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Power series methods

Power series methods
This is the standard method to solve linear ODEs with variable coefficients. A
power series is an infinite series of the form

∞∑
m=0

am(x − x0)m = a0 + a1(x − x0) + a2(x − x0)2 + ...

Taylor Series: f (x0) =
∞∑

m=0

f (m)(x0)
m! (x − x0)m
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Power series methods

Example

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + ...

ex = e + e(x − 1) + e 1
2!

(x − 1)2 + e 1
3!

(x − 1)3 + e 1
4!

(x − 1)4 + ...
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Power series methods

Example

y ′ − y = 0

Solution:
We look for a solution of the form

y =
∞∑

m=0
amxm = a0 + a1x + a2x2 + ...

y ′ =
∞∑

m=1
mamxm−1 = a1 + 2a2x + 3a3x2 + ...

And susbtitute it in the ODE(
a1 + 2a2x + 3a3x2 + ...

)
−
(
a0 + a1x + a2x2 + ...

)
= 0

(a1 − a0) + (2a2 − a1) + (3a3 − a2) + ... = 0
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Power series methods

Example (continued)

(a1 − a0) + (2a2 − a1) + (3a3 − a2) + ... = 0

⇒


a1 − a0 = 0⇒ a1 = a0
2a2 − a1 = 0⇒ a2 = 1

2 a1 = 1
2 a0

3a3 − a2 = 0⇒ a3 = 1
3 a2 = 1

3·2 a0
...

And in general
ak =

1
k(k − 1)...2a0 =

1
k!

a0

So the solution of the ODE is

y = a0(1 + x +
1
2!

x2 +
1
3!

x3 + ...) = a0ex
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Power series methods

Power series methods
y ′′ + p(x)y ′ + q(x)y = 0

This method is applied to linear ODEs with variable coefficients because the
coefficients, p and q, can also be substituted by a power series.

Example: A special case of Legendre equation
It occurs in problems with spherical symmetry

(1− x2)y ′′ − 2xy ′ + 2y = 0

Solution:
Let’s look for a solution of the form

y = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + ...

y ′ = a1 + 2a2x + 3a3x2 + 4a4x3 + 5a5x4 + 6a6x5 + ...

y ′′ = 2a2 + 6a3x + 12a4x2 + 20a5x3 + 30a6x4 + ...
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Power series methods

Example (continued)

(1− x2)y ′′ − 2xy ′ + 2y = 0
We now compute each one of the terms appearing in the ODE

y ′′ = 2a2 +6a3x +12a4x2 +20a5x3 +30a6x4 +...
−x2y ′′ = −2a2x2 −6a3x3 −12a4x4 −20a5x5 −30a6x6 +...
−2xy ′ = −2a1x −4a2x2 −6a3x3 −8a4x4 −10a5x5 −12a6x6 +...

2y ′ = 2a0 +2a1x +2a2x2 +2a3x3 +2a4x4 +2a5x5 +2a6x6 +...

And solve for the coefficients of each power

m = 0 : 2a2 + 2a0 = 0 ⇒ a2 = −a0
m = 1 : 6a3 = 0 ⇒ a3 = 0
m = 2 : 12a4 − 4a2 = 0 ⇒ a4 = 1

3 a2 = − 1
3 a0

m = 3 : 20a5 − 10a3 = 0 ⇒ a5 = 0
m = 4 : 30a6 − 18a4 = 0 ⇒ a6 = 3

5 a4 = 3
5
(
− 1

3 a0
)

= − 1
5 a0

...
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Power series methods

Example (continued)
The general solution of the equation is

y = a1x + a0(1− x2 − 1
3x4 − 1

5x6 − ...

y = a1x + a0

(
1−

∞∑
m=1

1
2m − 1x2m

)
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Power series methods

Convergence
Operations (derivatives and integrals) with a power series are valid within its
region of convergence

S = lim
n→∞

n∑
m=0

am(x − x0)m =
∞∑

m=0
am(x − x0)m

The region of convergence is a property of the am coefficients and its radius can
be determined with

R =
1

lim
m→∞

|am|
1
m

or
R =

1
lim

m→∞

∣∣∣ am+1
am

∣∣∣
The series is valid in the interval

(x0 − R, x0 + R)
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Power series methods

Example

ex =
∞∑

m=0

1
m!x

m ⇒
∣∣∣ am+1

am

∣∣∣ =

∣∣∣∣ 1
(m+1)!

1
m!

∣∣∣∣ = 1
m+1 ⇒ R = 1

lim
m→∞

1
m+1

= 1
0 =∞

1
1−x =

∞∑
m=0

xm ⇒
∣∣∣ am+1

am

∣∣∣ =
∣∣ 1

1
∣∣ = 1 ⇒ R = 1

lim
m→∞

1 = 1
1 = 1

∞∑
m=0

m!xm ⇒
∣∣∣ am+1

am

∣∣∣ =
∣∣∣ (m+1)!

m!

∣∣∣ = m + 1 ⇒ R = 1
lim

m→∞
m+1 = 1

∞ = 0

Existence of power series solutions
Given the ODE

y ′′ + p(x)y ′ + q(x)y = r(x)

with p, q, and r analytic at x0, then every solution of the ODE is analytic at x0
and can be represented by a power series in terms of (x − x0) with a radius of
convergence R > 0.
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Power series methods

Derivative of a power series
If the power series

y(x) =
∞∑

m=0
am(x − x0)m

converges in |x − x0| < R (with R > 0), then

y ′(x) =
∞∑

m=1
mam(x − x0)m−1

also converges at least in the region |x − x0| < R.

5. Series solutions of ODEs. Special functions September 19, 2014 14 / 86



Power series methods

Addition of two power series
If the power series

y1(x) =
∞∑

m=0
am(x − x0)m

converges in |x − x0| < R1 and

y2(x) =
∞∑

m=0
bm(x − x0)m

converges in |x − x0| < R2, then

(y1 + y2)(x) =
∞∑

m=0
(am + bm)(x − x0)m

converges at least in |x − x0| < min(R1,R2).
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Power series methods

Multiplication of two power series
Given the two power series

y1(x) =
∞∑

m=0
am(x − x0)m y2(x) =

∞∑
l=0

bl (x − x0)l

its multiplication is given

y1(x)y2(x) =

( ∞∑
m=0

am(x − x0)m
)(∞∑

l=0
bl (x − x0)l

)
=

∞∑
m=0

(
am(x − x0)m

(∞∑
l=0

bl (x − x0)l
))

=
∞∑

m=0

∞∑
l=0

ambl (x − x0)m+l

=
∞∑

m=0

( m∑
l=0

albm−l

)
(x − x0)m
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Power series methods

Vanishing of all coefficients
If a power series has a positive radius of convergence, R, and a sum that is 0
throughout its interval, then each coefficient of the series must be 0. That is, if

∞∑
m=0

am(x − x0)m = 0 ∀x ∈ R such that |x − x0| < R,

then
∀m am = 0
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 5, Section 1:

5.1.7
5.1.20
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Legendre’s equation

Legendre’s equation

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0

It appears in physical problems with spherical symmetry. We transform it into

y ′′ − 2x
1− x2 y ′ +

n(n + 1)

1− x2 y = 0

The coefficients p and q are analytic at x = 0 (but they are not at x = ±1).
Then, we can use a power series around 0 as a solution

y =
∞∑

m=0
amxm

y ′ =
∞∑

m=1
mamxm−1

y ′′ =
∞∑

m=2
m(m − 1)amxm−2

Let’s call k = n(n + 1)
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Legendre’s equation

Legendre’s equation (continued)
Subtituting into the ODE

(1 − x2)

(
∞∑

m=2

m(m − 1)amxm−2

)
− 2x

(
∞∑

m=1

mamxm−1

)
+ k

(
∞∑

m=0

amxm

)
= 0

∞∑
m=2

m(m − 1)amxm−2 −
∞∑

m=2

m(m − 1)amxm −
∞∑

m=1

2mamxm +

∞∑
m=0

kamxm = 0

∞∑
m=0

(m + 2)(m + 1)am+2xm −
∞∑

m=2

m(m − 1)amxm −
∞∑

m=1

2mamxm +

∞∑
m=0

kamxm = 0

(2a2 + ka0) + (6a3 + (k − 2)a1)x +

∞∑
m=2

((m + 2)(m + 1)am+2 − (m2 + m − k)am)xm = 0
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Legendre’s equation

Legendre’s equation (continued)

(2a2 + ka0) + (6a3 + (k − 2)a1)x +

∞∑
m=2

((m + 2)(m + 1)am+2 − (m2 + m − k)am)xm = 0

m = 0 : 2a2 + ka0 = 0
a2 = − k

2 a0 = − n(n+1)
2! a0

m = 1 : 6a3 + (k − 2)a1 = 0
a3 = − k−2

6 a1 = − n(n+1)−2
3! a1 = − (n−1)(n+2)

3! a1
m ≥ 2 : (m + 2)(m + 1)am+2 − (m2 + m − k)am

am+2 = m2+m−k
(m+2)(m+1)am = m2+m−n(n+1)

(m+2)(m+1) am = − (n−m)(n+m+1)
(m+2)(m+1) am

a4 = − (n−2)(n+3)
4·3 a2

=
(
− (n−2)(n+3)

4·3

) (
− n(n+1)

2! a0
)

= (n−2)n(n+1)(n+3)
4! a0

a5 = − (n−3)(n+4)
5·4 a3

=
(
− (n−3)(n+4)

5·4 a3
) (

− (n−1)(n+2)
3! a1

)
= (n−3)(n−1)(n+2)(n+4)

5! a1
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Legendre’s equation

Legendre’s equation (continued)
There actually two independent solutions and the general solution in (−1, 1) is a
linear combination of the two:

y = a0y1 + a1y2

y1 = a0 + a2x2 + a4x4 + ...

= 1− n(n + 1)

2!
x2 +

(n − 2)n(n + 1)(n + 3)

4!
x4 − ...

y2 = a1x + a3x3 + a5x5 + ...

= x − (n − 1)(n + 2)

3!
x3 +

(n − 3)(n − 1)(n + 2)(n + 4)

5!
x5 − ...
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Legendre’s equation

Polynomial solutions
Consider the recursion

am+2 = − (n −m)(n + m + 1)

(m + 2)(m + 1)
am

If n is a positive integer, for m = n we have

an+2 = − (n − n)(n + n + 1)

(n + 2)(n + 1)
an = 0

and from this point on

0 = an+2 = an+4 = an+6 = ...

If n is even, y1 is a polynomial of degree n.
If n is odd, y2 is a polynomial of degree n.
These polynomials will be referred to as Pn(x).
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Legendre’s equation

Polynomial solutions (continued)
We choose the highest coefficient (of degree n) to be

an =
(2n)!

2n(n!)2

This choice will make Pn(1) = 1. Now we need to go back to calculate a0 using

am+2 = − (n −m)(n + m + 1)

(m + 2)(m + 1)
am

am = − (m + 2)(m + 1)

(n −m)(n + m + 1)
am+2

am−2 = − m(m − 1)

(n −m + 2)(n + m − 1)
am
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Legendre’s equation

Polynomial solutions (continued)

an−2 = − n(n−1)
(n−n+2)(n+n−1)an = − n(n−1)

2(2n−1)

(
(2n)!

2n(n!)2

)
= − n(n−1)[(2n)(2n−1)(2n−2)!

2(2n−1)2n[n(n−1)!][n(n−1)(n−2)!]

= − �n��
�(n−1)[(�2�n)��

�(2n−1)(2n−2)!]

�2��
�(2n−1)2n[�n(n−1)!][�n��

�(n−1)(n−2)!]
= − (2n−2)!

2n(n−1)!(n−2)!
= (−1)1 (2n−2·1)!

2n(1!)(n−1)!(n−2·1)!
an−4 = − (n−2)((n−2)−1)

(n−(n−2)+2)(n+(n−2)−1)an−2 = ...

= − (2n−4)!
2n2!(n−2)!(n−4)!

= (−1)2 (2n−2·2)!
2n(2!)(n−2)!(n−2·2)!

and, in general,

an−2m = (−1)m (2n − 2m)!

2nm!(n −m)!(n − 2m)!
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Legendre’s equation

Polynomial solutions (continued)

an−2m = (−1)m (2n − 2m)!

2nm!(n −m)!(n − 2m)!

The polynomial is finally

Pn(x) =
M∑

m=0
(−1)m (2n − 2m)!

2nm!(n −m)!(n − 2m)!
xm

M = n
2 if n is even

M = n−1
2 if n is odd.

Legendre’s polynomials are
orthogonal in [−1, 1]

1∫
−1

Pi (x)Pj(x)dx =
2

2i + 1δij
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Legendre’s equation

Polynomial solutions (continued)

Fortunately, they can be calculated recursively (Bonnet’s recursion formula)

P0(x) = 1

P1(x) = x

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 5, Section 2:

5.2.2
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Exercises

Exercises
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Frobenius method

Frobenius method
Let b(x) and c(x) be analytic functions at x = 0. Then the ODE

y ′′ +
b(x)

x y ′ +
c(x)

x2 y = 0

has at least one solution that can be represented in the form

y = x r
∞∑

m=0
amxm (a0 6= 0)

where r may be any (real or complex) number (and r is chosen so that a0 6= 0).
The ODE also has a second solution that may be similar to the previous one (with
different r and coefficients) or may contain a logarithmic term.

Bessel’s equation

y ′′ +
1
x y ′ +

x2 − ν2

x2 y = 0
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Frobenius method

Indicial equation
If b and c are not polynomials, let us expand them as

b =
∞∑

m=0
bmxm

∞∑
m=0

cmxm

Let us calculate also the derivatives of the solution

y = x r
∞∑

m=0
amxm = x r (a0 + a1x + ...)

y ′ =
∞∑

m=0
(m + r)amxm+r−1 = x r−1

∞∑
m=0

(m + r)amxm

= x r−1(ra0 + (r − 1)a1 + ...)

y ′′ =
∞∑

m=0
(m + r)(m + r − 1)amxm+r−2 = x r−2

∞∑
m=0

(m + r)(m + r − 1)amxm

= x r−2(r(r − 1)a0 + (r + 1)ra1 + ...)
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Frobenius method

Indicial equation (continued)
Let us rewrite the ODE as

x2y ′′ + xby ′ + cy = 0

And substitute the solution

x r (r(r − 1)a0 + ...) + (b0 + ...)x r (ra0 + ...) + (c0 + ...)x r (a0 + ...) = 0

Consider the coefficient of x r

(r(r − 1) + b0r + c0)a0 = 0

Since a0 6= 0
r(r − 1) + b0r + c0 = 0

This is the indicial equation and provides the r of one of the solutions, and
determines the form of the other solution.
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Frobenius method

Indicial equation (continued)

r(r − 1) + b0r + c0 = 0

One of the elements of the basis is

y1 = x r1 (a0 + a1x + ...)

The other is
Distinct roots (including complexes) not differing by an integer 1,2,...

y2 = x r2 (A0 + A1x + ...)

A double root:
y2 = y1 log(x) + x r1 (A1x + ...)

Roots differing by an integer 1,2,... (r1 > r2)

y2 = ky1 log(x) + x r2 (A0 + A1x + ...)
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Frobenius method

Example: Euler-Cauchy equation

x2y ′′ + b0xy ′ + c0y = 0

Solution:
The indicial equation

r(r − 1) + b0r + c0 = 0⇒ r1, r2

If r1 6= r2
y1 = x r1

y2 = x r2

If r1 = r2
y1 = x r1

y2 = x r1 log(x)
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Frobenius method

Example

x(x − 1)y ′′ + (3x − 1)y ′ + y = 0

Solution:
We rewrite it as

y ′′ +
3x − 1

x(x − 1)
y ′ +

1
x(x − 1)

y = 0

y ′′ +
3x−1
x−1
x y ′ +

x
x−1
x2 y = 0

The functions b = 3x−1
x−1 and c = x

x−1 are analytic around x = 0, so we can apply
Frobenius method. Actually, we do not need the expansion of b and c
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Frobenius method

Example (continued)
Let us substitute the Frobenius solution into the ODE

x(x − 1)y ′′ + (3x − 1)y ′ + y = 0

x2y ′′ − xy ′′ + 3xy ′ − y ′ + y = 0

x2

(
x r−2

∞∑
m=0

(m + r)(m + r − 1)amxm

)
− x

(
x r−2

∞∑
m=0

(m + r)(m + r − 1)amxm

)

+3x

(
x r−1

∞∑
m=0

(m + r)amxm

)
−

(
x r−1

∞∑
m=0

(m + r)amxm

)
+

(
x r
∞∑

m=0

amxm

)
= 0
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Frobenius method

Example (continued)
This can be rewritten as

x r
∞∑

m=0

(m + r)(m + r − 1)amxm − x r−1
∞∑

m=0

(m + r)(m + r − 1)amxm

+3x r
∞∑

m=0

(m + r)amxm − x r−1
∞∑

m=0

(m + r)amxm + x r
∞∑

m=0

amxm = 0

The smallest power is x r−1 and its coefficient gives the indicial equation

−r(r − 1)a0 − ra0 = 0

−r2 = 0

So, we have a double root at r = 0.
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Frobenius method

Example (continued)
First solution:
We substitute r = 0 in the equation

x r
∞∑

m=0

(m + r)(m + r − 1)amxm − x r−1
∞∑

m=0

(m + r)(m + r − 1)amxm

+3x r
∞∑

m=0

(m + r)amxm − x r−1
∞∑

m=0

(m + r)amxm + x r
∞∑

m=0

amxm = 0

That is
∞∑

m=0
m(m − 1)amxm − x−1

∞∑
m=0

m(m + 1)amxm

+3
∞∑

m=0
mamxm − x−1

∞∑
m=0

mamxm +
∞∑

m=0
amxm = 0
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Frobenius method

Example (continued)
First solution: (continued)

∞∑
m=0

m(m − 1)amxm − x−1
∞∑

m=0
m(m + 1)amxm

+3
∞∑

m=0
mamxm − x−1

∞∑
m=0

mamxm +
∞∑

m=0
amxm = 0

∞∑
m=0

(m(m − 1) + 3m + 1)amxm −
∞∑

m=0
(m(m + 1)−m)amxm−1 = 0

∞∑
m=0

(m2 + 2m + 1)amxm −
∞∑

m=0
m2amxm−1 = 0

∞∑
m=0

(m2 + 2m + 1)amxm −
∞∑

m′=−1
(m′ + 1)2am′+1xm′ = 0
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Frobenius method

Example (continued)
First solution: (continued)

∞∑
m=0

(m2 + 2m + 1)amxm −
∞∑

m′=−1
(m′ + 1)2am′+1xm′ = 0

∞∑
m=0

(m2 + 2m + 1)amxm −
∞∑

m=0
(m + 1)2am+1xm = 0

∞∑
m=0

[(m2 + 2m + 1)am − (m + 1)2am+1]xm = 0

∞∑
m=0

(m + 1)2(am − am+1)xm = 0

(m + 1)2(am − am+1) = 0

am+1 = am
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Frobenius method

Example (continued)
First solution: (continued)

am+1 = am

Hence
a0 = a1 = a2 = ...

We may choose a0 = 1. The first solution is

y1 =
∞∑

m=0
xm =

1
1− x |x | < 1
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Frobenius method

Example (continued)
Second solution:
We apply reduction of order[

y ′′ + py ′ + qy = 0 U =
1
y2

1
e−
∫

pdx u =

∫
Udx

]

y ′′ +
3x−1
x−1
x y ′ +

x
x−1
x2 y = 0

−
∫ 3x − 1

x(x − 1)
dx = −

∫ ( 2
x − 1 +

1
x

)
dx = −2 log |x−1|−log |x | = log 1

x(x − 1)2

U = 1
( 1

1−x )2 e log 1
x(x−1)2 = (1− x)2 1

x(x−1)2 = 1
x

u =

∫ 1
x dx = log(x)⇒ y2 = uy1 =

log(x)

1− x
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Frobenius method

Example (continued)
The general solution of

x(x − 1)y ′′ + (3x − 1)y ′ + y = 0

is
y = c1

1
1− x + c2

log(x)

1− x
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Frobenius method

Example

(x2 − x)y ′′ − xy ′ + y = 0

Solution
Substituting the Frobenius solution in the ODE we get

(x2 − x)

(
x r−2

∞∑
m=0

(m + r)(m + r − 1)amxm

)
− x

(
x r−1

∞∑
m=0

(m + r)amxm

)

+

(
x r
∞∑

m=0
amxm

)
= 0

x r
∞∑

m=0
(m + r)(m + r − 1)amxm − x r−1

∞∑
m=0

(m + r)(m + r − 1)amxm

−x r
∞∑

m=0
(m + r)amxm + x r

∞∑
m=0

amxm = 0
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Frobenius method

Example (continued)

x r
∞∑

m=0
(m + r)(m + r − 1)amxm − x r−1

∞∑
m=0

(m + r)(m + r − 1)amxm

−x r
∞∑

m=0
(m + r)amxm + x r

∞∑
m=0

amxm = 0

The smallest power is r − 1 whose coefficient is

−r(r − 1)a0 = 0⇒ r1 = 1, r2 = 0

We have two roots, whose difference is an integer.
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Frobenius method

Example (continued)
First solution: Substitute r = 1 in

x r
∞∑

m=0

(m + r)(m + r − 1)amxm − x r−1
∞∑

m=0

(m + r)(m + r − 1)amxm

−x r
∞∑

m=0

(m + r)amxm + x r
∞∑

m=0

amxm = 0

x
∞∑

m=0

(m + 1)mamxm −
∞∑

m=0

(m + 1)mamxm − x
∞∑

m=0

(m + 1)amxm + x
∞∑

m=0

amxm = 0

∞∑
m=0

(m + 1)mamxm+1 −
∞∑

m=0

(m + 1)mamxm −
∞∑

m=0

(m + 1)amxm+1 +

∞∑
m=0

amxm+1 = 0

∞∑
m=0

(m + 1)mamxm+1 −
∞∑

m=1

(m + 1)mamxm −
∞∑

m=0

(m + 1)amxm+1 +

∞∑
m=0

amxm+1 = 0
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Frobenius method

Example (continued)
First solution: (continued)
∞∑

m=0

(m + 1)mamxm+1 −
∞∑

m=1

(m + 1)mamxm −
∞∑

m=0

(m + 1)amxm+1 +

∞∑
m=0

amxm+1 = 0

∞∑
m=0

(m + 1)mamxm+1 −
∞∑

m′=0

(m′ + 2)(m′ + 1)am′+1xm′+1

−
∞∑

m=0

(m + 1)amxm+1 +

∞∑
m=0

amxm+1 = 0

∞∑
m=0

([(m + 1)m − (m + 1) + 1]am − (m + 2)(m + 1)am+1) xm+1 = 0

∞∑
m=0

(
m2am − (m + 2)(m + 1)am+1

)
xm+1 = 0
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Frobenius method

Example (continued)
First solution: (continued)

∞∑
m=0

(
m2am − (m + 2)(m + 1)am+1

)
xm+1 = 0

m2am − (m + 2)(m + 1)am+1 = 0

am+1 =
m2

(m + 2)(m + 1)am

If we choose a0 = 1, then

a1 =
02

(0 + 2)(0 + 1)
a0 = 0 = a2 = a3 = ...

So
y1 = x r1a0 = x1 · 1 = x
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Frobenius method

Example (continued)
Second solution: Let’s apply a reduction of order:

y2 = uy1 = ux

y ′2 = u + u′x

y ′′2 = u′ + u′′ + u′ = u′′ + 2u′

And substitute in the ODE

(x2 − x)y ′′ − xy ′ + y = 0

(x2 − x)(u′′ + 2u′)− x(u + u′x) + ux = 0

(x2 − x)u′′ + (x − 2)u′ = 0
u′′
u′ = − x − 2

x2 − x = − 2
x +

1
1− x
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Frobenius method

Example (continued)
Second solution: (continued)

u′′
u′ = − x − 2

x2 − x = − 2
x +

1
1− x

log(u′) = −2 log |x |+ log |x − 1| = log x − 1
x2

u′ =
x − 1

x2 =
1
x −

1
x2

u = log(x) +
1
x

y2 = uy1 =

(
log(x) +

1
x

)
x = x log(x)− 1

The general solution is

y = c1x + c2(x log(x)− 1)
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Exercises

Exercises
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Exercises

Exercises
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Outline

1 Series solutions of ODEs. Special functions
Power series methods
Legendre’s equation. Legendre polynomials
Extended power series method: Frobenius method
Bessel’s equation. Bessel functions Jν(x)
Bessel’s equation. Bessel functions Yν(x)

5. Series solutions of ODEs. Special functions September 19, 2014 55 / 86



Bessel’s equation

Bessel’s equation

x2y ′′ + xy ′ + (x2 − ν2)y = 0 ν ≥ 0

It appears in physical problems with cylindrical symmetry. We may transform it
into

y ′′ +
1
x y ′ +

x2 − ν2

x2 y = 0

The functions b and c (see Frobenius method) are analytic at x = 0 so we can try
a Frobenius solution:

x2

(
x r−2

∞∑
m=0

(m + r)(m + r − 1)amxm

)
+ x

(
x r−1

∞∑
m=0

(m + r)amxm

)

+x2

(
x r
∞∑

m=0

amxm

)
− ν2

(
x r
∞∑

m=0

amxm

)
= 0
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Bessel’s equation

Bessel’s equation

x r
∞∑

m=0

(m + r)(m + r − 1)amxm + x r
∞∑

m=0

(m + r)amxm

+x r+2
∞∑

m=0

amxm − ν2x r
∞∑

m=0

amxm = 0

The smallest power is r and its coefficient gives the indicial equation

r(r − 1)a0 + ra0 − ν2a0 = (r2 − ν2)a0 = 0⇒ r1, r2 = ±ν

Substituting r = r1 = ν in the equation above we get

xν

∞∑
m=0

(m + ν)(m + ν − 1)amxm + xν

∞∑
m=0

(m + ν)amxm

+xν+2
∞∑

m=0

amxm − ν2xν

∞∑
m=0

amxm = 0
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Bessel’s equation

Bessel’s equation
∞∑

m=0
m(m + 2ν)amxm+ν +

∞∑
m=0

amxm+ν+2 = 0

∞∑
m=0

m(m + 2ν)amxm+ν +
∞∑

m′=2
am′−2xm′+ν = 0

(1 + 2ν)a1x1+ν +
∞∑

m=2
[m(m + 2ν)am + am−2]xm+ν = 0

(1 + 2ν)a1 = 0⇒ a1 = 0

m(m + 2ν)am + am−2 = 0⇒ am = − 1
m(2ν + m)

am−2

For odd m’s, a3 is a function of a1 (that is 0), a5 a function of a3, ...

0 = a1 = a3 = a5 = ...
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Bessel’s equation

Bessel’s equation

am = − 1
m(2ν + m)

am−2

For even m’s, we can write m = 2k

a2k = − 1
2k(2ν + 2k)

a2k−2 = − 1
22k(ν + k)

a2k−2 k = 1, 2, ...

That is
a2 = − 1

22(ν + 1)
a0

a4 = − 1
222(ν + 2)

a2 = − 1
222(ν + 2)

(
− 1
22(ν + 1)

a0

)
=

1
242!(ν + 1)(ν + 2)

a0

In general,
a2k =

(−1)m

22kk!(ν + 1)(ν + 2)...(ν + k)
a0
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Bessel’s equation

Bessel’s equation: Bessel’s functions of first kind Jν(x)
The first solution of Bessel’s equation is

y1 = xν
∞∑

k=0

(−1)k

22kk!(ν + 1)(ν + 2)...(ν + k)
a0x2k

If ν ∈ Z, ν = n let us choose
a0 =

1
2nn!

Then

y1 = xn
∞∑

k=0

(−1)k

22kk!(n + 1)(n + 2)...(n + k)

1
2nn!

x2k

y1 = Jn = xn
∞∑

k=0

(−1)k

22k+nk!(n + k)!
x2k

This Bessel’s function of the first kind and order n.
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Bessel’s equation

Bessel’s functions of first kind Jν(x)

For large x , they fulfill

Jn(x) ≈
√

2
πx cos

(
x − nπ

2 −
π

4

)
5. Series solutions of ODEs. Special functions September 19, 2014 61 / 86



Bessel’s equation

The Gamma function
Let us define the Gamma function as

Γ(x + 1) =

∞∫
0

e−ttx dt

Integrating by parts (u = tx , dv = e−tdt) we get

Γ(x + 1) = −e−ttx ∣∣∞
0 +

∞∫
0

xtx−1e−tdt = 0 + x
∞∫

0

tx−1e−tdt = xΓ(x)

Additionally

Γ(1) =

∞∫
0

e−tdt = 1
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Bessel’s equation

The Gamma function
Γ(x + 1) = xΓ(x)

Γ(1) = 1
Γ(2) = 1Γ(1) = 1 · 1
Γ(3) = 2Γ(2) = 2 · 1
Γ(4) = 3Γ(3) = 3 · 2 · 1
...

Γ(n + 1) = n!

Another interesting result

Γ

(
1
2

)
=
√
π
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Bessel’s equation

Bessel’s equation: Bessel’s functions of first kind Jν(x) (continued)
The first solution of Bessel’s equation is

y1 = xν
∞∑

k=0

(−1)k

22kk!(ν + 1)(ν + 2)...(ν + k)
a0x2k

If ν /∈ Z, let us choose
a0 =

1
2νΓ(ν + 1)

Then

y1 = xν
∞∑

k=0

(−1)k

22kk!(ν + 1)(ν + 2)...(ν + k)

1
2νΓ(ν + 1)

x2k

y1 = Jν = xν
∞∑

k=0

(−1)k

22k+νk!Γ(ν + k + 1)
x2k
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Bessel’s equation

Bessel’s equation: Bessel’s functions of first kind Jν(x) (continued)

y1 = Jν = xν
∞∑

k=0

(−1)k

22k+νk!Γ(ν + k + 1)
x2k

An interesting result is that

J 1
2
(x) =

√
2
πx sin(x) J− 1

2
(x) =

√
2
πx cos(x)

The general solution if ν /∈ Z is

y = c1Jν + c2J−ν

where

J−ν = x−ν
∞∑

k=0

(−1)k

22k−νk!Γ(−ν + k + 1)
x2k
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Bessel’s equation

Bessel’s equation: Bessel’s functions of first kind Jν(x) (continued)

y1 = Jν = xν
∞∑

k=0

(−1)k

22k+νk!Γ(ν + k + 1)
x2k

An interesting result is that

J 1
2
(x) =

√
2
πx sin(x) J− 1

2
(x) =

√
2
πx cos(x)

The general solution if ν /∈ Z is

y = c1Jν + c2J−ν

where

J−ν = x−ν
∞∑

k=0

(−1)k

22k−νk!Γ(−ν + k + 1)
x2k
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Bessel’s equation

Bessel’s equation: Bessel’s functions of first kind Jν(x) (continued)
For ν ∈ Z there is problem because

J−n = (−1)nJn

that is, there is a linear dependence between the two solutions that will be solved
by Bessel’s functions of second kind.

Some useful properties
Derivatives

(xνJν(x))′ = xνJν−1(x)

(x−νJν(x))′ = −x−νJν+1(x)

Recursion
Jν−1(x) + Jν+1(x) =

2ν
x Jν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 5, Section 5:

5.4.3
5.4.6
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Outline

1 Series solutions of ODEs. Special functions
Power series methods
Legendre’s equation. Legendre polynomials
Extended power series method: Frobenius method
Bessel’s equation. Bessel functions Jν(x)
Bessel’s equation. Bessel functions Yν(x)
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Bessel’s equation

Bessel’s equation
Let’s look for a second solution of Bessel’s equation in the case of ν ∈ Z. For
simplicity we will start with n = 0. The ODE is then

x2y ′′ + xy ′ + x2y = 0

xy ′′ + y ′ + xy = 0

We know from the previous section that the indicial equation has a double root at
r = 0. The first solution is

y1 = J0

The second solution according to Frobenius method must be of the form

y2 = y1 log(x) + x r
∞∑

m=1
Amxm

y2 = J0 log(x) +
∞∑

m=1
Amxm
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Bessel’s equation

Bessel’s equation

y2 = J0 log(x) +
∞∑

m=1
Amxm

y ′2 = J ′0 log(x) + J0x−1 +
∞∑

m=1
mAmxm−1

y ′′2 = J ′′0 log(x) + 2J ′0x−1 − J0x−2 +
∞∑

m=1
m(m − 1)Amxm−2

We now substitute in the ODE

xy ′′ + y ′ + xy = 0
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Bessel’s equation

Bessel’s equation

x

(
J ′′0 log(x) + 2J ′0x−1 − J0x−2 +

∞∑
m=1

m(m − 1)Amxm−2

)

+

(
J ′0 log(x) + J0x−1 +

∞∑
m=1

mAmxm−1

)
+ x

(
J0 log(x) +

∞∑
m=1

Amxm

)
= 0

((((
((((xJ ′′0 + J ′0 + xJ0) log(x)+2J ′0+

∞∑
m=1

m(m − 1)Amxm−1+

∞∑
m=1

mAmxm−1+

∞∑
m=1

Amxm+1 = 0

2J ′0 +
∞∑

m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0
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Bessel’s equation

Bessel’s equation
We know that

Jn = xn
∞∑

k=0

(−1)k

22k+nk!(n + k)!x
2k

In particular

J0 =

∞∑
m=0

(−1)m

22m(m!)2 x2m

J ′0 =

∞∑
m=1

(−1)m2m
22m(m!)2 x2m−1 =

∞∑
m=1

(−1)m

22m−1m!(m − 1)!x
2m−1

Substituting in the solution of Bessel’s equation

2

(
∞∑

m=1

(−1)m

22m−1m!(m − 1)!x
2m−1

)
+

∞∑
m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0

∞∑
m=1

(−1)m

22m−2m!(m − 1)!x
2m−1 +

∞∑
m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0
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Bessel’s equation

Bessel’s equation
∞∑

m=1

(−1)m

22m−2m!(m − 1)!x
2m−1 +

∞∑
m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0(
−x +

1
222!x

3 − ...
)
+ (A1 + 4A2x + ...) + (A1x2 + A2x3 + ...) = 0

The only term in x0 comes from the second series, so it must be

A1 = 0

Let’s consider now the even terms. There is none in the first series. In the second
and third series the corresponding terms are

xm−1 = x2s ⇒ m = 2s + 1 ⇒ (2s + 1)A2s+1x2s

xm+1 = x2s ⇒ m = 2s − 1 ⇒ A2s−1x2s
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Bessel’s equation

Bessel’s equation
Their sum gives

(2s + 1)A2s+1 + A2s−1 = 0⇒ A2s+1 = − 1
2s + 1A2s−1

Consequently, if A1 = 0, so are A3, A5, ... Let’s go back to
∞∑

m=1

(−1)m

22m−2m!(m − 1)!x
2m−1 +

∞∑
m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0

(
−x +

1
222!x

3 − ...
)
+ (4A2x + 16A4x3 + ...) + (A2x3 + A4x5 + ...) = 0

For the power x1, we have

−1 + 4A2 = 0⇒ A2 =
1
4
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Bessel’s equation

Bessel’s equation
∞∑

m=1

(−1)m

22m−2m!(m − 1)!x
2m−1 +

∞∑
m=1

m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0

For the rest of powers x2s+1 (s = 1, 2, ...) we have
1st series 2m − 1 = 2s + 1⇒ m = s + 1 (−1)s+1

22(s+1)−2(s+1)!((s+1)−1)! = (−1)s+1

22s (s+1)!s!
2nd series m − 1 = 2s + 1⇒ m = 2s + 2 (2s + 2)2A2s+2
3rd series m + 1 = 2s + 1⇒ m = 2s A2s

(−1)s+1

22s(s + 1)!s!
+ (2s + 2)2A2s+2 + A2s = 0

A2s+2 = − 1
(2s + 2)2 A2s −

(−1)s+1

22s(s + 1)!s!(2s + 2)2
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Bessel’s equation

Bessel’s equation
After some manipulation we obtain the general term

A2s =
(−1)s−1

22s(s!)2

(
1 +

1
2 +

1
3 + ...+

1
s

)
Let us call

hs = 1 +
1
2 +

1
3 + ...+

1
s

Finally, the second solution is

y2 = J0 log(x) +
∞∑

s=1

(−1)s−1hs
22s(s!)2 x2s

y2 is independent of y1 = J0, so both functions together are a basis of solutions.
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Bessel’s equation

Bessel’s equation
It is customary to use a different basis

Y0 = 2
π (y2 + (γ − log(2))J0)

= 2
π

(
J0(x)

(
log x

2 + γ
)

+
∞∑

s=1

(−1)s−1hs
22s (s!)2 x2s

)
where γ is Euler’s constant. The set {J0,Y0} is also a basis. In general

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin νπ

and the general solution of Bessel’s equation

x2y ′′ + xy ′ + (x2 − ν2)y = 0 ν ≥ 0

is
y = c1Jν + c2Yν
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Bessel’s equation

Bessel’s functions of the second kind

For large x , they fulfill

Yn(x) ≈
√

2
πx sin

(
x − nπ

2 −
π

4

)
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Bessel’s equation

Recurrence formulas
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Modified Bessel’s equation

Modified Bessel’s equation
Bessel’s equation x2y ′′ + xy ′ + (x2 − ν2)y = 0
Modified Bessel’s equation x2y ′′ + xy ′ − (x2 + ν2)y = 0 The general

solution of the Modified Bessel’s equation is of the form

y = c1Iν + c2Kν

where Iν is the modified Bessel function of first kind:

Iν(x) = i−νJν(ix) = xν
∞∑

k=0

1
22k+νk!Γ(k + ν + 1)

x2k

compare it to

Jν = xν
∞∑

k=0

(−1)k

22k+νk!Γ(ν + k + 1)
x2k
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Modified Bessel’s equation

Modified Bessel’s equation (continued)
and Kν is the modified Bessel function of second kind:

Kν(x) =
π

2
I−ν(x) − Iν(x)

sin νπ

compare it to
Yν(x) =

Jν(x) cos(νπ)− J−ν(x)

sin νπ
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Modified Bessel’s equation

Modified Bessel’s function of first kind
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Modified Bessel’s equation

Modified Bessel’s function of second kind
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Modified Bessel’s equation

Blobs

B(r) =


(√

1−
(

r
r0

)2
)m

Im

(
α

√
1−
(

r
r0

)2
)

Im(α) 0 ≤ r ≤ r0
0 r > r0
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 5, Section 5:

5.5.1
5.5.2
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Outline

1 Series solutions of ODEs. Special functions
Power series methods
Legendre’s equation. Legendre polynomials
Extended power series method: Frobenius method
Bessel’s equation. Bessel functions Jν(x)
Bessel’s equation. Bessel functions Yν(x)
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