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Homogeneous linear ODEs of second-order

Definition

A second-order ODE is linear if it can be written as

y" +p(x)y" + q(x)y = r(x)

Otherwise, it is nonlinear. It is homogeneous if r(x) = 0.

y"” + 25y = e *cos(x) Linear, non-homogeneous
xy" +y +xy=0
y"+ ;{y’ +y=0 Linear, homogeneous
y'y+ (') =0 Nonlinear
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Principle of superposition

Theorem: Principle of superposition

The linear combination of any two solutions of a homogeneous, linear ODE is also
a solution.
Proof:

if y1 and y», are solutions, then
v +p()yi+aq(x)y1 =0

¥s 4+ p(X)ys + q(x)y2 =0

Let's study the linear combination

y=ay+ay

y"+p(x)y +aq(x)y =0
(a1 + @y2)” + p(x)(ciyr + c2y2)' + g(x)(cys + cy2) =0
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(ay1 + cy)” + p(x) (e + cy2) + q(x)(cy1 + c2y2) = 0
(ayt’ + cayy) + p(x)(cy + c2y3) + q(x)(ciyr + cay2) = 0
(cyt’ + ap(x)yi + cq(x)y1) + (cy3 + c2p(x)ys + c2q(x)y2) = 0
aly’ + p(x)y1 + q()y1) + a(yy + p(x)ys + q(x)y2) = 0
c1:0+c-0=0

0=0




Principle of superposition

y'+y=0
Two solutions of the ODE are

y1 = cos(x)

ya = sin(x)

The linear combination

y = cay1 + ays = ¢ cos(x) + ¢ sin(x)

is also a solution.
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Principle of superposition

It does not work with nonhomogeneous, linear ODEs. For instance,
y1 =1+ cos(x)
y> = 1 +sin(x)
are solutions of
yll + y — 1
but
y=ynit+y
is not. J
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Principle of superposition

It does not work with nonlinear ODEs. For instance,
y=x
y2=1
are solutions of
Y'y —xy' =
but
y=ynit+y
is not. J
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Initial Value Problem

Initial Value Problem

An Initial Value Problem consists of two initial conditions
y(x0) = yo

y'(x0) = mo

These two conditions are used to determine the constants of a the general solution

y=ayitay
y1 and y» must be linearly independent, that is,
ayitoy=0=a=c=0

and they form a basis or fundamental system of solutions.
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Basis of solutions

y'+y=0
We know that

y1 = cos(x)

y» = sin(x)

are solutions. Let's check if they are linearly independent
c1 cos(x) + csin(x) =0

cos(x) o

sin(x) o
That is, if they were linearly dependent, their ratio would be constant. But this is
not the case
cos(x) 1
sin(x)  tan(x)

The ratio is a function of x and not a constant.

v
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Initial Value Problem

y"+y=0 y(0)=3,y'(0)=-05

Solution:
The general solution is
y = ¢ cos(x) + ¢z sin(x)

Now we impose the two initial conditions

y(0) = ¢ cos(0) + ¢ sin(0) =3

¥'(0) = c1(—sin(0)) + c2 cos(0) = —0.5 } =ca=3,c=-05

The particular solution is

y = 3cos(x) — 0.5sin(x)
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Basis of solutions: Reduction of order

(P =x)y —xy'+y=0

We can easily see that y; = x is a solution of the equation
(= x)(x)" = x(x) +x=0
(x> = x)(0) = x(1)+x=0
—x+x=0

How can we find the second element of the basis? Reduction of order. Let's find a
solution of the form

Yo = uy1
In this case

Yo = ux
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Basis of solutions: Reduction of order

Y2 = ux
ya=ux+u
vy =u'x+u +u =u'x+ 2
We substitute y» in the equation to get
(x* = x)ys' = xp5 +y2 =0
(x* - x)(u"x +2u') = x(u'x 4+ u) +ux =0
Bu" 4+ 2x%0 — xPu" — 2xu’ — xPu — ux 4 ux =0

(3 =" + (x> —=2x)u' =0
x(x* = x)u" + x(x —=2)u' =0

(x> = x)u" + (x —=2)u' =0

V.

2. Second-order linear ODEs September 7, 2014 15 / 117



Basis of solutions: Reduction of order

(x> = x)u" + (x —=2)u' =0
We now make a change of variable

U=u = U =u"

(x*=x)U +(x—2)U=0
That is a linear equation

U’ x—2

X — 2
U x2—x

x(x —1)

du 1 2
U _<x—1_;>dx

~1
log |U| = log |x — 1| — 2log |x| = U = sz

’

2. Second-order linear ODEs

September 7, 2014 16 / 117



Basis of solutions: Reduction of order

We now solve for u in the change of variable

y o, x—1
u=U-= 2
x—1 1 1
uz/ 2 dX:/<;—;>dx
1
u=log|x|+ =
X

Finally,
1
Yo = ux = (Iog|x| + —) x = xlog|x| +1
X

Since y; and y, are not proportional, they form a basis of solutions of the ODE.

’
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Consider the ODE

y'+p(x)y" +q(x)y =0

and a solution of it y;. The second solution will be designed as
Y2 = uy1

Yo = u'y1 + uyi
ys = u"yr +2u'y] + uyy
We now subtitute it in the ODE

(u"y1 +2u'y; + uyy) + p(x)(u'y1 + uy1) + q(x)(uy1) = 0
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Basis of solutions: Reduction of order

Reduction of order (continued)

Consider the ODE
Y+ p(x)y" +q(x)y =0

and a solution of it y;. The second solution will be designed as
Yo = uy1

v =u'y1 + uy;
i = u"ya +2u'y] + uyf’
We now subtitute it in the ODE
(u"y1+2u'y] + uyy’) + p(u'yr + uyy) + q(uyr) = 0

u"yr + (2y1 + py1)u’ + (1 4+ pyi + ayi)u =0
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Basis of solutions: Reduction of order

Reduction of order (continued)

u"yr +(2y1 + py1)u’ + (v1 + py1 + gyr)u =0
But the coefficient of u is 0 because y; is a solution of the ODE.
u'yi+(2y; +py)u’ =0
We now make the change of variable
U=
Uy + 2y +pr)U =0

o
U/_|_ Y1+PYIU
r1

/
U'+<2§1+p>U—O
1

=0

2. Second-order linear ODEs September 7, 2014

20 / 117



!
U’+(2j/i+p)U=0
1

/
ﬂz—(Zﬁ—i-p)dx
u 341

log |U| = —2log |y1| — /pdx

U= lze_fpdx
Yi

U=u':>u=/de

Finally,

1 [pdx
== [ U=l [ LI @

1
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 2, Section 1:

0211
0212
@215
2.1.6
2.1.12
2.1.13
2.1.17
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Homogeneous linear ODEs with constant coefficients

Characteristic equation
y' +ky =0
Try y = eV
e 4 ke™ =0

e\ +k)=0
A k=0= )\ = —k
ylze)\lx

General solution

y=an

2. Second-order linear ODEs

y' +ay +by=0
Try y = e

A2eM 4 axe™ + peM =0

e(A\2+a\+b)=0
N4+ad+b=0= A, X

1
A Ay = = (fa:I: 2 74b)

2
n =M
yo = e

General solution

y=ayn+ay

September 7, 2014
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General solution:




Homogeneous linear ODEs with constant coefficients

y"+y —2y=0 y(0)=4,y'(0)=-5

Solution:
N4A—2=0=A =1 =2 4
General solution: 6
4
y=ce +ce )
Particular solution: 0 ' ‘ ' '

b=ce®+ e 0=¢c+oc - -
5=t (-2 0 =¢ -2 [ 1T l,o=3

y=e +3e ¥
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a?> — 4b =0

a
Al = —=
1T

One of the solutions is
n = e

Let's look for another using the reduction of order

ya = uy; = ue™™

vh = '™ + \jueM~

i

y2 // >\1>< +2>\1U/ A1x + Alue
Y5 +ays + by, =0
(u" e 4 2010/ M% + Nuet™) 4 a(u' e + \juet™) 4 bue™* = 0

M [u + (21 + a)u’ + (A2 + aA; + b)u] =0
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a®> — 4b = 0 (continued)

M [u” + (21 + a)u’ + (A3 + aA; + b)u] =0

The coefficient of u (A2 + aA; + b) is 0 because \; is a root of the characteristic
equation:

e [u” 4+ (2A1 + a)u'] =0

'+ (2N +a =0

Note that

2)\1+a:2(77> +a=0
then,

u'=0
whose general solution is
u=cx-—+o

and a particular solution
u=x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a°> — 4b = 0 (continued)

The second element of the basis of solutions is

Y2 = uyr = xe™*
The general solution of
y'+ay' +by=0

y=ay+ oy

>\1X )\1X

y = e —+ Ccrxe

y= (Cl i CzX)e/\lx

y=(ca+ C2X)e_gx
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Homogeneous linear ODEs with constant coefficients

y'+6y' +9y =0

Solution:
AN 4+6A+9=0
(A+3)0°=0

The general solution is

y = (C1 T C2X)e_3x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a> — 4b < 0

1

/\1:§(fa+\/3274b) :ngriw
1

)\225(—3— 32—4b) :—g—iw

Two independent solutions are
y1 = elT3HWIX — o= 3xiw — o= X (cos(wx) + i sin(wx))
yy = 737X — o= 3xgmiw — o= 3X(cos(wx) — isin(wx))

The general solution is
y=ayit+ay

y = Cle(7§+iw)x + Cze(fgfiw)x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a?> — 4b < 0 (continued)

Let's calculate two other independent solutions

* . yity
no o= 2
_ e_%x (cos(wx)+i sin(wx))+(cos(wx)—i sin(wx))
- 2
_ 7gx2cos(wx)
= e : 5
= e 2% cos(wx)
o S 1
Y2 =

_ ef’,x(cos(wx)+,s.n(wx)) (cos(wx)—isin(wx))

2i
_ €_§X 2i sin(wx)

i
= e *sin(wx)

Since they are independent, they are another basis, so the general solution can
also be written as

y=ay; +ay

y = e 2 ¢y cos(wx) + ¢ sin(wx
X
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a*> — 4b < 0 (continued)

y = e 3*(cy cos(wx) + ¢ sin(wx))

This can also be written as

y = Rt (¢ cos(Im{ A1 }x) + ¢ sin(Im{A; }x))

y" +0.4y' +9.04y =0 y(0)=0,y'(0)=3

Solution:
AN +04N+9.04=0= A\, \o = —0.2+3i

The general solution is

y = e %2(¢; cos(3x) + ¢ sin(3x))
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Homogeneous linear ODEs with constant coefficients

The initial conditions are y(0) =0, y’(0) =3
y(0) =0=e"%2%c;cos(3-0) + »sin(3-0)) =c; = ¢ =0
The particular solution is of the form
y = e % sin(3x)
y' = ce %2¢(—0.25in(3x) + 3 cos(3x))

oam
¥'(0) = 3 = ce7%#%(=0.25in(3-0)+3 cos(3-0)) Uvﬁ ﬂﬂ}g% P S

=0c=1 -0.5

y = 3e %% sin(3x)

/
1.0
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Exercises

Exercises

From Kreyszig (10th ed.), Chapter 2, Section 2:
@ 2216
e 2217
@ 2231
@ 2235
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Exercises

Exercises

38. TEAM PROJECT. General Properties of Solutions

(a) Coefficient formulas. Show how a and b in (1)
can be expressed in terms of Ay and As. Explain how
these formulas can be used in constructing equations
for given bases.

(b) Root zero. Solve y” + 4y’ = 0 (i) by the present
method, and (ii) by reduction to first order. Can you
explain why the result must be the same in both
cases? Can you do the same for a general ODE
Y +ay =0

(c) Double root. Verify directly that xe™ with A =
—a/2 is a solution of (1) in the case of a double root.
Verify and explain why y = ¢ 2 is a solution of
" — " — 6y = 0 but xe > is not.

(d) Limits. Double roots should be limiting cases of
distinct roots Ay, Ag as, say, As — Aq. Experiment with
this idea. (Remember I"Hopital’s rule from calculus.)
Can you arrive at xe™*? Give it a try.
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Dsin(x) = cos(x)

D(y1 +y2) = D(y1) + D(y2) = y1 + 3
D(ay) = aD(y) = ay'
D(Dy) = D’y = y"
D?sin(x) = — sin(x)




y'+ay' +by=0
D2y + aDy + by =0
(D* 4 aD + bl)y =0

We may define the operator
L=D*+aD+ bl

Then,
(D> +aD+bl)y =04 Ly =0

If we apply L to e, we get

Le™ = X2e™ + axe™ + e = (A2 + aX + b)eM




Differential operators

y" =3y’ —40y =0

Solution:
(D*> — 3D — 40/)y =0

Now we factorize the differential operator
(D-8N(D+5Ny=0

We can check that it is equivalent to the differential equation
(D—8I)(y'+5y) =0

D(y" +5y) — 8I(y’ +5y) =0
y// +5y1 . 8y’ — 40y =0
y" =3y’ —40y =0

v
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Differential operators

(D—8I)(D+5l)y=0

To construct a basis of solutions we realize that

(D—8l)y =0=y, =&

(D+5l)y =0=y, = e >

From Kreyszig (10th ed.), Chapter 2, Section 3:
e 2314
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Unstretched |
spring o
_____ —(y=0)o-——-
j;
System at S

rest
System in
motion
(a) (b) (c)

Fig. 33. Mechanical mass—spring system

If we pull the ball down, there is force
F = —ky Hooke's law

k is the spring constant. Stiff springs have large k.




Free oscillations

Free oscillations of a mass-spring system (continued)

ZF:ma

_k_y _ my//

Newton's second law states

We can easily solve it

k
y'+—y=0
m

k k
)\2+m_O:>>\17)\2_:ti\/;_iin

The general solution is

y = ¢ cos(wot) + ¢z sin(wot)

This is called an harmonic oscillation and its associated natural frequency is
fo = 52[Hz], the oscillation period is To = %o[s]
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y = ¢ cos(wpt) + ¢ sin(wot)
y = Ccos(wot — 0)
_ 2 2 _
where C = \/(c? +¢2) and 6 = arctan.

y

(D) Positive
(2) Zero Initial velocity
(3) Negative
Fig. 34. Typical harmonic oscillations (4) and (4*) with the same y(0) = A and
different initial velocities y'(0) = wB, positive (1), zero (2), negative 3)




The dashpot introduces a braking force that at low speed can
be modelled as —cy’. The overall model is

—ky _ cy' _ my//

k Spring y” + ﬁy/ + iy =0
m m

2 — — =
Bal XAt —=0

m

e Dashpot A A2 = —— & —+/c? — 4mk
m
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The general solution is

y = cle=(@B)t 4 ye—(ath)t

(@) &)

(@ Positive
@) zero }Initialvelnciiy
@) Negative
Fig. 37. Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement




The general solution is
at

y = (¢ + cot)e”

(D) Positive
(@) Zero Initial velocity
(3) Negative




k
—/— dmk — 2 =i\ — — — = iw*
m 4m2
Note that if ¢ — 0, then w* — wg = \/ﬁ (harmonic oscillation). The general
solution is
y = Ce “* cos(w*t — §)




Exercises

Exercises

From Kreyszig (10th ed.), Chapter 2, Section 4:
@245
@ 246
@247
@ 2414
@ 2418
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They are equations of the form

x2y" + axy’ + by =0

We subsitute
y=x"
! __ m—1
y' = mx
y" = m(m—1)x"2

to get
x2(m(m — 1)x™2) 4+ ax(mx™ 1) 4 bx™ = 0

m(m — 1)x™ + amx™ 4+ bx™ =0
x™(m(m—1)+am+b) =0
x™(m* 4 (a—1)m+b) =0

- 2 second-order linear ODEs September 7, 2014 52 / 117



x™(m? +(a—1)m+b)=0

Hence, x™ is a solution of the ODE iff m is a solution of

m?+(a—1)m+b=0

ml,mzzlgai\/%(l—ay—b




Euler-Cauchy equations

Euler-Cauchy equations: Two distinct real roots

The general solution is
y = ax™ + cx™

y=x%y" +15xy' —05y =0

Solution:
m?>+05m—05=0= m; =05,m =—1

1
y=C1\/>_<~|-c2)—<

Note that because of the square root, it must be x > 0 for this solution to exist.

4
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Euler-Cauchy equations

Euler-Cauchy equations: A real double root
This happens if

1 1—a)?
Z(1—3)2—1320:;3:%
Consequently the ODE can be rewritten as

(1-a)
4

X2y/l+axyl+

y=0
(1-a)?

1 a /
bl =0
Y+ oY iy

The real double root is

and one of the solutions is
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Euler-Cauchy equations

Euler-Cauchy equations: A real double root (continued)
The other solution is obtained by reduction of order (Eq. (1))

U— e
%
That is
1 _ 2 dx 1 —alog\x\ x—? 1
U:(Xlza 2¢ 10 Tt TxIa T x

u:/de:/ldx:Iog|x|
X

y2 = uyr = x™ log |x|

The general solution is

y=ay + oy = ax™ + ox™log |x| = (c1 + ¢ log |x]|)x™
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Euler-Cauchy equations

Euler-Cauchy equations: Complex roots

my,my =a=+fiw

Two independent solutions are

y1 = xOHW = x(gloel))iw — ya(glwlo8(x)) — x(cos(w log(x)) + i sin(w log(x)))

vy = xOTI0 = x(glogl))Tiw — yx(emiwloe(x)) — x(cos(w log(x))—isin(w log(x)))

We may obtain two other independent solutions as

vi = 272 — Refyn} = x* cos(w log(x))
yi = 2222 — m{y} = 7 sin(w log(x))

The general solution is

y = ay; + ays = x“(c cos(wlog(x)) + ¢z sin(w log(x))) ‘
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x15
3.0
xl
2.0
L x05
1.0 x~0.5
1
Ll e
0 1 2 x

Case I: Real roots

xInx

1.5 x051nx

1.0+

el 0510

OIHI [ [x*®Inx

x

e 114 2
,1.07
1.5+

Fig. 48.

Case II: Double root

Euler—Cauchy equations

x%2gin (4 1nx)

1 2 x

x02¢cos (41nx)

Case III: Complex roots
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Euler-Cauchy equations

Find the electrostatic potential v = v(r) between two concentric spheres of radii 4 =5 cm and r9 = 10 cm

kept at potentials vy = 110 V and vg = 0, respectively.
Physieal Information. v(r) is a solution of the Euler—Cauchy equation rv” + 2v' = 0, where v’ = dv/dr.

Solution: The constitutive equation
' +2v =0
is not Euler-Cauchy, but multiplying by r, it is
rP+2n/ =0
m2+m:0=>m1:0,m2:—1
The general solution is

_ C2
V=C1X0+C2X1=C1-‘r—
X

’
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Euler-Cauchy equations

_ @
V=C1X0+C2X1=C1+—
X

The particular solution comes from the boundary constraints

‘:/((1)0) = 0 = Ccil_|_ C_25 } = Cl = _110, C = 1100
10

v=-110+ 2%
X
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Existence and uniqueness of solutions

Existence and uniqueness Theorem

Let us analyze the existence and solutions of the Initial Value Problem

Y'+p(x)y"+4q(x) =0 y(x0) = Ko,y'(x0) = Ki
If p(x) and g(x) are continuous on some open interval / and x € /, then the IVP

has a unique solution in /.

Existence of a general solution

If p and g are continuous functions on an open interval /, then there exists a
general solution on / and any solution is of the form

y=ay+ oy

where y; and y, are a basis of solutions on /. Hence, the IVP has no singular
solution (that is, solutions that cannot be obtained from the general solution).
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Linear independence of solutions: Wronskian

Linear independence of solutions: Wronskian

Considering the previous problem with continuous p and g functions on an open

interval /. Two solutions, y; and y», on [ are linearly independent if their Wroskian
is different from 0 at some point x € /

_ [ ni(x) ya(x)
W(X"’ Vi) () ‘#0

If y1 and y» are linearly dependent, then W(x) = 0 for all points x € /.
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Linear independence of solutions: Wronskian

y1 = cos(wx) and y, = sin(wx) are solutions of y” + w2y = 0. Check if they are
linearly independent.
Solution:

cos(wx) sin(wx)
—wsin(wx) w cos(wx

W(x) = ‘ ) ‘ = wcos?(wx) + wsin?(wx) = w
The Wronskian is 0 only if w = 0. So, in general, the two functions are linearly

independent (also their ratio, clifed) tan(x), is not a constant; this would be
cos(x)

another way of checking).
However, if w =0, then y; =1, y» = 0. These two functions are linearly
dependent and they are not a basis of solutions. In fact, in this case the basis is

given by y; =1, y» = x.
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Exercises

From Kreyszig (10th ed.), Chapter 2, Section 6:
@ 265

@ 2.6.12
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@ Second-order linear ODEs
@ Homogeneous linear ODEs
@ Homogeneous linear ODEs with constant coefficients
@ Differential operators
@ Modeling of free oscillations of a mass-spring system
@ Euler-Cauchy equations
@ Existence and uniqueness of solutions. Wronskian
@ Nonhomogeneous ODEs
@ Forced oscillations. Resonance.
@ Electric circuits
@ Solution by variation of parameters



Nonhomogeneous ODEs

Nonhomogeneous ODEs
Y+ p(x)y +q(x) = r(x) (NH)
A general solution of the nonhomogeneous ODE is of the form
Y=Y+ ¥
where yj, is the general solution of the homogeneous problem
y'+p(x)y"+q(x) = r(x) (H)

and y, is a particular solution of NH. A particular solution of NH is obtained by
determining the constants of the general solution.

If p, g, and r are continuous functions in an open interval /, then there is no
singular solution in / (that is, all solutions can be obtained from the general
solution).
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Nonhomogeneous ODEs

Theorem: Relationship between H and NH

Q yH + YNH,1 = YnH,2. The sum of a solution of H and a solution of NH is a
solution of NH.

@ ynH,1 — YnH,2 = yH. The subtraction of two solutions of NH is a solution of
H.

Proof: Let us denote the H and NH problems as
Ly=0 H
Ly=r NH

Q@ L(yn+ynH1) = Lynw +Lynuy =0+r=r
Q L(ynH1 —ynH2) = Lynwi — Lynwo=r—r=20
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Nonhomogeneous ODEs

Transient and steady-state solutions

Since the general solution of the NH problem is

Y=Yt Y

if Re{\;} < 0 for all /, then the term coming from the homogeneous solution
vanishes with increasing x and the solution tends to be that given by the input
signal

li =

XL)mOO Yo+ Yo =Yp
This condition is important in system theory to define stable systems.

imaginary axis

left half-plane,
Rzl <0
® 2+i

real axis
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Nonhomogeneous ODEs

Transient and steady-state solutions

4
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Method of undetermined coefficients

Method of undetermined coefficients

Rules:

y/

"+ay + by =r(x)

@ Basic: Depending on r(x) choose y, as

@ Modification: If the term in r is also a solution of H, multiply it by x or x

Term in r(x)

Choice for yp(x)

ke
kx"(n=0,1,-")
k cos mx

k sin wx

ke™ cos wx

ke™ sin wx

Ce"™

Knx“ + Kn_lx”_l + -+ Kix + Ky

}Kcos wx + M sin wx

}e""‘f(K cos wx + M sin wx)

depending if it is a single or double root of the characteristic polynomial.

@ Sum: If r is a sum of functions, choose a sum of y,'s.

2
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Method of undetermined coefficients

y" +y =0.001x> y(0)=0,y’(0)=15

Solution:
The general solution of the H problem is

yh = ¢1 cos(x) + ¢ sin(x)
For the particular solution of the NH problem we choose
Yp = K2X2 + Kix + Ko

-le7 = 2K2X aF K1
yF/’/ = 2K2
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Method of undetermined coefficients

And substitute it in the NH ODE
(2K2) + (Kox® + Kix + Ko) = 0.001x?

Kox? + Kix + (Ko + 2Kz) = 0.001x% = Ky = 0.001, Ky = 0, Ko = —0.002

So
yp = 0.001x* — 0.002

The general solution of the NH problem is

y = ¢ cos(x) + ¢ sin(x) + 0.001x? — 0.002
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Method of undetermined coefficients

For the particular solution we impose the initial conditions
y(0) = 0 = ¢ cos(0) + ¢ sin(0) + 0.001(0)? — 0.002 = ¢; = 0.002

y'(0) = 1.5 = ¢1(—sin(0)) + ¢ cos(0) + 2 - 0.001(0) = c; = 1.5
y = 0.002 cos(x) + 1.5sin(x) -+ 0.001x2 — 0.002

b (AR

—J‘\/ 1‘@ v:zo\j 30 740
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Method of undetermined coefficients

y" +3y' +225y = —10e "> y(0) =1,y'(0) =0

Solution:
The characteristic equation of the H problem is

AN 4+3)1+225=0

(A +15)>=0
So the general solution of the H problem is

yh = (Cl + C2X)e71.5x

Since the excitation signal, r, corresponds to one of the solutions of the H
problem (a double root) we choose

Vp = Cx2e—1.5x

o’
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Method of undetermined coefficients

2e—1.5x

yvp = Cx
yp = C(2x — 1.5x*)e 1
y) = C(2—6x — 2.25x%)e™ >
And substitute it in the NH problem
y" + 3y’ +2.25y = —10e -5
C(2 — 6x —2.25x%)e 15 4 3C(2x — 1.5x%)e 1% 4 2.25Cx?e 1% = —10e™ 1>
C(2 — 6x — 2.25x%) + 3C(2x — 1.5x?) +2.25Cx*> = —10
0x® 4+ 0x+2C=-10= C=-5

So the general solution of the NH problem is

y = (a1 + ox)e ¥ — 5x?e ™15 = (¢ + cpx — 5x?)e 1

4
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Method of undetermined coefficients

y = (a1 + ox — 5x?)e 1>
To determine ¢; and ¢, we impose the initial conditions
y(0) =1=(c1 + 0 —5(002)e 0= ¢ =1
y'(0) =0 = (¢ — 10(0) — 1.5(c; + 00 — 5(0)?))e ¥ =, —1.5¢ = & = 1.5
Finally, the particular solution is

y = (1 + 1.5x — 5x?)e 15

4
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Method of undetermined coefficients

y" + 2y’ +0.75y = 2cos(x) — 0.25sin(x) + 0.99x y(0) = 2.78,y’(0) = —0.43

Solution:
The characteristic equation of the H problem is

N 4+2X+075=0
(A+05)(A+15)=0
So the general solution of the H problem is
1.5x

yh=cre” " + et

Since the excitation signal, r, is a sum of functions we choose

¥p = K cos(x) + Msin(x) + Kix + Ko

’
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Method of undetermined coefficients

¥p = K cos(x) + Msin(x) + Kix + Ko
yp = —Kssin(x) + M cos(x) + Ky
y, = —Kcos(x) — Msin(x)

And substitute it in the NH problem
y" 42y’ +0.75y = 2 cos(x) — 0.25sin(x) + 0.99x

(—K cos(x) — Msin(x)) + 2(—K'sin(x) + M cos(x) + K1)+
+0.75(K cos(x) + Msin(x) + Kix + Kp) =
2 cos(x) — 0.255sin(x) + 0.99x

(2M — 0.25K) cos(x) — (1.25M + 2K) sin(x) + (0.75K1)x + (2K1 + 0.75Kp)
2 cos(x) — 0.25sin(x) + 0.99x

— K=0,M=1,K =0.12,Ko = —0.32
yp = sin(x) + 0.12x — 0.32
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Method of undetermined coefficients

So the general solution of the NH problem is
y = ce %% 4 ge % 4 sin(x) + 0.12x — 0.32
To find a particular solution we impose the initial conditions
y(0) =278 = ;e %50 + e 150 4 5in(0) +0.12-0-0.32 = ¢; + ¢ — 0.32

y'(0) = —0.43=-05ce %50 - 1.5¢e71%0 4 cos(0) + 0.12
—0.5¢1 — 1.5 +1+0.12

:>C1:3.1,C2:0
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Method of undetermined coefficients

So the particular solution is

y =3.1e7 %% 4 sin(x) 4+ 0.12x — 0.32

2.5

1.5

0.5+

1 | 1 | | | 1 | |
0 2 2\/5 8 10 12 14 16 18 20 «
05
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Exercises

From Kreyszig (10th ed.), Chapter 2, Section 7:
@ 276
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@ Second-order linear ODEs
@ Homogeneous linear ODEs
@ Homogeneous linear ODEs with constant coefficients
@ Differential operators
@ Modeling of free oscillations of a mass-spring system
@ Euler-Cauchy equations
@ Existence and uniqueness of solutions. Wronskian
@ Nonhomogeneous ODEs
@ Forced oscillations. Resonance.
@ Electric circuits
@ Solution by variation of parameters



If we now apply an external force to the mass, then the
ODE model becomes

1" _

my" = —cy’ — ky + r(t)
k= Spri
it Of special interest are external forces of the form

r(t) = Focos(wt)
m Mass ir(t)

. Dashpot Let us concentrate on the nonhomogeneous problem

my” + ¢y’ + ky = Fy cos(wt)




Forced oscillations

Forced oscillations (continued)

We remind that the solution of the homogeneous system is given by the roots

c 1
A, Ao = —— £ —/c?2—4mk
b2 2m "~ 2m
and that depending on the value of ¢ — 4mk we have overdamping, critical
damping or underdamping (see Section. 2.4). The particular solution is of the
form

yp = acos(wt) + bsin(wt)

Y, = —awsin(wt) + bw cos(wt)
vy = —aw? cos(wt) — bw?’ sin(wt)

Substituting in the NH problem we get
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Forced oscillations

Forced oscillations (continued)

my” + cy’ + ky = Fo cos(wt)

m(—aw? cos(wt) — bw? sin(wt)) + c(—aw sin(wt) + bw cos(wt))+

+k(acos(wt) + bsin(wt)) = Fo cos(wt)

(—maw? 4 bcw + ka) cos(wt) + (—mbw? — caw + kb) sin(wt) = Fycos(wt)

N (k — mw?)a + cwb = Fy
—cwa+ (k— mw?)b=0

(22 ) ()= (5)

A F k — mw?
a O(k—mwz)2—|—w2€2
b= Fy cw

(k — mw?)? 4 w2c?
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Forced oscillations

Forced oscillations (continued)

| k

2 2

Wy = — = k=mw
0 m 0

m(w3 — w?)

2(w8 _ w2)2 4 w2c2

Now we exploit that

And we rewrite a and b

a=Fy
m

cw
2(w2 — w?)? + wic?

b=F
m

The particular solution is

m(w3 — w?)

m2(w? — w?)? + w2c?

cw
2(w2 — w?)? 4+ w2c?

Yp:FO

t F i t
cos(wt) + 0 sin(wt)

And the general solution
Y=Yn+Yp
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Forced oscillations

Case: Undamped forced oscillations (¢ = 0)

The particular solution becomes

Fo

= (o =) cos(wt)

Yp

The absence of damping causes the homogeneous solution
yh = Ccos(wot — 9)

The general solution is

y = Ccos(wot — 0) + cos(wt)

m(wj — w?)

This is valid as long as w # wyq.
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Forced oscillations

Case: Undamped forced oscillations (¢ = 0)

_ F _ g T
For C = WO_“’Z) and 0 = 0 we get the particular solution:

__k
m(w3 — w?)

(cos(wot) + cos(wt)) = Fo 2 cos (wo 2+ d t) cos (wo —“ t)

A m(w3 — w?) 2

If wyp &~ w then, we get a solution like

Fig. 56. Forced undamped oscillation when the difference of the input
and natural frequencies is small (“beats”)

They are called beats. This is what musicians listen to when they tune their
instruments.

2. Second-order linear ODEs September 7, 2014 89 / 117



Forced oscillations

Case: Undamped forced oscillations (¢ = 0), resonance

If w = wp, then the situation is called resonance. In this case, the particular
solution is no longer valid. Let’s find it again. The ODE is

my" + ky = Fy cos(wot)
k F

v+ 2y = 22 cos(wot)
m m
F

y' +wiy = ;0 cos(wot)

The driving function, r, is one of those associated to a root of the characteristic
equation. So we try

yp = t(acos(wot) + bsin(wgt))
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Forced oscillations

Case: Undamped forced oscillations (¢ = 0), resonance
yp = t(acos(wot) + bsin(wgt))
¥y = (a+ btwp) cos(wot) + (b — atwp) sin(wot)
vl = (2bwo — atw]) cos(wot) — (btw§ + 2awq) sin(wot))
Now we substitute this solution in the ODE
my" + ky = Fgy cos(wot)

y" +wiy = Fycos(wot)

(2bwo — atw3) cos(wot) — (btw3 + 2awp) sin(wot)+
+wdt(acos(wot) + bsin(wot)) = Fo cos(wot)

. F
2bwyg cos(wot) — 2wpasin(wgt) = Focos(wot) = a=0,b= 2—0
wo
Fo
= —tsin(wot
Yp 2u0 (wot)
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https://www.youtube.com/watch?v=XggxeuFDaDU

Forced oscillations

Case: Damped forced oscillations, practical resonance
In practice, there is always some damping and the amplitude does not grow
infinitely. Let's analyze the maximum amplitude. The particular solution was

yp = acos(wt) + bsin(wt)

with a = Fo B0 and b = Fo

W2 —w2)E w2
particular solution as

Cw H
PO S We may rewrite the

yp = C* cos(wt —n)
with

1
C*:\/32+b2:F0

NCO R

= arctan é
7n = arcta a
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Forced oscillations

Case: Damped forced oscillations, practical resonance

1
C*:\/32+b2:F0

\/m2(w8 _ w2)2 4 w22

Let's find the maximum amplitude

dc* 1
0= e Fo ((m2(w§ —uw?)? + w2c2)g> [2m*(w§ — w?)(—2w) + 2wC?]
w
0 = 2m*(wi — w?)(—2w) 4 2wc?
2 =2m?(wi — w?)
2

C

2 2

Whax = Wo — =
0 2 2

max
That is, practical resonance occurs a little bit earlier than the natural frequency.
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It can be verified that the maximum amplitude at wmay is

2m
C;ax:FO > > >
cy/4mfwg — ¢
c
F, n 0
4 T —c=
| c=1/2
} c=1
¢ | ce=2
|
I
n
2 z
|
1 |
1 [
|
|
[0)<2 0 ! |
0 1 2 o 0 1 2 )

Fig. 57.  Amplification C*/Fg as a function of Fig. 58. Phase lag 17 as a function of  for
w form =1,k =1, and various values of the m =1,k =1, thus wy = 1, and various values
damping constant ¢ of the damping constant ¢




Exercises

From Kreyszig (10th ed.), Chapter 2, Section 8:
@ 28.13
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@ Second-order linear ODEs
@ Homogeneous linear ODEs
@ Homogeneous linear ODEs with constant coefficients
@ Differential operators
@ Modeling of free oscillations of a mass-spring system
@ Euler-Cauchy equations
@ Existence and uniqueness of solutions. Wronskian
@ Nonhomogeneous ODEs
@ Forced oscillations. Resonance.
@ Electric circuits
@ Solution by variation of parameters



E(t) = E, sinwt

Fig. 61. RLC-circuit

Name Symbol Notation Unit Voltage Drop
Ohm’s Resistor ~ —MAA— R Ohm's Resistance  ohms () RI
Inductor SJYYU~ L Inductance henrys (H) L %
Capacitor H I— C Capacitance farads (F) Q/C




Electric circuits

Electric circuits (continued)

The relationship in the capacitor between charge and current is
dQ
I=—=Q= | Idt
dt @ /
The ODE modeling the RLC circuit is
/ 1 .
Ll +R/+E ldt = Epsin(wt)

1
LI" + RI' + EI = Eow cos(wt)

To solve the homogeneous equation, we solve the characteristic polynomial

1 R 1 4L
ID24FRAF ==0=A=——F —/R2— —
TrATT 2L * 2L c
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Electric circuits

Electric circuits (continued)

For a particular of the non-homogeneous problem we try with a function of the
form

I, = acos(wt) + bsin(wt)
I, = —awsin(wt) + bw cos(wt)
Iy = —aw? cos(wt) — bw? sin(wt)

And subsitute it in the ODE

1
LI" +RI' + EI = Eyw cos(wt)

L(—aw? cos(wt) — bw?sin(wt)) + R(—aw sin(wt) + bw cos(wt))+
+&(acos(wt) + bsin(wt)) = Eow cos(wt)

((—Lw? 4+ L) a+ Rwb) cos(wt) + (—Rwa + (—Lw? + L) b) sin(wt) =
= Epw cos(wt)
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Electric circuits

Electric circuits (continued)

((—Lw? 4+ L) a+ Rwb) cos(wt) + (—Rwa + (—Lw? + L) b) sin(wt) =
= Epw cos(wt)

—Lw?+ ¢ Rw a\ _ (Eow
—Rw —Lw?+2)\b) "\ 0
fLerCi R a\ Eq
o(MRF W a) ()-8

-5 R\ (a\_(B\_,_ —ES ,_ kR
R -s)\p)=\o T Ry T RIfs

where S is the impedance

1
:L _ —
S w o
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_ —EKS KR
T RP4+S827 R4+ S2
The particular solution to the NH problem is

a b

I, = acos(wt) + bsin(wt)

Ip =/ a*+ b?sin (wt - arctan%)

I, = Lsin t—arctan§
P VRt \” R




Electric circuits

Find the current () in an RLC-circuit with R = 11 £} (ohms), L = 0.1 H (henry), C = 1072F (farad), which
is connected to a source of EMF E(t) = 110 sin (60 - 2771) = 110 sin 377 # (hence 60 Hz = 60 cycles/sec. the
usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor
charge are (0 when t = 0.

Solution:
1
LI" + RI' + EI = Eqw cos(wt)

The homogeneous solution is given by
1
0.1A% + 11X + 501 =0= M =100 = ~100

Iy = cre” 1% 4 e 10
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Electric circuits

The particular solution

|, = L sin <wt — arctan§>
VRIS R

with Ey = 110 and
w =60-27 = 377

1 1
=lw——=01- - =377-03=374
§=lw— 7==01-377— o 0s =37.7-03=37
, 110
P V112437482

lp = 2.825sin (60 - 27t + 73.6°)

sin (60 <27t + arctan317—i4>

The general solution is

I = cie71% + e 1% 1 2.825in (60 - 2t + 73.6°)

W
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Electric circuits

| = cre 0t + e 1% 1 2.825in (60 - 27t — 73.6°)

To find the constants ¢; and ¢, we apply the initial conditions /(0) = 0, Q(0) = 0.
To use Q(0) = 0, we note that the ODE was originally written as

LI+ RI + %/Idt = Epsin(wt)

LI(8) + RI() + £ Q(t) = Eosin(wr)

At t = 0 we have 1
LI'(0) + RI(0) + EQ(O) = Epsin(w0)

LI'(0)=0=I'(0)=0
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Electric circuits

So the initial conditions become /(0) =0, /'(0) =0
1(0) =0 = cie 90 + e 190 1 2.825in (60 - 270 — 73.6°) = ¢; + ¢ — 2.71

I'(0) = 0= —10c;e 190 — 100c,e710%0 + 2.82(60 - 27) cos (60 - 270 — 73.6°)
= —10¢ — 100c, — 300.1

The solution is ¢; = —0.323, ¢; = 3.033. Finally,

I = —0.323e 1% + 3.033¢ 1% 4 2.825in (60 - 27t + 73.6°)
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| = —0.323e7 1% + 3.033¢ %% 4 2.825in (60 - 27t + 73.6°)

-3

3+

Fig. 63.

Transient (upper curve) and steady-state currents in Example 1
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LI" + RI' + %I = r(t)

my” + ¢y’ + ky = r(t)

Table 2.2 Analogy of Electrical and Mechanical Quantities

Electrical System

Mechanical System

Inductance L
Resistance R

Derivative Egw cos wf of
electromotive force

Current (1)

Reciprocal 1/C of capacitance

J

Mass m
Damping constant ¢
Spring modulus k

Driving force Fgcos wt

Displacement y(r)
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Exercises

From Kreyszig (10th ed.), Chapter 2, Section 9:
e 2901
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@ Second-order linear ODEs
@ Homogeneous linear ODEs
@ Homogeneous linear ODEs with constant coefficients
@ Differential operators
@ Modeling of free oscillations of a mass-spring system
@ Euler-Cauchy equations
@ Existence and uniqueness of solutions. Wronskian
@ Nonhomogeneous ODEs
@ Forced oscillations. Resonance.
@ Electric circuits
@ Solution by variation of parameters



Variation of parameters

Variation of parameters

y" 4+ p(x)y" + q(x)y = r(x)

The difference with undertermined coefficients is that now p and g do not need to
be constant, although they must be continuous in an open interval /. Let's
assume that y; and y, are two independent solutions of the H problem. Let us
assume that there is a particular solution of the NH problem of the form

Yp = u(x)y1 + v(x)y2

A

yo=uyr+uy +V'yo +vys = (u'y1 + V'yo) + (uyg + vys)

Since we have one equation (the ODE) and two unknowns (v and v) we may
impose an extra constraint
uyr + vy =0
Thus
Yo = Uyl +uyl + Vs + vy
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Variation of parameters

Variation of parameters (continued)
Now we substitute into the ODE

y"' 4+ p(x)y" + q(x)y = r(x)

(u'y; + uyy’ + V'ys + vy ) + p(uy; + vyy) + q(uys + vya) = 1
Uyt +Viys+ (1 +pyi+an)u+ (vi +pyst+ar) =r
vy +viys=r

Now we have two equations with two unknows

Uyi+ vy, =0 } N (}/1 }/2> <U/) _ (0)
/.0 VAN / / / -
Uy +viy,=r i Y2) \v r

r_ 2,

w' T w
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i !
w’ W

u —/%dx,v: f)/Wl

——y1/—dx+ Vo ylrdx

Finally,




Variation of parameters

y” + y — ;
cos(x)
Solution:
y1 = cos(x)
y2 = sin(x)

‘ cos(x)  sin(x) = cos?(x) +sin?(x) = 1

—sin(x) cos(x)

yp=—y1/inrdX+yz AL i

w
Vo= — cos(x)/ 12(();)) dx + sin(x)/ zzzg; dx
yp = — cos(x) log | cos(x)| + x sin(x)
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Variation of parameters

yp = — cos(x) log | cos(x)| + x sin(x)

10k

Fig. 70. Particular solution y, and its first term in Example 1

The general solution is

y = ¢ cos(x) + ¢z sin(x) — cos(x) log | cos(x)| + x sin(x)
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Exercises

From Kreyszig (10th ed.), Chapter 2, Section 10:
@ 2.10.6
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Outline

@ Second-order linear ODEs
@ Homogeneous linear ODEs
@ Homogeneous linear ODEs with constant coefficients
@ Differential operators
@ Modeling of free oscillations of a mass-spring system
@ Euler-Cauchy equations
@ Existence and uniqueness of solutions. Wronskian
@ Nonhomogeneous ODEs
@ Forced oscillations. Resonance.
@ Electric circuits
@ Solution by variation of parameters

2. Second-order linear ODEs September 7, 2014 117 / 117



	Second-order linear ODEs
	Homogeneous linear ODEs
	Homogeneous linear ODEs with constant coefficients
	Differential operators
	Modeling of free oscillations of a mass-spring system
	Euler-Cauchy equations
	Existence and uniqueness of solutions. Wronskian
	Nonhomogeneous ODEs
	Forced oscillations. Resonance.
	Electric circuits
	Solution by variation of parameters


