Chapter 3. Higher-order linear ODEs

C.O.S. Sorzano

Biomedical Engineering

September 7, 2014

CEU
Universidad
San Pablo

Outline

(1) Higher-order linear ODEs

- Homogeneous linear ODEs
- Homogeneous linear ODEs with constant coefficients
- Nonhomogeneous linear ODEs

References

E. Kreyszig. Advanced Engineering Mathematics. John Wiley \& sons. Chapter 3.

Outline

(1) Higher-order linear ODEs

- Homogeneous linear ODEs
- Homogeneous linear ODEs with constant coefficients
- Nonhomogeneous linear ODEs

Homogeneous linear ODEs of higher-order

Definition

A nth-order ODE is linear if it can be written as

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\ldots+p_{1}(x) y^{\prime}+p_{0}(x) y=r(x)
$$

Otherwise, it is nonlinear. It is homogeneous if $r(x)=0$.

Theorem: Principle of superposition

The linear combination of any number solutions of a homogeneous, linear ODE is also a solution.

General solution

The general solution of the ODE on an open interval $/$ is of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}
$$

where $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a set of linearly independent (in I) solutions.

Linear independence

Linear independence

A set $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly independent in I if

$$
k_{1} y_{1}+k_{2} y_{2}+\ldots+k_{n} y_{n}=0 \Rightarrow k_{1}=k_{2}=\ldots=k_{n}=0
$$

Example

$\left\{x^{2}, 5 x, 2 x\right\}$ is linearly dependent on any open interval because

$$
0 y_{1}+y_{2}-\frac{5}{2} y_{3}=0
$$

$\left\{1, x, x^{2}\right\}$ is linearly independent on any open interval. We will learn a good method of testing independence with the Wronskian.

Basis of a general solution

Example

$$
y^{i v}-5 y^{\prime \prime}+4 y=0
$$

Solution:
Let's try a solution of the form $e^{\lambda x}$

$$
\begin{gathered}
\lambda^{4} e^{\lambda x}-5 \lambda^{2} e^{\lambda x}+4 e^{\lambda x}=0 \\
e^{\lambda x}\left(\lambda^{4}-5 \lambda^{2}+4\right)=0 \\
\lambda^{4}-5 \lambda^{2}+4=0 \\
\left(\lambda^{2}\right)^{2}-5\left(\lambda^{2}\right)+4=0 \Rightarrow \lambda^{2}=4,1 \Rightarrow \lambda= \pm 2, \pm 1
\end{gathered}
$$

The general solution is

$$
y=c_{1} e^{-2 x}+c_{2} e^{-x}+c_{3} e^{x}+c_{4} e^{2 x}
$$

Initial Value Problem

Initial Value Problem

An Initial Value Problem consists of n initial conditions

$$
\begin{gathered}
y\left(x_{0}\right)=K_{0} \\
y^{\prime}\left(x_{0}\right)=K_{1} \\
\cdots \\
y^{(n-1)}\left(x_{0}\right)=K_{n-1}
\end{gathered}
$$

These n conditions are used to determine the constants of the general solution

$$
y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}
$$

Initial Value Problem

Example

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0 \quad y(1)=2, y^{\prime}(1)=1, y^{\prime \prime}(1)=-4
$$

Solution:
This is a third-order Euler-Cauchy problem. Let's try a solution of the form $y=x^{m}$

$$
\begin{gathered}
x^{3}\left(m(m-1)(m-2) x^{m-3}\right)-3 x^{2}\left(m(m-1) x^{m-2}\right)+6 x\left(m x^{m-1}\right)-6 x^{m}=0 \\
m(m-1)(m-2) x^{m}-3 m(m-1) x^{m}+6 m x^{m}-6 x^{m}=0 \\
x^{m}(m(m-1)(m-2)-3 m(m-1)+6 m-6)=0 \\
x^{m}\left(m^{3}-6 m^{2}+11 m-6\right)=0 \\
x^{m}(m-1)(m-2)(m-3)=0
\end{gathered}
$$

So the general solution is

$$
y=c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

Initial Value Problem

Example (continued)

$$
y=c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

The particular solution is determined by imposing the initial conditions $y(1)=2, y^{\prime}(1)=1, y^{\prime \prime}(1)=-4$

$$
\begin{gathered}
y(1)=2=c_{1}+c_{2}+c_{3} \\
y^{\prime}(1)=1=c_{1}+2 c_{2}+3 c_{3} \\
y^{\prime \prime}(1)=-4=2 c_{2}+6 c_{3}
\end{gathered}
$$

The solution is $c_{1}=2, c_{2}=1, c_{3}=-1$ and the particular solution becomes

$$
y_{p}=2 x+x^{2}-x^{3}
$$

Linear independence of solutions. Wronskian

Linear independence of solutions: Wronskian

Considering the previous problem with continuous p_{n-1}, p_{n-2}, \ldots and p_{0} functions on an open interval I. A set of solutions $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ on I is linearly independent iff their Wroskian is different from 0 all $x \in I$

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\
\ldots & \ldots & \ldots & \ldots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \ldots & y_{n}^{(n-1)}
\end{array}\right| \neq 0
$$

If $W(x)=0$ for a point $x \in I$, then it is also 0 for all $x \in I$ (and the two solutions are linearly dependent).

Linear independence of solutions. Wronskian

Example

$\left\{1, x, x^{2}\right\}$ are solutions of the ODE

$$
y^{\prime \prime \prime}=0
$$

The p coefficients are continouous everywhere (\mathbb{R}). Then, by the previous theorem they are independent if their Wronskian is different from 0 at some point

$$
W(x)=\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right|=2
$$

Since the Wronskian is not 0 , the 3 functions are linearly independent.

Existence and uniqueness of solutions

Existence and uniqueness Theorem

Let us analyze the existence and solutions of the Initial Value Problem. If $p_{n-1}(x), p_{n-2}(x), \ldots, p_{0}(x)$ are continuous on some open interval I and $x_{0} \in I$, then the IVP has a unique solution in I.

Existence of a general solution

If $p_{n-1}(x), p_{n-2}(x), \ldots, p_{0}(x)$ are continuous functions on an open interval I, then there exists a general solution on I and any solution is of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}
$$

where $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a basis of solutions on I. Hence, the IVP has no singular solution (that is, solutions that cannot be obtained from the general solution).

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 3, Section 1:

- 3.1.1
- 3.1.5

Outline

(1) Higher-order linear ODEs

- Homogeneous linear ODEs
- Homogeneous linear ODEs with constant coefficients
- Nonhomogeneous linear ODEs

Homogeneous linear ODEs with constant coefficients

Definition

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{1} y^{\prime}+p_{0} y=0
$$

If we try a solution of the form $y=e^{\lambda x}$, we get the characteristic equation

$$
\lambda^{n}+p_{n-1} \lambda^{n-1}+\ldots+p_{1} \lambda+p_{0}=0
$$

whose roots may be real or complex, and have any degree of multiplicity.

Distinct real roots

The general solution is

$$
y=c_{1} e^{\lambda_{1} x}+\ldots+c_{n} e^{\lambda_{n} x}
$$

Homogeneous linear ODEs with constant coefficients

Simple complex roots

The general solution associated to a couple of conjugated complex roots is

$$
\begin{gathered}
\lambda_{1}, \lambda_{2}=\alpha \pm i \omega \\
y=e^{\alpha x}\left(c_{1} \cos (\omega x)+c_{2} \sin (\omega x)\right)=e^{\alpha x} \cos (\omega x-\delta)
\end{gathered}
$$

Example

$$
y^{\prime \prime \prime}-y^{\prime \prime}+100 y^{\prime}-100 y=0
$$

Solution:

$$
\begin{gathered}
\lambda^{3}-\lambda^{2}+100 \lambda-100=0 \\
(\lambda-1)\left(\lambda^{2}+100\right)=0 \Rightarrow \lambda=1, \pm 10 i
\end{gathered}
$$

The general solution is

$$
y=c_{1} e^{x}+c_{2} \cos (10 x)+c_{3} \sin (10 x)
$$

Homogeneous linear ODEs with constant coefficients

Multiple real roots

The general solution associated to a real root of order m is

$$
y=\left(c_{0}+c_{1} x+\ldots+c_{m-1} x^{m-1}\right) e^{\lambda_{1} x}
$$

Example

$$
y^{v}-3 y^{i v}+3 y^{\prime \prime \prime}-y^{\prime \prime}=0
$$

Solution:

$$
\begin{gathered}
\lambda^{5}-3 \lambda^{4}+3 \lambda^{3}-\lambda^{2}=0 \\
(\lambda-1)^{3} \lambda^{2}=0 \Rightarrow \lambda=1(3), 0(2)
\end{gathered}
$$

The general solution is

$$
y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{x}+\left(c_{4}+c_{5} x\right)
$$

Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof

Consider the ODE

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{1} y^{\prime}+p_{0} y=0
$$

And define the differential operator

$$
L=D^{n}+p_{n-1} D^{(n-1)}+\ldots+p_{1} D+p_{0} /
$$

The ODE can be written as

$$
L y=0
$$

For $y=e^{\lambda x}$ we have

$$
L\left(e^{\lambda x}\right)=e^{\lambda x} P(\lambda)=0
$$

where $P(\lambda)$ is the characteristic polynomial.

Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

$$
L\left(e^{\lambda x}\right)=e^{\lambda x} P(\lambda)=0
$$

If λ_{1} is a root of order m, then the previous equation can be written as

$$
L\left(e^{\lambda x}\right)=e^{\lambda x}\left(\lambda-\lambda_{1}\right)^{m} P_{1}(\lambda)
$$

Now we differentiate both sides with respect to λ

$$
\frac{\partial L\left(e^{\lambda x}\right)}{\partial \lambda}=\frac{\partial\left(e^{\lambda x}\left(\lambda-\lambda_{1}\right)^{m} P_{1}(\lambda)\right)}{\partial \lambda}
$$

$$
\frac{\partial L\left(e^{\lambda x}\right)}{\partial \lambda}=m\left(\lambda-\lambda_{1}\right)^{m-1}\left[e^{\lambda x} P_{1}(\lambda)\right]+\left(\lambda-\lambda_{1}\right)^{m} \frac{\partial\left[e^{\lambda x} P_{1}(\lambda)\right]}{\partial \lambda}
$$

Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

Since all the derivatives involved are continuous, we may interchange the order of derivation

$$
\frac{\partial L\left(e^{\lambda x}\right)}{\partial \lambda}=L\left(\frac{\partial e^{\lambda x}}{\partial \lambda}\right)=L\left(x e^{\lambda x}\right)
$$

In particular at $\lambda=\lambda_{1}$ we have

$$
\begin{gathered}
\left.\frac{\partial L\left(e^{\lambda x}\right)}{\partial \lambda}\right|_{\lambda=\lambda_{1}}=L\left(x e^{\lambda_{1} x}\right) \\
m\left(\lambda_{1}-\lambda_{1}\right)^{m-1}\left[e^{\lambda_{1} x} P_{1}\left(\lambda_{1}\right)\right]+\left.\left(\lambda_{1}-\lambda_{1}\right)^{m} \frac{\partial\left[e^{\lambda x} P_{1}(\lambda)\right]}{\partial \lambda}\right|_{\lambda=\lambda_{1}}=L\left(x e^{\lambda_{1} x}\right)
\end{gathered}
$$

Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

$$
\begin{gathered}
m\left(\lambda_{1}-\lambda_{1}\right)^{m-1}\left[e^{\lambda_{1} x} P_{1}\left(\lambda_{1}\right)\right]+\left.\left(\lambda_{1}-\lambda_{1}\right)^{m} \frac{\partial\left[e^{\lambda x} P_{1}(\lambda)\right]}{\partial \lambda}\right|_{\lambda=\lambda_{1}}=L\left(x e^{\lambda_{1} x}\right) \\
m(0)^{m-1}\left[e^{\lambda_{1} x} P_{1}\left(\lambda_{1}\right)\right]+\left.(0)^{m} \frac{\partial\left[e^{\lambda x} P_{1}(\lambda)\right]}{\partial \lambda}\right|_{\lambda=\lambda_{1}}=L\left(x e^{\lambda_{1} x}\right) \\
0=L\left(x e^{\lambda_{1} x}\right)
\end{gathered}
$$

But the last equation means that $x e^{\lambda_{1} x}$ is a solution of the ODE. A similar derivation applies to $x^{2} e^{\lambda_{1} x}, \ldots, x^{m-1} e^{\lambda_{1} x}$.

Homogeneous linear ODEs with constant coefficients

Multiple complex conjugate roots

The general solution associated to a couple of conjugated complex roots of order m is

$$
\begin{gathered}
\lambda_{1}, \lambda_{2}=\alpha \pm i \omega(m) \\
y=e^{\alpha x}\left(\left(a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}\right) \cos (\omega x)+\left(b_{0}+b_{1} x+\ldots+b_{m-1} x^{m-1}\right) \sin (\omega x)\right) \\
y=e^{\alpha x}\left(A_{0} \cos \left(\omega x-\delta_{0}\right)+A_{1} x \cos \left(\omega x-\delta_{1}\right)+\ldots+A_{m-1} x^{m-1} \cos \left(\omega x-\delta_{m-1}\right)\right)
\end{gathered}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 3, Section 2:

14. PROJECT. Reduction of Order. This is of practical interest since a single solution of an ODE can often be guessed. For second order, see Example 7 in Sec. 2.1.
(a) How could you reduce the order of a linear constant-coefficient ODE if a solution is known?
(b) Extend the method to a variable-coefficient ODE

$$
y^{\prime \prime \prime}+p_{2}(x) y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{0}(x) y=0
$$

Assuming a solution y_{1} to be known, show that another solution is $y_{2}(x)=u(x) y_{1}(x)$ with $u(x)=\int z(x) d x$ and z obtained by solving
$y_{1} z^{\prime \prime}+\left(3 y_{1}^{\prime}+p_{2} y_{1}\right) z^{\prime}+\left(3 y_{1}^{\prime \prime}+2 p_{2} y_{1}^{\prime}+p_{1} y_{1}\right) z=0$.
(c) Reduce

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+\left(6-x^{2}\right) x y^{\prime}-\left(6-x^{2}\right) y=0
$$

using $y_{1}=x$ (perhaps obtainable by inspection).

Outline

(1) Higher-order linear ODEs

- Homogeneous linear ODEs
- Homogeneous linear ODEs with constant coefficients
- Nonhomogeneous linear ODEs

Nonhomogeneous linear ODEs

Nonhomogeneous linear ODEs

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\ldots+p_{1}(x) y^{\prime}+p_{0}(x) y=r(x)
$$

The general solution is the sum of the general solution of the H problem and a particular solution of the NH problem

$$
y=y_{h}+y_{p}
$$

If the $p_{i}(i=0,1, \ldots, n-1)$ and r functions are continuous, then the general solution contains all solutions (there are no singular solutions).

Method of undetermined coefficients

Nonhomogeneous linear ODEs

Only valid for linear ODEs with constant coefficients.

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{1} y^{\prime}+p_{0} y=r(x)
$$

Same methodology as for second-order ODEs.

Example

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=30 e^{-x} \quad y(0)=3, y^{\prime}(0)=-3, y^{\prime \prime}(0)=-47
$$

Solution:
The general solution of the H problem comes from

$$
\begin{gathered}
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0 \\
(\lambda+1)^{3}=0 \\
y_{h}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{-x}
\end{gathered}
$$

Method of undetermined coefficients

Example (continued)

For the NH problem, we see that $r=30 e^{-x}$ is similar to one of the functions in the basis of the homogeneous solutions. So we try

$$
\begin{gathered}
y_{p}=C x^{3} e^{-x} \\
y_{p}^{\prime}=C\left(3 x^{2}-x^{3}\right) e^{-x} \\
y_{p}^{\prime \prime}=C\left(6 x-6 x^{2}+x^{3}\right) e^{-x} \\
y_{p}^{\prime \prime \prime}=C\left(6-18 x+9 x^{2}-x^{3}\right) e^{-x}
\end{gathered}
$$

Substituting in the ODE and dropping the term e^{-x}

$$
\begin{gathered}
C\left(6-18 x+9 x^{2}-x^{3}\right)+3 C\left(6 x-6 x^{2}+x^{3}\right)+3 C\left(3 x^{2}-x^{3}\right)+C x^{3}=30 \\
6 C=30 \Rightarrow C=5 \\
y_{p}=5 x^{3} e^{-x}
\end{gathered}
$$

Method of undetermined coefficients

Example (continued)

The general solution is

$$
y=y_{h}+y_{p}=\left(c_{1}+c_{2} x+c_{3} x^{2}+5 x^{3}\right) e^{-x}
$$

Imposing the initial conditions, $y(0)=3, y^{\prime}(0)=-3, y^{\prime \prime}(0)=-47$, we get

$$
\begin{gathered}
y(0)=3=\left(c_{1}+c_{2} 0+c_{3}(0)^{2}+5(0)^{3}\right) e^{-0}=c_{1} \Rightarrow c_{1}=3 \\
y^{\prime}=\left(-3+c_{2}+\left(-c_{2}+2 c_{3}\right) x+\left(15-c_{3}\right) x^{2}-5 x^{3}\right) e^{-x} \\
y^{\prime}(0)=-3=-3+c_{2} \Rightarrow c_{2}=0 \\
y^{\prime \prime}=\left(3+2 c_{3}+\left(30-4 c_{3}\right) x+\left(-30+c_{3}\right) x^{2}+5 x^{3}\right) e^{-x} \\
y^{\prime \prime}(0)=-47=3+2 c_{3} \Rightarrow c_{3}=-25
\end{gathered}
$$

The particular solution is

$$
y=\left(3-25 x^{2}+5 x^{3}\right) e^{-x}
$$

Method of undetermined coefficients

Example (continued)

$$
y=\left(3-25 x^{2}+5 x^{3}\right) e^{-x}
$$

Fig. 74. y and y_{p} (dashed) in Example 1

Method of variation of parameters

Method of variation of parameters

It can be applied to arbitrary p_{i} functions. Given n solutions of the H problem, y_{i} $(i=1,2, \ldots, n)$, the particular solution of the NH problem is of the form

$$
y_{p}=\sum_{k=1}^{n} y_{k} \int \frac{W_{k}}{W} r d x
$$

where W is the Wronskian of the n homogeneous solutions and W_{k} is obtained from W by subtituting the k-th column by $[00 \ldots 01]^{T}$.

Method of variation of parameters

Example

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=x^{4} \log x \quad(x>0)
$$

This is an Euler-Cauchy equation. We try $y=x^{m}$ for the H problem

$$
\begin{gathered}
x^{3} m(m-1)(m-2) x^{m-3}-3 x^{2} m(m-1) x^{m-2}+6 x m x^{m-1}-6 x^{m}=0 \\
m(m-1)(m-2) x^{m}-3 m(m-1) x^{m}+6 m x^{m}-6 x^{m}=0 \\
m(m-1)(m-2)-3 m(m-1)+6 m-6=0 \Rightarrow m=1,2,3 \\
y_{h}=c_{1} x+c_{2} x^{2}+c_{3} x^{3}
\end{gathered}
$$

Method of variation of parameters

Example (continued)

For the particular solution, we need the following determinants

$$
\begin{aligned}
& W=\left|\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array}\right|=2 x^{3} \\
& W_{1}=\left|\begin{array}{ccc}
0 & x^{2} & x^{3} \\
0 & 2 x & 3 x^{2} \\
1 & 2 & 6 x
\end{array}\right|=x^{4} \\
& W_{2}=\left|\begin{array}{ccc}
x & 0 & x^{3} \\
1 & 0 & 3 x^{2} \\
0 & 1 & 6 x
\end{array}\right|=-2 x^{3} \\
& W_{3}=\left|\begin{array}{ccc}
x & x^{2} & 0 \\
1 & 2 x & 0 \\
0 & 2 & 1
\end{array}\right|=x^{2}
\end{aligned}
$$

Method of variation of parameters

Example (continued)

We need the ODE in the standard form

$$
y^{\prime \prime \prime}-3 \frac{1}{x} y^{\prime \prime}+6 \frac{1}{x^{2}} y^{\prime}-6 \frac{1}{x^{3}} y=x \log x
$$

The particular solution of the NH problem is

$$
\begin{gathered}
y_{p}=y_{1} \int \frac{W_{1}}{W} r d x+y_{2} \int \frac{W_{2}}{W} r d x+y_{3} \int \frac{W_{3}}{W} r d x \\
y_{p}=x \int \frac{x^{4}}{2 x^{3}} x \log x d x+x^{2} \int \frac{2 x^{3}}{2 x^{3}} x \log x d x+x^{3} \int \frac{x^{2}}{2 x^{3}} x \log x d x \\
y_{p}=x \int \frac{x^{2}}{2} \log x d x+x^{2} \int x \log x d x+x^{3} \int \frac{1}{2} \log x d x \\
y_{p}=\frac{x}{2}\left(\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}\right)-x^{2}\left(\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}\right)+\frac{x^{3}}{2}(x \log x-x)
\end{gathered}
$$

Method of variation of parameters

Example (continued)

$$
\begin{gathered}
y_{p}=\frac{x}{2}\left(\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}\right)-x^{2}\left(\frac{x^{2}}{2} \log x-\frac{x^{2}}{4}\right)+\frac{x^{3}}{2}(x \log x-x) \\
y_{p}=\frac{1}{6} x^{4}\left(\log x-\frac{11}{6}\right) \\
y=y_{h}+y_{p}=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\frac{1}{6} x^{4}\left(\log x-\frac{11}{6}\right)
\end{gathered}
$$

Fig. 75. Particular solution y_{p} of the nonhomogeneous Euler-Cauchy equation in Example 2

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 3, Section 3:

- 3.3.6
- 3.3.10

Outline

(1) Higher-order linear ODEs

- Homogeneous linear ODEs
- Homogeneous linear ODEs with constant coefficients
- Nonhomogeneous linear ODEs

