Chapter 4. Systems of ODEs. Phase plane. Qualitative methods

C.O.S. Sorzano

Biomedical Engineering

September 13, 2014

CEU

Universidad
San Pablo

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

References

E. Kreyszig. Advanced Engineering Mathematics. John Wiley \& sons. Chapter 4.

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods - Systems of ODEs as models

- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Systems of ODEs as models

Mixing tanks

Solution:

$$
\begin{aligned}
& y_{1}^{\prime}=\text { inflow-outflow }=\frac{y_{2}}{100}\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] 2\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right]-\frac{y_{1}}{100}\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] 2\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right] \\
& y_{2}^{\prime}=\text { inflow-outflow }=\frac{y_{1}}{100}\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] 2\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right]-\frac{y_{2}}{100}\left[\frac{\mathrm{lb}}{\mathrm{gal}}\right] 2\left[\frac{\mathrm{gal}}{\mathrm{~min}}\right] \\
&\left.\begin{array}{c}
y_{1}^{\prime}=-0.02 y_{1}+0.02 y_{2} \\
y_{2}^{\prime}=0.02 y_{1}-0.02 y_{2}
\end{array}\right\} \Rightarrow\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
-0.02 & 0.02 \\
0.02 & -0.02
\end{array}\right)\binom{y_{1}}{y_{2}} \Rightarrow \mathbf{y}^{\prime}=A \mathbf{y}
\end{aligned}
$$

Systems of ODEs as models

Mixing tanks (continued)

We try a solution of the form

$$
\begin{aligned}
\mathbf{y} & =\mathbf{x} e^{\lambda t} \\
\mathbf{y}^{\prime} & =\lambda \mathbf{x} e^{\lambda t}
\end{aligned}
$$

Now we substitute into the ODE

$$
\begin{aligned}
\mathbf{y}^{\prime} & =A \mathbf{y} \\
\lambda \mathbf{x} e^{\lambda t} & =A \mathbf{x} e^{\lambda t} \\
\lambda \mathbf{x} & =A \mathbf{x}
\end{aligned}
$$

That is $\mathbf{y}=\mathbf{x} e^{\lambda t}$ can be a solution of the ODE if \mathbf{x} is an eigenvector of the matrix A and λ its associated eigenvalue.

$$
A \Rightarrow\left\{\begin{array}{c}
\lambda_{1}=0, \mathbf{x}_{1}=(1,1)^{T} \\
\lambda_{2}=-0.04, \mathbf{x}_{2}=(1,-1)^{T}
\end{array}\right.
$$

Systems of ODEs as models

Mixing tanks (continued)

The general solution is

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t} \\
\mathbf{y}=c_{1}\binom{1}{1}+c_{2}\binom{1}{-1} e^{-0.04 t}
\end{gathered}
$$

To determine the coefficients c_{1} and c_{2}, we impose the initial conditions $y_{1}(0)=0, y_{2}(150)$

$$
c_{1}\binom{0}{150}=c_{1}\binom{1}{1}+c_{2}\binom{1}{-1} \Rightarrow c_{1}=75, c_{2}=-75
$$

The solution to the problem is

$$
\mathbf{y}=75\binom{1}{1}-75\binom{1}{-1} e^{-0.04 t} \Rightarrow\left\{\begin{array}{l}
y_{1}=75-75 e^{-0.04 t} \\
y_{2}=75+75 e^{-0.04 t}
\end{array}\right.
$$

Systems of ODEs as models

Mixing tanks (continued)

$$
\mathbf{y}=75\binom{1}{1}-75\binom{1}{-1} e^{-0.04 t} \Rightarrow\left\{\begin{array}{l}
y_{1}=75-75 e^{-0.04 t} \\
y_{2}=75+75 e^{-0.04 t}
\end{array}\right.
$$

Systems of ODEs as models

Electrical network

Solution:

$$
\begin{gathered}
L I_{1}^{\prime}+R_{1}\left(I_{1}-I_{2}\right)=E \Rightarrow I_{1}^{\prime}=-R_{1} I_{1}+R_{1} I_{2}+E \\
R_{1}\left(I_{2}-I_{1}\right)+\frac{1}{C} \int I_{2} d t+R_{2} I_{2}=0 \Rightarrow-R_{1} I_{1}^{\prime}+\left(R_{1}+R_{2}\right) I_{2}^{\prime}=-\frac{1}{C} I_{2}
\end{gathered}
$$

Systems of ODEs as models

Electrical network (continued)

$$
\begin{gathered}
I_{1}^{\prime}=-R_{1} I_{1}+R_{1} I_{2}+E \\
-R_{1} I_{1}^{\prime}+\left(R_{1}+R_{2}\right) I_{2}^{\prime}=-\frac{1}{C} I_{2} \\
\left.\begin{array}{l}
I_{1}^{\prime}=-4 I_{1}+4 I_{2}+12 \\
-4 I_{1}^{\prime}+10 I_{2}^{\prime}=-4 I_{2}
\end{array}\right\} \Rightarrow\left(\begin{array}{cc}
1 & 0 \\
-4 & 10
\end{array}\right)\binom{l_{1}^{\prime}}{l_{2}^{\prime}}=\left(\begin{array}{cc}
-4 & 4 \\
0 & -4
\end{array}\right)\binom{I_{1}}{I_{2}}+\binom{12}{0} \\
\binom{l_{1}^{\prime}}{I_{2}^{\prime}}=\left(\begin{array}{cc}
-4 & 4 \\
-1.6 & 1.2
\end{array}\right)\binom{l_{1}}{I_{2}}+\binom{12}{4.8}
\end{gathered}
$$

The eigenvalues and eigenvectors of the matrix A are

$$
A \Rightarrow\left\{\begin{array}{c}
\lambda_{1}=-2, \mathbf{x}_{1}=(2,1)^{T} \\
\lambda_{2}=-0.8, \mathbf{x}_{2}=(1,0.8)^{T}
\end{array}\right.
$$

Systems of ODEs as models

Electrical network (continued)

$$
A \Rightarrow\left\{\begin{array}{c}
\lambda_{1}=-2, \mathbf{x}_{1}=(2,1)^{T} \\
\lambda_{2}=-0.8, \mathbf{x}_{2}=(1,0.8)^{T}
\end{array}\right.
$$

The general solution of the H problem is

$$
\mathbf{I}=c_{1}\binom{2}{1} e^{-2 t}+c_{2}\binom{1}{0.8} e^{-0.8 t}
$$

For a particular solution of the NH problem we try a constant vector $\mathbf{I}=\mathbf{a}$

$$
\binom{0}{0}=\left(\begin{array}{cc}
-4 & 4 \\
-1.6 & 1.2
\end{array}\right)\binom{a_{1}}{a_{2}}+\binom{12}{4.8} \Rightarrow a_{1}=3, a_{2}=0
$$

So the general solution of the NH problem is

$$
\mathbf{I}=c_{1}\binom{2}{1} e^{-2 t}+c_{2}\binom{1}{0.8} e^{-0.8 t}+\binom{3}{0}
$$

Systems of ODEs as models

Electrical network (continued)

$$
\mathbf{I}=c_{1}\binom{2}{1} e^{-2 t}+c_{2}\binom{1}{0.8} e^{-0.8 t}+\binom{3}{0}
$$

To determine the unknown coefficients we impose the initial condition $\mathbf{I}(0)=\mathbf{0}$

$$
\mathbf{0}=c_{1}\binom{2}{1} e^{-2 t}+c_{2}\binom{1}{0.8} e^{-0.8 t}+\binom{3}{0} \Rightarrow c_{1}=-4, c_{2}=5
$$

The solution to the problem is
$\mathbf{I}=-4\binom{2}{1} e^{-2 t}+5\binom{1}{0.8} e^{-0.8 t}+\binom{3}{0}$

Systems of ODEs as models

Electrical network (continued)

Conversion of an n-th order ODE to a system

Conversion of an ODE

An n-th order ODE

$$
y^{(n)}=F\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

can be converted to a system of n first-order ODEs by setting $y_{1}=y$ and

$$
\begin{gathered}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=y_{3} \\
\cdots \\
y_{n-1}^{\prime}=y_{n} \\
y_{n}^{\prime}=F\left(t, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{gathered}
$$

Conversion of an n-th order ODE to a system

Example

$$
m y^{\prime \prime}+c y^{\prime}+k y=0
$$

Solution:

$$
y^{\prime \prime}=-\frac{c}{m} y^{\prime}-\frac{k}{m} y
$$

Now we write it as

$$
\begin{gathered}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=-\frac{k}{m} y_{1}-\frac{c}{m} y_{2} \\
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right)\binom{y_{1}}{y_{2}}
\end{gathered}
$$

Its characteristic polynomial is

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
-\frac{k}{m} & -\frac{c}{m}-\lambda
\end{array}\right|=\lambda^{2}+\frac{c}{m} \lambda+\frac{k}{m}=0
$$

Conversion of an n-th order ODE to a system

Example (continued)

$$
\lambda^{2}+\frac{c}{m} \lambda+\frac{k}{m}=0
$$

Let us now give values, $m=1, c=2, k=0.75$

$$
\lambda^{2}+2 \lambda+0.75=0 \Rightarrow \lambda_{1}=-0.5, \lambda_{2}=-1.5
$$

With eigenvectors

$$
\mathbf{v}_{1}=(2,-1)^{T}, \mathbf{v}_{2}=(1,-1.5)^{T}
$$

So, the general solution is

$$
\mathbf{y}=c_{1}\binom{2}{-1} e^{-0.5 t}+c_{2}\binom{1}{-1.5} e^{-1.5 t}
$$

The first component is

$$
y_{1}=y=2 c_{1} e^{-0.5 t}+c_{2} e^{-1.5 t}
$$

The second combonent is its derivative.

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 4, Section 1:

- 4.1.1
- 4.1.12

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Basic theory

Basic theory

In general, an ODE system is of the form

$$
\begin{aligned}
& y_{1}^{\prime}=f_{1}\left(t, y_{1}, \ldots, y_{n}\right) \\
& y_{2}^{\prime}=f_{2}\left(t, y_{1}, \ldots, y_{n}\right) \\
& \quad \ldots \\
& y_{n}^{\prime}=f_{n}\left(t, y_{1}, \ldots, y_{n}\right)
\end{aligned} \Rightarrow \mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})
$$

An Initial Value Problem needs n initial conditions

$$
y_{1}\left(t_{0}\right)=K_{1}, y_{2}\left(t_{0}\right)=K_{2}, \ldots, y_{n}\left(t_{0}\right)=K_{n} \Rightarrow \mathbf{y}\left(t_{0}\right)=\mathbf{K}
$$

Existence and uniqueness

Let $f_{1}, f_{2}, \ldots, f_{n}$ be continuous functions with continuous partial derivatives $\frac{\partial f_{1}}{\partial y_{1}}$, $\frac{\partial f_{1}}{\partial y_{2}}, \ldots, \frac{\partial f_{n}}{\partial y_{n}}$ in some domain R of the $t y_{1} y_{2} \ldots y_{n}$-space containing the point $\left(t_{0}, K_{1}, \ldots, K_{n}\right)$. Then the ODE system has a solution on some interval $t_{0}-\alpha<t<t_{0}+\alpha$ satisfying the initial conditions, and this solution is unique.

Basic theory

Linear systems

$$
\begin{array}{r}
y_{1}^{\prime}=a_{11}(t) y_{1}+a_{12}(t) y_{2}+\ldots+a_{1 n}(t) y_{n}+g_{1}(t) \\
y_{2}^{\prime}=a_{21}(t) y_{1}+a_{22}(t) y_{2}+\ldots+a_{2 n}(t) y_{n}+g_{2}(t) \\
\ldots \\
y_{n}^{\prime}=a_{n 1}(t) y_{1}+a_{n 2}(t) y_{2}+\ldots+a_{n n}(t) y_{n}+g_{n}(t)
\end{array} \Rightarrow \mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{g}
$$

with

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

If $\mathbf{g}=\mathbf{0}$, the system is homogeneous.

Existence and uniqueness

Let the $a_{i j}$'s and g_{i} 's functions be continuous functions of t in an open interval $/$ containing t_{0}, then there exists a solution satisfying the initial conditions, and this solution is unique.

Basic theory

Superposition principle

The linear combination of any two solutions, \mathbf{y}_{1} and \mathbf{y}_{2}, of the H problem is also a solution of the H problem.
Proof:

$$
\begin{aligned}
\mathbf{y} & =c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2} \\
\mathbf{y}^{\prime} & =c_{1} \mathbf{y}_{1}^{\prime}+c_{2} \mathbf{y}_{2}^{\prime} \\
& =c_{1}\left(A \mathbf{y}_{1}\right)+c_{2}\left(A \mathbf{y}_{2}\right) \\
& =A\left(c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}\right) \\
& =A \mathbf{y}
\end{aligned}
$$

Basic theory

General solution. Wronskian

If the $a_{i j}$'s functions are continuous, then the general solution of the H problem can be written as

$$
\mathbf{y}=c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}+\ldots+c_{n} \mathbf{y}_{n}
$$

where $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$ constitute a basis or fundamental system of solutions, and there is no singular solution. We can write the n basis functions as the columns of a matrix Y

$$
Y=\left(\begin{array}{llll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \ldots & \mathbf{y}_{n}
\end{array}\right)
$$

and write the general solution as

$$
\mathbf{y}=Y_{\mathbf{c}}
$$

The Wronskian is the determinant of Y

$$
W=|Y|
$$

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods - Systems of ODEs as models

- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Constant coefficients systems

Constant coefficients systems

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

We try a function of the form

$$
\begin{aligned}
\mathbf{y} & =\mathbf{x} e^{\lambda t} \\
\mathbf{y}^{\prime} & =\lambda \mathbf{x} e^{\lambda t}
\end{aligned}
$$

And substitute it in the ODE

$$
\begin{aligned}
\lambda \mathbf{x} e^{\lambda t} & =A \mathbf{x} e^{\lambda t} \\
\lambda \mathbf{x} & =A \mathbf{x}
\end{aligned}
$$

That is \mathbf{y} is a solution if \mathbf{x} is an eigenvector of A. If A has n distinct eigenvalues, then the general solution is

$$
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+\ldots+c_{n} \mathbf{x}_{n} e^{\lambda_{n} t}
$$

Constant coefficients systems

Constant coefficients systems

The Wronskian of the basis of solutions is

$$
\begin{aligned}
& W=\left|\begin{array}{lll}
\mathbf{x}_{1} e^{\lambda_{1} t} & \ldots & \mathbf{x}_{n} e^{\lambda_{n} t}
\end{array}\right| \\
& =e^{\lambda_{1} t+\ldots+\lambda_{n} t}\left|\begin{array}{lll}
\mathbf{x}_{1} & \ldots & \mathbf{x}_{n}
\end{array}\right|
\end{aligned}
$$

The exponential term cannot be 0 , and the determinant of the matrix of eigenvectors cannot be 0 because they are linearly independent vectors since they correspond to distinct eigenvalues. This proves that there is no singular solution if
all eigenvalues are distinct.

Phase-plane trajectories

Example

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right) \mathbf{y}
$$

Solution:

$$
\begin{gathered}
A \Rightarrow\left\{\begin{array}{c}
\lambda_{1}=-2, \mathbf{x}_{1}=(1,1)^{T} \\
\lambda_{2}=-4, \mathbf{x}_{2}=(1,-1)^{T}
\end{array}\right. \\
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}
\end{gathered}
$$

Phase-plane trajectories

Example (continued)

$$
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}
$$

Phase-plane trajectories

Critical points

A critical point is a point at which $\mathbf{y}^{\prime}=\mathbf{0}$, they are also called equilibrium solutions. Let us analyze the system

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

and the slope of trajectories in the phase plane at a given point $\left(y_{1}, y_{2}\right)$

$$
\frac{d y_{2}}{d y_{1}}=\frac{y_{2}^{\prime} d t}{y_{1}^{\prime} d t}=\frac{y_{2}^{\prime}}{y_{1}^{\prime}}
$$

At critical points, this ratio becomes undefined $\left(\frac{0}{0}\right)$. There are five types of critical points: improper nodes, proper nodes, saddle points, centers, and spiral points.

Phase-plane trajectories

Example (continued): Improper node

An improper node is a critical point at which all trajectories, except two of them, have the same limiting direction of the tangent. The two exceptional directions also have a limiting direction of the tangent which, however, is different.

Phase-plane trajectories

Example: Proper node

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \mathbf{y} \Rightarrow \mathbf{y}=c_{1}\binom{1}{0} e^{t}+c_{2}\binom{0}{1} e^{t}
$$

A proper node is a critical point at which every trajectory has a definite limiting direction and for any givend irection \mathbf{d}, there is a trajectory having \mathbf{d} as its limiting direction.

Phase-plane trajectories

Example: Saddle point

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mathbf{y} \Rightarrow \mathbf{y}=c_{1}\binom{1}{0} e^{t}+c_{2}\binom{0}{1} e^{-t}
$$

A saddle point is a critical point at which there are two incoming trajectories, two outgoing trajectories, and all the other trajectories in a neighborhood of the critical point bypass it.

Phase-plane trajectories

Example: Center

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right) \mathbf{y} \Rightarrow \mathbf{y}=c_{1}\binom{1}{2 i} e^{i 2 t}+c_{2}\binom{1}{-2 i} e^{-i 2 t}
$$

A center is a critical point that is enclosed by infinitely many closed trajectories.

Phase-plane trajectories

Example: Spiral point

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-1 & 1 \\
-1 & -1
\end{array}\right) \mathbf{y} \Rightarrow \mathbf{y}=c_{1}\binom{1}{i} e^{(-1+i) t}+c_{2}\binom{1}{-i} e^{(-1-i) t}
$$

A spiral point is a critical point about which trajectories spiral, approaching the critical point or going away from it, as $t \rightarrow \infty$.

Phase-plane trajectories

Example: Degenerate node

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right) \mathbf{y}
$$

The problem is that A is not diagonalizable because it has a double eigenvalue at $\lambda=3$ but only one associated eigenvector $\mathbf{x}_{1}=(1,-1)^{T}$. One of the solutions is of the form:

$$
\mathbf{y}_{1}=\mathbf{x}_{1} e^{\lambda_{1} t}
$$

For the second solution we look for solution of the type

$$
\mathbf{y}_{2}=t \mathbf{x}_{1} e^{\lambda_{1} t}+\mathbf{u} e^{\lambda_{1} t}
$$

with a constant \mathbf{u} vector.

$$
\mathbf{y}_{2}^{\prime}=\mathbf{x}_{1} e^{\lambda_{1} t}+t \lambda_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+\lambda_{1} \mathbf{u} e^{\lambda_{1} t}
$$

Phase-plane trajectories

Example: Degenerate node (continued)

We now substitute in the ODE

$$
\begin{gathered}
\mathbf{y}_{2}^{\prime}=A \mathbf{y}_{2} \\
\mathbf{x}_{1} e^{\lambda_{1} t}+t \lambda_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+\lambda_{1} \mathbf{u} e^{\lambda_{1} t}=t A \mathbf{x}_{1} e^{\lambda_{1} t}+A \mathbf{u} e^{\lambda t} \\
\mathbf{x}_{1} e^{\lambda_{1} t}+t \lambda_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+\lambda_{1} \mathbf{u} e^{\lambda_{1} t}=t \lambda_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+A \mathbf{u} e^{\lambda_{1} t} \\
\mathbf{x}_{1} e^{\lambda_{1} t}+\lambda_{1} \mathbf{u} e^{\lambda_{1} t}=A \mathbf{u} e^{\lambda_{1} t} \\
\mathbf{x}_{1}+\lambda_{1} \mathbf{u}=A \mathbf{u} \\
\left(A-\lambda_{1} I\right) \mathbf{u}=\mathbf{x}_{1} \Rightarrow \mathbf{u}=(0,1)^{T}
\end{gathered}
$$

So the general solution is

$$
\mathbf{y}=c_{1}\binom{1}{-1} e^{3 t}+c_{2}\left(t\binom{1}{-1} e^{3 t}+\binom{0}{1} e^{3 t}\right)
$$

Phase-plane trajectories

Example: Degenerate node (continued)

$$
\mathbf{y}=c_{1}\binom{1}{-1} e^{3 t}+c_{2}\left(t\binom{1}{-1} e^{3 t}+\binom{0}{1} e^{3 t}\right)
$$

Constant coefficients systems

Degenerate solutions

When the matrix A is not diagonalizable, then we may complete the fundamental system with solutions of the form

$$
\begin{gathered}
\mathbf{y}_{2}=\left(t \mathbf{x}_{1}+\mathbf{v}_{1}\right) e^{\lambda_{1} t} \\
\mathbf{y}_{3}=\left(\frac{1}{2} t^{2} \mathbf{x}_{1}+t \mathbf{v}_{1}+\mathbf{v}_{2}\right) e^{\lambda_{1} t} \\
\mathbf{y}_{4}=\left(\frac{1}{3} t^{3} \mathbf{x}_{1}+\frac{1}{2} t^{2} \mathbf{v}_{1}+t \mathbf{v}_{2}+\mathbf{v}_{3}\right) e^{\lambda_{1} t}
\end{gathered}
$$

System ODEs

MATLAB

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-\sin \left(y_{1}\right)}
$$

$f=@(t, y)[y(2) ;-\sin (y(1))]$
vectfield(f,-2: .5:8,-2.5:.25:2.5)
hold on
for $\mathrm{y} 20=0: 0.3: 2.7$
[ts,ys] = ode45(f,[0,10],[0;y20]);
plot(ys(:,1),ys(:,2))
end
hold off

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 4, Section 3:

- 4.3.6
- 4.3.7
- 4.3.18

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Criteria for critical points

Critical point classification

$$
\mathbf{y}^{\prime}=A \mathbf{y}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \mathbf{y}
$$

Let's analyze the characteristic polynomial and eigenvalues of A

$$
\operatorname{det}\{A-\lambda /\}=\lambda^{2}-\operatorname{Tr}\{A\} \lambda+\operatorname{det}\{A\}=0
$$

Let us define

$$
\Delta=\left(\operatorname{Tr}\{A\}-4(\operatorname{det}\{A\})^{2}\right)
$$

The eigenvalues are

$$
\lambda_{1,2}=\frac{\operatorname{Tr}\{A\} \pm \sqrt{\Delta}}{2}
$$

Criteria for critical points

Critical point classification (continued)

$$
\lambda_{1,2}=\frac{\operatorname{Tr}\{A\} \pm \sqrt{\Delta}}{2}
$$

Type	$\operatorname{Tr}\{A\}=$ $\lambda_{1}+\lambda_{2}$	$\operatorname{det}\{A\}=$ $\lambda_{1} \lambda_{2}$	$\Delta=$ $\left(\lambda_{1}-\lambda_{2}\right)^{2}$	Comments
Node		>0	≥ 0	Real, same sign
Saddle point		<0		Real, opposite signs
Center	$=0$		<0	Pure imaginary
Spiral point	$\neq 0$		<0	Complex

Criteria for critical points

Stable critical point

A critical point P_{0} is stable if all trajectories of the ODE that at some instant are close to P_{0} remain close to P_{0} at all future times; precisely: if for every disk D_{ϵ} of radius ϵ with center P_{0} there is a disk D_{δ} of radius δ with center P_{0} such that every trajectory of the ODE that has a point P_{1} (corresponding to $t=t_{1}$, say) in D_{δ} has all its points corresponding to $t \geq t_{1}$ in D_{ϵ}. If a critical point is not stable, it is unstable.

Fig. 90. Stable critical point P_{0} of (1)
(The trajectory initiating at P_{1} stays
in the disk of radius ϵ.)

Criteria for critical points

Asymptotically stable critical point

A critical point P_{0} is asymptotically stable (stable and attractive) if P_{0} is stable and every trajectory that has a point in D_{δ} approaches P_{0} as $t \rightarrow \infty$.

Fig. 91. Stable and attractive critical point P_{0} of (1)

Criteria for critical points

Critical point classification (continued)

$$
\begin{gathered}
\operatorname{det}\{A-\lambda /\}=\lambda^{2}-\operatorname{Tr}\{A\} \lambda+\operatorname{det}\{A\}=\lambda^{2}-p \lambda+q=0 \\
\lambda_{1,2}=\frac{\operatorname{Tr}\{A\} \pm \sqrt{\Delta}}{2}
\end{gathered}
$$

Type	$p=\operatorname{Tr}\{A\}=$ $\lambda_{1}+\lambda_{2}$	$q=\operatorname{det}\{A\}=$ $\lambda_{1} \lambda_{2}$
Asymptotically stable	<0	0
Stable	≤ 0	>0
Unstable	>0	or <0

Criteria for critical points

Critical point classification (continued)

Fig. 92. Stability chart of the system (1) with p, q, Δ defined in (5).
Stable and attractive: The second quadrant without the q-axis.
Stability also on the positive q-axis (which corresponds to centers).
Unstable: Dark blue region

Criteria for critical points

Critical point classification (continued)

eigenvalues			linear system		nonlinear system	
real	both pos.	equal	proper or improper node	unstable	similar to node or spiral point	unstable
		different	node	unstable	same	
	both neg.	equal	proper or improper node	as. stable	similar to node or spiral point	as. stable
		different	node	as. stable	same	
	pos. and neg.		saddle point	unstable	same	
complex not real	real part pos.		spiral point	unstable	same	
	real part neg.		spiral point	as. stable	same	
	real part zero		center	stable	similar to center or spiral point	?

Criteria for critical points

Example

$$
m y^{\prime \prime}+c y^{\prime}+k y=0
$$

Solution:

$$
y^{\prime \prime}=-\frac{k}{m} y-\frac{c}{m} y^{\prime}
$$

We convert it to a system ODE with

$$
\begin{gathered}
y_{1}=y, y_{1}^{\prime}=y_{2} \\
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right) \mathbf{y} \\
\operatorname{det}(A-\lambda I)=\lambda^{2}+\frac{c}{m} \lambda+\frac{k}{m}
\end{gathered}
$$

From where

$$
p=-\frac{c}{m}, q=\frac{k}{m}, \Delta=\left(\frac{c}{m}\right)^{2}-4 \frac{k}{m}
$$

Criteria for critical points

Example (continued)

$$
p=-\frac{c}{m}, q=\frac{k}{m}, \Delta=\left(\frac{c}{m}\right)^{2}-4 \frac{k}{m}
$$

No damping. $c=0, p=0, q>0$, a center. Underdamping. $c^{2}<4 m k, p<0, q>0, \Delta<0$, a stable and attractive spiral point. Critical damping. $c^{2}=4 m k, p<0, q>0, \Delta=0$, a stable and attractive node. Overdamping. $c^{2}>4 m k, p<0, q>0, \Delta>0$, a stable and attractive node.

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 4, Section 4:

- 4.4.3
- 4.4.14
- 4.4.17

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Autonomous nonlinear systems

Autonomous nonlinear systems

Qualitative methods allow analyzing a system without actually solving it. For autonomous nonlinear systems

$$
\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})
$$

with a critical point \mathbf{y}_{0} we may shift the origin so that the \mathbf{y}_{0} is centered

$$
\begin{gathered}
\tilde{\mathbf{y}}=\mathbf{y}-\mathbf{y}_{0} \\
\tilde{\mathbf{y}^{\prime}}=\mathbf{f}\left(\tilde{\mathbf{y}}+\mathbf{y}_{0}\right) \\
\tilde{\mathbf{y}^{\prime}}=\tilde{\mathbf{f}}(\tilde{\mathbf{y}})
\end{gathered}
$$

and study the local behaviour of the system ODE around $\mathbf{0}$ as we have already done. For doing so, we may need to linearize the ODE.

Autonomous nonlinear systems

Linearization of autonomous nonlinear systems

$$
\tilde{\mathbf{y}^{\prime}}=\tilde{\mathbf{f}}(\tilde{\mathbf{y}}) \approx A \tilde{y}
$$

where A is the Jacobian of the function \mathbf{f} evaluated at the origin $\mathbf{0}$:

$$
A=\left.\left(\begin{array}{cccc}
\frac{\partial \tilde{f}_{1}}{\partial \tilde{y}_{1}} & \frac{\partial \tilde{f}_{1}}{\partial \tilde{y}_{2}} & \ldots & \frac{\partial \tilde{f}_{1}}{\partial \tilde{y}_{n}} \\
\frac{\partial \tilde{f}_{2}}{\partial \tilde{y}_{1}} & \frac{\partial \tilde{f}_{2}}{\partial \tilde{y}_{2}} & \ldots & \frac{\partial \tilde{f}_{2}}{\partial \tilde{y}_{n}} \\
\cdots & \cdots & \ldots & \cdots \\
\frac{\partial \tilde{f}_{n}}{\partial \tilde{y}_{1}} & \frac{\partial \tilde{f}_{n}}{\partial \tilde{y}_{2}} & \ldots & \frac{\partial \tilde{f}_{n}}{\partial \tilde{y}_{n}}
\end{array}\right)\right|_{\tilde{\mathbf{y}}=\mathbf{0}}
$$

Theorem

If $\tilde{\boldsymbol{f}}$ has continuous components and continuous partial derivatives in a neighbourhood of the critical point $\mathbf{0}$ and $\operatorname{det}\{A\} \neq 0$, then the kind and stability of the critical point of the nonlinear system ODE is the same as those of the linearized system. Exceptions occur if A has equal or pure imaginary eigenvalues, then the nonlinear problem may have the same kind of critical point as the linearized system or a spiral point.

Autonomous nonlinear systems

Example: Free undamped pendulum

Gravity compensates the acceleration of the bob

$$
\begin{gathered}
m L \theta^{\prime \prime}+m g \sin (\theta)=0 \\
\theta^{\prime \prime}+k \sin (\theta)=0 \quad k=\frac{g}{L}
\end{gathered}
$$

To find the critical points we convert the equation into a system ODE

$$
\begin{gathered}
y_{1}=\theta \\
y_{2}=y_{1}^{\prime} \\
y_{2}^{\prime}+k \sin \left(y_{1}\right)=0
\end{gathered}
$$

Equivalently

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)}
$$

Autonomous nonlinear systems

Example (continued)

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)}
$$

The critical points are at $\mathbf{y}=(\pi n, 0)^{T}(n \in \mathbb{Z})$. Let's analyze the one at $(0,0)$. Let's calculate the Jacobian of \mathbf{f} at $(0,0)$

$$
A=\left.\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left.\left(\begin{array}{cc}
0 & 1 \\
-k \cos \left(y_{1}\right) & 0
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left(\begin{array}{cc}
0 & 1 \\
-k & 0
\end{array}\right)
$$

To classify this critical point we note that

$$
\operatorname{Tr}\{A\}=0 \quad \operatorname{det}\{A\}=k>0
$$

So we conclude that $\mathbf{y}=\mathbf{0}$ is a center (always stable). The same happens to all points $(0,2 \pi n)$ since the sin function is periodic with period 2π.

Autonomous nonlinear systems

Example (continued)

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)}
$$

Let's analyze the critical point at $(\pi, 0)$. We center the critical point by doing

$$
\tilde{\mathbf{y}}=\mathbf{y}-\binom{\pi}{0}
$$

The system ODE becomes

$$
\tilde{\mathbf{y}}^{\prime}=\binom{\tilde{y}_{2}}{-k \sin \left(\tilde{y}_{1}+\pi\right)}
$$

Let's calculate the Jacobian of $\tilde{\mathbf{f}}$ at $(0,0)$

$$
A=\left.\left(\begin{array}{ll}
\frac{\partial \tilde{f}_{1}}{\partial y_{1}} & \frac{\partial \tilde{f}_{1}}{\partial y_{2}} \\
\frac{\partial \tilde{F}_{2}}{\partial y_{1}} & \frac{\partial \tilde{f}_{2}}{\partial y_{2}}
\end{array}\right)\right|_{\tilde{y}=\mathbf{0}}=\left.\left(\begin{array}{cc}
0 & 1 \\
-k \cos \left(\tilde{y}_{1}+\pi\right) & 0
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left(\begin{array}{ll}
0 & 1 \\
k & 0
\end{array}\right)
$$

Autonomous nonlinear systems

Example (continued)

To classify this critical point we note that

$$
\operatorname{Tr}\{A\}=0 \quad \operatorname{det}\{A\}=-k<0
$$

So we conclude that $\mathbf{y}=(\pi, 0)^{T}$ is a saddle point (unstable). The same happens to all points $(0, \pi+2 \pi n)$ since the sin function is periodic with period 2π.

(b) Solution curves $y_{2}\left(y_{1}\right)$ of (4) in the phase plane

Example 1 (C will be explained in Example 4.)

Autonomous nonlinear systems

Example: Damped pendulum

$$
\theta^{\prime \prime}+c \theta^{\prime}+k \sin (\theta)=0
$$

To find the critical points we convert the equation into a system ODE

$$
\begin{gathered}
y_{1}=\theta \\
y_{2}=y_{1}^{\prime} \\
y_{2}^{\prime}+c y_{2}+k \sin \left(y_{1}\right)=0
\end{gathered}
$$

Equivalently

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)-c y_{2}}
$$

Autonomous nonlinear systems

Example (continued)

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)-c y_{2}}
$$

Critical points are at the same location as in the free undamped pendulum $\mathbf{y}=(\pi n, 0)$. Let's study the critical point at $(0,0)$.

$$
\begin{gathered}
A=\left.\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left.\left(\begin{array}{cc}
0 & 1 \\
-k \cos \left(y_{1}\right) & -c
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left(\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right) \\
\operatorname{Tr}\{A\}=-c<0 \quad \operatorname{det}\{A\}=k>0 \quad \Delta=-c+4 k^{2}
\end{gathered}
$$

If $\Delta<0$, then we have a stable and attractive spiral point. If $\Delta>0$, then it is a stable and attractive node.

Autonomous nonlinear systems

Example (continued)

$$
\mathbf{y}^{\prime}=\binom{y_{2}}{-k \sin \left(y_{1}\right)-c y_{2}}
$$

Let's analyze the critical point at ($\pi, 0$). We center the critical point by doing

$$
\tilde{\mathbf{y}}=\mathbf{y}-\binom{\pi}{0}
$$

The system ODE becomes

$$
\tilde{\mathbf{y}}^{\prime}=\binom{\tilde{y}_{2}}{-k \sin \left(\tilde{y}_{1}+\pi\right)-c y_{2}}
$$

Let's calculate the Jacobian of $\tilde{\mathbf{f}}$ at $(0,0)$

$$
A=\left.\left(\begin{array}{cc}
\frac{\partial \tilde{f}_{1}}{\partial \tilde{y}_{1}} & \frac{\partial \tilde{f}_{1}}{\partial \tilde{y}_{2}} \\
\frac{\partial \tilde{F}_{2}}{\partial \tilde{y}_{1}} & \frac{\partial \tilde{F}_{2}}{\partial \tilde{y}_{2}}
\end{array}\right)\right|_{\tilde{\mathbf{y}}=0}=\left.\left(\begin{array}{cc}
0 & 1 \\
-k \cos \left(\tilde{y}_{1}+\pi\right) & -c
\end{array}\right)\right|_{\mathbf{y}=0}=\left(\begin{array}{cc}
0 & 1 \\
k & -c
\end{array}\right)
$$

Autonomous nonlinear systems

Example (continued)

To classify this critical point we note that

$$
\operatorname{Tr}\{A\}=-c \quad \operatorname{det}\{A\}=-k<0
$$

So we conclude that $\mathbf{y}=(\pi, 0)^{T}$ is a saddle point (unstable). The same happens to all points $(0, \pi+2 \pi n)$ since the sin function is periodic with period 2π.

Autonomous nonlinear systems

Example: Lotka-Volterra population model

1. Rabbits have unlimited food supply. Hence, if there were no foxes, their number $y_{1}(t)$ would grow exponentially, $y_{1}^{\prime}=a y_{1}$.
2. Actually, y_{1} is decreased because of the kill by foxes, say, at a rate proportional to $y_{1} y_{2}$, where $y_{2}(t)$ is the number of foxes. Hence $y_{1}^{\prime}=a y_{1}-b y_{1} y_{2}$, where $a>0$ and $b>0$.
3. If there were no rabbits, then $y_{2}(t)$ would exponentially decrease to zero, $y_{2}^{\prime}=-l y_{2}$. However, y_{2} is increased by a rate proportional to the number of encounters between predator and prey; together we have $y_{2}^{\prime}=-l y_{2}+k y_{1} y_{2}$, where $k>0$ and $l>0$.

Solution:

$$
\begin{aligned}
y_{1}^{\prime} & =a y_{1}-b y_{1} y_{2} \\
y_{2}^{\prime} & =k y_{1} y_{2}-l y_{2}
\end{aligned}
$$

Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

Critical points are the solutions of:

$$
\begin{aligned}
& 0=y_{1}^{\prime}=y_{1}\left(a-b y_{2}\right) \\
& 0=y_{2}^{\prime}=\left(k y_{1}-l\right) y_{2}
\end{aligned}
$$

That is $(0,0)$ or $\left(\frac{1}{k} \frac{a}{b}\right)$. Let's analyze $(0,0)$

$$
A=\left.\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)\right|_{\mathbf{y}=0}=\left.\left(\begin{array}{cc}
a & -b y_{1} \\
k y_{2} & -1
\end{array}\right)\right|_{\mathbf{y}=0}=\left(\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right)
$$

Eigenvalues are $\lambda_{1}=a, \lambda_{2}=-l$. They have different signs, so we have a saddle point.

Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

For the critical point $\left(\frac{l}{k}, \frac{a}{b}\right)$ we make the change of variables

$$
\tilde{\mathbf{y}}=\mathbf{y}-\binom{\frac{l}{k}}{\frac{d}{b}}
$$

The system ODE becomes

$$
\tilde{\mathbf{y}}^{\prime}=\binom{\left(\tilde{y}_{1}+\frac{l}{k}\right)\left(a-b\left(\tilde{y}_{2}+\frac{a}{b}\right)\right)}{\left(k\left(\tilde{y}_{1}+\frac{l}{k}\right)-l\right)\left(\tilde{y}_{2}+\frac{a}{b}\right)}=\binom{\left(\tilde{y}_{1}+\frac{l}{k}\right)\left(-b \tilde{y}_{2}\right)}{k \tilde{y}_{1}\left(\tilde{y}_{2}+\frac{a}{b}\right)}
$$

Let's calculate the Jacobian of $\tilde{\mathbf{f}}$ at $(0,0)$

$$
A=\left.\left(\begin{array}{cc}
\frac{\partial \tilde{f}_{1}}{\partial y_{1}} & \frac{\partial \tilde{f}_{1}}{\partial \partial_{2}} \\
\frac{\partial \tilde{F}_{2}}{\partial y_{1}} & \frac{\partial \tilde{F}_{2}}{\partial y_{2}}
\end{array}\right)\right|_{\tilde{\mathbf{y}}=0}=\left.\left(\begin{array}{cc}
-b \tilde{y}_{2} & \left(\tilde{y}_{1}+\frac{l}{k}\right) b \\
k\left(\tilde{y}_{2}+\frac{a}{b}\right) & k \tilde{y}_{1}
\end{array}\right)\right|_{\mathbf{y}=\mathbf{0}}=\left(\begin{array}{cc}
0 & -\frac{1}{k} b \\
k \frac{a}{b} & 0
\end{array}\right)
$$

Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

$$
A=\left(\begin{array}{cc}
0 & -\frac{1}{k} b \\
k_{\frac{a}{b}} & 0
\end{array}\right)
$$

We observe that

$$
\operatorname{Tr}\{A\}=0 \quad \operatorname{det}\{A\}=a l>0
$$

So the critical point is a stable center. Let's solve the equation around this critical point

$$
\begin{aligned}
y_{1}^{\prime} & =-\frac{l}{k} b \tilde{y}_{2} \\
y_{2}^{\prime} & =k \frac{a}{b} \tilde{y}_{1}
\end{aligned}
$$

We rewrite the equation system as

$$
\begin{gathered}
y_{1}^{\prime}=-\frac{l}{k} b \tilde{y}_{2} \\
k \frac{a}{b} \tilde{y}_{1}=y_{2}^{\prime}
\end{gathered}
$$

Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

$$
\begin{gathered}
y_{1}^{\prime}=-\frac{l}{k} b \tilde{y}_{2} \\
k \frac{a}{b} \tilde{y}_{1}=y_{2}^{\prime}
\end{gathered}
$$

and multiply both equations

$$
k \frac{a}{b} \tilde{y}_{1} y_{1}^{\prime}=-\frac{l}{k} b \tilde{y}_{2} y_{2}^{\prime}
$$

Integrating

$$
\begin{gathered}
k \frac{a}{2 b} \tilde{y}_{1}^{2}=-\frac{l}{2 k} b \tilde{y}_{2}^{2}+C \\
\frac{a k}{b} \tilde{y}_{1}^{2}+\frac{b l}{k} \tilde{y}_{2}^{2}=C
\end{gathered}
$$

Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

$$
\frac{a k}{b} \tilde{y}_{1}^{2}+\frac{b l}{k} \tilde{y}_{2}^{2}=C \Rightarrow \frac{a k}{b}\left(y_{1}-\frac{l}{k}\right)^{2}+\frac{b l}{k}\left(y_{2}-\frac{a}{b}\right)^{2}=C
$$

Transformation to a first-order equation in the phase plane

Transformation to a first-order equation in the phase plane
Consider a second-order autonomous ODE

$$
F\left(y, y^{\prime}, y^{\prime \prime}\right)
$$

We make the change of variables

$$
\begin{aligned}
& y_{1}=y \\
& y_{2}=y_{1}^{\prime}
\end{aligned}
$$

And find $y^{\prime \prime}$ using the chain rule

$$
y^{\prime \prime}=y_{2}^{\prime}=\frac{d y_{2}}{d t}=\frac{d y_{2}}{d y_{1}} \frac{d y_{1}}{d t}=\frac{d y_{2}}{d y_{1}} y_{2}
$$

The ODE becomes

$$
F\left(y_{1}, y_{2}, \frac{d y_{2}}{d y_{1}} y_{2}\right)=0
$$

Transformation to a first-order equation in the phase plane

Example: Free undamped pendulum

$$
\theta^{\prime \prime}+k \sin (\theta)=0
$$

Making the substitutions suggested by the method we get

$$
\begin{aligned}
& \frac{d y_{2}}{d y_{1}} y_{2}+k \sin \left(y_{1}\right)=0 \\
& y_{2} d y_{2}=-k \sin \left(y_{1}\right) d y_{1} \\
& \frac{1}{2} y_{2}^{2}=k \cos \left(y_{1}\right)+C
\end{aligned}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 4, Section 5:

- 4.5.5

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

Nonhomogeneous linear systems of ODEs

Nonhomogeneous linear systems of ODEs

$$
\mathbf{y}^{\prime}=A(t) \mathbf{y}+\mathbf{g}(t)
$$

If the entries of the A matrix and \mathbf{g} vector are continuous, then the general solution can be expressed as

$$
\mathbf{y}=\mathbf{y}_{h}+\mathbf{y}_{p}
$$

Method of undetermined coefficients

Valid for constant matrix A and \mathbf{g} that is a sum of constant, powers, exponentials or sine/cosine functions.

Method of undetermined coefficients

Example

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right) \mathbf{y}+\binom{-6}{2} e^{-2 t}
$$

Solution:
The general solution of the H problem is

$$
\mathbf{y}_{h}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}
$$

Since the excitation signal $e^{-2 t}$ is also a solution of the H problem we try a particular solution of the form

$$
\begin{gathered}
\mathbf{y}_{p}=(t \mathbf{u}+\mathbf{v}) e^{-2 t} \\
\mathbf{y}_{p}^{\prime}=(-2 t \mathbf{u}+\mathbf{u}-2 \mathbf{v}) e^{-2 t}
\end{gathered}
$$

Method of undetermined coefficients

Example (continued)

Substituting in the ODE

$$
\begin{gathered}
(-2 t \mathbf{u}+\mathbf{u}-2 \mathbf{v}) e^{-2 t}=A(t \mathbf{u}+\mathbf{v}) e^{-2 t}+\binom{-6}{2} e^{-2 t} \\
-2 t \mathbf{u}+\mathbf{u}-2 \mathbf{v}=t A \mathbf{u}+A \mathbf{v}+\binom{-6}{2}
\end{gathered}
$$

Identifying the coefficients of t

$$
-2 \mathbf{u}=A \mathbf{u}
$$

That is \mathbf{u} is an eigenvector of A associated to $\lambda=-2$

$$
\mathbf{u}=a(1,1)^{T}
$$

Method of undetermined coefficients

Example (continued)

$$
-2 t \mathbf{u}+\mathbf{u}-2 \mathbf{v}=t A \mathbf{u}+A \mathbf{v}+\binom{-6}{2}
$$

Identifying the coefficients without t

$$
\begin{aligned}
& \mathbf{u}-2 \mathbf{v}=A \mathbf{v}+\binom{-6}{2} \\
& (A+2 I) \mathbf{v}=\mathbf{u}-\binom{-6}{2}
\end{aligned}
$$

We cannot solve as $(A+2 I)^{-1}(\ldots)$ because -2 is an eigenvalue of A and $A+2 I$ is not invertible. Then

$$
\left(\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right)+\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right)\binom{v_{1}}{v_{2}}=\binom{a}{a}-\binom{-6}{2}
$$

Method of undetermined coefficients

Example (continued)

$$
\begin{gathered}
\left(\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right)+\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right)\binom{v_{1}}{v_{2}}=\binom{a}{a}-\binom{-6}{2} \\
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{a+6}{a-2} \\
\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{a+6}{2 a+4}
\end{gathered}
$$

For this system being compatible we need

$$
2 a+4=0 \Rightarrow a=-2
$$

Then

$$
v_{2}=v_{1}+(-2+6)=v_{1}+4
$$

We may simply take $v_{1}=0$

$$
\mathbf{v}=\binom{0}{4}
$$

Method of undetermined coefficients

Example (continued)

Finally

$$
\begin{gathered}
\mathbf{y}_{p}=\left(\begin{array}{ll}
\left.t\left(\begin{array}{ll}
-2 & -2
\end{array}\right)+\left(\begin{array}{ll}
0 & 4
\end{array}\right)\right) e^{-2 t} \\
\mathbf{y}=\mathbf{y}_{h}+\mathbf{y}_{p}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}+\left(t\binom{-2}{-2}+\binom{0}{4}\right) e^{-2 t} \\
\mathbf{y}=\binom{c_{1}-2 t}{c_{1}-2 t+4} e^{-2 t}+\binom{c_{2}}{-c_{2}} e^{-4 t}
\end{array}\right.
\end{gathered}
$$

Method of variation of parameters

Method of variation parameters

This is valid for non-constant A and arbitrary \mathbf{g}

$$
\mathbf{y}^{\prime}=A(t) \mathbf{y}+\mathbf{g}(t)
$$

If the general solution of the H problem is of the form

$$
\mathbf{y}_{h}=\left(\begin{array}{llll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \ldots & \mathbf{y}_{n}
\end{array}\right) \mathbf{c}=Y(t) \mathbf{c}
$$

Then we look for a solution of the form

$$
\begin{gathered}
\mathbf{y}_{p}=Y(t) \mathbf{u}(t) \\
\mathbf{y}_{p}^{\prime}=Y^{\prime} \mathbf{u}+Y \mathbf{u}^{\prime}
\end{gathered}
$$

And substitute in the ODE

$$
Y^{\prime} \mathbf{u}+Y \mathbf{u}^{\prime}=A Y \mathbf{u}+\mathbf{g}
$$

Method of variation of parameters

Method of variation parameters (continued)

$$
Y^{\prime} \mathbf{u}+Y \mathbf{u}^{\prime}=A Y \mathbf{u}+\mathbf{g}
$$

Since the columns of Y are solutions of the H problem we have

$$
Y^{\prime}=A Y
$$

Then

$$
\begin{gathered}
A Y \mathbf{u}+Y \mathbf{u}^{\prime}=A Y \mathbf{u}+\mathbf{g} \\
Y \mathbf{u}^{\prime}=\mathbf{g} \\
\mathbf{u}^{\prime}=Y^{-1} \mathbf{g}
\end{gathered}
$$

Method of variation of parameters

Example (same as for undetermined coefficients)

$$
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right) \mathbf{y}+\binom{-6}{2} e^{-2 t}
$$

Solution:
The general solution of the H problem is

$$
\begin{gathered}
\mathbf{y}_{h}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}=\left(\begin{array}{cc}
e^{-2 t} & e^{-4 t} \\
e^{-2 t} & -e^{-4 t}
\end{array}\right)\binom{c_{1}}{c_{2}}=Y \mathbf{c} \\
Y^{-1}=\frac{1}{-2 e^{-6 t}}\left(\begin{array}{cc}
-e^{-4 t} & -e^{-4 t} \\
-e^{-2 t} & e^{-2 t}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
e^{2 t} & e^{2 t} \\
e^{4 t} & -e^{4 t}
\end{array}\right) \\
\mathbf{u}^{\prime}=Y^{-1} \mathbf{g}=\frac{1}{2}\left(\begin{array}{cc}
e^{2 t} & e^{2 t} \\
e^{4 t} & -e^{4 t}
\end{array}\right)\binom{-6 e^{-2 t}}{2 e^{-2 t}}=\binom{-2}{-4 e^{2 t}} \\
\mathbf{u}=\int\binom{-2}{-4 e^{2 t}} d t=\binom{-2 t}{-2 e^{2 t}}
\end{gathered}
$$

Method of variation of parameters

Example

$$
\begin{gathered}
\mathbf{y}_{p}=Y \mathbf{u}=\left(\begin{array}{cc}
e^{-2 t} & e^{-4 t} \\
e^{-2 t} & -e^{-4 t}
\end{array}\right)\binom{-2 t}{-2 e^{2 t}}=\binom{-2-2 t}{2-2 t} e^{-2 t} \\
\mathbf{y}=\mathbf{y}_{h}+\mathbf{y}_{p}=c_{1}\binom{1}{1} e^{-2 t}+c_{2}\binom{1}{-1} e^{-4 t}+\binom{-2-2 t}{2-2 t} e^{-2 t} \\
\mathbf{y}=\binom{c_{1}-2-2 t}{c_{1}+2-2 t} e^{-2 t}+\binom{c_{2}}{-c_{2}} e^{-4 t}
\end{gathered}
$$

We may compare to the previous solution

$$
\mathbf{y}=\binom{c_{1}-2 t}{c_{1}-2 t+4} e^{-2 t}+\binom{c_{2}}{-c_{2}} e^{-4 t}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 4, Section 6:

- 4.6.5

Outline

(1) Systems of ODEs. Phase plane. Qualitative methods

- Systems of ODEs as models
- Basic theory of systems of ODEs. Wronskian
- Constant-coefficient systems. Phase plane method
- Criteria for critical points. Stability
- Qualitative methods for nonlinear systems
- Nonhomogeneous linear systems of ODEs

