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Systems of ODEs as models

Mixing tanks

Solution:

y ′1 = inflow-outflow =
y2
100

[
lb
gal

]
2
[

gal
min

]
− y1

100

[
lb
gal

]
2
[

gal
min

]
y ′2 = inflow-outflow =

y1
100

[
lb
gal

]
2
[

gal
min

]
− y2

100

[
lb
gal

]
2
[

gal
min

]
y ′1 = −0.02y1 + 0.02y2
y ′2 = 0.02y1 − 0.02y2

}
⇒
(

y ′1
y ′2

)
=

(
−0.02 0.02
0.02 −0.02

)(
y1
y2

)
⇒ y′ = Ay
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Systems of ODEs as models

Mixing tanks (continued)
We try a solution of the form

y = xeλt

y′ = λxeλt

Now we substitute into the ODE

y′ = Ay

λxeλt = Axeλt

λx = Ax

That is y = xeλt can be a solution of the ODE if x is an eigenvector of the matrix
A and λ its associated eigenvalue.

A⇒
{

λ1 = 0, x1 = (1, 1)T

λ2 = −0.04, x2 = (1,−1)T
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Systems of ODEs as models

Mixing tanks (continued)
The general solution is

y = c1x1eλ1t + c2x2eλ2t

y = c1

(
1
1

)
+ c2

(
1
−1

)
e−0.04t

To determine the coefficients c1 and c2, we impose the initial conditions
y1(0) = 0, y2(150)

c1

(
0
150

)
= c1

(
1
1

)
+ c2

(
1
−1

)
⇒ c1 = 75, c2 = −75

The solution to the problem is

y = 75
(
1
1

)
− 75

(
1
−1

)
e−0.04t ⇒

{
y1 = 75− 75e−0.04t

y2 = 75 + 75e−0.04t
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Systems of ODEs as models

Mixing tanks (continued)

y = 75
(
1
1

)
− 75

(
1
−1

)
e−0.04t ⇒

{
y1 = 75− 75e−0.04t

y2 = 75 + 75e−0.04t
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Systems of ODEs as models

Electrical network

Solution:

LI ′1 + R1(I1 − I2) = E ⇒ I ′1 = −R1I1 + R1I2 + E

R1(I2 − I1) +
1
C

∫
I2dt + R2I2 = 0⇒ −R1I ′1 + (R1 + R2)I ′2 = − 1

C I2
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Systems of ODEs as models

Electrical network (continued)

I ′1 = −R1I1 + R1I2 + E

−R1I ′1 + (R1 + R2)I ′2 = − 1
C I2

I ′1 = −4I1 + 4I2 + 12
−4I ′1 + 10I ′2 = −4I2

}
⇒
(

1 0
−4 10

)(
I ′1
I ′2

)
=

(
−4 4
0 −4

)(
I1
I2

)
+

(
12
0

)
(

I ′1
I ′2

)
=

(
−4 4
−1.6 1.2

)(
I1
I2

)
+

(
12
4.8

)
The eigenvalues and eigenvectors of the matrix A are

A⇒
{

λ1 = −2, x1 = (2, 1)T

λ2 = −0.8, x2 = (1, 0.8)T
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Systems of ODEs as models

Electrical network (continued)

A⇒
{

λ1 = −2, x1 = (2, 1)T

λ2 = −0.8, x2 = (1, 0.8)T

The general solution of the H problem is

I = c1

(
2
1

)
e−2t + c2

(
1
0.8

)
e−0.8t

For a particular solution of the NH problem we try a constant vector I = a(
0
0

)
=

(
−4 4
−1.6 1.2

)(
a1
a2

)
+

(
12
4.8

)
⇒ a1 = 3, a2 = 0

So the general solution of the NH problem is

I = c1

(
2
1

)
e−2t + c2

(
1
0.8

)
e−0.8t +

(
3
0

)
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Systems of ODEs as models

Electrical network (continued)

I = c1

(
2
1

)
e−2t + c2

(
1
0.8

)
e−0.8t +

(
3
0

)
To determine the unknown coefficients we impose the initial condition I(0) = 0

0 = c1

(
2
1

)
e−2t + c2

(
1
0.8

)
e−0.8t +

(
3
0

)
⇒ c1 = −4, c2 = 5

The solution to the problem is

I = −4
(
2
1

)
e−2t + 5

(
1
0.8

)
e−0.8t +

(
3
0

)
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Systems of ODEs as models

Electrical network (continued)
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Conversion of an n-th order ODE to a system

Conversion of an ODE
An n-th order ODE

y (n) = F (t, y , y ′, ..., y (n−1))

can be converted to a system of n first-order ODEs by setting y1 = y and

y ′1 = y2
y ′2 = y3
...

y ′n−1 = yn
y ′n = F (t, y1, y2, ..., yn)
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Conversion of an n-th order ODE to a system

Example

my ′′ + cy ′ + ky = 0

Solution:
y ′′ = − c

my ′ − k
my

Now we write it as
y ′1 = y2

y ′2 = − k
my1 −

c
my2(

y ′1
y ′2

)
=

(
0 1
− k

m − c
m

)(
y1
y2

)
Its characteristic polynomial is∣∣∣∣ −λ 1

− k
m − c

m − λ

∣∣∣∣ = λ2 +
c
mλ+

k
m = 0
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Conversion of an n-th order ODE to a system

Example (continued)

λ2 +
c
mλ+

k
m = 0

Let us now give values, m = 1, c = 2, k = 0.75

λ2 + 2λ+ 0.75 = 0⇒ λ1 = −0.5, λ2 = −1.5

With eigenvectors
v1 = (2,−1)T , v2 = (1,−1.5)T

So, the general solution is

y = c1

(
2
−1

)
e−0.5t + c2

(
1
−1.5

)
e−1.5t

The first component is

y1 = y = 2c1e−0.5t + c2e−1.5t

The second component is its derivative.
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 4, Section 1:

4.1.1
4.1.12

4. Systems of ODEs September 13, 2014 17 / 83



Outline

1 Systems of ODEs. Phase plane. Qualitative methods
Systems of ODEs as models
Basic theory of systems of ODEs. Wronskian
Constant-coefficient systems. Phase plane method
Criteria for critical points. Stability
Qualitative methods for nonlinear systems
Nonhomogeneous linear systems of ODEs

4. Systems of ODEs September 13, 2014 18 / 83



Basic theory

Basic theory
In general, an ODE system is of the form

y ′1 = f1(t, y1, ..., yn)
y ′2 = f2(t, y1, ..., yn)

...
y ′n = fn(t, y1, ..., yn)

⇒ y′ = f(t, y)

An Initial Value Problem needs n initial conditions

y1(t0) = K1, y2(t0) = K2, ..., yn(t0) = Kn ⇒ y(t0) = K

Existence and uniqueness
Let f1, f2, ..., fn be continuous functions with continuous partial derivatives ∂f1

∂y1
,

∂f1
∂y2

, ..., ∂fn
∂yn

in some domain R of the ty1y2...yn-space containing the point
(t0,K1, ...,Kn). Then the ODE system has a solution on some interval
t0 − α < t < t0 + α satisfying the initial conditions, and this solution is unique.
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Basic theory

Linear systems
y ′1 = a11(t)y1 + a12(t)y2 + ...+ a1n(t)yn + g1(t)
y ′2 = a21(t)y1 + a22(t)y2 + ...+ a2n(t)yn + g2(t)

...
y ′n = an1(t)y1 + an2(t)y2 + ...+ ann(t)yn + gn(t)

⇒ y′ = Ay + g

with

A =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann


If g = 0, the system is homogeneous.

Existence and uniqueness
Let the aij ’s andgi ’s functions be continuous functions of t in an open interval I
containing t0, then there exists a solution satisfying the initial conditions, and this
solution is unique.
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Basic theory

Superposition principle
The linear combination of any two solutions, y1 and y2, of the H problem is also a
solution of the H problem.
Proof:

y = c1y1 + c2y2
y′ = c1y′1 + c2y′2

= c1(Ay1) + c2(Ay2)
= A(c1y1 + c2y2)
= Ay
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Basic theory

General solution. Wronskian
If the aij ’s functions are continuous, then the general solution of the H problem
can be written as

y = c1y1 + c2y2 + ...+ cnyn

where y1, y2, ..., yn constitute a basis or fundamental system of solutions, and
there is no singular solution. We can write the n basis functions as the columns of
a matrix Y

Y =
(
y1 y2 ... yn

)
and write the general solution as

y = Y c

The Wronskian is the determinant of Y

W = |Y |
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Constant coefficients systems

Constant coefficients systems

y′ = Ay

We try a function of the form
y = xeλt

y′ = λxeλt

And substitute it in the ODE

λxeλt = Axeλt

λx = Ax

That is y is a solution if x is an eigenvector of A. If A has n distinct eigenvalues,
then the general solution is

y = c1x1eλ1t + ...+ cnxneλnt
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Constant coefficients systems

Constant coefficients systems
The Wronskian of the basis of solutions is

W =
∣∣ x1eλ1t ... xneλnt ∣∣

= eλ1t+...+λnt
∣∣ x1 ... xn

∣∣
The exponential term cannot be 0, and the determinant of the matrix of
eigenvectors cannot be 0 because they are linearly independent vectors since they
correspond to distinct eigenvalues. This proves that there is no singular solution if

all eigenvalues are distinct.
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Phase-plane trajectories

Example

y′ =

(
−3 1
1 −3

)
y

Solution:

A⇒
{

λ1 = −2, x1 = (1, 1)T

λ2 = −4, x2 = (1,−1)T

y = c1x1eλ1t + c2x2eλ2t = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t
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Phase-plane trajectories

Example (continued)

y = c1x1eλ1t + c2x2eλ2t = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t
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Phase-plane trajectories

Critical points
A critical point is a point at which y′ = 0, they are also called equilibrium
solutions. Let us analyze the system

y′ = Ay

and the slope of trajectories in the phase plane at a given point (y1, y2)

dy2
dy1

=
y ′2dt
y ′1dt =

y ′2
y ′1

At critical points, this ratio becomes undefined ( 0
0 ). There are five types of critical

points: improper nodes, proper nodes, saddle points, centers, and spiral
points.
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Phase-plane trajectories

Example (continued): Improper node
An improper node is a critical point at which all trajectories, except two of them,
have the same limiting direction of the tangent. The two exceptional directions

also have a limiting direction of the tangent which, however, is different.
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Phase-plane trajectories

Example: Proper node

y′ =

(
1 0
0 1

)
y⇒ y = c1

(
1
0

)
et + c2

(
0
1

)
et

A proper node is a critical point at which every trajectory has a definite limiting
direction and for any givend irection d, there is a trajectory having d as its
limiting direction.
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Phase-plane trajectories

Example: Saddle point

y′ =

(
1 0
0 −1

)
y⇒ y = c1

(
1
0

)
et + c2

(
0
1

)
e−t

A saddle point is a critical point at which there are two incoming trajectories,
two outgoing trajectories, and all the other trajectories in a neighborhood of the
critical point bypass it.
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Phase-plane trajectories

Example: Center

y′ =

(
0 1
−4 0

)
y⇒ y = c1

(
1
2i

)
e i2t + c2

(
1
−2i

)
e−i2t

A center is a critical point that is enclosed by infinitely many closed trajectories.
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Phase-plane trajectories

Example: Spiral point

y′ =

(
−1 1
−1 −1

)
y⇒ y = c1

(
1
i

)
e(−1+i)t + c2

(
1
−i

)
e(−1−i)t

A spiral point is a critical point about which trajectories spiral, approaching the
critical point or going away from it, as t →∞.
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Phase-plane trajectories

Example: Degenerate node

y′ =

(
4 1
−1 2

)
y

The problem is that A is not diagonalizable because it has a double eigenvalue at
λ = 3 but only one associated eigenvector x1 = (1,−1)T . One of the solutions is
of the form:

y1 = x1eλ1t

For the second solution we look for solution of the type

y2 = tx1eλ1t + ueλ1t

with a constant u vector.

y′2 = x1eλ1t + tλ1x1eλ1t + λ1ueλ1t
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Phase-plane trajectories

Example: Degenerate node (continued)
We now substitute in the ODE

y′2 = Ay2

x1eλ1t + tλ1x1eλ1t + λ1ueλ1t = tAx1eλ1t + Aueλt

x1eλ1t + tλ1x1eλ1t + λ1ueλ1t = tλ1x1eλ1t + Aueλ1t

x1eλ1t + λ1ueλ1t = Aueλ1t

x1 + λ1u = Au

(A− λ1I)u = x1 ⇒ u = (0, 1)T

So the general solution is

y = c1

(
1
−1

)
e3t + c2

(
t
(

1
−1

)
e3t +

(
0
1

)
e3t
)
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Phase-plane trajectories

Example: Degenerate node (continued)

y = c1

(
1
−1

)
e3t + c2

(
t
(

1
−1

)
e3t +

(
0
1

)
e3t
)
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Constant coefficients systems

Degenerate solutions
When the matrix A is not diagonalizable, then we may complete the fundamental
system with solutions of the form

y2 = (tx1 + v1) eλ1t

y3 =

(
1
2 t2x1 + tv1 + v2

)
eλ1t

y4 =

(
1
3 t3x1 +

1
2 t2v1 + tv2 + v3

)
eλ1t

...
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System ODEs

MATLAB

y′ =

(
y2

− sin(y1)

)
f = @(t,y) [y(2);-sin(y(1))]
vectfield(f,-2:.5:8,-2.5:.25:2.5)
hold on
for y20=0:0.3:2.7
[ts,ys] = ode45(f,[0,10],[0;y20]);
plot(ys(:,1),ys(:,2))

end
hold off
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 4, Section 3:

4.3.6
4.3.7
4.3.18
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Criteria for critical points

Critical point classification

y′ = Ay =

(
a11 a12
a21 a22

)
y

Let’s analyze the characteristic polynomial and eigenvalues of A

det{A− λI} = λ2 − Tr{A}λ+ det{A} = 0

Let us define
∆ = (Tr{A} − 4(det{A})2)

The eigenvalues are

λ1,2 =
Tr{A} ±

√
∆

2
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Criteria for critical points

Critical point classification (continued)

λ1,2 =
Tr{A} ±

√
∆

2
Type Tr{A} = det{A} = ∆ = Comments

λ1 + λ2 λ1λ2 (λ1 − λ2)2

Node > 0 ≥ 0 Real, same sign
Saddle point < 0 Real, opposite signs
Center = 0 < 0 Pure imaginary
Spiral point 6= 0 < 0 Complex
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Criteria for critical points

Stable critical point
A critical point P0 is stable if all trajectories of the ODE that at some instant are
close to P0 remain close to P0 at all future times; precisely: if for every disk Dε of
radius ε with center P0 there is a disk Dδ of radius δ with center P0 such that
every trajectory of the ODE that has a point P1 (corresponding to t = t1, say) in
Dδ has all its points corresponding to t ≥ t1 in Dε. If a critical point is not stable,
it is unstable.
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Criteria for critical points

Asymptotically stable critical point
A critical point P0 is asymptotically stable (stable and attractive) if P0 is stable
and every trajectory that has a point in Dδ approaches P0 as t →∞.
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Criteria for critical points

Critical point classification (continued)

det{A− λI} = λ2 − Tr{A}λ+ det{A} = λ2 − pλ+ q = 0

λ1,2 =
Tr{A} ±

√
∆

2
Type p = Tr{A} = q = det{A} =

λ1 + λ2 λ1λ2
Asymptotically stable < 0 0
Stable ≤ 0 > 0
Unstable > 0 or < 0
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Criteria for critical points

Critical point classification (continued)
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Criteria for critical points

Critical point classification (continued)
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Criteria for critical points

Example

my ′′ + cy ′ + ky = 0

Solution:

y ′′ = − k
my − c

my ′

We convert it to a system ODE with

y1 = y , y ′1 = y2

y′ =

(
0 1
− k

m − c
m

)
y

det(A− λI) = λ2 +
c
mλ+

k
m

From where
p = − c

m , q =
k
m ,∆ =

( c
m

)2
− 4 k

m
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Criteria for critical points

Example (continued)

p = − c
m , q =

k
m ,∆ =

( c
m

)2
− 4 k

m
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 4, Section 4:

4.4.3
4.4.14
4.4.17
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Autonomous nonlinear systems

Autonomous nonlinear systems
Qualitative methods allow analyzing a system without actually solving it. For
autonomous nonlinear systems

y′ = f(y)

with a critical point y0 we may shift the origin so that the y0 is centered

ỹ = y− y0

ỹ′ = f(ỹ + y0)

ỹ′ = f̃(ỹ)

and study the local behaviour of the system ODE around 0 as we have already
done. For doing so, we may need to linearize the ODE.
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Autonomous nonlinear systems

Linearization of autonomous nonlinear systems

ỹ′ = f̃(ỹ) ≈ Aỹ

where A is the Jacobian of the function f evaluated at the origin 0:

A =


∂ f̃1
∂ỹ1

∂ f̃1
∂ỹ2

... ∂ f̃1
∂ỹn

∂ f̃2
∂ỹ1

∂ f̃2
∂ỹ2

... ∂ f̃2
∂ỹn

... ... ... ...
∂ f̃n
∂ỹ1

∂ f̃n
∂ỹ2

... ∂ f̃n
∂ỹn


∣∣∣∣∣∣∣∣∣
ỹ=0

Theorem
If f̃ has continuous components and continuous partial derivatives in a
neighbourhood of the critical point 0 and det{A} 6= 0, then the kind and stability
of the critical point of the nonlinear system ODE is the same as those of the
linearized system. Exceptions occur if A has equal or pure imaginary eigenvalues,
then the nonlinear problem may have the same kind of critical point as the
linearized system or a spiral point.
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Autonomous nonlinear systems

Example: Free undamped pendulum
Gravity compensates the acceleration of the bob

mLθ′′ + mg sin(θ) = 0

θ′′ + k sin(θ) = 0 k =
g
L

To find the critical points we convert the equation into a
system ODE

y1 = θ

y2 = y ′1
y ′2 + k sin(y1) = 0

Equivalently

y′ =

(
y2

−k sin(y1)

)
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Autonomous nonlinear systems

Example (continued)

y′ =

(
y2

−k sin(y1)

)
The critical points are at y = (πn, 0)T (n ∈ Z). Let’s analyze the one at (0, 0).
Let’s calculate the Jacobian of f at (0, 0)

A =

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)∣∣∣∣∣
y=0

=

(
0 1

−k cos(y1) 0

)∣∣∣∣
y=0

=

(
0 1
−k 0

)
To classify this critical point we note that

Tr{A} = 0 det{A} = k > 0

So we conclude that y = 0 is a center (always stable). The same happens to all
points (0, 2πn) since the sin function is periodic with period 2π.

4. Systems of ODEs September 13, 2014 55 / 83



Autonomous nonlinear systems

Example (continued)

y′ =

(
y2

−k sin(y1)

)
Let’s analyze the critical point at (π, 0). We center the critical point by doing

ỹ = y−
(
π
0

)
The system ODE becomes

ỹ′ =

(
ỹ2

−k sin(ỹ1 + π)

)
Let’s calculate the Jacobian of f̃ at (0, 0)

A =

(
∂ f̃1
∂y1

∂ f̃1
∂y2

∂ f̃2
∂y1

∂ f̃2
∂y2

)∣∣∣∣∣
ỹ=0

=

(
0 1

−k cos(ỹ1 + π) 0

)∣∣∣∣
y=0

=

(
0 1
k 0

)
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Autonomous nonlinear systems

Example (continued)
To classify this critical point we note that

Tr{A} = 0 det{A} = −k < 0

So we conclude that y = (π, 0)T is a saddle point (unstable). The same happens
to all points (0, π + 2πn) since the sin function is periodic with period 2π.
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Autonomous nonlinear systems

Example: Damped pendulum

θ′′ + cθ′ + k sin(θ) = 0

To find the critical points we convert the equation into a system ODE

y1 = θ

y2 = y ′1
y ′2 + cy2 + k sin(y1) = 0

Equivalently

y′ =

(
y2

−k sin(y1)− cy2

)
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Autonomous nonlinear systems

Example (continued)

y′ =

(
y2

−k sin(y1)− cy2

)
Critical points are at the same location as in the free undamped pendulum
y = (πn, 0). Let’s study the critical point at (0, 0).

A =

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)∣∣∣∣∣
y=0

=

(
0 1

−k cos(y1) −c

)∣∣∣∣
y=0

=

(
0 1
−k −c

)

Tr{A} = −c < 0 det{A} = k > 0 ∆ = −c + 4k2

If ∆ < 0, then we have a stable and attractive spiral point. If ∆ > 0, then it is a
stable and attractive node.
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Autonomous nonlinear systems

Example (continued)

y′ =

(
y2

−k sin(y1)− cy2

)
Let’s analyze the critical point at (π, 0). We center the critical point by doing

ỹ = y−
(
π
0

)
The system ODE becomes

ỹ′ =

(
ỹ2

−k sin(ỹ1 + π)− cy2

)
Let’s calculate the Jacobian of f̃ at (0, 0)

A =

(
∂ f̃1
∂ỹ1

∂ f̃1
∂ỹ2

∂ f̃2
∂ỹ1

∂ f̃2
∂ỹ2

)∣∣∣∣∣
ỹ=0

=

(
0 1

−k cos(ỹ1 + π) −c

)∣∣∣∣
y=0

=

(
0 1
k −c

)
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Autonomous nonlinear systems

Example (continued)
To classify this critical point we note that

Tr{A} = −c det{A} = −k < 0

So we conclude that y = (π, 0)T is a saddle point (unstable). The same happens
to all points (0, π + 2πn) since the sin function is periodic with period 2π.
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Autonomous nonlinear systems

Example: Lotka-Volterra population model

Solution:
y ′1 = ay1 − by1y2

y ′2 = ky1y2 − ly2
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Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)
Critical points are the solutions of:

0 = y ′1 = y1(a − by2)

0 = y ′2 = (ky1 − l)y2

That is (0, 0) or
( l

k
a
b
)
. Let’s analyze (0, 0)

A =

(
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

)∣∣∣∣∣
y=0

=

(
a −by1

ky2 −l

)∣∣∣∣
y=0

=

(
a 0
0 −l

)
Eigenvalues are λ1 = a, λ2 = −l . They have different signs, so we have a saddle
point.
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Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)
For the critical point

( l
k ,

a
b
)
we make the change of variables

ỹ = y−
( l

ka
b

)
The system ODE becomes

ỹ′ =

((
ỹ1 + l

k
) (

a − b
(
ỹ2 + a

b
))(

k
(
ỹ1 + l

k
)
− l
) (

ỹ2 + a
b
)) =

((
ỹ1 + l

k
)

(−bỹ2)
kỹ1

(
ỹ2 + a

b
) )

Let’s calculate the Jacobian of f̃ at (0, 0)

A =

(
∂ f̃1
∂y1

∂ f̃1
∂y2

∂ f̃2
∂y1

∂ f̃2
∂y2

)∣∣∣∣∣
ỹ=0

=

(
−bỹ2

(
ỹ1 + l

k
)

b
k
(
ỹ2 + a

b
)

kỹ1

)∣∣∣∣
y=0

=

(
0 − l

k b
k a

b 0

)
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Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

A =

(
0 − l

k b
k a

b 0

)
We observe that

Tr{A} = 0 det{A} = al > 0

So the critical point is a stable center. Let’s solve the equation around this critical
point

y ′1 = − l
k bỹ2

y ′2 = k a
b ỹ1

We rewrite the equation system as

y ′1 = − l
k bỹ2

k a
b ỹ1 = y ′2
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Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

y ′1 = − l
k bỹ2

k a
b ỹ1 = y ′2

and multiply both equations

k a
b ỹ1y ′1 = − l

k bỹ2y ′2

Integrating
k a
2b ỹ2

1 = − l
2k bỹ2

2 + C

ak
b ỹ2

1 +
bl
k ỹ2

2 = C
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Autonomous nonlinear systems

Example: Lotka-Volterra population model (continued)

ak
b ỹ2

1 +
bl
k ỹ2

2 = C ⇒ ak
b

(
y1 −

l
k

)2
+

bl
k

(
y2 −

a
b

)2
= C
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Transformation to a first-order equation in the phase plane

Transformation to a first-order equation in the phase plane
Consider a second-order autonomous ODE

F (y , y ′, y ′′)

We make the change of variables
y1 = y

y2 = y ′1
And find y ′′ using the chain rule

y ′′ = y ′2 =
dy2
dt =

dy2
dy1

dy1
dt =

dy2
dy1

y2

The ODE becomes

F
(

y1, y2,
dy2
dy1

y2

)
= 0
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Transformation to a first-order equation in the phase plane

Example: Free undamped pendulum

θ′′ + k sin(θ) = 0

Making the substitutions suggested by the method we get

dy2
dy1

y2 + k sin(y1) = 0

y2dy2 = −k sin(y1)dy1

1
2y2

2 = k cos(y1) + C
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 4, Section 5:

4.5.5

4. Systems of ODEs September 13, 2014 70 / 83



Outline

1 Systems of ODEs. Phase plane. Qualitative methods
Systems of ODEs as models
Basic theory of systems of ODEs. Wronskian
Constant-coefficient systems. Phase plane method
Criteria for critical points. Stability
Qualitative methods for nonlinear systems
Nonhomogeneous linear systems of ODEs
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Nonhomogeneous linear systems of ODEs

Nonhomogeneous linear systems of ODEs

y′ = A(t)y + g(t)

If the entries of the A matrix and g vector are continuous, then the general
solution can be expressed as

y = yh + yp

Method of undetermined coefficients
Valid for constant matrix A and g that is a sum of constant, powers, exponentials
or sine/cosine functions.
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Method of undetermined coefficients

Example

y′ =

(
−3 1
1 −3

)
y +

(
−6
2

)
e−2t

Solution:
The general solution of the H problem is

yh = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t

Since the excitation signal e−2t is also a solution of the H problem we try a
particular solution of the form

yp = (tu + v)e−2t

y′p = (−2tu + u− 2v)e−2t
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Method of undetermined coefficients

Example (continued)
Substituting in the ODE

(−2tu + u− 2v)e−2t = A(tu + v)e−2t +

(
−6
2

)
e−2t

−2tu + u− 2v = tAu + Av +

(
−6
2

)
Identifying the coefficients of t

−2u = Au

That is u is an eigenvector of A associated to λ = −2

u = a(1, 1)T
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Method of undetermined coefficients

Example (continued)

−2tu + u− 2v = tAu + Av +

(
−6
2

)
Identifying the coefficients without t

u− 2v = Av +

(
−6
2

)

(A + 2I)v = u−
(
−6
2

)
We cannot solve as (A + 2I)−1(...) because -2 is an eigenvalue of A and A + 2I is
not invertible. Then((

−3 1
1 −3

)
+

(
2 0
0 2

))(
v1
v2

)
=

(
a
a

)
−
(
−6
2

)
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Method of undetermined coefficients

Example (continued)((
−3 1
1 −3

)
+

(
2 0
0 2

))(
v1
v2

)
=

(
a
a

)
−
(
−6
2

)
(
−1 1
1 −1

)(
v1
v2

)
=

(
a + 6
a − 2

)
(
−1 1
0 0

)(
v1
v2

)
=

(
a + 6
2a + 4

)
For this system being compatible we need

2a + 4 = 0⇒ a = −2

Then
v2 = v1 + (−2 + 6) = v1 + 4

We may simply take v1 = 0

v =

(
0
4

)
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Method of undetermined coefficients

Example (continued)
Finally

yp =
(
t
(
−2 −2

)
+
(
0 4

))
e−2t

y = yh + yp = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t +

(
t
(
−2
−2

)
+

(
0
4

))
e−2t

y =

(
c1 − 2t

c1 − 2t + 4

)
e−2t +

(
c2
−c2

)
e−4t
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Method of variation of parameters

Method of variation parameters
This is valid for non-constant A and arbitrary g

y′ = A(t)y + g(t)

If the general solution of the H problem is of the form

yh =
(
y1 y2 ... yn

)
c = Y (t)c

Then we look for a solution of the form

yp = Y (t)u(t)

y′p = Y ′u + Y u′

And substitute in the ODE

Y ′u + Y u′ = AY u + g
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Method of variation of parameters

Method of variation parameters (continued)

Y ′u + Y u′ = AY u + g

Since the columns of Y are solutions of the H problem we have

Y ′ = AY

Then
AY u + Y u′ = AY u + g

Y u′ = g

u′ = Y−1g
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Method of variation of parameters

Example (same as for undetermined coefficients)

y′ =

(
−3 1
1 −3

)
y +

(
−6
2

)
e−2t

Solution:
The general solution of the H problem is

yh = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t =

(
e−2t e−4t

e−2t −e−4t

)(
c1
c2

)
= Y c

Y−1 =
1

−2e−6t

(
−e−4t −e−4t

−e−2t e−2t

)
=

1
2

(
e2t e2t

e4t −e4t

)
u′ = Y−1g =

1
2

(
e2t e2t

e4t −e4t

)(
−6e−2t

2e−2t

)
=

(
−2
−4e2t

)
u =

∫ (
−2
−4e2t

)
dt =

(
−2t
−2e2t

)
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Method of variation of parameters

Example

yp = Y u =

(
e−2t e−4t

e−2t −e−4t

)(
−2t
−2e2t

)
=

(
−2− 2t
2− 2t

)
e−2t

y = yh + yp = c1

(
1
1

)
e−2t + c2

(
1
−1

)
e−4t +

(
−2− 2t
2− 2t

)
e−2t

y =

(
c1 − 2− 2t
c1 + 2− 2t

)
e−2t +

(
c2
−c2

)
e−4t

We may compare to the previous solution

y =

(
c1 − 2t

c1 − 2t + 4

)
e−2t +

(
c2
−c2

)
e−4t
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 4, Section 6:

4.6.5

4. Systems of ODEs September 13, 2014 82 / 83



Outline

1 Systems of ODEs. Phase plane. Qualitative methods
Systems of ODEs as models
Basic theory of systems of ODEs. Wronskian
Constant-coefficient systems. Phase plane method
Criteria for critical points. Stability
Qualitative methods for nonlinear systems
Nonhomogeneous linear systems of ODEs
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