ−λ (D2 + aD + bI)eλx

= 1
µ−λ0− 1

µ−λ0

= 0

So y is a solution.
Let us study the behaviour of y as µ→ λ

lim
µ→λ

eµx−eλx
µ−λ = lim

µ→λ

(e(µ−λ)x−1)eλx

µ−λ

= eλx lim
µ→λ

e(µ−λ)x−1
µ−λ

= eλx lim
µ→λ

1+(µ−λ)x−1
µ−λ

= eλx lim
µ→λ

(µ−λ)x
µ−λ

= xeλx

Kreyszig, 2.4.3
Álvaro Martín Ramos, Dec. 27th, 2014
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How does the frequency of the harmonic oscillation change if we (i) double
the mass, (ii) take a spring of twice the modulus?
Solution: By the Newton's second law and Hooke's law we know that

−ky = my′′

y′′ +
k

m
y = 0

We can solve its characteristic equation

λ2 +
k

m
= 0⇒ λ = ±i

√
k

m
= ±iω0

(i) If we double the mass

λ2 +
k

2m
= 0⇒ λ = ±i

√
k

2m
= ±i 1√

2

√
k

m
= ±i 1√

2
ω0

So the frequency will be lower by a factor 1√
2
.

(ii) If we take a spring of twice the modulus

λ2 + 2
k

m
y = 0⇒ λ = ±i

√
2k

m
= ±i

√
2

√
k

m
= ±i

√
2w0

So the frequency will be higher by a factor
√

2.
Kreyszig, 2.4.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Springs in parallel. What are the frequencies of vibration of a body of
mass m = 5[kg] (i) on a spring of modulus k1 = 20[N/m], (ii) on a spring of
modulus k2 = 45[N/m], (iii) on the two springs in parallel?
Solution: For the cases (i) and (ii), with a single spring, the di�erential equa-
tion governing the system is

F = −ky = my′′ ⇒ y′′ +
k

m
y = 0

The frequency of vibration comes from the analysis of the characteristic poly-
nomial of the ODE

λ2 +
k

m
= 0⇒ λ = ±iω0 = ±i

√
k

m

In the �rst case it is

ω01 =

√
k1

m
=

√
20[N/m]

5[Kg]
= 2[s−1]

In the second case

ω02 =

√
k2

m
=

√
45[N/m]

5[Kg]
= 3[s−1]
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If we put the springs in parallel, the system would be described by

F1 + F2 = −k1y − k2y = my′′ ⇒ y′′ +
k1 + k2

m
y = 0

ω03 =

√
k1 + k2

m
=

√
65[N/m]

5[Kg]
= 3.6[s−1]

Kreyszig, 2.4.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Springs in series. What is the frequency of vibration if the two springs
are in series instead of in parallel?
Solution: The force applied on the mass must ful�ll

F = −ky = −k(y1 + y2)

On another side,
F = −k1y1 = −k2y2

Then we can write
y = y1 + y2

−F
k

= − F
k1
− F

k2

1

k
=

1

k1
+

1

k2
⇒ k =

k1k2

k1 + k2

Then, we can calculate the frequency of oscillation as

ω0 =

√
k

m
=

√
k1k2

(k1 + k2)m
=

√
45 · 20

(45 + 20)5
= 1.66[s−1]

Kreyszig, 2.4.7
Carlos Oscar Sorzano, Aug. 31st, 2014

Pendulum. Find the frequency of oscillation of a pendulum of length L,
neglecting air resistance and the weight of the rod, and assuming θ to be so
small that sin(θ) practically equals θ.
Solution: The movement of the pendulum is along an arch whose length is LΘ.
The acceleration is the second derivative of this variable (LΘ)′′, and Newton's
second law of motion states

F = ma

−mg sin(θ) = m(Lθ)′′

−g sin(θ) = (Lθ)′′

For a small angle sin(θ) ≈ θ
−gθ = (Lθ)′′

θ′′ +
g

L
θ = 0
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The characteristic polynomial is

λ2 +
g

L
= 0

λ = ±iω0 = ±i
√
g

L

Kreyszig, 2.4.8
Carlos Oscar Sorzano, Nov. 2nd, 2014

Archimedian principle. This principle states that the buoyancy force
equals the weight of the water displaced by the body (partly or totally sub-
merged). The cylindrical buoy of diameter 60 cm in the following �gure is
�oating in water with its axis vertical. When depressed downward in the water
and released, it vibrates with period 2 sec. What is its weight?

Solution: Let y be the height of the cylinder that has been submerged. The
force that the buoy experiences is

F = ρ(πr2)y

where ρ is the speci�c weight of water (ρ = 980[(cm/s2)(g/cm3)] = 980[g/(cm2s2)])
and r is the radius of the cylinder (60 cm). By Newton's law:

my′′ = −ρ(πr2)y

my′′ + ρ(πr2)y = 0

The oscillation frequency comes from the roots of the characteristic equation

mλ2 + ρ(πr2) = 0

λ = ±ir
√
ρπ

m
= ±iω0 = ±2π

T

where T is the oscillation period. Solving for T we have

T =
2π

ω0
=

2π

r
√

ρπ
m

=
2

r

√
πm

ρ

Finally, the weight of the cylinder is

m =
ρr2T 2

4π
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In this particular case

m =
ρr2T 2

4π
=

980[g/(cm2s2)]302[cm2]22[s2]

4π
= 280.75[kg]

Kreyszig, 2.4.14
Carlos Oscar Sorzano, Aug. 31st, 2014

Shock absorber. What is the smallest value of the damping constant of a
shock absorber in the suspension of a wheel of a car (consisting of a spring and
an absorber) that will provide (theoretically) an oscillation free ride if the mass
of the car is 2000 [Kg] and the spring constant equals 4500 [Kg/s2]?
Solution: The equation de�ning motion is

my′′ = −ky − cy′

whose characteristic polynomial is

mλ2 = −k − cλ

mλ2 + cλ+ k = 0

λ =
−c±

√
c2 − 4km

2m

Critical damping is attained if

c2 − 4km = 0⇒ c = 2
√
km =

√
4500[Kg/s2]2000[Kg] = 3000[Kg/s]

If c ≥ 3000[Kg/s], there are no oscillations in the car.
Kreyszig, 2.4.18
Carlos Oscar Sorzano, Aug. 31st, 2014

Logarithmic decrement. Show that the ratio of two consecutive maxi-
mum amplitudes of a damped oscillation

y(t) = Ce−at cos(ω0t− δ)

is constant, and the natural logarithm of this ratio called the logarithmic decre-
ment, equals

∆ =
2πa

ω0
.

Find ∆ for the solutions of y′′ + 2y′ + 5 = 0. .
Solution: Let us calculate the maxima of the oscillation curve

dy
dt = 0 = C (−ae−at cos(ω0t− δ)− e−atω0 sin(ω0t− δ))

which implies that

a cos(ω0t− δ) + ω0 sin(ω0t− δ) = 0

tan(ω0t− δ) = − a

ω0
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ω0t− δ = atan

(
− a

ω0

)
+ πk

t =
1

ω0

(
δ − atan

(
a

ω0

)
+ πk

)
Let t1 denote the time of a maximum and t2 the time of the next maximum

t1 = 1
ω0

(
δ − atan

(
a
ω0

)
+ πk1

)
t2 = 1

ω0

(
δ − atan

(
a
ω0

)
+ π(k1 + 2)

)
= t1 + 2π

ω0

Let us evaluate the oscillation curve at these two time points

y(t1) = Ce−at1 cos (ω0t1 − δ)
= Ce−at1 cos

(
ω0

1
ω0

(
δ − atan

(
a
ω0

)
+ πk1

)
− δ
)

= Ce−at1 cos
(
−atan

(
a
ω0

)
+ πk1

)
y(t2) = Ce−at2 cos (ω0t2 − δ)

= Ce
−a
(
t1+

2π
ω0

)
cos
(
ω0(t1 + 2π

ω0
)− δ

)
= Ce

−a
(
t1+

2π
ω0

)
cos (ω0t1 − δ + 2π)

= Ce
−a
(
t1+

2π
ω0

)
cos (ω0t1 − δ)

Let us calculate now the ratio

y(t1)
y(t2) = Ce−at1 cos(ω0t1−δ)

Ce
−a

(
t1+

2π
ω0

)
cos(ω0t1−δ)

= e
2πa
ω0

The logarithm of this quantity is the logarithmic decrement

∆ = log
y(t1)

y(t2)
=

2πa

ω0

The characteristic polynomial of the ODE

y′′ + 2y′ + 5 = 0

is
λ2 + 2λ+ 5 = 0⇒ λ = −1± 2i = −a± iω0

Consequently,

∆ =
2π(1)

2
= π

So, from one maximum to the next, there is a factor

e−∆ = 0.043
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Kreyszig, 2.5.11
Álvaro Martín Ramos, Dec. 27th, 2014

Solve the ODE
(x2D2 − 3xD + 10I)y = 0

Solution: We may rewrite the ODE as

x2y′′ − 3xy′ + 10y = 0

Which is an equation of the form

x2y′′ + axy′ + by = 0

The ODE is an Euler-Cauchy equation, so we try with a solution of the form

y = xm

whose derivatives are
y′ = mxm−1

y′′ = m(m− 1)xm−2

Substituting into the ODE we get

x2(m(m− 1)xm−2)− 3x(mxm−1) + 10xm = 0

m(m− 1)− 3m+ 10 = 0

m2 − 4m+ 10 = 0⇒ m1, ,2 = 2± i
√

6

y = x2(c1 cos
(√

6 log(x)
)

+ c2 sin
(√

6 log(x)
)

Kreyszig, 2.6.5
Carlos Oscar Sorzano, Aug. 31st, 2014
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Show that the functions x2 and x3 are linearly independent calculating their
ratio and their Wronskian.
Solution: The functions

y1 = x2

y2 = x3

are linearly independent because their ratio

y1

y2
=
x2

x3
=

1

x

is not constant. This independence is con�rmed because their Wronskian∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣ = 3x4 − 2x4 = x4 6= 0

is not 0 for all x 6= 0.
Kreyszig, 2.6.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the ODE whose basis of solutions are the functions x2 and x2 log(x).
Show the linear independence of the two functions and solve the initial value
problem that satis�es y(1) = 4 and y′(1) = 6.
Solution: This basis is the basis of solutions of the Euler-Cauchy ODE with a
double root at m = 2. So the Euler-Cauchy auxiliary equation

m2 + (a− 1)m+ b = 0

must be equal to
(m− 2)2 = 0 = m2 − 4m+ 4

So a = −3 and b = 4. The corresponding ODE is

x2y′′ − 3xy′ + 4y = 0

To show that the two functions are independent, we calculate their Wron-
skian ∣∣∣∣ x2 x2 log(x)

2x 2x log(x) + x

∣∣∣∣ = x3

∣∣∣∣ 1 log(x)
2 2 log(x) + 1

∣∣∣∣ = x3

The solution of the Initial Value Problem must be of the form

yp = c1x
2 + c2x

2 log(x)

yp(1) = 4 = c1

y′p = 2c1x+ 2c2x log(x) + c2x

y′p(1) = 6 = 2c1 + c2 = 8 + c2 ⇒ c2 = −2

So the solution sought is

yp = x2(4− 2 log(x))

Kreyszig, 2.7.6

54



Carlos Oscar Sorzano, Aug. 31st, 2014

Find the real general solution of

y′′ + y′ + (π2 + 1
4 )y = e−

x
2 sin(πx)

Solution: The solution of the homogeneous problem is given by the character-
istic polynomial

λ2 + λ+ π2 + 1
4 = 0⇒ λ =

−1±
√

1− 4π2 − 1

2
= −1

2
± iπ

The real general solution of the homogeneous problem is

yh = Ae−
x
2 cos(πx) +Be−

x
2 sin(πx)

Since the excitation signal e−
x
2 sin(πx) corresponds to one of the basis, we try

a particular function of the form

yp = K1xe
−x2 cos(πx) +K2xe

−x2 sin(πx)

y′p = 1
2e
−x2 [cos(πx)(2πK2x−K1(x− 2))− sin(πx)(2πK1x+K2(x− 2))]

y′′p = 1
4e
−x2
[
sin(πx)

(
4πK1(x− 2) +K2(−4π2x+ x− 4)

)
+

cos(πx)
(
K1(−4π2x+ x− 4)− 4πK2(x− 2)

)]
We now substitute in the original equation

y′′ + y′ + (π2 + 1
4 )y = 2πe−

x
2 (K2 cos(πx)−K1 sin(πx))

= e−
x
2 sin(πx)

From where
K2 = 0

−2πK1 = 1⇒ K1 = − 1

2π

So the particular solution is of the form

yp = − 1

2π
xe−

x
2 cos(πx)

And the general solution

y = yp + yh = e−
x
2

((
A− x

2π

)
cos(πx) +B sin(πx)

)
Kreyszig, 2.7.13
Carlos Oscar Sorzano, Jan. 15th, 2015

Find the real general solution of

8y′′ − 6y′ + y = 6 cosh(x) y(0) = 0.2, y′(0) = 0.05
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Solution: The solution of the homogeneous problem is given by the character-
istic polynomial

8λ2 − 6λ+ 1 = 0 = 8

(
λ− 1

4

)(
λ− 1

2

)
⇒ λ =

1

4
,

1

2

The real general solution of the homogeneous problem is

yh = c1e
x
2 + c2e

x
4

The excitation function 6 cosh(x) does not belong to the space function of the
homogeneous equation. We try a solution of the form

yp = A cosh(x) +B sinh(x)
y′p = A sinh(x) +B cosh(x)
y′′p = A cosh(x) +B sinh(x)

Substituting into the di�erential equation

8(A cosh(x)+B sinh(x))−6(A sinh(x)+B cosh(x))+A cosh(x)+B sinh(x) = 6 sinh(x)

(9A−6B) cosh(x)+(9B−6A) sinh(x) = 6 sinh(x)⇒
{

9A− 6B = 0
9B − 6A = 6

⇒ A =
4

5
, B =

6

5

The general solution is of the form

y = c1e
x
2 + c2e

x
4 +

4

5
cosh(x) +

6

5
sinh(x)

We need now to determine c1 and c2 using the initial values

y(0) = 0.2 = c1 + c2 + 4
5

y′(0) = 0.05 = 1
2c1 + 1

4c2 + 6
5

}
⇒ c1 = −4, c2 =

17

5

Finally, the solution of the IVP is

y = −4e
x
2 +

17

5
e
x
4 +

4

5
cosh(x) +

6

5
sinh(x)

Kreyszig, 2.8.13
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the transient motion of the mass-spring system modeled by the ODE

(D2 + I)y = cos(ωt) ω 6= 1

Solution: The characteristic equation associated to this ODE is

λ2 + 1 = 0⇒ λ = ±i

So, the homogeneous response is of the form

yh = A cos(t) +B sin(t)
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Note that the external excitation does not have the same frequency as the
internal natural frequency. For that reason, for the particular response to the
external excitation we look a solution of the form

yp = K1 cos(ωt) +K2 sin(ωt)

y′p = −K1ω sin(ωt) +K2ω cos(ωt)

y′′p = −K1ω
2 cos(ωt)−K2ω

2 sin(ωt)

The ODE becomes

K1(1− ω2) cos(ωt) +K2(1− ω2) sin(ωt) = cos(ωt)⇒ K1 =
1

1− ω2
,K2 = 0

So the general solution is

y = yh + yp = A cos(t) +B sin(t) +
1

1− ω2
cos(ωt)

The graph below shows this function for ω = 1.5, A = B = 1

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

x

y

Kreyszig, 2.8.24
Carlos Oscar Sorzano, Jan. 15th, 2015

Gun barrel. Solve
y′′ + y = F (t)

where F (t) =

{
1− t2

π2 0 ≤ t ≤ π
0 otherwise

and y(0) = 0, y′(0) = 0. This models an

undamped system on which a force F acts during some interval of time (see
�gure below), for instance, the force on a gun barrel when a shell is �red, the
barrel being braked by heavy springs (and then damped by a dashpot, which
we disregard for simplicity). Hint: At π both y and y′ must be continuous.
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Solution: The general solution of the homogeneous equation is given by the
roots of the characteristic equation

λ2 + 1 = 0⇒ λ = ±i

yh = c1 cos(t) + c2 sin(t)

In the interval 0 ≤ t ≤ π we look for a particular solution of the form

yp = A+Bt+ Ct2

y′p = B + 2Ct
y′′p = 2C

Substituting into the ODE

2C + (A+Bt+ Ct2) = 1− t2

π2

(2C +A) +Bt+ Ct2 = 1− 1

π2
t2

2C +A = 1
B = 0
C = − 1

π2

⇒ A = 1 +
2

π2
, B = 0, C = − 1

π2

The general solution in this interval is of the form

y = c1 cos(t) + c2 sin(t) + 1 +
2

π2
− t2

π2

To determine c1 and c2 we impose the initial conditions

y(0) = 0 = c1 + 1 + 2
π2 ⇒ c1 = −

(
1 + 2

π2

)
y′(0) = 0 = c2

Finally, the solution in this interval is

y =

(
1 +

2

π2

)
(1− cos(t))− t2

π2

Note that at t = π we have

y(π) =
(
1 + 2

π2

)
(1− cos(π))− π2

π2 = 1 + 4
π2

y′(π) =
(
1 + 2

π2

)
sin(π)− 2π

π2 = − 2
π

In the interval t > 0 there is no external force, so the solution is given only by
the homogeneous solution. At t = π the solution, and its derivative, must be
continuous, so we have the solution

y = c1 cos(t) + c2 sin(t)

with the initial values

y(π) = 1 + 4
π2 = c1 cos(π) + c2 sin(π)⇒ c1 = −

(
1 + 4

π2

)
y′(π) = − 2

π = −c1 sin(π) + c2 cos(π)⇒ c2 = 2
π
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That is the solution in this interval is

y = −
(

1 +
4

π2

)
cos(t) +

2

π
sin(t)

Note that this solution is oscillatory and never vanishes because we have disre-
garded damping.

Finally we can write the solution to the initial problem as

y(t) =

{ (
1 + 2

π2

)
(1− cos(t))− t2

π2 0 ≤ t ≤ π
−
(
1 + 4

π2

)
cos(t) + 2

π sin(t) otherwise

Kreyszig, 2.9.1
Carlos Oscar Sorzano, Aug. 31st, 2014

Model the RC circuit of the �gure below. Find the current due to a constant
E

Solution: To model the circuit we sum the drops of voltage along the RC loop

E(t)− iR− 1

C
Q = 0

E(t)− iR− 1

C

t∫
−∞

i(τ)dτ = 0

Di�erentiating

E′ − i′R− 1

C
i = 0

i′ +
1

RC
i =

1

R
E′

If is constant, E = E0, then E
′ = 0 and the solution is given by the homogeneous

equation whose characteristic equation is

λ+
1

RC
= 0⇒ λ = − 1

RC

i(t) = Ae−
t
RC

If at t = 0 we have i(0), then
i(0) = A
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Finally,

i(t) = i(0)e−
t
RC

Kreyszig, 2.10.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve

(D2 + 6D + 9I)y = 16
e−3x

x2 + 1

by variation of parameters.
Solution: Let us �nd �rst the solution to the homogeneous problem. We need
the roots of the characteristic equation

λ2 + 6λ+ 9 = 0⇒ λ = −3,−3

So the homogeneous solution is

yh = c1y1 + c2y2 = c1e
−3x + c2xe

−3x

The Wronskian of the y1 and y2 functions is

W =

∣∣∣∣ e−3x xe−3x

−3e−3x −3xe−3x + e−3x

∣∣∣∣ =
(
e−3x

)2 ∣∣∣∣ 1 x
−3 −3x+ 1

∣∣∣∣ = e−6x

So the particular solution to the non-homogeneous problem is given by

yp = −y1

∫
y2r
W dx+ y2

∫
y1r
W dx

= −e−3x
∫ xe−3x16 e

−3x

x2+1

e−6x dx+ xe−3x
∫ e−3x16 e

−3x

x2+1

e−6x dx
= −16e−3x

∫
x

x2+1dx+ 16xe−3x
∫

1
x2+1dx

= −8e−3x log(x2 + 1) + 16xe−3xatan(x2 + 1)

The general solution is

y = yh + yp = (c1 − 8 log(x2 + 1))e−3x + (c2 + 16atan(x2 + 1))xe−3x

3 Chapter 3

Kreyszig, 3.1.1
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that the functions 1, x, x2, x3 are solutions of

yiv = 0

and form a basis on any interval.
Solution: Let us calculate the fourth derivative of all these functions

60



yi 1 x x2 x3

y′i 0 1 2x 3x2

y′′i 0 0 2 6x
y′′′i 0 0 0 6
yivi 0 0 0 0

So, the proposed functions are solutions of the ODE. To see if they are linearly
independent, we calculate their Wronskian

W =

∣∣∣∣∣∣∣∣
1 x x2 x3

0 1 2x 3x2

0 0 2 6x
0 0 0 6

∣∣∣∣∣∣∣∣ = 12

Since they are 4 independent solutions of a 4th order ODE, they are a basis of
solutions.
Kreyszig, 3.1.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that the functions 1, e−x cos(2x), e−x sin(2x) are solutions of

y′′′ + 2y′′ + 5y′ = 0

and form a basis on any interval.
Solution: Let us write the ODE as

(D3 + 2D2 + 5D)y = 0

D(D2 + 2D + 5)y = 0

D((D + 1)2 + 22)y = 0

The function y1 = 1 is a solution of the �rst factor

Dy = 0

while the functions y2 = e−x cos(2x) and y3 = e−x sin(2x) are solutions of the
second

((D + 1)2 + 22)y = 0

So, the proposed functions are solutions of the ODE. To see if they are
linearly independent, we calculate their Wronskian

W =

∣∣∣∣∣∣
1 e−x cos(2x) e−x sin(2x)
0 −e−x(cos(x) + sin(x)) e−x(cos(x)− sin(x))
0 2e−x sin(x) −2e−x cos(x)

∣∣∣∣∣∣ = 2e−2x

Kreyszig, 3.1.10
Carlos Oscar Sorzano, Jan. 15th, 2015

Are the functions e2x, xe2x and x2e2x linearly dependent or independent in
the interval x ≥ 0?
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Solution: Let us call f1(x) = e2x, f2(x) = xe2x and f3(x) = x2e2x. For
checking the linear dependence or not of the three functions we calculate the
Wronskian of the three functions

W (x) =

∣∣∣∣∣∣∣
f1(x) f2(x) f3(x)
df1(x)
dx

df2(x)
dx

df3(x)
dx

d2f1(x)
dx2

d2f2(x)
dx2

d2f3(x)
dx2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
e2x xe2x x2e2x

2e2x (1 + 2x)e2x 2(1 + x)xe2x

4e2x 4(1 + x)e2x 2(2x2 + 4x+ 1)e2x

∣∣∣∣∣∣
= e6x

∣∣∣∣∣∣
1 x x2

2 1 + 2x 2(1 + x)x
4 4(1 + x) 2(2x2 + 4x+ 1)

∣∣∣∣∣∣ = 2e6x

Since W (x) > 0 for x ≥ 0, then the three functions f1, f2 and f3 are linearly
independent in this interval. Kreyszig, 3.2.5
Álvaro Martín Ramos, Jan. 4th, 2015

Solve
(D4 + 10D2 + 9I)y = 0

Solution: The characteristic polynomial of the ODE is

λ4 + 10λ2 + 9 = 0 = (λ2)2 + (10λ2) + 9

λ = ±i3,±i

So the general solution is

y = A cos(x) +B sin(x) + C cos(3x) +D sin(3x)

Kreyszig, 3.2.6
Carlos Oscar Sorzano, Nov. 14th, 2014

Solve the di�erential equation

(D5 + 8D3 + 16D)y = 0

Solution: Let us factorize the di�erential operator

(D5 + 8D3 + 16D) = D(D4 + 8D2 + 16) = D(D2 + 4)2

The characteristic equation is

λ(λ2 + 4)2 = 0

λ(λ− 2i)2(λ+ 2i)2 = 0

The general solution of the di�erential equation is

y = c1 + (c2 + c3x) cos(2x) + (c4 + c5x) sin(2x)

Kreyszig, 3.2.7
Carlos Oscar Sorzano, Nov. 14th, 2014
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Solve the IVP

y′′′ + 3.2y′′ + 4.81y′ = 0 y(0) = 3.4, y′(0) = −4.6, y′′(0) = 9.91

Solution: The characteristic equation is

λ3 + 3.2λ2 + 4.81λ = 0

λ(λ2 + 3.2λ+ 4.81) = 0

λ = 0,−1.6± 1.5i

The general solution of the di�erential equation is

y = c1 + e−1.6x(c2 cos(1.5x) + c3 sin(1.5x))

Let us calculate the �rst and second derivatives of the solution we have

y′ = e−1.6x((−1.5c2 − 1.6c3) sin(1.5x) + (1.5c3 − 1.6c2) cos(1.5x))

y′′ = e−1.6x((4.8c2 + 0.31c3) sin(1.5x) + (0.31c2 − 4.8c3) cos(1.5x))

Particularizing at x = 0

y(0) = 3.4 = c1 + c2
y′(0) = −4.6 = 1.5c3 − 1.6c2
y′′(0) = 9.91 = 0.31c2 − 4.8c3

⇒ c1 = 2.4, c2 = 1, c3 = −2

So the particular solution is

y = 2.4 + e−1.6x(cos(1.5x)− 2 sin(1.5x))
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Kreyszig, 3.2.14
Carlos Oscar Sorzano, Aug. 31st, 2014

Reduction of order. If a solution of a linear, constant-coe�cient ODE is
known, y1, we can reduce its order by assuming that

y = uy1
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1. Extend the method to a variable-coe�cient ODE

y′′′ + p2(x)y′′ + p1(x)y′ + p0(x)y = 0

Assuming a solution y1 to be known, show that another solution is

y2 = uy1

with

u =

∫
z(x)dx

and z obtained by solving

y1z
′′ + (3y′1 + p2y1)z′ + (3y′′1 + 2p2y

′
1 + p1y1)z = 0

2. Reduce
x3y′′′ − 3x2y′′ + (6− x2)xy′ − (6− x2)y = 0

using y1 = x (perhaps obtainable by inspection).

Solution:

1. Let us assume that
y = uy1

then
y′ = u′y1 + uy′1
y′′ = u′′y1 + u′y′1 + u′y′1 + uy′′1

= u′′y1 + 2u′y′1 + uy′′1
y′′′ = u′′′y1 + u′′y′1 + 2u′′y′1 + 2u′y′′1 + u′y′′1 + uy′′′1

= u′′′y1 + 3u′′y′1 + 3u′y′′1 + uy′′′1

Substituting in the ODE

y′′′ + p2y
′′ + p1y

′ + p0y = 0

(u′′′y1 + 3u′′y′1 + 3u′y′′1 + uy′′′1 )+p2 (u′′y1 + 2u′y′1 + uy′′1 )+p1(u′y1+uy′1)+p0uy1 = 0

(uy′′′1 ) + p2 (uy′′1 ) + p1(u′y1 + uy′1) + p0uy1 = 0

y1u
′′′+(3y′1+p2y1)u′′+(3y′′1 +2p2y

′
1+p1y1)u′+(y′′′1 +p2y

′′
1 +p1y

′
1+p0y1)u = 0

Since y1 is a solution of the ODE, we have

y′′′1 + p2y
′′
1 + p1y

′
1 + p0y1 = 0

De�ning
z = u′

we can write the ODE as

y1z
′′ + (3y′1 + p2y1)z′ + (3y′′1 + 2p2y

′
1 + p1y1)z = 0

as required by the problem.
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2. Let us divide by x3

y′′′ − 3

x
y′′ +

(
6

x2
− 1

)
y′ −

(
6

x3
− 1

x

)
y = 0

We can now apply the formula derived in this exercise, in particular

(x)z′′+

(
3(1) +

(
− 3

x

)
x

)
z′+

(
3(0) + 2

(
− 3

x

)
(1) +

(
6

x2
− 1

)
x

)
z = 0

xz′′ − xz = 0

z′′ − z = 0

whose characteristic polynomial is

λ2 − 1 = 0⇒ λ = ±1

So the solution is
z = c1e

x + c2e
−x

u =

∫
zdx =

∫
(c1e

x + c2e
−x)dx = c1e

x + c2e
−x

and the solution sought

y = uy1 = (c1e
x + c2e

−x)x = c1xe
x + c2xe

−x

Finally, the general solution is

y = c1xe
x + c2xe

−x + c3x

Kreyszig, 3.3.5
Álvaro Martín Ramos, Jan. 4th, 2015

Solve
(x3D3 + x2D2 − 2xD + 2I)y = x−2

Solution: We can rewrite the ODE as

x3y′′′ + x2y′′ − 2xy′ + 2y = x−2

The homogeneous ODE is an Euler-Cauchy equation, so we try a solution of
the form

y = xm

y′ = mxm−1

y′′ = m(m− 1)xm−2

y′′′ = m(m− 2)(m− 1)xm−3

Substituting in the equation

x3m(m− 2)(m− 1)xm−3 + x2m(m− 1)xm−2 − 2xmxm−1 + 2xm = 0

(m(m− 2)(m− 1) +m(m− 1)− 2m+ 2)xm = 0

m3 − 2m2 −m+ 2 = 0 = (m− 2)(m− 1)(m+ 1)
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So m = 2, 1,−1 are the roots of the characteristic polynomial. The general
solution of the homogeneous problem is

yh = c1x+ c2x
−1 + c3x

2

For �nding a particular solution of the non-homogeneous problem we use the
method of variation parameters whose solution is

yp =

3∑
k=1

yk

∫
Wk

W
rdx

Where yk are the 3 homogeneous solutions and W and Wk are the following
matrices

W =

x x−1 x2

1 −x−2 2x
0 2x−3 2

 = 2x2−8
x

W1 =

0 x−1 x2

0 −x−2 2x
1 2x−3 2

 = 3

W2 =

x 0 x2

1 0 2x
0 1 2

 = x2 − 2x2

W3 =

x x−1 0
1 −x−2 0
0 2x−3 1

 = −2
x

We write the ODE in the standard form

x3y′′′ + x2y′′ − 2xy′ + 2y = x−2 ⇒ y′′′ +
1

x
y′′ − 2

x2
y′ +

2

x3
y = x−5

We now calculate the integrals∫
W1

W
rdx =

∫
3x

2x2 − 8
x−5dx =

−3x3 tanh−1(x2 ) + 6x2 + 8

64x3∫
W2

W
rdx =

∫
x2 − 2x2

2x2 − 8
x−5dx =

x tanh−1(x2 − 2)

16x∫
W3

W
rdx =

∫
−2

2x2 − 8
x−5dx =

−1

16
− 1

32x2
− 1

128
log(x2 − 4) +

log(x)

64

Finally, the particular solution is

yp = x
−3x3 tanh−1( x2 )+6x2+8

64x3 + x−1 x tanh−1( x2−2)

16x + x2(−1
16 −

1
32x2 − 1

128 log(x2 − 4) + log(x)
64 )

= − 1
12x2

Finally, the general solution is of the form

y = c1x+ c2x
−1 + c3x

2 − 1

12x2

Kreyszig, 3.3.6
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Carlos Oscar Sorzano, Aug. 31st, 2014

Solve (D3 + 4D)y = sin(x).
Solution: The homogeneous problem has a characteristic polynomial

λ3 + 4λ = 0 = λ(λ2 + 4)⇒ λ = 0,±2i

So the homogeneous solution is given by

yh = c1 + c2 cos(2x) + c3 sin(2x)

To �nd a particular solution for non-homogeneous problem we try a function of
the form

yp = K1 cos(x) +K2 sin(x)

y′p = −K1 sin(x) +K2 cos(x)

y′′p = −K1 cos(x)−K2 sin(x)

y′′′p = K1 sin(x)−K2 cos(x)

Substituting in the ODE

(K1 sin(x)−K2 cos(x)) + 4(−K1 sin(x) +K2 cos(x)) = sin(x)

−3K1 sin(x) + 3K2 cos(x) = sin(x)

K1 = −1

3
,K2 = 0

Finally, the general solution is

y = c1 + c2 cos(2x) + c3 sin(2x)− 1

3
sin(x)

Kreyszig, 3.3.7
Álvaro Martín Ramos, Jan. 4th, 2015

Solve
(D3 − 9D2 + 27D − 27I)y = 27 sin(3x)

Solution: The homogeneous problem has a characteristic equation

λ3 − 9λ2 + 27λ− 27 = 0 = (λ− 3)3 = 0⇒ λ = 3(3 times)

So the homogeneous solution is given by

yh = (c1 + c2x+ c3x
2)e3x

To �nd a particular solution for non-homogeneous problem we try a function of
the form

yp = K cos(3x) +M sin(3x)
y′p = −3K sin(3x) + 3M cos(3x)
y′′p = −9K cos(3x)− 9M sin(3x)
y′′′p = 27K sin(3x)− 27M cos(3x)
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Substituting in the ODE

(27K sin(3x)− 27M cos(3x))− 9(−9K cos(3x)− 9M sin(3x)) + 27(−3K sin(3x)

+3M cos(3x))− 27(K cos(3x) +M sin(3x)) = 27 sin(3x)

27K sin(3x)− 27M cos(3x) + 81K cos(3x) + 81M sin(3x)− 81K sin(3x)

+81M cos(3x)− 27K cos(3x)− 27M sin(3x) = 27 sin(3x)

Dividing the equation by 27

K sin(3x)−M cos(3x) + 3K cos(3x) + 3M sin(3x)− 3K sin(3x) + 3M cos(3x)

−K cos(3x)−M sin(3x) = sin(3x)

(−2K + 4M) sin(3x) + (2M + 2K) cos(3x) = sin(3x)

−2K + 4M = 1

2M + 2K = 0

M =
1

4
,K = −1

4

Finally, the general solution is

y = (c1 + c2x+ c3x
2)e3x − 1

4
(cos(3x)− sin(3x))

Kreyszig, 3.3.8
Carlos Oscar Sorzano, June 15th 2015

Solve the IVP
yiv − 5y′′ + 4y = 10e−3x

with y(0) = 1, y′(0) = y′′(0) = y′′′(0) = 0.
Solution: The solution of the homogeneous equation comes from the solution
of the characteristic equation

λ4 − 5λ2 + 4 = 0⇒ λ2 = 4, 1

(λ2 − 4)(λ2 − 1) = 0⇒ λ = ±2,±1

So the homogeneous solution is of the form

yh = K1e
−2x +K2e

−x +K3e
x +K4e

2x

For the particular solution we look for a function of the form

yp = Ke−3x

y′p = −3Ke−3x

y′′p = 32Ke−3x

y′′′p = −33Ke−3x

yivp = 34Ke−3x

Substituting in the di�erential equation

34Ke−3x − 5(32Ke−3x) + 4Ke−3x = 10e−3x
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(34 − 5 · 32 + 4)K = 10⇒ K =
1

4

The general solution of the non-homogeneous equation is

y = yh + yp = K1e
−2x +K2e

−x +K3e
x +K4e

2x +
1

4
e−3x

To solve the IVP we calculate the derivatives of the general solution

y′ = −2K1e
−2x −K2e

−x +K3e
x + 2K4e

2x − 3
4e
−3x

y′′ = 22K1e
−2x +K2e

−x +K3e
x + 22K4e

2x + 32

4 e
−3x

y′′′ = −23K1e
−2x −K2e

−x +K3e
x + 23K4e

2x − 33

4 e
−3x

and impose the initial value conditions

y(0) = 1 = K1 +K2 +K3 +K4 + 1
4

y′(0) = 0 = −2K1 −K2 +K3 + 2K4 − 3
4

y′′(0) = 0 = 22K1 +K2 +K3 + 22K4 + 32

4

y′′′(0) = 0 = −23K1 −K2 +K3 + 23K4 − 33

4

The solution of this equation system is

K1 = −1,K2 =
3

2
,K3 =

1

4
,K4 = 0

Finally, the solution of the IVP is

y = −e−2x +
3

2
e−x +

1

4
ex +

1

4
e−3x

Kreyszig, 3.3.10
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve

x3y′′′ + xy′ − y = x2 y(1) = 1, y′(1) = 3, y′′(1) = 14

Solution: The homogeneous ODE is an Euler-Cauchy equation, so we try with
a solution of the form

y = xm

y′ = mxm−1

y′′ = m(m− 1)xm−2

y′′′ = m(m− 1)(m− 2)xm−3

Substituting in the equation

x3(m(m− 1)(m− 2)xm−3) + x(mxm−1)− xm = 0

m(m− 1)(m− 2) +m− 1 = 0

(m− 1)(m(m− 2) + 1) = 0

(m− 1)(m− 1)2 = 0
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So m = 1 is a triple root of the characteristic polynomial. The general solution
of the homogeneous problem is

yh = c1x+ c2x log(x) + c3x log2(x)

For �nding a particular solution of the non-homogeneous problem we use
the method of variation of parameters whose solution is

yp =

3∑
k=1

yk

∫
Wk

W
rdx

where yk are the 3 homogeneous solutions and W and Wk are the following
matrices

W =

∣∣∣∣∣∣
x x log(x) x log2(x)

1 1 + log(x) 2 log(x) + log2(x)
0 1

x
2
x + 2

x log(x)

∣∣∣∣∣∣ = 2

W1 =

∣∣∣∣∣∣
0 x log(x) x log2(x)

0 1 + log(x) 2 log(x) + log2(x)
1 1

x
2
x + 2

x log(x)

∣∣∣∣∣∣ = x log2(x)

W2 =

∣∣∣∣∣∣
x 0 x log2(x)

1 0 2 log(x) + log2(x)
0 1 2

x + 2
x log(x)

∣∣∣∣∣∣ = −2x log(x)

W3 =

∣∣∣∣∣∣
x x log(x) 0
1 1 + log(x) 0
0 1

x 1

∣∣∣∣∣∣ = x

We write the ODE in the standard form

x3y′′′ + xy′ − y = x2 ⇒ y′′′ +
1

x2
y′ − 1

x3
y =

1

x

We now calculate the integrals (with r = 1
x )∫

W1

W rdx =
∫ x log2(x)

2
1
xdx = x(log2(x)−2 log(x)+2)

2∫
W2

W rdx =
∫ −2x log(x)

2
1
xdx = −x(log(x)− 1)∫

W3

W rdx =
∫
x
2

1
xdx = x

2

Finally, the particular solution is

yp = y1

∫
W1

W rdx+ y2

∫
W2

W rdx+ y3

∫
W3

W rdx

= xx(log2(x)−2 log(x)+2)
2 + x log(x) (−x(log(x)− 1)) + x log2(x)x2

= x2

The general solution is of the form

y = c1x+ c2x log(x) + c3x log2(x) + x2

Imposing the initial conditions

y(x) = c1x+ c2x log(x) + c3x log2(x) + x2 ⇒ y(1) = 1 = c1 + 1⇒ c1 = 0

y′(x) = c1 + c2(1 + log(x)) + c3(2 log(x) + log2(x)) + 2x⇒ y′(1) = 3 = c2
y′′(x) = c2

1
x + c3

(
2
x + 2

x log(x)
)

+ 2⇒ y′(1) = 14 = c2 + 2c3 ⇒ c3 = 11
2
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So the particular solution sought is

y = 3x log(x) +
11

2
x log2(x) + x2

Problema
Carlos Oscar Sorzano, June 15th, 2015

Let S be the fraction of a population susceptible of getting a diphtheria
and I the fraction of that population infected by diphtheria. An ill person can
disseminate the disease while he is not recovered. Assume that the number
of contacts between susceptible and infected people occurs at a rate α. The
daily fraction of susceptible population that is vaccinated is β. Assume that
diphtheria is a disease that can be passed only once. Assume that diphtheria
has a daily death rate δ1 and a daily recovery rate δ2. Assume also that the
population size is stable with daily birth and death rates δ. Propose a disease
dissemination model.
Solution: Let us call NS(t) the instant proportion of non-susceptible people.
The sum of proportions must be 1

S(t) + I(t) +NS(t) = 1

Additionally the proportions follow the equation system

S′(t) = −αS(t)I(t) + δ − δS(t)− βS(t)
I ′(t) = αS(t)I(t)− δ1I(t)− δ2I(t)− δI(t)

NS′(t) = βS(t) + δ2I(t)− δNS(t)

The term αS(t)I(t) accounts for the proportion of susceptible people that gets
infected every day. The term δ in S′(t) accounts for the daily birth rate. The
terms δS(t), δI(t), δNS(t) account for the daily rate of deaths non-related
to diphteria. The term βS(t) is the proportion of people that becomes non-
susceptible by vaccination. The term δ1I(t) accounts for the daily rate of deaths
caused by diphtheria, and �nally δ2I(t) accounts for the daily rate of people that
recovers from diphtheria and becomes non-susceptible.

We may eliminate one of the variables. For instance, we solve for S in the
�rst equation

S(t) = 1− I(t)−NS(t)

and substitute in the equation system

I ′(t) = α(1− I(t)−NS(t))I(t)− δ1I(t)− δ2I(t)− δI(t)
NS′(t) = β(1− I(t)−NS(t)) + δ2I(t)− δNS(t)

Grouping terms

I ′(t) = (α(1− I(t)−NS(t))− δ1 − δ2 − δ)I(t)
NS′(t) = β − (δ + β)NS(t) + (δ2 − β)I(t)
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4 Chapter 4

Kreyszig, 4.1.1
Carlos Oscar Sorzano, Aug. 31st, 2014

Find out, without calculation, whether doubling the �ow rate in the following
example has the same e�ect as hal�ng the tank sizes.

Solution: Original case:

y′1 = in�ow-out�ow =
y2

100

[
lb

gal

]
2

[
gal

min

]
− y1

100

[
lb

gal

]
2

[
gal

min

]

y′2 = in�ow-out�ow =
y1

100

[
lb

gal

]
2

[
gal

min

]
− y2

100

[
lb

gal

]
2

[
gal

min

]
y′1 = −0.02y1 + 0.02y2

y′2 = 0.02y1 − 0.02y2

}
⇒
(
y′1
y′2

)
=

(
−0.02 0.02
0.02 −0.02

)(
y1

y2

)
⇒ y′ = Ay

Doubling the �ow rate:

y′1 = in�ow-out�ow =
y2

100

[
lb

gal

]
4

[
gal

min

]
− y1

100

[
lb

gal

]
4

[
gal

min

]

y′2 = in�ow-out�ow =
y1

100

[
lb

gal

]
4

[
gal

min

]
− y2

100

[
lb

gal

]
4

[
gal

min

]
y′1 = −0.04y1 + 0.04y2

y′2 = 0.04y1 − 0.04y2

}
⇒
(
y′1
y′2

)
=

(
−0.04 0.04
0.04 −0.04

)(
y1

y2

)
⇒ y′ = A1y

Hal�ng the tank sizes:

y′1 = in�ow-out�ow =
y2

50

[
lb

gal

]
2

[
gal

min

]
− y1

50

[
lb

gal

]
2

[
gal

min

]

y′2 = in�ow-out�ow =
y1

50

[
lb

gal

]
2

[
gal

min

]
− y2

50

[
lb

gal

]
2

[
gal

min

]
y′1 = −0.04y1 + 0.04y2

y′2 = 0.04y1 − 0.04y2

}
⇒
(
y′1
y′2

)
=

(
−0.04 0.04
0.04 −0.04

)(
y1

y2

)
⇒ y′ = A2y

Since A1 = A2, the e�ect on the amount of salt in both tanks is the same if we
double the �ow rate or halve the tank size. Kreyszig, 4.1.11
Álvaro Martín Ramos, Jan. 4th, 2015
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Solve
4y′′ − 15y′ − 4y = 0

Solution: To convert the ODE into an ODE system we do the following changes
of variables

y = y1

y′1 = y2

So that the original ODE can be written as

4y′2 − 15y2 − 4y1 = 0⇒ y′2 =
15

4
y2 + y1

Together the system ODE is(
y′1
y′2

)
=

(
0 1
1 15

4

)(
y1

y2

)
That is of the form

y′ = Ay

The eigenvalues and eigenvectors of A are:

λ1 = 4,v1 = (1, 4)T

λ2 = − 1
4 ,v2 =

(
1,− 1

4

)T
The general solution of the ODe system is

y = c1v1e
λ1x + c2v2e

λ2x = c1

(
1
4

)
e4x + c2

(
1
− 1

4

)
e−

x
4

Kreyszig, 4.1.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
y′′′ + 2y′′ − y′ − 2y = 0

by solving it directly and by reducing it to an ODE system.
Solution: The characteristic equation of the ODE is

λ3 + 2λ2 − λ+ 2 = 0⇒ λ = −2,−1, 1

So that the general solution is

y = c1e
−2x + c2e

−x + c3e
x

To convert the ODE into an ODE system we do the following changes of variables

y1 = y
y2 = y′1 = y′

y3 = y′2 = y′′

So that the original ODE can be written as

y′3 + 2y3 − y2 − 2y1 = 0
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y′3 = −2y3 + y2 + 2y1

Altogether the ODE system isy′1y′2
y′3

 =

0 1 0
0 0 1
2 1 −2

y1

y2

y3


y′ = Ay

The eigenvalues and eigenvectors of A are

λ1 = −2 v1 = (1,−2, 4)T

λ2 = −1 v2 = (1,−1, 1)T

λ3 = 1 v3 = (1, 1, 1)T

The general solution of the ODE system is

y = c1v1e
λ1x + c2v2e

λ2x + c3v3e
λ3x

= c1

 1
−2
4

 e−2x + c2

 1
−1
1

 e−x + c3

1
1
1

 ex

=

 c1e
−2x + c2e

−x + c3e
x

−2c1e
−2x − c2e−x + c3e

x

4c1e
−2x + c2e

−x + c3e
x


Finally, remind that y = y1, so we are mostly interested in its �rst component
that is

y = c1e
−2x + c2e

−x + c3e
x

That is, the same result as we obtained by the direct method.
Kreyszig, 4.3.1
Carlos Oscar Sorzano, Nov. 14th, 2014

Give the general solution of the equation system

y′1 = y1 + y2

y′2 = 3y1 − y2

Solution: Let us write the equation system as(
y′1
y′2

)
=

(
1 1
3 −1

)(
y1

y2

)
The characteristic polynomial of the system matrix is∣∣∣∣ 1− λ 1

3 −1− λ

∣∣∣∣ = (1− λ)(−1− λ)− 3 = (λ− 2)(λ+ 2) = 0

The eigenvector of λ1 = 2 comes from the equation system

(A− 2I)x = 0(
−1 1 0
3 −3 0

)
∼
(
−1 1 0
0 0 0

)
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whose eigenvector is x1 = (1, 1).
The eigenvector of λ2 = −2 comes from

(A+ 2I)x = 0(
3 1 0
3 1 0

)
∼
(

3 1 0
0 0 0

)
whose eigenvector is x2 = (−1, 3).

Finally, the solution of the di�erential equation system is

y = c1x1e
λ1t + c2x2e

λ2t = c1

(
1
1

)
e2t + c2

(
−1
3

)
e−2t =

(
c1e

2t − c2e−2t

c1e
2t + 3c2e

−2t

)

Kreyszig, 4.3.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Find a general solution of the ODE system

y′1 = 2y1 − 2y2

y′2 = 2y1 + 2y2

Solution: We can write the ODE system as(
y′1
y′2

)
=

(
2 −2
2 2

)(
y1

y2

)
y′ = Ay

The eigenvalues and eigenvectors of A are

λ1 = 2 + 2i v1 = (i, 1)T

λ2 = 2− 2i v2 = (−i, 1)T

The general solution of the ODE system is

y = c1v1e
λ1x + c2v2e

λ2x

= c1

(
i
1

)
e(2+2i)x + c2

(
−i
1

)
e(2−2i)x

If we want the solution to be real, we must perform a change of basis. Instead
of the basis functions

y1 =

(
i
1

)
e(2+2i)x

y2 =

(
−i
1

)
e(2−2i)x = y∗1

we de�ne the functions

ỹ1 = y1+y2

2 = Re{y1} = Re

{(
ie(2+2i)x

e(2+2i)x

)}
=

(
−e2x sin(2x)
e2x cos(2x)

)
ỹ2 = y1−y2

2i = Im{y1} =

(
e2x cos(2x)
e2x sin(2x)

)
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The general solution can be written as

y = c1ỹ1+c2ỹ2 = c1

(
−e2x sin(2x)
e2x cos(2x)

)
+c2

(
e2x cos(2x)
e2x sin(2x)

)
= e2x

(
−c1 sin(2x) + c2 cos(2x)
c1 cos(2x) + c2 sin(2x)

)

Kreyszig, 4.3.7
Carlos Oscar Sorzano, Aug. 31st, 2014

Find a general solution of the ODE system

y′1 = y2

y′2 = −y1 + y3

y′3 = −y2

Solution: We can write the ODE system asy′1y′2
y′3

 =

 0 1 0
−1 0 1
0 −1 0

(y1

y2

)

y′ = Ay

The eigenvalues and eigenvectors of A are

λ1 = 0 v1 = (1, 0, 1)T

λ2 =
√

2i v2 = (−i,
√

2, i)T

λ3 = −
√

2i v2 = (i,
√

2,−i)T

The general solution of the ODE system is

y = c1v1e
λ1x + c2v2e

λ2x + c3v3e
λ3x

= c1

1
0
1

+ c2

−i√2
i

 ei
√

2x + c3

 i√
2
−i

 e−i
√

2x

If we want the solution to be real, we must perform a change of basis. Instead
of the basis functions

y2 =

−i√2
i

 ei
√

2x

y3 =

 i√
2
−i

 e−i
√

2x = y∗2

we de�ne the functions

ỹ2 = y2+y3

2 = Re{y2} = Re


−i√2

i

 ei
√

2x

 =

 sin(
√

2x)√
2 cos(

√
2x)

− sin(
√

2x)


ỹ3 = y2−y3

2i = Im{y2} =

− cos(
√

2x)√
2 sin(

√
2x)

cos(
√

2x)


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The general solution can be written as

y = c1y1 + c2ỹ2 + c3ỹ3

= c1

1
0
1

+ c2

 sin(
√

2x)√
2 cos(

√
2x)

− sin(
√

2x)

+ c3

− cos(
√

2x)√
2 sin(

√
2x)

cos(
√

2x)


=

 c1 + c2 sin(
√

2x)− c3 cos(
√

2x)

c2
√

2 cos(
√

2x) + c3
√

2 sin(
√

2x)

c1 − c2 sin(
√

2x) + c3 cos(
√

2x)


Kreyszig, 4.3.18
Carlos Oscar Sorzano, Aug. 31st, 2014

Each of the two tanks contains 200 gal of water, in which initially 100 lb
(Tank T1) and 200 lb (Tank T2) of fertilizer are dissolved. The in�ow, circula-
tion, and out�ow are shown in the �gure below. The mixture is kept uniform
by stirring. Find the fertilizer contents y1(t) in T1 and y2(t) in T2.

Solution: We can model the system with the following di�erential equations:

y′1 = − y1
20016 + y2

2004 + 0 · 12
y′2 = y1

20016− y2
200 (4 + 12)

Equivalently (
y′1
y′2

)
=

(
− 16

200
4

200
16
200 − 16

200

)(
y1

y2

)
The eigenvalues and eigenvectors of this matrix are

λ1 = − 3
25 , v1 = (− 1

2 , 1)T

λ2 = − 1
25 , v2 = ( 1

2 , 1)T

The general solution of the ODE system is

y = c1v1e
λ1t + c2v2e

λ2t = c1

(
− 1

2
1

)
e−

3
25 t + c2

(
1
2
1

)
e−

1
25 t

As stated in the problem at t = 0 we have

y(0) =

(
100
200

)
= c1

(
− 1

2
1

)
+ c2

(
1
2
1

)
⇒ c1 = 0, c2 = 200

So the solution sought is

y = 200

(
1
2
1

)
e−

t
25
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Kreyszig, 4.4.1
Álvaro Martín Ramos, Jan. 4th, 2015

Determine the type and stability of the critical point of

y′1 = y1

y′2 = 2y2

Then �nd a real general solution.
Solution: The proposed ODE system is equivalent to(

y′1
y′2

)
=

(
1 0
0 2

)(
y1

y2

)
The eigenvalues of the matrix are given by

det

(
1− λ 0

0 2− λ

)
= λ2 − 3λ+ 2 = 0

p = 3, (> 0)

q = 2(> 0)

∆ = p2 − 4q = 1(> 0)

So it is an unstable improper node. The general solution is

y1 = c1e
t, y2 = c2e

2t

Kreyszig, 4.4.3
Carlos Oscar Sorzano, Aug. 31st, 2014

Determine the type and stability of the critical point of

y′1 = y2

y′2 = −9y1

Then �nd a real general solution and sketch or graph some of the trajectories
in the phase plane.
Solution: The proposed ODE system is equivalent to(

y′1
y′2

)
=

(
0 1
−9 0

)(
y1

y2

)
Critical points are points at which y′ = 0, in this case the only critical point is

y = 0

whose eigenvalues and eigenvectors are

λ1 = 3i, v1 = (− 1
3 i, 1)

λ2 = −3i, v2 = ( 1
3 i, 1)

This corresponds to a center as can be clearly seen in the �gure below
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To �nd a real solution we construct the functions

y1 = v1e
λ1x =

(
− 1

3 i
1

)
ei3x

y2 = v2e
λ2x =

(
1
3 i
1

)
e−i3x

ỹ1 = y1+y2

2 = Re{y1} =

(
1
3 sin(3x)
cos(3x)

)
ỹ2 = y1−y2

2i = Im{y1} =

(
− 1

3 cos(3x)
sin(3x)

)
The general real solution is given by

y = c1ỹ1 + c2ỹ2 =

(
c1

1
3 sin(3x)− c2 1

3 cos(3x)
c1 cos(3x) + c2 sin(3x)

)
Kreyszig, 4.4.7

Álvaro Martín Ramos, Jan. 4th, 2015

Determine the type and stability of the critical point of

y′1 = y1 + 2y2

y′2 = 2y1 + y2

Then �nd a real general solution.
Solution: The proposed ODE system is equivalent to(

y′1
y′2

)
=

(
1 2
2 1

)(
y1

y2

)
The characteristic equation of the matrix is

λ2 − 2λ− 3 = 0

p = 2, (> 0)

q = −3(< 0)
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So it is a saddle point, always unstable. The eigenvalues and eigenvectors of the
system matrix are

λ1 = 3,v1 = (1, 1)T

λ2 = −1,v2 = (1,−1)T

The general solution is given by

y = c1v1e
λ1x + c2v2e

λ2x = c1

(
1
1

)
e3x + c2

(
1
−1

)
e−x

Kreyszig, 4.4.14
Carlos Oscar Sorzano, Aug. 31st, 2014

Transformation of parameters. What happens to the critical point of

y′1 = y1

y′2 = 2y2

if you introduce τ = −t as the new independent variable? trajectories in the
phase plane.
Solution: (

y′1
y′2

)
=

(
1 0
0 2

)(
y1

y2

)
Its critical point is y = 0 and the eigenvalues of the matrix used to calculate the
derivative are 1 and 2, that is, it is an unstable node (because p = λ1 + λ2 > 0.

If we do the change of variable τ = −t, then

dyi
dτ

=
dyi
dt

dt

dτ
= −dyi

dt

So the equation system becomes(
dy1
dτ
dy2
dτ

)
=

(
−1 0
0 −2

)(
y1

y2

)
That is the direction of motion changes, and the two eigenvalues become nega-
tive. Then we have p = λ1 + λ2 < 0 and q = λ1λ2 > 0, consequently a stable
node.
Kreyszig, 4.4.17
Carlos Oscar Sorzano, Aug. 31st, 2014

Perturbation. The system

y′ =

(
0 1
−4 0

)
y

has a center as its critical point. Replace each aij by aij + b. Find values of
b such that you get (a) a saddle point, (b) a stable and attractive node, (c) a
stable and attractive spiral, (d) an unstable spiral, (e) an unstable node.
Solution: The perturbed system is

y′ =

(
b 1 + b

−4 + b b

)
y
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The characteristic polynomial is

|A− λI| = (b− λ)2 − (1 + b)(−4 + b) = λ2 − 2bλ+ 4 + 3b

This polynomial is of the form

λ2 − pλ+ q

so
p = 2b

q = 4 + 3b

Saddle point: to get a saddle point we need

q < 0⇒ 4 + 3b < 0⇒ b < −4

3

Stable and attractive node: to get a stable and attractive node we need

p < 0, q = 0 (stable and attractive) and q > 0,∆ = p2 − 4q ≥ 0 (node)

2b < 0, 4 + 3b = 0⇒ −4

3
= b

(2b)2 − 4(4 + 3b) ≥ 0⇒ b2 − 3b− 4 ≥ 0⇒ b ∈ (−∞,−1] ∩ [4,∞)

The intersection of both sets gives b = − 4
3 .

Stable and attractive spiral: to get a stable and attractive spiral we need

p < 0, q = 0 (stable and attractive) and ∆ = p2 − 4q < 0, p 6= 0 (spiral)

2b < 0, 4 + 3b = 0, 2b 6= 0⇒ −4

3
= b

(2b)2 − 4(4 + 3b) < 0⇒ b2 − 3b− 4 < 0⇒ −1 < b < 4

Since {− 4
3} ∩ (−1, 4) = ∅, there is no b satisfying all conditions.

Unstable spiral: to get an unstable spiral we need

p > 0 or q < 0 (unstable) and ∆ = p2 − 4q < 0, p 6= 0 (spiral)

2b > 0 or 4 + 3b < 0⇒ b ∈ (0,∞) ∪ (−∞,− 4
3 ) = (−∞,− 4

3 ) ∪ (0,∞)

(2b)2 − 4(4 + 3b) < 0⇒ b2 − 3b− 4 < 0⇒ −1 < b < 4

Finally, (
(−∞,− 4

3 ) ∪ (0,∞)
)
∩ (−1, 4) = (0, 4)

Unstable node: to get an unstable node we need

p > 0 or q < 0 (unstable) and q > 0,∆ = p2 − 4q ≥ 0 (node)

2b > 0 or 4 + 3b < 0⇒ b ∈ (0,∞) ∪ (−∞,− 4
3 ) = (−∞,− 4

3 ) ∪ (0,∞)

4+3b > 0, p2−4q ≥ 0⇒ b ∈ (− 4
3 ,∞)∩ ((−∞,−1]∪ [4,∞)) = (− 4

3 ,−1]∪ [4,∞)

Finally (
(−∞,− 4

3 ) ∪ (0,∞)
)
∩
(
(− 4

3 ,−1] ∪ [4,∞)
)

= [4,∞)
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Kreyszig, 4.5.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the location and all critical points by linearization of the ODE

y′1 = y2

y′2 = −y1 + 1
2y

2
1

Solution: The ODE system can be rewritten as

y′ =

(
y2

−y1 + 1
2y

2
1

)
Critical points are solutions of the equation system(

y2

−y1 + 1
2y

2
1

)
= 0⇒ y1 = 0, 2; y2 = 0

Case (y1, y2) = (0, 0):
If we linearize around the point (0, 0) we get

A =

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)∣∣∣∣∣
y=0

=

(
0 1

−1 + y1 0

)∣∣∣∣
ỹ=0

=

(
0 1
−1 0

)
And the equation system behaves in the vicinity of (0, 0) as

y′ = Ay

The charactertistic polynomial of A is

|A− λI| =
∣∣∣∣ −λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = 0

So, p = 0, q = 1 and ∆ = p2 − 4q = −4. Consequently, (0, 0) is a stable
(p ≤ 0, q > 0) center (p = 0,∆ < 0).

Case (y1, y2) = (2, 0):
Let us make the change of variables(

ỹ1

ỹ2

)
=

(
y1 − 2
y2

)
Then

ỹ′ =

(
ỹ2

−(ỹ1 + 2) + 1
2 (ỹ1 + 2)2

)
=

(
ỹ2

ỹ1 + 1
2 ỹ

2
1

)
We now linearize around the point (ỹ1, ỹ2) = (0, 0)

Ã =

(
∂f̃1
∂ỹ1

∂f̃1
∂ỹ2

∂f̃2
∂ỹ1

∂f̃2
∂ỹ2

)∣∣∣∣∣
ỹ=0

=

(
0 1

1 + ỹ1 0

)∣∣∣∣
ỹ=0

=

(
0 1
1 0

)
Now, the characteristic polynomial is

|Ã− λI| =
∣∣∣∣ −λ 1

1 −λ

∣∣∣∣ = λ2 − 1 = 0
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So, p = 0, q = −1 and ∆ = p2 − 4q = 4. Consequently, (2, 0) is an unstable
(q < 0) saddle point (q < 0).
Kreyszig, 4.5.9
Carlos Oscar Sorzano, Jan. 15th, 2015

Find the location and type of all critical points by �rst converting the ODE
to a system and then linearizing it.

y′′ − 9y + y3 = 0

Solution: Let us de�ne
y1 = y
y2 = y′1

Then we may rewrite the ODE as

y′2 − 9y1 + y3
1 = 0

or the ODE system

y′1 = y2

y′2 = 9y1 − y3
1 = y1(3− y1)(3 + y1)

There are three critical points at y = y1 = 0, 3,−3, y2 = 0. Let us linearize
the ODE at the three points. For doing so, let us rewrite the ODE system as a
vector di�erential equation:

y′ = F(y)

Case y = 0:

y′ =

(
∂F1

∂y1
∂F1

∂y2
∂F2

∂y1
∂F2

∂y2

)∣∣∣∣∣
y1=0,y2=0

y =

(
0 1

9− 3y2
1 0

)∣∣∣∣
y1=0,y2=0

y =

(
0 1
9 0

)
y

The eigenvalues of A =

(
0 1
9 0

)
are λ1 = 3 and λ2 = −3. Since the two

eigenvalues are real and of opposite sign, the critical point is a saddle point.
Case y = 3:

y′ =

(
0 1

9− 3y2
1 0

)∣∣∣∣
y1=3,y2=0

y =

(
0 1
−18 0

)
y

whose eigenvalues are λ1 =
√

18i and λ2 = −
√

18i. Since the two eigenvalues
are pure imaginary, the critical point is a center.

Case y = −3:

y′ =

(
0 1

9− 3y2
1 0

)∣∣∣∣
y1=−3,y2=0

y =

(
0 1
−18 0

)
y

Again, the critical point is a center.
Kreyszig, 4.5.11
Carlos Oscar Sorzano, June 15th, 2015
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Find the location and type of all critical points by �rst converting the ODE
to a system and then linearizing it.

y′′ + cos(y) = 0

Solution: Let us de�ne
y1 = y
y2 = y′1

Then we may rewrite the ODE as

y′2 + cos(y1) = 0

or the ODE system
y′1 = y2

y′2 = − cos(y1)

There are three critical points at y = y1 = π
2 + nπ, y2 = 0. Let us linearize the

ODE at the two di�erent kind of points. For doing so, let us rewrite the ODE
system as a vector di�erential equation:

y′ = F(y)

Case y = π
2 :

y′ =

(
∂F1

∂y1
∂F1

∂y2
∂F2

∂y1
∂F2

∂y2

)∣∣∣∣∣
y1=π

2 ,y2=0

y =

(
0 1

sin(y1) 0

)∣∣∣∣
y1=π

2 ,y2=0

y =

(
0 1
1 0

)
y

The eigenvalues of A =

(
0 1
1 0

)
are λ1 = −1, λ2 = 1. Since the eigenvalues are

real and of opposite sign the critical point is a saddle point.
Case y = 3π

2 :

y′ =

(
∂F1

∂y1
∂F1

∂y2
∂F2

∂y1
∂F2

∂y2

)∣∣∣∣∣
y1= 3π

2 ,y2=0

y =

(
0 1

sin(y1) 0

)∣∣∣∣
y1= 3π

2 ,y2=0

y =

(
0 1
−1 0

)
y

The eigenvalues of A =

(
0 1
−1 0

)
are λ1 = i, λ2 = −i. The eigenvalues are pure

imaginary and, consequently, the critical point is a center.
Kreyszig, 4.6.3
Álvaro Martín Ramos, Jan. 4th, 2015

Find a general solution of

y′1 = y2 + e3t

y′2 = y1 − 3e3t

Solution: Let us write the ODE system as(
y′1
y′2

)
=

(
0 1
1 0

)(
y1

y2

)
+

(
1
−3

)
e3t
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The eigenvalues and eigenvectors of the system matrix are

λ1 = 1,v1 = (1,−1)T

λ2 = −1,v2 = (1, 1)T

So the general solution of the homogeneous problem is

yh = c1

(
1
−1

)
et + c2

(
1
1

)
e−t =

(
et e−t

−et e−t

)(
c1
c2

)
= Y c

For the particular solution we now that

yp = Y u

Where
u′ = Y −1g

So

Y −1 =
1

2

(
e−t −e−t
et et

)
u′ =

1

2

(
e−t −e−t
et et

)(
e3t

−3e3t

)
=

(
−e2t

2e4t

)

u =

∫ (
−e2t

2e4t

)
dt =

(
−e2t

2
e4t

2

)

yp = Y u =

(
et e−t

−et e−t

)(−e2t
2
e4t

2

)
=

(
0
e3t

)
Finally,

y = yh + yp = c1

(
1
−1

)
et + c2

(
1
1

)
e−t +

(
0
e3t

)
Kreyszig, 4.6.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Find a general solution of

y′1 = 4y1 + y2 + 0.6t
y′2 = 2y1 + 3y2 − 2.5t

Solution: Let us write the ODE system as

y′ =

(
4 1
2 3

)
y +

(
0.6t
−2.5t

)
The eigenvalues and eigenvectors of the system matrix are

λ1 = 5,v1 = (1, 1)T

λ2 = 2,v2 = (−1, 2)T
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So the general solution of the homogeneous problem is

yh = c1

(
1
1

)
e5t + c2

(
−1
2

)
e2t

For the particular solution, we try a solution of the type

y = k0 + k1t

Substituting into the ODE we get

k1 =

(
4 1
2 3

)
(k0 + k1t) +

(
0.6
−2.5

)
t

From where (
4 1
2 3

)
k1 +

(
0.6
−2.5

)
= 0⇒ k1 =

(
−0.43
1.12

)
and

k1 =

(
4 1
2 3

)
k0 ⇒ k0 =

(
−0.241
0.534

)
So, the general solution is

y = c1

(
1
1

)
e5t + c2

(
−1
2

)
e2t +

(
−0.241
0.534

)
+

(
−0.43
1.12

)
t

5 Chapter 5

Kreyszig, 5.1.7
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE
y′ = −2xy

using the power series method.
Solution: Let us expand the solution of the ODE as

y =

∞∑
m=0

amx
m = a0 + a1x+ a2x

2 + a3x
3 + ...

Then

y′ =

∞∑
m=1

ammx
m−1 = a1 + 2a2x+ 3a3x

2 + ...

Let us write the ODE as
y′ + 2xy = 0

and substitute the two series( ∞∑
m=1

ammx
m−1

)
+ 2x

( ∞∑
m=0

amx
m

)
= 0
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(
a1 + 2a2x+

∞∑
m=3

ammx
m−1

)
+ 2a0x+

( ∞∑
m=1

2amx
m+1

)
= 0

Let us do the change of variable m′ = m− 2 in the �rst sum(
a1 + 2a2x+

∞∑
m′=1

am′+2(m′ + 2)xm
′+1

)
+ 2a0x+

( ∞∑
m=1

2amx
m+1

)
= 0

a1 + 2(a0 + a2)x+

∞∑
m′=1

am′+2(m′ + 2)xm
′+1 +

∞∑
m=1

2amx
m+1 = 0

a1 + 2(a0 + a2)x+

∞∑
m=1

((m+ 2)am+2 + 2am)xm+1 = 0

Since the whole series is 0, all its terms must be 0

a1 = 0

a0 + a2 = 0⇒ a2 = −a0

Let us analyze now the odd terms

m = 1⇒ 3a3 + 2a1 = 0⇒ a3 = 0

m = 3⇒ 5a5 + 2a3 = 0⇒ a5 = 0

...

So all odd terms are null. Let us analyze now the even terms

m = 2⇒ 4a4 + 2a2 = 0⇒ a4 = −2

4
a2 =

1

2
a0

m = 4⇒ 6a6 + 2a4 = 0⇒ a6 = −2

6
a4 = −1

3

1

2
a0

m = 6⇒ 8a8 + 2a6 = 0⇒ a8 = −2

8
a6 =

1

4

1

3

1

2
a0

...

And in general, for m even, we have

am = (−1)
m
2

1
m
2 !
a0

The general solution is then

y = a0

(
1− x2 +

1

2!
x4 − 1

3!
x6 +

1

4!
x8 − ...

)
It can be easily checked that this is the Taylor expansion of

y = a0e
−x2
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Kreyszig, 5.1.11
Álvaro Martín Ramos, Jan. 4th, 2015

Solve the ODE
y′′ − y′ − x2y = 0

using the power series method
Solution: Let us expand the solution of the ODE as

y =

∞∑
m=0

amx
m

Then

y′ =
∞∑
m=1

ammx
m−1

y′′ =
∞∑
m=2

amm(m− 1)xm−2

Substituting the series in the ODE( ∞∑
m=2

amm(m− 1)xm−2

)
−

( ∞∑
m=1

ammx
m−1

)
+ x2

( ∞∑
m=0

amx
m

)
= 0

Let us do the change of variable m′ = m+ 1 in the second sum and m′ = m+ 4
in the third sum

∞∑
m=2

amm(m− 1)xm−2 −
∞∑

m′=2

am′−1(m′ − 1)xm
′−2 +

∞∑
m′=4

am′−4x
m−2 = 0

2a2 +6a3x− (a1 +2a2x)+

∞∑
m=4

((m− 1)mam − (m− 1)am−1 + am−4)xm−2 = 0

The whole series is 0, all terms must be 0

2a2 − a1 = 0⇒ a2 =
a1

2

6a3 − 2a2 = 0⇒ a3 =
a2

3
=
a1

3!

When m=4

12a4 − 3a3 + a0 = 0⇒ a4 =
3a3 − a0

12
=
a1

4!
− a0

12

When m=5

20a5 − 4a4 + a1 = 0⇒ a5 =
4a4 − a1

20
=
a4

5
− a1

20
=

=
a1

5!
− a0

60
− a1

20
= −a0

60
+
a1

5!
− 6a1

5!
= −a0

60
− 5a1

5!
= −a0

60
− a1

4!

The general solution is then

y = a0(1− 1

12
x4 − 1

60
x5...) + a1(x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 − 1

5!
x5...)
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Kreyszig, 5.1.20
Carlos Oscar Sorzano, Aug. 31st, 2014

In numerics we use partial sums of power series. To get a feel for the accuracy
for various x, experiment with sin(x). Graph partial sums of the Maclaurin
series of an increasing number of terms, describing qualitatively the �breakaway
points� of these graphs from the graph of sin(x).
Solution: We know that the MacLaurin series of sin(x) is

sin(x) =

∞∑
m=0

(−1)m

(2m+ 1)!
x2m+1 = x− x3

3!
+
x5

5!
− ...

We may program this in MATLAB as follows x=[-2*pi:0.001:2*pi]

M=5;

yp=zeros(M+1,length(x));

for m=0:M

yp(m+1,:)=(-1)�m/factorial(2*m+1)*x.�(2*m+1);

if m>0

yp(m+1,:)=yp(m+1,:)+yp(m,:);

end

end

plot(x,sin(x),'LineWidth',2)

axis([-2*pi 2*pi -2 2])

hold on

plot(x,yp)

legend('sin(x)','m=0','m=1','m=2','m=3','m=4','m=5')

−6 −4 −2 0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
sin(x)
m=0
m=1
m=2
m=3
m=4
m=5

Kreyszig, 5.2.2
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Carlos Oscar Sorzano, Aug. 31st, 2014

Show that

y2 = x− (n− 1)(n+ 2)

3!
x3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5 − ...

with n = 1 becomes
y2 = P1 = x

and

y1 = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n+ 3)

4!
x4 − ...

with n = 1 becomes

y1 = 1− x2 − 1

3
x4 − 1

5
x6 − ... = 1− 1

2
x log(x)

Solution: Let's start �rst with y2. For a general n, y2 is

y2 = x− (n− 1)(n+ 2)

3!
x3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5 − ...

In particular for n = 1, it becomes

y2 = x− (0)(3)

3!
x3 +

(−2)(0)(3)(5)

5!
x5 − ... = x = P1(x)

as stated by the problem.
y1 is for any n

y1 = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n+ 3)

4!
x4 − ...

that can be written as

y1 = a0 + a2x
2 + a4x

4 + ...

In general, we have the recursion

am+2 = − (n−m)(n+m+ 1)

(m+ 2)(m+ 1)
am

which for n = 1 becomes

am+2 = − (1−m)(m+ 2)

(m+ 2)(m+ 1)
am =

(m− 1)

(m+ 1)
am

In this way, we note that

a0 = 1
a2 = −1

1 a0 = −1
a4 = 1

3a2 = − 1
3

a6 = 3
5a4 = − 3

5
1
3 = − 1

5
a8 = 5

7a6 = − 5
7

1
5 = − 1

7

90



and, in general,

am = − 1

m− 1
a0

Then, we can wwrite y1 as

y1 = 1− x2 − 1

3
x4 − 1

5
x6 − 1

7
x8 − ...

We know that the McLaurin series of 1
2 log 1+x

1−x in the interval −1 < x < 1 is

1

2
log

1 + x

1− x
= x+

x3

3
+
x5

5
+
x7

7
+ ...

If we now calculate

1− 1
2x log 1+x

1−x = 1− x
(
x+ x3

3 + x5

5 + x7

7 + ...
)

= 1− x2 − x4

3 −
x6

5 −
x8

7 − ...

which is equal to y1 as stated by the problem.
Kreyszig, 5.2.11
Carlos Oscar Sorzano, Dec. 19th, 2014

Find a solution of

(a2 − x2)y′′ − 2xy′ + n(n+ 1)y = 0

by reduction to a Legendre equation.
Solution: Let us perform the change of variable

u =
x

a

dy

dx
=
dy

du

du

dx
=
dy

du

1

a

d2y

dx2
=

d

du

(
dy

du

1

a

)
du

dx
=
d2y

du2

1

a2

Substituting into the di�erential equation, we get

(a2 − a2u2)
d2y

du2

1

a2
− 2(au)

dy

du

1

a
+ n(n+ 1)y = 0

(1− u2)
d2y

du2
− 2u

dy

du
+ n(n+ 1)y = 0

whose general solution is

y(u) = c1y1(u) + c2y2(u)

or what is the same
y(x) = c1y1

(x
a

)
+ c2y2

(x
a

)
Kreyszig, 5.3.2
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Carlos Oscar Sorzano, Dec. 19th, 2014

Solve
(x+ 2)2y′′ + (x+ 2)y′ − y = 0

by the Frobenius method.
Solution: We can make the change of variable z = x + 2. Under this change
the equation can be written as

z2ÿ + zẏ − y = 0

ÿ +
1

z
ẏ − 1

z2
y = 0

We can apply the Frobenius method to this problem because it is of the form

ÿ +
b(z)

z
ẏ +

c(z)

z2
y = 0

being b(z) = 1 and c(z) = −1 analytical functions at z = 0. We look for a
solution of the form

y = zr
∞∑
m=0

amz
m

Its derivatives are

ẏ = dy
dz = zr−1

∞∑
m=0

(m+ r)amz
m

ÿ = d2y
dz2 = zr−2

∞∑
m=0

(m+ r)(m+ r − 1)amz
m

Substituting into the di�erential equation:

z2

(
zr−2

∞∑
m=0

(m+ r)(m+ r − 1)amz
m

)
+z

(
zr−1

∞∑
m=0

(m+ r)amz
m

)
−

(
zr
∞∑
m=0

amz
m

)
= 0

∞∑
m=0

(m+ r)(m+ r − 1)amz
m+r +

∞∑
m=0

(m+ r)amz
m+r −

∞∑
m=0

amz
m+r = 0

∞∑
m=0

((m+ r)(m+ r − 1) + (m+ r)− 1)amz
m+r = 0

∞∑
m=0

(m+ r + 1)(m+ r − 1)amz
m+r = 0

The indicial equation comes from the coe�cient of lowest degree, i.e., m = 0

(r + 1)(r − 1) = 0

whose solutions are
r1 = 1, r2 = −1

Case r1 = 1
Substituting r = 1 in the di�erential equation we get

∞∑
m=0

(m+ 2)mamz
m+1 = 0 = 2 · 1a1z

2 + 3 · 2a2z
3 + 4 · 3a3z

4 + ...
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which implies a1 = a2 = a3 = ... = 0. So, any function of the form

y = zr1
∞∑
m=0

amz
m = z(a0)

is a solution of the di�erential equation. In particular, we may choose any
constant a0, for instance, a0 = 1, to obtain a basis function

y1 = z

Case r2 = −1
Since the di�erence between r2 and r1 is an integer value

r2 − r1 = −1− 1 = −2

we must look for a solution of the form

y2 = ky1 log(z) + zr2
∞∑
m=0

amz
m

= kz log(z) + z−1
∞∑
m=0

amz
m

Let us �rst calculate

ẏ2 = k(log(z) + 1) + z−2
∞∑
m=0

(m− 1)amz
m

ÿ2 = kz−1 + z−3
∞∑
m=0

(m− 1)(m− 2)amz
m

We now substitute into the di�erential equation

z2

(
kz−1 + z−3

∞∑
m=0

(m− 1)(m− 2)amz
m

)
+ z

(
k(log(z) + 1) + z−2

∞∑
m=0

(m− 1)amz
m

)
−
(
kz log(z) + z−1

∞∑
m=0

amz
m

)
= 0(

kz +
∞∑
m=0

(m− 1)(m− 2)amz
m−1

)
+

(
kz log(z) + kz +

∞∑
m=0

(m− 1)amz
m−1

)
−
(
kz log(z) +

∞∑
m=0

amz
m−1

)
= 0

2kz +
∞∑
m=0

[(m− 1)(m− 2) + (m− 1)− 1] amz
m−1 = 0

2kz +
∞∑
m=0

m(m− 2)amz
m−1 = 0

(−1)a1 + 2kz +
∞∑
m=3

m(m− 2)amz
m−1 = 0

So, a1 = k = a3 = a4 = a5 = ... = 0. a0 and a2 are free so any solution of the
kind

y2 = z−1(a0 + a2z
2) = a0z

−1 + a2z

is a solution of the di�erential equation. Actually, we already knew that z was
a solution, so the only novelty brought by this solution is (with a0 = 1).

y2 = z−1
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Any solution of the di�erential equation is of the form

y = c1y1 + c2y2 = c1z +
c2
z

= c1(x+ 2) +
c2

x+ 2

Kreyszig, 5.3.4
Carlos Oscar Sorzano, June 15th, 2015

Solve
xy′′ + y = 0

by the Frobenius method.
Solution: Dividing by x we have

y′′ +
1

x
y = 0

We can apply the Frobenius method to this problem because it is of the form

y′′ +
b(x)

x
y′ +

c(x)

x2
y = 0

being b(x) = 0 and c(x) = x analytical functions at x = 0. We look for a
solution of the form

y = xr
∞∑
m=0

amx
m

Its derivatives are

y′ = dy
dx = xr−1

∞∑
m=0

(m+ r)amx
m

y′′ = d2y
dx2 = xr−2

∞∑
m=0

(m+ r)(m+ r − 1)amx
m

Substituting into the di�erential equation:

x

(
xr−2

∞∑
m=0

(m+ r)(m+ r − 1)amx
m

)
+

(
xr

∞∑
m=0

amx
m

)
= 0

∞∑
m=0

(m+ r)(m+ r − 1)amx
m+r−1 +

∞∑
m=0

amx
m+r = 0

If we take out the �rst term from the �rst summation, we get

r(r − 1)a0x
r−1 +

∞∑
m=1

(m+ r)(m+ r − 1)amx
m+r−1 +

∞∑
m=0

amx
m+r = 0

We now make a change of variable to make the �rst summation to start at
m = 0

r(r − 1)a0x
r−1 +

∞∑
m=0

(m+ r + 1)(m+ r)am+1x
m+r +

∞∑
m=0

amx
m+r = 0
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r(r − 1)a0x
r−1 +

∞∑
m=0

((m+ r + 1)(m+ r)am+1 + am)xm+r = 0

The indicial equation comes from the coe�cient of lowest degree, i.e., the
�rst one

r(r − 1) = 0

whose solutions are
r1 = 0, r2 = 1

Case r1 = 0
Substituting r = 0 in the di�erential equation we get

∞∑
m=0

((m+ 1)mam+1 + am)xm = 0

Note that this is equal to

a0 +

∞∑
m=1

((m+ 1)mam+1 + am)xm = 0

which implies a0 = 0 and (for m ≥ 1)

(m+ 1)mam+1 + am = 0⇒ am+1 = − am
m(m+ 1)

The �rst terms are
a2 = − a1

1·2 = − 1
1·2a1

a3 = − a2
2·3 = 1

1·2·2·3a1

a4 = − a3
3·4 = − 1

1·2·2·3·3·4a1

We observe that the follow the general term (for m ≥ 1)

am =
(−1)m+1

m!(m− 1)!
a1

So, any function of the form

y = xr1
∞∑
m=0

amx
m = a1

∞∑
m=1

(−1)m+1

m!(m− 1)!
xm

is a solution of the di�erential equation. In particular, we may choose any
constant a1, for instance, a1 = 1, to obtain a basis function

y1 =

∞∑
m=1

(−1)m+1

m!(m− 1)!
xm = x− 1

2!1!
x2 +

1

3!2!
x3 − 1

4!3!
x4 + ...

Case r2 = 1
Since the di�erence between r2 and r1 is an integer value, we must look for a
solution of the form

y2 = ky1 log(x) + xr2
∞∑
m=0

amx
m

= k

( ∞∑
m=1

(−1)m+1

m!(m−1)!x
m

)
log(x) + x

∞∑
m=0

amx
m
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Let us �rst calculate the derivatives of y2

y′2 = k

( ∞∑
m=1

(−1)m+1

m!(m− 1)!
(1 +m log(x))xm

)
+

∞∑
m=0

(m+ 1)amx
m

y′′2 = k

( ∞∑
m=1

(−1)m+1

m!(m− 1)!
m(2 +m log(x))xm−1

)
+

∞∑
m=0

(m+ 1)mamx
m−1

We now substitute into the equation

xy′′2 + y2 = 0

k

( ∞∑
m=1

(−1)m+1

m!(m−1)!m(2 +m log(x))xm
)

+
∞∑
m=0

(m+ 1)mamx
m+

k

( ∞∑
m=1

(−1)m+1

m!(m−1)!x
m

)
log(x) + x

∞∑
m=0

amx
m = 0

∞∑
m=1

(−1)m+1

m!(m−1)!2kmx
m +

∞∑
m=1

(−1)m+1

m!(m−1)!m
2k log(x)xm +

∞∑
m=0

(m+ 1)mamx
m+

∞∑
m=1

(−1)m+1

m!(m−1)!k log(x)xm + x
∞∑
m=0

amx
m = 0

∞∑
m=1

(−1)m+1

m!(m−1)!k log(x)(1 +m2)xm+

∞∑
m=0

(m+ 1)mamx
m +

∞∑
m=1

(−1)m+1

m!(m−1)!2kmx
m + x

∞∑
m=0

amx
m = 0

From the �rst row of previous equation we learn that k = 0, because all terms
in xm log(x) must go (they are equal to 0 in the right-hand side). Then, the
previous equation simpli�es to

∞∑
m=0

(m+ 1)mamx
m +

∞∑
m=0

amx
m+1 = 0

∞∑
m=1

(m+ 1)mamx
m +

∞∑
m=0

amx
m+1 = 0

∞∑
m=0

(m+ 2)(m+ 1)am+1x
m+1 +

∞∑
m=0

amx
m+1 = 0

∞∑
m=0

((m+ 2)(m+ 1)am+1 + am)xm+1 = 0

From where
am+1 = − am

(m+ 1)(m+ 2)

The �rst terms are
a1 = − a0

1·2 = − 1
1·2a0

a2 = − a1
2·3 = 1

1·2·2·3a0

a3 = − a2
3·4 = − 1

1·2·2·3·3·4a0

The general term is

am =
(−1)m

m!(m+ 1)!
a0
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In this way, we see that any function of the form

y2 = a0

∞∑
m=0

(−1)m

m!(m+ 1)!
xm

is solution of the di�erential equation. In paticular, for a0 = 1, we get

y2 =

∞∑
m=0

(−1)m

m!(m+ 1)!
xm = 1− 1

1!2!
x+

1

2!3!
x2 − 1

3!4!
x3 + ...

General solution: Finally, the general solution of the ODE is

y = K1y1 +K2y2 = K1

∞∑
m=1

(−1)m+1

m!(m− 1)!
xm +K2

∞∑
m=0

(−1)m

m!(m+ 1)!
xm

By making the change of variable z =
√
x in the original di�erential equation

xy′′ + y = 0

The equation is transformed into a Bessel's equation whose general solution is

y = KA

√
xJ1(2

√
x) +KB

√
xY1(2

√
x)

That is, both solutions (the series expansion and the Bessel's solution) are equiv-
alent (i.e., given K1 and K2, one can always �nd KA and KB that gives the
same function; and viceversa).
Kreyszig, 5.4.3
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve

xy′′ + y′ +
1

4
y = 0

by making the change of variable z =
√
x.

Solution: If z =
√
x, then

z′ = 1
2
√
x

= 1
2z
−1

y′ = dy
dz z
′ = dy

dz
1
2z
−1

y′′ = dy′

dz
dz
dx = 1

2

(
−z−2 dy

dz + z−1 d
2y
dz2

)
1
2z
−1

= 1
4

(
z−2 d

2y
dz2 − z

−3 dy
dz

)
With these, we can rewrite the ODE as

z2 1

4

(
z−2 d

2y

dz2
− z−3 dy

dz

)
+

1

2
z−1 dy

dz
+

1

4
y = 0

1

4

d2y

dz2
− 1

4
z−1 dy

dz
+

1

2
z−1 dy

dz
+

1

4
y = 0

1

4

d2y

dz2
+

1

4
z−1 dy

dz
+

1

4
y = 0
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Multiplying by 4z2, we get

z2 d
2y

dz2
+ z

dy

dz
+ z2y = 0

which is Bessel's equation with ν = 0. Since ν is an integer, there is no solution
of form

y = c1Jν(z) + c2J−ν(z)

Its general solution needs Bessel's functions of the second kind (that will be seen
in next section). However, for the sake of completeness we already point out
that the general solution is

y = c1J0(z) + c2Y0(z) = c1J0(
√
x) + c2Y0(

√
x)

Kreyszig, 5.4.5
Carlos Oscar Sorzano, Dec. 19th, 2014

Solve
x2y′′ + xy′ + (λ2x2 − ν2)y = 0

by making the change of variables λx = z.
Solution: Let us write the di�erent elements we need from the change of vari-
ables

dz
dx = λ

y′ = dy
dx = dy

dz
dz
dx = ẏλ

y′′ = d2y
dx2 = d

dz (ẏλ) dzdx = (λÿ)λ = λ2ÿ

Substituting in the di�erential equation

z2

λ2
(λ2ÿ) +

z

λ
(λẏ) + (z2 − ν2)y = 0

z2ÿ + zẏ + (z2 − ν2)y = 0

which is a Bessel's equation of parameter ν. Its general solution is (ν /∈ Z)

y = c1Jν(z) + c2J−ν(z) = c1Jν(λx) + c2J−ν(λx)

Kreyszig, 5.4.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
x2y′′ + 1

4 (x+ 3
4 )y = 0

by making the change of variable y = u
√
x, z =

√
x.

Solution: If z =
√
x, then

z′ = 1
2
√
x

= 1
2z
−1
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On the other side

y = u
√
x = uz

y′ = dy
dz

dz
dx =

(
du
dz z + u

)
1
2z
−1

y′′ = dy′

dz
dz
dx

= 1
2

[
z−1

(
d2u
dz2 z + du

dz + du
dz

)
+ (−z−2)

(
du
dz z + u

)]
1
2z
−1

= 1
4z
−2
(
d2u
dz2 z + 2dudz

)
− 1

4z
−3
(
du
dz z + u

)
= 1

4z
−1 d2u

dz2 + 1
2z
−2 du

dz −
1
4z
−2 du

dz −
1
4z
−3u

= 1
4z
−1 d2u

dz2 + 1
4z
−2 du

dz −
1
4z
−3u

So, we can rewrite the ODE as

z4

(
1
4z
−1 d

2u

dz2
+ 1

4z
−2 du

dz
− 1

4z
−3u

)
+ 1

4 (z2 + 3
4 )uz = 0

1
4z

3 d
2u

dz2
+ 1

4z
2 du

dz
− 1

4zu+ 1
4z

3u+ 3
16uz = 0

1
4z

3 d
2u

dz2
+ 1

4z
2 du

dz
+ 1

4z
3u− 1

16uz = 0

Multiplying the whole equation by 4z−1, we get

z2 d
2u

dz2
+ z

du

dz
+ z2u− 1

4u = 0

z2 d
2u

dz2
+ z

du

dz
+
(
z2 − 1

4

)
u = 0

That is Bessel's equation with ν = 1
2 . Since ν is not an integer value, its general

solution can be written as

u = c1J 1
2

(z) + c2J− 1
2

(z) = c1J 1
2

(
√
x) + c2J− 1

2
(
√
x)

Finally, we undo the change of variable

y = uz =

(
c1J 1

2
(
√
x) + c2J− 1

2
(
√
x)

)√
x

Kreyszig, 5.4.10
Carlos Oscar Sorzano, Jan. 13th, 2015

Solve
x2y′′ + (1− 2ν)xy′ + ν2(x2ν + 1− ν2)y = 0

by making the change of variables z = xν .
Solution: Let us perform the change of variables in two steps. We �rst make
the change of variable

z = xν ⇒ x = z
1
ν

dz
dx = νxν−1 = νz

ν−1
ν

y′ = dy
dx = dy

dz
dz
dx = ẏ(νz

ν−1
ν )

y′′ = d2y
dx2 = d

dz

(
ẏ(νz

ν−1
ν )
)
dz
dx

= ν
[
ÿz

ν−1
ν + ẏ ν−1

ν z−
1
ν

]
(νz

ν−1
ν )

= ÿν2z
2ν−2
ν + ẏν(ν − 1)z

ν−2
ν
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Substituting into the ODE we get

z
2
ν (ÿν2z

2ν−2
ν + ẏν(ν − 1)z

ν−2
ν ) + (1− 2ν)z

1
ν (ẏνz

ν−1
ν ) + ν2(z2 + 1− ν2)y = 0

(ÿν2z2 + ẏν(ν − 1)z) + (1− 2ν)(ẏνz) + ν2(z2 + 1− ν2)y = 0

ÿν2z2 + ẏν2z + ν2(z2 + 1− ν2)y = 0

z2ÿ + zẏ + (z2 − (ν2 − 1))y = 0

This is Bessel's equation if ν2 − 1 > 0, in that case the general solution is given
(if ν2 /∈ R2) by

y = c1J√ν2−1(z) + c2J−
√
ν2−1(z) = c1J√ν2−1(xν) + c2J−

√
ν2−1(xν)

Kreyszig, 5.5.1
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
x2y′′ + xy′ + (x2 − 16)y = 0

Solution: This is Bessel's equation with ν = 4. Since ν is an integer value,
we have to write the general solution making use of Bessel's functions of second
kind:

y = c1J4(x) + c2Y4(x)

Kreyszig, 5.5.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
xy′′ + 5y′ + xy = 0

by making the change of variable y = u
x2 .

Solution: If y = ux−2, then

y′ = du
dxx
−2 + u(−2x−3)

y′′ = d2u
dx2 x

−2 + du
dx (−2x−3) + du

dx (−2x−3) + u(6x−4)

= x−2 d2u
dx2 − 4x−3 du

dx + 6x−4u

Substituting in the ODE we get

x

(
x−2 d

2u

dx2
− 4x−3 du

dx
+ 6x−4u

)
+ 5

(
du

dx
x−2 + u(−2x−3)

)
+ xux−2 = 0

x−1 d
2u

dx2
− 4x−2 du

dx
+ 6x−3u+ 5x−2 du

dx
− 10x−3u+ x−1u = 0

x−1 d
2u

dx2
+ x−2 du

dx
+ (x−1 − 4x−3)u = 0

Multiplying the equation by x3

x2 d
2u

dx2
+ x

du

dx
+ (x2 − 4)u = 0

100



which is Bessel's equation with ν = 2. Since ν is an integer value, the general
solution is given by

u = c1J2(x) + c2Y2(x)

Undoing the change of variable

y = ux−2 = c1x
−2J2(x) + c2x

−2Y2(x)

6 Chapter 6

Kreyszig, 6.1.4
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of cos2(ωt).
Solution:

L{cos2(ωt)} =
∞∫
0

cos2(ωt)e−stdt

=
∞∫
0

1+cos(2ωt)
2 e−stdt

= 1
2

∞∫
0

e−stdt+ 1
2

∞∫
0

cos(2ωt)e−stdt

= 1
2

[
1
−se
−st
]∞

0
+ 1

2

∞∫
0

cos(2ωt)e−stdt

= 1
2

1
s + 1

2

∞∫
0

cos(2ωt)e−stdt [Re{s} < 0]

Now we make use of the Laplace transform

L{cos(ωt)} =
s

s2 + ω2

to get

L{cos2(ωt)} =
1

2s
+

1

2

s

s2 + (2ω)2
[Re{s} < 0]

Kreyszig, 6.1.20
Carlos Oscar Sorzano, Aug. 31st, 2014

Non-existence. Show that a function like et
2

does not ful�ll the condition∣∣∣et2∣∣∣ ≤Mekt

Solution: For t > 0 we have et
2

> 0 so that
∣∣∣et2∣∣∣ = et

2

. Let us show that for

any M and k, we can �nd t such that

et
2

> Mekt = elog(M)ekt
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Taking logarithms
t2 > log(M) + kt

t2 − kt− log(M) > 0

Let us �nd the point at which the curve crosses 0

t2 − kt− log(M) = 0⇒ t =
k ±

√
k2 + 4 log(M)

2

That is for t >
k+
√
k2+4 log(M)

2 we have that

et
2

> Mekt

Kreyszig, 6.1.22
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that

L
{

1√
t

}
=

√
π

s

Conclude from this that the conditions for existence are su�cient but not nec-
essary for the existence of the Laplace transform.
Solution:

L
{

1√
t

}
=

∞∫
0

1√
t
e−st =

∞∫
0

t−
1
2 e−stdt

Let us make the change of variable

τ = st⇒ t =
τ

s
, dt =

dτ

s

L
{

1√
t

}
=

∞∫
0

(
τ
s

)− 1
2 e−τ dτs =

∞∫
0

τ−
1
2 s

1
2 e−τs−1dτ

= s−
1
2

∞∫
0

τ−
1
2 e−τdτ = s−

1
2 Γ
(

1
2

)
= s−

1
2
√
π =

√
π
s

So, there exists the Laplace transform of 1√
t
although it is not well de�ned at

t = 0.
Kreyszig, 6.1.26
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of 5s+1
s2−25

Solution:

L−1
{

5s+1
s2−25

}
= 5L−1

{
s

s2−25

}
+ L−1

{
1

s2−25

}
= 5 cosh(5t) + 1

5 sinh(5t)

where we have made used of the Laplace transforms

L
{

s
s2−a2

}
= cosh(at)

L
{

a
s2−a2

}
= sinh(at)
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Kreyszig, 6.1.29
Álvaro Martín Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of

12

s4
− 228

s6

Solution:

L−1{12

s4
− 228

s6
} = 2L−1{ 3!

s4
} − 228

5!
L−1{ 5!

s6
} = 2t3 − 1.9t5

Kreyszig, 6.1.30
Álvaro Martín Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of

4s+ 32

s2 − 16

Solution:

L−1{4s+ 32

s2 − 16
} = 4L−1{ s

s2 − 16
}+ 8L−1{ 4

s2 − 16
} = 4 cosh(4t) + 8 sinh(4t)

Kreyszig, 6.1.33
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of t2e−3t

Solution: We know that

L
{
t2
}

= 2!
s3

L{eatf(t)} = F (s− a)

Both together we have that

L
{
t2e−3t

}
= 2!

(s+3)3

Kreyszig, 6.1.39
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of 21
(s+
√

2)4

Solution: We know that

L{tn} = n!
sn+1

L{eatf(t)} = F (s− a)

Then we have the inverse Laplace transform

L−1
{

21
s4

}
= 21

3!L
−1
{

3!
s4

}
= 7

2 t
3

and
L−1

{
21

(s+
√

2)4

}
= 7

2 t
3e−
√

2t
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Kreyszig, 6.2.3
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the Initial Value Problem

y′′ − y′ − 6y = 0 y(0) = 11, y′(0) = 28

Solution: We know that

L{y} = Y
L{y′} = sY − y(0)
L{y′′} = s2Y − sy(0)− y′(0)

Then, we can write the ODE as

(s2Y − 11s− 28)− (sY − 11)− 6Y = 0

(s2 − s− 6)Y − 11s− 17 = 0

Y =
11s+ 17

s2 − s− 6
=

11s+ 17

(s− 3)(s+ 2)
=

1

s+ 2
+

10

s− 3

Its inverse Laplace transform is

y = e−2t + 10e3t

which is the particular solution of the IVP satisfying the initial conditions.
Kreyszig, 6.2.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the Initial Value Problem

y′′ − 2y′ − 3y = 0 y(4) = −3, y′(4) = 17

Solution: Let us de�ne

ỹ(t̃) = y(t̃+ 4)⇔ y(t) = ỹ(t− 4)

Note that the relationship between the two time variables is

t̃ = t− 4

Then
y′(t) = ỹ′(t̃)
y′′(t) = ỹ′′(t̃)

Then we can rewrite the IVP as

ỹ′′ − 2ỹ′ − 3ỹ = 0 ỹ(0) = −3, ỹ′(0) = 17

We know that
L{ỹ} = Ỹ

L{ỹ′} = sỸ − ỹ(0)

L{ỹ′′} = s2Ỹ − sỹ(0)− ỹ′(0)

104



Then, we can write the ODE as

(s2Ỹ + 3s− 17)− 2(sỸ + 3)− 3Ỹ = 0

(s2 − 2s− 3)Ỹ + 3s− 23 = 0

Ỹ =
−3s+ 23

s2 − 2s− 3
=

−3s+ 23

(s− 3)(s+ 1)
=

7

2

1

s− 3
− 13

2

1

s+ 1

Its inverse Laplace transform is

ỹ(t̃) =
7

2
e3t̃ − 13

2
e−t̃

which is the particular solution of the IVP satisfying the initial conditions. If
we undo now the time shift, we get

y(t) = ỹ(t− 4) =
7

2
e3(t−4) − 13

2
e−(t−4)

Kreyszig, 6.2.15
Álvaro Martín Ramos, Jan. 11th, 2015

Solve the Initial Value Problem

y′′ + 3y′ − 4y = 6e2t−3 y(1.5) = 4, y′(1.5) = 5

Solution: We make a change of variable

t̃ = t− 1.5⇒ t = t̃+ 1.5

Then
y′(t) = ỹ′(t̃)

y′′(t) = ỹ′′(t̃)

Then, we can rewrite the IVP as

ỹ′′(t̃) + 3ỹ′(t̃)− 4ỹ(t̃) = 6e2t̃ ỹ(0) = 4, ỹ′(0) = 5

Making the Laplace transform of both sides we get

(s2Ỹ − 4s− 5) + 3(sỸ − 4)− 4Ỹ =
6

s− 2

(s2 + 3s− 4)Ỹ − 4s− 17 =
6

s− 2

(s+ 4)(s− 1)Ỹ =
6

s− 2
+ 4s+ 17

Ỹ =
3

s− 1
+

1

s− 2

Its inverse Laplace transform is

ỹ(t̃) = 3et̃ + e2t̃
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which is the particular solution of the IVP satisfying the initial conditions. If
we undo now the time shift,we get

y(t) = ỹ(t− 1.5) = 3et−1.5 + e2(t−1.5)

Kreyszig, 6.2.16
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of t cos(4t)
Solution: Let us de�ne f = t cos(at) Let us di�erentiate f

f ′ = cos(at)− at sin(at)
f ′′ = −a sin(at)− a sin(at)− a2t cos(at) = −2a sin(at)− a2t cos(at)

If we now take the Laplace transform of f ′′ we get

L{f ′′} = −2a
a

s2 + a2
− a2L{t cos(at)} = − 2a2

s2 + a2
− a2F

On the other side we know that

L{f ′′} = s2F − sf(0)− f ′(0)

Substituting f(0) = 0, f ′(0) = 1 we get

L{f ′′} = s2F − 1

Equating both expressions for L{f ′′} we get

− 2a2

s2 + a2
− a2F = s2F − 1

Solving for F

F =
s2 − a2

(s2 + a2)2

In particular, for a = 4 (as in the problem statement, we get

L{t cos(4t)} =
s2 − 42

(s2 + 42)2

Kreyszig, 6.2.24
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of 20
s3−2πs2

Solution: We may factorize F as

F =
1

s2

20

s− 2π

The inverse Laplace transform of 20
s−2π is 20e2πt. The factor 1

s2 translates into
a double time integral. Let's do it one by one:

L−1

{
1

s

20

s− 2π

}
=

t∫
0

20e2πτdτ = 20
e2πt − 1

2π
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L−1

{
1

s2

20

s− 2π

}
=

t∫
0

20

2π
(e2πτ − 1)dτ =

20

2π

(
−t+

e2πt − 1

2π

)
Kreyszig, 6.3.3

Álvaro Martín Ramos, Jan. 11th, 2015

Find the Laplace transform of

t− 2(t > 2)

Solution: Let us write the function to transform as

f(t) = (t− 2)u(t− 2)

L{(t− 2)u(t− 2)} = e−2sL{t} =
e−2s

s2

Kreyszig, 6.3.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of et
(
0 < t < π

2

)
Solution: Let us write the function to transform as

f(t) = et
(
u(t)− u

(
t− π

2

))
= etu(t)− etu

(
t− π

2

)
Let us transform each term separately

L{etu(t)} =
1

s− 1

L
{
etu
(
t− π

2

)}
= L

{
et−

π
2 e

π
2 u
(
t− π

2

)}
= e

π
2 L
{
et−

π
2 u
(
t− π

2

)}
= e

π
2 e−

π
2 s

1

s− 1

Altogether

L{f} =
1

s− 1
− e

π
2 e−

π
2 s

1

s− 1
=

1

s− 1

(
1− e−

π
2 (s−1)

)
Kreyszig, 6.3.8
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of t2 (1 < t < 2)
Solution: We can rewrite the function to be transformed as

f = t2(u(t− 1)− u(t− 2)) = t2u(t− 1)− t2u(t− 2)

Now, we transform each term separately

L{t2u(t− 1)} = e−sL{(t+ 1)2} = e−sL{t2 + 2t+ 1} = e−s
(

2

s3
+

2

s2
+

1

s

)

L{t2u(t− 2)} = e−2sL{(t+ 2)2} = e−2sL{t2 + 4t+ 4} = e−2s

(
2

s3
+

4

s2
+

4

s

)

107



The Laplace transform of f is

L{f} = e−s
(

2

s3
+

2

s2
+

1

s

)
− e−2s

(
2

s3
+

4

s2
+

4

s

)
Kreyszig, 6.3.13

Álvaro Martín Ramos, Jan. 11th, 2015

Find the inverse Laplace transform of

6(1− e−πs)
s2 + 9

Solution:

L−1
{

6(1−e−πs)
s2+9

}
= L−1

{
6

s2+9

}
− L−1

{
6e−πs

s2+9

}
= 2 sin(3t)− 2 sin(3(t− π))

Kreyszig, 6.3.17
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of (1 + e−2π(s+1)) s+1
(s+1)2+1

Solution: Let us �nd �rst the inverse Laplace transform of the function

G(s) = (1 + e−2πs)
s

s2 + 1
=

s

s2 + 1
+

s

s2 + 1
e−2πs

The inverse Laplace transform of this function is

g(t) = cos(t)u(t)+cos(t−2π)u(t−2π) = cos(t)u(t)+cos(t)u(t−2π) = cos(t)(u(t)−u(t−2π))

However, we are interested in

F (s) = G(s+ 1)

whose inverse Laplace transform is

f(t) = g(t)e−t = e−t cos(t)(u(t)− u(t− 2π))

Kreyszig, 6.3.19
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the Initial Value Problem

y′′ + 6y′ + 8y = (e−3t − e−5t)u(t) y(0) = 0, y′(0) = 0

Solution: Let us take the Laplace transform of the whole equation. Since
y(0) = 0 and y′(0) = 0, we have

L{y′} = sY

L{y′′} = s2Y
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Then the ODE becomes

s2Y + 6sY + 8Y =
1

s+ 3
− 1

s+ 5

(s2 + 6s+ 8)Y =
s+ 5− (s+ 3)

(s+ 3)(s+ 5)

(s+ 4)(s+ 2)Y =
2

(s+ 3)(s+ 5)

Y =
2

(s+ 2)(s+ 3)(s+ 4)(s+ 5)

Y =
1
3

s+ 2
− 1

s+ 3
+

1

s+ 4
−

1
3

s+ 5

Its inverse Laplace transform is

y(t) =

(
1

3
e−2t − e−3t + e−4t − 1

3
e−5t

)
u(t)

Kreyszig, 6.4.3
Carlos Oscar Sorzano, Jan. 15th, 2015

Sketch the solution of the IVP

y′′ + 4y = δ(t− π) y(0) = 8, y′(0) = 0

Solution: Let us take the Laplace transform of the di�erential equation

(s2Y (s)− sy(0)− y′(0)) + 4Y (s) = e−sπ

(s2 + 4)Y (s) = 8s+ e−sπ

Y (s) =
8s

s2 + 4
+

1

s2 + 4
e−sπ

Y (s) =
8s

s2 + 4
+

1

2

2

s2 + 4
e−sπ

Now we take the inverse Laplace transform

y(t) = 8 cos(2t) +
1

2
sin(2(t− π))u(t− π)
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Kreyszig, 6.4.10
Carlos Oscar Sorzano, June 15th, 2015

Sketch the solution of the IVP

y′′ + 5y′ + 6y = δ
(
t− π

2

)
+ u(t− π) cos(t) y(0) = 0, y′(0) = 0

Solution: We �rst note that

cos(t) = − cos(t− π)

Then, we can write the di�erential equation as

y′′ + 5y′ + 6y = δ
(
t− π

2

)
− u(t− π) cos(t− π)

Let us take the Laplace transform of the di�erential equation

s2Y (s) + 5sY (s) + 6Y (s) = e−
π
2 s + e−πs

s

s2 + 12

Y (s) = e−
π
2 s

1

s2 + 5s+ 6
+ e−πs

s

s2 + 12

1

s2 + 5s+ 6

Y (s) = e−
π
2 s

(
1

s+ 2
− 1

s+ 3

)
+e−πs

(
1

10

s

s2 + 1
+

1

10

1

s2 + 1
− 2

5

1

s+ 2
+

3

10

1

s+ 3

)
Now we take the inverse Laplace transform

y(t) =
(
e−2(t−π/2) − e−3(t−π/2)

)
u(t− π/2)+(

cos(t−π)+sin(t−π)
10 − 2

5e
−2(t−π) + 3

10e
−3(t−π)

)
u(t− π)
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Kreyszig, 6.5.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the convolution of eat ? ebt with a 6= b
Solution: Let us de�ne f(t) = eat and g(t) = ebt. Their convolution can be
calculated thanks to the Laplace transform as

L{f(t) ? g(t)} = F (s)G(s)
= 1

s−a
1
s−b

= 1
a−b

1
s−a + 1

b−a
1
s−b

= 1
a−b

(
1
s−a −

1
s−b

)
The inverse Laplace transform of this expression is

f(t) ? g(t) =
1

a− b
(eat − ebt)

Kreyszig, 6.5.12
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the integral equation

y(t) +

t∫
0

y(τ) cosh(t− τ)dτ = t+ et

Solution: If we take the Laplace transform of this equation we get

Y + Y
s

s2 − 1
=

1

s2
+

1

s− 1
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Y

(
1 +

s

s2 − 1

)
=

1

s2
+

1

s− 1

Y =
1
s2 + 1

s−1

1 + s
s2−1

Y =

s−1+s2

s2(s−1)

s2−1+s
s2−1

Y =
s+ 1

s2

Now, we have the following inverse Laplace transforms

L{s+ 1} = e−t

L
{
s+1
s

}
=

t∫
0

e−τdτ = 1− e−t

L
{
s+1
s2

}
=

t∫
0

(1− e−τ )dτ = t+ e−t − 1 = t− sinh(t) + cosh(t)− 1

Finally,

y = t+ e−t − 1

Kreyszig, 6.5.18
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of 1
(s−a)2

Solution: Let us write

F =
1

s− a
1

s− a
So its inverse transform is

f(t) = e−at ? e−at

Let us calculate the convolution

e−at ? e−at =
t∫

0

e−aτe−a(t−τ)dτ

= e−at
t∫

0

dτ = te−at

Finally

L−1

{
1

(s− a)2

}
= te−at

Kreyszig, 6.6.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Laplace transform of 3t sinh(4t)
Solution: We know the Laplace transform

L{3 sinh(4t)} = 3
4

s2 − 42
= F (s)
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Then, the required Laplace transform can be calculated as

L{3t sinh(4t)} = −F ′(s) = − d

ds

(
3

4

s2 − 42

)
= 3

8s

(s2 − 42)2

Kreyszig, 6.6.3
Álvaro Martín Ramos, Jan. 11th, 2015

Find the Laplace transform of

1

2
te−3t

Solution: We know the Laplace transform of

L{e−3t} =
1

s+ 3

Then, the required Laplace transform can be calculated as

L{1

2
te−3t} =

1

2
L{te−3t} =

1

2
(−F ′(s)) = −1

2

d

ds

(
1

s+ 3

)
=

1

2(s+ 3)2

Kreyszig, 6.6.20
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the inverse Laplace transform of log s+a
s+b

Solution: Let us de�ne

F (s) = log
s+ a

s+ b
= log(s+ a)− log(s+ b)

Let us calculate its derivative

G(s) = F ′(s) =
1

s+ a
− 1

s+ b

Its inverse Laplace transform is

g(t) = e−at − e−bt

But we know that
g(t) = L−1{F ′(s)} = tf(t)

From which

f(t) =
g(t)

t
=

e−at − e−bt

t

Kreyszig, 6.7.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Solve the ODE system

y′1 + y2 = 0
y1 + y′2 = 2 cos(t)
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with y1(0) = 1, y2(0) = 0.
Solution: If we take the Laplace transform of both equations, we get

(sY1 − y1(0)) + Y2 = 0
Y1 + (sY2 − y2(0)) = 2 s

s2+1

Taking into account the initial values

sY1 − 1 + Y2 = 0
Y1 + sY2 = 2 s

s2+1

which can be rewritten as (
s 1
1 s

)(
Y1

Y2

)
=

(
1

2 s
s2+1

)
(
Y1

Y2

)
=

(
s 1
1 s

)−1(
1

2 s
s2+1

)
= 1

s2−1

(
s −1
−1 s

)(
−1

2 s
s2+1

)
=

( s
s2+1

1
s2+1

)
Taking the inverse Laplace transform(

y1

y2

)
=

(
cos(t)
sin(t)

)

Kreyszig, 6.7.3
Carlos Oscar Sorzano, Dec. 19th, 2014

Solve the ODE system
y′1 = −y1 + 4y2

y′2 = 3y1 − 4y2

with y1(0) = 3, y2(0) = 4.
Solution: If we take the Laplace transform of both equations, we get

sY1 − y1(0) = −Y1 + 4Y2

sY2 − y2(0) = 3Y1 − 4Y2

Substituting the initial values

sY1 − 3 = −Y1 + 4Y2

sY2 − 4 = 3Y1 − 4Y2

which can be rewritten as(
s+ 1 −4
−3 s+ 4

)(
Y1

Y2

)
=

(
3
4

)

Y1 =

∣∣∣∣ 3 −4
4 s+ 4

∣∣∣∣∣∣∣∣ s+ 1 −4
3 s+ 4

∣∣∣∣ =
3s+ 28

s2 + 5s+ 16
=

3s+ 28(
s+ 5

2

)2
+ 39

4
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Y2 =

∣∣∣∣ s+ 1 3
−3 4

∣∣∣∣∣∣∣∣ s+ 1 −4
3 s+ 4

∣∣∣∣ =
4s+ 13

s2 + 5s+ 16
=

4s+ 13(
s+ 5

2

)2
+ 39

4

Their inverse Laplace transforms are

y1(t) = L−1

{
3s+28

(s+ 5
2 )

2
+ 39

4

}
= L−1

{
3s

(s+ 5
2 )

2
+ 39

4

}
+ L−1

{
28

(s+ 5
2 )

2
+ 39

4

}
= 3L−1

{
s

(s+ 5
2 )

2
+ 39

4

}
+ 28 2√

39
L−1

{ √
39
2

(s+ 5
2 )

2
+ 39

4

}
= 3 cos

(√
39
2 t
)

+ 56√
39

sin
(√

39
2 t
)

y2(t) = L−1

{
4s+13

(s+ 5
2 )

2
+ 39

4

}
= L−1

{
4s

(s+ 5
2 )

2
+ 39

4

}
+ L−1

{
13

(s+ 5
2 )

2
+ 39

4

}
= 4L−1

{
s

(s+ 5
2 )

2
+ 39

4

}
+ 13 2√

39
L−1

{ √
39
2

(s+ 5
2 )

2
+ 39

4

}
= 4 cos

(√
39
2 t
)

+
√

26
3 sin

(√
39
2 t
)

7 Chapter 11

Kreyszig, 11.1.14
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Fourier series of the function x2 (between −π < x < π) which is
assumed to be periodic outside with period 2π
Solution: Since x2 is an even function in the domain −π < x < π, we only
need to compute the a0 and an terms, since the bn terms will all be 0.

a0 = 1
2π

π∫
−π

x2dx = 1
2π

x3

3

∣∣∣π
−π

= π2

3

an = 1
π

π∫
−π

x2 cos(nx)dx = 1
π

(n2x2−2) sin(nx)+2nx cos(nx)
n3

∣∣∣π
−π

= 4
n2 cos(πn) = (−1)n 4

n2

Finally, the Fourier series of x2 between −π < x < π is

x2 =
π2

3
+

∞∑
n=1

(−1)n
4

n2
cos(nx)

Kreyszig, 11.1.15
Carlos Oscar Sorzano, Aug. 31st, 2014
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Find the Fourier series of the function x2 (between 0 < x < 2π) which is
assumed to be periodic outside with period 2π
Solution: x2 is not an even or odd function in the domain 0 < x < 2π, so we
need to compute all the terms of the Fourier series

a0 = 1
2π

2π∫
0

x2dx = 1
2π

x3

3

∣∣∣2π
0

= 8π2

3

an = 1
π

2π∫
0

x2 cos(nx)dx = 1
π

(n2x2−2) sin(nx)+2nx cos(nx)
n3

∣∣∣2π
0

= 4
n2

bn = 1
π

2π∫
0

x2 sin(nx)dx = 1
π

(2−n2x2) cos(nx)+2nx sin(nx)
n3

∣∣∣2π
0

= − 4π
n

Finally, the Fourier series of x2 between 0 < x < 2π is

x2 =
8π2

3
+

∞∑
n=1

4

n2
cos(nx)−

∞∑
n=1

4π

n
sin(nx)

Kreyszig, 11.2.13
Carlos Oscar Sorzano, Jan. 15th, 2015

Calculate the Fourier series of period p = 1 of the function below

Solution: We apply the de�nition of the di�erent coe�cients, where L = 1
2

a0 = 1
2L

L∫
−L

f(x) =

1
2∫
0

xdx = x2

2

∣∣∣ 12
0

= 1
8

an = 1
L

L∫
−L

f(x) cos
(
nπ
L x
)
dx = 2

1
2∫
0

x cos (2nπx) dx

= 2 2πnx sin(2πnx)+cos(2πnx)
4π2n2

∣∣∣ 12
0

= 2
(

cos(πn)
4π2n2 − 1

4π2n2

)
= (−1)n−1

2π2n2 =

{
0 n = 2̇

− 1
π2n2 n 6= 2̇

bn = 1
L

L∫
−L

f(x) sin
(
nπ
L x
)
dx = 2

1
2∫
0

x sin (2nπx) dx

= 2 sin(2πnx)−2πnx cos(2πnx)
4π2n2

∣∣∣ 12
0

= 2
(
−πn cos(πn)

4π2n2 − 0
)

= (−1)n+1

2πn
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The Fourier series is, then

y(x) = a0 +
∞∑
n=1

an cos
(
πn
L x
)

+
∞∑
n=1

bn sin
(
πn
L x
)

=
1

8
+

∞∑
n=1

(−1)n − 1

2π2n2
cos (2πnx) +

∞∑
n=1

(−1)n+1

2πn
sin (2πnx)

Kreyszig, 11.3.4
Carlos Oscar Sorzano, Aug. 31st, 2014

Let us assume we have mass-spring system responding to the ODE

my′′ + cy′ + ky = r(t)

Let r(t) be the function

The solution can be expressed as

yn = C0 +

∞∑
n=1

Cn cos(nt+ δn)

What happens if we replace r(t) with its derivative, the rectangular wave?
What is the ratio of the new Cn to the old ones?
Solution: Let us consider the Fourier series of the input function r(t)

r(t) = c0 +

∞∑
n=1

cn cos(nt+ θn)

Its derivative, assuming the series is convergent, can be calculated as

r′(t) =

∞∑
n=1

(−cnn sin(nt+ θn)) =

∞∑
n=1

cnn cos(nt+ θn + π
2 )

Since the parameters m, c and k are constant, then the system is linear. For this
reason, for the input r(t), each harmonic of the input excites the corresponding
harmonic of the output, that is

cn → Cn

If now the amplitude of the input is ncn, then amplitude of the output is nCn

ncn → nCn

Kreyszig, 11.3.6
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Carlos Oscar Sorzano, Aug. 31st, 2014

Find a general solution of the ODE

y′′ + ω2y = sin(αt) + sin(βt)

with ω2 6= α2, β2.
Solution: The general solution of the homogeneous equation is

yh = c1 cos(ωt) + c2 sin(ωt)

For the particular solution, we look for a solution of the form

yp = a sin(αt) + b cos(αt) +A sin(βt) +B cos(βt)

y′p = aα cos(αt)− bα sin(αt) +Aβ cos(βt)−Bβ sin(βt)

y′′p = −aα2 sin(αt)− bα2 cos(αt)−Aβ2 sin(βt)−Bβ2 cos(βt)

Substituting into the di�erential equation, we get

[−aα2 sin(αt)− bα2 cos(αt)−Aβ2 sin(βt)−Bβ2 cos(βt)]+
ω2[a sin(αt) + b cos(αt) +A sin(βt) +B cos(βt)] =

sin(αt) + sin(βt)

or what is the same

a(ω2 − α2) sin(αt) + b(ω2 − α2) cos(αt)+
+A(ω2 − β2) sin(βt) +B(ω2 − β2) cos(βt) =

sin(αt) + sin(βt)

Equating coe�cients we �nd that

b = B = 0

a =
1

ω2 − α2

A =
1

ω2 − β2

The general solution of the equation is

y = c1 cos(ωt) + c2 sin(ωt) +
1

ω2 − α2
sin(αt) +

1

ω2 − β2
sin(βt)

Kreyszig, 11.3.11
Carlos Oscar Sorzano, June 15th, 2015

Find the eigenvalue and eigenfunctions of(
y′

x

)′
+ (λ+ 1)

y

x3
= 0 y(1) = 0, y(eπ) = 0

The following strategy is suggested:
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• Do the change of variable x = et.

• Find the general solution without considering boundary constraints.

• Apply the boundary conditions to �nd the eigenvalues and eigenfunctions
of the ODE.

Solution: 1) Change of variable
Let us analyze the change of variable

x = et ⇒ t = log(x)

y′ =
dy

dx
=
dy

dt

dt

dx
= ẏ

1

x
= ẏe−t

Substituting in the di�erential equation:

d
(
ẏe−t

et

)
dt

e−t + (λ+ 1)
y

e3t
= 0

d
(
ẏe−2t

)
dt

e−t + (λ+ 1)ye−3t = 0(
ÿe−2t − 2ẏe−2t

)
e−t + (λ+ 1)ye−3t = 0

ÿ − 2ẏ + (λ+ 1)y = 0 y(0) = 0 = y(π)

2) Find the general solution
The general solution of this equation (without considering the boundary con-
straints) is given by the roots of the polynomial

s2 − 2s+ (λ+ 1) = 0→ s = 1±
√
−λ

That is
y(t) = et

(
C1e

−
√
−λt + C2e

√
−λt
)

3) Find the eigenvalues and eigenfunctions

Case λ < 0: If λ < 0, then
√
−λ > 0 and the boundary conditions imply

y(0) = C1 + C2 = 0

y(π) = eπ(C1e
−
√
−λπ + C2e

√
−λπ) = 0

}
⇒ C1 = C2 = 0

Case λ = 0: If λ = 0, then the general solution is

y(t) = et(C1 + C2t)

The boundary conditions imply

y(0) = C1 = 0
y(π) = eπ(C1 + C2π) = 0

}
⇒ C1 = C2 = 0

Case λ > 0: Then the general solution becomes

y(t) = et(C1 cos(
√
λt) + C2 sin(

√
λt)
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From the boundary conditions we get

y(0) = C1 = 0
y(π) = eπ(−C1) = 0

}
⇒ C1 = 0

Consequently, the eigenfunctions are the functions of the form

y(t) = et sin(
√
λt)

and the associated eigenvalue is λ. Undoing the change of variable we get the
eigenfunctions

y(x) = x sin(
√
λ log(x))

Kreyszig, 11.5.6
Carlos Oscar Sorzano, Aug. 31st, 2014

Tranformation to Sturm�Liouville form. Show that

y′′ + fy′ + (g + λh)y = 0

takes the form
(p(x)y′)′ + (q(x) + λr(x))y = 0

if you set p = exp(
∫
fdx), q = pg and r = hp. Why would you do such a

transformation?
Solution: Let us substitute the proposed functions into the Sturm-Liouville
form

(py′)′ + (pg + λhp)y = 0

p′y′ + py′′ + (pg + λhp)y = 0

Note that

p′ = f exp

(∫
fdx

)
= fp

Then
fpy′ + py′′ + (pg + λhp)y = 0

Note that p is never 0, then dividing by p

fy′ + y′′ + (g + λh)y = 0

y′′ + fy′ + (g + λh)y = 0

that is the original ODE.
Kreyszig, 11.5.9
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problem:

y′′ + λy = 0 y(0) = 0, y′(L) = 0

Solution: We can rewrite the ODE as

(y′)′ + λy = 0
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with the constraints
1y(0) + 0y′(0) = 0

0y(L) + 1y′(L) = 0

That is, this is a Sturm-Liouville problem.
If λ < 0, λ = −ν2, then the general solution is

y = c1e
νx + c2e

−νx

Imposing the two boundary conditions

y(0) = 0 = c1 + c2
y′(L) = 0 = c1νe

νL − c2νe−νL

Its unique solution is c1 = c2 = 0.
If λ = 0, then the general solution is

y = c1 + c2x

Imposing the two boundary conditions

y(0) = 0 = c1
y′(L) = 0 = c2

If λ > 0, λ = ν2, then the general solution is

y = c1 cos(νx) + c2 sin(νx)

Imposing the two boundary conditions

y(0) = 0 = c1
y′(L) = 0 = −c1 sin(νL) + c2ν cos(νL) = c2ν cos(νL)⇒ νL = π

2 + πk ⇒ ν = π+2πk
2L

That is the functions

yν = sin(νx) ν = π+2πk
2L

are the eigenfunctions of the Sturm-Liouville problem and their eigenvalues are
λ = ν2.
Kreyszig, 11.5.11
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville
problem: (

y′

x

)′
+ (λ+ 1)

y

x3
= 0 y(1) = 0, y(eπ) = 0

(Set x = et).
Solution: If we make the change of variable x = et ⇒ t = log(x), then

y′ = dy
dx = dy

dt
dt
dx = dy

dt
1
x = dy

dt e
−t

y′′ = dy′

dx = dy′

dt
dt
dx = d

dt

(
dy
dt e
−t
)

1
x =

(
d2y
dt2 e

−t − dy
dt e
−t
)
e−t = d2y

dt2 e
−2t − dy

dt e
−2t

121



We note that(
y′

x

)′
=
y′′x− y′

x2
=

(
d2y
dt2 e

−2t − dy
dt e
−2t
)
et − dy

dt e
−t

e2t
=
d2y

dt2
e−3t − 2

dy

dt
e−3t

Then we can rewrite the problem as a function of y(t)(
d2y

dt2
e−3t − 2

dy

dt
e−3t

)
+ (λ+ 1)ye−3t = 0 y(0) = 0, y(π) = 0

d2y

dt2
− 2

dy

dt
+ (λ+ 1)y = 0 y(0) = 0, y(π) = 0

We now check if the problem is a Sturm-Liouville problems using Kreyszig 11.5.6
with f = −2, g = 1, h = 1. We calculate

p = e
∫

(−2)dt = e−2t

q = pg = e−2t

h = hp = e−2t

So, in the Sturm-Liouville form the problem becomes

d

dt

(
e−2t dy

dt

)
+ (e−2t + λe−2t)y = 0

We go back to the problem

d2y

dt2
− 2

dy

dt
+ (λ+ 1)y = 0

and look for solutions of the form y = est

s2 − 2s+ (λ+ 1) = 0⇒ s = 1±
√
−λ

If λ < 0, λ = −ν2, then the general solution is of the form

y = c1e
s1t + c2e

s2t

with s1 = 1 + ν and s2 = 1− ν. Imposing the two boundary conditions

y(0) = 0 = c1 + c2
y(π) = 0 = c1e

s1π + c2e
s2π

whose unique solution is c1 = c2 = 0.
If λ = 0, then the general solution is of the form

y = c1e
t + c2te

t

Imposing the two boundary conditions

y(0) = 0 = c1
y(π) = 0 = c1e

π + c2πe
π

whose unique solution is c1 = c2 = 0.
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If λ > 0, λ = ν2, then the general solution is of the form

y = c1e
t cos(νt) + c2e

t sin(νt)

Imposing the two boundary conditions

y(0) = 0 = c1
y(π) = 0 = c2e

π sin(νπ)⇒ ν = k

So, all the functions of the form

y = et sin(kt) = elog x sin(k log(x)) = x sin(k log(x)) k ∈ Z

are eigenfunctions of the Sturm-Liouville problem, and their associated eigen-
value is λ = k2.
Kreyszig, 11.6.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Find the Fourier-Legendre series of the polynomial (x+ 1)2

Solution: The Fourier-Legendre series of the function f is a series expansion
of the form

f =

∞∑
m=0

〈f, Pm〉
‖Pm‖2

Pm(x)

where

‖Pm‖2 =
2

2m+ 1

and the Legendre polynomials are given by

P0(x) = 1
P1(x) = x

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

In particular
P2(x) = 1

2 (3x2 − 1)
P3(x) = 1

2 (5x3 − 3x)

To perform the Fourier-Legendre expansion, let us perform the following
calculations 〈

(x+ 1)2, P0(x)
〉

=
1∫
−1

(x+ 1)2dx = 8
3

‖P0‖2 = 2
2·0+1 = 2〈

(x+ 1)2, P1(x)
〉

=
1∫
−1

(x+ 1)2xdx = 4
3

‖P1‖2 = 2
2·1+1 = 2

3〈
(x+ 1)2, P2(x)

〉
=

1∫
−1

(x+ 1)2 1
2 (3x2 − 1)dx = 4

15

‖P2‖2 = 2
2·2+1 = 2

5〈
(x+ 1)2, P3(x)

〉
=

1∫
−1

(x+ 1)2 1
2 (5x3 − 3x)dx = 0

‖P3‖2 = 2
2·3+1 = 2

7
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Actually, since f is a polynomial of degree 2, and Legendre polynomials are
a basis of polynomials in the domain [−1, 1], we have that all coe�cients for
m ≥ 3 are 0 (

〈
(x+ 1)2, Pm(x)

〉
= 0).

Finally, the Fourier-Legendre expansion is

(x+ 1)2 =
〈(x+1)2,P0(x)〉

‖P0‖2 P0 +
〈(x+1)2,P1(x)〉

‖P1‖2 P1 +
〈(x+1)2,P2(x)〉

‖P2‖2 P2

=
8
3

2 +
4
3
2
3

x+
4
15
2
5

1
2 (3x2 − 1)

=
4

3
+ 2x+

2

3

1

2
(3x2 − 1)

Kreyszig, 11.9.6
Carlos Oscar Sorzano, Dec. 19th, 2014

Find the Fourier transform of f(x) = e−|x| (−∞ < x <∞) by integration.
Solution: The de�nition of the Fourier transform is

f̂(ω) =
1√
2π

∞∫
−∞

f(x)e−iωxdx

Substituting in this formula the value of f , we have

f̂(ω) = 1√
2π

∞∫
−∞

f(x)e−iωxdx

= 1√
2π

∞∫
−∞

e−|x|e−iωxdx

= 2√
2π

∞∫
0

e−xe−iωxdx

= 2√
2π

∞∫
0

e−(1+iω)xdx

= 2√
2π

e−(1+iω)x

−(1+iω)

∣∣∣∞
0

=
√

2
π

1
1+iω

8 Chapter 12

Kreyszig, 12.1.2
Carlos Oscar Sorzano, Aug. 31st, 2014

Verify that the function
u = x2 + t2

is a solution of the wave equation

utt = c2uxx

for a suitable c.
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Solution: Let us calculate the di�erent partial derivatives needed to substitute
in the wave equation

ut = 2t
utt = 2
ux = 2x
uxx = 2

The wave equation states
2 = c22

which is true for c = 1. In Matlab:
[x,t]=meshgrid(-2:0.15:2,0:0.15:2);

u=x.�2+t.�2;

surfc(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u')

−2
−1

0
1

2

0

0.5

1

1.5

2
0

2

4

6

8
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u

Kreyszig, 12.1.5
Carlos Oscar Sorzano, Aug. 31st, 2014

Verify that the function

u = sin(at) sin(bx)

is a solution of the wave equation

utt = c2uxx

for a suitable c.
Solution: Let us calculate the di�erent partial derivatives needed to substitute
in the wave equation

ut = a cos(at) sin(bx)
utt = −a2 sin(at) sin(bx)
ux = b sin(at) cos(bx)
uxx = −b2 sin(at) sin(bx)
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The wave equation states

−a2 sin(at) sin(bx) = c2(−b2 sin(at) sin(bx))

which is true for c = a2

b2 . In Matlab:
[x,t]=meshgrid(-3*pi:0.1:3*pi,0:0.1:3*pi);

u=sin(t).*sin(x);

surfc(x,t,u)

xlabel('x'); ylabel('t'); zlabel('u')
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Carlos Oscar Sorzano, Aug. 31st, 2014

Solve
uy + y2u = 0

Solution: Since the PDE is only depending on y, we can treat x as if it were
a parameter, then we can solve the PDE as if it were an ODE on y

uy = −y2u

du

u
= −y2

log |u| = −y
3

3
+ C(x)

u = C(x)exp

(
−y

3

3

)
Kreyszig, 12.4.11

126



Carlos Oscar Sorzano, Aug. 31st, 2014

Find the type, transform to normal form and solve

uxx + 2uxy + uyy = 0

Solution: The prototypical equation for the method of characteristics is of the
form

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy)

which corresponds to the equation in the problem with

A = B = C = 1

Consequently,
AC −B2 = (1)(1)− 12 = 0

that is, the PDE is a parabolic PDE. Its characteristic equation is

A(y′)2 − 2By′ + C = 0

(y′)2 − 2y′ + 1 = 0

(y′ − 1)2 = 0

whose solution is
y = c1 + x⇒ Ψ(x, y) = y − x = c1

We now do the change of variables

v = x

w = y − x

The standard form of a parabolic PDE is

uww = 0

Integrating in w we have
uw = φ(w)

Integrating again in w

u =

∫
φ(w)dw + ψ(w) = ζ(w) + ψ(w) = η(w)

Undoing the change of variable

u = η(y − x)

being η any function.
Kreyszig, 12.4.19
Carlos Oscar Sorzano, Aug. 31st, 2014

Longitudinal Vibrations of an Elastic Bar or Rod. These vibrations
in the direction of the x-axis are modeled by the wave equation

utt = c2uxx
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with c2 = E
ρ (see Tolstov [C9], p. 275). If the rod is fastened at one end, x = 0,

and free at the other, x = L, we have u(0, t) = 0 and ux(L, t) = 0. Show
that the motion corresponding to initial displacement u(x, 0) = f(x) and initial
velocity zero is

u =

∞∑
n=0

An sin(pnx) cos(pnct)

with

An =
2

L

L∫
0

f(x) sin(pnx)dx

and

pn =
(2n+ 1)π

2L
Solution: Let us �rst check that the suggested solution satis�es the boundary
conditions:

u(0, t) = 0

u(0, t) =
∞∑
n=0

An sin(pn0) cos(pnct) = 0

ux(L, t) = 0

ux =
∞∑
n=0

Anpn cos(pnx) cos(pnct)

ux(L, t) =
∞∑
n=0

Anpn cos(pnL) cos(pnct) = 0

But

pnL =
(2n+ 1)π

2L
L =

(2n+ 1)π

2
that is

pnL =
π

2
,

3π

2
,

5π

2
, ...

and
cos(pnL) = 0⇒ ux(L, t) = 0

Let us check now the initial conditions u(x, 0) = f(x)

u(x, 0) =
∞∑
n=0

An sin(pnx) cos(pnc0) =
∞∑
n=0

An sin(pnx)

That is u(x, 0) is a Fourier sine series, but An are precisely the corresponding
Fourier coe�cients, so the series add up to f(x).

Let us check now that u is a solution of the PDE

ut = −c
∞∑
n=0

Anpn sin(pnx) sin(pnct)

utt = −c2
∞∑
n=0

Anp
2
n sin(pnx) cos(pnct)

ux =
∞∑
n=0

Anpn cos(pnx) cos(pnct)

uxx = −
∞∑
n=0

Anp
2
n sin(pnx) cos(pnct)
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The PDE states
utt = c2uxx

−c2
∞∑
n=0

Anp
2
n sin(pnx) cos(pnct) = c2

(
−
∞∑
n=0

Anp
2
n sin(pnx) cos(pnct)

)
The equation above is obviously true, so the proposed function is a solution of
the PDE and it sati�es the boundary conditions.
Kreyszig, 12.6.11
Carlos Oscar Sorzano, Aug. 31st, 2014

Show that for the completely insulated bar, ux(0, t) = 0, ux(L, t) = 0 and
u(x, 0) = f(x) and separation of variables the solution of the heat equation

ut = c2uxx

gives the solution

u(x, t) = A0 +

∞∑
n=1

An cos
(nπx
L

)
e−( cnπL )

2
t

with

A0 =
1

L

L∫
0

f(x)dx

An =
2

L

L∫
0

f(x) cos
(nπx
L

)
dx

Solution: Let us �rst check that the suggested solution satis�es the boundary
conditions:

ux(0, t) = 0

ux = −
∞∑
n=1

An
nπ
L sin

(
nπx
L

)
e−( cnπL )

2
t

ux(0, t) = −
∞∑
n=1

An
nπ
L sin

(
nπ0
L

)
e−( cnπL )

2
t = 0

ux(L, t) = 0

ux(L, t) = −
∞∑
n=1

An
nπ
L sin

(
nπL
L

)
e−( cnπL )

2
t = 0

because

sin

(
nπL

L

)
= sin(nπ) = 0

Let us check now the initial conditions u(x, 0) = f(x)

u(x, 0) = A0 +
∞∑
n=1

An cos
(
nπx
L

)
e−( cnπL )

2
0

= A0 +
∞∑
n=1

An cos
(
nπx
L

)
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That is u(x, 0) is a Fourier cosine series, but An are precisely the corresponding
Fourier coe�cients, so the series add up to f(x).

Let us check now that u is a solution of the PDE

ut = −
∞∑
n=1

An cos
(
nπx
L

) (
cnπ
L

)2
e−( cnπL )

2
t

ux = −
∞∑
n=1

An
nπ
L sin

(
nπx
L

)
e−( cnπL )

2
t

uxx = −
∞∑
n=1

An
(
nπ
L

)2
cos
(
nπx
L

)
e−( cnπL )

2
t

The PDE states
ut = c2uxx

−
∞∑
n=1

An cos
(nπx
L

)(cnπ
L

)2

e−( cnπL )
2
t = c2

(
−
∞∑
n=1

An

(nπ
L

)2

cos
(nπx
L

)
e−( cnπL )

2
t

)
The equation above is obviously true, so the proposed function is a solution of
the PDE and it sati�es the boundary conditions.
Kreyszig, 12.7.3
Carlos Oscar Sorzano, Aug. 31st, 2014

Using

u(x, t) =

∞∫
0

(Ap cos(px) +Bp sin(px))e−c
2p2tdp

with

Ap =
1

π

∞∫
−∞

f(v) cos(pv)dv Bp =
1

π

∞∫
−∞

f(v) sin(pv)dv

solve the 1D heat equation
ut = c2uxx

when

u(x, 0) = f(x) =
1

1 + x2

Solution: We simply need to substitute f(x) = 1
1+x2 in the formulas for Ap

and Bp

Ap = 1
π

∞∫
−∞

1
1+v2 cos(pv)dv = 1

π (πe−|p|) = e−|p|

Bp = 1
π

∞∫
−∞

1
1+v2 sin(pv)dv = 0

So the solution of the 1D heat problem is

u(x, t) =

∞∫
0

e−|p| cos(px)e−c
2p2tdp
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