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Modeling

Modeling workflow
A mathematical model is an equation that helps
us to understand a physical process.
A first-order Ordinary Differential Equation is
an equation of the form

F (y ′, y , x) = 0 (1)

Examples
y ′ = cos(x)(1st order)

y ′′ + 9y = e−2x (2nd order)
y ′y ′′′ − 3

2 (y ′)2 = 0(3rd order)
(2)

Drug concentration in plasma

C ′ = −KeC ⇒ C(t) = C(0)e−Ketu(t) (3)
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Basic concepts

Definitions
Ordinary Diff.Eq. Partial Diff. Eq.
f (x), f ′, df

dx ,
d2f
dx2 , ... f (x , y), f ′x , f ′y , ∂f

∂x ,
∂2f
∂x2 , ...

Implicit Explicit
F(x,y,y’)=0 y’=f(x,y)
Order n

y (n)
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Solution

Solution
A function y = h(x) is a solution of a given ODE F (x , y , y ′) = 0 on some open
interval a < x < b if h(x) is defined and differentiable throughout the interval and
is such that the equation becomes an identity if y and y ′ are replaced by h and h′.

Example
y = c

x is a solution of xy ′ = −y .
Proof
y ′ = − c

x2

xy ′ = x
(
− c

x2

)
= − c

x = −y
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Solution

Example
Solve y ′ = cos(x)
Solution

dy
dx = cos(x)

dy = cos(x)dx∫
dy =

∫
cos(x)dx

y = sin(x) + C
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Solution

Example
Solve y ′ = ky
Solution

dy
dx = ky

dy
y = kdx∫ dy
y =

∫
kdx

log |y | = kx + C
y = ekx+C = eC ekx = Cekx
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Basic concepts

Definitions
General solution Particular solution

y = Cekx y = 0.2ekx

Initial value problem y ′ = f (x , y) y(x0) = y0

Initial value problem
y ′ = 3y y(0) = 5.7

y = Ce3x y(0) = 5.7
Ce3·0 = 5.7⇒ C = 5.7

y = 5.7e3x
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Modeling

Radioactivity
Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount
present at any later time.

Physical Information. Experiments show that at each instant a radioactive
substance decomposes—and is thus decaying in time—proportional to the amount
of substance present.
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Modeling

Radioactivity
Step 1. Setting up a mathematical model of the physical process.

y ′ = −ky

The value of k is known from experiments for various radioactive substances (e.g.,
k = 1.4 · 10−11s−1 approximately, for radium 226

88 Ra).
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Modeling

Radioactivity
Step 1. Setting up a mathematical model of the physical process.

y ′ = −ky

The value of k is known from experiments for various radioactive substances (e.g.,
k = 1.4 · 10−11s−1 approximately, for radium 226

88 Ra).

Radioactivity
Step 2. Mathematical solution.

y ′ = −ky ⇒ y = Ce−kt y(0) = 0.5⇒ C = 0.5

y = 0.5e−kt
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Modeling

Radioactivity
Step 2. Mathematical solution.

y = 0.5e−kt

Radioactivity
Step 3. Interpretation of result.
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 1:

1.1.2
1.1.5
1.1.6
1.1.8
1.1.10
1.1.12
1.1.16
1.1.18
1.1.19

1. First-order ODEs September 2, 2014 18 / 110



Outline

1 First-order ODEs
Basic concepts
Geometric meaning, direction fields
Separable ODEs
Exact ODEs. Integrating factors.
Linear ODEs. Bernouilli equation. Population dynamics.
Orthogonal trajectories
Existence and uniqueness of IVPs

1. First-order ODEs September 2, 2014 19 / 110



Geometric meaning

Derivative and tangent slope

y ′ = f (x , y)⇒ y ′(x0) = f (x0, y0)
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Geometric meaning

Direction field
y ′ = y + x
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Geometric meaning

Direction field
MATLAB:
[x,y]=meshgrid(-2:0.25:2,-2:0.25:2);
dy=y+x;
dx=ones(size(dy));
quiver(x,y,dx,dy);
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Euler method (numerical)

Algorithm

y ′ = f (x , y)

∆y
∆x ≈ f (x , y)

yk+1 = yk + ∆xf (xk , yk)

x0 y0
x1 = x0 + h y1 = y0 + ∆xf (x0, y0)
x2 = x1 + h y2 = y1 + ∆xf (x1, y1)
x3 = x2 + h y3 = y2 + ∆xf (x2, y2)
...
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Euler method (numerical)

Example (exact solution)

y ′ = y + x
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Euler method (numerical)

Example (approximate solution)

y ′ = y + x

1. First-order ODEs September 2, 2014 25 / 110



Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 2:

1.2.4
1.2.5
1.2.11
1.2.15
1.2.20
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Exercises
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Separable ODEs

Method of separating variables
An ODE is separable if it can be written as

g(y)y ′ = f (x) (4)

We integrate both sides with respect to x to get∫
g(y)y ′dx =

∫
f (x)dx

But we know that
dy = y ′dx

Consequently, ∫
g(y)dy =

∫
f (x)dx
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Separable ODEs

Example

y ′ = 1 + y2

Solution:

dy
1 + y2 = dx

arctan(y) = x + C

y = tan(x + C)
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Separable ODEs

Example

y ′ = (x + 1)e−x y2

Solution:

y−2dy = (x + 1)e−x dx∫
y−2dy =

∫
(x + 1)e−x dx

−y−1 = −(x + 2)e−x + C

y =
1

(x + 2)e−x + C
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Separable ODEs

Example
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Separable ODEs

Example (continued)
Solution:
Radioactive decay follows the model

y ′ = −ky

y−1dy = −kdt

log |y | = −kt + C

y = Ce−kt = y(0)e−kt

The half life is defined as the time, τ , at which

y(t) =
1
2y(0)⇒���y(0)e−kτ =

1
2�

��y(0)

−kτ = − log(2)⇒ k =
log(2)

τ
=

log(2)

5715 = 1.213 · 10−4[years−1]
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Separable ODEs

Example
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Separable ODEs

Example (continued)

Solution:
y ′ = Salt inflow rate− Salt outflow rate

y ′ = 5
[
lb
gal

]
10
[
gal
min

]
− 10

[
gal
min

]
y

1000

[
lb
gal

]
y ′ = 50− 0.01y = −0.01(y − 5000)

dy
y − 5000 = −0.01dt

log |y − 5000| = −0.01t + C

y − 5000 = Ce−0.01t ⇒ y = 5000 + Ce−0.01t
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Separable ODEs

Example (continued)
Solution:

y = 5000 + Ce−0.01t y(0) = 100 [lb]

100 = 5000 + C ⇒ C = −4900

y = 5000− 4900e−0.01t

1. First-order ODEs September 2, 2014 36 / 110



Separable ODEs

Example

Solution:
T ′ = k(T − Tout)

being Tout the temperature outside. Since there is no information about the
temperature outside at any time, we take an average

Tout =
50 + 40

2 = 45[◦F ]
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Separable ODEs

Example (continued)
Solution: General solution

T ′ = k(T − 45)

dT
T − 45 = kdt

log |T − 45| = kt + C ⇒ T = 45 + Cekt

Solution: Particular solution
We choose t = 0[h] at 10PM. Then, T (0) = 70[◦F ]. We also know that at 2AM
(t = 4[h]), T (4) = 65[◦F ].

T = 45 + Cekt T (0) = 70,T (4) = 65

70 = 45 + C
65 = 45 + Cek4

}
⇒ C = 25, k = −0.056
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Separable ODEs

Example (continued)
Solution: Particular solution

T = 45 + 25e−0.056t

At 6AM, t = 8[h], the temperature is

T (8) = 45 + 25e−0.056·8 = 61[◦F ]

1. First-order ODEs September 2, 2014 39 / 110



Separable ODEs

Example
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Separable ODEs

Example (continued)
Solution:
The amount of volume, ∆V outflowing by a hole of surface A in a short time ∆t is

∆V = Av∆t

This volume must be equal to the change in height in the tank (of base surface B)

∆V = −B∆h

−B∆h = Av∆t
∆h
∆t = −A

B v

h′ = −A
B

(
0.6
√
2gh
)
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Separable ODEs

Example (continued)
Solution: General solution

h′ = −A
B

(
0.6
√
2gh
)

h− 1
2 dh = −A

B 0.6
√

2gdt = −26.56A
B

2h 1
2 = −26.56A

B t + C

h =

(
−13.28A

B t + C
)2

We have that B = πR2 = π(100)2, and A = πr2 = π(0.5)2. Substituting we have

h =

(
−13.28 0.5

2

1002 t + C
)2

= (C − 0.000332t)2 [cm]
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Separable ODEs

Example (continued)
Solution: Particular solution

h = (C − 0.000332t)2

At t = 0, we have h = 2.25[m]

225 = (C − 0.000332 · 0)2 ⇒ C =
√
225 = 15

h = (15− 0.000332t)2 [cm]
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Separable ODEs

Reduction to separable form
An ODE that can be written as

y ′ = f
(y

x

)
(5)

We make the change of variables
u =

y
x

y = ux ⇒ y ′ = u′x + u

Then, the ODE can be written as

u′x + u = f (u)

u′x = f (u)− u

du
f (u)− u =

dx
x

that can now be integrated.
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Separable ODEs

Example

2xyy ′ = y2 − x2

Solution:

y ′ =
y2 − x2

2xy =
1
2

(
y
x −

x
y

)
We do the change of variable u = y

x , then

u′x + u =
1
2

(
u − 1

u

)

u′x = −u +
1
2

(
u − 1

u

)
u′x = −1

2

(
u +

1
u

)
= −u2 + 1

2u
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Separable ODEs

Example (continued)
Solution:

u′x = −1
2

(
u +

1
u

)
= −u2 + 1

2u
2u

1 + u2 du = −dx
x

log(1 + u2) = − log |x |+ C

1 + u2 =
C
x

1 +
(y

x

)2
=

C
x

x2 + y2 = Cx
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Separable ODEs

Example (continued)
Solution:

x2 + y2 = Cx(
x − C

2

)2
+ y2 =

C2

4
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 3:

1.3.2
1.3.8
1.3.19
1.3.20
1.3.23
1.3.26
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Exact ODEs

Method of exact ODEs
If a function u(x , y) has continuous partial derivatives, then

du =
∂u
∂x dx +

∂u
∂y dy (6)

If u(x , y) = C , then du = 0.

Example

u = x + x2y3 = c

du = (1 + 2xy3)dx + (3x2y2)dy = 0

y ′ =
dy
dx = −1 + 2xy3

3x2y2
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Exact ODEs

Method of exact ODEs
A first-order ODE

M(x , y) + N(x , y)y ′ = 0

can be rewritten as
M(x , y)dx + N(x , y)dy = 0

This ODE is an exact differential equation if there is a C1 function u(x , y) such
that

∂u
∂x dx +

∂u
∂y dy = 0

and
∂u
∂x = M(x , y)

∂u
∂y = N(x , y)

Its implicit solution is u(x , y) = 0.
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Exact ODEs

Method of exact ODEs
To check whether there exists such a u function we should compute

∂M
∂y =

∂

∂y

(
∂u
∂x

)
=

∂2u
∂y∂x

∂N
∂x =

∂

∂x

(
∂u
∂y

)
=

∂2u
∂x∂y

Consequently, if the ODE is exact, then

∂M
∂y =

∂N
∂x

and conversely, if the previous condition is met, then the ODE is exact.
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Exact ODEs

Method of exact ODEs
We can find u by inspection or by integrating with respect to x

∂u
∂x = M(x , y)⇒ u(x , y) =

∫
M(x , y)dx + C(y)

To determine C(y) we differentiate with respect to y and equate it to N(x , y)

∂

∂y

(∫
M(x , y)dx + C(y)

)
= N(x , y)

∂

∂y

(∫
M(x , y)dx

)
+ C ′(y) = N(x , y)
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Exact ODEs

Method of exact ODEs
Alternatively, we can perform a similar approach integrating with respect to y

∂u
∂y = N(x , y)⇒ u(x , y) =

∫
N(x , y)dy + C(x)

To determine C(x) we differentiate with respect to y and equate it to M(x , y)

∂

∂x

(∫
N(x , y)dy + C(x)

)
= M(x , y)

∂

∂x

(∫
N(x , y)dy

)
+ C ′(x) = M(x , y)
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Exact ODEs

Example

cos(x + y)dx + (3y2 + 2y + cos(x + y))dy = 0

Solution:
Test for exactness

∂ cos(x + y)

∂y = − sin(x + y)

∂(3y2 + 2y + cos(x + y))

∂x = − sin(x + y)

Let’s find a general solution

u =

∫
cos(x + y)dx = sin(x + y) + C(y)

Now we differentiate u with respect to y

∂u
∂y = cos(x + y) + C ′(y) = 3y2 + 2y + cos(x + y)
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Exact ODEs

Example (continued)
∂u
∂y = cos(x + y) + C ′(y) = 3y2 + 2y + cos(x + y)

C ′(y) = 3y2 + 2y

C(y) = y3 + y2

Finally
u = sin(x + y) + y3 + y2

and the solution
sin(x + y) + y3 + y2 = C

It’s an implicit solution because there is not a closed form of y as a function of x .
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Exact ODEs

Example

(cos(y) sinh(x) + 1)dx − sin(y) cosh(x)dy = 0 y(1) = 2

Solution:
Test for exactness

∂(cos(y) sinh(x) + 1)

∂y = − sin(y) sinh(x)

∂(− sin(y) cosh(x))

∂x = − sin(y) sinh(x)

Let’s find a general solution

u = −
∫

sin(y) cosh(x)dy = cos(y) cosh(x) + C(x)

Now we differentiate u with respect to x

∂u
∂x = cos(y) sinh(x) + C ′(x) = cos(y) sinh(x) + 1
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Exact ODEs

Example (continued)

cos(y) sinh(x)+C ′(x) = cos(y) sinh(x)+1

C ′(x) = 1

C(x) = x

The general solution is

cos(y) cosh(x) + x = C

The particular solution comes from the
initial condition y(1) = 2

cos(2) cosh(1) + 1 = C ⇒ C = 0.358
MATLAB: ezplot(’cos(y).*cosh(x)+x-0.358’,[0 3 0 3])
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Integrating factors

Example
The equation

−ydx + xdy = 0

is not exact, but it becomes exact if we multiply by 1
x2

1
x2 (−ydx + xdy) = − y

x2 dx +
1
x dy = d

(y
x

)
= 0⇒ y

x = C

Method of integrating factors
An integrating factor is a function F (x , y) such that the equation

P(x , y)dx + Q(x , y)dy = 0

becomes an exact ODE after multiplication

FPdx + FQdy = 0
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Integrating factors

Example (continued)

−ydx + xdy = 0

In fact, the integrating factor is not unique. We can find other integrating factors
for the same equation

1
x2

1
x2 (−ydx + xdy) = d

( y
x
)

= 0
1
y2

1
y2 (−ydx + xdy) = d

(
x
y

)
= 0

1
xy

1
xy (−ydx + xdy) = d

(
log x

y

)
= 0

1
x2+y2

1
x2+y2 (−ydx + xdy) = d

(
arctan y

x
)

= 0
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Integrating factors

How to find integrating factors
The condition for the ODE being exact is

∂

∂y (FP) =
∂

∂x (FQ)

Fy P + FPy = Fx Q + FQx

If we are looking for integrating factors depending on a single variable, say x , then
Fy = 0, that is

FPy = F ′Q + FQx

Dividing by FQ
Py
Q =

F ′
F +

Qx
Q

F ′
F =

Py − Qx
Q
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Integrating factors

How to find integrating factors
F ′
F =

Py − Qx
Q

If the right-hand side only depends on x , then by integration we find the
integrating factor

log |F | =

∫ Py − Qx
Q dx ⇒ F = exp

(∫ Py − Qx
Q dx

)

Similarly, if Qx−Py
P depends only on y , then there exists an integrating factor

log |F | =

∫ Qx − Py
P dy ⇒ F = exp

(∫ Qx − Py
P dy

)
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Integrating factors

Example

(ex+y + yey )dx + (xey − 1)dy = 0

Solution:
Let’s check if it is exact:

Py =
∂

∂y
(
ex+y + yey) = ex+y + ey + yey

Qx =
∂

∂x (xey − 1) = ey

So it is not exact. Let’s check if it has an integrating factor depending on y

Qx − Py
P = −ex+y + yey

ex+y + yey = −1

It does.
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Integrating factors

Example (continued)
Qx − Py

P = −ex+y + yey

ex+y + yey = −1

F = exp
(∫

(−1)dy
)

= e−y

This integrating factor transforms the ODE into

(ex + y)dx + (x − e−y )dy = 0

That is exact
My =

∂

∂y (ex + y) = 1

Nx =
∂

∂x
(
x − e−y) = 1
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Integrating factors

Example (continued)
Its general solution is

u(x , y) = ex + xy + e−y = C
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Integrating factors

How to find integrating factors
Condition Integrating factor

Py−Qx
Q = f (x) F = exp

∫
f (x)dx

Qx−Py
P = f (y) F = exp

∫
f (y)dy

Py−Qx
yQ−xP = f (xy) F (z) = exp

∫
f (z)dz z = xy

1
2

Py−Qx
xQ−yP = f (x2 + y2) F (r) = exp

∫
f (r)dr r = x2 + y2

y2(Py−Qx )
xP+yQ = f

(
x
y

)
F (z) = exp

∫
f (z)dz z = x

y
yf1(xy)dx + xf2(xy)dy F = 1

xy(f1(xy)−f2(xy))
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 4:

1.4.8
1.4.11
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Linear ODEs

Linear ODE
A first-order ODE is said to be linear if it can be written in the form

y ′ + p(x)y = r(x) (7)

The equation abopve is linear in y and y ′. In an engineering setup, r(x) is called
the input to the system, while y(x) is the system’s output.
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Linear ODEs

Homogeneous Linear ODE
A linear, first-order ODE is said to be homogeneous if r(x) = 0

y ′ + p(x)y = 0 (8)

Then we can solve it by separation of variables

dy
y = −p

log |y | = −
∫

pdx + C

y = Ce−
∫

pdx

We have also the trivial solution y = 0 .
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Linear ODEs

Non-homogeneous Linear ODE
If r(x) is not zero everywhere in the open interval being studied, then the linear
ODE is non-homogeneous.

y ′ + py = r

(py − r)dx + dy = 0

Let’s look for an integrating factor

Py − Qx
Q =

p − 0
1 = p

This function only depends on x so there exists an integrating factor in x given by

F = e
∫

pdx
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Linear ODEs

Non-homogeneous Linear ODE
Let’s call h to

∫
pdx , and multiply the linear equation by the integrating factor

F = eh

ehy ′ + pehy = reh

Note that h′ = p, then
ehy ′ + h′ehy = reh

(ehy)′ = reh

ehy =

∫
rehdx + C

y = e−h
(∫

rehdx + C
)

h =

∫
pdx

If r = 0, we are back to the homogeneous solution

y = Ce−h
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Linear ODEs

Non-homogeneous Linear ODE

y = e−h
(∫

rehdx + C
)

y = e−h
∫

rehdx + Ce−h

We distinguish two terms, the first one, e−h ∫ rehdx , is the response of the system
to the input r , while the second one, Ce−h is the response of the system to the
initial conditions.
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Linear ODEs

Example

y ′ + y tan(x) = sin(2x) y(0) = 1

Solution:

h =

∫
tan(x)dx = log

∣∣∣∣ 1
cos(x)

∣∣∣∣
eh =

1
cos(x)

e−h = cos(x)

The general solution is

y = cos(x)

(∫ sin(2x)

cos(x)
dx + C

)
y = cos(x) (−2 cos(x) + C)

1. First-order ODEs September 2, 2014 74 / 110



Linear ODEs

Example (continued)

y = cos(x) (−2 cos(x) + C) y(0) = 1

The particular solution is

1 = cos(0) (−2 cos(0) + C)⇒ C = 3

y = cos(x) (3− 2 cos(x))

y = 3 cos(x)− 2 cos2(x)

The term 3 cos(x) is the response to the initial conditions, while the term
−2 cos2(x) is the response to the input.
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Linear ODEs

Example
Find the circulating current in the RL circuit

Solution:

LI ′ + RI = E
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Linear ODEs

Example (continued)
It is a linear equation of the form

I ′ +
R
L I =

E
L

h =

∫ R
L dt =

R
L t[

y = e−h
(∫

ehrdt + C
)]

I = e− R
L t
(∫

e R
L t E

L dt + C
)

I = e− R
L t
(

L
R e R

L t E
L + C

)
I =

E
R + Ce− R

L t
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Linear ODEs

Example (continued)
The general solution is

I =
E
R + Ce− R

L t

The initial condition is I(0) = 0, and the particular solution

0 =
E
R + Ce− R

L 0 =
E
R + C ⇒ C = −E

R

I =
E
R

(
1− e− R

L t
)

I =
48
11

(
1− e− 11

0.1 t
)

I =
48
11
(
1− e−110t)
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Linear ODEs

Example

1. First-order ODEs September 2, 2014 79 / 110



Linear ODEs

Example (continued)

Solution:
y ′ = In− Out

y ′ = (A + B cos(ωt))− Ky

y ′ + Ky = (A + B cos(ωt))

h =

∫
Kdt = Kt

y = e−Kt
(∫

(A + B cos(ωt))eKtdt + C
)

y = e−Kt
(

eKt
(

A
K +

B
K 2 + ω2 (K cos(ωt) + ω sin(ωt))

)
+ C

)
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Linear ODEs

Example (continued)

y = e−Kt
(

eKt
(

A
K +

B
K 2 + ω2 (K cos(ωt) + ω sin(ωt))

)
+ C

)
y =

(
A
K +

B
K 2 + ω2 (K cos(ωt) + ω sin(ωt))

)
+ Ce−Kt

Since the variation is every 24h, the frequency ω = 2π
24 = π

12 . Then, the general
solution becomes

y =

(
A
K +

B
K 2 + π2

122

(
K cos( π12 t) +

π

12 sin(
π

12 t)
))

+ Ce−Kt
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Linear ODEs

Example (continued)

y =

(
A
K +

B
K 2 + π2

122

(
K cos( π12 t) +

π

12 sin(
π

12 t)
))

+ Ce−Kt

If we assume y(0) = 0, then the particular solution is

0 =

(
A
K +

B
K 2 + π2

122

(
K · 1 +

π

12 · 0)
))

+ C

C = −

(
A
K +

BK
K 2 + π2

122

)

y =
A
K (1− e−Kt) +

B
K 2 + π2

122

(
K cos( π12 t) +

π

12 sin(
π

12 t)− Ke−Kt
)
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Linear ODEs

Example (continued)

y =
A
K (1− e−Kt) +

B
K 2 + π2

122

(
K cos( π12 t) +

π

12 sin(
π

12 t)− Ke−Kt
)

For A = B = 1, K = 0.05 we have
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Reduction to Linear ODEs

Bernouilli equation

y ′ + p(x)y = g(x)y a

This equation is non-linear except for a = 0 or a = 1. Let’s make the change of
variable

u = y1−a

u′ = (1− a)y−ay ′

u′ = (1− a)y−a(−py + gy a)

u′ = (1− a)(−py1−a + g)

u′ = (1− a)(−pu + g)

u′ + (1− a)pu = (1− a)g

This is a linear equation.
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Reduction to Linear ODEs

Example: Logistic equation

y ′ = Ay − By2

Solution:
y = 0 is a solution. Otherwise, this is Bernouilli equation with a = 2.

u = y1−2 = y−1

u′ = (−1)y−2y ′

u′ = −y−2(Ay − By2)

u′ = −(Ay−1 − B)

u′ = −(Au − B)

u′ + Au = B
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Reduction to Linear ODEs

Example: Logistic equation (continued)

u′ + Au = B

h =

∫
Adx = Ax

u = e−Ax
(∫

BeAx dx + C
)

u = e−Ax
(

B
A eAx + C

)
u =

B
A + Ce−Ax

y−1 =
B
A + Ce−Ax

y =
1

B
A + Ce−Ax
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Reduction to Linear ODEs

Example: Logistic equation (continued)
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Reduction to Linear ODEs

Example: Population dynamics
For a small population, its growth can be described by Malthus law

y ′ = Ay

This is a particular case of the logistic equation whose solution is

y =
1

Ce−At =
1
C eAt

The term −By2 acts as a “braking” term that prevents the population of growing
infinitely. If we rewrite the logistic equation as

y ′ = Ay
(
1− B

A y
)

If y < A
B , then y ′ > 0 and the population grows.

If y > A
B , then y ′ < 0 and the population decreases.
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Reduction to Linear ODEs

Example: Population dynamics (continued)
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Critical points

Autonomous ODE and critical points
An equation

y ′ = f (x , y)

in which the independent variable does not appear explicitly

y ′ = f (y)

is called autonomous. Autonomous ODEs have critical or equilibrium points at
those values at which f (y) = 0 because there is no change (y ′ = 0). A critical
point may be stable (if solutions close to it for some t remain close to it for all
further t) or unstable (if solutions initially close to it do not remain close as t
increases).
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Reduction to Linear ODEs

Example: Population dynamics (continued)

y ′ = Ay
(
1− B

A y
)

Equilibrium points are y = 0 (unstable) and y = A
B (stable).
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Critical points

Example

y ′ = (y − 1)(y − 2)

Equilibrium points are y = 1 (stable) and y = 2 (unstable).
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 5:

1.5.7
1.5.13
1.5.15
1.5.16
1.5.17
1.5.18
1.5.21
1.5.24
1.5.28
1.5.33
1.5.34
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Exercises

Exercises
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Outline

1 First-order ODEs
Basic concepts
Geometric meaning, direction fields
Separable ODEs
Exact ODEs. Integrating factors.
Linear ODEs. Bernouilli equation. Population dynamics.
Orthogonal trajectories
Existence and uniqueness of IVPs
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Orthogonal trajectories

Orthogonal trajectories
Let’s consider the family of curves that are the solution of a given ODE

G(x , y , c) = 0

For each c we have a different curve. The question now is which is the family of
curves that is orthogonal to the first family? For instance,

1
2x2 + y2 = C
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Orthogonal trajectories

Example
Step 1: Find the ODE for the family of curves (differentiate the family).

d
(
1
2x2 + y2 = C

)
x + 2yy ′ = 0

y ′ = − x
2y

y ′ = f (x , y)
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Orthogonal trajectories

Example
Step 2: Find the ODE of the orthogonal family. Remind that two lines in the
plane are orthogonal if

m1m2 = −1

At the point (x , ỹ) they are orthogonal if

f (x , ỹ)ỹ ′ = −1⇒ ỹ ′ = − 1
f (x , ỹ)

ỹ ′ = − 1
− x

2ỹ
=

2ỹ
x
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Orthogonal trajectories

Example
Step 3: Solve the differential equation

ỹ ′ =
2ỹ
x

ỹ ′
ỹ =

2
x

log |ỹ | = 2 log |x |+ C

ỹ = Cx2
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 6:

1.6.12
1.6.13
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Outline

1 First-order ODEs
Basic concepts
Geometric meaning, direction fields
Separable ODEs
Exact ODEs. Integrating factors.
Linear ODEs. Bernouilli equation. Population dynamics.
Orthogonal trajectories
Existence and uniqueness of IVPs
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Existence and uniqueness

Example: Lack of solution

|y ′|+ |y | = 0 y(0) = 1

The only solution of the ODE is
y = 0

and it does not meet y(0) = 1. There is no solution to the Initial Value Problem.
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Existence and uniqueness of IVPs

Example: Unique solution

y ′ = 2x y(0) = 1

The general solution of the ODE is

y = x2 + C

To fulfill the Initial Value we need

1 = 02 + C ⇒ C = 1

Therefore, there is a unique solution to the Initial Value Problem

y = x2 + 1
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Existence and uniqueness of IVPs

Example: Infinite solutions

xy ′ = y − 1 y(0) = 1

The function
y = 1 + Cx

is a solution of the ODE and it fulfills the Initial Value Problem for any value of C
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Existence and uniqueness of IVPs

Existence theorem
Given the IVP

y ′ = f (x , y) y(x0) = y0

If f (x , y) is continuous in a rectangle R

R = {(x , y) ∈ R2||x − x0| < a, |y − y0| < b}

and bounded in R, that is, there exists
K ∈ R such that

|f (x , y)| ≤ K
Then, the IVP has at least one solution y(x). This solution exists at least for all x
in |x − x0| < α where α = min{a, b

K }.
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Existence and uniqueness of IVPs

Existence theorem
The fact that f is bounded by K means that any solution y cannot “grow” as

much as it likes and that it must be confined within a certain region. The slop of
any solution is at least −K and at most K .
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Existence and uniqueness of IVPs

Example: Lack of solution (continued)

|y ′|+ |y | = 0 y(0) = 1

y ′ =

{
1− |y | y ′ ≥ 0
−(1− |y |) y ′ < 0

This IVP does not have a solution because f is not continuous.
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Existence and uniqueness of IVPs

Uniqueness theorem
Let the IVP meet the conditions for existence. If fy = ∂f

∂y is continuous in R and it
is bounded in R, that is, there exists M ∈ R such that

|fy (x , y)| ≤ M

Then, the IVP has a unique solution y(x). This solution exists at least for all x in
|x − x0| < α where α = min{a, b

K }.
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Existence and uniqueness of IVPs

Example: Infinite solutions (continued)

xy ′ = y − 1 y(0) = 1

y ′ =
y − 1

x y(0) = 1

The IVP has not a unique solution because

fy =
1
x

is not continuous around x = 0.
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Outline

1 First-order ODEs
Basic concepts
Geometric meaning, direction fields
Separable ODEs
Exact ODEs. Integrating factors.
Linear ODEs. Bernouilli equation. Population dynamics.
Orthogonal trajectories
Existence and uniqueness of IVPs
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