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This is the standard method to solve linear ODEs with variable coefficients. A
power series is an infinite series of the form

o

Z am(X — Xo)’" = ap + a]_(X = Xo) + 32(X _ X0)2 + ..

m=0
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Power series methods
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Power series methods

y'—y=0

Solution:
We look for a solution of the form

oo
y = Zamx’" = a9+ aix + ax® + ...

m=0

y' = Z mamx™ 1 = a; + 2apx + 3a3x® + ...
m=1
And susbtitute it in the ODE
(al + 2apx + 3a3x2 + ) — (ao + aix + 32X2 + ) =0

(a]_ = 30) aF (222 = 31) =F (333 = 22) +..=0
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Power series methods

(a1 —ag) + (2 —a1) +(Baz —a) +...=0
21—3020:>31:ao
2a2—31:O:>32:lalz2ao
333—8220:>a32332:3f230

And in general
1 1

= hk— 1.2 T

So the solution of the ODE is

1 1
y=a(l+x+ Exz + §x3 +...) = ae”
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Power series methods

Power series methods

y"'+p(x)y’ +q(x)y =0

This method is applied to linear ODEs with variable coefficients because the
coefficients, p and g, can also be substituted by a power series.

v

It occurs in problems with spherical symmetry

(1—-x%)y" —2xy’ +2y =0

Solution:
Let's look for a solution of the form

2 4
y = ag + a1x + ax? + asx> + agx* + asx® + agx® + ...

y' = a1 + 2apx + 3asx? + 4asx® + basx* + 6agx° + ...

y" = 2a, 4 6asx + 12a;x% + 20asx> + 30agx* + ...
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Power series methods

(1—-x%)y" —2xy’ +2y =0

We now compute each one of the terms appearing in the ODE

y' = 2a 46asx +12a;x®> +20a5x> +30asx* +..
—x%y" = —2ax®> —6asx® —12ax* —20asx® —30a6x® +...
—2xy' = —2a1x  —4ax® —6asx® —8asx*  —10asx® —12a6x® +...

2y = 2ay +2a1x F2ax?  +2asx® H2ax*  42asx®  42ax®  +..

And solve for the coefficients of each power

m=0: 2a+2a =0 = a=—a

m=1: 6a3=0 = a3=0

m=2: 12a;,—4a, =0 = 342%32:—%30

m=3: 20a5s —10a3=0 = a5=0

m=4: 3035—1834:0 = 36:%3422(—%30) :—%30
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The general solution of the equation is

1 1
y = aix + ap(1 —x? = §x4 — gxﬁ — e

1
_ 1— - 2m
y=aix+ ap m2=12 —1X
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Power series methods

Convergence

Operations (derivatives and integrals) with a power series are valid within its
region of convergence

n

o0
S= nIme am(x — xo)™ Z am(x — x0)"
m=0 m=0
The region of convergence is a property of the a,, coefficients and its radius can

be determined with

_ 1
lim |am|m
m— o0
or 1
R =
lim |2msL
m—oo | 9m
The series is valid in the interval
(X() = R, Xo + R)
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Power series methods

00 1
X 1.m am+1 (mtD! [ 1 _ 1 _ 1
=3 ax" = | T = e = R=—G-——7 T =5=
m=0 . m— oo
0
1 _ m ami1l | _ |1] _ 1 _ 1 _
=2 x" = |Z =il =1 = R=gp7=1-1
m=0 m— oo
o0
Ix™ ami | (D! -1 1 _
E m:x = am ‘ m! m + 1 = R lim m+1 oo 0
m=0 m— oo

Existence of power series solutions
Given the ODE
Y+ p(x)y' + a(x)y = r(x)
with p, g, and r analytic at xp, then every solution of the ODE is analytic at xg

and can be represented by a power series in terms of (x — xp) with a radius of
convergence R > 0.
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If the power series

y(x) =Y am(x —x0)"
m=0

converges in [x — xo| < R (with R > 0), then

y'(x) = Z Mapm(x — x0)™ "

also converges at least in the region |x — x| < R.




If the power series

n(x) =Y am(x —x0)"
m=0

converges in |x — x| < Ry and
oo
ya(x) = Z bm(x — x0)™
m=0
converges in |x — xp| < R, then
(b1 +y2)(x) = 3 (3m + bm)(x — 30)"
m=0

converges at least in |x — xg| < min(Ry, R2).
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Power series methods

Multiplication of two power series

Given the two power series

its multiplication is given

y1(x)y2(x)

o0

=D am

m=0

X—XO

VR
3

M8l

3
I
<

=0

18

1=0

3
I
o

1=

0

(am X — xp) (Z bi(x — xo)
I

3" ambi(x — xo)™

> ajbm— /> x—xp)"

x) = Z bi(x — xo)/
1=0

i am(x — x0)™ ) (i bi(x —Xo)/)

))
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If a power series has a positive radius of convergence, R, and a sum that is 0
throughout its interval, then each coefficient of the series must be 0. That is, if

oo
Z am(x —x0)™ =0 Vx € R such that [x — x| < R,

m=0

then
Vm an,=0




Exercises

From Kreyszig (10th ed.), Chapter 5, Section 1:
@ 517

@ 5.1.20
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@ Series solutions of ODEs. Special functions
@ Power series methods
@ Legendre's equation. Legendre polynomials
@ Extended power series method: Frobenius method
@ Bessel's equation. Bessel functions J,(x)
@ Bessel's equation. Bessel functions Y, (x)



Legendre’s equation

Legendre's equation

(1—x*)y"” —2xy’ +n(n+1)y =0

It appears in physical problems with spherical symmetry. We transform it into
" 2x n(n+1)

!
1—x2y + 1—x2

y

The coefficients p and g are analytic at x = 0 (but they are not at x = £1).
Then, we can use a power series around 0 as a solution

o0
y = Z amx™
Z mamx™
e
y" =3 m(m—1)a,xm2
m=2

Let's call k= n(n+1)
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Legendre’s equation

Legendre's equation (continued)
Subtituting into the ODE

(1-x% (i m(m — l)amxm2> —2x (f: mamxm1> + k (i amxm> =0

m=2 m—0
z"o: m(m—1)anx™? — i m(m — 1)amx™ — ZOC: 2mamx™ + i kamx™ =0
m=2 m=2 = =

i(m+2)(m+1)am+2x"’ —im( — Damx™ Z2mamx —|—Zkamx =

m=0 =

(232 + kag) + (6as + (k — 2)a1)x + i (m+2)(m+1)am2 — (m* + m— k)an)x™" =0
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Legendre’s equation

Legendre's equation (continued)
(232 + kao) + (623 + (k — 2)a)x + Y ((m+2)(m + 1)ams> — (M’ + m — k)am)x™ =0
m=2
m=0: 2a+kag=0
a = —%ao = —%ao
m=1: 6a+(k—2)a=0
a3 = _gal — n(n+})72 a = _(nfl?)’gn+2) a
m>2: (m+2)(m+ 1)ame — (m* +m— k)am
 mPim—k _ mP+m—n(n+1) _ _ (n—=m)(nt+m+1)
M2 = [ 2)(mt1) M T Tmi2)(mi) 9m = T (mi2)(m+1) 9m
a, = 7%32 as = 7%33
n—2)(n+3 n(n+1 n—3)(n+4 n—1)(n+2
= (cued) Cag) | T o e, o,
(n72)n(n+1)(n+3)a _ (n=3)(n—1)(n+2)(n+4)
4 0 51 a1
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Legendre’s equation

Legendre's equation (continued)

There actually two independent solutions and the general solution in (—1,1) is a
linear combination of the two:

Yy =aoy1+ a1y

= ap+ axx® + agpx* + ...
N n(nz—;— 1)X2+ (n—2)n(n4—!|— 1)(n+3)x47...
= 31X+33X3+35X5—|—...
I (n—lz))’(!n—|—2)x3+ (n—3)(n—1;(!n+2)(n+4)X5_m
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Legendre’s equation

Polynomial solutions
Consider the recursion

(n—m)(n+ m+1)
(m+2)(m+1)

dm+42 = — am

If nis a positive integer, for m = n we have

(n—n)(n+n+1)

ht2)nt1) =0

ant2 = —

and from this point on
0=an2=an4=ane=--

If nis even, y; is a polynomial of degree n.
If nis odd, y» is a polynomial of degree n.
These polynomials will be referred to as P,(x).

5. Series solutions of ODEs. Special functions September 19, 2014

24 / 86



Legendre’s equation

Polynomial solutions (continued)
We choose the highest coefficient (of degree n) to be

This choice will make P,(1) = 1. Now we need to go back to calculate ag using

(n—=m)(n+m+1)

2T T m ) (m+1) "
g (m+2)(m+1) ,
T (h—m)(n+m+1) m2

m(m—1)

am_2:_(n—m+2)(n+m—1

)
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Legendre’s equation

Polynomial solutions (continued)

n(n—1 n—1 2n)!
-2 = _(nfn+(2)(n4)>n71) an = _2((2,171)) (2(~(n!))2)
- n(n—1)[(2n)(2n—1)(2n—2)!
2(2n—1)2"[n(n—1)!][n(n—1)(n—2)!]
___faD(Ehea—1)(2n—2)]
Hom A1) fe—tT(n—2)1

~ 27(n—1)1(n—2)!
1 (2n—2-1)!
- ( 1) 271N (n—1)I(n—2-1)!
= - (n 2)((n—2)—1) 2 _
n—4 (n—(n—2)+2)(n+(n—2)—1) “n—=2 = -
(2n—4)!

_2"2!2(n72)l}121;il)2!.2)|
(=1 wan=a)n=22)

and, in general,

(2n —2m)!

@n—2m = (71)m2"m!(n —m)!(n—2m)!
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Legendre’s equation

Polynomial solutions (continued)
ym (2n —2m)!
2"m!(n — m)!(n — 2m)!

dn—2m = (*

The polynomial is finally

(2n —2m)!

Pa(x) = Z (_1)m2nm!(n —m)l(n— 2m)!X

m

M = 3 if nis even : g
M = ”%1 if nis odd. P
i 0 S| a.5
Legendre's polynomials are e
orthogonal in [—1,1] Vé \
-1 ‘ 8.5/ 7 \g:3
1 ) \\_/{ N B
/P,(X)PJ(X)dX = T—H_(SU Nt Pyx) Py Fslx)
-1
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Fx) =1, P(x)=x

B(x) =3(3x> — 1), B(x) = 3(5x° — 3%)

Py(x) = £ (35x* — 30x% + 3), Ps(x) = 2(63x® — 70x® + 15x%)

Fortunately, they can be calculated recursively (Bonnet's recursion formula)
Po(x) =1
Pi(x) = x
(n+ 1)Ppi1(x) = (2n + 1)xPy(x) — nPp_1(x)

e e T er— SepteEer 18] 2014886



Exercises

Exercises
From Kreyszig (10th ed.), Chapter 5, Section 2:
@ 522

10. TEAM PROJECT. Generating Functions. Generating
functions play a significant role in modern applied
mathematics (see [GenRef5]). The idea is simple. If we
want to study a certain sequence ( f,,(x)) and can find a
function

G, x) =, fuu™,

n=0
we may obtain properties of ( fy(x)) from those of G,

which “generates” this sequence and is called a
generating function of the sequence.
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Exercises

Exercises

(a) Legendre polynomials. Show that

12) Gu,x) = = Pyou”

n=0

1
V1 — 2xu + u

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 1/V'1 — v,
then set v = 2xu — u?, multiply the powers of 2xu — u?
out, collect all the terms involving ", and verify that
the sum of these terms is Py (x)u™.

(b) Potential theory. Let A7 and Ag be two points in
space (Fig. 108, r9 > 0). Using (12), show that

1

r - ——m———
\/r% + r% — 2ryrocos @

1 r\"
1
=r—2 E Pm(COS 6) (E) .

m=0

This formula has applications in potential theory. (Q/r
is the electrostatic potential at Ay due to a charge Q
located at A;. And the series expresses 1/r in terms of
the distances of A; and A from any origin O and the
angle @ between the segments OA; and OAs.)

Fig.108. Team Project 10

(c¢) Further applications of (12). Show that
Pall) = 1, B(=1) = (=1) ", Pan+1(0) = 0, and
Pou(0) = (=1)™ - 1-3---(2n — D/[2- 4+ 2n)].
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@ Series solutions of ODEs. Special functions
@ Power series methods
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o Extended power series method: Frobenius method
@ Bessel's equation. Bessel functions J,(x)
@ Bessel's equation. Bessel functions Y, (x)



Frobenius method

Frobenius method
Let b(x) and c(x) be analytic functions at x = 0. Then the ODE

b(x) ,, <)

y'+—=—y'+-—3y=0
X X

has at least one solution that can be represented in the form
(oo}
y =x" Z amx™  (ap #0)
m=0

where r may be any (real or complex) number (and r is chosen so that ap # 0).
The ODE also has a second solution that may be similar to the previous one (with
different r and coefficients) or may contain a logarithmic term.

4

2 1/2

X

1
yY'+—y'+ y=0
X

x2

v
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Frobenius method

Indicial equation

If b and ¢ are not polynomials, let us expand them as

o0 o0
b= g bpx™ E Cmx™
m=0 m=0

Let us calculate also the derivatives of the solution

o0
y = x" 3 amx™=x"(ap + arx + ...)
m=0
y' = Y (m+napx™ " =x"1 3 (m+r)apx™
m=0 m=0
= x"Yrag+(r—1a +..)
o0 o0
y' = S (m+r)(mtr—1)ax™ 2 =x"23 (m+r)(m+r—1)auxT
m=0 m=0

= x’:’z(r(r —1ag+ (r+1)ra; +...)
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Frobenius method

Indicial equation (continued)
Let us rewrite the ODE as

"

x2y" + xby’ +cy =0

And substitute the solution
x"(r(r—1)ag + ...) + (bo + ...)x"(rap + ...) + (co + ...)x"(ap + ...) =0
Consider the coefficient of x"
(r(r—=1)+ bor + co)ap =0

Since ag # 0

‘r(r—l)—l—bor—i-co:O‘

This is the indicial equation and provides the r of one of the solutions, and
determines the form of the other solution.
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Frobenius method

Indicial equation (continued)

r(r—1)+ bor+c =0
One of the elements of the basis is

y1= Xrl(ao —+ aix + )

The other is

e Distinct roots (including complexes) not differing by an integer 1,2,...
Yo = sz(Ao + Aix + )

@ A double root:
y2 = y1 log(x) + x"(A1x + ...)

@ Roots differing by an integer 1,2,... (r; > r2)

yo = ky1 log(x) + x"2(Ag + A1x + ...)
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Frobenius method

1

x2y" + boxy’ + oy =0

Solution:
The indicial equation

r(r—=1)+byr+c=0=n,n

If rn 7é r»
y1=x"
y2 =x"
If n=n
n=x"
y2 = x" log(x)
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Frobenius method

x(x=1)y"+Bx—-1)y'+y=0

Solution:

We rewrite it as
3x—-1 , 1

x(x — l)y + x(x —1)
3x—1 X
y//+ x—1 y/+x_—2].y:O
X X

y// +

y=0

The functions b = :2‘_’11 and ¢ = %3 are analytic around x = 0, so we can apply

Frobenius method. Actually, we do not need the expansion of b and ¢
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Frobenius method

Let us substitute the Frobenius solution into the ODE

x(x=1)y"+Bx—-1)y'+y=0

Xzy// —xy” + 3Xy/ _y/ +y=0

m=0 m=0

+3x <x’_1 Z (m+ r)amx"’> - <x’_1 Z (m+ r)amx"’> + <x’

m=0

X (x'_2 Z (m+r)(m+r— 1)amx'") — X (x'_2 Z (m+r)(m+r—1)anx"

m=0

i a,,,x'") =0

)
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Frobenius method

This can be rewritten as

x" (m+r)(m+r— l)amx'"—x'_lz(m—l—r)(m—l—r—1)amx'"

m=0 m=0

+3x" i (m+ r)amx™ — x ! f: (m+r)amx™ + x" i amx™ =0
m=0 m=0

m=0

The smallest power is x"~! and its coefficient gives the indicial equation

—r(r—1)ag—rapg=0

So, we have a double root at r = 0.
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Frobenius method

First solution:
We substitute r = 0 in the equation

x" Z (m+r)(m+r—1)anx™ —x"* Z (m+r)(m+r—1)amx™
m=0 m=0

+3x" i (m+ r)amx™ — xt f: (m+ r)amx™ + x" f: amx" =0
m=0 m=0

m=0
That is
o0 o0
Z m(m — 1)amx™ — x7* Z m(m+ 1)ap,x™
m=0 m=0

oo

o0 o0
+3 E mamx™ — x 7t g mapmx™ + E amx™ =10
m=0 m=0 m=0
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Frobenius method

First solution: (continued)

oo

o
m(m — 1)amx™ — x7* Z m(m + 1)ap,x™
0

o0 o0
—il
+3 E mamx™ — x E mapmx™ + E amx™ =
m=0 m=0

8

m=0
s oo
Z (m(m—1) +3m+1)amx™ — Z (m(m+1) — m)amx™ =0

(m? +2m +1)apx™ — Z m?a,x™ 1 =0

NIE

0

3
I

oo

oo
Z (m* 4 2m+ 1)ax™ — Z (m' +1)2am41x™ =0

m=0 m'=—1
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Frobenius method

First solution: (continued)

oo

Z (m? +2m+ 1)apx™ — Z (m' +1)2am41x™ =0

m=0 m'=-—1

Z (m? +2m +1)apx™ — Z (m+1)2amx™ =0

m=0

Z [(m? +2m + 1)am, — (m+1)2am]x™ =0

m=0
o0
Z m+1 am — am+1)xT =0
m=0

(m+ 1)%(am — ams1) = 0

dm+1 — dm
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Frobenius method

First solution: (continued)

Am+1 = dm

Hence
dp = 4d; — ad = ...

We may choose ag = 1. The first solution is

o0
m
= x"=— k<1
m=0
v
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Frobenius method

Second solution:
We apply reduction of order

1 _
[y”+py’+qy=O U:Fe J pax u:/de]
i

3x—1 X
y//+ x—1 y/+ XX_zly =0
3x—1 2 1 1
— [ ———dx=— —— + = ) dx =21 —1|-I =log——=
/x(x—l) x /(x—1+x> x og [x—1|—log |x| c>gx(x—1)2
log —L
U= @y =T =00t =5
1 I
u:/—dX:|Og(X)=>y2=uy1:£(X)
X 1—x
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The general solution of

x(x =1)y" +(B3x 1)y’ +y=0

is
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Frobenius method

2

(x*=x)y" —xy'+y=0

Solution
Substituting the Frobenius solution in the ODE we get

(x? = x) <Xr_2 Z (m+r)(m+r— l)amx’") —x (xr_l Z (m+ r)a,,,x'")

m=0 m=0
o
+ <x’ Z amx’"> =0
m=0

x" Z (m+r)(m+r—1)ayx™ —x"1 Z (m+r)(m+r—1)anx™
m=0 m=0

o oo

—x" Z (m+r)amx™ + x" Z amx™ =0
m=0 m=0
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Frobenius method

x" Z (m+r)(m+r—1)ayx™ —x"1 Z (m+r)(m+r—1)a,x"

m=0 m=0
o0 o0
—x" Z (m+ r)amx™ + x" Z amx™ =0
m=0 m=0

The smallest power is r — 1 whose coefficient is
—r(r—1)apg=0=n=1,n=0

We have two roots, whose difference is an integer.
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Frobenius method

First solution: Substitute r =1 in
x" Z (m+r)(m+r—1)amx™—x""' Z (m+r)(m+r—1)anx™
m=0 m=0
—x" Z (m=+r)amx™ + x" Z amx™ =0
m=0 m=0
X Z (m+ 1)mamx™ — Z (m+1)mamx™ — x Z (m+1)amx™ + x Z amx™ =0
m=0 m=0 m=0 m=0
Z (m+1)manx™* — Z (m+ 1)mamx™ — Z (m+1)amx™" + Z amx™ =0
m=0 m=0 m=0 m=0
Z (m+1)manx™"* — Z (m+ 1)mamx™ — Z (m+ 1amx™™ + Z amx™ =0
m=0 m=1 m=0 m=0
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Frobenius method

First solution: (continued)

Z (m+ 1)mapx™" — Z (m+ 1)mamx™ — Z (m+1)anx™" + Z amx™ 1 =0
m=0 m=1 m=0 m=0

Z (m+1)manx™"* — Z (m' +2)(m' + 1)apmax™

m=0 m’=0
oo oo
1 1
- E (m+ Damx™* + E amx™ =0
m=0 m=0

([(m +1)m — (m + 1) + Lam — (m + 2)(m + L)am1) x" = 0

gk

0

S
I

Z (mzam —(m+2)(m+ l)am+1) x™l =0

m=0
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Frobenius method

First solution: (continued)

Z (m*am — (m+2)(m+ 1)amu) x™ =0
m=0
m?am — (m+2)(m+1)am1 =0

2

a —m—a
™ m+2)(m+1)°"
If we choose ag = 1, then
02
a=———————a=0=a=a3=..
T 0+2)0+1D)° 2T

So

y=x"a=x'-1=x
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Frobenius method

Second solution: Let's apply a reduction of order:
Y2 = uy1 = ux
yy=u+u'x
yél — ul+ ul/+ u/ — u/l+2ul
And substitute in the ODE

(> =x)y" —xy'+y=0

O = x)(u" +2u") — x(u+ u'x) + ux =0
(x* = x)u" + (x —2)u' =0
u” X —2 2 1

u X2 — x x 1—x
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Frobenius method

Second solution: (continued)

u” X —2 2 1
u’ X2 — x x 1—x

log(u") = —2log |x| + log [x — 1] = log =

yox=1_1 1
X2 x x2

u = log(x)

+
y» = uyr = | log(x) + P xlog(x) —1
(oat0+3)

The general solution is

|y = cx + ca(x log(x) — 1)
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Exercises

Exercises

14. TEAM PROJECT. Hypergeometric Equation, Series,
and Function. Gauss’s hypergeometric ODE® is

a5) x(1 —xpy"+[c— (a+ b+ Dxly — aby = 0.

Here, a, b, ¢ are constants. This ODE is of the form
pay" + p1y’ + poy = 0, where pg, py, po are polyno-
mials of degree 2, 1, 0, respectively. These polynomials
are written so that the series solution takes a most prac-
tical form, namely,

L Lb. aa+ Dbb + 1) 5
A T T A
(6) a(a + D(a + 2)b(b + 1)(b + 2) H
¥+

3c(c + 1)(c +2)

This series is called the hypergeometric series. Its sum
y1(x) is called the hypergeometric function and is
denoted by F{a, b, c; x). Here, c # 0, —1, =2,---. By
choosing specific values of a, b, ¢ we can obtain an
incredibly large number of special functions as solutions

of (15) [see the small sample of elementary functions
in part (c)]. This accounts for the importance of (15).
(a) Hypergeometric series and function. Show that
the indicial equation of (15) has the roots ry = 0 and
ro = 1 —c¢. Show that for ry = 0 the Frobenius
method gives (16). Motivate the name for (16) by
showing that

F(1,1,1;x) = F(1,b,b; x) = F(a, 1,a: x) = =
(b) Convergence. For what a or b will (16) reduce to
a polynomial? Show that for any other a, b, ¢
(¢ #0,—1,-2,-++) the series (16) converges when
\x\ < 1.

(c) Special cases. Show that

(1 +x)" =F(—n,b, b, —x),
(1=—x)"=1—nxF(1 —n,1,2;x),

arctan x = xF(%. 1 g; —x%)
arcsin x = xF(%. %, %: x3),
In (1 +x) = xF(1, 1,2; —x),
1 +x

20FG, 1,5 1%,
N @, L3:x%)

1
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Exercises

Find more such relations from the literature on special
functions, for instance, from [GenRef1] in App. 1.
(d) Second solution. Show that for ro = 1 — ¢ the
Frobenius method yields the following solution (where
c#F2,3,4,-
18( a@a—c+1)b—c+1)

o)y =x""\ 1+ ——F—

(17 1l (—c+2)
(@a—ctlia—c+2)b—c+1)b—ct+2)
+
21 (=c + 2)(—c + 3)

2
X

4 -
Show that
yo) = x'°Fla—c+ 1.b —c+ 1,2 — c1x).

(e) On the generality of the hypergeometric equation.
Show that

(18) (12 + At + B)j + (Ct + D)y + Ky = 0

Exercises

with \ = dy/d1, etc., constant A, B, C, D, K, and 24
At + B = (t — )(t — tg), 11 # g, can be reduced to
the hypergeometric equation with independent variable

t—t
T te—th

X

and parameters related by Ct;y + D = —c(tg — 1),
C=a+ b+ 1, K= ab. From this you see that (15)
is a “normalized form™ of the more general (18) and
that various cases of (18) can thus be solved in terms
of hypergeometric functions.
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@ Series solutions of ODEs. Special functions
@ Power series methods
@ Legendre's equation. Legendre polynomials
o Extended power series method: Frobenius method
@ Bessel's equation. Bessel functions J, (x)
@ Bessel's equation. Bessel functions Y, (x)



Bessel's equation

Bessel's equation

X2y 4 xy + (x> =1y =0 v>0

It appears in physical problems with cylindrical symmetry. We may transform it

into
B _

1 X
vy y=0

The functions b and ¢ (see Frobenius method) are analytic at x = 0 so we can try
a Frobenius solution:

x* <x'_2 Z (m+r)(m+r— 1)amxm) + x (x'_l Z (m+ r)amxm)

m=0
+x2 <X'§:amx'"> (X iamx > =
m=0 m=0
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Bessel's equation

Bessel's equation

X Z m+r)(m+r—1)amx™ + x" Z m—+r)amx”
m=0

m=0

2
+x E amx™ — 1Px" g amx" =

m=0
The smallest power is r and its coefficient gives the indicial equation

r(r—1)ap+ rag — v?ag = (r* —1v?)agy=0=r,rn = +v

Substituting r = r; = v in the equation above we get

m=0

XVZ m+v)(m+v — 1)anx™ + x” Z m+v)amx™
m=0

[e’s} [e’s}

2 2
+x¥T E amx™ — v°x” amx" =0

m=0 m=0
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Bessel's equation

Bessel's equation

o0
m(m + 2v)a,x™ + Z amx™ T2 =0
0 m=0

NE

oo
!
m(m + 2v)a,x™" + E apy_ox™ TV =0
0 m'=2

Mz s

3
I

(1+2v)ax*™ + Z [m(m +2v)am + am_2]x™" =0

m=2
(1+2V)31:0:>31:O
1

2 m m—2 — m = A .
m(m+2v)am + am—2=0=a m2w T m)

am—2

For odd m's, as is a function of a; (that is 0), as a function of as, ...

O=a;=a3=a=..
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Bessel's equation

Bessel's equation

1
dm = *mam—2
For even m's, we can write m = 2k
2k = _;3 = —éa k=1,2
Dk = k(20 + 2K) 2k—2 = 2k + k) 2k—2 =12 ..
That is
oL,
2T 20+ 1)°

1 1 1 1
M T+ 2) 2T 220 1 2) (_ 2(v + 1)a°> T WA+ 1) +2)°

In general,
_ (-1
226kl (v + 1) (v + 2)...(v + k)

azk ao
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Bessel's equation

Bessel's equation: Bessel's functions of first kind J,(x)

The first solution of Bessel's equation is

7 = (_l)k 2k
A = kZ:O 2K+ 1)(v +2)..(v + k) "

If v €7Z, v=nlet us choose

an =
0~ 2npl

Then ;
_on - (_1) 1 2k
= kZ:O 22kkI(n + 1)(n + 2)...(n + k) 2701

= (="
— __ h 7)) 2k
yi=|Jn=x 222k+n !(n+k)!X
k=0

This Bessel’s function of the first kind and order n.
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Bessel's equation

—0.2

_p.4al

For large x, they fulfill

v
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Let us define the Gamma function as

Mx+1)= /e_ttxdt
0
Integrating by parts (u = t*, dv = e~ 'dt) we get
MNx+1)= —e_’"t"|;o + /xtx_le_tdt =0+ x/ t*"te~tdt = xI'(x)
0 0

Additionally

oo

ra) = / e~tdt =1

0




I(x —F(lg = xI(x)
1) =1

re) = 1r(1)=1-1

rg) = 2r2)=2-1

r4) = 3r(3)=3-2-1
I(n+ 1) = nl

Another interesting result
1
r(z)=v




Bessel's equation

Bessel's equation: Bessel's functions of first kind J,(x) (continued)

The first solution of Bessel's equation is

LV — (_1)k 2k
A 0 kZ:O 2 Ki(v + 1)(v +2)..(v + k)

If v ¢ Z, let us choose

Then

— Xuio: (_]‘)k 1 X2k
4 £ 22K (v + 1)(v + 2)..(v + K) 2T (v + 1)

= (=1)¥ 2k
e X ;22k+vk!r(y+k+1)x
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Bessel's equation

Bessel's equation: Bessel's functions of first kind J,(x) (continued)

= (=) 2%
e X ;22k+vk!r(u+k+1)x

An interesting result is that

The general solution if v ¢ Z is

‘y =al,+od_,

where

L=V G (71),( 2k
v =x ;) 22—V KIN(—y + k1)
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Bessel's equation

Bessel's equation: Bessel's functions of first kind J,(x) (continued)

= (=) 2%
e X ;22k+vk!r(u+k+1)x

An interesting result is that

The general solution if v ¢ Z is

‘y =al,+od_,

where

L=V G (71),( 2k
v =x ;) 22—V KIN(—y + k1)
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Bessel's equation

Bessel's equation: Bessel's functions of first kind J,(x) (continued)

For v € Z there is problem because
J_pn=(-1)"J,

that is, there is a linear dependence between the two solutions that will be solved
by Bessel’s functions of second kind.

Some useful properties

Derivatives
(x"J(x)) = x"J,-1(x)
(x A (x)) = —x""dp1a(x)
Recursion
2v
Jufl(X) + JV+1(X) = YJV(X)

Jy-1(x) = Jqa(x) = 2J;(x)
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Exercises

From Kreyszig (10th ed.), Chapter 5, Section 5:
@ 543

@ 5.4.6
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@ Series solutions of ODEs. Special functions

@ Power series methods
Legendre's equation. Legendre polynomials
Extended power series method: Frobenius method
Bessel's equation. Bessel functions J, (x)
Bessel’s equation. Bessel functions Y, (x)

(]



Bessel's equation

Bessel's equation
Let’s look for a second solution of Bessel's equation in the case of v € Z. For
simplicity we will start with n = 0. The ODE is then

x2y" +xy' + x*y =0

//+y/+xy:O

We know from the previous section that the indicial equation has a double root at
r = 0. The first solution is

vi=4Jo

The second solution according to Frobenius method must be of the form

y2 = y1 log(x) + x" Z Apx™

m=1

= Jolog(x) + Z Anpx™

4
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y» = Jolog(x) + Z Amx™

m=1

oo
vh = Jglog(x) + Jox* + Z mApx™ 1

m=1
oo
Vs = J log(x) + 2Jpx " — Jox 2 + Z m(m —1)Apx""?
m=1

We now substitute in the ODE

Xy”+y'+xy=0




X (J{,’ log(x) + 2Jéx_1 — Jox2+ Z m(m — 1)Amx’"_2>

m=1

+ <J5 log(x) + Jox 1+ > mAmx'"_1> +x (Jo log(x) + > _ A,,,x’"> -0

m=1 m=1

Mlog(x)+2£,+z m(m — l)Ame_l-l-Z mAme_1+ZAme+1 —0
m=1 m=1 m=1

245 + i M Amx™t + f: Anx™1 =0
m=1

m=1




Bessel's equation

Bessel's equation
We know that

— 22k+"k|(n—|—k)
In particular
_ = (_l)m 2m
Jo = ZO 722’"(m!)2x
i m2m 2=l _ = (—1)m K2m=1
22m=1ml(m — 1)!
m= m=1

Substituting in the solutlon of Bessel's equation

(Z 22m— 1m|(m_1 X2m ) +Zm Amx™™ +iAme+1:0
m=1

= (_1)'77 2m—1 = 2 m—1 = m+1
D T I 2 M AT D A =0
m=1 m=1 m=1
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Bessel's equation

Bessel's equation
i (=)™ x2m=1 i mzAme_1 + i Ax™1 =0
— 22m=2ml(m — 1)! —~ —~

1
(—X + ﬁx3 — ) + (AL +4Ax +...) + (A1X2 + Axx® + ..)=0

The only term in x9 comes from the second series, so it must be
A1 =0

Let's consider now the even terms. There is none in the first series. In the second
and third series the corresponding terms are

X"l =x¥ = m=25s4+1 = (25+1)Axs1x>*
XMl =x2 = m=2s—1 = Ay_1x*
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Bessel's equation

Bessel's equation

Their sum gives

1
(25 + 1)Asst1 + Ass—1 = 0= Apsy1 = e p1 et
Consequently, if Ay =0, so are Az, As, ... Let's go back to
= 22m=2ml(m — 1)l =
1 3 3 3 5 _
X+ — TR + (4Aox + 16Asx" + ...) + (Aex” + Asx* +...) =0

1

For the power x*, we have

—14+4A=0= A, = -
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Bessel's equation

Bessel's equation

- (_1)/71 2m—1 G 2 m—1 - m+1
Z—Z2m*2m!(m—1)!x —I—Zm Amnx +2Amx =0
m=1 m=1 m=1

For the rest of powers x?*1 (s = 1,2,...) we have

—1)5tL (_1 sTT

Ist series | 2m—1=2s+1=>m=s+1

222G 2(s11)I((s+1)=1)! _ 22(s+1)ls!

2nd series | m—1=2s+1=>m=2s+2 (25 +2)?Axs 12
3rd series m+1=2s+1=m=2s Aos
(_1)S+1 2A Ao —
m+(25+2) 2542 + Azs =0
1 (_1)s+1
Adsi2 = — 2/ 25 T 55 2
(2s+2) 225(s + 1)Is!(2s + 2)
5. Series solutions of ODEs. Special functions September 19, 2014 76 / 86



Bessel's equation

Bessel's equation
After some manipulation we obtain the general term

(1)1 11 1
Aos = 255 (512 l+s+3++2

Let us call
hs =1+ L + = AP coo P L
° 2 3 7 s
Finally, the second solution is

s s 1hs 25
JO |Og + Z 225 S|)2
s=1

y» is independent of y; = Jy, so both functions together are a basis of solutions.
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Bessel's equation

Bessel's equation

It is customary to use a different basis

Yo = 2(n+(v-
2

log(2)) )

— 2 () (o83 +) +

o0

Z ) 1’75 25)
225(5I

where «y is Euler's constant. The set {Jy, Yo} is also a basis. In general

Y. (x) =

Jy(x) cos(vm) —

J—v(x)

sinvm

and the general solution of Bessel's equation

X2y// 4 Xy

"+ (x* =)y =0 v>0

’y: alt, +aY,

5. Series solutions of ODEs. Special functions

September 19, 2014

78 / 86



Bessel's equation

Yol%)
06
0.4

0.2

Yo(x) Yi0
LY Vo0 v v

02

0.4

06

08

For large x, they fulfill

Yo(x) = isin (x— L E)

X
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Q;VY,,(:E) - Y, (=)

Tona()
Il (@)

T ()

T (=)

L )
)

%”J,(m) — Jy_1(x) Yoii(z)
5 Ha(@) = oy (@)] /(@)
Tom(@) = =, () Y, ()
EJ,,(.T) — Jopi(@) Y, ()
xvJ,_1(x) d—'i [#"Y, ()]
O R )

% [Yy_1(x) — Yiya ()]
Yooi(@) = “¥o(a)
EY.,(w) —Yoti(x)

g ,,,1(:1:)

—v

—T ()




Modified Bessel's equation

Modified Bessel's equation

; : 2 0n _
Eﬂecf;(ia;i;degizlol'ns equation i%i”iii tg +Z ; 8 Ul el
solution of the Modified Bessel's equation is of the form
y=al + ak,
where [, is the modified Bessel function of first kind:
— 1 2k

/V(X) = ['_VJV(I.X) = XV Z 22k+yk!r(k T 1)X
k=0

compare it to

i —1) 2k
— 2k+vklr (v+k+1)
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and K, is the modified Bessel function of second kind:

E I_,,(X) — IV(X)

Ko(x) = 2 sinvmw

compare it to
_ Ju(x)cos(vm) — J_,(x)
N sinuT

Yo (x)
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Modified Bessel's equation

m
2 2
( 1-(%) > 'm<a 1-(%5) )
B(r) = — 0<r<n
m
0 r>n
1 T T T T T T T T T
=3, 1=1m=1
09r =3, =1, m=2
08k =3, 1;=1, m=3
0.7+ -
06+ 4
05+ -
04f i
0.3 |
02F 4
01F 4
-1 0.8 06 04 02 0 0.2 04 06 08 1
V.
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Exercises

From Kreyszig (10th ed.), Chapter 5, Section 5:
@ 551

@ 552
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@ Series solutions of ODEs. Special functions
@ Power series methods
@ Legendre's equation. Legendre polynomials
o Extended power series method: Frobenius method
@ Bessel's equation. Bessel functions J, (x)
@ Bessel's equation. Bessel functions Y, (x)
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