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A function is periodic with period p if

F(x) = f(x + p)

flo)

AR

Fig. 258. Periodic function of peried p

If it is periodic with period p, it is also periodic with period 2p, 3p, ... The
smallest period is called the fundamental period.




The basis functions of the Fourier series (1, cos(x), sin(x), cos(2x), sin(2x), ...)
are periodic with period 27
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cos x cos 2x cos 3x
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sin x sin 2x sin 3x

Fig. 259. Cosine and sine functions having the period 277 (the first few members of the
trigonometric system (3), except for the constant 1)

If the series .
f(x) = a0 + Z ap cos(nx) + b, sin(nx)
n=1

it is also periodic with period 27.
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f(x) = ap + Z ap cos(nx) + by sin(nx)

n=1

1
ag = g/f(x)dx

s

ap = % / f(x) cos(nx)dx

—T

b, =% ] F(x) sin(nx)dx

—T




Fourier series

Fig. 260.
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ag = % /(—k)dx+/kdx
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Given function f(x) (Pericdic reactangular wave)
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Fourier series
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0 m
by = 2| [ (—=k)sin(nx)dx + [ ksin(nx)dx
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0 m
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4 [ n :|—7r [ n ]o
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Fourier series

-

Fx) = Y2 2 (1 (=1)")sin(nx) o f

S= TG TN
S = wsm(x)—l— sm(3x) - . -
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Fourier series

Fourier basis is orthogonal

(1,cos(nx)) = cos(nx)dx = 0

]

(Lsin(nx)) = [ sin(ax)dx =0

(cos(nx), cos(mx)) = _]T: cos(nx) cos(mx)dx = 0 (n % m)
i), sTils)) = _]; i) srlmd = @ (m 22 )
(cos(inx),sin(mx)) = [ cos(ax)sin(mx)dx = 0

—T

But they are not orthonormal

(L1 = [P =2r
{cos(nx),cos(nx))y = | cos(nx)||®> =
(sin(nx),sin(nx)) = |sin(nx)||?> =7
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Orthogonal decomposition theorem (Algebra)

Orthogonal decomposition theorem

Let W be a vector subspace of a vector space V. Then, any vector y € V can be
written uniquely as

y=9y+z

with § € W and z € W=, In fact, if {u,us,...,u,} is an orthogonal basis of W,
then

O— Yyuw y-up y-up
= u iz U — U
Y= Myt + b2 + o e ele
Z=y-¥ Y
1
1
1
1
1
!
0 _{':projw_\-'
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(y, u1)

(y, uz)

[Ju 2

u; +

[Ju?

us + ...+

<Y7 uP)
2

f(x) = ap + Z ap cos(nx) + by sin(nx)

= = f f(x)dx = {LERD

=

=

n=1

7!'

| f(x) cos(nx)dx =

s

J f(x)sin(nx)dx =

(f(x),co5(x))

Il cos(x)[12

(f(x),sin(x))
[I'sin()I1?




Fourier series

Class of functions that can be represented

Let f be periodic with period 27 and piecewise continuous in the interval [—m, 7).
Furthermore, let f have a left-hand derivative and a right-hand derivative at each
point of that interval. Then, the Fourier series converges. Its sum is f(x) except
at points xo where f(x) is discontinuous. There the sum o the series is the
average of the left- and right-hand limits of f(x) at xp.

Left- and right-hand limits and derivatives

. fx)
f(xo—0) = limf(x —h) @M\l fm) = M
R K im f(x)
h>0 M o
fo+0) = limf(xo+h)
h>0 F(x0—h)—F(0—0)
fio—0) = lim Z0=2mma—= L/ . Jimse -t
h>0 G =
fllxo+0) — ;l,ino f(xo+h):hf(xo+0) P ! h
h>0
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Exercises

From Kreyszig (10th ed.), Chapter 11, Section 1:
@0 11.1.14

e 11.1.15
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Arbitrary period

Arbitrary period
Assume f is periodic with period p = 2L. We do the change of variable

2m s L
V=—X=—-X=>X=—V
p L s
Then f(v) becomes of period 27
f(x) = f(Lv)=ap+> 2 apcos(nv)+ b,sin(nv)
> nm nm
= aoJrZa,,cos —Xx | + b,sin [ —x
5 e el )
L
o = o [ f(x)dx
L
L
an = 1 fL f(x) cos (2 x) dx
L
b, = 1 [ f(x)sin(2%x) dx

|
~
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Arbitrary period

0 —2<x<-1
f(x)=< k -l<x<l1 p=2L=4L=2
0 1<x<?2

T_.sz [

0o 1 2 x
L 1
a = 3 J f(X)dx =3 [ kdx =
- =i
L 1
a, = %fo(x)cos(%x) dx:%flkcos(%x) dx = 2k sin (21)
L
b, = 1 [ f(x)sin(%x)dx =0

|
~

o
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Arbitrary period

flx) = §+§1(2—ksm( 7)) cos (2% )
2k (cos Tx — 3 cos 3 x + L cos 2 x — ...)

Since the function is even, it has a cosine only series.

fix)

1 [ T
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Arbitrary period

f(x):{_k T2<x<0 L) = (%)

k 0<x<?2

Solution:
We know from a previous example the Fourier series for a similar function with
period 27

—k —7mT<v<O0
) = {3 TS e —a

= il 2l — (—1)")sin(nv)
= %sin(v) + 25 sin(3v) + 2= sin(5v) + ...

If we do the change of variable v = %x, then

s 4k . /m 4k 37 4k . (57
f(X)Zg(gx)Z?Sln( )+§sm(2 )—I—asm(zx)—i—...
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Let FS be an operator that assigns to each function, its Fourier series. Then

FS(f + ) = FS(fi) + FS(f)
FS(cf) = cFS(f)




If the function is even, then the Fourier series simplifies to

oo nm y
f(x) = a L+ Do ne1 ancos (Fx) (-x) (x)
a = 1[f(x)dx /
0
L
an = 2 [f(x)cos (2 x) dx X XX
0
If the function is odd, then the Fourier series simplifies to
y
F) = S5 bosin () 4
ao = 0 E -X
L 3;{ A
b, = 2 [f(x)sin("x) d §
L(j)‘ (x)sin (%Fx) dx f(—x)/ Iv




flx) i

L x

(0) The given function f(x)

f® If only half of the range ([0, L])
is of interest, we may extend the
7 1 x function in an odd or even way,
(a) f(x) continued as an even periodic function of period 2L and then use the S|mp||f|ed

Fourier series expresion for odd
or even functions.

=i Wil
2

(b) f(x) continued as an odd periodic function of period 2L
Fig. 270. Even and odd extensions of period 2L




Half-range ex

2k

0= gt

Solution: Even ext
dg

an
fe(x)

Odd extension

fo(x)

pansion

X 0<x< 3

x) t<x<lL 0 Lz L =«
ension

; k
%bff(X)dX =3

L
£ J () o8 (#3) o = g (2605 (%) — cos(r) - 1)
k18 (% cos (¥x) + & cos (5x) +...)

= P 2
= 8 (&sin(Fx) — % sin (3x) + &sin (3Fx) ...)

’
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Forced oscillations

my" + cy’ + ky = r(t)
m=1 (g), c =0.05 (g/s), k =25 (g/s?)

External
force r(t)

y" +0.05y" + 25y = r(t)

r(t) H(t) = t+3 —-m<t<0
- —t+7% 0<t<m
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Forced oscillations

Solution:
We expand the driving force in its Fourier series

4 1 1
r(t) = = (cos(t) + 7 cos(3t) + 0 cos(5t) + >
Then we consider the ODE
4
y" +0.05y" + 25y = — cos(nt)
mn
Its steady state solution is

_ i cos(nt) +
= D, nwD,

sin(nt)

with D, = (25 — n?)? + (0.05n)2. We are interested in the steady state solution
because r(t) is periodic.

y
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Forced oscillations

r(t) = % <cos(t) + %cos(3t) + 5l2cos(5t) 4 )

4(25 — n?) 2
"= D cos(nt) + ey sin(nt)
The steady state solution is
Y
0.3}
0.2 Output

.1
y=yitystys+.. ! /\I ! I I /\
-3 [-2 1 1o 1 3\ t
&)/\/ Input
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Exercises

From Kreyszig (10th ed.), Chapter 11, Section 3:
e 11.3.4
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Approximation by trigonometric polynomials

Approximation by trigonometric polynomials

Let us consider a function f and its Fourier series

f(x) = ao+ Y _ ancos(nx) + bysin(nx)
0

Let us find the best trigonometric approximation of degree N

N

F(x) = Ao+ ZA,, cos(nx) + B, sin(nx)
n=0

such that the approximation
error is minimized
T

= /(f— F)?dx

—T

Fig. 278. Error of approximation

~
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E=/f2dx+/F2dx—2/dex
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Approximation by trigonometric polynomials

Approximation by trigonometric polynomials
Let us calculate

™

Ik Fldx = /<A0+2Ancos(nx)+B,,sin(nx)) dx

g n=0
™ N w N 7
= [ Addx+ Y. [ AvAscos(nx)dx + Y. [ AoBysin(nx)dx
—7 n=0_—m n=0—7m
N N N 7
+ > | AvAncos(nx)dx + > | AnAn cos(nx) cos(mx)dx
n=0 n=0m=0—nx

+
M=
Mz:‘%4

f An B cos(nx) sin(mx)dx

S
Il
<)
3
Il
o

_l’_
M=

Ao B, sin(nx)dx +

HMZ
HMZ

3
Il
<}

f B Anm sin(nx) cos(mx)dx

Mz:‘\%ﬂ

_|_
M=
l,%:a

BB sin(nx) sin(mx)dx

&
I
<)
3
I
o

= 2rA+

1=

3
o

(TA% + 7Bj)
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Approximation by trigonometric polynomials

Approximation by trigonometric polynomials
Similarly

™

f fFdx = / (ao —+ i an cos(nx) + bn sin(nx)) (Ao + Z A, cos(nx) + By sin(nx]

— 0 n=0 n=0
—

N
= 27maoAo+ Y (manAn + bnBy)

n=0

So that

- n=0 n=0

™ N N
E = [fdx+m <2Ag + 57 (A2 + B§)> —2m (2avo + > (anAn + ann))

—7 n=0

[ fx+x (2(Ag —2a0A0) + 37 (A2 — 2a,An) + (B2 — 2ann))>
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Approximation by trigonometric polynomials

Approximation by trigonometric polynomials

s N
E = [Ffdx+n (2(A3 —2a0A0) + > ((A% — 2a,A,) + (B2 — zann))>

n=0

-7

Now, we optimize E with respect to the Ao, A, and B, coefficients

gTE = 27T(2A0—230)=0:>Ao=ao
gTEO = 7(2A, —2a,)=0= A, = a,
28 = n(2B,—2b))=0= B, = b,

That is, the partial sum of order N of the Fourier series is the best trigonometric
approximation of order N to f, and the error becomes

™ N
E = ff2dx—7r(22§+z%(aﬁ+bf)>

- =
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Approximation by trigonometric polynomials

Approximation by trigonometric polynomials

ki N
E = ff2dx—7r<2a§+z(a%+b§)>

—r n=0

Since E > 0 we have (Bessel’s inequality)

Ky

230+Z a,,+b)<f/f2dx

n=0

-7

In fact, if there is a Fourier series representation of f, there is no approximation error

(Parseval’s identity)

™

2a0+z (a2 + b2) = /fzdx

-7
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Approximation by trigonometric polynomials

f(x)=x+m —7m<x<mw

F(x)=m+2 (sin(x) = %sin(2x) 4= %sin(3x) — o aE & sin(Nx))

N
s
2 2 ZN 2(-1)V1\?
E:/(X+7T)dX—7T 27 + T
- n=0
Numeric values are:
2n
N E N £ N E* N B
z 1 8.1045 6 19295 20 06129 70 01782
2 49629 7 16730 30 04120 80 0.1561
o 3 3.5666 8 14767 40 03103 90 0.1389
. , 4 27812 9 13216 50 02488 100 0.1250
Fig. 279. F with 5 22786 10 1.1959 60 02077 1000 0.0126
N = 20 in Example 1
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Sturm-Liouville problems

Sturm-Liouville problems

(P(x)y") + (q(x) + Ar(x))y =0

y is a solution in an interval [a, b] satisfying boundary conditions of the form
kiy(a) + koy'(a) =0

hy(b) + by'(b) =0

y = 0 is a trivial solution, the rest of solutions are called eigenfunctions and they
are associated to specific values of A (their eigenvalue). If p, g, r, and p’ are
real-valued and continuous in [a, b], and r is positive throughout [a, b] (or
negative), then all eigenvalues of the Sturm-Liouville problem are real.
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Sturm-Liouville problems

Vibrating string

e

We can reformulate the problem as a
Sturm-Liouville problem as
1y + (0+ A1)y =0

1y(0) + 0y’(0) = 0
ly(m) +0y'(m) =0

7. Fourier analysis September 22, 2014 41 / 90



Sturm-Liouville problems

If A = —12 is negative, the general solution is
170:¢

=c e + e
y 1 2

From the boundary conditions, we get ¢; = ¢; = 0.
If A =0, the general solution is

Yy =a + ax

and again from the boundary conditions ¢; = ¢; = 0.
Finally, if A = V2 is positive, the general solution is

y = ¢ cos(vx) + ¢ sin(vx)
From the boundary conditions, ¢; = 0 and

y(m) = asin(vx) =0=v =+£1,42, ...

7. Fourier analysis September 22, 2014
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Sturm-Liouville problems

y(m) = asin(vx) =0=v =+£1,42, ...

That is, the functions
y, =sin(vx) v=vA=1,2,3,...

are eigenfunctions of the ODE and their associated eigenvalue is A\ = 2.
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Orthgonal functions

Orthogonality

Let us define the inner product of two functions y,, and y, with respect to the

weight function r(x) in the interval [a, b] as

b

(F.g), = / r(x)F(x)g(x)dx

a

The norm of a function is defined as ||f|| = \/(f,f),.
Two functions are orthogonal if (f, g), = 0.

A set of functions {yi, y2, ...} is orthonormal if

0 m#n
1 m=n

<}/m7yn>r = 5mn = {

7. Fourier analysis September 22, 2014
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Sturm-Liouville problems

The set of functions y, = sin(vx) v =+/A=1,2,3,..} are orthogonal (11 # 1) in the

interval [0, 7]

Yorsya) = fﬂSin(le)Sin(l/zx)dX
0
3 [ cos((v1 — v2)x)dx — 3 [ cos((v1 + v2)x)dx

0‘(( )T 1 '((0+))’T
sin((v1 —vp )x sin( (v vy )X
[ =y :|o 2 [ V11+V22 :|o

but they are not orthonormal because

2 _ - _ 1 cos(2vx) T
P _/sm (VX)dX—/<2 — dx = >
0 0

The set of functions y, = \/gsin(ux) v=+A=1,2,3,..} is orthonormal.

3
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If p, g, r and p’ are real-valued and continuous in the interval [a, b] and r > 0.
Let the function y,, and y, be eigenfunctions associated to different eigenvalues
Am and \,, then

<Ym7}/n>r =0




Boundary conditions

Boundary conditions
Mixed Dirichlet-Neumann conditions:

kiy(a) + koy'(a) = «
hy(b) + hy'(b) = 8

if « = 8 =0, the boundary conditions are said to be homogeneous. If
ko = b = 0 they are called Dirichlet boundary conditions. If k; = ; =0, they
are called Neumann boundary conditions. The conditions

are called periodic boundary conditions.
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Singular Sturm-Liouville problem

Singular Sturm-Liouville problem

A Sturm-Liouville problem

(P(x)y") + (a(x) + Ar(x))y = 0

is called singular in any of the following cases:
@ p(a) =0, BC at a is dropped, BC at b is homogeneous mixed.
@ p(b) =0, BC at b is dropped, BC at a is homogeneous mixed.
@ p(a) = p(b) =0, there is no BC.
@ The interval [a, b] is infinite.

Otherwise, the problem is regular.
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Singular Sturm-Liouville problem

Legendre’s equation

(1—x*)y" —2xy’ +n(n+1)y =0
is a Sturm-Liouville problem
(L =x*)y") +n(n+1)y =0

(p(x)y") + (q(x) + Ar(x))y =0

withp=1—-x% ¢g=0, r=1.

p(—1) = p(1) = 0, so the Sturm-Liouville problem is singular, and we do not need
boundary conditions. The Legendre polynomial P,(x) is a non-trivial solution of
the problem associated to the eigenvalue A = n(n+ 1). By the previous theorem,
Legendre polynomials are orthogonal in the interval [—1,1].
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Exercises

From Kreyszig (10th ed.), Chapter 11, Section 5:
0 1156

e 1159
e 11.5.11
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Exercises

Exercises

o 11.5.14

(a) Chebyshev polynomials® of the first and second
kind are defined by

1, (x) = cos (n arccos x)

sin [(n + 1) arccos x]

Un(x) =
V1 - x?
respectively, where n = 0, 1,---. Show that
=1, Ti(x) = x, Bx) = 2¢% — L.
Bx) = 4x3 — 3x,
Up = 1, Uy(x) = 2x, Us(x) = 4x2 — 1,

Us(x) = 8x% — 4x.

Show that the Chebyshev polynomials T,(x) are
orthogonal on the interval —1 = x = | with respect
to the weight function r(x) = l/\/l - x2 (Hint.
To evaluate the integral, set arccosx = 6.) Verify

that 7, (x), n =0, 1,2, 3, satisfy the Chebyshev
equation

(1 - xz)y” - xy’ + nz_v =0.

(b) Orthogonality on an infinite interval: Laguerre
polynomials’ are defined by Ly = 1, and
L gr dn(xne—r) L2
X)) =—— n=12-"
() n! dx™
Show that

Lo =1—x  Ly(x)=1—2¢+x%2,

L3(x) = 1 — 3x + 3x%2 — x*/6.

Prove that the Laguerre polynomials are orthogonal on
the positive axis 0 = x < o with respect to the weight
function r(x) = e™". Hint. Since the highest power in
Ly, is x™, it suffices to show that fe’xkandx =0
for k < n. Do this by k integrations by parts.
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Generalized Fourier series

Generalized Fourier series

Let the set {y1,y», ...} be orthogonal with respect to the weight function r in an
interval [a, b]. Let f be a function that we want to expand in this ortohogonal

basis

To find the Fourier coefficients, a,, we compute the inner product of £ with y,

F=> amym(x)
m=0

o0

oy, = < nioamym(x),yn> — 3 o (s = a2

r m=0
b
(o, ] 1P
_ \sYn)r | a
2

a
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Generalized Fourier series

Fourier-Legendre series

Legendre polynomials, Pp(x), are orthogonal in [—1, 1] with respect to r(x) = 1.
In this interval we can perform an eigenfunction expansion of the form

N Pr)
= 2 TPl P

It can be shown that

f =sin(mx) = a, = 2m2—|— 1 /sin(ﬂx)P,,,(x)dx
=i

f = 0.95493P; —1.15824P3+-0.21929P5 —0.01664 P; +0.00068 Py —0.00002P; 1 +...
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Generalized Fourier series

Fourier-Bessel series

Bessel's J, functions are solutions of the ODE

X2y// < xy’ 4 (X2 _ n2)y =0

That is 2 "
~2 ng~ ~Y9n o 2 2 ) —
X i (X)+x 9% (X)+ (3° = n7)Jp(X) =0

Where for convenience we have used the variable X instead of x. We now perform
the change of variable

~ X
XZkXZ}X:;
dJ, dJ,dx dJ,1
dX  dx dXx  dx k
d?J, d [dJ, d [dJ,1\ dx d%J, 1
d>"<2_d)"<<d>"<>:dx<dxk)d>“<:dx2k2

7. Fourier analysis

September 22, 2014 55 / 90



Generalized Fourier series

Fourier-Bessel series
So Bessel's equation becomes

22y 1 dJ,

dx? (kx)p () dx

(kx) (kx)% + ((kx)? = n?)dn(kx) = 0

x2J!(kx) + xJ!(kx) 4 (k*x?® — n?)Jn(kx) = 0

Dividing by x
2
xJ"(kx) + I (kx) + (K2x — ) Jo(kx) = 0
X
n?
(xJ)(kx)) + (—? + k?x)Jn(kx) = 0
This is a Sturm-Liouville problem with p = x, g = —"72, A= k2, and r = x. Let

us choose a = 0, p(a) = 0, so the problem is singular. For the boundary
conditions fix a value b = R and find the values k such that

Jn(kR) =0

v
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‘Fourier-Bessel series
Jn(kR) =0

For every n, we find that this equation has infinite solutions that we may index
with m




Generalized Fourier series

Fourier-Bessel series

The set of functions {J,(kn 1x), Jn(kn2X), ...} with ky m = O‘,T;;’" is orthogonal on

the interval [0, R] with respect to the weight function r(x) = x since they are
eigenfunctions associated to the eigenvalue A = k,2,’m. Additionally,

R
R2
k) = [ 2 )b = 5 R)
0

so the Fourier coefficients of the Fourier-Bessel series

E am I'I nmX

are

g — <f(X)»Jn(kn,mX)>X
" (| Jn (ki mx) [IZ
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Generalized Fourier series

1
f(x) = ——=
(X) 1 _ X2
Let us consider n = 0 and R = 1, then
ko,m = 2.405,5.520,8.654,11.792, ...

The Fourier coefficients are

4J>(ko,m)

am = ——5—— = 1.1081, —0.1398, 0.0455, —0.0210, ...
" kg,mjf(koym)

And the function is approximated as

1
1—x

5 = 1.1081p(2.405x) — 0.1398.p(5.520x) -+ 0.0455Jy(8.654x) — ...
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Mean square convergence. Completeness

Mean square convergence

Let us define the functions
k
Sk = Z AmYm
m=1

This sequence of functions tend to f in a mean-square sense if

lim ||sx — fl|I2 =0

k— o0
where r is a weighting function.

Completeness

An orthonormal set of functions y, y1, ... in the interval [a, b] is complete in a set
of functions S defined on [a, b] if

Vf € §5,Ve > 0= Jag, ay, -.| <€

k
f— Z amYm
m=1
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Exercises

From Kreyszig (10th ed.), Chapter 11, Section 6:
e 11.6.2
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Exercises

Exercises

14. TEAM PROJECT. Orthogonal

on the Entire Real
Axis. Hermite Polynomials." These orthogonal polyno-
mials are defined by Heo(1) = 1 and

YA

d"
(19 anm:t—l)”u"”; (™), =12 -

REMARK. As is true for many special functions, the
literature contains more than one notation, and one some-
times defines as Hermite polynomials the functions

d"
HE =1,  Hiw= (e
dx™
This differs from our definition, which is preferred in
applications.

(a) Small Values of n. Show that

Hey(x) =x,  Hey(x) =% — 1,
Heg(x) = x” — 3x, Hey(x) = x* — 622 + 3

(b) Generating Function. A generating function of the
Hermite polynomials is

(20)

> an@)i"

n=0

because Hey (x) = n! an(x). Prove this. Hint: Use the
formula for the coefficients of a Maclaurin series and
note that tx — 317 = 3x2 — S(x — %

(¢) Derivative. Differentiating the generating func-
tion with respect to x, show that

@1 Hey (x) = nHey _1 (x).

(d) Orthogonality on the x-Axis needs a weight function
that goes to zero sufficiently fast as x— %o, (Why?)

Show that the Hermite polynomials are orthogonal on
—o <y < © with respect to the weight function
r(x)=e" 2 Hint. Use integration by parts and (21).
(e) ODEs. Show that

(22) Hep(x) = xHep(x) — Hep 11 (x).

Using this with n — 1 instead of 1 and (21), show that
y = Hey(x) satisfics the ODE

(23) Y =x'+ny

Show that w = e ~*/4 is a solution of Weber’s
equation

24) w" +(n+77*r yw =20 (n=0,1,-

S EXPERIME
Example 2 and R = 1, so that you get the scries

Fourier-Bessel Series. Use

(25) () = arJo(@o1x) + azlo(ag2y)

+ aglo(@oay) + -+
With the zeros g1 0.2
Table Al in App. 5).
(a) Graph the terms Jo(ap1x),: " -, Jo(ao10%) for
0 =x =1 on common axes.

- from your CAS (sce also

(b) Write a program for calculating partial sums of (23).
Find out for what f(x) your CAS can evaluate the
integrals. Take two such /(x) and comment empirically
on the speed of convergence by observing the decrease
of the coefficients.
(¢) Take f(x) = 1 in (25) and evaluate the integrals
for the coefficients analytically by (21a), Sec. 5.4, with
= 1. Graph the first few partial sums on common
axes.
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Fourier integral

Waveform £, (x)

f)

g 1 1 ™
2 0 2

0 —L<x<-1
2L -4 fL(X) = 1 -l<x<1
0 l<x<lL
)
R A‘\ ‘ —
-4 o] 4

- fL(X) = fL(X I 2L)
oL -8 f(x) = Llim f1(x)
—00
fgﬂ_‘

_ { 1 -1<x<1
- L : — 0 otherwise
1 2L-1 >
flx)
-101

x
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Fourier integral

Amplitude spectrum an(wn)

n=1 w, =nn/L

W
-
rd
>
”
|
A 2
1
no
DN
7
=
1l
v
(=]

-
—
—
—
2N

i

7 E}
h
A
o=

Il
[
o

1
1 1
— = [dx="=
do 2L/ X
=il
1 ¢ 2 sin(nm/L
an = 1 ﬁcos(%) dx = $300
= Zsinc(§) |sinc(x) = %%2]
2.: whp

v
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Fourier integral

From Fourier series to Fourier integral

f[_(X)

aog + § an cos (”T”x) + b, sin (”T”x)
n=1

a0 + Y [ancos(wnx) + bpsin(wpx)]  [wn = Fn]
n=1

L 00
= [ fi(v)dv+ Y ( f fL(v) cos(wnv )dv) cos(wpx)+
—L n=1

~[=

[e’s) L

> ({fL f/_(v)sin(w,,v)dv> sin(wex)  [Aw, = ]
L
J
—L

n=1

—L

fi(v)dv+1 Z <f fi(v) cos(wnv)dv> cos(wpx)Aw+
1 io: <fL f(v)sin(wpv )dv> sin(wpx)Aw

—1 \|

3
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Fourier integral

From Fourier series to Fourier integral

—L

(f fL(v)sin(wnv )dv) sin(wnx)Aw

We now take the limit when L goes to co

filx) = % fL ﬂ(v)dv—i—%i <f f1(v) cos(wnv )dv) cos(wnx)Aw+

0

T < 70 f(v) sin(wv)dv) sin(wx)dw
0

— o0

fim fix) = 0+ f < [ f(v)cos(wv dv) cos(wx)dw+

A 1m

f(x) = /(A(w) cos(wx) + B(w) sin(wx))dw
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Fourier integral

From Fourier series to Fourier integral
If f is piecewise continuous in every finite interval and has a left- and right-hand

oo
derivative at every point, and it is absolutely integrable ( [ |f(x)|dx), then f can

be represented by a Fourier integral. -
f(x) = [ (Aw)cos(wx)+ B(w)sin(wx))dw
0
Aw)=1 f f(v) cos(wv)dv

Bw)=1% f f(v)sin(wv)dv

Where f is discontinuous, the value of the Fourier integral equals the average of
the left- and right-hand limits of f at that point.
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Fourier transform

Complex form of the Fourier integral

flx) = :fo(A(w)cos(wx)+B(w)sin(wx))dw

w)=1 f f(v) cos(wv)dv
=41 f f(v)sin(wv)dv

s

Let's substitute A and B into the Fourier integral

flx) = % Tf(v)(cos(wv)cos(wx)+sin(wv)sin(wx))dv dw

Il
1=

[ f(v)cos(w(x — v))dv | dw = F(w, x)dw

3 |
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Fourier transform
Complex form of the Fourier integral

f(x) = ;f[ff cos(w(x — v))d ‘|dw—71rTwa)dw
0 0

Note that F(w, x) is an even function in w, that is F(w, x) = F(—w, x), so we may
symmetrize the integration limit and divide by two:

flx) = %j? F(w, x)dw = 5= f [f f(v) cos(w(x — v))dv] dw
The function -
/ f(v)sin(w(x — v))dv

is odd and its integral over all w must be 0.

0 = %f [f f(v) sin( (xv))dv‘| dw

— o0
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Now we calculate

f(x)+i0

) = & [ | T fiv)eosiw(x — v))dv| dw
0 = %7}0 77 f(v)sin(w(x — v))dv| dw

oo | oo

— 00 — 00

= % f f f(v)eiw(x_v)dv] dw

—0o0 |—oo

8

=\/%f

— 00

l# _f f(v)e_"“"’dv] e“*dw

oo

= [ | [ f(v)(cos(w(x — v)) + isin(w(x — v)))dv] dw
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Fourier transform
Complex form of the Fourier integral

f(x) = \/% / [\/127 / f(v)e’””dv} e“*dw

Let us define the Fourier transform of f as

]-"{f}:?(w):\/% / F(x)e=*dx

From the Fourier transform we can recover the original function as

FUR = f(x) = ——

f(w)e™* dw
— (w)

\»8

8

If f is absolutely integrable and piecewise continuous, then its Fourier transform
exists.
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Fourier transform

f(x):{ 1 |xl<1

0 otherwise

Solution:

F{f} =

1
1 —iwx _ 1 e '¥x _ 1 —iw _ aiw
2w f € dx = V2r < iw >_1 - iwv27r(e € )

1
= - 1 (eiw _ e—iw) = - 227T e"’“’—ztie_’“ == 227T sin(w)
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Bample
f(x)=e u(x) a>0

Solution:

e~ e iwx gy — _ i

7 ( atiw )zo = Vo)

Fify = &

- e Sy T



Power spectral density

Power spectral density

Plane waves have only
one frequency, ®. ——»

Light electric field

Time

This light wave has many
<« frequencies. And the

frequency increases in

time (from red to blue).

Light electric field

Time
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Power spectral density

Power spectral density

Let us consider the spring-mass system
my” + ky =0

Multiplying by y’
! 0

my'y” + kyy' =0
and integrating

1 N2 1 2

= k=y” = E

m2(y )+ 5 0

I >, 1 5
P —ky® = E
2mv + 5 y 0
The first term is the kinetic energy of the system and the second term its (spring)
potential energy, Ey is the total energy.
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The general solution of the ODE is

y = aicos(wox)~+ by sin(wox)

where wg = \/ﬁ is the natural frequency of the system. We can rewrite it as

eiwox e—iwox e
y = a*—% + by :
_ a—ib eiwox + ar+iby e—iwox
2
— Cleiwox A C_le—%wox
y — iOJo(Cleiwox _ C_le—iwox)

iwox_e—iwox




Power spectral density

Power spectral density
Substituting in the energy equation
%mv2 + %ky2 =E

1 . iwpx —iwoxy) 2 1 iwgx 7iwx2_
Em(/wo(cle 0 —c_1e '™ )) —&—Ek(cle 4 c_ie 0) =E

1 * 1 *
§m(iwo)2(A—A )2+§k(A+A ) =E
1 k *\2 1 *\2
5m<—5) (A=A + SKA+A) = B

_
2

1 *\2 *\2
5k[—(A—A) +(A+A)] =E

k(A — A*)? + %k(A +A )Y =E

Sk[—A?— (A")? +2AA" + A%+ (A")? + 2AA"] = B

2k|A]> = 2k|a? = B
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Power spectral density

Power spectral density

So if y is a sum of two complex exponentials, then the energy is proportional to
their amplitude

y=ce“+c e’ = F x |c1|2

If we had a discrete sum of complex exponentials we would have
y = E cpe' ™ + c_peT U = Fy E |c,,|2
n

and for a “continous” sum

o0

y:/?(w)e"“’xdw# Ep x /| )|?dw

—00
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ECG Signal PSD of ECG Signal
" 0.1

Normal Noisy ECG

Abnormal ECG

log PSD
o

2 o5 ] 15 0 50 200 250

100 150
Time Frequency (Hz)
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F{af + bg} = aF{f} + bF{g}

Proof

F{af + bg}

o0

A= [ (af(x) + bg(x))e v

\/‘;—_L f(x)e~“Xdx + \/%_L g(x)e“*dx
aF{f} + bF{g}




F{f'} = iwF{f}

Proof

df
dx

ﬁ_{o F(w)e™>dw
d% (#_{o ?(w)e"“’xdw>

?(w)d% (e*) dw

883

(w)(iw)e™“*dw

|
3

o
Bl 3 3

% 8
T >
&
>

(w)) el dw

!
8




Fourier transform of the derivative

Fourier transform of the derivative
F{f"} = (iw)>F{f}
F{FM} = (iw)"F{f}
F{f D} = (iw)*F{f}

Fourier transform of the integral

.7:{/ f(T)dT} = ?J} + co(f)

— O
where c is a value such that

t

/(ﬂﬂ—ch:o

— 00

It is normally referred to as the DC or average value.
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Fourier transform of the convolution

Fourier transform of the convolution
f(x) xg(x) = / f(p)g(x — p)dp = / f(x — p)g(p)dp

F{f g} = V2rnF{f}F{g}

Proof

Fif<g) = J= ] (7 f(p)g(x—p)dp> —

[ | f(p)g(x — p)e ™“*dpdx [swap variables]

—00 —0O0

T _Ofo f(p)g(x — p)e~“*dxdp [q=x— p]

—00 —O0©

I [ f(p)g(q)e “\a+P)dqdp

—00 —00

= R SR
3 B 3 3
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F{fxg}

N Z [ F(P)g(a)e o7 dgdp

«127 ( J (P)e"“"dp> (_f g(q)e""""dq>
—= (Vo F{f}) (vVorFig})

\/ﬂf{f}f{g}




(Fre)) = [ Hwlgw)e™d

Proof

(Fre)x) = FH{vart(w)gw)}
- T (Vart(w)a(w)) e duw

Vor )
[ f(w)g(w)e™ dw




) fony = F(f)
| {1 if-b<x<b \Fsinbw
0 otherwise L
) {1 ifb<x<c emibw _ —icw
0 otherwise w\ 2
—aw|
3 —— w>0 K
x2 +a? 2 a
b4 if0<x<b
| 4 peibw _ ,=2ibw
4 2x—b ifb<x<2b e —
\Vamw?
0 otherwise
. {e"” ifx>0 @>0) 1
a S S
0 otherwise V2m(a + iw)




ifb<x<c

otherwise

if —b<x<b

otherwise

ith<x<c¢

otherwise

(a>0)

(a >0)

V2mla — iw)

2 sinb(w — a)
T w-—a

i ezb(a—w) _ e‘tc(a—w)

/27T a—w

e(a—zw)c e(a—zw)b

i% if lwl <a; 0if|lw| >a




Outline
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