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Modeling

Physical
System

Mathematical
Maodel

Mathematical
Solution

Physical
Interpretation

Modeling workflow

A mathematical model is an equation that helps
us to understand a physical process.

A first-order Ordinary Differential Equation is
an equation of the form

F(y',y,x) =0 (1)
y' = cos(x)(1st order)

y' +9y = e‘zX(an order) (2)
Yy — %(y’)Z = 0(3rd order)

Drug concentration in plasma
C'= —K.C = C(t) = C(0)e " tu(t) (3)
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Falling stone

y" = g = const.

(Sec. 1.1)

Parachutist

: 2
mv’ = mg — bv
(Sec. 1.2)

B
I

Water level k

Outflowing water
B =-kNR
(Sec. 1.3)

September 2, 2014

6/ 110



(k)

® |

Displacement ¥

Vibrating mass
on a spring

my"+ky=0

(Secs. 2.4, 2.8)

Beats of a vibrating
system

" 2 —
Y+ ayy =cos of, 0=
(Sec. 2.8)

Current I in an
RLC circuit

LI+ Rl + S 1=F
(Sec. 2.9)
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Deformation of a beam

Ely" = f(x)
(Sec. 3.3)

Pendulum

L8 +gsing=0
(Sec. 4.5)

~

-
——

Lotka—Volterra
predator—prey model
yi=ay, by,
¥p= k1Y, =y,
(Sec. 4.5)

1 First-order ODEs September 2, 2014

8 /110



Ordinary Diff.Eq. Partial Diff. Eq.
F(x), £, % L8| F(x,y), fL L O 2
Implicit Explicit
F(xyy')=0 y'=f(xy)
Order n
y(m)




A function y = h(x) is a solution of a given ODE F(x,y,y’) = 0 on some open

interval a < x < b if h(x) is defined and differentiable throughout the interval and
is such that the equation becomes an identity if y and y’ are replaced by h and H'.

y = £ is a solution of xy’ = —y.
Proof
Yy =—%

' =x(-%)=—5=-y
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Solve y’ = cos(x)
Solution

% = cos(x)
dy = cos(x)dx
J dy = [ cos(x)dx
y =sin(x)+ C

(@

A
o

>

(G
(

Fig. 3. Solutions y = sinx -+ ¢ of the ODE y’ = cos x
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Solution

Solve y’' = ky
Solution

Fig. 4A. Solutions of y’ = 0.2y
in Example 3 (exponential growth)

0 2 4 6 8 10 12 14t
Fig. 4B. Solutions of y' = —0.2y

in Example 3 (exponential decay)
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General solution Particular solution
y = Ce y = 0.2
Initial value problem | y' = f(x,y) y(x0) = yo

y'=3y y(0)=57
y=Ce¥* y(0)=57
Ce30=57=C=57

y =5.7e¥
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Modeling

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount
present at any later time.

Physical Information. Experiments show that at each instant a radioactive
substance decomposes—and is thus decaying in time—proportional to the amount
of substance present.

v

1. First-order ODEs September 2, 2014 14 / 110



Modeling

Step 1. Setting up a mathematical model of the physical process.

The value of k is known from experiments for various radioactive substances (e.g.,
k =1.4-10"1's~! approximately, for radium 22°Ra).
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Modeling

Step 1. Setting up a mathematical model of the physical process.

The value of k is known from experiments for various radioactive substances (e.g.,
k =1.4-10"1's~! approximately, for radium 32°Ra).

Step 2. Mathematical solution.

Yy =—ky=y==Ce ™ y(0)=05=C=0.5
y =05e "
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Modeling

Step 2. Mathematical solution.

y =05e "k

Step 3. Interpretation of result.

¥y
0.5
0.4
0.3
0.2
0.1

0 | 1 1 |
0 0.5 1 1.5 2 2.5 3 t

Fig. 5. Radioactivity (Exponential decay,
y = 0.5¢ ¥ with k = 1.5 as an example)

o
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 1:
e 1.1.2
e 115
e 1.1.6

1.1.8

1.1.10

1.1.12

1.1.16

1.1.18

1.1.19
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y'=f(x,y) = y'(x) = f(x0, y0)

£ (x) A

tangent

f&0)

slope = %-‘;— = ')

. s AX
definition of derivative: ¥ of secantas Ax—5Q

I
|
|
|
|
|
|
X

v




y'=y+x

Y
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Fig. 7. Direction field of y’ =y + x, with three approximate solution

curves passing through (0, 1), (0, 0), (0, —1), respectively
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iC meaning

Geometr

MATLAB:

0.25:2,-2:0.25:2);

[x,y]=meshgrid(-2:
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y' =f(x,y)

Ay
E“’f(xay)

Yi+1 = Yk + DxF (X, yk)

X0 Yo
x1=x0+h | yi =yo+ Axf(x0, o)
xo=x1+h | y2 =y + Axf(x1,y1)
x3=x2+h | y3 =y + Axf(x2, y2)

h

x, EN x

Fig. 8. First Euler step, showing a solution curve, its tangent at (xo, o),
step h and increment hf (xo, yo) in the formula for y;




y'=y+x

& WolframAlpha sz
p

I[ ¥'=y+x; ¥(0)=0 a ]]
Il ] =Examples 5 Random
Input

{12 =y +x, y(0) =0}

ODE classification:

first-order linear ordinary differential equation
Alternate form:
00 +x =y’ (0, ¥(0) =0}

Differential equation solution Approximate form | [ [ Step-by-step solution

Yxy=-x+e' -1

Plots of the solution:

Interactive differential eauation solution plots:

)
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Euler method (numerical)

/
y =y+tx
Table 1.1.  Euler method for y’ = y + x,y(0) = 0 for
x=0,--,10withsteph = 0.2
n T Yn Yy Error
0 0.0 0.000 0.000 0.000
1 0.2 0.000 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152
5 1.0 0.488 0.718 0.230
¥

0.7

0.5 ]

0.3

01 e

! L] 1 1 !
o 0.2 0.4 0.6 0.8 1 x
ig. 9. Euler method: Approximate values in Table 1.1 and solution curve
v
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 2:
0124
e 125
e 1.2.11
e 1.2.15
e 1.2.20
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Exercises

Exercises

16. CAS PROJECT. Direction Fields. Discuss direction
fields as follows.
(a) Graph portions of the direction field of the ODE (2)
(see Fig. 7), for instance, =5 Sx =2, -1 =y =5.
Explain what you have gained by this enlargement of
the portion of the field.

(b) Using implicit differentiation, find an ODE with
the general solution x2 + 9y% = ¢ (y > 0). Graph its
direction field. Does the field give the impression
that the solution curves may be semi-ellipses? Can you
do similar work for circles? Hyperbolas? Parabolas?
?

Other cur

() Make a conjecture about the solutions of y" = —x/y
from the direction field.

(d) Graph the direction field of y* Ly and some
solutions of your choice. How do they behave? Why

do they decrease for y > 07
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An ODE is separable if it can be written as

gly)y’ =f(x)

We integrate both sides with respect to x to get

/ gly)y'dx = / f(x)dx

But we know that
dy = y'dx

/ g(y)dy = / f(x)dx

Consequently,

(4)

September 2, 2014 29 /110



y/ — 1 +y2
Solution:
d
Ay
1+ y2

arctan(y) = x + C

y =tan(x + C)
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Separable ODEs

y'=(x+1)e7y?

Solution:

y~2dy = (x + 1)e *dx

/y_2dy:/(x+1)e_xdx

—y l=—(x+2)e*+C
1

L (x+2)ex+C
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In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian—Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon 13C to carbon 1§C in
this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon 1§C (made
radioactive by cosmic rays) to ordinary carbon 13(: is constant. When an organism dies, its absorption of 13C

by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive
carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of I:C, which
is 5715 years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11-52,
line 9).
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Separable ODEs

Solution:
Radioactive decay follows the model

/

y' =—ky
y~tdy = —kdt
log ly| = —kt + C
y = Ce ™ = y(0)e™
The half life is defined as the time, 7, at which

Y(8) = 5(0) = y{8Te ™+ = Jyfe)

_ _ log(2) _ log(2) _ a1
kT = —log(2) = k = T =1.213 - 10 *[years™ "]

o’
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Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 Ib of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 1b of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

10 gal/min
5 Ib. salt/gal

—
1000 gal. water
100 |b. salt Qé— 10 gal/min
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Separable ODEs

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 b of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 1b of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time .

Solution:
y’ = Salt inflow rate — Salt outflow rate

Ib gal gal 3% Ib
! __ = o7 | R AN
y'=3 [gal] 10 {min] 10 [min] 1000 [gal]
Y = 50 — 0.01y = —0.01(y — 5000)

dy
— 2 = _0.0ldt
y — 5000

log |y — 5000] = —0.01t + C
y — 5000 = Ce %0 = y — 5000 + Ce 00t

4
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Separable ODEs

Solution:

y = 5000 + Ce %% (0) = 100[lb]
100 = 5000 4 C = C = —4900
y = 5000 — 4900e~0-01¢

y
5000
4000
3000
2000
1000

100

| |
0 100 200 300 400 500 ¢
Salt content y(¢)
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Separable ODEs

Suppose that in winter the daytime temperature in a certain office building is maintained at T0°F. The heating
is shut off at 10 p.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 A.M.
was found to be 65°F. The outside temperature was 50°F at 10 p.M. and had dropped to 40°F by 6 a.m. What
was the temperature inside the building when the heat was turned on at 6 A.M.?

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which
conducts heat well, for example, as a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution:

T = k(T — Tou)
being T,,: the temperature outside. Since there is no information about the
temperature outside at any time, we take an average

50 + 40

Tout = 5

— 45[°F]
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Separable ODEs

Solution: General solution

T' = k(T — 45)
dT
=k
T a5 Kt

log|T — 45| =kt + C = T =45 + CeM

Solution: Particular solution

We choose t = 0[h] at 10PM. Then, T(0) = 70[°F]. We also know that at 2AM
(t = 4[h]), T(4) = 65[°F].

T =45+ Ce T(0)=70,T(4)=65

A } ~ € =25,k = 0056
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Separable ODEs

Solution: Particular solution

T =45 4 25¢70.0%¢

At 6AM, t = 8[h], the temperature is

T(8) = 45+ 25¢~"%%% — 61[°F]

v
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Water level
at time ¢

Tank

Physical information. Under the influence of gravity the outflowing water has velocity
(W) w(t) = 0.600 2gh(t) (Torricelli’s law*),

where h(f) is the height of the water above the hole at time ¢, and g = 980 cm/sec® = 32.17 ft/sec? is the
acceleration of gravity at the surface of the earth.
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Separable ODEs

Solution:
The amount of volume, AV outflowing by a hole of surface A in a short time At is

AV = AvAt

This volume must be equal to the change in height in the tank (of base surface B)

AV = —BAh

—BAh = AvAt
Ah A
— = ——vV
At B

K = —g (0.6@)
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Separable ODEs

Solution: General solution
A
W=-2 (0.6 2 h)
B 8
A

h~2dh = —é0.6\/2gdt = —26.56=
B B
ot = 26562t 4+ C
B
A 2
h= (—13.28§t + C)

We have that B = 7R? = 7(100)?, and A = 7r? = 7(0.5)2. Substituting we have

V.

—13.28——

h= 0'52t+c 2—(C—0000332t)2[ m]
- 1002 - ' ©

September 2, 2014 42 /110
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Separable ODEs

Solution: Particular solution

h = (C — 0.000332t)°
At t =0, we have h = 2.25[m)|

225 = (C — 0.000332 - 0)2 = C=+v225=15

h = (15 — 0.000332t)° [cm]
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Separable ODEs

Reduction to separable form
An ODE that can be written as

We make the change of variables

_y
u= 2=
X

y=ux=y =ux+u

Then, the ODE can be written as
u'x +u=f(u)

uUx=f(u)—u

du dx
fluy—u  x
that can now be integrated.
1. First-order ODEs September 2, 2014
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Separable ODEs

2ny/ — y2 _ X2

Solution:

We do the change of variable v = % then

u’x+u—1 u—1
2 u

4
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Separable ODEs

Solution:
1 1 v +1
Iy — _ = =)=
X 2(u+u) 2u
2u dx
& du=-2=
112 X
log(1 + v?) = —log |x| + C
14—u2:£
X
2 C
(2=
X X
x? +y? = Cx

1. First-order ODEs September 2, 2014
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Separable ODEs

Solution:

x? 4+ y? = Cx

2) TV T

AL/

_4

Fig. 14. General solution (family of circles) in Example 8
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 3:
e 1.3.2

1.3.8

1.3.19

1.3.20

1.3.23

1.3.26
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Exact ODEs

Method of exact ODEs

If a function u(x,y) has continuous partial derivatives, then

du ou
du = a—xdx—l—@dy (6)

If u(x,y) = C, then du = 0.

v

uzx+x2y3:c

du = (14 2xy*)dx + (3x*y?)dy = 0
,_dy 1+ 2xy3

Y Tk T 3x2y2
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Exact ODEs

Method of exact ODEs
A first-order ODE
M(x,y) + N(x,y)y" =0
can be rewritten as
M(x,y)dx + N(x,y)dy =0

This ODE is an exact differential equation if there is a C! function u(x,y) such
that

ou ou
and 9
u
6X - M(Xay)
o = N(x,y)

Its implicit solution is u(x,y) = 0.
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Exact ODEs

Method of exact ODEs

To check whether there exists such a u function we should compute
oM _ o (ou) _ o
dy 0Oy \0Ox) 0yox
ON _ 0 (0u\_ Pu
ox  Ox \dy/) 0x0Oy

Consequently, if the ODE is exact, then

oM _ oN
dy  Ox

and conversely, if the previous condition is met, then the ODE is exact.

1. First-order ODEs September 2, 2014
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Exact ODEs

Method of exact ODEs

We can find u by inspection or by integrating with respect to x

o = Mlx.y) = u(xy) = [ Mlxy)a+ €0

To determine C(y) we differentiate with respect to y and equate it to N(x, y)

a% (/ M(x, y)dx + C(y)) = N(x,y)

% (/ M(X,y)dx) + C'(y) = N(x,y)
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Exact ODEs

Method of exact ODEs

Alternatively, we can perform a similar approach integrating with respect to y

ou

N
3y (x,y) =

To determine C(x) we differentiate with respect to y and equate it to M(x, y)

0

u(x,y) = / N(x, y)dy + C(x)

o ( / N(x,y)dy + C(x)) = M(x,y)

0

O (/ /V(X,y)dy) +C'(x) = M(x, y)

1. First-order ODEs
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Exact ODEs
Bample

cos(x + y)dx + (3y? + 2y + cos(x + y))dy = 0

Solution:
Test for exactness 3
—cosg}</+y) = —sin(x +y)
2
2
d(3y* + y;— cos(x + y)) — sin(x+y)
X

Let's find a general solution
u= /cos(x +y)dx =sin(x +y) + C(y)
Now we differentiate u with respect to y

0
B—; = cos(x +y) + C'(y) = 3y? + 2y + cos(x + y)

.
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Exact ODEs

0
8_; = cos(x +y) + C'(y) = 3y? + 2y + cos(x + y)

C'(y) =3y* +2y
Cly)=y*+y°

Finally
u=sin(x+y)+y>+y?

and the solution
sin(x+y)+y*+y*=C

It's an implicit solution because there is not a closed form of y as a function of x.

y
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Exact ODEs
Bxample

(cos(y) sinh(x) + 1)dx — sin(y) cosh(x)dy =0 y(1) =2

Solution:
Test for exactness

J(cos(y)sinh(x) +1) .
By = —sin(y) sinh(x)

a(—sin()élCOSh(X)) — —sin(y)sinh(x)

Let's find a general solution
u=— / sin(y) cosh(x)dy = cos(y) cosh(x) + C(x)
Now we differentiate u with respect to x

% = cos(y)sinh(x) T C’(x) = COS(y)sinh(x) +1
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Exact ODEs

cos(y) sinh(x)+C'(x) = cos(y) sinh(x)+1

C'(x)=1 2_:,

C(x) =x 20f
The general solution is 151

cos(y) cosh(x) + x = C ;:7
The particular solution comes from the | T R
initial condition y(1) =2 0f 05 10 15 20 25 30 x
cos(2) cosh(1) +1= C = C =0.358

MATLAB: ezplot(’cos(y) .*cosh(x)+x-0.358°,[0 3 0 3]) )
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Integrating factors

The equation
—ydx + xdy =0

is not exact, but it becomes exact if we multiply by )%

1 _ Yy Lo _ (Y _ y _
;(—ydx+xdy)——;dx-l—;dy—d(;)—0:>;—C

Method of integrating factors
An integrating factor is a function F(x, y) such that the equation

P(x,y)dx + Q(x,y)dy =0
becomes an exact ODE after multiplication

FPdx + FQdy = 0

v
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Integrating factors

—ydx + xdy =0

In fact, the integrating factor is not unique. We can find other integrating factors

for the same equation
1
2

(—ydx+xdy) =d (%) =0
L %( ydx + xdy) = d y)zO

( ydx + xdy) = d (log 5) =0
w7 | iy (~ydx +xdy) = d (arctan’) = 0

.

o
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Integrating factors

How to find integrating factors
The condition for the ODE being exact is

0

0
55 (FP) = 5-(FQ)

F P+ FP, = F,Q + FQ,

If we are looking for integrating factors depending on a single variable, say x, then
F, =0, that is

FP, = F'Q+ FQs

Dividing by FQ
P, F @
= L =X
QR F Q@
ﬂ _ Py - QX
F o Q

-
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Integrating factors

How to find integrating factors

E/ _ Py - QX

F o Q
If the right-hand side only depends on x, then by integration we find the
integrating factor

Iog\F|:/Py%Qxdx:> F =exp (/Py—(;)Qde>

fo

Similarly, By depends only on y, then there exists an integrating factor

. — P . — P
Iog|F|:/%dyé F:exp(/QPydy)

1. First-order ODEs September 2, 2014
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Integrating factors

(e + ye¥)dx + (x¢ —1)dy =0

Solution:
Let’s check if it is exact:

0
Py =gy (€7 +y) = e +ye!

szg(xey—l):ey

Ox

So it is not exact. Let's check if it has an integrating factor depending on y

Q—P, &V iy
P ey

It does.
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Integrating factors

Q—-P, ety
P ety

F = exp (/ (—1)dy> =e Y

This integrating factor transforms the ODE into

(e+y)dx+(x—e)dy=0
That is exact 9
My:@(ex‘k)’):l
X

0 _
NX:a—(x—e }’):1
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Integrating factors

Its general solution is
ulx,y)=€e"+xy+e?=0C

Fig.18. Particular solutions in Example 5
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Integrating factors

How to find integrating factors

Condition

Integrating factor
F =exp [ f(x)dx

P =@ _ f(x)

F =exp [ f(y)dy

=
~p - =f(y)

s = Fxy) F(z)=exp [f(z)dz z=x
yQ—xP y p. y
2% — 12ty | F()=ep ) f(Ndr_r=x 1y

F(z)=exp [ f(z)dz z= §

M:f(i)
y

xP+yQ
yh(xy)dx + xfa(xy)dy

F

— 1
I C1C = AE))
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Exercises

From Kreyszig (10th ed.), Chapter 1, Section 4:
e 1438

e 1.4.11
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© First-order ODEs
@ Basic concepts
@ Geometric meaning, direction fields
@ Separable ODEs
@ Exact ODEs. Integrating factors.
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@ Orthogonal trajectories
o Existence and uniqueness of IVPs



A first-order ODE is said to be linear if it can be written in the form

y' + p(x)y = r(x) (7)

The equation abopve is linear in y and y’. In an engineering setup, r(x) is called
the input to the system, while y(x) is the system’s output.




A linear, first-order ODE is said to be homogeneous if r(x) =0

Yy +p(x)y=0 (8)
Then we can solve it by separation of variables

@
y

ogly| =~ [ pae+ C

y = Ce—fpdx

We have also the trivial solution .
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Linear ODEs

Non-homogeneous Linear ODE

If r(x) is not zero everywhere in the open interval being studied, then the linear
ODE is non-homogeneous.

Y +py=r
(py —r)dx+dy =0
Let's look for an integrating factor

Py—QX:p—Ozp
Q 1

This function only depends on x so there exists an integrating factor in x given by

F = el P
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Linear ODEs

Non-homogeneous Linear ODE
Let's call h to [ pdx, and multiply the linear equation by the integrating factor
F=e

ey’ + pe'y = re”
Note that h’ = p, then

ehy/ + h/ehy — reh
(hy) = re"

ehy:/rehdx—f—C

y:eh(/rehderC) h:/pdx

If r =0, we are back to the homogeneous solution

y=Ce "
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y=e" (/rehdx—i- C)

y=e" / rehdx 4+ Ce™"

We distinguish two terms, the first one, e h f reldx, is the response of the system
to the input r, while the second one, Ce™" is the response of the system to the
initial conditions.




Linear ODEs

y' + ytan(x) =sin(2x) y(0)=1

Solution:

h = /tan(x)dx = log

cos(x)
e = 1
~ cos(x)
e~ = cos(x)

The general solution is

by = s < / sin(2x) g c>

cos(x)

y = cos(x) (—2cos(x) + C)

4
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Linear ODEs

y = cos(x) (—2cos(x) + C) y(0)=1
The particular solution is
1 = cos(0) (—2cos(0) + C) = C =3
y = cos(x) (3 — 2 cos(x))
y = 3cos(x) — 2cos?(x)

The term 3 cos(x) is the response to the initial conditions, while the term
—2cos?(x) is the response to the input.
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Linear ODEs

Find the circulating current in the RL circuit

R=110

E=48V

L=01H
Circuit

Physical Laws. A current [ in the circuit causes a voltage drop RI across the resistor (Ohm’s law) and
a voltage drop LI" = L dI/dt across the conductor, and the sum of these two voltage drops equals the EMF
(Kirchhoff’s Voltage Law, KVL).

Solution:

LI'+RI=E
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Linear ODEs

It is a linear equation of the form

o

77 / 110
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Linear ODEs

The general solution is

E
/:§+@4f
The initial condition is /(0) = 0, and the particular solution
It)
ce-Eicoc )
= — L = — - ——
0 R + Ce R +C= B 6
E
lzﬁ(l—e_%t) al
48
| = ﬁ (1 — e_1_11t> ’
. g (1 e—llOt) ool o002 Curr(;‘(:i(t) oor 005 ¢
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Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.
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Linear ODEs

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous

removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution:
y' = In — Out

y' = (A+ Bcos(wt)) —
y' + Ky = (A + Bcos(wt))

hz/Kdt:Kt

y=eK (/ (A + Bcos(wt))etdt + c)
+

y =e Kt [ Kt <% % (K cos(wt) —|—wsm(wt))> )

V.
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Linear ODEs

B ﬁ (S et = wsin(cet))) + C)

A
K

y = e_Kt (eKt (

A B
Y= <K TR 2 K2 4 2 (K cos(wt) +LUSIn(wt))> + Ce Kt
Since the variation is every 24h, the frequency w = 27

solution becomes

N

A+ B
K K24+

2
T

(K cos(ﬁt)

24 —

%' Then, the general

12 s'”(—t))> + CeHt
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Linear ODEs

A B —Kt
y= (K I K2— (Kcos(ﬁt) 4 Esm(— ))) + Ce

If we assume y(0) = 0, then the particular solution is

0—<£+WL<K 1+ 75 0))) Y C

c. (A, 8K
K K2t

(K cos(—t) =5 sm( ) - Ke_Kt>

A B
:_1_ —Kt =

122
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Linear ODEs

_A —Kt B —Kt
y—K(l e )+K2+122 (Kcos( t)+ sm( ) Ke )

For A= B =1, K =0.05 we have

| |
0 100 200 t

4
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y' + p(x)y = g(x)y?

This equation is non-linear except for a =0 or a = 1. Let's make the change of

variable
1—a

u=y
u'=(1-a)y %
u'=(1-a)yy *(—py +gy?)
u'=(1-a)(-p' " +g)
u'=(1-a)(-pu+g)
u'+(1-a)pu=(1- a)g|

This is a linear equation.

B 7y — Sy T



Reduction to Linear ODEs

y' = Ay — By?

Solution:
y = 0 is a solution. Otherwise, this is Bernouilli equation with a = 2.

u:y_zzy_l

o' =(=1)y~%

u' =~y (Ay - By?)
v =—(Ay"' - B)
u' = —(Au— B)
v+ Au=B
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Reduction to Linear ODEs

v+ Au=B

h:/Adx:Ax

u=e ™ ( / Be™ dx + c)

B
u=e "™ (ZeAX + C)
u= g + Ce= ™

B
}/71 = Z = Ce

1
Y =B /A
z+Ce A

v
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— 11 +exp(-2x))
— 11 +expl-x))
=11 +exp(-0.5%])
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Reduction to Linear ODEs

For a small population, its growth can be described by Malthus law

/

y =Ay
This is a particular case of the logistic equation whose solution is

1 1
_ LA

Y= CeM ™~ C

The term —By? acts as a “braking” term that prevents the population of growing
infinitely. If we rewrite the logistic equation as

B
-
y y< Ay>

If y < g, then y’ > 0 and the population grows.
If y > g, then y’ < 0 and the population decreases.

W
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Population y
8
6
A_3
Y=
| | |
0 1 2 3 4 Time ¢
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Critical points

Autonomous ODE and critical points

An equation
y' =1f(x,y)

in which the independent variable does not appear explicitly
y'=1(y)

is called autonomous. Autonomous ODEs have critical or equilibrium points at
those values at which f(y) = 0 because there is no change (y’ = 0). A critical
point may be stable (if solutions close to it for some t remain close to it for all
further t) or unstable (if solutions initially close to it do not remain close as t
increases).
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Reduction to Linear ODEs

?)

l— — —
y —Ay<1 yi4

Equilibrium points are y = 0 (unstable) and y = 4 (stable).

Population y

.

Time ¢
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y=-1)-2)
Equilibrium points are y = 1 (stable) and y = 2 (unstable).

NN
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 5:
e 157
e 1513
e 15.15

1.5.16

1.5.17

1.5.18

1.5.21

1.5.24

1.5.28

1.5.33

1.5.34
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Exercises

Exercises

30. TEAM PROJECT. Riccati Equation. Clairaut
Equation. Singular Solution.
A Riccati equation is of the form

(4 Y+ p)y = gy® + h).
A Clairaut equation is of the form
(as) y=x'+350")

(a) Apply the transformation y = Y + 1/u to the
Riccati equation (14), where Y is a solution of (14), and
obtain for u the linear ODE u’ + (2Yg — p)u = —g.
Explain the effect of the transformation by writing it
asy=Y+uv,v=1/u

(b) Show that y=Y=x is a solution of the ODE
y - (2.!:3 +1)y= 7,!(2}‘2 — x* — x + land solve this
Riccati equation, showing the details.

(c) Solve the Clairaut equation y'g -0 +y=0as
follows. Differentiate it with respect to x, obtaining
y"(2y" — x) = 0. Then solve (A) y" =0 and (B)
2y’ — x = Oseparately and substitute the two solutions
(a) and (b) of (A) and (B) into the given ODE. Thus
obtain (a) a general solution (straight lines) and (b) a
parabola for which those lines (a) are tangents (Fig. 6
in Prob. Set 1.1); so (b) is the envelope of (a). Such a
solution (b) that cannot be obtained from a general
solution is called a singular solution.

(d) Show that the Clairaut equation (15) has as
solutions a family of straight lines y = cx + g(c) and
a singular solution determined by g'(s) = —x, where
s =y', that forms the envelope of that family.

1. First-order ODEs
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Orthogonal trajectories

Orthogonal trajectories

Let’s consider the family of curves that are the solution of a given ODE
G(x,y,c) =0

For each ¢ we have a different curve. The question now is which is the family of
curves that is orthogonal to the first family? For instance,

x4y =C

Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space):
Elliptic equipotential curves (equipotential surfaces) and orthogonal
trajectories (parabolas)
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Orthogonal trajectories

Step 1: Find the ODE for the family of curves (differentiate the family).

d(%x2+y2= C)

x+2yy' =0
X
Yy = 2y

1. First-order ODEs
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Orthogonal trajectories

Step 2: Find the ODE of the orthogonal family. Remind that two lines in the
plane are orthogonal if

mimp = -1

At the point (x, ) they are orthogonal if

) = 1= |7 = ———
(7) .7)
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Orthogonal trajectories

Step 3: Solve the differential equation

log 7] = 2log || + C
y=Cx

N
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Exercises

From Kreyszig (10th ed.), Chapter 1, Section 6:
@ 1.6.12

@ 1.6.13
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ly'l+1yl=0 y(0)=1
The only solution of the ODE is

y=0

and it does not meet y(0) = 1. There is no solution to the Initial Value Problem.

e EEEE— . it QDI Sl A | 0 ) 1



Existence and uniqueness of IVPs

y=2x y(0)=1
The general solution of the ODE is

y=x*+C
To fulfill the Initial Value we need
1=0+C=C=1
Therefore, there is a unique solution to the Initial Value Problem

y:x2+1
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xy'=y-1 y(0)=1

The function
y=1+4+Cx

is a solution of the ODE and it fulfills the Initial Value Problem for any value of C

e EEEE— . it QDI S e A | 00 1



Existence and uniqueness of IVPs

Existence theorem
Given the IVP
Yy =f(xy) ylxo) =y y
If f(x,y) is continuous in a rectangle R T b R
L —— -
R={(x,y) € R?||x = xo| < a|y = yo| < b} |
Yo—b ———— i
and bounded in R, that is, there exists i ! i
K € R such that ’ x,—a Xg xg+a ¥
[Foy)l < K
Then, the IVP has at least one solution y(x). This solution exists at least for all x
in [x — x| < o where = min{a, 2}.
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Existence and uniqueness of IVPs

Existence theorem

The fact that f is bounded by K means that any solution y cannot “grow” as
much as it likes and that it must be confined within a certain region. The slop of
any solution is at least —K and at most K.

y y

Yot b -

Yot b -

~
Yo R

Yo—b ~
L
R e =

Yo—b -
|<*Dt=a%"<*a=a*4 =—ua a

Yo

(a) (b)

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case
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y|+1lyl=0 y(0)=1

y'={ 11—yl y'>0
—(1-1y]) ¥ <0

This IVP does not have a solution because f is not continuous.

e EEEE— I it QDI Sl s A 0 ) 1



Let the IVP meet the conditions for existence. If f, = % is continuous in R and it

is bounded in R, that is, there exists M € R such that

() <M

Then, the IVP has a unique solution y(x). This solution exists at least for all x in
|x — xo| < & where a = min{a, £}.




Existence and uniqueness of IVPs

is not continuous around x = 0.

1. First-order ODEs September 2, 2014 109 / 110



© First-order ODEs
@ Basic concepts
@ Geometric meaning, direction fields
@ Separable ODEs
o Exact ODEs. Integrating factors.
@ Linear ODEs. Bernouilli equation. Population dynamics.
@ Orthogonal trajectories
@ Existence and uniqueness of IVPs



	First-order ODEs
	Basic concepts
	Geometric meaning, direction fields
	Separable ODEs
	Exact ODEs. Integrating factors.
	Linear ODEs. Bernouilli equation. Population dynamics.
	Orthogonal trajectories
	Existence and uniqueness of IVPs


