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Homogeneous linear ODEs of higher-order

Definition
A nth-order ODE is linear if it can be written as

y (n) + pn−1(x)y (n−1) + ...+ p1(x)y ′ + p0(x)y = r(x)

Otherwise, it is nonlinear. It is homogeneous if r(x) = 0.

Theorem: Principle of superposition
The linear combination of any number solutions of a homogeneous, linear ODE is
also a solution.

General solution
The general solution of the ODE on an open interval I is of the form

y = c1y1 + c2y2 + ...+ cnyn

where {y1, y2, ..., yn} is a set of linearly independent (in I) solutions.
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Linear independence

Linear independence
A set {y1, y2, ..., yn} is linearly independent in I if

k1y1 + k2y2 + ...+ knyn = 0⇒ k1 = k2 = ... = kn = 0

Example
{x2, 5x , 2x} is linearly dependent on any open interval because

0y1 + y2 −
5
2y3 = 0

{1, x , x2} is linearly independent on any open interval. We will learn a good

method of testing independence with the Wronskian.
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Basis of a general solution

Example

y iv − 5y ′′ + 4y = 0

Solution:
Let’s try a solution of the form eλx

λ4eλx − 5λ2eλx + 4eλx = 0

eλx (λ4 − 5λ2 + 4) = 0

λ4 − 5λ2 + 4 = 0

(λ2)2 − 5(λ2) + 4 = 0⇒ λ2 = 4, 1⇒ λ = ±2,±1

The general solution is

y = c1e−2x + c2e−x + c3ex + c4e2x
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Initial Value Problem

Initial Value Problem
An Initial Value Problem consists of n initial conditions

y(x0) = K0

y ′(x0) = K1

...

y (n−1)(x0) = Kn−1

These n conditions are used to determine the constants of the general solution

y = c1y1 + c2y2 + ...+ cnyn
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Initial Value Problem

Example

x3y ′′′ − 3x2y ′′ + 6xy ′ − 6y = 0 y(1) = 2, y ′(1) = 1, y ′′(1) = −4

Solution:
This is a third-order Euler-Cauchy problem. Let’s try a solution of the form
y = xm

x3(m(m − 1)(m − 2)xm−3)− 3x2(m(m − 1)xm−2) + 6x(mxm−1)− 6xm = 0

m(m − 1)(m − 2)xm − 3m(m − 1)xm + 6mxm − 6xm = 0

xm(m(m − 1)(m − 2)− 3m(m − 1) + 6m − 6) = 0

xm(m3 − 6m2 + 11m − 6) = 0

xm(m − 1)(m − 2)(m − 3) = 0

So the general solution is

y = c1x + c2x2 + c3x3

3. Higher-order linear ODEs September 7, 2014 9 / 37



Initial Value Problem

Example (continued)

y = c1x + c2x2 + c3x3

The particular solution is determined by imposing the initial conditions
y(1) = 2, y ′(1) = 1, y ′′(1) = −4

y(1) = 2 = c1 + c2 + c3

y ′(1) = 1 = c1 + 2c2 + 3c3

y ′′(1) = −4 = 2c2 + 6c3

The solution is c1 = 2, c2 = 1, c3 = −1 and the particular solution becomes

yp = 2x + x2 − x3
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Linear independence of solutions. Wronskian

Linear independence of solutions: Wronskian
Considering the previous problem with continuous pn−1, pn−2, ... and p0 functions
on an open interval I. A set of solutions {y1, y2, ..., yn} on I is linearly independent
iff their Wroskian is different from 0 all x ∈ I

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 ... yn
y ′1 y ′2 ... y ′n
... ... ... ...

y (n−1)
1 y (n−1)

2 ... y (n−1)
n

∣∣∣∣∣∣∣∣ 6= 0

If W (x) = 0 for a point x ∈ I, then it is also 0 for all x ∈ I (and the two solutions
are linearly dependent).
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Linear independence of solutions. Wronskian

Example
{1, x , x2} are solutions of the ODE

y ′′′ = 0

The p coefficients are continouous everywhere (R). Then, by the previous
theorem they are independent if their Wronskian is different from 0 at some point

W (x) =

∣∣∣∣∣∣
1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣ = 2

Since the Wronskian is not 0, the 3 functions are linearly independent.
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Existence and uniqueness of solutions

Existence and uniqueness Theorem
Let us analyze the existence and solutions of the Initial Value Problem. If
pn−1(x), pn−2(x), ..., p0(x) are continuous on some open interval I and x0 ∈ I,
then the IVP has a unique solution in I.

Existence of a general solution
If pn−1(x), pn−2(x), ..., p0(x) are continuous functions on an open interval I, then
there exists a general solution on I and any solution is of the form

y = c1y1 + c2y2 + ...+ cnyn

where {y1, y2, ..., yn} is a basis of solutions on I. Hence, the IVP has no singular
solution (that is, solutions that cannot be obtained from the general solution).
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 3, Section 1:

3.1.1
3.1.5
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Homogeneous linear ODEs with constant coefficients

Definition
y (n) + pn−1y (n−1) + ...+ p1y ′ + p0y = 0

If we try a solution of the form y = eλx , we get the characteristic equation

λn + pn−1λ
n−1 + ...+ p1λ+ p0 = 0

whose roots may be real or complex, and have any degree of multiplicity.

Distinct real roots
The general solution is

y = c1eλ1x + ...+ cneλnx
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Homogeneous linear ODEs with constant coefficients

Simple complex roots
The general solution associated to a couple of conjugated complex roots is

λ1, λ2 = α± iω

y = eαx (c1 cos(ωx) + c2 sin(ωx)) = eαx cos(ωx − δ)

Example

y ′′′ − y ′′ + 100y ′ − 100y = 0

Solution:
λ3 − λ2 + 100λ− 100 = 0

(λ− 1)(λ2 + 100) = 0⇒ λ = 1,±10i

The general solution is

y = c1ex + c2 cos(10x) + c3 sin(10x)
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Homogeneous linear ODEs with constant coefficients

Multiple real roots
The general solution associated to a real root of order m is

y = (c0 + c1x + ...+ cm−1xm−1)eλ1x

Example

y v − 3y iv + 3y ′′′ − y ′′ = 0

Solution:
λ5 − 3λ4 + 3λ3 − λ2 = 0

(λ− 1)3λ2 = 0⇒ λ = 1(3), 0(2)

The general solution is

y = (c1 + c2x + c3x2)ex + (c4 + c5x)
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof
Consider the ODE

y (n) + pn−1y (n−1) + ...+ p1y ′ + p0y = 0

And define the differential operator

L = Dn + pn−1D(n−1) + ...+ p1D + p0I

The ODE can be written as
Ly = 0

For y = eλx we have
L(eλx ) = eλx P(λ) = 0

where P(λ) is the characteristic polynomial.
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

L(eλx ) = eλx P(λ) = 0

If λ1 is a root of order m, then the previous equation can be written as

L(eλx ) = eλx (λ− λ1)
mP1(λ)

Now we differentiate both sides with respect to λ

∂L(eλx )

∂λ
=
∂(eλx (λ− λ1)

mP1(λ))

∂λ

∂L(eλx )

∂λ
= m(λ− λ1)

m−1 [eλx P1(λ)
]
+ (λ− λ1)

m ∂
[
eλx P1(λ)

]
∂λ
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)
Since all the derivatives involved are continuous, we may interchange the order of
derivation

∂L(eλx )

∂λ
= L

(
∂eλx

∂λ

)
= L(xeλx )

In particular at λ = λ1 we have

∂L(eλx )

∂λ

∣∣∣∣
λ=λ1

= L(xeλ1x )

m(λ1 − λ1)
m−1 [eλ1x P1(λ1)

]
+ (λ1 − λ1)

m ∂
[
eλx P1(λ)

]
∂λ

∣∣∣∣∣
λ=λ1

= L(xeλ1x )
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Homogeneous linear ODEs with constant coefficients

Multiple real roots: Proof (continued)

m(λ1 − λ1)
m−1 [eλ1x P1(λ1)

]
+ (λ1 − λ1)

m ∂
[
eλx P1(λ)

]
∂λ

∣∣∣∣∣
λ=λ1

= L(xeλ1x )

m(0)m−1 [eλ1x P1(λ1)
]
+ (0)m ∂

[
eλx P1(λ)

]
∂λ

∣∣∣∣∣
λ=λ1

= L(xeλ1x )

0 = L(xeλ1x )

But the last equation means that xeλ1x is a solution of the ODE. A similar
derivation applies to x2eλ1x , ..., xm−1eλ1x .
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Homogeneous linear ODEs with constant coefficients

Multiple complex conjugate roots
The general solution associated to a couple of conjugated complex roots of order
m is

λ1, λ2 = α± iω(m)

y = eαx ((a0+a1x+ ...+am−1xm−1) cos(ωx)+(b0+b1x+ ...+bm−1xm−1) sin(ωx))

y = eαx (A0 cos(ωx − δ0) + A1x cos(ωx − δ1) + ...+ Am−1xm−1 cos(ωx − δm−1))
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 3, Section 2:
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Nonhomogeneous linear ODEs

Nonhomogeneous linear ODEs

y (n) + pn−1(x)y (n−1) + ...+ p1(x)y ′ + p0(x)y = r(x)

The general solution is the sum of the general solution of the H problem and a
particular solution of the NH problem

y = yh + yp

If the pi (i = 0, 1, ..., n − 1) and r functions are continuous, then the general
solution contains all solutions (there are no singular solutions).
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Method of undetermined coefficients

Nonhomogeneous linear ODEs
Only valid for linear ODEs with constant coefficients.

y (n) + pn−1y (n−1) + ...+ p1y ′ + p0y = r(x)

Same methodology as for second-order ODEs.

Example

y ′′′ + 3y ′′ + 3y ′ + y = 30e−x y(0) = 3, y ′(0) = −3, y ′′(0) = −47

Solution:
The general solution of the H problem comes from

λ3 + 3λ2 + 3λ+ 1 = 0

(λ+ 1)3 = 0

yh = (c1 + c2x + c3x2)e−x
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Method of undetermined coefficients

Example (continued)
For the NH problem, we see that r = 30e−x is similar to one of the functions in
the basis of the homogeneous solutions. So we try

yp = Cx3e−x

y ′p = C(3x2 − x3)e−x

y ′′p = C(6x − 6x2 + x3)e−x

y ′′′p = C(6− 18x + 9x2 − x3)e−x

Substituting in the ODE and dropping the term e−x

C(6− 18x + 9x2 − x3) + 3C(6x − 6x2 + x3) + 3C(3x2 − x3) + Cx3 = 30

6C = 30⇒ C = 5

yp = 5x3e−x

3. Higher-order linear ODEs September 7, 2014 28 / 37



Method of undetermined coefficients

Example (continued)
The general solution is

y = yh + yp = (c1 + c2x + c3x2 + 5x3)e−x

Imposing the initial conditions, y(0) = 3, y ′(0) = −3, y ′′(0) = −47, we get

y(0) = 3 = (c1 + c20+ c3(0)2 + 5(0)3)e−0 = c1 ⇒ c1 = 3

y ′ = (−3+ c2 + (−c2 + 2c3)x + (15− c3)x2 − 5x3)e−x

y ′(0) = −3 = −3+ c2 ⇒ c2 = 0

y ′′ = (3+ 2c3 + (30− 4c3)x + (−30+ c3)x2 + 5x3)e−x

y ′′(0) = −47 = 3+ 2c3 ⇒ c3 = −25

The particular solution is

y = (3− 25x2 + 5x3)e−x
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Method of undetermined coefficients

Example (continued)

y = (3− 25x2 + 5x3)e−x
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Method of variation of parameters

Method of variation of parameters
It can be applied to arbitrary pi functions. Given n solutions of the H problem, yi
(i = 1, 2, ..., n), the particular solution of the NH problem is of the form

yp =
n∑

k=1
yk

∫ Wk
W rdx

where W is the Wronskian of the n homogeneous solutions and Wk is obtained
from W by subtituting the k-th column by [00...01]T .
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Method of variation of parameters

Example

x3y ′′′ − 3x2y ′′ + 6xy ′ − 6y = x4 log x (x > 0)

This is an Euler-Cauchy equation. We try y = xm for the H problem

x3m(m − 1)(m − 2)xm−3 − 3x2m(m − 1)xm−2 + 6xmxm−1 − 6xm = 0

m(m − 1)(m − 2)xm − 3m(m − 1)xm + 6mxm − 6xm = 0

m(m − 1)(m − 2)− 3m(m − 1) + 6m − 6 = 0⇒ m = 1, 2, 3

yh = c1x + c2x2 + c3x3
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Method of variation of parameters

Example (continued)
For the particular solution, we need the following determinants

W =

∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣ = 2x3

W1 =

∣∣∣∣∣∣
0 x2 x3

0 2x 3x2

1 2 6x

∣∣∣∣∣∣ = x4

W2 =

∣∣∣∣∣∣
x 0 x3

1 0 3x2

0 1 6x

∣∣∣∣∣∣ = −2x3

W3 =

∣∣∣∣∣∣
x x2 0
1 2x 0
0 2 1

∣∣∣∣∣∣ = x2
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Method of variation of parameters

Example (continued)
We need the ODE in the standard form

y ′′′ − 3 1x y ′′ + 6 1
x2 y ′ − 6 1

x3 y = x log x

The particular solution of the NH problem is

yp = y1

∫ W1
W rdx + y2

∫ W2
W rdx + y3

∫ W3
W rdx

yp = x
∫ x4

2x3 x log xdx + x2
∫ 2x3

2x3 x log xdx + x3
∫ x2

2x3 x log xdx

yp = x
∫ x2

2 log xdx + x2
∫

x log xdx + x3
∫ 1

2 log xdx

yp =
x
2

(
x3

3 log x − x3

9

)
− x2

(
x2

2 log x − x2

4

)
+

x3

2 (x log x − x)
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Method of variation of parameters

Example (continued)

yp =
x
2

(
x3

3 log x − x3

9

)
− x2

(
x2

2 log x − x2

4

)
+

x3

2 (x log x − x)

yp =
1
6x4

(
log x − 11

6

)
y = yh + yp = c1x + c2x2 + c3x3 +

1
6x4

(
log x − 11

6

)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 3, Section 3:

3.3.6
3.3.10
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