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Homogeneous linear ODEs of second-order

Definition
A second-order ODE is linear if it can be written as

y ′′ + p(x)y ′ + q(x)y = r(x)

Otherwise, it is nonlinear. It is homogeneous if r(x) = 0.

Examples
y ′′ + 25y = e−x cos(x) Linear, non-homogeneous

xy ′′ + y ′ + xy = 0
y ′′ + 1

x y ′ + y = 0 Linear, homogeneous
y ′′y + (y ′)2 = 0 Nonlinear
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Principle of superposition

Theorem: Principle of superposition
The linear combination of any two solutions of a homogeneous, linear ODE is also
a solution.
Proof:
if y1 and y2 are solutions, then

y ′′1 + p(x)y ′1 + q(x)y1 = 0

y ′′2 + p(x)y ′2 + q(x)y2 = 0

Let’s study the linear combination

y = c1y1 + c2y2

y ′′ + p(x)y ′ + q(x)y = 0

(c1y1 + c2y2)
′′ + p(x)(c1y1 + c2y2)

′ + q(x)(c1y1 + c2y2) = 0
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Principle of superposition

Theorem: Principle of superposition (continued)

(c1y1 + c2y2)
′′ + p(x)(c1y1 + c2y2)

′ + q(x)(c1y1 + c2y2) = 0

(c1y ′′1 + c2y ′′2 ) + p(x)(c1y ′1 + c2y ′2) + q(x)(c1y1 + c2y2) = 0

(c1y ′′1 + c1p(x)y ′1 + c1q(x)y1) + (c2y ′′2 + c2p(x)y ′2 + c2q(x)y2) = 0

c1(y ′′1 + p(x)y ′1 + q(x)y1) + c2(y ′′2 + p(x)y ′2 + q(x)y2) = 0

c1 · 0+ c2 · 0 = 0

0 = 0

2. Second-order linear ODEs September 7, 2014 7 / 117



Principle of superposition

Example

y ′′ + y = 0

Two solutions of the ODE are
y1 = cos(x)

y2 = sin(x)

The linear combination

y = c1y1 + c2y2 = c1 cos(x) + c2 sin(x)

is also a solution.
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Principle of superposition

Example
It does not work with nonhomogeneous, linear ODEs. For instance,

y1 = 1+ cos(x)

y2 = 1+ sin(x)

are solutions of
y ′′ + y = 1

but
y = y1 + y2

is not.
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Principle of superposition

Example
It does not work with nonlinear ODEs. For instance,

y1 = x2

y2 = 1

are solutions of
y ′′y − xy ′ = 0

but
y = y1 + y2

is not.
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Initial Value Problem

Initial Value Problem
An Initial Value Problem consists of two initial conditions

y(x0) = y0

y ′(x0) = m0

These two conditions are used to determine the constants of a the general solution

y = c1y1 + c2y2

y1 and y2 must be linearly independent, that is,

c1y1 + c2y2 = 0⇒ c1 = c2 = 0

and they form a basis or fundamental system of solutions.
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Basis of solutions

Example

y ′′ + y = 0

We know that
y1 = cos(x)

y2 = sin(x)

are solutions. Let’s check if they are linearly independent

c1 cos(x) + c2 sin(x) = 0

cos(x)
sin(x) = −c2

c1

That is, if they were linearly dependent, their ratio would be constant. But this is
not the case

cos(x)
sin(x) =

1
tan(x)

The ratio is a function of x and not a constant.
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Initial Value Problem

Example

y ′′ + y = 0 y(0) = 3, y ′(0) = −0.5

Solution:
The general solution is

y = c1 cos(x) + c2 sin(x)

Now we impose the two initial conditions

y(0) = c1 cos(0) + c2 sin(0) = 3
y ′(0) = c1(− sin(0)) + c2 cos(0) = −0.5

}
⇒ c1 = 3, c2 = −0.5

The particular solution is

y = 3 cos(x)− 0.5 sin(x)
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Basis of solutions: Reduction of order

Example

(x2 − x)y ′′ − xy ′ + y = 0

We can easily see that y1 = x is a solution of the equation

(x2 − x)(x)′′ − x(x)′ + x = 0

(x2 − x)(0)− x(1) + x = 0

−x + x = 0

How can we find the second element of the basis? Reduction of order. Let’s find a
solution of the form

y2 = uy1

In this case
y2 = ux
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Basis of solutions: Reduction of order

Example (continued)

y2 = ux

y ′2 = u′x + u

y ′′2 = u′′x + u′ + u′ = u′′x + 2u′

We substitute y2 in the equation to get

(x2 − x)y ′′2 − xy ′2 + y2 = 0

(x2 − x)(u′′x + 2u′)− x(u′x + u) + ux = 0

x3u′′ + 2x2u′ − x2u′′ − 2xu′ − x2u′ − ux + ux = 0

(x3 − x2)u′′ + (x2 − 2x)u′ = 0

x(x2 − x)u′′ + x(x − 2)u′ = 0

(x2 − x)u′′ + (x − 2)u′ = 0
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Basis of solutions: Reduction of order

Example (continued)

(x2 − x)u′′ + (x − 2)u′ = 0

We now make a change of variable

U = u′ ⇒ U ′ = u′′

(x2 − x)U ′ + (x − 2)U = 0

That is a linear equation

U ′
U = − x − 2

x2 − x = − x − 2
x(x − 1)

dU
U =

(
1

x − 1 −
2
x

)
dx

log |U| = log |x − 1| − 2 log |x | ⇒ U =
x − 1

x2
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Basis of solutions: Reduction of order

Example (continued)
We now solve for u in the change of variable

u′ = U =
x − 1

x2

u =

∫ x − 1
x2 dx =

∫ ( 1
x −

1
x2

)
dx

u = log |x |+ 1
x

Finally,

y2 = ux =

(
log |x |+ 1

x

)
x = x log |x |+ 1

Since y1 and y2 are not proportional, they form a basis of solutions of the ODE.
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Basis of solutions: Reduction of order

Reduction of order
Consider the ODE

y ′′ + p(x)y ′ + q(x)y = 0

and a solution of it y1. The second solution will be designed as

y2 = uy1

y ′2 = u′y1 + uy ′1
y ′′2 = u′′y1 + 2u′y ′1 + uy ′′1

We now subtitute it in the ODE

(u′′y1 + 2u′y ′1 + uy ′′1 ) + p(x)(u′y1 + uy ′1) + q(x)(uy1) = 0
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Basis of solutions: Reduction of order

Reduction of order (continued)
Consider the ODE

y ′′ + p(x)y ′ + q(x)y = 0

and a solution of it y1. The second solution will be designed as

y2 = uy1

y ′2 = u′y1 + uy ′1
y ′′2 = u′′y1 + 2u′y ′1 + uy ′′1

We now subtitute it in the ODE

(u′′y1 + 2u′y ′1 + uy ′′1 ) + p(u′y1 + uy ′1) + q(uy1) = 0

u′′y1 + (2y ′1 + py1)u′ + (y ′′1 + py ′1 + qy1)u = 0
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Basis of solutions: Reduction of order

Reduction of order (continued)

u′′y1 + (2y ′1 + py1)u′ + (y ′′1 + py ′1 + qy1)u = 0

But the coefficient of u is 0 because y1 is a solution of the ODE.

u′′y1 + (2y ′1 + py1)u′ = 0

We now make the change of variable

U = u′

U ′y1 + (2y ′1 + py1)U = 0

U ′ + 2y ′1 + py1
y1

U = 0

U ′ +
(
2y ′1

y1
+ p
)

U = 0
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Basis of solutions: Reduction of order

Reduction of order (continued)

U ′ +
(
2y ′1

y1
+ p
)

U = 0

dU
U = −

(
2y ′1

y1
+ p
)

dx

log |U| = −2 log |y1| −
∫

pdx

U =
1
y2

1
e−
∫

pdx

U = u′ ⇒ u =

∫
Udx

Finally,

y2 = uy1 = y1

∫
Udx = y1

∫ 1
y2

1
e−
∫

pdx dx (1)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 1:

2.1.1
2.1.2
2.1.5
2.1.6
2.1.12
2.1.13
2.1.17
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Homogeneous linear ODEs with constant coefficients

Characteristic equation
y ′ + ky = 0

Try y = eλx

λeλx + keλx = 0

eλx (λ+ k) = 0

λ+ k = 0⇒ λ1 = −k

y1 = eλ1x

General solution

y = c1y1

y ′′ + ay ′ + by = 0

Try y = eλx

λ2eλx + aλeλx + beλx = 0

eλx (λ2 + aλ+ b) = 0

λ2 + aλ+ b = 0⇒ λ1, λ2

λ1, λ2 =
1
2

(
−a ±

√
a2 − 4b

)
y1 = eλ1x

y2 = eλ2x

General solution

y = c1y1 + c2y2

2. Second-order linear ODEs September 7, 2014 24 / 117



Homogeneous linear ODEs with constant coefficients

Characteristic equation: Two distinct real roots, a2 − 4b > 0
General solution:

λ1 =
1
2

(
−a +

√
a2 − 4b

)
λ2 =

1
2

(
−a −

√
a2 − 4b

)
y = c1eλ1x + c2eλ2x
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Homogeneous linear ODEs with constant coefficients

Example

y ′′ + y ′ − 2y = 0 y(0) = 4, y ′(0) = −5

Solution:

λ2 + λ− 2 = 0⇒ λ1 = 1, λ2 = −2

General solution:

y = c1ex + c2e−2x

Particular solution:

4 = c1e0 + c2e−2·0 = c1 + c2
−5 = c1e0 + c2(−2)e−2·0 = c1 − 2c2

}
⇒ c1 = 1, c2 = 3

y = ex + 3e−2x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a2 − 4b = 0

λ1 = −a
2

One of the solutions is
y1 = eλ1x

Let’s look for another using the reduction of order

y2 = uy1 = ueλ1x

y ′2 = u′eλ1x + λ1ueλ1x

y ′′2 = u′′eλ1x + 2λ1u′eλ1x + λ2
1ueλ1x

y ′′2 + ay ′2 + by2 = 0

(u′′eλ1x + 2λ1u′eλ1x + λ2
1ueλ1x ) + a(u′eλ1x + λ1ueλ1x ) + bueλ1x = 0

eλ1x [u′′ + (2λ1 + a)u′ + (λ2
1 + aλ1 + b)u

]
= 0
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a2 − 4b = 0 (continued)

eλ1x [u′′ + (2λ1 + a)u′ + (λ2
1 + aλ1 + b)u

]
= 0

The coefficient of u (λ2
1 + aλ1 + b) is 0 because λ1 is a root of the characteristic

equation:
eλ1x [u′′ + (2λ1 + a)u′] = 0

u′′ + (2λ1 + a)u′ = 0

Note that
2λ1 + a = 2

(
−a
2

)
+ a = 0

then,
u′′ = 0

whose general solution is
u = c1x + c2

and a particular solution
u = x

2. Second-order linear ODEs September 7, 2014 28 / 117



Homogeneous linear ODEs with constant coefficients

Characteristic equation: Double root a2 − 4b = 0 (continued)
The second element of the basis of solutions is

y2 = uy1 = xeλ1x

The general solution of
y ′′ + ay ′ + by = 0

is
y = c1y1 + c2y2

y = c1eλ1x + c2xeλ1x

y = (c1 + c2x)eλ1x

y = (c1 + c2x)e− a
2 x
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Homogeneous linear ODEs with constant coefficients

Example

y ′′ + 6y ′ + 9y = 0

Solution:
λ2 + 6λ+ 9 = 0

(λ+ 3)2 = 0

The general solution is
y = (c1 + c2x)e−3x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a2 − 4b < 0

λ1 =
1
2

(
−a +

√
a2 − 4b

)
= −a

2 + iω

λ2 =
1
2

(
−a −

√
a2 − 4b

)
= −a

2 − iω

Two independent solutions are

y1 = e(− a
2+iω)x = e− a

2 x e iω = e− a
2 x (cos(ωx) + i sin(ωx))

y2 = e(− a
2−iω)x = e− a

2 x e−iω = e− a
2 x (cos(ωx)− i sin(ωx))

The general solution is
y = c1y1 + c2y2

y = c1e(− a
2+iω)x + c2e(− a

2−iω)x
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a2 − 4b < 0 (continued)
Let’s calculate two other independent solutions

y∗1 = y1+y2
2

= e− a
2 x (cos(ωx)+i sin(ωx))+(cos(ωx)−i sin(ωx))

2
= e− a

2 x 2 cos(ωx)
2

= e− a
2 x cos(ωx)

y∗2 = y1−y2
2i

= e− a
2 x (cos(ωx)+i sin(ωx))−(cos(ωx)−i sin(ωx))

2i
= e− a

2 x 2i sin(ωx)
2i

= e− a
2 x sin(ωx)

Since they are independent, they are another basis, so the general solution can
also be written as

y = c1y∗1 + c2y∗2
y = e− a

2 x (c1 cos(ωx) + c2 sin(ωx))
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Homogeneous linear ODEs with constant coefficients

Characteristic equation: Complex roots a2 − 4b < 0 (continued)

y = e− a
2 x (c1 cos(ωx) + c2 sin(ωx))

This can also be written as

y = eRe{λ1}x (c1 cos(Im{λ1}x) + c2 sin(Im{λ1}x))

Example

y ′′ + 0.4y ′ + 9.04y = 0 y(0) = 0, y ′(0) = 3

Solution:
λ2 + 0.4λ+ 9.04 = 0⇒ λ1, λ2 = −0.2± 3i

The general solution is

y = e−0.2x (c1 cos(3x) + c2 sin(3x))
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Homogeneous linear ODEs with constant coefficients

Example (continued)
The initial conditions are y(0) = 0, y ′(0) = 3

y(0) = 0 = e−0.2·0(c1 cos(3 · 0) + c2 sin(3 · 0)) = c1 ⇒ c1 = 0

The particular solution is of the form
y = c2e−0.2x sin(3x)

y ′ = c2e−0.2x (−0.2 sin(3x) + 3 cos(3x))

y ′(0) = 3 = c2e−0.2·0(−0.2 sin(3·0)+3 cos(3·0))

⇒ c2 = 1

y = 3e−0.2x sin(3x)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 2:

2.2.16
2.2.17
2.2.31
2.2.35
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Exercises

Exercises
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Differential operators

Differential operators

D =
d
dx

Dy =
dy
dx = y ′

D sin(x) = cos(x)

D(y1 + y2) = D(y1) + D(y2) = y ′1 + y ′2
D(ay) = aD(y) = ay ′

D(Dy) = D2y = y ′′

D2 sin(x) = − sin(x)
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Differential operators

Differential operators

y ′′ + ay ′ + by = 0

D2y + aDy + by = 0

(D2 + aD + bI)y = 0

We may define the operator

L = D2 + aD + bI

Then,
(D2 + aD + bI)y = 0↔ Ly = 0

If we apply L to eλx , we get

Leλx = λ2eλx + aλeλx + eλx = (λ2 + aλ+ b)eλx
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Differential operators

Example

y ′′ − 3y ′ − 40y = 0

Solution:
(D2 − 3D − 40I)y = 0

Now we factorize the differential operator

(D − 8I)(D + 5I)y = 0

We can check that it is equivalent to the differential equation

(D − 8I)(y ′ + 5y) = 0

D(y ′ + 5y)− 8I(y ′ + 5y) = 0

y ′′ + 5y ′ − 8y ′ − 40y = 0

y ′′ − 3y ′ − 40y = 0
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Differential operators

Example (continued)

(D − 8I)(D + 5I)y = 0

To construct a basis of solutions we realize that

(D − 8I)y = 0⇒ y1 = e8x

(D + 5I)y = 0⇒ y2 = e−5x

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 3:

2.3.14
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Free oscillations

Free oscillations of a mass-spring system

If we pull the ball down, there is force

F = −ky Hooke’s law

k is the spring constant. Stiff springs have large k.
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Free oscillations

Free oscillations of a mass-spring system (continued)
Newton’s second law states ∑

F = ma

−ky = my ′′

We can easily solve it

y ′′ + k
my = 0

λ2 +
k
m = 0⇒ λ1, λ2 = ±i

√
k
m = ±iω0

The general solution is

y = c1 cos(ω0t) + c2 sin(ω0t)

This is called an harmonic oscillation and its associated natural frequency is
f0 = ω0

2π [Hz ], the oscillation period is T0 = 1
f0
[s].
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Free oscillations

Free oscillations of a mass-spring system (continued)

y = c1 cos(ω0t) + c2 sin(ω0t)

y = C cos(ω0t − δ)

where C =
√

(c2
1 + c2

2 ) and δ = arctan c2
c1
.
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Damped oscillations

Damped oscillations of a mass-spring system
The dashpot introduces a braking force that at low speed can
be modelled as −cy ′. The overall model is

−ky − cy ′ = my ′′

y ′′ + k
my ′ + c

my = 0

λ2 +
k
mλ+

c
m = 0

λ1, λ2 = − c
2m ±

1
2m
√

c2 − 4mk

λ1, λ2 = −α± β
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Damped oscillations

Overdamping: c2 − 4mk > 0
The general solution is

y = c1e−(α−β)t + c2e−(α+β)t
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Critical damping

Critical damping: c2 − 4mk = 0
The general solution is

y = (c1 + c2t)e−αt
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Underdamping

Underdamping: c2 − 4mk < 0

β = i 1
2m
√
4mk − c2 = i

√
k
m −

c2

4m2 = iω∗

Note that if c → 0, then ω∗ → ω0 =
√

k
m (harmonic oscillation). The general

solution is
y = Ce−αt cos(ω∗t − δ)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 4:

2.4.5
2.4.6
2.4.7
2.4.14
2.4.18
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Euler-Cauchy equations

Euler-Cauchy equations
They are equations of the form

x2y ′′ + axy ′ + by = 0

We subsitute
y = xm

y ′ = mxm−1

y ′′ = m(m − 1)xm−2

to get
x2(m(m − 1)xm−2) + ax(mxm−1) + bxm = 0

m(m − 1)xm + amxm + bxm = 0

xm(m(m − 1) + am + b) = 0

xm(m2 + (a − 1)m + b) = 0
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Euler-Cauchy equations

Euler-Cauchy equations (continued)

xm(m2 + (a − 1)m + b) = 0

Hence, xm is a solution of the ODE iff m is a solution of

m2 + (a − 1)m + b = 0

m1,m2 =
1− a
2 ±

√
1
4 (1− a)2 − b
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Euler-Cauchy equations

Euler-Cauchy equations: Two distinct real roots
The general solution is

y = c1xm1 + c2xm2

Example

y = x2y ′′ + 1.5xy ′ − 0.5y = 0

Solution:
m2 + 0.5m − 0.5 = 0⇒ m1 = 0.5,m2 = −1

y = c1
√

x + c2
1
x

Note that because of the square root, it must be x > 0 for this solution to exist.
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Euler-Cauchy equations

Euler-Cauchy equations: A real double root
This happens if

1
4 (1− a)2 − b = 0⇒ b =

(1− a)2

4
Consequently the ODE can be rewritten as

x2y ′′ + axy ′ + (1− a)2

4 y = 0

y ′′ + a
x y ′ + (1− a)2

4x2 y = 0

The real double root is
m1 =

1− a
2

and one of the solutions is
y1 = x

1−a
2
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Euler-Cauchy equations

Euler-Cauchy equations: A real double root (continued)
The other solution is obtained by reduction of order (Eq. (1))

U =
1
y2

1
e−
∫

pdx

That is
U =

1(
x 1−a

2

)2 e−
∫

a
x dx =

1
x1−a e−a log |x | =

x−a

x1−a =
1
x

u =

∫
Udx =

∫ 1
x dx = log |x |

y2 = uy1 = xm1 log |x |

The general solution is

y = c1y1 + c2y2 = c1xm1 + c2xm1 log |x | = (c1 + c2 log |x |)xm1
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Euler-Cauchy equations

Euler-Cauchy equations: Complex roots

m1,m2 = α± iω

Two independent solutions are

y1 = xα+iω = xα(e log(x))iω = xα(e iω log(x)) = xα(cos(ω log(x)) + i sin(ω log(x)))

y2 = xα−iω = xα(e log(x))−iω = xα(e−iω log(x)) = xα(cos(ω log(x))−i sin(ω log(x)))

We may obtain two other independent solutions as

y∗1 =
y1 + y2

2 = Re{y1} = xα cos(ω log(x))

y∗2 =
y1 − y2

2i = Im{y1} = xα sin(ω log(x))

The general solution is

y = c1y∗1 + c2y∗2 = xα(c1 cos(ω log(x)) + c2 sin(ω log(x)))

2. Second-order linear ODEs September 7, 2014 57 / 117



Euler-Cauchy equations

Examples
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Euler-Cauchy equations

Example

Solution: The constitutive equation

rv ′′ + 2v ′ = 0

is not Euler-Cauchy, but multiplying by r , it is

r2 + 2rv ′ = 0

m2 + m = 0⇒ m1 = 0,m2 = −1

The general solution is

v = c1x0 + c2x−1 = c1 +
c2
x
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Euler-Cauchy equations

Example (continued)

v = c1x0 + c2x−1 = c1 +
c2
x

The particular solution comes from the boundary constraints

v(5) = 110 = c1 +
c2
5

v(10) = 0 = c1 +
c2
10

}
⇒ c1 = −110, c2 = 1100

v = −110+ 1100
x
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Existence and uniqueness of solutions

Existence and uniqueness Theorem
Let us analyze the existence and solutions of the Initial Value Problem

y ′′ + p(x)y ′ + q(x) = 0 y(x0) = K0, y ′(x0) = K1

If p(x) and q(x) are continuous on some open interval I and x0 ∈ I, then the IVP
has a unique solution in I.

Existence of a general solution
If p and q are continuous functions on an open interval I, then there exists a
general solution on I and any solution is of the form

y = c1y1 + c2y2

where y1 and y2 are a basis of solutions on I. Hence, the IVP has no singular
solution (that is, solutions that cannot be obtained from the general solution).
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Linear independence of solutions: Wronskian

Linear independence of solutions: Wronskian
Considering the previous problem with continuous p and q functions on an open
interval I. Two solutions, y1 and y2, on I are linearly independent if their Wroskian
is different from 0 at some point x ∈ I

W (x) =
∣∣∣∣ y1(x) y2(x)

y ′1(x) y ′2(x)

∣∣∣∣ 6= 0

If y1 and y2 are linearly dependent, then W (x) = 0 for all points x ∈ I.
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Linear independence of solutions: Wronskian

Example
y1 = cos(ωx) and y2 = sin(ωx) are solutions of y ′′ + ω2y = 0. Check if they are
linearly independent.
Solution:

W (x) =
∣∣∣∣ cos(ωx) sin(ωx)
−ω sin(ωx) ω cos(ωx)

∣∣∣∣ = ω cos2(ωx) + ω sin2(ωx) = ω

The Wronskian is 0 only if ω = 0. So, in general, the two functions are linearly
independent (also their ratio, sin(x)

cos(x) = tan(x), is not a constant; this would be
another way of checking).
However, if ω = 0, then y1 = 1, y2 = 0. These two functions are linearly
dependent and they are not a basis of solutions. In fact, in this case the basis is
given by y1 = 1, y2 = x .
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 6:

2.6.5
2.6.12

2. Second-order linear ODEs September 7, 2014 65 / 117



Outline

1 Second-order linear ODEs
Homogeneous linear ODEs
Homogeneous linear ODEs with constant coefficients
Differential operators
Modeling of free oscillations of a mass-spring system
Euler-Cauchy equations
Existence and uniqueness of solutions. Wronskian
Nonhomogeneous ODEs
Forced oscillations. Resonance.
Electric circuits
Solution by variation of parameters

2. Second-order linear ODEs September 7, 2014 66 / 117



Nonhomogeneous ODEs

Nonhomogeneous ODEs

y ′′ + p(x)y ′ + q(x) = r(x) (NH)

A general solution of the nonhomogeneous ODE is of the form

y = yh + yp

where yh is the general solution of the homogeneous problem

y ′′ + p(x)y ′ + q(x) = r(x) (H)

and yp is a particular solution of NH. A particular solution of NH is obtained by
determining the constants of the general solution.

If p, q, and r are continuous functions in an open interval I, then there is no
singular solution in I (that is, all solutions can be obtained from the general
solution).
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Nonhomogeneous ODEs

Theorem: Relationship between H and NH
1 yH + yNH,1 = yNH,2. The sum of a solution of H and a solution of NH is a

solution of NH.
2 yNH,1 − yNH,2 = yH . The subtraction of two solutions of NH is a solution of

H.
Proof: Let us denote the H and NH problems as

Ly = 0 H

Ly = r NH

1 L(yH + yNH,1) = LyH + LyNH,1 = 0+ r = r
2 L(yNH,1 − yNH,2) = LyNH,1 − LyNH,2 = r − r = 0
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Nonhomogeneous ODEs

Transient and steady-state solutions
Since the general solution of the NH problem is

y = yh + yp

if Re{λi} < 0 for all i , then the term coming from the homogeneous solution
vanishes with increasing x and the solution tends to be that given by the input
signal

lim
x→∞

yh + yp = yp

This condition is important in system theory to define stable systems.
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Nonhomogeneous ODEs

Transient and steady-state solutions
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Method of undetermined coefficients

Method of undetermined coefficients
y ′′ + ay ′ + by = r(x)

Rules:
Basic: Depending on r(x) choose yp as

Modification: If the term in r is also a solution of H, multiply it by x or x2

depending if it is a single or double root of the characteristic polynomial.
Sum: If r is a sum of functions, choose a sum of yp’s.
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Method of undetermined coefficients

Example

y ′′ + y = 0.001x2 y(0) = 0, y ′(0) = 1.5

Solution:
The general solution of the H problem is

yh = c1 cos(x) + c2 sin(x)

For the particular solution of the NH problem we choose

yp = K2x2 + K1x + K0

y ′p = 2K2x + K1

y ′′p = 2K2
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Method of undetermined coefficients

Example (continued)
And substitute it in the NH ODE

(2K2) + (K2x2 + K1x + K0) = 0.001x2

K2x2 + K1x + (K0 + 2K2) = 0.001x2 ⇒ K2 = 0.001,K1 = 0,K0 = −0.002

So
yp = 0.001x2 − 0.002

The general solution of the NH problem is

y = c1 cos(x) + c2 sin(x) + 0.001x2 − 0.002
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Method of undetermined coefficients

Example (continued)
For the particular solution we impose the initial conditions

y(0) = 0 = c1 cos(0) + c2 sin(0) + 0.001(0)2 − 0.002⇒ c1 = 0.002

y ′(0) = 1.5 = c1(− sin(0)) + c2 cos(0) + 2 · 0.001(0)⇒ c2 = 1.5

y = 0.002 cos(x) + 1.5 sin(x) + 0.001x2 − 0.002
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Method of undetermined coefficients

Example

y ′′ + 3y ′ + 2.25y = −10e−1.5x y(0) = 1, y ′(0) = 0

Solution:
The characteristic equation of the H problem is

λ2 + 3λ+ 2.25 = 0

(λ+ 1.5)2 = 0

So the general solution of the H problem is

yh = (c1 + c2x)e−1.5x

Since the excitation signal, r , corresponds to one of the solutions of the H
problem (a double root) we choose

yp = Cx2e−1.5x
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Method of undetermined coefficients

Example (continued)

yp = Cx2e−1.5x

y ′p = C(2x − 1.5x2)e−1.5x

y ′′p = C(2− 6x − 2.25x2)e−1.5x

And substitute it in the NH problem

y ′′ + 3y ′ + 2.25y = −10e−1.5x

C(2− 6x − 2.25x2)e−1.5x + 3C(2x − 1.5x2)e−1.5x + 2.25Cx2e−1.5x = −10e−1.5x

C(2− 6x − 2.25x2) + 3C(2x − 1.5x2) + 2.25Cx2 = −10

0x2 + 0x + 2C = −10⇒ C = −5

So the general solution of the NH problem is

y = (c1 + c2x)e−1.5x − 5x2e−1.5x = (c1 + c2x − 5x2)e−1.5x
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Method of undetermined coefficients

Example (continued)

y = (c1 + c2x − 5x2)e−1.5x

To determine c1 and c2 we impose the initial conditions

y(0) = 1 = (c1 + c20− 5(0)2)e−1.5·0 ⇒ c1 = 1

y ′(0) = 0 = (c2 − 10(0)− 1.5(c1 + c20− 5(0)2))e−1.5·0 = c2 − 1.5c1 ⇒ c2 = 1.5

Finally, the particular solution is

y = (1+ 1.5x − 5x2)e−1.5x
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Method of undetermined coefficients

Example

y ′′ + 2y ′ + 0.75y = 2 cos(x)− 0.25 sin(x) + 0.99x y(0) = 2.78, y ′(0) = −0.43

Solution:
The characteristic equation of the H problem is

λ2 + 2λ+ 0.75 = 0

(λ+ 0.5)(λ+ 1.5) = 0

So the general solution of the H problem is

yh = c1e−0.5x + c2e−1.5x

Since the excitation signal, r , is a sum of functions we choose

yp = K cos(x) + M sin(x) + K1x + K0
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Method of undetermined coefficients

Example (continued)

yp = K cos(x) + M sin(x) + K1x + K0

y ′p = −K sin(x) + M cos(x) + K1

y ′′p = −K cos(x)−M sin(x)

And substitute it in the NH problem

y ′′ + 2y ′ + 0.75y = 2 cos(x)− 0.25 sin(x) + 0.99x

(−K cos(x)−M sin(x)) + 2(−K sin(x) + M cos(x) + K1)+
+0.75(K cos(x) + M sin(x) + K1x + K0) =

2 cos(x)− 0.25 sin(x) + 0.99x

(2M − 0.25K ) cos(x)− (1.25M + 2K ) sin(x) + (0.75K1)x + (2K1 + 0.75K0) =
2 cos(x)− 0.25 sin(x) + 0.99x

⇒ K = 0,M = 1,K1 = 0.12,K0 = −0.32

yp = sin(x) + 0.12x − 0.32
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Method of undetermined coefficients

Example (continued)
So the general solution of the NH problem is

y = c1e−0.5x + c2e−1.5x + sin(x) + 0.12x − 0.32

To find a particular solution we impose the initial conditions

y(0) = 2.78 = c1e−0.5·0 + c2e−1.5·0 + sin(0) + 0.12 · 0− 0.32 = c1 + c2 − 0.32

y ′(0) = −0.43 = −0.5c1e−0.5·0 − 1.5c2e−1.5·0 + cos(0) + 0.12
= −0.5c1 − 1.5c2 + 1+ 0.12

⇒ c1 = 3.1, c2 = 0
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Method of undetermined coefficients

Example (continued)
So the particular solution is

y = 3.1e−0.5x + sin(x) + 0.12x − 0.32
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 7:

2.7.6
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Forced oscillations

Forced oscillations
If we now apply an external force to the mass, then the
ODE model becomes

my ′′ = −cy ′ − ky + r(t)

Of special interest are external forces of the form

r(t) = F0 cos(ωt)

Let us concentrate on the nonhomogeneous problem

my ′′ + cy ′ + ky = F0 cos(ωt)
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Forced oscillations

Forced oscillations (continued)
We remind that the solution of the homogeneous system is given by the roots

λ1, λ2 = − c
2m ±

1
2m
√

c2 − 4mk

and that depending on the value of c2 − 4mk we have overdamping, critical
damping or underdamping (see Section. 2.4). The particular solution is of the
form

yp = a cos(ωt) + b sin(ωt)

y ′p = −aω sin(ωt) + bω cos(ωt)

y ′′p = −aω2 cos(ωt)− bω2 sin(ωt)

Substituting in the NH problem we get
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Forced oscillations

Forced oscillations (continued)

my ′′ + cy ′ + ky = F0 cos(ωt)

m(−aω2 cos(ωt)− bω2 sin(ωt)) + c(−aω sin(ωt) + bω cos(ωt))+
+k(a cos(ωt) + b sin(ωt)) = F0 cos(ωt)

(−maω2 + bcω + ka) cos(ωt) + (−mbω2 − caω + kb) sin(ωt) = F0 cos(ωt)

⇒
{

(k −mω2)a + cωb = F0
−cωa + (k −mω2)b = 0(

k −mω2 cω
−cω k −mω2

)(
a
b

)
=

(
F0
0

)
a = F0

k −mω2

(k −mω2)2 + ω2c2

b = F0
cω

(k −mω2)2 + ω2c2
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Forced oscillations

Forced oscillations (continued)
Now we exploit that

ω2
0 =

√
k
m ⇒ k = mω2

0

And we rewrite a and b

a = F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + ω2c2

b = F0
cω

m2(ω2
0 − ω2)2 + ω2c2

The particular solution is

yp = F0
m(ω2

0 − ω2)

m2(ω2
0 − ω2)2 + ω2c2 cos(ωt) + F0

cω
m2(ω2

0 − ω2)2 + ω2c2 sin(ωt)

And the general solution
y = yh + yp
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Forced oscillations

Case: Undamped forced oscillations (c = 0)
The particular solution becomes

yp =
F0

m(ω2
0 − ω2)

cos(ωt)

The absence of damping causes the homogeneous solution

yh = C cos(ω0t − δ)

The general solution is

y = C cos(ω0t − δ) + F0

m(ω2
0 − ω2)

cos(ωt)

This is valid as long as ω 6= ω0.
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Forced oscillations

Case: Undamped forced oscillations (c = 0)
For C = F0

m(ω2
0−ω2)

and δ = 0 we get the particular solution:

y =
F0

m(ω2
0 − ω2)

(cos(ω0t) + cos(ωt)) = F0

m(ω2
0 − ω2)

2 cos
(

ω0 + ω

2 t
)

cos
(

ω0 − ω

2 t
)

If ω0 ≈ ω then, we get a solution like

They are called beats. This is what musicians listen to when they tune their
instruments.
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Forced oscillations

Case: Undamped forced oscillations (c = 0), resonance
If ω = ω0, then the situation is called resonance. In this case, the particular
solution is no longer valid. Let’s find it again. The ODE is

my ′′ + ky = F0 cos(ω0t)

y ′′ + k
my =

F0
m cos(ω0t)

y ′′ + ω2
0y =

F0
m cos(ω0t)

The driving function, r , is one of those associated to a root of the characteristic
equation. So we try

yp = t(a cos(ω0t) + b sin(ω0t))
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Forced oscillations

Case: Undamped forced oscillations (c = 0), resonance

yp = t(a cos(ω0t) + b sin(ω0t))

y ′p = (a + btω0) cos(ω0t) + (b − atω0) sin(ω0t)

y ′′p = (2bω0 − atω2
0) cos(ω0t)− (btω2

0 + 2aω0) sin(ω0t))

Now we substitute this solution in the ODE

my ′′ + ky = F0 cos(ω0t)

y ′′ + ω2
0y = F0 cos(ω0t)

(2bω0 − atω2
0) cos(ω0t)− (btω2

0 + 2aω0) sin(ω0t)+
+ω2

0t(a cos(ω0t) + b sin(ω0t)) = F0 cos(ω0t)

2bω0 cos(ω0t)− 2ω0a sin(ω0t) = F0 cos(ω0t) ⇒ a = 0, b =
F0
2ω0

yp =
F0
2ω0

t sin(ω0t)
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Forced oscillations

Case: Undamped forced oscillations (c = 0), resonance

yp =
F0
2ω0

t sin(ω0t)

Tacoma bridge resonance
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Forced oscillations

Case: Damped forced oscillations, practical resonance
In practice, there is always some damping and the amplitude does not grow
infinitely. Let’s analyze the maximum amplitude. The particular solution was

yp = a cos(ωt) + b sin(ωt)

with a = F0
m(ω2

0−ω
2)

m2(ω2
0−ω2)2+ω2c2 and b = F0

cω
m2(ω2

0−ω2)2+ω2c2 We may rewrite the
particular solution as

yp = C∗ cos(ωt − η)

with
C∗ =

√
a2 + b2 = F0

1√
m2(ω2

0 − ω2)2 + ω2c2

η = arctan
(

b
a

)
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Forced oscillations

Case: Damped forced oscillations, practical resonance

C∗ =
√

a2 + b2 = F0
1√

m2(ω2
0 − ω2)2 + ω2c2

Let’s find the maximum amplitude

0 =
dC∗
dω = F0

(
−1
2 (m

2(ω2
0 − ω2)2 + ω2c2)−

3
2

)[
2m2(ω2

0 − ω2)(−2ω) + 2ωc2]
0 = 2m2(ω2

0 − ω2)(−2ω) + 2ωc2

c2 = 2m2(ω2
0 − ω2)

ω2
max = ω2

0 −
c2

2m2

That is, practical resonance occurs a little bit earlier than the natural frequency.
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Forced oscillations

Case: Damped forced oscillations, practical resonance
It can be verified that the maximum amplitude at ωmax is

C∗max = F0
2m

c
√
4m2ω2

0 − c2
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 8:

2.8.13
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Electric circuits

Electric circuits
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Electric circuits

Electric circuits (continued)
The relationship in the capacitor between charge and current is

I = dQ
dt = Q =

∫
Idt

The ODE modeling the RLC circuit is

LI ′ + RI + 1
C

∫
Idt = E0 sin(ωt)

LI ′′ + RI ′ + 1
C I = E0ω cos(ωt)

To solve the homogeneous equation, we solve the characteristic polynomial

Lλ2 + Rλ+
1
C = 0⇒ λ = − R

2L ±
1
2L

√
R2 − 4L

C
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Electric circuits

Electric circuits (continued)
For a particular of the non-homogeneous problem we try with a function of the
form

Ip = a cos(ωt) + b sin(ωt)

I ′p = −aω sin(ωt) + bω cos(ωt)

I ′′p = −aω2 cos(ωt)− bω2 sin(ωt)

And subsitute it in the ODE

LI ′′ + RI ′ + 1
C I = E0ω cos(ωt)

L(−aω2 cos(ωt)− bω2 sin(ωt)) + R(−aω sin(ωt) + bω cos(ωt))+
+ 1

C (a cos(ωt) + b sin(ωt)) = E0ω cos(ωt)((
−Lω2 + 1

C
)

a + Rωb
)
cos(ωt) +

(
−Rωa +

(
−Lω2 + 1

C
)

b
)
sin(ωt) =

= E0ω cos(ωt)
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Electric circuits

Electric circuits (continued)

((
−Lω2 + 1

C
)

a + Rωb
)
cos(ωt) +

(
−Rωa +

(
−Lω2 + 1

C
)

b
)
sin(ωt) =

= E0ω cos(ωt)(
−Lω2 + 1

C Rω
−Rω −Lω2 + 1

C

)(
a
b

)
=

(
E0ω
0

)
ω

(
−Lω + 1

Cω R
−R −Lω + 1

Cω

)(
a
b

)
= ω

(
E0
0

)
(
−S R
−R −S

)(
a
b

)
=

(
E0
0

)
⇒ a =

−E0S
R2 + S2 , b =

E0R
R2 + S2

where S is the impedance
S = Lω − 1

Cω
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Electric circuits

Electric circuits (continued)

a =
−E0S

R2 + S2 , b =
E0R

R2 + S2

The particular solution to the NH problem is

Ip = a cos(ωt) + b sin(ωt)

Ip =
√

a2 + b2 sin
(
ωt − arctan a

b

)
Ip =

E0√
R2 + S2

sin
(
ωt − arctan S

R

)
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Electric circuits

RLC circuit

Solution:
LI ′′ + RI ′ + 1

C I = E0ω cos(ωt)

The homogeneous solution is given by

0.1λ2 + 11λ+
1

0.01 = 0⇒ λ1 = −10, λ2 = −100

Ih = c1e−10t + c2e−100t
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Electric circuits

RLC circuit (continued)
The particular solution

Ip =
E0√

R2 + S2
sin
(
ωt − arctan S

R

)
with E0 = 110 and

ω = 60 · 2π = 377

S = Lω − 1
Cω = 0.1 · 377− 1

0.01 · 377 = 37.7− 0.3 = 37.4

Ip =
110√

112 + 37.42
sin
(
60 · 2πt + arctan37.411

)
Ip = 2.82 sin (60 · 2πt + 73.6◦)

The general solution is

I = c1e−10t + c2e−100t + 2.82 sin (60 · 2πt + 73.6◦)
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Electric circuits

RLC circuit (continued)

I = c1e−10t + c2e−100t + 2.82 sin (60 · 2πt − 73.6◦)

To find the constants c1 and c2 we apply the initial conditions I(0) = 0, Q(0) = 0.
To use Q(0) = 0, we note that the ODE was originally written as

LI ′ + RI + 1
C

∫
Idt = E0 sin(ωt)

LI ′(t) + RI(t) + 1
C Q(t) = E0 sin(ωt)

At t = 0 we have
LI ′(0) + RI(0) + 1

C Q(0) = E0 sin(ω0)

LI ′(0) = 0⇒ I ′(0) = 0
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Electric circuits

RLC circuit (continued)
So the initial conditions become I(0) = 0, I ′(0) = 0

I(0) = 0 = c1e−10·0 + c2e−100·0 + 2.82 sin (60 · 2π0− 73.6◦) = c1 + c2 − 2.71

I ′(0) = 0 = −10c1e−10·0 − 100c2e−100·0 + 2.82(60 · 2π) cos (60 · 2π0− 73.6◦)
= −10c1 − 100c2 − 300.1

The solution is c1 = −0.323, c2 = 3.033. Finally,

I = −0.323e−10t + 3.033e−100t + 2.82 sin (60 · 2πt + 73.6◦)
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Electric circuits

RLC circuit (continued)

I = −0.323e−10t + 3.033e−100t + 2.82 sin (60 · 2πt + 73.6◦)
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Analogy Electric circuits-Mechanical systems

Analogy

LI ′′ + RI ′ + 1
C I = r(t)

my ′′ + cy ′ + ky = r(t)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 9:

2.9.1
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Outline

1 Second-order linear ODEs
Homogeneous linear ODEs
Homogeneous linear ODEs with constant coefficients
Differential operators
Modeling of free oscillations of a mass-spring system
Euler-Cauchy equations
Existence and uniqueness of solutions. Wronskian
Nonhomogeneous ODEs
Forced oscillations. Resonance.
Electric circuits
Solution by variation of parameters
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Variation of parameters

Variation of parameters

y ′′ + p(x)y ′ + q(x)y = r(x)

The difference with undertermined coefficients is that now p and q do not need to
be constant, although they must be continuous in an open interval I. Let’s
assume that y1 and y2 are two independent solutions of the H problem. Let us
assume that there is a particular solution of the NH problem of the form

yp = u(x)y1 + v(x)y2

y ′p = u′y1 + uy ′1 + v ′y2 + vy ′2 = (u′y1 + v ′y2) + (uy ′1 + vy ′2)

Since we have one equation (the ODE) and two unknowns (u and v) we may
impose an extra constraint

u′y1 + v ′y2 = 0

Thus
y ′′p = u′y ′1 + uy ′′1 + v ′y ′2 + vy ′′2
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Variation of parameters

Variation of parameters (continued)
Now we substitute into the ODE

y ′′ + p(x)y ′ + q(x)y = r(x)

(u′y ′1 + uy ′′1 + v ′y ′2 + vy ′′2 ) + p(uy ′1 + vy ′2) + q(uy1 + vy2) = r

u′y ′1 + v ′y ′2 + (y ′′1 + py ′1 + qy1)u + (y ′′2 + py ′2 + qy2) = r

u′y ′1 + v ′y ′2 = r

Now we have two equations with two unknows

u′y1 + v ′y2 = 0
u′y ′1 + v ′y ′2 = r

}
⇒
(

y1 y2
y ′1 y ′2

)(
u′
v ′
)

=

(
0
r

)
u′ = − ry2

W , v ′ = ry1
W
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Variation of parameters

Variation of parameters (continued)

u′ = − ry2
W , v ′ = ry1

W

u = −
∫ ry2

W dx , v =

∫ ry1
W

Finally,

yp = −y1

∫ y2r
W dx + y2

∫ y1r
W dx
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Variation of parameters

Example

y ′′ + y =
1

cos(x)
Solution:

y1 = cos(x)

y2 = sin(x)∣∣∣∣ cos(x) sin(x)
− sin(x) cos(x)

∣∣∣∣ = cos2(x) + sin2(x) = 1

yp = −y1

∫ y2r
W dx + y2

∫ y1r
W dx

yp = − cos(x)
∫ sin(x)

cos(x)dx + sin(x)
∫ cos(x)

cos(x)dx

yp = − cos(x) log | cos(x)|+ x sin(x)
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Variation of parameters

Example

yp = − cos(x) log | cos(x)|+ x sin(x)

The general solution is

y = c1 cos(x) + c2 sin(x)− cos(x) log | cos(x)|+ x sin(x)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 2, Section 10:

2.10.6

2. Second-order linear ODEs September 7, 2014 116 / 117



Outline

1 Second-order linear ODEs
Homogeneous linear ODEs
Homogeneous linear ODEs with constant coefficients
Differential operators
Modeling of free oscillations of a mass-spring system
Euler-Cauchy equations
Existence and uniqueness of solutions. Wronskian
Nonhomogeneous ODEs
Forced oscillations. Resonance.
Electric circuits
Solution by variation of parameters
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