Chapter 5. Series solutions of ODEs. Special functions

C.O.S. Sorzano

Biomedical Engineering

September 19, 2014

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

References

E. Kreyszig. Advanced Engineering Mathematics. John Wiley \& sons. Chapter 5.

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

Power series methods

Power series methods

This is the standard method to solve linear ODEs with variable coefficients. A power series is an infinite series of the form

$$
\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots
$$

Taylor Series: $f\left(x_{0}\right)=\sum_{m=0}^{\infty} \frac{f^{(m)}\left(x_{0}\right)}{m!}\left(x-x_{0}\right)^{m}$

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{m=0}^{\infty} x^{m}=1+x+x^{2}+\cdots \quad(|x|<1, \text { geometric series }) \\
e^{x} & =\sum_{m=0}^{\infty} \frac{x^{m}}{m!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\cos x & =\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-+\cdots \\
\sin x & =\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{(2 m+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-+\cdots
\end{aligned}
$$

Power series methods

Example

$$
\begin{gathered}
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots \\
e^{x}=e+e(x-1)+e \frac{1}{2!}(x-1)^{2}+e \frac{1}{3!}(x-1)^{3}+e \frac{1}{4!}(x-1)^{4}+\ldots
\end{gathered}
$$

Power series methods

Example

$$
y^{\prime}-y=0
$$

Solution:
We look for a solution of the form

$$
\begin{gathered}
y=\sum_{m=0}^{\infty} a_{m} x^{m}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
y^{\prime}=\sum_{m=1}^{\infty} m a_{m} x^{m-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots
\end{gathered}
$$

And susbtitute it in the ODE

$$
\begin{gathered}
\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots\right)-\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)=0 \\
\left(a_{1}-a_{0}\right)+\left(2 a_{2}-a_{1}\right)+\left(3 a_{3}-a_{2}\right)+\ldots=0
\end{gathered}
$$

Power series methods

Example (continued)

$$
\begin{aligned}
& \left(a_{1}-a_{0}\right)+\left(2 a_{2}-a_{1}\right)+\left(3 a_{3}-a_{2}\right)+\ldots=0 \\
& \quad \Rightarrow\left\{\begin{array}{l}
a_{1}-a_{0}=0 \Rightarrow a_{1}=a_{0} \\
2 a_{2}-a_{1}=0 \Rightarrow a_{2}=\frac{1}{2} a_{1}=\frac{1}{2} a_{0} \\
3 a_{3}-a_{2}=0 \Rightarrow a_{3}=\frac{1}{3} a_{2}=\frac{1}{3 \cdot 2} a_{0} \\
\ldots
\end{array}\right.
\end{aligned}
$$

And in general

$$
a_{k}=\frac{1}{k(k-1) \ldots 2} a_{0}=\frac{1}{k!} a_{0}
$$

So the solution of the ODE is

$$
y=a_{0}\left(1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots\right)=a_{0} e^{x}
$$

Power series methods

Power series methods

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

This method is applied to linear ODEs with variable coefficients because the coefficients, p and q, can also be substituted by a power series.

Example: A special case of Legendre equation

It occurs in problems with spherical symmetry

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Solution:
Let's look for a solution of the form

$$
\begin{gathered}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+\ldots \\
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+5 a_{5} x^{4}+6 a_{6} x^{5}+\ldots \\
y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+30 a_{6} x^{4}+\ldots
\end{gathered}
$$

Power series methods

Example (continued)

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

We now compute each one of the terms appearing in the ODE

$$
\begin{array}{rllllllll}
y^{\prime \prime} & =2 a_{2} & +6 a_{3} x & +12 a_{4} x^{2} & +20 a_{5} x^{3} & +30 a_{6} x^{4} & +\ldots & & \\
-x^{2} y^{\prime \prime} & = & & -2 a_{2} x^{2} & -6 a_{3} x^{3} & -12 a_{4} x^{4} & -20 a_{5} x^{5} & -30 a_{6} x^{6} & +\ldots \\
-2 x y^{\prime} & = & -2 a_{1} x & -4 a_{2} x^{2} & -6 a_{3} x^{3} & -8 a_{4} x^{4} & -10 a_{5} x^{5} & -12 a_{6} x^{6} & +\ldots \\
2 y^{\prime} & =2 a_{0}+2 a_{1} x & +2 a_{2} x^{2} & +2 a_{3} x^{3} & +2 a_{4} x^{4} & +2 a_{5} x^{5} & +2 a_{6} x^{6} & +\ldots
\end{array}
$$

And solve for the coefficients of each power

$$
\begin{array}{rlll}
m=0: & 2 a_{2}+2 a_{0}=0 & \Rightarrow a_{2}=-a_{0} \\
m=1: & 6 a_{3}=0 & \Rightarrow a_{3}=0 \\
m=2: & 12 a_{4}-4 a_{2}=0 & \Rightarrow a_{4}=\frac{1}{3} a_{2}=-\frac{1}{3} a_{0} \\
m=3: & 20 a_{5}-10 a_{3}=0 & \Rightarrow a_{5}=0 \\
m=4: & 30 a_{6}-18 a_{4}=0 & \Rightarrow a_{6}=\frac{3}{5} a_{4}=\frac{3}{5}\left(-\frac{1}{3} a_{0}\right)=-\frac{1}{5} a_{0}
\end{array}
$$

Power series methods

Example (continued)

The general solution of the equation is

$$
\begin{gathered}
y=a_{1} x+a_{0}\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}-\ldots\right. \\
y=a_{1} x+a_{0}\left(1-\sum_{m=1}^{\infty} \frac{1}{2 m-1} x^{2 m}\right)
\end{gathered}
$$

Power series methods

Convergence

Operations (derivatives and integrals) with a power series are valid within its region of convergence

$$
S=\lim _{n \rightarrow \infty} \sum_{m=0}^{n} a_{m}\left(x-x_{0}\right)^{m}=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}
$$

The region of convergence is a property of the a_{m} coefficients and its radius can be determined with

$$
R=\frac{1}{\lim _{m \rightarrow \infty}\left|a_{m}\right|^{\frac{1}{m}}}
$$

or

$$
R=\frac{1}{\lim _{m \rightarrow \infty}\left|\frac{a_{m+1}}{a_{m}}\right|}
$$

The series is valid in the interval

$$
\left(x_{0}-R, x_{0}+R\right)
$$

Power series methods

Example

$$
\begin{aligned}
& e^{X}=\sum_{m=0}^{\infty} \frac{1}{m!} x^{m} \Rightarrow\left|\frac{a_{m+1}}{a_{m}}\right|=\left|\frac{\frac{1}{(m+1)!}}{\frac{1}{m!}}\right|=\frac{1}{m+1} \quad \Rightarrow \quad R=\frac{1}{\lim _{m \rightarrow \infty} \frac{1}{m+1}}=\frac{1}{0}=\infty \\
& \frac{1}{1-x}=\sum_{m=0}^{\infty} x^{m} \Rightarrow\left|\frac{a_{m+1}}{a_{m}}\right|=\left|\frac{1}{1}\right|=1 \quad \Rightarrow \quad R=\frac{1}{\lim _{m \rightarrow \infty} 1}=\frac{1}{1}=1 \\
& \sum_{m=0}^{\infty} m!x^{m} \Rightarrow\left|\frac{a_{m+1}}{a_{m}}\right|=\left|\frac{(m+1)!}{m!}\right|=m+1 \Rightarrow R=\frac{1}{\lim _{m \rightarrow \infty} m+1}=\frac{1}{\infty}=0
\end{aligned}
$$

Existence of power series solutions

Given the ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

with p, q, and r analytic at x_{0}, then every solution of the ODE is analytic at x_{0} and can be represented by a power series in terms of $\left(x-x_{0}\right)$ with a radius of convergence $R>0$.

Power series methods

Derivative of a power series

If the power series

$$
y(x)=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}
$$

converges in $\left|x-x_{0}\right|<R$ (with $R>0$), then

$$
y^{\prime}(x)=\sum_{m=1}^{\infty} m a_{m}\left(x-x_{0}\right)^{m-1}
$$

also converges at least in the region $\left|x-x_{0}\right|<R$.

Power series methods

Addition of two power series

If the power series

$$
y_{1}(x)=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}
$$

converges in $\left|x-x_{0}\right|<R_{1}$ and

$$
y_{2}(x)=\sum_{m=0}^{\infty} b_{m}\left(x-x_{0}\right)^{m}
$$

converges in $\left|x-x_{0}\right|<R_{2}$, then

$$
\left(y_{1}+y_{2}\right)(x)=\sum_{m=0}^{\infty}\left(a_{m}+b_{m}\right)\left(x-x_{0}\right)^{m}
$$

converges at least in $\left|x-x_{0}\right|<\min \left(R_{1}, R_{2}\right)$.

Power series methods

Multiplication of two power series

Given the two power series

$$
y_{1}(x)=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m} \quad y_{2}(x)=\sum_{l=0}^{\infty} b_{l}\left(x-x_{0}\right)^{l}
$$

its multiplication is given

$$
\begin{aligned}
y_{1}(x) y_{2}(x) & =\left(\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}\right)\left(\sum_{l=0}^{\infty} b_{l}\left(x-x_{0}\right)^{\prime}\right) \\
& =\sum_{m=0}^{\infty}\left(a_{m}\left(x-x_{0}\right)^{m}\left(\sum_{l=0}^{\infty} b_{l}\left(x-x_{0}\right)^{\prime}\right)\right) \\
& =\sum_{m=0}^{\infty} \sum_{l=0}^{\infty} a_{m} b_{l}\left(x-x_{0}\right)^{m+l} \\
& =\sum_{m=0}^{\infty}\left(\sum_{l=0}^{m} a_{l} b_{m-l}\right)\left(x-x_{0}\right)^{m}
\end{aligned}
$$

Power series methods

Vanishing of all coefficients

If a power series has a positive radius of convergence, R, and a sum that is 0 throughout its interval, then each coefficient of the series must be 0 . That is, if

$$
\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=0 \quad \forall x \in \mathbb{R} \text { such that }\left|x-x_{0}\right|<R,
$$

then

$$
\forall m \quad a_{m}=0
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 5, Section 1:

- 5.1.7
- 5.1.20

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

Legendre's equation

Legendre's equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

It appears in physical problems with spherical symmetry. We transform it into

$$
y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{n(n+1)}{1-x^{2}} y=0
$$

The coefficients p and q are analytic at $x=0$ (but they are not at $x= \pm 1$).
Then, we can use a power series around 0 as a solution
$y=\sum_{m=0}^{\infty} a_{m} x^{m}$
$y^{\prime}=\sum_{m=1}^{\infty} m a_{m} x^{m-1}$
$y^{\prime \prime}=\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}$
Let's call $k=n(n+1)$

Legendre's equation

Legendre's equation (continued)

Subtituting into the ODE

$$
\left(1-x^{2}\right)\left(\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}\right)-2 x\left(\sum_{m=1}^{\infty} m a_{m} x^{m-1}\right)+k\left(\sum_{m=0}^{\infty} a_{m} x^{m}\right)=0
$$

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}-\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m}-\sum_{m=1}^{\infty} 2 m a_{m} x^{m}+\sum_{m=0}^{\infty} k a_{m} x^{m}=0
$$

$$
\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}-\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m}-\sum_{m=1}^{\infty} 2 m a_{m} x^{m}+\sum_{m=0}^{\infty} k a_{m} x^{m}=0
$$

$\left(2 a_{2}+k a_{0}\right)+\left(6 a_{3}+(k-2) a_{1}\right) x+\sum_{m=2}^{\infty}\left((m+2)(m+1) a_{m+2}-\left(m^{2}+m-k\right) a_{m}\right) x^{m}=0$

Legendre's equation

Legendre's equation (continued)

$$
\begin{aligned}
& \left(2 a_{2}+k a_{0}\right)+\left(6 a_{3}+(k-2) a_{1}\right) x+\sum_{m=2}^{\infty}\left((m+2)(m+1) a_{m+2}-\left(m^{2}+m-k\right) a_{m}\right) x^{m}=0 \\
& m=0: \quad 2 a_{2}+k a_{0}=0 \\
& a_{2}=-\frac{k}{2} a_{0}=-\frac{n(n+1)}{2!} a_{0} \\
& m=1: \quad 6 a_{3}+(k-2) a_{1}=0 \\
& a_{3}=-\frac{k-2}{6} a_{1}=-\frac{n(n+1)-2}{3!} a_{1}=-\frac{(n-1)(n+2)}{3!} a_{1} \\
& m \geq 2: \quad(m+2)(m+1) a_{m+2}-\left(m^{2}+m-k\right) a_{m} \\
& a_{m+2}=\frac{m^{2}+m-k}{(m+2)(m+1)} a_{m}=\frac{m^{2}+m-n(n+1)}{(m+2)(m+1)} a_{m}=-\frac{(n-m)(n+m+1)}{(m+2)(m+1)} a_{m} \\
& a_{4}=-\frac{(n-2)(n+3)}{4.3} a_{2} \quad a_{5}=-\frac{(n-3)(n+4)}{5.4} a_{3} \\
& =\left(-\frac{(n-2)(n+3)}{4 \cdot 3}\right)\left(-\frac{n(n+1)}{2!} a_{0}\right) \quad=\left(-\frac{(n-3)(n+4)}{5 \cdot 4} a_{3}\right)\left(-\frac{(n-1)(n+2)}{3!} a_{1}\right) \\
& =\frac{(n-2) n(n+1)(n+3)}{4!} a_{0} \\
& =\frac{(n-3)(n-1)(n+2)(n+4)}{5!} a_{1}
\end{aligned}
$$

Legendre's equation

Legendre's equation (continued)

There actually two independent solutions and the general solution in $(-1,1)$ is a linear combination of the two:

$$
y=a_{0} y_{1}+a_{1} y_{2}
$$

$$
\begin{aligned}
y_{1} & =a_{0}+a_{2} x^{2}+a_{4} x^{4}+\ldots \\
& =1-\frac{n(n+1)}{2!} x^{2}+\frac{(n-2) n(n+1)(n+3)}{4!} x^{4}-\ldots \\
y_{2} & =a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots \\
& =x-\frac{(n-1)(n+2)}{3!} x^{3}+\frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^{5}-\ldots
\end{aligned}
$$

Legendre's equation

Polynomial solutions

Consider the recursion

$$
a_{m+2}=-\frac{(n-m)(n+m+1)}{(m+2)(m+1)} a_{m}
$$

If n is a positive integer, for $m=n$ we have

$$
a_{n+2}=-\frac{(n-n)(n+n+1)}{(n+2)(n+1)} a_{n}=0
$$

and from this point on

$$
0=a_{n+2}=a_{n+4}=a_{n+6}=\ldots
$$

If n is even, y_{1} is a polynomial of degree n.
If n is odd, y_{2} is a polynomial of degree n.
These polynomials will be referred to as $P_{n}(x)$.

Legendre's equation

Polynomial solutions (continued)

We choose the highest coefficient (of degree n) to be

$$
a_{n}=\frac{(2 n)!}{2^{n}(n!)^{2}}
$$

This choice will make $P_{n}(1)=1$. Now we need to go back to calculate a_{0} using

$$
\begin{gathered}
a_{m+2}=-\frac{(n-m)(n+m+1)}{(m+2)(m+1)} a_{m} \\
a_{m}=-\frac{(m+2)(m+1)}{(n-m)(n+m+1)} a_{m+2} \\
a_{m-2}=-\frac{m(m-1)}{(n-m+2)(n+m-1)} a_{m}
\end{gathered}
$$

Legendre's equation

Polynomial solutions (continued)

$$
\begin{aligned}
a_{n-2} & =-\frac{n(n-1)}{(n-n+2)(n+n-1)} a_{n}=-\frac{n(n-1)}{2(2 n-1)}\left(\frac{(2 n)!}{2^{n}(n!)^{2}}\right) \\
& =-\frac{n(n-1)[(2 n)(2 n-1)(2 n-2)!}{2(2 n-1) 2^{n}[n(n-1)!][n(n-1)(n-2)!]} \\
& =-\frac{\phi(n-1)[(2 p)(2 n-1)(2 n-2)!]}{2(2 n-1) 2^{n}[\phi(n-1)!][\phi(n-1)(n-2)!]} \\
& =-\frac{(2 n-2)!}{2^{n}(n-1)!(n-2)!} \\
& =(-1)^{1} \frac{(2 n-2 \cdot 1)!}{2^{n}(1!)(n-1)!(n-2 \cdot 1)!} \\
a_{n-4} & =-\frac{(n-2)((n-2)-1)}{(n-(n-2)+2)(n+(n-2)-1)} a_{n-2}=\ldots \\
& =-\frac{(2 n-4)!}{2^{n} 2!(n-2)!(n-4)!} \\
& =(-1)^{2} \frac{(2 n-2 \cdot 2)!}{2^{n}(2!)(n-2)!(n-2 \cdot 2)!}
\end{aligned}
$$

and, in general,

$$
a_{n-2 m}=(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!}
$$

Legendre's equation

Polynomial solutions (continued)

$$
a_{n-2 m}=(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!}
$$

The polynomial is finally

$$
P_{n}(x)=\sum_{m=0}^{M}(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!} x^{m}
$$

$M=\frac{n}{2}$ if n is even
$M=\frac{n-1}{2}$ if n is odd.
Legendre's polynomials are orthogonal in $[-1,1]$

Legendre's equation

Polynomial solutions (continued)

$$
\begin{array}{ll}
P_{0}(x)=1, & P_{1}(x)=x \\
P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), & P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), & P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{array}
$$

Fortunately, they can be calculated recursively (Bonnet's recursion formula)

$$
\begin{gathered}
P_{0}(x)=1 \\
P_{1}(x)=x \\
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
\end{gathered}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 5, Section 2:

- 5.2.2

10. TEAM PROJECT. Generating Functions. Generating functions play a significant role in modern applied mathematics (see [GenRef5]). The idea is simple. If we want to study a certain sequence $\left(f_{n}(x)\right)$ and can find a function

$$
G(u, x)=\sum_{n=0}^{\infty} f_{n}(x) u^{n},
$$

we may obtain properties of $\left(f_{n}(x)\right)$ from those of G, which "generates" this sequence and is called a generating function of the sequence.

Exercises

Exercises

(a) Legendre polynomials. Show that

$$
\begin{equation*}
G(u, x)=\frac{1}{\sqrt{1-2 x u+u^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) u^{n} \tag{12}
\end{equation*}
$$

is a generating function of the Legendre polynomials. Hint: Start from the binomial expansion of $1 / \sqrt{1-v}$, then set $v=2 x u-u^{2}$, multiply the powers of $2 x u-u^{2}$ out, collect all the terms involving u^{n}, and verify that the sum of these terms is $P_{n}(x) u^{n}$.
(b) Potential theory. Let A_{1} and A_{2} be two points in space (Fig. 108, $r_{2}>0$). Using (12), show that

$$
\begin{aligned}
\frac{1}{r} & =\frac{1}{\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta}} \\
& =\frac{1}{r_{2}} \sum_{m=0}^{\infty} P_{m}(\cos \theta)\left(\frac{r_{1}}{r_{2}}\right)^{m}
\end{aligned}
$$

This formula has applications in potential theory. $(Q / r$ is the electrostatic potential at A_{2} due to a charge Q located at A_{1}. And the series expresses $1 / r$ in terms of the distances of A_{1} and A_{2} from any origin O and the angle θ between the segments $O A_{1}$ and $O A_{2}$.)

Fig. 108. Team Project 10
(c) Further applications of (12). Show that $P_{n}(1)=1, P_{n}(-1)=(-1)^{n}, P_{2 n+1}(0)=0$, and $P_{2 n}(0)=(-1)^{n} \cdot 1 \cdot 3 \cdots(2 n-1) /[2 \cdot 4 \cdots(2 n)]$.

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

Frobenius method

Frobenius method

Let $b(x)$ and $c(x)$ be analytic functions at $x=0$. Then the ODE

$$
y^{\prime \prime}+\frac{b(x)}{x} y^{\prime}+\frac{c(x)}{x^{2}} y=0
$$

has at least one solution that can be represented in the form

$$
y=x^{r} \sum_{m=0}^{\infty} a_{m} x^{m} \quad\left(a_{0} \neq 0\right)
$$

where r may be any (real or complex) number (and r is chosen so that $a_{0} \neq 0$).
The ODE also has a second solution that may be similar to the previous one (with different r and coefficients) or may contain a logarithmic term.

Bessel's equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{x^{2}-\nu^{2}}{x^{2}} y=0
$$

Frobenius method

Indicial equation

If b and c are not polynomials, let us expand them as

$$
b=\sum_{m=0}^{\infty} b_{m} x^{m} \quad \sum_{m=0}^{\infty} c_{m} x^{m}
$$

Let us calculate also the derivatives of the solution

$$
\begin{aligned}
y & =x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=x^{r}\left(a_{0}+a_{1} x+\ldots\right) \\
y^{\prime} & =\sum_{m=0}^{\infty}(m+r) a_{m} x^{m+r-1}=x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m} \\
& =x^{r-1}\left(r a_{0}+(r-1) a_{1}+\ldots\right) \\
y^{\prime \prime} & =\sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m+r-2}=x^{r-2} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
& =x^{r-2}\left(r(r-1) a_{0}+(r+1) r a_{1}+\ldots\right)
\end{aligned}
$$

Frobenius method

Indicial equation (continued)

Let us rewrite the ODE as

$$
x^{2} y^{\prime \prime}+x b y^{\prime}+c y=0
$$

And substitute the solution

$$
x^{r}\left(r(r-1) a_{0}+\ldots\right)+\left(b_{0}+\ldots\right) x^{r}\left(r a_{0}+\ldots\right)+\left(c_{0}+\ldots\right) x^{r}\left(a_{0}+\ldots\right)=0
$$

Consider the coefficient of x^{r}

$$
\left(r(r-1)+b_{0} r+c_{0}\right) a_{0}=0
$$

Since $a_{0} \neq 0$

$$
r(r-1)+b_{0} r+c_{0}=0
$$

This is the indicial equation and provides the r of one of the solutions, and determines the form of the other solution.

Frobenius method

Indicial equation (continued)

$$
r(r-1)+b_{0} r+c_{0}=0
$$

One of the elements of the basis is

$$
y_{1}=x^{r_{1}}\left(a_{0}+a_{1} x+\ldots\right)
$$

The other is

- Distinct roots (including complexes) not differing by an integer $1,2, \ldots$

$$
y_{2}=x^{r_{2}}\left(A_{0}+A_{1} x+\ldots\right)
$$

- A double root:

$$
y_{2}=y_{1} \log (x)+x^{r_{1}}\left(A_{1} x+\ldots\right)
$$

- Roots differing by an integer $1,2, \ldots\left(r_{1}>r_{2}\right)$

$$
y_{2}=k y_{1} \log (x)+x^{r_{2}}\left(A_{0}+A_{1} x+\ldots\right)
$$

Frobenius method

Example: Euler-Cauchy equation

$$
x^{2} y^{\prime \prime}+b_{0} x y^{\prime}+c_{0} y=0
$$

Solution:
The indicial equation

$$
r(r-1)+b_{0} r+c_{0}=0 \Rightarrow r_{1}, r_{2}
$$

If $r_{1} \neq r_{2}$

$$
\begin{aligned}
& y_{1}=x^{r_{1}} \\
& y_{2}=x^{r_{2}}
\end{aligned}
$$

If $r_{1}=r_{2}$

$$
\begin{aligned}
& y_{1}=x^{r_{1}} \\
& y_{2}=x^{r_{1}} \log (x)
\end{aligned}
$$

Frobenius method

Example

$$
x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0
$$

Solution:
We rewrite it as

$$
\begin{gathered}
y^{\prime \prime}+\frac{3 x-1}{x(x-1)} y^{\prime}+\frac{1}{x(x-1)} y=0 \\
y^{\prime \prime}+\frac{\frac{3 x-1}{x-1}}{x} y^{\prime}+\frac{\frac{x}{x-1}}{x^{2}} y=0
\end{gathered}
$$

The functions $b=\frac{3 x-1}{x-1}$ and $c=\frac{x}{x-1}$ are analytic around $x=0$, so we can apply Frobenius method. Actually, we do not need the expansion of b and c

Frobenius method

Example (continued)

Let us substitute the Frobenius solution into the ODE

$$
\begin{gathered}
x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0 \\
x^{2} y^{\prime \prime}-x y^{\prime \prime}+3 x y^{\prime}-y^{\prime}+y=0 \\
x^{2}\left(x^{r-2} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}\right)-x\left(x^{r-2} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}\right) \\
+3 x\left(x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}\right)-\left(x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}\right)+\left(x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}\right)=0
\end{gathered}
$$

Frobenius method

Example (continued)

This can be rewritten as

$$
\begin{aligned}
& x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
& +3 x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{aligned}
$$

The smallest power is x^{r-1} and its coefficient gives the indicial equation

$$
\begin{gathered}
-r(r-1) a_{0}-r a_{0}=0 \\
-r^{2}=0
\end{gathered}
$$

So, we have a double root at $r=0$.

Frobenius method

Example (continued)

First solution:
We substitute $r=0$ in the equation

$$
\begin{aligned}
& x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
& +3 x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{aligned}
$$

That is

$$
\begin{aligned}
& \sum_{m=0}^{\infty} m(m-1) a_{m} x^{m}-x^{-1} \sum_{m=0}^{\infty} m(m+1) a_{m} x^{m} \\
+ & 3 \sum_{m=0}^{\infty} m a_{m} x^{m}-x^{-1} \sum_{m=0}^{\infty} m a_{m} x^{m}+\sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{aligned}
$$

Frobenius method

Example (continued)

First solution: (continued)

$$
\begin{aligned}
& \sum_{m=0}^{\infty} m(m-1) a_{m} x^{m}-x^{-1} \sum_{m=0}^{\infty} m(m+1) a_{m} x^{m} \\
+ & 3 \sum_{m=0}^{\infty} m a_{m} x^{m}-x^{-1} \sum_{m=0}^{\infty} m a_{m} x^{m}+\sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{aligned}
$$

$\sum_{m=0}^{\infty}(m(m-1)+3 m+1) a_{m} x^{m}-\sum_{m=0}^{\infty}(m(m+1)-m) a_{m} x^{m-1}=0$

$$
\sum_{m=0}^{\infty}\left(m^{2}+2 m+1\right) a_{m} x^{m}-\sum_{m=0}^{\infty} m^{2} a_{m} x^{m-1}=0
$$

$$
\sum_{m=0}^{\infty}\left(m^{2}+2 m+1\right) a_{m} x^{m}-\sum_{m^{\prime}=-1}^{\infty}\left(m^{\prime}+1\right)^{2} a_{m^{\prime}+1} x^{m^{\prime}}=0
$$

Frobenius method

Example (continued)

First solution: (continued)

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left(m^{2}+2 m+1\right) a_{m} x^{m}-\sum_{m^{\prime}=-1}^{\infty}\left(m^{\prime}+1\right)^{2} a_{m^{\prime}+1} x^{m^{\prime}}=0 \\
\sum_{m=0}^{\infty}\left(m^{2}+2 m+1\right) a_{m} x^{m}-\sum_{m=0}^{\infty}(m+1)^{2} a_{m+1} x^{m}=0 \\
\sum_{m=0}^{\infty}\left[\left(m^{2}+2 m+1\right) a_{m}-(m+1)^{2} a_{m+1}\right] x^{m}=0 \\
\sum_{m=0}^{\infty}(m+1)^{2}\left(a_{m}-a_{m+1}\right) x^{m}=0 \\
(m+1)^{2}\left(a_{m}-a_{m+1}\right)=0 \\
a_{m+1}=a_{m}
\end{gathered}
$$

Frobenius method

Example (continued)

First solution: (continued)

$$
a_{m+1}=a_{m}
$$

Hence

$$
a_{0}=a_{1}=a_{2}=\ldots
$$

We may choose $a_{0}=1$. The first solution is

$$
y_{1}=\sum_{m=0}^{\infty} x^{m}=\frac{1}{1-x} \quad|x|<1
$$

Frobenius method

Example (continued)

Second solution:

We apply reduction of order

$$
\begin{gathered}
{\left[y^{\prime \prime}+p y^{\prime}+q y=0 \quad U=\frac{1}{y_{1}^{2}} e^{-\int p d x} \quad u=\int U d x\right]} \\
y^{\prime \prime}+\frac{\frac{3 x-1}{x-1}}{x} y^{\prime}+\frac{\frac{x}{x-1}}{x^{2}} y=0 \\
-\int \frac{3 x-1}{x(x-1)} d x=-\int\left(\frac{2}{x-1}+\frac{1}{x}\right) d x=-2 \log |x-1|-\log |x|=\log \frac{1}{x(x-1)^{2}} \\
U=\frac{1}{\left(\frac{1}{1-x}\right)^{2}} e^{\log \frac{1}{x(x-1)^{2}}}=(1-x)^{2} \frac{1}{x(x-1)^{2}}=\frac{1}{x} \\
u=\int \frac{1}{x} d x=\log (x) \Rightarrow y_{2}=u y_{1}=\frac{\log (x)}{1-x}
\end{gathered}
$$

Frobenius method

Example (continued)

The general solution of

$$
x(x-1) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0
$$

is

$$
y=c_{1} \frac{1}{1-x}+c_{2} \frac{\log (x)}{1-x}
$$

Frobenius method

Example

$$
\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime}+y=0
$$

Solution

Substituting the Frobenius solution in the ODE we get

$$
\begin{gathered}
\left(x^{2}-x\right)\left(x^{r-2} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}\right)-x\left(x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}\right) \\
+\left(x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}\right)=0 \\
x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
-x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{gathered}
$$

Frobenius method

Example (continued)

$$
\begin{gathered}
x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
-x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{gathered}
$$

The smallest power is $r-1$ whose coefficient is

$$
-r(r-1) a_{0}=0 \Rightarrow r_{1}=1, r_{2}=0
$$

We have two roots, whose difference is an integer.

Frobenius method

Example (continued)

First solution: Substitute $r=1$ in

$$
\begin{gathered}
x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}-x^{r-1} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m} \\
-x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0 \\
x \sum_{m=0}^{\infty}(m+1) m a_{m} x^{m}-\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m}-x \sum_{m=0}^{\infty}(m+1) a_{m} x^{m}+x \sum_{m=0}^{\infty} a_{m} x^{m}=0 \\
\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m+1}-\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m}-\sum_{m=0}^{\infty}(m+1) a_{m} x^{m+1}+\sum_{m=0}^{\infty} a_{m} x^{m+1}=0 \\
\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m+1}-\sum_{m=1}^{\infty}(m+1) m a_{m} x^{m}-\sum_{m=0}^{\infty}(m+1) a_{m} x^{m+1}+\sum_{m=0}^{\infty} a_{m} x^{m+1}=0
\end{gathered}
$$

Frobenius method

Example (continued)

First solution: (continued)

$$
\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m+1}-\sum_{m=1}^{\infty}(m+1) m a_{m} x^{m}-\sum_{m=0}^{\infty}(m+1) a_{m} x^{m+1}+\sum_{m=0}^{\infty} a_{m} x^{m+1}=0
$$

$$
\sum_{m=0}^{\infty}(m+1) m a_{m} x^{m+1}-\sum_{m^{\prime}=0}^{\infty}\left(m^{\prime}+2\right)\left(m^{\prime}+1\right) a_{m^{\prime}+1} x^{m^{\prime}+1}
$$

$$
-\sum_{m=0}^{\infty}(m+1) a_{m} x^{m+1}+\sum_{m=0}^{\infty} a_{m} x^{m+1}=0
$$

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left([(m+1) m-(m+1)+1] a_{m}-(m+2)(m+1) a_{m+1}\right) x^{m+1}=0 \\
\sum_{m=0}^{\infty}\left(m^{2} a_{m}-(m+2)(m+1) a_{m+1}\right) x^{m+1}=0
\end{gathered}
$$

Frobenius method

Example (continued)

First solution: (continued)

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left(m^{2} a_{m}-(m+2)(m+1) a_{m+1}\right) x^{m+1}=0 \\
m^{2} a_{m}-(m+2)(m+1) a_{m+1}=0 \\
a_{m+1}=\frac{m^{2}}{(m+2)(m+1)} a_{m}
\end{gathered}
$$

If we choose $a_{0}=1$, then

$$
a_{1}=\frac{0^{2}}{(0+2)(0+1)} a_{0}=0=a_{2}=a_{3}=\ldots
$$

So

$$
y_{1}=x^{r_{1}} a_{0}=x^{1} \cdot 1=x
$$

Frobenius method

Example (continued)

Second solution: Let's apply a reduction of order:

$$
\begin{gathered}
y_{2}=u y_{1}=u x \\
y_{2}^{\prime}=u+u^{\prime} x \\
y_{2}^{\prime \prime}=u^{\prime}+u^{\prime \prime}+u^{\prime}=u^{\prime \prime}+2 u^{\prime}
\end{gathered}
$$

And substitute in the ODE

$$
\begin{gathered}
\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime}+y=0 \\
\left(x^{2}-x\right)\left(u^{\prime \prime}+2 u^{\prime}\right)-x\left(u+u^{\prime} x\right)+u x=0 \\
\left(x^{2}-x\right) u^{\prime \prime}+(x-2) u^{\prime}=0 \\
\frac{u^{\prime \prime}}{u^{\prime}}=-\frac{x-2}{x^{2}-x}=-\frac{2}{x}+\frac{1}{1-x}
\end{gathered}
$$

Frobenius method

Example (continued)

Second solution: (continued)

$$
\begin{gathered}
\frac{u^{\prime \prime}}{u^{\prime}}=-\frac{x-2}{x^{2}-x}=-\frac{2}{x}+\frac{1}{1-x} \\
\log \left(u^{\prime}\right)=-2 \log |x|+\log |x-1|=\log \frac{x-1}{x^{2}} \\
u^{\prime}=\frac{x-1}{x^{2}}=\frac{1}{x}-\frac{1}{x^{2}} \\
u=\log (x)+\frac{1}{x} \\
y_{2}=u y_{1}=\left(\log (x)+\frac{1}{x}\right) x=x \log (x)-1
\end{gathered}
$$

The general solution is

$$
y=c_{1} x+c_{2}(x \log (x)-1)
$$

Exercises

Exercises

14. TEAM PROJECT. Hypergeometric Equation, Series, and Function. Gauss's hypergeometric ODE^{5} is

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0 \tag{15}
\end{equation*}
$$

Here, a, b, c are constants. This ODE is of the form $p_{2} y^{\prime \prime}+p_{1} y^{\prime}+p_{0} y=0$, where p_{2}, p_{1}, p_{0} are polynomials of degree $2,1,0$, respectively. These polynomials are written so that the series solution takes a most practical form, namely,
(16)

$$
\begin{aligned}
& y_{1}(x)=1+\frac{a b}{1!c} x+\frac{a(a+1) b(b+1)}{2!c(c+1)} x^{2} \\
& +\frac{a(a+1)(a+2) b(b+1)(b+2)}{3!c(c+1)(c+2)} x^{3}+\cdots
\end{aligned}
$$

This series is called the hypergeometric series. Its sum $y_{1}(x)$ is called the hypergeometric function and is denoted by $F(a, b, c ; x)$. Here, $c \neq 0,-1,-2, \cdots$. By choosing specific values of a, b, c we can obtain an incredibly large number of special functions as solutions
of (15) [see the small sample of elementary functions in part (c)]. This accounts for the importance of (15).
(a) Hypergeometric series and function. Show that the indicial equation of (15) has the roots $r_{1}=0$ and $r_{2}=1-c$. Show that for $r_{1}=0$ the Frobenius method gives (16). Motivate the name for (16) by showing that

$$
F(1,1,1 ; x)=F(1, b, b ; x)=F(a, 1, a ; x)=\frac{1}{1-x}
$$

(b) Convergence. For what a or b will (16) reduce to a polynomial? Show that for any other a, b, c $(c \neq 0,-1,-2, \cdots)$ the series (16) converges when $|x|<1$.
(c) Special cases. Show that

$$
\begin{aligned}
(1+x)^{n} & =F(-n, b, b ;-x) \\
(1-x)^{n} & =1-n x F(1-n, 1,2 ; x) \\
\arctan x & =x F\left(\frac{1}{2}, 1, \frac{3}{2} ;-x^{2}\right) \\
\arcsin x & =x F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; x^{2}\right) \\
\ln (1+x) & =x F(1,1,2 ;-x) \\
\ln \frac{1+x}{1-x} & =2 x F\left(\frac{1}{2}, 1, \frac{3}{2} ; x^{2}\right)
\end{aligned}
$$

Exercises

Exercises

Find more such relations from the literature on special functions, for instance, from [GenRef1] in App. 1.
(d) Second solution. Show that for $r_{2}=1-c$ the Frobenius method yields the following solution (where $c \neq 2,3,4, \cdots)$:
(17)

$$
\begin{aligned}
& y_{2}(x)=x^{1-c}\left(1+\frac{(a-c+1)(b-c+1)}{1!(-c+2)} x\right. \\
& +\frac{(a-c+1)(a-c+2)(b-c+1)(b-c+2)}{2!(-c+2)(-c+3)} x^{2}
\end{aligned}
$$

$$
+\cdots)
$$

Show that

$$
y_{2}(x)=x^{1-c} F(a-c+1, b-c+1,2-c ; x)
$$

(e) On the generality of the hypergeometric equation.

Show that

$$
\begin{equation*}
\left(t^{2}+A t+B\right) \ddot{y}+(C t+D) \dot{y}+K y=0 \tag{18}
\end{equation*}
$$

with $\dot{y}=d y / d t$, etc., constant A, B, C, D, K, and $t^{2}+$ $A t+B=\left(t-t_{1}\right)\left(t-t_{2}\right), t_{1} \neq t_{2}$, can be reduced to the hypergeometric equation with independent variable

$$
x=\frac{t-t_{1}}{t_{2}-t_{1}}
$$

and parameters related by $C t_{1}+D=-c\left(t_{2}-t_{1}\right)$, $C=a+b+1, K=a b$. From this you see that (15) is a "normalized form" of the more general (18) and that various cases of (18) can thus be solved in terms of hypergeometric functions.

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

Bessel's equation

Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 \quad \nu \geq 0
$$

It appears in physical problems with cylindrical symmetry. We may transform it into

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{x^{2}-\nu^{2}}{x^{2}} y=0
$$

The functions b and c (see Frobenius method) are analytic at $x=0$ so we can try a Frobenius solution:

$$
\begin{gathered}
x^{2}\left(x^{r-2} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}\right)+x\left(x^{r-1} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m}\right) \\
+x^{2}\left(x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}\right)-\nu^{2}\left(x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}\right)=0
\end{gathered}
$$

Bessel's equation

Bessel's equation

$$
\begin{gathered}
x^{r} \sum_{m=0}^{\infty}(m+r)(m+r-1) a_{m} x^{m}+x^{r} \sum_{m=0}^{\infty}(m+r) a_{m} x^{m} \\
\quad+x^{r+2} \sum_{m=0}^{\infty} a_{m} x^{m}-\nu^{2} x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{gathered}
$$

The smallest power is r and its coefficient gives the indicial equation

$$
r(r-1) a_{0}+r a_{0}-\nu^{2} a_{0}=\left(r^{2}-\nu^{2}\right) a_{0}=0 \Rightarrow r_{1}, r_{2}= \pm \nu
$$

Substituting $r=r_{1}=\nu$ in the equation above we get

$$
\begin{gathered}
x^{\nu} \sum_{m=0}^{\infty}(m+\nu)(m+\nu-1) a_{m} x^{m}+x^{\nu} \sum_{m=0}^{\infty}(m+\nu) a_{m} x^{m} \\
\quad+x^{\nu+2} \sum_{m=0}^{\infty} a_{m} x^{m}-\nu^{2} x^{\nu} \sum_{m=0}^{\infty} a_{m} x^{m}=0
\end{gathered}
$$

Bessel's equation

Bessel's equation

$$
\begin{gathered}
\sum_{m=0}^{\infty} m(m+2 \nu) a_{m} x^{m+\nu}+\sum_{m=0}^{\infty} a_{m} x^{m+\nu+2}=0 \\
\sum_{m=0}^{\infty} m(m+2 \nu) a_{m} x^{m+\nu}+\sum_{m^{\prime}=2}^{\infty} a_{m^{\prime}-2} x^{m^{\prime}+\nu}=0 \\
(1+2 \nu) a_{1} x^{1+\nu}+\sum_{m=2}^{\infty}\left[m(m+2 \nu) a_{m}+a_{m-2}\right] x^{m+\nu}=0 \\
(1+2 \nu) a_{1}=0 \Rightarrow a_{1}=0 \\
m(m+2 \nu) a_{m}+a_{m-2}=0 \Rightarrow a_{m}=-\frac{1}{m(2 \nu+m)} a_{m-2}
\end{gathered}
$$

For odd m 's, a_{3} is a function of a_{1} (that is 0), a_{5} a function of a_{3}, \ldots

$$
0=a_{1}=a_{3}=a_{5}=\ldots
$$

Bessel's equation

Bessel's equation

$$
a_{m}=-\frac{1}{m(2 \nu+m)} a_{m-2}
$$

For even m 's, we can write $m=2 k$

$$
a_{2 k}=-\frac{1}{2 k(2 \nu+2 k)} a_{2 k-2}=-\frac{1}{2^{2} k(\nu+k)} a_{2 k-2} \quad k=1,2, \ldots
$$

That is

$$
\begin{gathered}
a_{2}=-\frac{1}{2^{2}(\nu+1)} a_{0} \\
a_{4}=-\frac{1}{2^{2} 2(\nu+2)} a_{2}=-\frac{1}{2^{2} 2(\nu+2)}\left(-\frac{1}{2^{2}(\nu+1)} a_{0}\right)=\frac{1}{2^{4} 2!(\nu+1)(\nu+2)} a_{0}
\end{gathered}
$$

In general,

$$
a_{2 k}=\frac{(-1)^{m}}{2^{2 k} k!(\nu+1)(\nu+2) \ldots(\nu+k)} a_{0}
$$

Bessel's equation

Bessel's equation: Bessel's functions of first kind $J_{\nu}(x)$
The first solution of Bessel's equation is

$$
y_{1}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(\nu+1)(\nu+2) \ldots(\nu+k)} a_{0} x^{2 k}
$$

If $\nu \in \mathbb{Z}, \nu=n$ let us choose

$$
a_{0}=\frac{1}{2^{n} n!}
$$

Then

$$
\begin{gathered}
y_{1}=x^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(n+1)(n+2) \ldots(n+k)} \frac{1}{2^{n} n!} x^{2 k} \\
y_{1}=J_{n}=x^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+n} k!(n+k)!} x^{2 k}
\end{gathered}
$$

This Bessel's function of the first kind and order n.

Bessel's equation

Bessel's functions of first kind $J_{\nu}(x)$

For large x, they fulfill

$$
J_{n}(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right)
$$

Bessel's equation

The Gamma function

Let us define the Gamma function as

$$
\Gamma(x+1)=\int_{0}^{\infty} e^{-t} t^{x} d t
$$

Integrating by parts $\left(u=t^{x}, d v=e^{-t} d t\right)$ we get

$$
\Gamma(x+1)=-\left.e^{-t} t^{x}\right|_{0} ^{\infty}+\int_{0}^{\infty} x t^{x-1} e^{-t} d t=0+x \int_{0}^{\infty} t^{x-1} e^{-t} d t=x \Gamma(x)
$$

Additionally

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

Bessel's equation

The Gamma function

$$
\begin{aligned}
\Gamma(x+1) & =x \Gamma(x) \\
\hline \Gamma(1) & =1 \\
\Gamma(2) & =1 \Gamma(1)=1 \cdot 1 \\
\Gamma(3) & =2 \Gamma(2)=2 \cdot 1 \\
\Gamma(4) & =3 \Gamma(3)=3 \cdot 2 \cdot 1 \\
\cdots & \\
\Gamma(n+1) & =n!
\end{aligned}
$$

Another interesting result

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Bessel's equation

Bessel's equation: Bessel's functions of first kind $J_{\nu}(x)$ (continued)
The first solution of Bessel's equation is

$$
y_{1}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(\nu+1)(\nu+2) \ldots(\nu+k)} a_{0} x^{2 k}
$$

If $\nu \notin \mathbb{Z}$, let us choose

$$
a_{0}=\frac{1}{2^{\nu} \Gamma(\nu+1)}
$$

Then

$$
\begin{gathered}
y_{1}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(\nu+1)(\nu+2) \ldots(\nu+k)} \frac{1}{2^{\nu} \Gamma(\nu+1)} x^{2 k} \\
y_{1}=J_{\nu}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(\nu+k+1)} x^{2 k}
\end{gathered}
$$

Bessel's equation

Bessel's equation: Bessel's functions of first kind $J_{\nu}(x)$ (continued)

$$
y_{1}=J_{\nu}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(\nu+k+1)} x^{2 k}
$$

An interesting result is that

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin (x) \quad J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)
$$

The general solution if $\nu \notin \mathbb{Z}$ is

$$
y=c_{1} J_{\nu}+c_{2} J_{-\nu}
$$

where

$$
J_{-\nu}=x^{-\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k-\nu} k!\Gamma(-\nu+k+1)} x^{2 k}
$$

Bessel's equation

Bessel's equation: Bessel's functions of first kind $J_{\nu}(x)$ (continued)

$$
y_{1}=J_{\nu}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(\nu+k+1)} x^{2 k}
$$

An interesting result is that

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin (x) \quad J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)
$$

The general solution if $\nu \notin \mathbb{Z}$ is

$$
y=c_{1} J_{\nu}+c_{2} J_{-\nu}
$$

where

$$
J_{-\nu}=x^{-\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k-\nu} k!\Gamma(-\nu+k+1)} x^{2 k}
$$

Bessel's equation

Bessel's equation: Bessel's functions of first kind $J_{\nu}(x)$ (continued)

For $\nu \in \mathbb{Z}$ there is problem because

$$
J_{-n}=(-1)^{n} J_{n}
$$

that is, there is a linear dependence between the two solutions that will be solved by Bessel's functions of second kind.

Some useful properties
Derivatives

$$
\begin{gathered}
\left(x^{\nu} J_{\nu}(x)\right)^{\prime}=x^{\nu} J_{\nu-1}(x) \\
\left(x^{-\nu} J_{\nu}(x)\right)^{\prime}=-x^{-\nu} J_{\nu+1}(x)
\end{gathered}
$$

Recursion

$$
\begin{gathered}
J_{\nu-1}(x)+J_{\nu+1}(x)=\frac{2 \nu}{x} J_{\nu}(x) \\
J_{\nu-1}(x)-J_{\nu+1}(x)=2 J_{\nu}^{\prime}(x)
\end{gathered}
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 5, Section 5:

- 5.4.3
- 5.4.6

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

Bessel's equation

Bessel's equation

Let's look for a second solution of Bessel's equation in the case of $\nu \in \mathbb{Z}$. For simplicity we will start with $n=0$. The ODE is then

$$
\begin{gathered}
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 \\
x y^{\prime \prime}+y^{\prime}+x y=0
\end{gathered}
$$

We know from the previous section that the indicial equation has a double root at $r=0$. The first solution is

$$
y_{1}=J_{0}
$$

The second solution according to Frobenius method must be of the form

$$
\begin{gathered}
y_{2}=y_{1} \log (x)+x^{r} \sum_{m=1}^{\infty} A_{m} x^{m} \\
y_{2}=J_{0} \log (x)+\sum_{m=1}^{\infty} A_{m} x^{m}
\end{gathered}
$$

Bessel's equation

Bessel's equation

$$
\begin{gathered}
y_{2}=J_{0} \log (x)+\sum_{m=1}^{\infty} A_{m} x^{m} \\
y_{2}^{\prime}=J_{0}^{\prime} \log (x)+J_{0} x^{-1}+\sum_{m=1}^{\infty} m A_{m} x^{m-1} \\
y_{2}^{\prime \prime}=J_{0}^{\prime \prime} \log (x)+2 J_{0}^{\prime} x^{-1}-J_{0} x^{-2}+\sum_{m=1}^{\infty} m(m-1) A_{m} x^{m-2}
\end{gathered}
$$

We now substitute in the ODE

$$
x y^{\prime \prime}+y^{\prime}+x y=0
$$

Bessel's equation

Bessel's equation

$$
\begin{gathered}
x\left(J_{0}^{\prime \prime} \log (x)+2 J_{0}^{\prime} x^{-1}-J_{0} x^{-2}+\sum_{m=1}^{\infty} m(m-1) A_{m} x^{m-2}\right) \\
+\left(J_{0}^{\prime} \log (x)+J_{0} x^{-1}+\sum_{m=1}^{\infty} m A_{m} x^{m-1}\right)+x\left(J_{0} \log (x)+\sum_{m=1}^{\infty} A_{m} x^{m}\right)=0 \\
\left(x J_{0}^{\prime \prime}+J_{0}^{\prime}+x J_{0}\right) \log (x)+2 J_{0}^{\prime}+\sum_{m=1}^{\infty} m(m-1) A_{m} x^{m-1}+\sum_{m=1}^{\infty} m A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0 \\
2 J_{0}^{\prime}+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0
\end{gathered}
$$

Bessel's equation

Bessel's equation

We know that

$$
J_{n}=x^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+n} k!(n+k)!} x^{2 k}
$$

In particular

$$
\begin{gathered}
J_{0}=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{2^{2 m}(m!)^{2}} x^{2 m} \\
J_{0}^{\prime}=\sum_{m=1}^{\infty} \frac{(-1)^{m} 2 m}{2^{2 m}(m!)^{2}} x^{2 m-1}=\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-1} m!(m-1)!} x^{2 m-1}
\end{gathered}
$$

Substituting in the solution of Bessel's equation

$$
\begin{gathered}
2\left(\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-1} m!(m-1)!} x^{2 m-1}\right)+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0 \\
\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-2} m!(m-1)!} x^{2 m-1}+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0
\end{gathered}
$$

Bessel's equation

Bessel's equation

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-2} m!(m-1)!} x^{2 m-1}+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0 \\
& \left(-x+\frac{1}{2^{2} 2!} x^{3}-\ldots\right)+\left(A_{1}+4 A_{2} x+\ldots\right)+\left(A_{1} x^{2}+A_{2} x^{3}+\ldots\right)=0
\end{aligned}
$$

The only term in x^{0} comes from the second series, so it must be

$$
A_{1}=0
$$

Let's consider now the even terms. There is none in the first series. In the second and third series the corresponding terms are

$$
\begin{aligned}
& x^{m-1}=x^{2 s} \Rightarrow m=2 s+1 \quad \Rightarrow(2 s+1) A_{2 s+1} x^{2 s} \\
& x^{m+1}=x^{2 s} \Rightarrow m=2 s-1 \quad \Rightarrow A_{2 s-1} x^{2 s}
\end{aligned}
$$

Bessel's equation

Bessel's equation

Their sum gives

$$
(2 s+1) A_{2 s+1}+A_{2 s-1}=0 \Rightarrow A_{2 s+1}=-\frac{1}{2 s+1} A_{2 s-1}
$$

Consequently, if $A_{1}=0$, so are A_{3}, A_{5}, \ldots Let's go back to

$$
\begin{gathered}
\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-2} m!(m-1)!} x^{2 m-1}+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0 \\
\left(-x+\frac{1}{2^{2} 2!} x^{3}-\ldots\right)+\left(4 A_{2} x+16 A_{4} x^{3}+\ldots\right)+\left(A_{2} x^{3}+A_{4} x^{5}+\ldots\right)=0
\end{gathered}
$$

For the power x^{1}, we have

$$
-1+4 A_{2}=0 \Rightarrow A_{2}=\frac{1}{4}
$$

Bessel's equation

Bessel's equation

$$
\sum_{m=1}^{\infty} \frac{(-1)^{m}}{2^{2 m-2} m!(m-1)!} x^{2 m-1}+\sum_{m=1}^{\infty} m^{2} A_{m} x^{m-1}+\sum_{m=1}^{\infty} A_{m} x^{m+1}=0
$$

For the rest of powers $x^{2 s+1}(s=1,2, \ldots)$ we have

1st series	$2 m-1=2 s+1 \Rightarrow m=s+1$	$\frac{(-1)^{s+1}}{2^{2(s+1)-2}(s+1)!((s+1)-1)!}=\frac{(-1)^{s+1}}{2^{2 s}(s+1)!s!}$
2nd series	$m-1=2 s+1 \Rightarrow m=2 s+2$	$(2 s+2)^{2} A_{2 s+2}$
3rd series	$m+1=2 s+1 \Rightarrow m=2 s$	$A_{2 s}$

$$
\begin{gathered}
\frac{(-1)^{s+1}}{2^{2 s}(s+1)!s!}+(2 s+2)^{2} A_{2 s+2}+A_{2 s}=0 \\
A_{2 s+2}=-\frac{1}{(2 s+2)^{2}} A_{2 s}-\frac{(-1)^{s+1}}{2^{2 s}(s+1)!s!(2 s+2)^{2}}
\end{gathered}
$$

Bessel's equation

Bessel's equation

After some manipulation we obtain the general term

$$
A_{2 s}=\frac{(-1)^{s-1}}{2^{2 s}(s!)^{2}}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{s}\right)
$$

Let us call

$$
h_{s}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{s}
$$

Finally, the second solution is

$$
y_{2}=J_{0} \log (x)+\sum_{s=1}^{\infty} \frac{(-1)^{s-1} h_{s}}{2^{2 s}(s!)^{2}} x^{2 s}
$$

y_{2} is independent of $y_{1}=J_{0}$, so both functions together are a basis of solutions.

Bessel's equation

Bessel's equation

It is customary to use a different basis

$$
\begin{aligned}
Y_{0} & =\frac{2}{\pi}\left(y_{2}+(\gamma-\log (2)) J_{0}\right) \\
& =\frac{2}{\pi}\left(J_{0}(x)\left(\log \frac{x}{2}+\gamma\right)+\sum_{s=1}^{\infty} \frac{(-1)^{s-1} h_{s}}{2^{2 s}(s!)^{2}} x^{2 s}\right)
\end{aligned}
$$

where γ is Euler's constant. The set $\left\{J_{0}, Y_{0}\right\}$ is also a basis. In general

$$
Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\nu \pi)-J_{-\nu}(x)}{\sin \nu \pi}
$$

and the general solution of Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 \quad \nu \geq 0
$$

is

$$
y=c_{1} J_{\nu}+c_{2} Y_{\nu}
$$

Bessel's equation

Bessel's functions of the second kind

For large x, they fulfill

$$
Y_{n}(x) \approx \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right)
$$

Bessel's equation

Recurrence formulas

$$
\begin{aligned}
J_{\nu+1}(x) & =\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu-1}(x) & Y_{\nu+1}(x) & =\frac{2 \nu}{x} Y_{\nu}(x)-Y_{\nu-1}(x) \\
J_{\nu+1}^{\prime}(x) & =\frac{1}{2}\left[J_{\nu-1}(x)-J_{\nu+1}(x)\right] & Y_{\nu+1}^{\prime}(x) & =\frac{1}{2}\left[Y_{\nu-1}(x)-Y_{\nu+1}(x)\right] \\
J_{\nu}^{\prime}(x) & =J_{\nu-1}(x)-\frac{\nu}{x} J_{\nu}(x) & Y_{\nu}^{\prime}(x) & =Y_{\nu-1}(x)-\frac{\nu}{x} Y_{\nu}(x) \\
J_{\nu}^{\prime}(x) & =\frac{\nu}{x} J_{\nu}(x)-J_{\nu+1}(x) & Y_{\nu}^{\prime}(x) & =\frac{\nu}{x} Y_{\nu}(x)-Y_{\nu+1}(x) \\
\frac{d}{d x}\left[x^{\nu} J_{\nu}(x)\right] & =x^{\nu} J_{\nu-1}(x) & \frac{d}{d x}\left[x^{\nu} Y_{\nu}(x)\right] & =x^{\nu} Y_{\nu-1}(x) \\
\frac{d}{d x}\left[x^{-\nu} J_{\nu}(x)\right] & =-x^{-\nu} J_{\nu+1}(x) & \frac{d}{d x}\left[x^{-\nu} Y_{\nu}(x)\right] & =-x^{-\nu} Y_{\nu+1}(x)
\end{aligned}
$$

Modified Bessel's equation

Modified Bessel's equation

Bessel's equation

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 \\
& x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+\nu^{2}\right) y=0
\end{aligned} \quad \text { The general }
$$

Modified Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+\nu^{2}\right) y=0$ solution of the Modified Bessel's equation is of the form

$$
y=c_{1} I_{\nu}+c_{2} K_{\nu}
$$

where I_{ν} is the modified Bessel function of first kind:

$$
I_{\nu}(x)=i^{-\nu} J_{\nu}(i x)=x^{\nu} \sum_{k=0}^{\infty} \frac{1}{2^{2 k+\nu} k!\Gamma(k+\nu+1)} x^{2 k}
$$

compare it to

$$
J_{\nu}=x^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(\nu+k+1)} x^{2 k}
$$

Modified Bessel's equation

Modified Bessel's equation (continued)

and K_{ν} is the modified Bessel function of second kind:

$$
K_{\nu}(x)=\frac{\pi}{2} \frac{I_{-\nu(x)}-I_{\nu}(x)}{\sin \nu \pi}
$$

compare it to

$$
Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\nu \pi)-J_{-\nu}(x)}{\sin \nu \pi}
$$

Modified Bessel's equation

Modified Bessel's function of first kind

Modified Bessel's equation

Modified Bessel's function of second kind

Modified Bessel's equation

Blobs

$$
B(r)=\left\{\begin{array}{cc}
\frac{\left(\sqrt{1-\left(\frac{r}{r_{0}}\right)^{2}}\right)^{m} I_{m}\left(\alpha \sqrt{1-\left(\frac{r}{r_{0}}\right)^{2}}\right)}{I_{m}(\alpha)} & 0 \leq r \leq r_{0} \\
0 & r>r_{0}
\end{array}\right.
$$

Exercises

Exercises

From Kreyszig (10th ed.), Chapter 5, Section 5:

- 5.5.1
- 5.5.2

Outline

(1) Series solutions of ODEs. Special functions

- Power series methods
- Legendre's equation. Legendre polynomials
- Extended power series method: Frobenius method
- Bessel's equation. Bessel functions $J_{\nu}(x)$
- Bessel's equation. Bessel functions $Y_{\nu}(x)$

