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Basic concepts

Basic concepts
PDE: unknown u and ∂u

∂t ,
∂u
∂x , ...

Order: The highest order of derivation, e.g., order of ∂2u
∂t∂x is 2.

Linear PDE: it involves only first-order derivatives
Homogeneous: each term contaisn u or one of its derivatives
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Basic concepts

Basic concepts
The set of solutions can be very large and one needs some constraints (boundary
conditions of initial conditions) to restrict the solution to have physical meaning.
For instance,

∂2u
∂x2 +

∂2u
∂y2 = 0

is satisfied by
u = x2 − y2

u = ex cos(y)
u = sin(x) cosh(y)
u = log(x2 + y2)

Principle of superposition
If u1 and u2 are solutions of a homogeneous PDE, then u = c1u1 + c2u2 is also a
solution.
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Basic concepts

Example
Find solutions depending on x and y of

uxx − u = 0

Solution: Since y does not appear, it is like solving

u′′ − u = 0

whose general solution is
u = Aex + Be−x

Here A and B may be functions of y

u = A(y)ex + B(y)e−x
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Basic concepts

Example
Find solutions depending on x and y of

uxy = −ux

Solution: Setting v = ux , we have the equation

vy = −v ⇒ dv
v = −dy ⇒ log |v | = −y + c1(x)⇒ v = c2(x)e−y

Integrating with respect to x

u =

∫
c2(x)e−y dx = c3(x)e−y + c4(y)

That is
u = f (x)e−y + g(y)

8. Partial Differential Equations September 24, 2014 8 / 142



Exercises

Exercises
From Kreyszig (10th ed.), Chapter 12, Section 1:

12.1.2
12.1.5
12.1.19
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Vibrating string. Wave equation

Vibrating string

https://www.youtube.com/watch?v=ttgLyWFINJI
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Vibrating string. Wave equation

Vibrating string. Wave equation

Since the string offers no resistance to bending the tension is tangential to the
curve at each point. Let T1 and T2 be the tension at the points P and Q. Since
the points move vertically (not horizontally) the horizontal tension must cancel at
every point

Horizontally:T2 cos(β)− T1 cos(α) = 0⇒ T2 cos(β) = T1 cos(α) = T (const)
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Vibrating string. Wave equation

Vibrating string. Wave equation

Vertically, the difference of the forces translates into an acceleration

Vertically:T2 sin(β)− T1 sin(α) = (ρ∆x)utt

where ρ is the mass density of the string and ∆x is the distance between P = x
and Q = x + ∆x .
Dividing by T we have

T2 sin(β)

T2 cos(β)
− T1 sin(α)

T1 cos(α)
=
ρ∆x
T utt
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Vibrating string. Wave equation

Vibrating string. Wave equation
T2 sin(β)

T2 cos(β)
− T1 sin(α)

T1 cos(α)
=
ρ∆x
T utt

tan(β)− tan(α)

∆x =
ρ

T utt

ux (x)− ux (x + ∆x)

∆x =
ρ

T utt

Taking the limit when ∆x goes to 0

uxx =
ρ

T utt

utt =
T
ρ

uxx

utt = c2uxx

This is the 1D wave equation and c is the propagation speed.
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Vibrating string. Wave equation

Vibrating string. Wave equation
The model of the vibrating string consists of the 1D wave equation

utt = c2uxx

plus some boundary conditions

u(0, t) = 0, u(L, t) = 0

plus some initial conditions on the initial shape and velocity of the string

u(x , 0) = f (x), ut(x , 0) = g(x)

The solution has three steps:
1 Separating variables
2 Satisfying the boundary conditions
3 Staisfying the initial conditions
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Vibrating string. Wave equation

Separating variables
Let us look for a solution of the form

u(x , t) = F (x)G(t)

utt = FGtt , uxx = Fxx G

So the PDE becomes
FGtt = c2Fxx G
1
c2

Gtt
G =

Fxx
F

The left-hand side depends only of t, while the right-hand side depends only on x .
The only way this is feasible is

1
c2

Gtt
G =

Fxx
F = k ⇒

{
Fxx − kF = 0

Gtt − c2kG = 0
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Vibrating string. Wave equation

Satisfying the boundary conditions
The boundary conditions are

u(0, t) = F (0)G(t) = 0, u(L, t) = F (L)G(t) = 0

G(t) cannot be 0 because, it would be a solutio u = 0 of no interest. So it must
be

F (0) = F (L) = 0

Consider the ODE for F
Fxx − kF = 0

If k = 0, then general solution is

F = ax + b

and the two boundary conditions would make a = 0 = b, which is again of no
interest.
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Vibrating string. Wave equation

Satisfying the boundary conditions
Fxx − kF = 0

If k = µ2 > 0, then the general solution is

F = aeµx + be−µx

and the two boundary conditions would make a = 0 = b, which is of no interest.
If k = −µ2 < 0, then the general solution is

F = a cos(µx) + b sin(µx)

and the two boundary conditions would make

0 = a, 0 = b sin(µL)⇒ µL = nπ ⇒ µ =
π

L n

That is, there are infinitely many solutions of the form

F (x) = Fn(x) = sin
(nπ

L x
)
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Vibrating string. Wave equation

Satisfying the boundary conditions
We now solve

Gtt − c2kG = 0
where k = − (fracπLn)2. Let us define

λn = cµ =
cπ
L n

Then
Gtt + λ2nG = 0

The general solution is
G(t) = an cos(λnt) + bn sin(λnt)

And an eigenfunction of the vibration problem with boundary conditions is

un(x , t) = FG =
(
sin
(nπ

L x
))

(an cos (λnt) + bn sin (λnt))

associated to the eigenvalue λn.
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Vibrating string. Wave equation

Satisfying the boundary conditions

un(x , t) =
(
sin
(nπ

L x
))(

an cos
(

c nπ
L t
)

+ bn sin
(

c nπ
L t
))
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Vibrating string. Wave equation

Satisfying the boundary conditions

un(x , t) =
(
sin
(nπ

L x
))(

an cos
(

c nπ
L t
)

+ bn sin
(

c nπ
L t
))

Remind that c =
√

T
ρ so that tuning an

instrument amounts to changing T and,
ultimately, c. The other two variables to
control are ρ and L
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Vibrating string. Wave equation

Satisfying the initial conditions: initial shape
The general solution of the vibrating string problem is

u(x , t) =
∞∑

n=1

un(x , t) =
∞∑

n=1

sin
(nπ

L x
)
(an cos(λnt) + bn sin(λnt))

For the initial shape condition we have

u(x , 0) =
∞∑

n=1

an sin
(nπ

L x
)
= f (x)

If we do the Fourier series expansion of f (x) assuming we make an odd extension of it
and make it of period 2L, then f can be expressed as

f (x) =
∞∑

n=1

 2
L

L∫
0

f (v) sin
(nπ

L v
)

dv

 sin
(nπ

L x
)
⇒ an =

2
L

L∫
0

f (v) sin
(nπ

L v
)

dv
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Vibrating string. Wave equation

Satisfying the initial conditions: initial speed
The derivative of the general solution is

ut(x , t) =
∞∑

n=1

sin
(nπ

L x
)
(−anλn sin(λnt) + bnλn cos(λnt))

For the initial shape condition we have

ut(x , 0) =
∞∑

n=1

bnλn sin
(nπ

L x
)
= g(x)

If we do the Fourier series expansion of g(x) assuming we make an odd extension of it
and make it of period 2L, then g can be expressed as

f (x) =
∞∑

n=1

 2
L

L∫
0

g(v) sin
(nπ

L v
)

dv

 sin
(nπ

L x
)
⇒ bn =

2
λnL

L∫
0

g(v) sin
(nπ

L v
)

dv
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Vibrating string. Wave equation

Particular solution
Finally the particular solution is

u(x , t) =
∞∑

n=1
sin
( nπ

L x
)
(an cos(λnt) + bn sin(λnt))

an = 2
L

L∫
0

f (v) sin
( nπ

L v
)

dv

bn = 2
λnL

L∫
0

g(v) sin
( nπ

L v
)

dv

λn = cµ = cπ
L n
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Vibrating string. Wave equation

Particular solution
We may reformulate this solution as

u(x , t) =
∞∑

n=1
an sin

( nπ
L x
)
cos
( cπ

L nt
)
+

∞∑
n=1

bn sin
( nπ

L x
)
sin
( cπ

L nt
)

=
∞∑

n=1
an

1
2

[
sin
( nπ

L (x − ct)
)
+ sin

(
π
L n(x + ct)

)]
+

∞∑
n=1

bn
1
2

[
cos
( nπ

L (x − ct)
)
+ cos

(
π
L n(x + ct)

)]
=

∞∑
n=1

an
2 sin

( nπ
L (x − ct)

)
+ bn

2 cos
( nπ

L (x − ct)
)
+

∞∑
n=1

an
2 sin

( nπ
L (x + ct)

)
+ bn

2 cos
( nπ

L (x + ct)
)
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Vibrating string. Wave equation

Particular solution
We may reformulate this solution as

u(x , t) =
∞∑

n=1

an
2 sin

( nπ
L (x − ct)

)
+ bn

2 cos
( nπ

L (x − ct)
)
+

∞∑
n=1

an
2 sin

( nπ
L (x + ct)

)
+ bn

2 cos
( nπ

L (x + ct)
)

If we define

f ∗(ξ) =
∞∑

n=1

an sin
(nπ

L ξ
)
+ bn cos

(nπ
L ξ
)

Then

u(x , t) = 1
2 (f
∗(x − ct) + f ∗(x + ct))

That is u is the sum of two travelling
waves.
http://www.animations.physics.unsw.edu.au/jw/travelling_sine_wave.htm
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Vibrating string. Wave equation

Example

f (x) =

{ 2k
L x 0 < x < L

2
2k
L (L− x) L

2 < x < L

g(x) = 0

Solution:
g(x) = 0⇒ bn = 0

For f (x) see Example in Chapter 7 (Half-range expansion)

f (x) =
8k
π2

(
1
12 sin

(π
L x
)
cos
(cπ

L t
)
− 1

32 sin
(
3π
L x
)
cos
(
3cπ
L t

)
+ ...

)
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Vibrating string. Wave equation

Example
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D’Alembert’s solution of the wave equation

D’Alembert’s solution of the wave equation

utt = c2uxx

Let us introduce the variables

v = x + ct w = x − ct

Then the derivaritives of u can be calculated as

ux = uv vx + uw wx = uv + uw

uxx = (uv + uw )x = (uv + uw )v vx + (uv + uw )w wx = uvv + 2uwv + uww

ut = uv vt + uw wt = cuv − cuw

utt = c(uv − uw )t = c[(uv − uw )v vt + (uv − uw )w wt ] = c2(uvv − 2uwv + uww )

The PDE becomes

c2(uvv − 2uwv + uww ) = c2(uvv + 2uwv + uww )
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D’Alembert’s solution of the wave equation

D’Alembert’s solution of the wave equation

c2(uvv − 2uwv + uww ) = c2(uvv + 2uwv + uww )

−uwv = uwv ⇒ uwv = 0

Integrating in v
uw = f1(w)

And now in w
u =

∫
f1(w)dw = ψ(w) + φ(v)

That is
u(x , t) = φ(x + ct) + ψ(x − ct)

where φ and ψ are two, maybe different, travelling waves.
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D’Alembert’s solution of the wave equation

Initial conditions
u(x , t) = φ(x + ct) + ψ(x − ct)

Now we impose the initial conditions

u(x , 0) = f (x) ut(x , 0) = g(x)

Let us calculate ut

ut(x , t) = cφ′(x + ct)− cψ′(x − ct)

Now the two initial conditions impose

u(x , 0) = φ(x) + ψ(x) = f (x)

ut(x , 0) = cφ′(x)− cψ′(x) = g(x)
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D’Alembert’s solution of the wave equation

Initial conditions (continued)

ut(x , 0) = cφ′(x)− cψ′(x) = g(x)

Dividing by c and integrating with respect to x , we get
x∫

x0

φ′(x)dx −
x∫

x0

ψ′(x)dx =
1
c

x∫
x0

g(s)ds

φ(x)− φ(x0)− ψ(x) + ψ(x0) =
1
c

x∫
x0

g(s)ds

φ(x)− ψ(x) = φ(x0)− ψ(x0) +
1
c

x∫
x0

g(s)ds
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D’Alembert’s solution of the wave equation

Initial conditions (continued)

φ(x)− ψ(x) = φ(x0)− ψ(x0) +
1
c

x∫
x0

g(s)ds

Adding this equation to
φ(x) + ψ(x) = f (x)

We get

2φ(x) = k(x0) + f (x) +
1
c

x∫
x0

g(s)ds ⇒ φ(x) =
1
2

k(x0) + f (x) +
1
c

x∫
x0

g(s)ds


Similarly subtracting the first equation from the second

2ψ(x) = −k(x0)+f (x)−1
c

x∫
x0

g(s)ds ⇒ ψ(x) =
1
2

−k(x0) + f (x)− 1
c

x∫
x0

g(s)ds
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D’Alembert’s solution of the wave equation

Initial conditions (continued)
The wave equation solution was

u(x , t) = φ(x + ct) + ψ(x − ct)

Substituting φ and ψ as calculated above

u(x , t) = 1
2k(x0) + 1

2 f (x + ct) + 1
2c

x+ct∫
x0

g(s)ds

− 1
2k(x0) + 1

2 f (x − ct)− 1
2c

x−ct∫
x0

g(s)ds

= 1
2 (f (x + ct) + f (x − ct)) + 1

2c

x+ct∫
x0

g(s)ds + 1
2c

x0∫
x−ct

g(s)ds

=
1
2 (f (x + ct) + f (x − ct)) +

1
2c

x+ct∫
x−ct

g(s)ds
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D’Alembert’s solution of the wave equation

Initial conditions (continued)

u(x , t) = 1
2 (f (x + ct) + f (x − ct)) + 1

2c

x+ct∫
x−ct

g(s)ds

If the initial velocity is 0, then

u(x , t) =
1
2 (f (x + ct) + f (x − ct))
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Method of characteristics

Method of characteristics
D’Alembert’s solution is a special case of the method of characteristics that deals
with the problem

Auxx + 2Buxy + Cuyy = F (x , y , u, ux , uy )

This problem is classified as

A, B and C may be functions of x and y , so the problem is of a mixed type, that
is different type in different regions of space.
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Method of characteristics

Example

Auxx + 2Buxy + Cuyy = F (x , y , u, ux , uy )

Consider the 1D wave equation

utt = c2uxx

Make the change of variable

y = ct ⇒ utt = c2uyy

Then the PDE becomes

uxx − uyy = 0⇒ AC − B2 = 1(−1)− 02 = −1 < 0⇒ Hyperbolic
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Method of characteristics

Example

Auxx + 2Buxy + Cuyy = F (x , y , u, ux , uy )

Consider the 1D heat equation
ut = c2uxx

Make the change of variable

y = c2t ⇒ ut = c2uy

Then the PDE becomes

uxx = uy ⇒ AC − B2 = 1(0)− 02 = 0⇒ Parabolic
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Method of characteristics

Transformation to normal form
The normal forms of the PDE

Auxx + 2Buxy + Cuyy = F (x , y , u, ux , uy )

depend on the solutions of the characteristic equation

A(y ′)2 − 2By ′ + C = 0

that are called characteristics of the PDE and are written in the form

Ψ(x , y) = C1 Φ(x , y) = C2
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Method of characteristics

Transformation to normal form
The transformations giving the new variables v and w as well as the normal forms
are
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Method of characteristics

Example: D’Alembert solution

utt − c2uxx = 0

We do the change of variable y = ct, and transform the PDE into

uyy − uxx = 0⇒ uxx − uyy = 0

The characteristic equation is
(y ′)2 − 1 = 0

(y ′ + 1)(y ′ − 1) = 0⇒
{

y ′ + 1 = 0⇒ y = −x + C1 ⇒ Φ(x , y) = x + y = C1
y ′ − 1 = 0⇒ y = x + C2 ⇒ Ψ(x , y) = x − y = C2

Since the equation is hyperbolic, the change of variables is

v = Φ(x , y) = x + y = x + ct
w = Ψ(x , y) = x − y = x − ct

And the associated normal form
uvw = 0
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 12, Section 4:

12.4.11
12.4.19
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Heat equation

Heat equation

https://www.youtube.com/watch?v=TvlIfSlLB0c
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Heat equation

Heat equation
Let V be a region in space bounded by a surface S, with
outer unit normal vector n. Then

v · n

is the component of v (the velocity of heat flow) in the
direction of n, and

(v · n)dS

is the amount of heat leaving (if v · n > 0) or entering V
(if v · n < 0) per unit time in a small portion of the
surface of area dS. So the total amount of heat that
flows through the whole surface is∫∫

S

(v · n)dS =

∫∫
S

((−K∇u) · n)dS

being K the thermal conductivity inside the body.
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Heat equation

Heat equation
Now we use Gauss theorem∫∫

S

v · ndS =

∫∫∫
V

div(v)dV =

∫∫∫
V

∇ · vdV

to convert the total heat flow into∫∫
S

(v · n)dS =

∫∫∫
V

∇ · (−K∇u)dV = −K
∫∫∫

V

∇2udxdydz

where ∇2 is the Laplacian operator

∇2u = uxx + uyy + uzz
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Heat equation

Heat equation
The total amount of heat is

H =

∫∫∫
V

ρσudxdydz

where σ is the specific heat of the material and ρ its density. So, the time rate of
decrease of heat is

−Ht = −
∫∫∫

V

ρσutdxdydz

This must be equal to the amount of heat leaving the body since the body does
not create heat or makes it disappear

−
∫∫∫

V

ρσutdxdydz = −K
∫∫∫

V

∇2udxdydz
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Heat equation

Heat equation

−
∫∫∫

V

ρσutdxdydz = −K
∫∫∫

V

∇2udxdydz

∫∫∫
V

(
ρσut − K∇2u

)
dxdydz = 0

∫∫∫
V

(
ut −

K
ρσ
∇2u

)
dxdydz = 0

∫∫∫
V

(
ut − c2∇2u

)
dxdydz = 0 c2 =

K
ρσ

Since this holds for every region in the body, the integrand must be 0 everywhere

ut − c2∇2u = 0 ⇒ ut = c2(uxx + uyy + uzz )
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Diffusion equation

Diffusion equation
Heat equation is also the diffusion equation

ut − c2∇2u = 0

https:
//www.youtube.com/watch?v=RBFkmRapqts
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1D Heat equation

1D Heat equation

ut = c2uxx

plus the boundary conditions

u(0, t) = 0 u(L, t) = 0

plus the initial condition
u(x , 0) = f (x)

The solution has three steps:
1 Separating variables
2 Satisfying the boundary conditions
3 Satisfying the initial condition
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1D Heat equation

Separating variables

ut = c2uxx

Let us try a solution of the form

u(x , t) = F (x)G(t)

Substituting in the PDE we have

FGt = c2Fxx G

Gt
c2G =

Fxx
F

The left side depends only on t and the right side only on x , so it must be

Gt
c2G =

Fxx
F = −p2

[If their ratio is not negative, then the only solution is u = 0.]
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1D Heat equation

Separating variables
Gt

c2G =
Fxx
F = −p2

This gives us the two equations

Fxx + p2F = 0
Gt + c2p2G = 0

Let us find the general solutions of both equations

Fxx + p2F = 0⇒ F = A cos(px) + B sin(px)

Gt + c2p2G = 0⇒ G = Ce−c2p2t

u(x , t) = (A cos(px) + B sin(px))e−c2p2t
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1D Heat equation

Satisfying the boundary conditions

u(x , t) = (A cos(px) + B sin(px))e−c2p2t

Let us impose the boundary conditions

u(0, t) = 0 = A

u(L, t) = 0 = B sin(pL)⇒ pL = nπ

Let us define
λn = c nπ

L
So the eigenfunctions of the problem are the functions

un(x , t) = Bn sin
(nπ

L x
)

e−λ
2
nt
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1D Heat equation

Satisfying the initial condition
The solution of the problem is

u(x , t) =
∞∑

n=1
un(x , t) =

∞∑
n=1

Bn sin
(nπ

L x
)

e−λ
2
nt

Let us impose the initial condition

u(x , 0) = f (x) =
∞∑

n=1
Bn sin

(nπ
L x
)

So that Bn must be the coefficients of the sine Fourier series

Bn =
2
L

L∫
0

f (x) sin
(nπ

L x
)

n = 1, 2, ...
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1D Heat equation

Example

Solution
As stated in the problem

f (x) = 100 sin
( π
80x

)
⇒ B1 = 100,Bn = 0 (n = 2, 3, ...)

Let us calculate λ21 = c2π2/L2, for that we need

c2 =
K
σρ

=
0.95

[ cal
cm·s·◦C

]
0.092

[
cal

g·◦C

]
8.92

[ g
cm3

] = 1.158
[

cm2

s

]
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1D Heat equation

Example (continued)

c2 = 1.158
[

cm2

s

]
λ1 = c2π

2

L2 = 1.158
[

cm2

s

]
π2

(80)2[cm2]
= 1.785 · 10−3[s−1]

So the solution is

u(x , t) = 100 sin
( π
80x

)
e−1.785·10

−3t

To calculate the time for the maximum temperature to drop to 50◦C

100e−1.785·10
−3t = 50⇒ t =

log(0.5)

−1.785 · 10−3 = 388[s] ≈ 6.5[min]

8. Partial Differential Equations September 24, 2014 58 / 142



1D Heat equation

Example
Let’s solve the same problem with n = 3

f (x) = 100 sin
(
3 π80x

)
Solution

B3 = 100,Bn = 0 (n = 1, 2, 4, 5, ...)

λ3 = 32λ21 = 1.607 · 10−2

u(x , t) = 100 sin
(
3 π80x

)
e−1.607·10

−2t

100e−1.607·10
−2t = 50⇒ t =

log(0.5)

−1.607 · 10−2 = 43[s]
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1D Heat equation

Example
Let’s solve the same problem with insulated ends Solution
The equation and initial conditions remain the same

ut = c2uxx

u(x , 0) = f (x)

But the boundary conditions change to

ux (0, t) = 0 ux (L, t) = 0

Since the equation has not changed the solution is still of the form

u(x , t) = (A cos(px) + B sin(px))e−c2p2t

Let us calculate ux (x , t)

ux (x , t) = Fx (x)G(t) = (−Ap sin(px) + Bp cos(px))e−c2p2t
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1D Heat equation

Example (continued)

ux (x , t) = (−Ap sin(px) + Bp cos(px))e−c2p2t

The the two boundary conditions imply

ux (0, t) = 0 = Bp

Let us choose B = 0, otherwise, the number of solutions is rather limited.

ux (L, t) = 0 = −Ap sin(pL)⇒ pL = nπ ⇒ pn =
nπ
L

Then, we have the eigenfunctions

un(x , t) = An cos (pnx) e−c2p2
nt = An cos

(nπ
L x
)

e−λ
2
nt λn =

cnπ
L

Note that now n = 0, 1, 2, ... instead of n = 1, 2, ..., that is, we can have the
solution

u0 = A0
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1D Heat equation

Example (continued)

un(x , t) = An cos (pnx) e−c2p2
nt = An cos

(nπ
L x
)

e−λ
2
nt λn =

cnπ
L

The particular solution must be of the form

u(x , t) =
∞∑

n=0
un(x , t) =

∞∑
n=0

An cos
(nπ

L x
)

e−λ
2
nt

Imposing the initial condition

u(x , 0) = f (x) =
∞∑

n=0
An cos

(nπ
L x
)

That is the An coefficients are the coefficients of the Fourier cosine series of f (x).
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1D Heat equation

Example (continued)

un(x , t) = An cos (pnx) e−c2p2
nt = An cos

(nπ
L x
)

e−λ
2
nt λn =

cnπ
L

The particular solution must be of the form

u(x , t) =
∞∑

n=0
un(x , t) =

∞∑
n=0

An cos
(nπ

L x
)

e−λ
2
nt

Imposing the initial condition

u(x , 0) = f (x) =
∞∑

n=0
An cos

(nπ
L x
)

That is the An coefficients are the coefficients of the Fourier cosine series of f (x).

A0 =
1
L

L∫
0

f (x)dx An = 2
L

L∫
0

f (x) cos
( nπ

L x
)

dx
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2D Heat equation

Steady 2D heat problems. Laplace’s equation
The 2D heat problem

ut = c2∇2u = c2(uxx + uyy )

In steady state, there is no variation with time

0 = uxx + uyy

The boundary value problem is
A Dirichlet problem if u is known on the boundary of a region R.
A Neumann problem if the normal derivative of u, un = ∂u

∂n , is known on
the boundary of a region R.
A Robin problem if u is known on a part of the boundary and un on the rest.
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2D Heat equation

Dirichlet’s problem

We solve the problem by separating variables

u(x , y) = F (x)G(y)

Fxx G + FGyy = 0

Dividing by FG
Fxx
F = −Gyy

G
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2D Heat equation

Dirichlet’s problem
Fxx
F = −Gyy

G
The left part depends on x and the right part on y , so it must be

Fxx
F = −Gyy

G = −k

Fxx
F = −k ⇒ Fxx + kF = 0⇒ F = A cos(

√
kx) + B sin(

√
kx)

The boundary conditions imply

F (0) = 0 = A

F (a) = 0 = B sin(
√

ka)⇒
√

ka = nπ ⇒ k =
(nπ

a

)2
The non-zero solutions are Fn(x) = sin

(nπ
a x
)
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2D Heat equation

Dirichlet’s problem
Fxx
F = −Gyy

G = −k

−Gyy
G = −k ⇒ Gyy − kG = 0

Gn = Ane−
√

ky + Bne
√

ky = Ane nπ
a y + Bne− nπ

a y

The boundary conditions

Gn(0) = 0 = An + Bn ⇒ Bn = −An

This gives
Gn = Ane nπ

a y − Ane− nπ
a y = 2An sinh

(nπ
a y
)

The eigenfunctions are thus

un(x , y) = Fn(x)Gn(y) = An sin
(nπ

a x
)
sinh

(nπ
a y
)
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2D Heat equation

Dirichlet’s problem

un(x , y) = Fn(x)Gn(y) = An sin
(nπ

a x
)
sinh

(nπ
a y
)

and the particular solution

u(x , y) =
∞∑

n=1
un(x , y) =

∞∑
n=1

An sin
(nπ

a x
)
sinh

(nπ
a y
)

Finally we impose the boundary condition

u(x , b) = f (x) =
∞∑

n=1

[
An sinh

(nπ
a b
)]

sin
(nπ

a x
)

That is An sinh
( nπ

a b
)
is the coefficient of f (x) of the sine series

2
a

a∫
0

f (x) sin
(nπ

a x
)

dx = An sinh
(nπ

a b
)
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2D Heat equation

Dirichlet’s problem

2
a

a∫
0

f (x) sin
(nπ

a x
)

dx = An sinh
(nπ

a b
)

An =
2

a sinh
( nπ

a b
) a∫

0

f (x) sin
(nπ

a x
)

dx
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2D Heat equation

Dirichlet’s problem

The solution found is the solution of ...
... the steady 2D heat problem.
... the electrostatic potential in the region R with the constraints shown.
... the displacement of a rubber band fixed on three sides and with the fourth
side with a displacement f (x).

8. Partial Differential Equations September 24, 2014 70 / 142



Exercises

Exercises
From Kreyszig (10th ed.), Chapter 12, Section 6:

12.6.11
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Outline

1 Partial Differential Equations
Basic concepts
Vibrating string. Wave equation
D’Alembert’s solution of the wave equation. Characteristics
Heat flow from a body in space. Heat equation
1D Heat equation: Solution by Fourier series. Steady 2D heat problems.
Dirichlet problem
1D Heat equation: Solution by Fourier integrals and transforms
Membrane, 2D Wave equation
Rectangular membrane, double Fourier series
Circular membrane, Fourier-Bessel series
Laplace’s equation in cylindrical and spherical coordinates. Potential
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1D Heat equation

1D Heat equation

ut = c2uxx

Let us assume that the bar is very long (like a wire), it goes to infinity (from −∞
to ∞). We do not have boundary conditions, but only the initial condition

u(x , 0) = f (x) (−∞ < x <∞)

We use separation of variables u(x , t) = F (x)G(t)

FGt = c2Fxx G

Gt
G = c2 Fxx

F = −p2

Fxx + p2F = 0⇒ F = A cos(px) + B sin(px)

Gt + c2p2G = 0⇒ G = e−c2p2t

The solution is u(x , t) = (A cos(px) + B sin(px))e−c2p2t
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1D Heat equation

1D Heat equation

ut = c2uxx

Let us assume that the bar is very long (like a wire), it goes to infinity (from −∞
to ∞). We do not have boundary conditions, but only the initial condition

u(x , 0) = f (x) (−∞ < x <∞)

We use separation of variables u(x , t) = F (x)G(t)

FGt = c2Fxx G

Gt
G = c2 Fxx

F = −p2

Fxx + p2F = 0⇒ F = A cos(px) + B sin(px)

Gt + c2p2G = 0⇒ G = e−c2p2t

The eigenfunctions are up(x , t) = (Ap cos(px) + Bp sin(px))e−c2p2t
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1D Heat equation

1D Heat equation
The eigenfunctions are

up(x , t) = (Ap cos(px) + Bp sin(px))e−c2p2t

and the solution

u(x , t) =

∞∫
0

up(x , t)dp =

∞∫
0

(Ap cos(px) + Bp sin(px))e−c2p2tdp
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1D Heat equation

1D Heat equation

u(x , t) =

∞∫
0

up(x , t)dp =

∞∫
0

(Ap cos(px) + Bp sin(px))e−c2p2tdp

The initial condition implies

u(x , 0) = f (x) =

∞∫
0

(Ap cos(px) + Bp sin(px))dp

But this is the Fourier integral (see Chapter 7) and the Ap and Bp coefficients are
given by

Ap =
1
π

∞∫
0

f (v) cos(pv)dv Bp =
1
π

∞∫
0

f (v) sin(pv)dv

8. Partial Differential Equations September 24, 2014 76 / 142



1D Heat equation

1D Heat equation
As we saw in the case of the Fourier transform, the Fourier integral can be rewritten as

u(x , 0) =
∞∫
0

(Ap cos(px) + Bp sin(px))dp =
1
π

∞∫
0

 ∞∫
−∞

f (v) cos(px − pv)dv

 dp

In the same way

u(x , t) =
∞∫
0
(Ap cos(px) + Bp sin(px))e−c2p2tdp

= 1
π

∞∫
0

[
∞∫
−∞

f (v) cos(px − pv)dv

]
e−c2p2tdp

= 1
π

∞∫
0

[
∞∫
−∞

f (v) cos(px − pv)e−c2p2tdv

]
dp

= 1
π

∞∫
−∞

f (v)
[∞∫

0
cos(px − pv)e−c2p2tdp

]
dv
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1D Heat equation

1D Heat equation

u(x , t) = 1
π

∞∫
−∞

f (v)

 ∞∫
0

cos(px − pv)e−c2p2tdp

 dv

Now, we can evaluate the inner integral using
∞∫
0

cos(2bs)e−s2ds =

√
π

2 e−b2

If we make the change of variable

s = cp
√

t ⇒ p =
s

c
√

t
, dp =

ds
c
√

t

we obtain
∞∫
0

cos(px − pv)e−c2p2tdp =

∞∫
0

cos
(

s
c
√

t
(x − v)

)
e−s2 ds

c
√

t
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1D Heat equation

1D Heat equation

∞∫
0
cos
(

s
c
√

t (x − v)
)

e−s2 ds
c
√

t = 1
c
√

t

∞∫
0
cos
(

x−v
c
√

t s
)

e−s2ds
[
b = 1

2
x−v
c
√

t

]
= 1

c
√

t

∞∫
0
cos (2bs) e−s2ds = 1

c
√

t

√
π
2 e−b2 =

√
π

2c
√

t e−
(x−v)2

4c2t

Substituting in the solution

u(x , t) = 1
π

∞∫
−∞

f (v)
[∞∫

0
cos(px − pv)e−c2p2tdp

]
dv = 1

π

∞∫
−∞

f (v)
[
√
π

2c
√

t e−
(x−v)2

4c2t

]
dv

=
1

2c
√
πt

∞∫
−∞

f (v)e−
(x−v)2

4c2t dv
[
z = v−x

2c
√

t

]

=
1√
π

∞∫
−∞

f (x + 2cz
√

t)e−z2dz
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1D Heat equation

Example
Find the temperature in the infinite bar if

f (x) =

{
T0 |x | < 1
0 |x | > 1

Solution:

u(x , t) =
T0

2c
√
πt

1∫
1

e−
(x−v)2

4c2t dv
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1D Heat equation

Example

u(x , t) =
T0

2c
√
πt

1∫
1

e−
(x−v)2

4c2t dv
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1D Heat equation

Example: with Fourier transforms
Let us solve the same problem using Fourier transforms (that are useful for
problems that extend from −∞ to ∞)
Solution:

ut = c2uxx

Let’s take the Fourier transform with respect to x of both sides

Fx{ut} = c2Fx{uxx}

If we now consider u as only a function of x (and not (x , t)), then

Fx{ut} = 1√
2π

∞∫
−∞

ute−iωx dx = 1√
2π

∂
∂t

∞∫
−∞

u(x , t)e−iωx dx

= ∂Fx{u}
∂t = ∂û(ω,t)

∂t = ût
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1D Heat equation

Example: with Fourier transforms
The PDE becomes

ut = c2uxx ⇒ ût = −c2ω2û
dû
û = −c2ω2dt

log û = −c2ω2t + C(ω)

û(ω, t) = C(ω)e−c2ω2t

The initial condition makes

û(ω, 0) = Fx{f (x)} = f̂ (ω) = C(ω)

Finally we calculate the inverse Fourier transform

u(x , t) =
1√
2π

∞∫
−∞

f̂ (ω)e−c2ω2te iωx dx
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1D Heat equation

Example: with convolutions
We can further elaborate the previous answer

u(x , t) =
1√
2π

∞∫
−∞

f̂ (ω)e−c2ω2te iωx dx

by realizing that it can be written as the product of two functions in Fourier space

u(x , t) =

∞∫
−∞

(
f̂ (ω)

)( 1√
2π

e−c2ω2t
)

e iωx dx

then,
u(x , t) = f (x) ?x g(x , t)

where g(x , t) is the inverse Fourier transform of 1√
2π e−c2ω2t
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1D Heat equation

Example: with convolutions
We know the Fourier transform

F{e−ax2
} =

1√
2a

e− 1
4aω

2

Consequently our function 1√
2π e−c2ω2t has an inverse Fourier transform given by

F−1
{

1√
2π e−c2ω2t

}
= 1√

2πF
−1
{

e−c2ω2t
}

= 1√
2πF

−1
{

e
− 1

4 1
4c2t

ω2}
= 1√

2π

√
2 1
4c2t e−

1
4c2t

x2
= 1√

4πc2t
e−

x2
4c2t

u(x , t) = f (x) ?x g(x , t) =
1√

4πc2t

∞∫
−∞

f (p)e−
(x−p)2

4c2t dp
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Exercises

Exercises
From Kreyszig (10th ed.), Chapter 12, Section 7:

12.7.3
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Outline

1 Partial Differential Equations
Basic concepts
Vibrating string. Wave equation
D’Alembert’s solution of the wave equation. Characteristics
Heat flow from a body in space. Heat equation
1D Heat equation: Solution by Fourier series. Steady 2D heat problems.
Dirichlet problem
1D Heat equation: Solution by Fourier integrals and transforms
Membrane, 2D Wave equation
Rectangular membrane, double Fourier series
Circular membrane, Fourier-Bessel series
Laplace’s equation in cylindrical and spherical coordinates. Potential
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2D Wave equation

2D Wave equation
https://www.youtube.com/watch?v=34C6oKF4tag

8. Partial Differential Equations September 24, 2014 88 / 142

https://www.youtube.com/watch?v=34C6oKF4tag


2D Wave equation

2D Wave equation

n is the unit normal vector at each point of the edge of the membrane.
t is the unit tangent vector at each point of the edge of the membrane.
The tensile force acting at each point of the edge of the membrane is

F = T0(t× n)
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2D Wave equation

2D Wave equation
Since movement is vertical, we concentrate in this direction

Fz = T0(t× n) · e3

and this force translates into a local acceleration of the membrane∫∫
R
ρuttdA =

∫
∂R

T0(t× n) · e3dl

where R is the whole membrane, dA a differential area of it, ρ its mass density so
that ρdA is the mass of the differential area, ∂R is the boundary of the
membrane, and dl a differential arc length of it.
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2D Wave equation

2D Wave equation
We now make use of the triple vector product

(a× b) · c = (b× c) · a = (c× a) · b

to transform ∫∫
R
ρuttdA =

∫
∂R

T0(t× n) · e3dl

into ∫∫
R
ρuttdA =

∫
∂R

T0(n× e3) · tdl

Now we use Stokes’ theorem that transforms an integral of a force on the boundary of a
region into the integral of the curl of the force in the region∫

∂R
F · tdl =

∫∫
R
(∇× F) · ndA

That is ∫∫
R
ρuttdA =

∫∫
R

T0 [∇× (n× e3)] · ndA
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2D Wave equation

2D Wave equation∫∫
R
ρuttdA =

∫∫
R

T0 [∇× (n× e3)] · ndA

since the identity holds for any region R, we must have

ρutt = T0 [∇× (n× e3)] · n

The surface of the membrane is given by

z = u(x , y)

and its normal is given by

n =
−ux e1 − uy e2 + e3√

(ux )2 + (uy )2 + 1

If we have small displacements, then n ≈ −ux e1 − uy e2 + e3
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2D Wave equation

2D Wave equation

n ≈ −ux e1 − uy e2 + e3
Now

n× e3 =

∣∣∣∣∣∣
e1 e2 e3
−ux −uy 1
0 0 1

∣∣∣∣∣∣ = −uy e1 + ux e2

Now, let’s calculate the curl of this force

∇× (n× e3) = ∇× (−uy e1 + ux e2) =

∣∣∣∣∣∣
e1 e2 e3
∂x ∂y ∂z
−uy ux 0

∣∣∣∣∣∣ = (uxx + uyy )e3

Finally

∇× (n× e3) · e3 = ((uxx + uyy )e3)(−ux e1 − uy e2 + e3) = uxx + uyy
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2D Wave equation

2D Wave equation

∇× (n× e3) · e3 = ((uxx + uyy )e3)(−ux e1 − uy e2 + e3) = uxx + uyy

The PDE
ρutt = T0 [∇× (n× e3)] · n

becomes
ρutt = T0(uxx + uyy )

utt =
T0
ρ

(uxx + uyy )

utt = c2(uxx + uyy )

Laplace’s equation: Steady-state uxx + uyy = 0
Poisson’s equation: Steady-state with external force uxx + uyy = f (x , y)
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Outline

1 Partial Differential Equations
Basic concepts
Vibrating string. Wave equation
D’Alembert’s solution of the wave equation. Characteristics
Heat flow from a body in space. Heat equation
1D Heat equation: Solution by Fourier series. Steady 2D heat problems.
Dirichlet problem
1D Heat equation: Solution by Fourier integrals and transforms
Membrane, 2D Wave equation
Rectangular membrane, double Fourier series
Circular membrane, Fourier-Bessel series
Laplace’s equation in cylindrical and spherical coordinates. Potential
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2D Wave equation on a rectangular membrane

2D Wave equation on a rectangular membrane
Let us solve the problem

utt = c2(uxx + uyy )

u = 0 on the boundary

u(x , y , 0) = f (x , y)

ut(x , y , 0) = g(x , y)

The solution will have 3 steps:
1 Separating variables
2 Finding eigenfunctions satisfying the boundary

conditions
3 Finding solution satisfying initial conditions
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2D Wave equation on a rectangular membrane

Separating variables
Let’s find a solution of the form

u(x , y , t) = F (x , y)G(t)

The PDE
utt = c2(uxx + uyy )

translates
FGtt = c2(Fxx + Fyy )G

Gtt
c2G =

Fxx + Fyy
F

The left side depends on t while the second on x and y , so actually both must be
constant. In fact, a negative constant (otherwise, the only solution is u = 0)

Gtt
c2G =

Fxx + Fyy
F = −ν2
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2D Wave equation on a rectangular membrane

Separating variables
Gtt
c2G =

Fxx + Fyy
F = −ν2 ⇒

{
Gtt + c2ν2G = 0

Fxx + Fyy + ν2F = 0

Let’s analyze the equation (Helmholtz’s equation)

Fxx + Fyy + ν2F = 0

and solve it by separating variables

F (x , y) = H(x)Q(y)

Hxx Q + HQyy + ν2HQ = 0
Hxx
H +

Qyy
Q + ν2 = 0
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2D Wave equation on a rectangular membrane

Separating variables
Hxx
H +

Qyy
Q + ν2 = 0

Hxx
H = −

(
Qyy
Q + ν2

)
= −k2

{
Hxx + k2H = 0 ⇒ H = A cos(kx) + B sin(kx)
Qyy + p2Q = 0 [p2 = ν2 − k2] ⇒ Q = C cos(py) + D sin(py)
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2D Wave equation on a rectangular membrane

Satisfying boundary conditions

u(x , y , t) = F (x , y)G(t) = H(x)Q(y)G(t)

u = 0 on the boundary⇒
u(0, y , t) = 0 = H(0)Q(y)G(t)⇒ H(0) = 0
u(a, y , t) = 0 = H(a)Q(y)G(t)⇒ H(a) = 0
u(x , 0, t) = 0 = H(x)Q(0)G(t)⇒ Q(0) = 0
u(x , b, t) = 0 = H(x)Q(b)G(t)⇒ Q(b) = 0

H = A cos(kx) + B sin(kx)⇒
{

H(0) = 0⇒ A = 0
H(a) = 0⇒ B sin(ka) = 0⇒ ka = mπ

Q = C cos(py) + D sin(py)⇒
{

Q(0) = 0⇒ C = 0
Q(b) = 0⇒ D sin(pb) = 0⇒ pb = nπ

The eigenfunctions are Fmn(x , y) = sin
(mπ

a x
)
sin
(nπ

b y
)

m, n = 1, 2, ...
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2D Wave equation on a rectangular membrane

Satisfying boundary conditions
Let us solve now for the time dependence

Gtt + c2ν2G = 0⇒ G = Ag cos(cνt) + Bg sin(cνt)

Remind that
k =

mπ
a p =

nπ
b p2 = ν2 − k2

from where

νmn =
√

p2 + k2 = π

√
m2

a2 +
n2
b2

The eigenvalue is

λmn = cνmn = cπ
√

m2

a2 +
n2
b2 m, n = 1, 2, ...

Gmn = Bmn cos(λmnt) + B∗mn sin(λmnt)
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2D Wave equation on a rectangular membrane

Satisfying boundary conditions
The eigenfunctions are

umn(x , y , t) = Fmn(x , y)Gmn(t)

= sin
(mπ

a x
)
sin
(nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))

The frequency of each one of these modes is

fmn =
λmn
2π

Note that there can be several modes associated to the same frequency (as shown
in the following example)
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2D Wave equation on a rectangular membrane

Vibration modes
Consider a = b = 1, the eigenvalues are

λmn = cπ
√

m2 + n2 ⇒ λmn = λnm

but its eigenfunctions are different

umn = sin
(mπ

a x
)
sin
(nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))

unm = sin
(nπ

a x
)
sin
(mπ

b y
)

(Bnm cos(λnmt) + B∗nm sin(λnmt))
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2D Wave equation on a rectangular membrane

Vibration modes (continued)

umn = sin
(mπ

a x
)
sin
(nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))
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2D Wave equation on a rectangular membrane

Satisfying initial conditions: Double Fourier series
The solution of the PDE is of the form

u(x , y , t) =
∞∑

m,n=1
umn(x , y , t)

=
∞∑

m,n=1
sin
(mπ

a x
)
sin
( nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))

The initial condition u(x , y , 0) = f (x , y) imposes

u(x , y , 0) = f (x , y) =
∞∑

m,n=1
Bmn sin

(mπ
a x
)
sin
( nπ

b y
)

=
∞∑

m=1

( ∞∑
n=1

Bmn sin
( nπ

b y
))

sin
(mπ

a x
)

=
∞∑

m=1
Km(y) sin

(mπ
a x
)
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2D Wave equation on a rectangular membrane

Satisfying initial conditions: Double Fourier series

f (x , y) =
∞∑

m=1
Km(y) sin

(mπ
a x
)

That is, if we consider a fixed value of y , then Km(y) are the Fourier coefficients of the
sine Fourier series of f (x , y)

Km(y) =
2
a

a∫
0

f (x , y) sin
(mπ

a x
)

dx

On its turn Km(y) =
∞∑

n=1
Bmn sin

( nπ
b y
)
That is Bmn are the Fourier coefficients of the

sine Fourier series of Km(y)

Bmn =
2
b

b∫
0

Km(y) sin
(nπ

b y
)

dy
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2D Wave equation on a rectangular membrane

Satisfying initial conditions: Double Fourier series

Bmn = 2
b

b∫
0

Km(y) sin
( nπ

b y
)

dy

= 2
b

b∫
0

(
2
a

a∫
0

f (x , y) sin
(mπ

a x
)

dx
)
sin
( nπ

b y
)

dy

=
4
ab

b∫
0

a∫
0

f (x , y) sin
(mπ

a x
)
sin
(nπ

b y
)

dxdy

This is called the double Fourier series. It exists as long as f , fx , fy , fxy are
continuous functions in R.

8. Partial Differential Equations September 24, 2014 107 / 142



2D Wave equation on a rectangular membrane

Satisfying initial conditions: Double Fourier series
The other initial condition is ut(x , y , 0) = g(x , y)

ut(x , y , t) = ∂
∂t

[
∞∑

m,n=1
sin
(mπ

a x
)
sin
( nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))

]
=

∞∑
m,n=1

sin
(mπ

a x
)
sin
( nπ

b y
)
λmn (−Bmn sin(λmnt) + B∗mn cos(λmnt))

ut(x , y , 0) =
∞∑

m,n=1
sin
(mπ

a x
)
sin
( nπ

b y
)
λmnB∗mn cos(λmnt)

and with a development analogous to the previous one

B∗mn =
4
ab

b∫
0

a∫
0

g(x , y) sin
(mπ

a x
)
sin
(nπ

b y
)

dxdy
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2D Wave equation on a rectangular membrane

Solution
Summarizing, the solution is

u(x , y , t) =
∞∑

m,n=1
sin
(mπ

a x
)
sin
( nπ

b y
)

(Bmn cos(λmnt) + B∗mn sin(λmnt))

λmn = cπ
√

m2

a2 + n2

b2

[
c = T0

ρ

]
Bmn = 4

ab

b∫
0

a∫
0

f (x , y) sin
(mπ

a x
)
sin
( nπ

b y
)

dxdy

B∗mn = 4
ab

b∫
0

a∫
0

g(x , y) sin
(mπ

a x
)
sin
( nπ

b y
)

dxdy
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2D Wave equation on a rectangular membrane

Example

f (x , y) = 0.1(4x − x2)(2y − y2)[ft]

g(x , y) = 0

ρ = 2.5[slugs/ft2]

T0 = 12.5[lb/ft]
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2D Wave equation on a rectangular membrane

Example (continued)
Solution:

c =
T0
ρ

=
12.5[lb/ft]

2.5[slugs/ft2]
= 5[ft2/s2]

g = 0⇒ B∗mn = 0

Bmn = 4
2·8

2∫
0

4∫
0
0.1(4x − x2)(2y − y2) sin

(mπ
4 x
)
sin
( nπ

2 y
)

dxdy

=

{ 256·32
20π6m3n3 ≈ 0.426050

m3n3 m, n 6= 2̇
0 otherwise

u = 0.42605
(
sin
(
πx
4
)
sin
(
πy
2
)
cos
(√

5π
√
5

4 t
)

+ [m = 1, n = 1]

1
27 sin

(
πx
4
)
sin
( 3πy

2
)
cos
(√

5π
√
37

4 t
)

+ [m = 1, n = 3]

1
27 sin

( 3πx
4
)
sin
(
πy
2
)
cos
(√

5π
√
13

4 t
)

+ [m = 3, n = 1]

1
729 sin

( 3πx
4
)
sin
( 3πy

2
)
cos
(√

5π
√
45

4 t
)

+ [m = 3, n = 3]

...)
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2D Wave equation on a rectangular membrane

Example (continued)
[X,Y] = meshgrid(0:.05:2, 0:0.05:4);
for t=0:0.01:pi/2
u=0.42605*cos(5*pi/4*t).*sin(pi/4*X).*sin(pi/2*Y);
surf(X,Y,u)
axis([0 2 0 4 -0.5 0.5])
pause(0.05)

end
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Outline

1 Partial Differential Equations
Basic concepts
Vibrating string. Wave equation
D’Alembert’s solution of the wave equation. Characteristics
Heat flow from a body in space. Heat equation
1D Heat equation: Solution by Fourier series. Steady 2D heat problems.
Dirichlet problem
1D Heat equation: Solution by Fourier integrals and transforms
Membrane, 2D Wave equation
Rectangular membrane, double Fourier series
Circular membrane, Fourier-Bessel series
Laplace’s equation in cylindrical and spherical coordinates. Potential
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2D Wave equation on a circular membrane

2D Wave equation on a circular membrane
http://www.youtube.com/watch?v=v4ELxKKT5Rw

utt = c2(uxx + uyy )

We make the change of variables

x = r cos(θ)
y = r sin(θ)

⇔ r =
√

x2 + y2

θ = atan y
x

Whose derivatives are

rx = x√
x2+y2

= x
r ry = y

r

rxx = r−xrx
r2 = 1

r −
x2

r3 = y2

r3 ryy = x2

r3
θx = 1

1+( y
x )2
(
− y

x2

)
= − y

r2 θy = x
r2

θxx = −y
(
− 2

r3
)

rx = 2xy
r4 θyy = − 2xy

r4
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2D Wave equation on a circular membrane

2D Wave equation on a circular membrane
Let us now calculate

ux = ur rx + uθθx
uy = ur ry + uθθy

uxx = (ur rx )x + (uθθx )x
= (ur )x rx + ur rxx + (uθ)xθx + uθθxx
= (urr rx + urθθx )rx + ur rxx + (uθr rx + uθθθx )θx + uθθxx

uyy = (urr ry + urθθy )ry + ur ryy + (uθr ry + uθθθy )θy + uθθyy

Substituting the values above, we get

uxx = x2

r2 urr − 2 xy
r3 urθ + y2

r4 uθθ + y2

r3 ur + 2 xy
r4 uθ

uyy = y2

r2 urr + 2 xy
r3 urθ + x2

r4 uθθ + x2

r3 ur − 2 xy
r4 uθ

Summing

∇2u = uxx + uyy = x2+y2

r2 urr + y2+x2

r4 uθθ + y2+x2

r3 ur = urr +
1
r ur +

1
r2 uθθ
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2D Wave equation on a circular membrane

2D Wave equation on a circular membrane
The wave equation becomes

utt = c2(uxx + uyy )
utt = c2

(
urr + 1

r ur + 1
r2 uθθ

)
c2 = T

ρ

For the moment, we will study radially symmetric solutions so uθθ = 0 and the 2D
wave equation with boundary and initial conditions becomes

utt = c2
(
urr + 1

r ur
)

c2 = T
ρ

u(R, t) = 0
u(r , 0) = f (r)
ut(r , 0) = g(r)

The solution involves:
1 Separating variables
2 Satisfying the boundary conditions
3 Satisfying the initial conditions
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2D Wave equation on a circular membrane

Separating variables. Bessel’s equation

utt = c2
(

urr +
1
r ur

)
Let us find a solution of the form u(r , t) = W (r)G(t)

WGtt = c2
(

Wrr G +
1
r Wr G

)
Gtt
c2G =

(
Wrr
W +

1
r

Wr
W

)
= −k2 ⇒

{
Gtt + c2k2G = 0

Wrr + r−1Wr + k2W = 0
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2D Wave equation on a circular membrane

Separating variables. Bessel’s equation
Let us analyze

Wrr + r−1Wr + k2W = 0

Let us make the change of variable s = kr , then

Wr = Wssr = Wsk

Wrr = (Wsk)ssr = k2Wss

and the ODE is
k2Wss +

k
s kWs + k2W = 0

Wss + s−1kWs + W = 0

This is Bessel’s equation with ν = 0

y ′′ + x−1y ′ +
x2 − ν2

x2 y = 0
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2D Wave equation on a circular membrane

Boundary conditions

Wss + s−1kWs + W = 0

The solution of Bessel’s equation is

W (r) = J0(s) = J0(kr)

On the boundary we have

W (R) = 0 = J0(kR)⇒ km =
αm
R m = 1, 2, ...

α1 = 2.4048 α2 = 5.5201 α3 = 8.6537 ...
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2D Wave equation on a circular membrane

Eigenvalues and eigenfunctions
So the solutions

Wm(r) = J0(kmr)

are solutions that vanish at the boundary. We now solve for the time equation

Gtt + c2k2
mG = 0⇒ Gm = Am cos(λmt) + Bm sin(λmt)

[
λm = ckm = c αm

R

]
So the eigenfunction associated to the eigenvalue λm is

um(r , t) = Wm(r)Gm(t) = J0(kmr)(Am cos(λmt) + Bm sin(λmt))

These are called vibration normal modes and their frequency is λm
2π .
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2D Wave equation on a circular membrane

Eigenvalues and eigenfunctions
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2D Wave equation on a circular membrane

Satisfying the initial conditions
The solution of the PDE is of the form

u(r , t) =
∞∑

m=1
um(r , t) =

∞∑
m=1

J0
(αm

R r
)

(Am cos(λmt) + Bm sin(λmt))

The initial condition u(r , 0) = f (r) implies

u(r , 0) = f (r) =
∞∑

m=1
AmJ0

(αm
R r
)

This is the Fourier-Bessel series (see Chapter 7) whose coefficients are

Am =
2

R2J2
1 (αm)

R∫
0

rf (r)J0
(αm

R r
)
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2D Wave equation on a circular membrane

Satisfying the initial conditions
The initial condition ut(r , 0) = g(r) implies

ut(r , t) =
∞∑

m=1
J0
(αm

R r
)

(−Amλm sin(λmt) + Bmλm cos(λmt))

ut(r , 0) = g(r) =
∞∑

m=1
BmλmJ0

(αm
R r
)

This is the Fourier-Bessel series (see Chapter 7) whose coefficients are

λmBm =
2

R2J2
1 (αm)

R∫
0

rg(r)J0
(αm

R r
)
⇒ Bm =

2
λmR2J2

1 (αm)

R∫
0

rg(r)J0
(αm

R r
)
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2D Wave equation on a circular membrane

Example
R = 1[ft], ρ = 2[slugs/ft2], T0 = 8[lb/ft], f (r) = 1− r2[ft], g(r) = 0[ft/s]
Solution

c2 =
T0
ρ

=
8
2 = 4[ft2/s2]

g = 0⇒ Bm = 0

Am =
2

J2
1 (αm)

1∫
0

r(1− r)2J0(αm)dr =
8

α3
mJ1(αm)

u(r , t) = 1.108J0(2.4048r) cos(4.8097t)
−0.140J0(5.5201r) cos(11.0402t)
+0.045J0(8.6537r) cos(17.3075t)
−...
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Exercises

Exercises
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Outline

1 Partial Differential Equations
Basic concepts
Vibrating string. Wave equation
D’Alembert’s solution of the wave equation. Characteristics
Heat flow from a body in space. Heat equation
1D Heat equation: Solution by Fourier series. Steady 2D heat problems.
Dirichlet problem
1D Heat equation: Solution by Fourier integrals and transforms
Membrane, 2D Wave equation
Rectangular membrane, double Fourier series
Circular membrane, Fourier-Bessel series
Laplace’s equation in cylindrical and spherical coordinates. Potential
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Laplace’s equation

Laplace’s equation

∇2u = uxx + uyy + uzz = 0

It appears in
Gravitation
Electrostatics
Steady-state heat flow
Fluid flow

The theory of solutions is called Potential theory and its solutions with
continuous second derivatives are called harmonic functions.
We normally use a coordinate system in which the boundary surface has a simple
representation.
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Laplace’s equation

Laplace’s equation in cylindrical coordinates

∇2u = uxx + uyy + uzz = 0

x = r cos(θ)
y = r sin(θ)
z = z

⇔
r =

√
x2 + y2

θ = atan y
x

z = z

In the case of the circular 2D membrane we
obtained

uxx + uyy = 0

urr +
1
r ur +

1
r2 uθθ = 0

In cylindrical coordinates, we simply need to add
uzz

urr +
1
r ur +

1
r2 uθθ = 0
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Laplace’s equation

Laplace’s equation in spherical coordinates

∇2u = uxx + uyy + uzz = 0

x = r cos(θ) sin(φ)
y = r sin(θ) sin(φ)
z = r cos(φ)

⇔
r =

√
x2 + y2

θ = atan y
x

φ = acos z√
x2+y2+z2

Using a similar approach we get

urr +
2
r ur +

1
r2 uφφ +

1
r2 tan(φ)

uφ +
1

r2 sin2(φ)
uθθ = 0
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Laplace’s equation

Spherical harmonics
By separating variables, let us try a solution of the form

u(r , θ, φ) = R(r)Y (θ, φ)

The PDE becomes

Rrr Y +
2
r Rr Y +

1
r2 RYφφ +

1
r2 tan(φ)

RYφ +
1

r2 sin2(φ)
RYθθ = 0

Multiplying by r2
RY(

r2 Rrr
R + 2r Rr

R

)
+

(
Yφφ
Y +

1
tan(φ)

Yφ
Y +

1
sin2(φ)

Yθθ
Y

)
= 0
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Laplace’s equation

Spherical harmonics(
r2 Rrr

R + 2r Rr
R

)
+

(
Yφφ
Y +

1
tan(φ)

Yφ
Y +

1
sin2(φ)

Yθθ
Y

)
= 0

which gives the two equations

r2 Rrr
R + 2r Rr

R = λ

Yφφ
Y +

1
tan(φ)

Yφ
Y +

1
sin2(φ)

Yθθ
Y = −λ
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Laplace’s equation

Spherical harmonics
Let us solve the second equation

Yφφ
Y +

1
tan(φ)

Yφ
Y +

1
sin2(φ)

Yθθ
Y = −λ

We also look for solutions with separated variables Y (θ, φ) = Θ(θ)Φ(φ)

ΘΦφφ

ΘΦ
+

1
tan(φ)

ΘΦφ

ΘΦ
+

1
sin2(φ)

ΘθθΦ

ΘΦ
= −λ

Φφφ

Φ
+

1
tan(φ)

Φφ

Φ
+

1
sin2(φ)

Θθθ

Θ
= −λ

Multiplying by sin2(φ)(
sin2(φ)

Φφφ

Φ
+ cos(φ) sin(φ)

Φφ

Φ

)
+

(
Θθθ

Θ

)
= −λ sin2(φ)
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Laplace’s equation

Spherical harmonics(
sin2(φ)

Φφφ

Φ
+ cos(φ) sin(φ)

Φφ

Φ

)
+

(
Θθθ

Θ

)
= −λ sin2(φ)

This gives the two equations
Θθθ

Θ
= −m2

sin2(φ)
Φφφ

Φ
+ cos(φ) sin(φ)

Φφ

Φ
= m2 − λ sin2(φ)

The solution to the first one is

Θm(θ) = Cm cos(mθ) + Sm sin(mθ) (m = 0, 1, 2, ...)

or
Θm(θ) = Amejmθ (m = −∞, ...,∞)
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Laplace’s equation

Spherical harmonics

sin2(φ)
Φφφ

Φ
+ cos(φ) sin(φ)

Φφ

Φ
= m2 − λ sin2(φ)

sin2(φ)Φφφ + cos(φ) sin(φ)Φφ = (m2 − λ sin2(φ))Φ

Φφφ +
cos(φ)

sin(φ)
Φφ +

λ sin2(φ)−m2

sin2(φ)
Φ = 0

Now we do the change of variables

x = cos(φ)⇒ sin(φ) =
√
1− x2

Φφ = Φx xφ = Φx (− sin(φ)) = −
√
1− x2Φx

Φφφ = (Φφ)x xφ = (−
√
1− x2Φx )x (−

√
1− x2)

= −
(
− x√

1−x2
Φx +

√
1− x2Φxx

)
(−
√
1− x2)

= −xΦx + (1− x2)Φxx
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Laplace’s equation

Spherical harmonics

Φφφ +
cos(φ)

sin(φ)
Φφ +

λ sin2(φ)−m2

sin2(φ)
Φ = 0

−xΦx + (1− x2)Φxx +
x√

1− x2
(−
√
1− x2Φx ) +

λ(1− x2)−m2

1− x2 Φ = 0

(1− x2)Φxx − 2xΦx +

(
λ− m2

1− x2

)
Φ = 0

If m = 0, then
(1− x2)Φxx − 2xΦx + λΦ = 0

This is Legendre’s equation with λ = l(l + 1) and its solution is

Φ(x) = Pl (x) = Pl (cos(φ))

being Pl (x) Legendre’s polynomial of order l .
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Laplace’s equation

Spherical harmonics

(1− x2)Φxx − 2xΦx +

(
λ− m2

1− x2

)
Φ = 0

If m 6= 0, then this is the associated Legendre’s equation with λ = l(l + 1) and its
solution is

Φml (x) = Pm
l (x) = Pm

l (cos(φ)) m = −l ,−l + 1, ..., l − 1, l

being
Pm

l (x) = (−1)m(1− x2)
m
2

dmPl (x)

dxm
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Laplace’s equation

Spherical harmonics
So the eigenfunctions of

Yφφ
Y +

1
tan(φ)

Yφ
Y +

1
sin2(φ)

Yθθ
Y = −λ

is

Yml (θ, φ) = Θm(θ)Φml (φ) = e imθPm
l (cos(φ)) m = −l ,−l + 1, ..., l − 1, l

These functions are called Spherical harmonics, and λ = l(l + 1). The general
solution of the ODE can be expressed as

Y (θ, φ) =
∞∑

l=0

l∑
m=−l

Amle imθPm
l (cos(φ))

=
∞∑

l=0

l∑
m=0

(Cml cos(mθ) + Sml sin(mθ))Pm
l (cos(φ))
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Laplace’s equation

Spherical harmonics

Yml (θ, φ)re = cos(mθ)Pm
l (cos(φ))

Yml (θ, φ)im = sin(mθ)Pm
l (cos(φ))
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Laplace’s equation

Spherical harmonics
The radial component can be calculated from

r2 Rrr
R + 2r Rr

R = λ = l(l + 1)

This is an Euler-Cauchy equation whose solution is

Rl (r) = Al r l + Bl r−l−1
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Laplace’s equation

Spherical harmonics
Finally, the general solution of the Laplacian problem is

u(r , θ, φ) =
∞∑

l=0

l∑
m=−l

Rl (r)Yml (θ, φ)

=
∞∑

l=0

l∑
m=−l

(Al r l + Bl r−l−1)Amle imθPm
l (cos(φ))
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