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Homogeneous linear ODEs of higher-order

Definition
A nth-order ODE is linear if it can be written as
Y 4 po 1 ()Y 4 L+ pr(x)y + po(x)y = r(x)

Otherwise, it is nonlinear. It is homogeneous if r(x) = 0.

Theorem: Principle of superposition

The linear combination of any number solutions of a homogeneous, linear ODE is
also a solution.

General solution

The general solution of the ODE on an open interval [ is of the form

y=cayi+ays+ ...+ Cpyn
where {y1,¥2, ..., ¥n} is a set of linearly independent (in /) solutions.
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Linear independence

Linear independence
A set {y1, 2, ..., yn} is linearly independent in [ if

kiyin +koyo + ...+ kpyn=0=> ki =k =... =k, =0

{x2,5x,2x} is linearly dependent on any open interval because

5
Oy1 +Y2—§}’3=0

{1, x, x?} is linearly independent on any open interval. We will learn a good

method of testing independence with the Wronskian.
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Basis of a general solution

yiv _5}/”“1‘4)/: 0

Solution:

Let's try a solution of the form e~

)\4eAx_5>\Qe)\x+4eAx:0
e)xX(A4_5)\2+4) =0
M -5 +4=0
(W22 —5(02)+4=0=>X=4,1=>\==42,+1

The general solution is

y =cre >+ me ™ + ;e + e
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An Initial Value Problem consists of n initial conditions

y(x0) = Ko

y'(x0) = K1

y(n_l)(XO) = Kn-1

These n conditions are used to determine the constants of the general solution

y=ayi+cy:+ ...+ chyn




Initial Value Problem

3 "_ 3,2 y" +6xy’ — 6y =0 y(1)=2 y(l) =1 yl/(l)

Solution:

This is a third-order Euler-Cauchy problem. Let's try a solution of the form

y=x"

x3(m(m —1)(m — 2)x™3) — 3x*(m(m — 1)x™2) + 6x(mx

m(m — 1)(m — 2)x™ — 3m(m — 1)x™ + 6mx™ —

m—1) — 6x™

6x™ =0

x™(m(m—1)(m—2) —3m(m—1)+6m—6) =0

x™(m* —6m? 4+ 11m — 6) = 0
x™(m—1)(m—-2)(m—-3)=0
So the general solution is

y=ax+ C2x2 + C3x3

=0

W
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Initial Value Problem

y=ax+ czx2 aF C3X3

The particular solution is determined by imposing the initial conditions
y(1)=2,y'(1) =1,y"(1) = -4
y(l)=2=ca+a+c

y/(].) =1=c +2c +3c
y'(1) = —4 =2¢; + 6c3
The solution is ¢; =2, ¢ =1, c3 = —1 and the particular solution becomes

3

yp:2x~|—X2—x
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Linear independence of solutions. Wronskian

Linear independence of solutions: Wronskian
....and pg functions

Considering the previous problem with continuous p,_1, pn,—2,
on an open interval /. A set of solutions {yi, y2, ..., ¥} on [ is linearly independent

iff their Wroskian is different from 0 all x € /

)/1 y2 _yn

/ / /
wey=| 7T TR

yl(nfl) yz(nfl) ylSnfl)

If W(x) =0 for a point x € /, then it is also 0 for all x € / (and the two solutions

are linearly dependent).
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Linear independence of solutions. Wronskian

{1, x, x?} are solutions of the ODE
y/// — 0

The p coefficients are continouous everywhere (R). Then, by the previous
theorem they are independent if their Wronskian is different from 0 at some point

Since the Wronskian is not 0, the 3 functions are linearly independent.
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Existence and uniqueness of solutions

Existence and uniqueness Theorem

Let us analyze the existence and solutions of the Initial Value Problem. If
Pn—1(x), Pn—2(x), ..., po(x) are continuous on some open interval / and xo € /,
then the IVP has a unique solution in /.

Existence of a general solution

If pn—1(x), pn—2(x), ..., po(x) are continuous functions on an open interval /, then
there exists a general solution on / and any solution is of the form

y=ay+ay+..+chyn

where {y1, ¥2, ..., yn} is a basis of solutions on /. Hence, the IVP has no singular
solution (that is, solutions that cannot be obtained from the general solution).
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Exercises

From Kreyszig (10th ed.), Chapter 3, Section 1:
e 3.1.1

@ 315
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Y+ py" D+t 1y + poy = 0
If we try a solution of the form y = e**, we get the characteristic equation
AN+ PN A+ =0

whose roots may be real or complex, and have any degree of multiplicity.

The general solution is

y = 1™ + ... + et~




Homogeneous linear ODEs with constant coefficients

Simple complex roots

The general solution associated to a couple of conjugated complex roots is
)\1, )\2 =oaxiw
y = e*(c1 cos(wx) + e sin(wx)) = e cos(wx — 9)

y"" —y" +100y’ — 100y =0

Solution:
A3 — A2 4100\ —100=0

(A—1)(A\?+100) =0 = \ = 1,410i

The general solution is

y = a e’ + ¢ cos(10x) + c3sin(10x)
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Homogeneous linear ODEs with constant coefficients

Multiple real roots

The general solution associated to a real root of order m is

y = (CO +ax+...+ cm_lx'"_l)ehx

yv _ 3yiv + 3ylll _ y// =0

Solution:
N3 33— =0

A=13N=0=)=1(3),0(2)

The general solution is

y = (a1 + cox + c3x?)e* + (s + csx)
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof
Consider the ODE

Y 4 pa1y "V 4 pry’ + poy =0
And define the differential operator
L=D"+ p,_1D" Y 4+ ..+ piD+ pol

The ODE can be written as
Ly =0

For y = e we have
L(e™) =e™P()\) =0

where P() is the characteristic polynomial.
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)
L(e™) =e™P(\) =0
If A1 is a root of order m, then the previous equation can be written as
L(eM) = e (A — A1)"Pi(N)
Now we differentiate both sides with respect to A

oL(e™)  9(eM(A — A1)™Pi(N)

oA oA
OL(e™) m—1 [ Ax m0 [ P1(V)]
o = M= M) [P+ (A= M)
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

Since all the derivatives involved are continuous, we may interchange the order of

derivation oL \ ) i
L(e™ _ e\ Ax
N L ( oY ) = L(xe™)

In particular at A = A\; we have

aL(e™)
oA

9 [eMPi(N)]

m()\l — Al)m_l [e/\lxpl()\l)] + ()\1 — )\1)m £
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

9 [eMPy(N)]

m(>\1 — )\1)m_1 [e/\1XP1(>\1)] + ()\1 — )\1)m £

0 [eM™Py(N)]

m(O)™ [Py ()] + (O)" T

0 = L(xe™)

But the last equation means that xe** is a solution of the ODE. A similar
derivation applies to x2e**, ..., xm~leMx,
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The general solution associated to a couple of conjugated complex roots of order
m is

)\1,)\2 =ax iw(m)
y = e ((ap+arx+...+am_1x™ 1) cos(wx)+(bo+ by1x+ ...+ bp_1x™ 1) sin(wx))
y = e™(Ag cos(wx — ) + Arx cos(wx — 01) + ... + Ap_1x™ L cos(wx — dm_1))




Exercises

Exercises

From Kreyszig (10th ed.), Chapter 3, Section 2:

14. PROJECT. Reduction of Order. This is of practical
interest since a single solution of an ODE can often be
guessed. For second order, see Example 7 in Sec. 2.1.

(a) How could you reduce the order of a linear
constant-coefficient ODE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

"
v

+ pa(x)y” + pr(x)y” + po(x)y = 0.

Assuming a solution y; to be known, show that another
solution is yo(x) = u(x)y1(x) with u(x) = [z(x) dx and
z obtained by solving

y1z"+ Gyi + paypz’ + (3] + 2oy + prypz = 0.
(c) Reduce
xs_v"' - 3x2y" + (6 — xz)xy' - (6 — .‘cg)y =0,

using y1 = x (perhaps obtainable by inspection).
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Nonhomogeneous linear ODEs

Nonhomogeneous linear ODEs

vy 4o 1 (x)y Y 4 i (X)y + po(x)y = r(x)

The general solution is the sum of the general solution of the H problem and a
particular solution of the NH problem

Y=Ynt+Yp

If the p; (i=0,1,...,n—1) and r functions are continuous, then the general
solution contains all solutions (there are no singular solutions).
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Method of undetermined coefficients

Nonhomogeneous linear ODEs

Only valid for linear ODEs with constant coefficients.

Y+ p1y " 4 iy + poy = r(x)

Same methodology as for second-order ODEs.

y" +3y" +3y' +y =30e™* y(0) =3,y'(0) = —3,y"(0) = —47

Solution:
The general solution of the H problem comes from

AN 4+3)24+30+1=0

(A+1)°=0

yh = (1 + cox + c3x?)e™
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Method of undetermined coefficients

For the NH problem, we see that r = 30e™* is similar to one of the functions in
the basis of the homogeneous solutions. So we try

yp = CxPe™™

v, =C(3x* = x*)e™™
vy = C(6x — 6x> + x7)e ™™
y)' = C(6 —18x +9x> — x>)e ™
Substituting in the ODE and dropping the term e
C(6 — 18x + 9x*> — x3) 4+ 3C(6x — 6x* 4+ x3) +3C(3x*> — x3) + Cx® =30

6C=30=C=5

yp = 5x3e™™

’
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Method of undetermined coefficients

The general solution is
Y =yn+yp=(c1+ cox + c3x® +5x3)e ™
Imposing the initial conditions, y(0) = 3,y’(0) = —3, y”(0) = —47, we get
y(0) =3 = (a1 + 20+ c3(0)> +5(0)%)e =c; = =3
Y =(-3+c+(—c +2c3)x + (15 — c3)x*> — 5x3)e >
y0)=-3=-34+0=c6=0
y" = (3+2c3+ (30 — 4c3)x + (—30 + c3)x? + 5x3)e ™™
y'(0)=—-47=3+2c3=> 3= -25

The particular solution is

y = (3 —25x% + 5x3)e™
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y = (3—25x% 4 5x%)e™~

y —_——
// M\
5, ~
/ i
\{

O | | | | 1 | ““I“""'i-———l
5 10

B+

Fig. 74. y and y, (dashed) in Example 1
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Method of variation of parameters

Method of variation of parameters

It can be applied to arbitrary p; functions. Given n solutions of the H problem, y;
(i=1,2,...,n), the particular solution of the NH problem is of the form

n
Wi
Yp = Z}’k / Wrdx
k=1

where W is the Wronskian of the n homogeneous solutions and W is obtained
from W by subtituting the k-th column by [00...01] .
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Method of variation of parameters

x3y" —3x%y" + 6xy’ — 6y = x*logx (x > 0)
This is an Euler-Cauchy equation. We try y = x™ for the H problem
x3m(m —1)(m —2)x™3 = 3x®m(m — 1)x™ 2 + 6xmx™ ! — 6x™ = 0
m(m — 1)(m — 2)x™ —3m(m — 1)x™ + 6mx™ — 6x™ =0
m(m—1)(m—-2)—-3m(m—-1)+6m—-6=0=m=1,2,3

Yh = C1X + C2X2 “F c3x3
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Method of variation of parameters

For the particular solution, we need the following determinants

x x2 X3
W=|1 2x 3x2
0 2 6x
0 x2 X3
Wi=|0 2x 3x2
1 2 6x
X x3
W, =11
0 b6x
x x2 0
We=|1 2x 0
0 2 1
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Method of variation of parameters

We need the ODE in the standard form

1 1 1
" _32y"+6=y —6—y=xlogx
X x?2 x3

The particular solution of the NH problem is
W
Yp _yl/—rdx+y2/—rdx+y3/W3rdx
Yp = x/ 2X3xlogxdx + x /—xlogxdx + x /—xlogxdx

yp:x/X?Iogxdx—|—x2/x|ogxdx+x3/§Iogxdx

== X3on X x? X2|OX < +X3(X|ox X)
a3 2 BN Ty )TV
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Method of variation of parameters

2 3 1 4 11
Y =Ynt Yp = CX + 0X" + ;3X +6X Iogx—g
y
30
20
10

Fig. 75. Particular solution y, of the nonhomogeneous
Euler—Cauchy equation in Example 2

o’
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Exercises

From Kreyszig (10th ed.), Chapter 3, Section 3:
@ 3.3.6

e 3.3.10
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