Chapter 1. First-order ODEs

C.O.S. Sorzano

Biomedical Engineering
September 2, 2014

CEU
Universidad
San Pablo

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

References

E. Kreyszig. Advanced Engineering Mathematics. John Wiley \& sons. Chapter 1.

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Modeling

Modeling workflow

A mathematical model is an equation that helps us to understand a physical process.
A first-order Ordinary Differential Equation is an equation of the form

$$
\begin{equation*}
F\left(y^{\prime}, y, x\right)=0 \tag{1}
\end{equation*}
$$

Examples

$$
\begin{gather*}
y^{\prime}=\cos (x)(1 \text { st order }) \\
y^{\prime \prime}+9 y=e^{-2 x}(2 \text { nd order }) \tag{2}\\
y^{\prime} y^{\prime \prime \prime}-\frac{3}{2}\left(y^{\prime}\right)^{2}=0(3 \text { rd order })
\end{gather*}
$$

Drug concentration in plasma

$$
\begin{equation*}
C^{\prime}=-K_{e} C \Rightarrow C(t)=C(0) e^{-K_{e} t} u(t) \tag{3}
\end{equation*}
$$

Modeling

Examples

Falling stone
$y^{\prime \prime}=g=$ const .
(Sec. 1.1)

(Sec. 1.2)

Water level h
Outflowing water
$h^{\prime}=-k \sqrt{h}$
(Sec. 1.3)

Modeling

Examples

Displacement y Vibrating mass on a spring $m y^{\prime \prime}+k y=0$ (Secs. 2.4, 2.8)	 Beats of a vibrating system $\begin{gathered} y^{\prime \prime}+\omega_{0}^{2} y=\cos \omega t, \quad \omega_{0} \approx \omega \\ \text { (Sec. 2.8) } \end{gathered}$	Current I in an $R L C$ circuit $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}$ (Sec. 2.9)

Modeling

Examples

Basic concepts

Definitions

Ordinary Diff.Eq.	Partial Diff. Eq.
$f(x), f^{\prime}, \frac{d f}{d x}, \frac{d^{2} f}{d x^{2}}, \ldots$	$f(x, y), f_{x}^{\prime}, f_{y}^{\prime}, \frac{\partial f}{\partial x}, \frac{\partial^{2} f}{\partial x^{2}}, \ldots$
Implicit	Explicit
$\mathrm{F}\left(x, y, y^{\prime}\right)=0$	$\mathrm{y}^{\prime}=\mathrm{f}(x, y)$
Order n	
$y^{(n)}$	

Solution

Solution

A function $y=h(x)$ is a solution of a given ODE $F\left(x, y, y^{\prime}\right)=0$ on some open interval $a<x<b$ if $h(x)$ is defined and differentiable throughout the interval and is such that the equation becomes an identity if y and y^{\prime} are replaced by h and h^{\prime}.

Example

$y=\frac{c}{x}$ is a solution of $x y^{\prime}=-y$.
Proof
$y^{\prime}=-\frac{c}{x^{2}}$
$x y^{\prime}=x\left(-\frac{c}{x^{2}}\right)=-\frac{c}{x}=-y$

Solution

Example

Solve $y^{\prime}=\cos (x)$ Solution

$$
\begin{gathered}
\frac{d y}{d x}=\cos (x) \\
d y=\cos (x) d x \\
\int d y=\int \cos (x) d x \\
y=\sin (x)+C
\end{gathered}
$$

Fig. 3. Solutions $y=\sin x+c$ of the ODE $y^{\prime}=\cos x$

Solution

Example

Solve $y^{\prime}=k y$
Solution

$$
\begin{gathered}
\frac{d y}{d x}=k y \\
\frac{d y}{y}=k d x \\
\int \frac{d y}{y}=\int k d x \\
\log |y|=k x+C \\
y=e^{k x+C}=e^{C} e^{k x}=C e^{k x}
\end{gathered}
$$

Fig. 4A. Solutions of $y^{\prime}=0.2 y$ in Example 3 (exponential growth)

Fig. 4B. Solutions of $y^{\prime}=-0.2 y$ in Example 3 (exponential decay)

Basic concepts

Definitions

General solution $y=C e^{k x}$	Particular solution $y=0.2 e^{k x}$
Initial value problem	$y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0}$

Initial value problem

$$
\begin{gathered}
y^{\prime}=3 y \quad y(0)=5.7 \\
y=C e^{3 x} \quad y(0)=5.7 \\
C e^{3.0}=5.7 \Rightarrow C=5.7 \\
y=5.7 e^{3 x}
\end{gathered}
$$

Modeling

Radioactivity

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.

Physical Information. Experiments show that at each instant a radioactive substance decomposes-and is thus decaying in time-proportional to the amount of substance present.

Modeling

Radioactivity

Step 1. Setting up a mathematical model of the physical process.

$$
y^{\prime}=-k y
$$

The value of k is known from experiments for various radioactive substances (e.g., $k=1.4 \cdot 10^{-11} s^{-1}$ approximately, for radium ${ }_{88}^{226} R a$).

Modeling

Radioactivity

Step 1. Setting up a mathematical model of the physical process.

$$
y^{\prime}=-k y
$$

The value of k is known from experiments for various radioactive substances (e.g., $k=1.4 \cdot 10^{-11} s^{-1}$ approximately, for radium ${ }_{88}^{226} \mathrm{Ra}$).

Radioactivity

Step 2. Mathematical solution.

$$
\begin{gathered}
y^{\prime}=-k y \Rightarrow y=C e^{-k t} \quad y(0)=0.5 \Rightarrow C=0.5 \\
y=0.5 e^{-k t}
\end{gathered}
$$

Modeling

Radioactivity

Step 2. Mathematical solution.

$$
y=0.5 e^{-k t}
$$

Radioactivity

Step 3. Interpretation of result.

Fig. 5. Radioactivity (Exponential decay,
$y=0.5 e^{-k t}$, with $k=1.5$ as an example)

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 1:

- 1.1.2
- 1.1.5
- 1.1.6
- 1.1.8
- 1.1.10
- 1.1.12
- 1.1.16
- 1.1.18
- 1.1.19

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Geometric meaning

Derivative and tangent slope

$$
y^{\prime}=f(x, y) \Rightarrow y^{\prime}\left(x_{0}\right)=f\left(x_{0}, y_{0}\right)
$$

Geometric meaning

Direction field

$$
y^{\prime}=y+x
$$

Fig. 7. Direction field of $y^{\prime}=y+x$, with three approximate solution curves passing through $(0,1),(0,0),(0,-1)$, respectively

Geometric meaning

```
Direction field
MATLAB:
[x,y]=meshgrid(-2:0.25:2,-2:0.25:2);
dy=y+x;
dx=ones(size(dy));
quiver(x,y,dx,dy);
```


Euler method (numerical)

Algorithm

$$
\begin{aligned}
& \quad y^{\prime}=f(x, y) \\
& \qquad \begin{array}{l}
\frac{\Delta y}{\Delta x} \approx f(x, y) \\
y_{k+1}=y_{k}+\Delta x f\left(x_{k}, y_{k}\right) \\
x_{0} \\
x_{1}=x_{0}+h \\
x_{2}=x_{1}+h \\
x_{3}=x_{2}+h \\
\ldots
\end{array} \\
& \begin{array}{l}
y_{1}=y_{0}+\Delta x f\left(x_{0}, y_{0}\right) \\
y_{2}=y_{1}+\Delta x f\left(x_{1}, y_{1}\right) \\
y_{3}=y_{2}+\Delta x f\left(x_{2}, y_{2}\right)
\end{array}
\end{aligned}
$$

Fig. 8. First Euler step, showing a solution curve, its tangent at (x_{0}, y_{0}), step h and increment $h f\left(x_{0}, y_{0}\right)$ in the formula for y_{1}

Euler method (numerical)

Example (exact solution)

$$
y^{\prime}=y+x
$$

WolframAlphá wamas.

Euler method (numerical)

Example (approximate solution)

$$
y^{\prime}=y+x
$$

Table 1.1. Euler method for $\boldsymbol{y}^{\prime}=\boldsymbol{y}+\boldsymbol{x}, \boldsymbol{y}(0)=0$ for

$x=0, \cdots, 1.0$ with step $h=0.2$

n	x_{n}	y_{n}	$y\left(x_{n}\right)$	Error
0	0.0	0.000	0.000	0.000
1	0.2	0.000	0.021	0.021
2	0.4	0.04	0.092	0.052
3	0.6	0.128	0.222	0.094
4	0.8	0.274	0.426	0.152
5	1.0	0.488	0.718	0.230

iig. 9. Euler method: Approximate values in Table 1.1 and solution curve

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 2:

- 1.2.4
- 1.2 .5
- 1.2.11
- 1.2.15
- 1.2.20

Exercises

Exercises

16. CAS PROJECT. Direction Fields. Discuss direction fields as follows.
(a) Graph portions of the direction field of the ODE (2) (see Fig. 7), for instance, $-5 \leqq x \leqq 2,-1 \leqq y \leqq 5$. Explain what you have gained by this enlargement of the portion of the field.
(b) Using implicit differentiation, find an ODE with the general solution $x^{2}+9 y^{2}=c(y>0)$. Graph its direction field. Does the field give the impression that the solution curves may be semi-ellipses? Can you do similar work for circles? Hyperbolas? Parabolas? Other curves?
(c) Make a conjecture about the solutions of $y^{\prime}=-x / y$ from the direction field.
(d) Graph the direction field of $y^{\prime}=-\frac{1}{2} y$ and some solutions of your choice. How do they behave? Why do they decrease for $y>0$?

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Separable ODEs

Method of separating variables

An ODE is separable if it can be written as

$$
\begin{equation*}
g(y) y^{\prime}=f(x) \tag{4}
\end{equation*}
$$

We integrate both sides with respect to x to get

$$
\int g(y) y^{\prime} d x=\int f(x) d x
$$

But we know that

$$
d y=y^{\prime} d x
$$

Consequently,

$$
\int g(y) d y=\int f(x) d x
$$

Separable ODEs

Example

$$
y^{\prime}=1+y^{2}
$$

Solution:

$$
\begin{gathered}
\frac{d y}{1+y^{2}}=d x \\
\arctan (y)=x+C \\
y=\tan (x+C)
\end{gathered}
$$

Separable ODEs

Example

$$
y^{\prime}=(x+1) e^{-x} y^{2}
$$

Solution:

$$
\begin{gathered}
y^{-2} d y=(x+1) e^{-x} d x \\
\int y^{-2} d y=\int(x+1) e^{-x} d x \\
-y^{-1}=-(x+2) e^{-x}+C \\
y=\frac{1}{(x+2) e^{-x}+C}
\end{gathered}
$$

Separable ODEs

Example

In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in the ice of the Oetztal Alps (hence the name "Oetzi") in Southern Tyrolia near the Austrian-Italian border, caused a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon ${ }_{6}^{14} \mathrm{C}$ to carbon ${ }_{6}^{12} \mathrm{C}$ in this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon ${ }_{6}^{14} \mathrm{C}$ (made radioactive by cosmic rays) to ordinary carbon ${ }_{6}^{12} \mathrm{C}$ is constant. When an organism dies, its absorption of ${ }_{6}^{14} \mathrm{C}$ by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of ${ }_{6}^{14} \mathrm{C}$, which is 5715 years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11-52, line 9).

Separable ODEs

Example (continued)

Solution:

Radioactive decay follows the model

$$
\begin{gathered}
y^{\prime}=-k y \\
y^{-1} d y=-k d t \\
\log |y|=-k t+C \\
y=C e^{-k t}=y(0) e^{-k t}
\end{gathered}
$$

The half life is defined as the time, τ, at which

$$
\begin{gathered}
y(t)=\frac{1}{2} y(0) \Rightarrow y(\theta) e^{-k \tau}=\frac{1}{2} y(\theta) \\
-k \tau=-\log (2) \Rightarrow k=\frac{\log (2)}{\tau}=\frac{\log (2)}{5715}=1.213 \cdot 10^{-4}\left[\text { years }^{-1}\right]
\end{gathered}
$$

Separable ODEs

Example

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine runs in at a rate of $10 \mathrm{gal} / \mathrm{min}$, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at $10 \mathrm{gal} / \mathrm{min}$. Find the amount of salt in the tank at any time t.

$10 \mathrm{gal} / \mathrm{min}$
 5 lb. salt/gal

Separable ODEs

Example (continued)

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine runs in at a rate of $10 \mathrm{gal} / \mathrm{min}$, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at $10 \mathrm{gal} / \mathrm{min}$. Find the amount of salt in the tank at any time t.

Solution:

$$
\begin{gathered}
y^{\prime}=\text { Salt inflow rate }- \text { Salt outflow rate } \\
y^{\prime}=5\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] 10\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right]-10\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right] \frac{y}{1000}\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] \\
y^{\prime}=50-0.01 y=-0.01(y-5000) \\
\frac{d y}{y-5000}=-0.01 d t \\
\log |y-5000|=-0.01 t+C \\
y-5000=C e^{-0.01 t} \Rightarrow y=5000+C e^{-0.01 t}
\end{gathered}
$$

Separable ODEs

Example (continued)

Solution:

$$
\begin{gathered}
y=5000+C e^{-0.01 t} \quad y(0)=100[\mathrm{lb}] \\
100=5000+C \Rightarrow C=-4900 \\
y=5000-4900 e^{-0.01 t}
\end{gathered}
$$

Separable ODEs

Example

Suppose that in winter the daytime temperature in a certain office building is maintained at $70^{\circ} \mathrm{F}$. The heating is shut off at 10 P.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 A.m. was found to be $65^{\circ} \mathrm{F}$. The outside temperature was $50^{\circ} \mathrm{F}$ at 10 P.m. and had dropped to $40^{\circ} \mathrm{F}$ by 6 A.m. What was the temperature inside the building when the heat was turned on at 6 A.m.?

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which conducts heat well, for example, as a copper ball does) is proportional to the difference between T and the temperature of the surrounding medium (Newton's law of cooling).

Solution:

$$
T^{\prime}=k\left(T-T_{\text {out }}\right)
$$

being $T_{\text {out }}$ the temperature outside. Since there is no information about the temperature outside at any time, we take an average

$$
T_{\text {out }}=\frac{50+40}{2}=45\left[{ }^{\circ} \mathrm{F}\right]
$$

Separable ODEs

Example (continued)

Solution: General solution

$$
\begin{gathered}
T^{\prime}=k(T-45) \\
\frac{d T}{T-45}=k d t \\
\log |T-45|=k t+C \Rightarrow T=45+C e^{k t}
\end{gathered}
$$

Solution: Particular solution
We choose $t=0[h]$ at 10 PM . Then, $T(0)=70\left[{ }^{\circ} F\right]$. We also know that at 2 AM $(t=4[h]), T(4)=65\left[{ }^{\circ} F\right]$.

$$
\begin{gathered}
T=45+C e^{k t} \quad T(0)=70, T(4)=65 \\
\left.\begin{array}{c}
70=45+C \\
65=45+C e^{k 4}
\end{array}\right\} \Rightarrow C=25, k=-0.056
\end{gathered}
$$

Separable ODEs

Example (continued)

Solution: Particular solution

$$
T=45+25 e^{-0.056 t}
$$

At $6 \mathrm{AM}, t=8[h]$, the temperature is

$$
T(8)=45+25 e^{-0.056 \cdot 8}=61\left[^{\circ} F\right]
$$

Separable ODEs

Example

Tank

Physical information. Under the influence of gravity the outflowing water has velocity

$$
\begin{equation*}
v(t)=0.600 \sqrt{2 g h(t)} \tag{7}
\end{equation*}
$$

where $h(t)$ is the height of the water above the hole at time t, and $g=980 \mathrm{~cm} / \mathrm{sec}^{2}=32.17 \mathrm{ft} / \mathrm{sec}^{2}$ is the acceleration of gravity at the surface of the earth.

Separable ODEs

Example (continued)

Solution:

The amount of volume, ΔV outflowing by a hole of surface A in a short time Δt is

$$
\Delta V=A v \Delta t
$$

This volume must be equal to the change in height in the tank (of base surface B)

$$
\begin{gathered}
\Delta V=-B \Delta h \\
-B \Delta h=A v \Delta t \\
\frac{\Delta h}{\Delta t}=-\frac{A}{B} v \\
h^{\prime}=-\frac{A}{B}(0.6 \sqrt{2 g h})
\end{gathered}
$$

Separable ODEs

Example (continued)

Solution: General solution

$$
\begin{gathered}
h^{\prime}=-\frac{A}{B}(0.6 \sqrt{2 g h}) \\
h^{-\frac{1}{2}} d h=-\frac{A}{B} 0.6 \sqrt{2 g} d t=-26.56 \frac{A}{B} \\
2 h^{\frac{1}{2}}=-26.56 \frac{A}{B} t+C \\
h=\left(-13.28 \frac{A}{B} t+C\right)^{2}
\end{gathered}
$$

We have that $B=\pi R^{2}=\pi(100)^{2}$, and $A=\pi r^{2}=\pi(0.5)^{2}$. Substituting we have

$$
h=\left(-13.28 \frac{0.5^{2}}{100^{2}} t+C\right)^{2}=(C-0.000332 t)^{2}[\mathrm{~cm}]
$$

Separable ODEs

Example (continued)

Solution: Particular solution

$$
h=(C-0.000332 t)^{2}
$$

At $t=0$, we have $h=2.25[\mathrm{~m}]$

$$
\begin{gathered}
225=(C-0.000332 \cdot 0)^{2} \Rightarrow C=\sqrt{225}=15 \\
h=(15-0.000332 t)^{2}[\mathrm{~cm}]
\end{gathered}
$$

Separable ODEs

Reduction to separable form

An ODE that can be written as

$$
\begin{equation*}
y^{\prime}=f\left(\frac{y}{x}\right) \tag{5}
\end{equation*}
$$

We make the change of variables

$$
\begin{gathered}
u=\frac{y}{x} \\
y=u x \Rightarrow y^{\prime}=u^{\prime} x+u
\end{gathered}
$$

Then, the ODE can be written as

$$
\begin{gathered}
u^{\prime} x+u=f(u) \\
u^{\prime} x=f(u)-u \\
\frac{d u}{f(u)-u}=\frac{d x}{x}
\end{gathered}
$$

that can now be integrated.

Separable ODEs

Example

$$
2 x y y^{\prime}=y^{2}-x^{2}
$$

Solution:

$$
y^{\prime}=\frac{y^{2}-x^{2}}{2 x y}=\frac{1}{2}\left(\frac{y}{x}-\frac{x}{y}\right)
$$

We do the change of variable $u=\frac{y}{x}$, then

$$
\begin{gathered}
u^{\prime} x+u=\frac{1}{2}\left(u-\frac{1}{u}\right) \\
u^{\prime} x=-u+\frac{1}{2}\left(u-\frac{1}{u}\right) \\
u^{\prime} x=-\frac{1}{2}\left(u+\frac{1}{u}\right)=-\frac{u^{2}+1}{2 u}
\end{gathered}
$$

Separable ODEs

Example (continued)

Solution:

$$
\begin{gathered}
u^{\prime} x=-\frac{1}{2}\left(u+\frac{1}{u}\right)=-\frac{u^{2}+1}{2 u} \\
\frac{2 u}{1+u^{2}} d u=-\frac{d x}{x} \\
\log \left(1+u^{2}\right)=-\log |x|+C \\
1+u^{2}=\frac{C}{x} \\
1+\left(\frac{y}{x}\right)^{2}=\frac{C}{x} \\
x^{2}+y^{2}=C x
\end{gathered}
$$

Separable ODEs

Example (continued)

Solution:

$$
\begin{gathered}
x^{2}+y^{2}=C x \\
\left(x-\frac{C}{2}\right)^{2}+y^{2}=\frac{C^{2}}{4}
\end{gathered}
$$

Fig. 14. General solution (family of circles) in Example 8

Exercises

Exercises
From Kreyszig (10th ed.), Chapter 1, Section 3:

- 1.3.2
- 1.3.8
- 1.3.19
- 1.3.20
- 1.3.23
- 1.3.26

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Exact ODEs

Method of exact ODEs

If a function $u(x, y)$ has continuous partial derivatives, then

$$
\begin{equation*}
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y \tag{6}
\end{equation*}
$$

If $u(x, y)=C$, then $d u=0$.

Example

$$
\begin{gathered}
u=x+x^{2} y^{3}=c \\
d u=\left(1+2 x y^{3}\right) d x+\left(3 x^{2} y^{2}\right) d y=0 \\
y^{\prime}=\frac{d y}{d x}=-\frac{1+2 x y^{3}}{3 x^{2} y^{2}}
\end{gathered}
$$

Exact ODEs

Method of exact ODEs

A first-order ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

can be rewritten as

$$
M(x, y) d x+N(x, y) d y=0
$$

This ODE is an exact differential equation if there is a C^{1} function $u(x, y)$ such that

$$
\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0
$$

and

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=M(x, y) \\
& \frac{\partial u}{\partial y}=N(x, y)
\end{aligned}
$$

Its implicit solution is $u(x, y)=0$.

Exact ODEs

Method of exact ODEs

To check whether there exists such a u function we should compute

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial^{2} u}{\partial y \partial x} \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial^{2} u}{\partial x \partial y}
\end{aligned}
$$

Consequently, if the ODE is exact, then

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

and conversely, if the previous condition is met, then the ODE is exact.

Exact ODEs

Method of exact ODEs

We can find u by inspection or by integrating with respect to x

$$
\frac{\partial u}{\partial x}=M(x, y) \Rightarrow u(x, y)=\int M(x, y) d x+C(y)
$$

To determine $C(y)$ we differentiate with respect to y and equate it to $N(x, y)$

$$
\begin{gathered}
\frac{\partial}{\partial y}\left(\int M(x, y) d x+C(y)\right)=N(x, y) \\
\frac{\partial}{\partial y}\left(\int M(x, y) d x\right)+C^{\prime}(y)=N(x, y)
\end{gathered}
$$

Exact ODEs

Method of exact ODEs

Alternatively, we can perform a similar approach integrating with respect to y

$$
\frac{\partial u}{\partial y}=N(x, y) \Rightarrow u(x, y)=\int N(x, y) d y+C(x)
$$

To determine $C(x)$ we differentiate with respect to y and equate it to $M(x, y)$

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(\int N(x, y) d y+C(x)\right)=M(x, y) \\
\frac{\partial}{\partial x}\left(\int N(x, y) d y\right)+C^{\prime}(x)=M(x, y)
\end{gathered}
$$

Exact ODEs

Example

$$
\cos (x+y) d x+\left(3 y^{2}+2 y+\cos (x+y)\right) d y=0
$$

Solution:
Test for exactness

$$
\begin{gathered}
\frac{\partial \cos (x+y)}{\partial y}=-\sin (x+y) \\
\frac{\partial\left(3 y^{2}+2 y+\cos (x+y)\right)}{\partial x}=-\sin (x+y)
\end{gathered}
$$

Let's find a general solution

$$
u=\int \cos (x+y) d x=\sin (x+y)+C(y)
$$

Now we differentiate u with respect to y

$$
\frac{\partial u}{\partial y}=\cos (x+y)+C^{\prime}(y)=3 y^{2}+2 y+\cos (x+y)
$$

Exact ODEs

Example (continued)

$$
\begin{gathered}
\frac{\partial u}{\partial y}=\cos (x+y)+C^{\prime}(y)=3 y^{2}+2 y+\cos (x+y) \\
C^{\prime}(y)=3 y^{2}+2 y \\
C(y)=y^{3}+y^{2}
\end{gathered}
$$

Finally

$$
u=\sin (x+y)+y^{3}+y^{2}
$$

and the solution

$$
\sin (x+y)+y^{3}+y^{2}=C
$$

It's an implicit solution because there is not a closed form of y as a function of x.

Exact ODEs

Example

$$
(\cos (y) \sinh (x)+1) d x-\sin (y) \cosh (x) d y=0 \quad y(1)=2
$$

Solution:
Test for exactness

$$
\begin{aligned}
& \frac{\partial(\cos (y) \sinh (x)+1)}{\partial y}=-\sin (y) \sinh (x) \\
& \frac{\partial(-\sin (y) \cosh (x))}{\partial x}=-\sin (y) \sinh (x)
\end{aligned}
$$

Let's find a general solution

$$
u=-\int \sin (y) \cosh (x) d y=\cos (y) \cosh (x)+C(x)
$$

Now we differentiate u with respect to x

$$
\frac{\partial u}{\partial x}=\cos (y) \sinh (x)+C^{\prime}(x)=\cos (y) \sinh (x)+1
$$

Exact ODEs

Example (continued)

$$
\cos (y) \sinh (x)+C^{\prime}(x)=\cos (y) \sinh (x)+1
$$

$$
\begin{aligned}
& C^{\prime}(x)=1 \\
& C(x)=x
\end{aligned}
$$

The general solution is

$$
\cos (y) \cosh (x)+x=C
$$

The particular solution comes from the initial condition $y(1)=2$

$$
\cos (2) \cosh (1)+1=C \Rightarrow C=0.358
$$

MATLAB: ezplot(' $\left.\cos (y) . * \cosh (x)+x-0.358 ',\left[\begin{array}{llll}0 & 3 & 0 & 3\end{array}\right]\right)$

Integrating factors

Example

The equation

$$
-y d x+x d y=0
$$

is not exact, but it becomes exact if we multiply by $\frac{1}{x^{2}}$

$$
\frac{1}{x^{2}}(-y d x+x d y)=-\frac{y}{x^{2}} d x+\frac{1}{x} d y=d\left(\frac{y}{x}\right)=0 \Rightarrow \frac{y}{x}=C
$$

Method of integrating factors

An integrating factor is a function $F(x, y)$ such that the equation

$$
P(x, y) d x+Q(x, y) d y=0
$$

becomes an exact ODE after multiplication

$$
F P d x+F Q d y=0
$$

Integrating factors

Example (continued)

$$
-y d x+x d y=0
$$

In fact, the integrating factor is not unique. We can find other integrating factors for the same equation

$$
\begin{array}{l|l}
\frac{1}{x^{2}} & \frac{1}{x^{2}}(-y d x+x d y)=d\left(\frac{y}{x}\right)=0 \\
\frac{1}{y^{2}} & \frac{1}{y^{2}}(-y d x+x d y)=d\left(\frac{x}{y}\right)=0 \\
\frac{1}{x y} & \frac{1}{x y}(-y d x+x d y)=d\left(\log \frac{x}{y}\right)=0 \\
\frac{1}{x^{2}+y^{2}} & \frac{1}{x^{2}+y^{2}}(-y d x+x d y)=d\left(\arctan \frac{y}{x}\right)=0
\end{array}
$$

Integrating factors

How to find integrating factors

The condition for the ODE being exact is

$$
\begin{aligned}
\frac{\partial}{\partial y}(F P) & =\frac{\partial}{\partial x}(F Q) \\
F_{y} P+F P_{y} & =F_{x} Q+F Q_{x}
\end{aligned}
$$

If we are looking for integrating factors depending on a single variable, say x, then $F_{y}=0$, that is

$$
F P_{y}=F^{\prime} Q+F Q_{x}
$$

Dividing by $F Q$

$$
\begin{aligned}
& \frac{P_{y}}{Q}=\frac{F^{\prime}}{F}+\frac{Q_{x}}{Q} \\
& \frac{F^{\prime}}{F}=\frac{P_{y}-Q_{x}}{Q}
\end{aligned}
$$

Integrating factors

How to find integrating factors

$$
\frac{F^{\prime}}{F}=\frac{P_{y}-Q_{x}}{Q}
$$

If the right-hand side only depends on x, then by integration we find the integrating factor

$$
\log |F|=\int \frac{P_{y}-Q_{x}}{Q} d x \Rightarrow F=\exp \left(\int \frac{P_{y}-Q_{x}}{Q} d x\right)
$$

Similarly, if $\frac{Q_{x}-P_{y}}{P}$ depends only on y, then there exists an integrating factor

$$
\log |F|=\int \frac{Q_{x}-P_{y}}{P} d y \Rightarrow F=\exp \left(\int \frac{Q_{x}-P_{y}}{P} d y\right)
$$

Integrating factors

Example

$$
\left(e^{x+y}+y e^{y}\right) d x+\left(x e^{y}-1\right) d y=0
$$

Solution:
Let's check if it is exact:

$$
\begin{gathered}
P_{y}=\frac{\partial}{\partial y}\left(e^{x+y}+y e^{y}\right)=e^{x+y}+e^{y}+y e^{y} \\
Q_{x}=\frac{\partial}{\partial x}\left(x e^{y}-1\right)=e^{y}
\end{gathered}
$$

So it is not exact. Let's check if it has an integrating factor depending on y

$$
\frac{Q_{x}-P_{y}}{P}=-\frac{e^{x+y}+y e^{y}}{e^{x+y}+y e^{y}}=-1
$$

It does.

Integrating factors

Example (continued)

$$
\begin{gathered}
\frac{Q_{x}-P_{y}}{P}=-\frac{e^{x+y}+y e^{y}}{e^{x+y}+y e^{y}}=-1 \\
F=\exp \left(\int(-1) d y\right)=e^{-y}
\end{gathered}
$$

This integrating factor transforms the ODE into

$$
\left(e^{x}+y\right) d x+\left(x-e^{-y}\right) d y=0
$$

That is exact

$$
\begin{aligned}
& M_{y}=\frac{\partial}{\partial y}\left(e^{x}+y\right)=1 \\
& N_{x}=\frac{\partial}{\partial x}\left(x-e^{-y}\right)=1
\end{aligned}
$$

Integrating factors

Example (continued)

Its general solution is

$$
u(x, y)=e^{x}+x y+e^{-y}=C
$$

Fig. 18. Particular solutions in Example 5

Integrating factors

How to find integrating factors

Condition	Integrating factor
$\frac{P_{y}-Q_{x}}{Q}=f(x)$	$F=\exp \int f(x) d x$
$\frac{Q_{x}-P_{y}}{P}=f(y)$	$F=\exp \int f(y) d y$
$\frac{P_{y}-Q_{x}}{y Q-x P}=f(x y)$	$F(z)=\exp \int f(z) d z \quad z=x y$
$\frac{1}{2} \frac{P-Q_{y}-Q_{x}}{x Q-y P}=f\left(x^{2}+y^{2}\right)$	$F(r)=\exp \int f(r) d r \quad r=x^{2}+y^{2}$
$\frac{y^{2}\left(P P_{y}-Q_{x}\right)}{x P+y Q}=f\left(\frac{x}{y}\right)$	$F(z)=\exp \int f(z) d z \quad z=\frac{x}{y}$
$y f_{1}(x y) d x+x f_{2}(x y) d y$	$F=\frac{1}{x y\left(f_{1}(x y)-f_{2}(x y)\right)}$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 4:

- 1.4.8
- 1.4.11

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Linear ODEs

Linear ODE

A first-order ODE is said to be linear if it can be written in the form

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x) \tag{7}
\end{equation*}
$$

The equation abopve is linear in y and y^{\prime}. In an engineering setup, $r(x)$ is called the input to the system, while $y(x)$ is the system's output.

Linear ODEs

Homogeneous Linear ODE

A linear, first-order ODE is said to be homogeneous if $r(x)=0$

$$
\begin{equation*}
y^{\prime}+p(x) y=0 \tag{8}
\end{equation*}
$$

Then we can solve it by separation of variables

$$
\begin{gathered}
\frac{d y}{y}=-p \\
\log |y|=-\int p d x+C \\
y=C e^{-\int p d x}
\end{gathered}
$$

We have also the trivial solution $y=0$.

Linear ODEs

Non-homogeneous Linear ODE

If $r(x)$ is not zero everywhere in the open interval being studied, then the linear ODE is non-homogeneous.

$$
\begin{gathered}
y^{\prime}+p y=r \\
(p y-r) d x+d y=0
\end{gathered}
$$

Let's look for an integrating factor

$$
\frac{P_{y}-Q_{x}}{Q}=\frac{p-0}{1}=p
$$

This function only depends on x so there exists an integrating factor in x given by

$$
F=e^{\int p d x}
$$

Linear ODEs

Non-homogeneous Linear ODE

Let's call h to $\int p d x$, and multiply the linear equation by the integrating factor $F=e^{h}$

$$
e^{h} y^{\prime}+p e^{h} y=r e^{h}
$$

Note that $h^{\prime}=p$, then

$$
\begin{gathered}
e^{h} y^{\prime}+h^{\prime} e^{h} y=r e^{h} \\
\left(e^{h} y\right)^{\prime}=r e^{h} \\
e^{h} y=\int r e^{h} d x+C \\
y=e^{-h}\left(\int r e^{h} d x+C\right) \quad h=\int p d x
\end{gathered}
$$

If $r=0$, we are back to the homogeneous solution

$$
y=C e^{-h}
$$

Linear ODEs

Non-homogeneous Linear ODE

$$
\begin{aligned}
& y=e^{-h}\left(\int r e^{h} d x+C\right) \\
& y=e^{-h} \int r e^{h} d x+C e^{-h}
\end{aligned}
$$

We distinguish two terms, the first one, $e^{-h} \int r e^{h} d x$, is the response of the system to the input r, while the second one, Ce^{-h} is the response of the system to the initial conditions.

Linear ODEs

Example

$$
y^{\prime}+y \tan (x)=\sin (2 x) \quad y(0)=1
$$

Solution:

$$
\begin{gathered}
h=\int \tan (x) d x=\log \left|\frac{1}{\cos (x)}\right| \\
e^{h}=\frac{1}{\cos (x)} \\
e^{-h}=\cos (x)
\end{gathered}
$$

The general solution is

$$
\begin{gathered}
y=\cos (x)\left(\int \frac{\sin (2 x)}{\cos (x)} d x+C\right) \\
y=\cos (x)(-2 \cos (x)+C)
\end{gathered}
$$

Linear ODEs

Example (continued)

$$
y=\cos (x)(-2 \cos (x)+C) \quad y(0)=1
$$

The particular solution is

$$
\begin{gathered}
1=\cos (0)(-2 \cos (0)+C) \Rightarrow C=3 \\
y=\cos (x)(3-2 \cos (x)) \\
y=3 \cos (x)-2 \cos ^{2}(x)
\end{gathered}
$$

The term $3 \cos (x)$ is the response to the initial conditions, while the term $-2 \cos ^{2}(x)$ is the response to the input.

Linear ODEs

Example

Find the circulating current in the RL circuit

Physical Laws. A current I in the circuit causes a voltage drop $R I$ across the resistor (Ohm's law) and a voltage drop $L I^{\prime}=L d I / d t$ across the conductor, and the sum of these two voltage drops equals the EMF (Kirchhoff's Voltage Law, KVL).

Solution:

$$
L I^{\prime}+R I=E
$$

Linear ODEs

Example (continued)

It is a linear equation of the form

$$
\begin{gathered}
I^{\prime}+\frac{R}{L} I=\frac{E}{L} \\
h=\int \frac{R}{L} d t=\frac{R}{L} t \\
\left.I=e^{-h}\left(\int e^{h} r d t+C\right)\right] \\
I=e^{-\frac{R}{L} t}\left(\int e^{\frac{R}{L} t} \frac{E}{R} d t+C\right) \\
\left.I=\frac{E}{R}+C e^{-\frac{R}{L} t} \frac{E}{L}+C\right)
\end{gathered}
$$

Linear ODEs

Example (continued)

The general solution is

$$
I=\frac{E}{R}+C e^{-\frac{R}{L} t}
$$

The initial condition is $I(0)=0$, and the particular solution

$$
\begin{gathered}
0=\frac{E}{R}+C e^{-\frac{R}{L} 0}=\frac{E}{R}+C \Rightarrow C=-\frac{E}{R} \\
I=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right) \\
I=\frac{48}{11}\left(1-e^{-\frac{11}{0.1} t}\right) \\
I=\frac{48}{11}\left(1-e^{-110 t}\right)
\end{gathered}
$$

Linear ODEs

Example

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate of change is the difference between a sinusoidal input of a 24 -hour period from the thyroid gland and a continuous removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its general solution. Find the particular solution satisfying a suitable initial condition.

Linear ODEs

Example (continued)

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its general solution. Find the particular solution satisfying a suitable initial condition.

Solution:

$$
\begin{gathered}
y^{\prime}=\ln -\text { Out } \\
y^{\prime}=(A+B \cos (\omega t))-K y \\
y^{\prime}+K y=(A+B \cos (\omega t)) \\
h=\int K d t=K t \\
y=e^{-K t}\left(\int(A+B \cos (\omega t)) e^{K t} d t+C\right) \\
y=e^{-K t}\left(e^{K t}\left(\frac{A}{K}+\frac{B}{K^{2}+\omega^{2}}(K \cos (\omega t)+\omega \sin (\omega t))\right)+C\right)
\end{gathered}
$$

Linear ODEs

Example (continued)

$$
\begin{gathered}
y=e^{-K t}\left(e^{K t}\left(\frac{A}{K}+\frac{B}{K^{2}+\omega^{2}}(K \cos (\omega t)+\omega \sin (\omega t))\right)+C\right) \\
y=\left(\frac{A}{K}+\frac{B}{K^{2}+\omega^{2}}(K \cos (\omega t)+\omega \sin (\omega t))\right)+C e^{-K t}
\end{gathered}
$$

Since the variation is every 24 h , the frequency $\omega=\frac{2 \pi}{24}=\frac{\pi}{12}$. Then, the general solution becomes

$$
y=\left(\frac{A}{K}+\frac{B}{K^{2}+\frac{\pi^{2}}{12^{2}}}\left(K \cos \left(\frac{\pi}{12} t\right)+\frac{\pi}{12} \sin \left(\frac{\pi}{12} t\right)\right)\right)+C e^{-K t}
$$

Linear ODEs

Example (continued)

$$
y=\left(\frac{A}{K}+\frac{B}{K^{2}+\frac{\pi^{2}}{12^{2}}}\left(K \cos \left(\frac{\pi}{12} t\right)+\frac{\pi}{12} \sin \left(\frac{\pi}{12} t\right)\right)\right)+C e^{-K t}
$$

If we assume $y(0)=0$, then the particular solution is

$$
\begin{gathered}
\left.0=\left(\frac{A}{K}+\frac{B}{K^{2}+\frac{\pi^{2}}{12^{2}}}\left(K \cdot 1+\frac{\pi}{12} \cdot 0\right)\right)\right)+C \\
C=-\left(\frac{A}{K}+\frac{B K}{K^{2}+\frac{\pi^{2}}{12^{2}}}\right) \\
y=\frac{A}{K}\left(1-e^{-K t}\right)+\frac{B}{K^{2}+\frac{\pi^{2}}{12^{2}}}\left(K \cos \left(\frac{\pi}{12} t\right)+\frac{\pi}{12} \sin \left(\frac{\pi}{12} t\right)-K e^{-K t}\right)
\end{gathered}
$$

Linear ODEs

Example (continued)

$$
y=\frac{A}{K}\left(1-e^{-K t}\right)+\frac{B}{K^{2}+\frac{\pi^{2}}{12^{2}}}\left(K \cos \left(\frac{\pi}{12} t\right)+\frac{\pi}{12} \sin \left(\frac{\pi}{12} t\right)-K e^{-K t}\right)
$$

For $A=B=1, K=0.05$ we have

Reduction to Linear ODEs

Bernouilli equation

$$
y^{\prime}+p(x) y=g(x) y^{a}
$$

This equation is non-linear except for $a=0$ or $a=1$. Let's make the change of variable

$$
\begin{gathered}
u=y^{1-a} \\
u^{\prime}=(1-a) y^{-a} y^{\prime} \\
u^{\prime}=(1-a) y^{-a}\left(-p y+g y^{a}\right) \\
u^{\prime}=(1-a)\left(-p y^{1-a}+g\right) \\
u^{\prime}=(1-a)(-p u+g) \\
u^{\prime}+(1-a) p u=(1-a) g
\end{gathered}
$$

This is a linear equation.

Reduction to Linear ODEs

Example: Logistic equation

$$
y^{\prime}=A y-B y^{2}
$$

Solution:
$y=0$ is a solution. Otherwise, this is Bernouilli equation with $a=2$.

$$
\begin{gathered}
u=y^{1-2}=y^{-1} \\
u^{\prime}=(-1) y^{-2} y^{\prime} \\
u^{\prime}=-y^{-2}\left(A y-B y^{2}\right) \\
u^{\prime}=-\left(A y^{-1}-B\right) \\
u^{\prime}=-(A u-B) \\
u^{\prime}+A u=B
\end{gathered}
$$

Reduction to Linear ODEs

Example: Logistic equation (continued)

$$
\begin{gathered}
u^{\prime}+A u=B \\
h=\int A d x=A x \\
u=e^{-A x}\left(\int B e^{A x} d x+C\right) \\
u=e^{-A x}\left(\frac{B}{A} e^{A x}+C\right) \\
u=\frac{B}{A}+C e^{-A x} \\
y^{-1}=\frac{B}{A}+C e^{-A x} \\
y=\frac{1}{\frac{B}{A}+C e^{-A x}}
\end{gathered}
$$

Reduction to Linear ODEs

Example: Logistic equation (continued)

Reduction to Linear ODEs

Example: Population dynamics

For a small population, its growth can be described by Malthus law

$$
y^{\prime}=A y
$$

This is a particular case of the logistic equation whose solution is

$$
y=\frac{1}{C e^{-A t}}=\frac{1}{C} e^{A t}
$$

The term $-B y^{2}$ acts as a "braking" term that prevents the population of growing infinitely. If we rewrite the logistic equation as

$$
y^{\prime}=A y\left(1-\frac{B}{A} y\right)
$$

If $y<\frac{A}{B}$, then $y^{\prime}>0$ and the population grows.
If $y>\frac{A}{B}$, then $y^{\prime}<0$ and the population decreases.

Reduction to Linear ODEs

Example: Population dynamics (continued)

Critical points

Autonomous ODE and critical points

An equation

$$
y^{\prime}=f(x, y)
$$

in which the independent variable does not appear explicitly

$$
y^{\prime}=f(y)
$$

is called autonomous. Autonomous ODEs have critical or equilibrium points at those values at which $f(y)=0$ because there is no change ($y^{\prime}=0$). A critical point may be stable (if solutions close to it for some t remain close to it for all further t) or unstable (if solutions initially close to it do not remain close as t increases).

Reduction to Linear ODEs

Example: Population dynamics (continued)

$$
y^{\prime}=A y\left(1-\frac{B}{A} y\right)
$$

Equilibrium points are $y=0$ (unstable) and $y=\frac{A}{B}$ (stable).

Critical points

Example

$$
y^{\prime}=(y-1)(y-2)
$$

Equilibrium points are $y=1$ (stable) and $y=2$ (unstable).

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 5:

- 1.5.7
- 1.5.13
- 1.5.15
- 1.5.16
- 1.5.17
- 1.5.18
- 1.5.21
- 1.5.24
- 1.5.28
- 1.5.33
- 1.5.34

Exercises

Exercises

30. TEAM PROJECT. Riccati Equation. Clairaut Equation. Singular Solution.
A Riccati equation is of the form

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x) y^{2}+h(x) \tag{14}
\end{equation*}
$$

A Clairaut equation is of the form

$$
\begin{equation*}
y=x y^{\prime}+g\left(y^{\prime}\right) \tag{15}
\end{equation*}
$$

(a) Apply the transformation $y=Y+1 / u$ to the Riccati equation (14), where Y is a solution of (14), and obtain for u the linear ODE $u^{\prime}+(2 Y g-p) u=-g$. Explain the effect of the transformation by writing it as $y=Y+v, v=1 / u$.
(b) Show that $y=Y=x$ is a solution of the ODE $y^{\prime}-\left(2 x^{3}+1\right) y=-x^{2} y^{2}-x^{4}-x+1$ and solve this Riccati equation, showing the details.
(c) Solve the Clairaut equation $y^{\prime 2}-x y^{\prime}+y=0$ as follows. Differentiate it with respect to x, obtaining $y^{\prime \prime}\left(2 y^{\prime}-x\right)=0$. Then solve (A) $y^{\prime \prime}=0$ and (B) $2 y^{\prime}-x=0$ separately and substitute the two solutions (a) and (b) of (A) and (B) into the given ODE. Thus obtain (a) a general solution (straight lines) and (b) a parabola for which those lines (a) are tangents (Fig. 6 in Prob. Set 1.1); so (b) is the envelope of (a). Such a solution (b) that cannot be obtained from a general solution is called a singular solution.
(d) Show that the Clairaut equation (15) has as solutions a family of straight lines $y=c x+g(c)$ and a singular solution determined by $g^{\prime}(s)=-x$, where $s=y^{\prime}$, that forms the envelope of that family.

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Orthogonal trajectories

Orthogonal trajectories

Let's consider the family of curves that are the solution of a given ODE

$$
G(x, y, c)=0
$$

For each c we have a different curve. The question now is which is the family of curves that is orthogonal to the first family? For instance,

$$
\frac{1}{2} x^{2}+y^{2}=C
$$

Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space):
Elliptic equipotential curves (equipotential surfaces) and orthogonal trajectories (parabolas)

Orthogonal trajectories

Example

Step 1: Find the ODE for the family of curves (differentiate the family).

$$
\begin{gathered}
d\left(\frac{1}{2} x^{2}+y^{2}=C\right) \\
x+2 y y^{\prime}=0 \\
y^{\prime}=-\frac{x}{2 y} \\
y^{\prime}=f(x, y)
\end{gathered}
$$

Orthogonal trajectories

Example

Step 2: Find the ODE of the orthogonal family. Remind that two lines in the plane are orthogonal if

$$
m_{1} m_{2}=-1
$$

At the point (x, \tilde{y}) they are orthogonal if

$$
\begin{gathered}
f(x, \tilde{y}) \tilde{y}^{\prime}=-1 \Rightarrow \tilde{y}^{\prime}=-\frac{1}{f(x, \tilde{y})} \\
\tilde{y}^{\prime}=-\frac{1}{-\frac{x}{2 \tilde{y}}}=\frac{2 \tilde{y}}{x}
\end{gathered}
$$

Orthogonal trajectories

Example

Step 3: Solve the differential equation

$$
\begin{gathered}
\tilde{y}^{\prime}=\frac{2 \tilde{y}}{x} \\
\frac{\tilde{y}^{\prime}}{\tilde{y}}=\frac{2}{x} \\
\log |\tilde{y}|=2 \log |x|+C \\
\tilde{y}=C x^{2}
\end{gathered}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 1, Section 6:

- 1.6.12
- 1.6.13

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

Existence and uniqueness

Example: Lack of solution

$$
\left|y^{\prime}\right|+|y|=0 \quad y(0)=1
$$

The only solution of the ODE is

$$
y=0
$$

and it does not meet $y(0)=1$. There is no solution to the Initial Value Problem.

Existence and uniqueness of IVPs

Example: Unique solution

$$
y^{\prime}=2 x \quad y(0)=1
$$

The general solution of the ODE is

$$
y=x^{2}+C
$$

To fulfill the Initial Value we need

$$
1=0^{2}+C \Rightarrow C=1
$$

Therefore, there is a unique solution to the Initial Value Problem

$$
y=x^{2}+1
$$

Existence and uniqueness of IVPs

Example: Infinite solutions

$$
x y^{\prime}=y-1 \quad y(0)=1
$$

The function

$$
y=1+C x
$$

is a solution of the ODE and it fulfills the Initial Value Problem for any value of C

Existence and uniqueness of IVPs

Existence theorem

Given the IVP

$$
y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0}
$$

If $f(x, y)$ is continuous in a rectangle R

$$
R=\left\{(x, y) \in \mathbb{R}^{2}| | x-x_{0}\left|<a,\left|y-y_{0}\right|<b\right\}\right.
$$

and bounded in R, that is, there exists
$K \in \mathbb{R}$ such that

$$
|f(x, y)| \leq K
$$

Then, the IVP has at least one solution $y(x)$. This solution exists at least for all x in $\left|x-x_{0}\right|<\alpha$ where $\alpha=\min \left\{a, \frac{b}{K}\right\}$.

Existence and uniqueness of IVPs

Existence theorem

The fact that f is bounded by K means that any solution y cannot "grow" as much as it likes and that it must be confined within a certain region. The slop of any solution is at least $-K$ and at most K.

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Existence and uniqueness of IVPs

Example: Lack of solution (continued)

$$
\begin{aligned}
& \left|y^{\prime}\right|+|y|=0 \quad y(0)=1 \\
& y^{\prime}=\left\{\begin{array}{cc}
1-|y| & y^{\prime} \geq 0 \\
-(1-|y|) & y^{\prime}<0
\end{array}\right.
\end{aligned}
$$

This IVP does not have a solution because f is not continuous.

Existence and uniqueness of IVPs

Uniqueness theorem

Let the IVP meet the conditions for existence. If $f_{y}=\frac{\partial f}{\partial y}$ is continuous in R and it is bounded in R, that is, there exists $M \in \mathbb{R}$ such that

$$
\left|f_{y}(x, y)\right| \leq M
$$

Then, the IVP has a unique solution $y(x)$. This solution exists at least for all x in $\left|x-x_{0}\right|<\alpha$ where $\alpha=\min \left\{a, \frac{b}{K}\right\}$.

Existence and uniqueness of IVPs

Example: Infinite solutions (continued)

$$
\begin{array}{ll}
x y^{\prime}=y-1 & y(0)=1 \\
y^{\prime}=\frac{y-1}{x} & y(0)=1
\end{array}
$$

The IVP has not a unique solution because

$$
f_{y}=\frac{1}{x}
$$

is not continuous around $x=0$.

Outline

(1) First-order ODEs

- Basic concepts
- Geometric meaning, direction fields
- Separable ODEs
- Exact ODEs. Integrating factors.
- Linear ODEs. Bernouilli equation. Population dynamics.
- Orthogonal trajectories
- Existence and uniqueness of IVPs

