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Introduction and Overview 

This presentation is an 
overview of some of the 
ideas and techniques to be 
covered during the course. 
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  1.   Image formation 
  2.  Point processing and equalization 
  3.  Color correction 
  4.  The Fourier transform 
  5.  Convolution 
  6.  Image sampling, warping, and stitching 
  7.  Spatial filtering 
  8.  Noise reduction 
  9.  Mathematical morphology 
10.  High dynamic range imaging 
11.  Image compression 
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Topics 
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Image Formation 
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Image Formation 
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Image Formation 

projection  
through lens 

image of object 
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Image Formation 

projection onto 
discrete sensor 
array. digital camera 
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Image Formation 

sensors register 
average color. sampled image 
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Image Formation 

continuous colors, 
discrete locations. 

discrete real-
valued image 
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Digital Image Formation: Quantization 

10 

continuous color input 

di
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continuous colors 
mapped to a finite, 
discrete set of colors. 
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Sampling and Quantization 
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pixel grid 

sampled real image quantized sampled & 
quantized 
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Digital Image 
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a grid of squares, 
each of which 
contains a single 
color 

each square is 
called a pixel (for 
picture element) 

Color images have 3 values per 
pixel; monochrome images have 
1 value per pixel. 

2000-2014 by Richard Alan Peters II 



Color Images 
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l Are constructed from three 
intensity maps. 

l Each intensity map is pro-jected 
through a color filter (e.g., red, 
green, or blue, or cyan, magenta, 
or yellow) to create a 
monochrome image. 

l The intensity maps are overlaid 
to create a color image. 

l Each pixel in a color image is a 
three element vector. 
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Color 
Images 
On a 
CRT 
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Point Processing 
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original + gamma - gamma + brightness - brightness 

original + contrast - contrast histogram EQ histogram mod 
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Color Processing 
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requires some 
knowledge of 
how we see 
colors 
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COSS: The human retina 

COSS: The human retina 
l https://www.youtube.com/watch?v=-zzRamRKKdc  
l https://www.youtube.com/watch?v=nbwPPcwknPU  
COSS: Image formation 
l https://www.youtube.com/watch?v=HGVUVFcyc6o  
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Eye’s Light Sensors 
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#(blue) << #(red) < #(green) 

cone density near fovea 
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Color Sensing / Color Perception 

19 

These are approximations 
of the responses to the 
visible spectrum of the 
“red”, “green”, and “blue” 
receptors of a typical 
human eye. 
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These are 
approximations of 
the responses to 
the visible 
spectrum of the 
“red”, “green”, 
and “blue” 
receptors of a 
typical human eye. 

The simultaneous red + blue 
response causes us to 
perceive a continuous range 
of hues on a circle.  No hue is 
greater than or less than any 
other hue. 

Color Sensing / Color Perception 
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lum
inance 

hue 
saturation 

photo receptors brain 

The eye has 3 types of photoreceptors:  
sensitive to red, green, or blue light. 

The brain transforms RGB into separate 
brightness and color channels (e.g., LHS). 

Color Sensing / Color Perception 
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Color Perception 
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all bands luminance chrominance 

red green blue 

16× pixelization of: 

luminance and chrominance 
(hue+saturation) are perceived 
with different resolutions, as 
are red, green and blue. 
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Color Perception 
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all bands luminance chrominance 

red green blue 

16× pixelization of: 
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Color Balance 
and Saturation 
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Uniform changes in color 
components result in 
change of tint.  

E.g., if all G pixel values are 
multiplied by α > 1 then the 
image takes a green cast. 
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Color Transformations  
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Image aging: a transformation, Φ, that mapped: 
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The 2D Fourier Transform of a Digital Image 
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Let I(r,c) be a single-band (intensity) digital image with R 
rows and C columns.  Then, I(r,c) has Fourier representation 

where 

are the R x C Fourier coefficients. 

these complex 
exponentials are 
2D sinusoids. 
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2D Sinusoids: 
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orientation 

... are plane waves with 
grayscale amplitudes,  
periods in terms of lengths, ... 
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2D Sinusoids: 
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... specific orientations,   
    and phase shifts. 

r 

c 

r 

c 
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The Value of a Fourier Coefficient … 
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… is a complex 
number with a 
real part and an 
imaginary part. 

If you represent 
that number as a 
magnitude, A, and 
a phase, φ, … 

..these represent the amplitude 
and offset of the sinusoid with 
frequency ω and direction θ. 
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The Sinusoid from the Fourier Coeff. at (u,v) 
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Here is the same coefficient plotted as 
magnitude, A, and a phase, φ, and displayed 
in the space domain as a sinusoid. 
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I |F{I}| ∠[F{I}] 

The Fourier Transform of an Image 
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magnitude phase 
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Continuous Fourier Transform 
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The continuous Fourier 
transform assumes a 
continuous image exists 
in a finite region of an 
infinite plane. 
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The BoingBoing Bloggers 
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Discrete Fourier Transform 

33 

The discrete Fourier 
transform assumes a 
digital image exists on a 
closed surface, a torus. 

 
1 1 2

0 0
I ( )

uc vrR C i
C R

v u
r,c u,v eI


       

 
  

   
1 1 2

0 0
, I ,

cu rvR C i
C R

r c
u v r c eI 

       

 
  

The BoingBoing Bloggers 

2000-2014 by Richard Alan Peters II 21 August 2014 



Convolution 
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( )16,16 −− crδ

( )0,0 −− crδ

( )16,16 ++ crδ ( )16,16 −+ crδ

( )16,16 +− crδ

Sum times 1/5 

Sums of shifted and 
weighted copies of 
images or Fourier 
transforms. 
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Convolution Property of the Fourier Transform 
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The Fourier Transform of a 
product equals the 
convolution of the Fourier 
Transforms.  Similarly, the 
Fourier Transform of a 
convolution is the product of 
the Fourier Transforms 

Let functions ( , ) and ( , ) have 
Fourier Transforms ( , ) and ( , ).  
Then,

          { } .
Moreover,

          { } .
 represents convolutio n

 represents pointwise multiplication
Then, a sp

f r c g r c
F u v G u v

f g F G

f g F G

  

  



F

F

 1

atial convolution can be computed by

          .-f g F G  F
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Sampling, Aliasing, & Frequency Convolution 
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aliasing (the jaggies) no aliasing (smooth lines) 
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Sampling, 
Aliasing, & 
Frequency 
Convolution 
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(a) (b) 

(c) (d) 

(a) aliased 
(b) power spectrum 
(c) unaliased 
(d) power spectrum  
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8× 16× 

Resampling 
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nearest neighbor nearest neighbor 

bicubic interpolation bicubic interpolation 

(resizing) 
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Rotation 
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and motion blur 
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Image Warping 
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Panorama via Overlay 

41 

Originals 

Merged* 

*not so good. 

B
runo Postle http://hugin.sourceforge.net/tutorials/tw

o-photos/en.shtm
l 
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Panorama via Stitching 

42 

Originals 

Merged* 

*much better. 

B
runo Postle http://hugin.sourceforge.net/tutorials/tw

o-photos/en.shtm
l 
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Gaussian LPF in FD Original Image Power Spectrum 

Image size: 512x512 
SD filter sigma = 8 Frequency Domain (FD) Filtering 
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Original Image Filtered Image Filtered Power Spectrum 

Image size: 512x512 
SD filter sigma = 8 FD Filtering: Lowpass 
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Original Image Filtered Image Filtered Power Spectrum 

Image size: 512x512 
FD notch sigma = 8 FD Filtering: Highpass 
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Original Image Filtered Image Filtered Power Spectrum 

Image size: 512x512 
FD notch sigma = 8 FD Filtering: Highpass 
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signed image with 
0 at middle gray 
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original blurred sharpened 

Spatial Filtering 
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Spatial Filtering 
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bandpass 
filter 

unsharp 
masking 

original 
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Spatial Filtering 
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bandpass 
filter 

unsharp 
masking 

original 

signed image with 
0 at middle gray 
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Motion Blur 
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vertical regional 

zoom rotational 

original 
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color noise blurred image color-only blur 

Noise Reduction 
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5x5 Wiener filter color noise blurred image 

Noise Reduction 
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Noise Reduction 

21 August 2014 53 

original periodic 
noise 

frequency  
tuned filter 
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Shot Noise or Salt & Pepper Noise 
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+ shot noise - shot noise s&p noise 
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Nonlinear Filters: the Median 
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s&p noise original median filter 
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Nonlinear Filters: Min and Maxmin 
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+ shot noise min filter maxmin filter 
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Nonlinear Filters: Max and Minmax 
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- shot noise max filter minmax 
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Nonlinear Processing: Binary Morphology 
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“L” shaped SE 

O marks origin 

Foreground:  white pixels 

Background:  black pixels 

Cross-hatched 
pixels are 
indeterminate. 
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Nonlinear Processing: Binary Reconstruction 
l Used after opening to grow back pieces of the original 

image that are connected to the opening. 
l Permits the removal of small regions that are disjoint from 

larger objects without distorting the small features of the 
large objects. 

59 

original opened reconstructed 

2000-2014 by Richard Alan Peters II 21 August 2014 



“L” shaped SE 

O marks origin 

Foreground:  white pixels 

Background:  black pixels 

Cross-hatched 
pixels are 
indeterminate. 

Nonlinear Processing: Grayscale Morphology 
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reconstructed opening original 

Nonlinear Processing: Grayscale Reconstruction 
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Image Compression 

62 

Yoyogi Park, Tokyo, October 1999.  Photo by Alan Peters. 

Original image is 
5244w x 4716h 
@ 1200 ppi:  
127MBytes 
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Image Compression: JPEG 

63 

JP
E

G
 q

ua
lit

y 
le

ve
l File size in bytes 
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ve
l File size in bytes 

Image Compression: JPEG 
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Image Compositing 
l Combine parts from separate images to form a new image. 
l It’s difficult to do well. 
l Requires relative positions, orientations, and scales to be 

correct. 
l Lighting of objects must be consistent within the separate 

images. 
l Brightness, contrast, color balance, and saturation must 

match. 
l Noise color, amplitude, and patterns must be seamless. 
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Digital Image 

a grid of squares, 
each of which 
contains a single 
color 

each square is 
called a pixel (for 
picture element) 

Color images have 3 values per 
pixel; monochrome images have 1 
value per pixel. 
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l A digital image, I, is a mapping from a 2D grid 
of uniformly spaced discrete points, {p = (r,c)}, 
into a set of positive integer values, {I( p)}, or a 
set of vector values, e.g., {[R G B]T( p)}. 

l At each column location in each row of I there 
is a value. 

l The pair ( p, I( p) ) is called a “pixel” (for 
picture element). 

Pixels 
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l p = (r,c) is the pixel location indexed by row, 
r, and column, c. 

l I( p) = I(r,c) is the value of the pixel at 
location p. 

l If I( p) is a single number then I is 
monochrome. 

l If I( p) is a vector (ordered list of numbers) 
then I has multiple bands (e.g., a color image). 

Pixels 
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Pixels 

Pixel Location:  p = (r , c) 
Pixel Value:  I(p) = I(r , c) Pixel : [ p, I(p)] 
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Image Formation 
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Image Formation 
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Image Formation 

projection  
through lens 

image of object 
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Image Formation 

projection onto 
discrete sensor 
array. digital camera 
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Image Formation 

sensors register 
average color. sampled image 
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Image Formation 

continuous colors, 
discrete locations. 

discrete real-
valued image 
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Sampling and Quantization 

sampled real image quantized sampled & 
quantized 
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Sampling and Quantization 

sampled real image quantized sampled & 
quantized 

pixel grid 
column index 

ro
w 

in
de

x 

28 August 2014 1999-2014 by Richard Alan Peters II 14 



Sampling 

),( crIS( )χρ ,CI

continuous image sampled image 

Take the average 
within each square. 
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Sampling 

),( crIS( )χρ ,CI

continuous image sampled image 

Take the average 
within each square. 
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Sampling 

),( crIS( )χρ ,CI

continuous image sampled image 

Take the average 
within each square. 
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Sampling 

),( crIS( )χρ ,CI

continuous image sampled image 

Take the average 
within each square. 
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Digital Image Formation: Quantization 

continuous color input 

di
sc

re
te
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ol

or
 o

ut
pu
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continuous colors 
mapped to a finite, 
discrete set of colors. 



Read a Truecolor Image into Matlab 
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Read a Truecolor Image into Matlab 
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Read a Truecolor Image into Matlab 
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Read a Truecolor Image into Matlab 

Mark Frauenfelder 
Cory Doctorow David Pescovitz 

John Battelle Xeni Jardin 

http://boingboing.net/ 
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Crop the Image 

First, select a 
region using 
the magnifier. 

left click here and hold 

drag to here and release 

Cut out a region 
from the image 
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Crop the Image 
From this close-up 
we can estimate 
the coordinates  of 
the region: 

rows: about 125 to 425 
cols: about 700 to 1050  
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Crop the Image 

Here it is: 

Now close the 
other image 
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Crop the Image 

Bring it to the 
front using the 
figure command, 
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then type ‘close’ 
at the prompt. 

Crop the Image 
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Read a Colormapped Image into Matlab 
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Read a Colormapped Image into Matlab 
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Colormapped vs. Truecolor in Matlab 
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Colormapped vs. Truecolor in Matlab 
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Colormapped vs. Truecolor in Matlab 

row: 231 

c
o
l
:
 
3
2
6
 

T(231,326,:) 

image class: uint8 
image type: truecolor 

227 

222 

96 

Intensity values 
are integers 
between 0 and 255. 
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Colormapped vs. Truecolor in Matlab 

row: 231 

c
o
l
:
 
3
2
6
 

T(231,326,:) 

image class: double 
image type: truecolor 

0.89 

0.87 

0.38 

Intensity values 
are numbers 
between 0 and 1. 
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Colormapped vs. Truecolor in Matlab 

image class: uint8 
image type: colormapped 

255 × = [226 231 65]T I(231,326,:) = 
 0.1804  0.1882  0.0627 
 0.6863  0.7098  0.2902 
 0.8863  0.9059  0.2549 

…
 …
 …
 

…
 …
 …
 

red        green       blue 

colormap 

214 

1 

256 

…
 

…
 

row: 231 

c
o
l
:
 
3
2
6
 226 

231 

65 

Number at pixel 
location is an index 
into a colormap. 

Intensity values 
are integers 
between 0 and 1. 
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Example truecolor and colormapped images 

24-bit truecolor  8-bit colormapped to 24 bits  
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Example truecolor and colormapped images 

24-bit truecolor  8-bit colormapped to 24 bits  
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Colormapped Image, Indices, & Color Map 
>> [M,CMAP] = imread(‘button_mapped.bmp’,’bmp); 

         
… 111  121   48  111   48 … 
… 110   48  111  110  111 … 
… 110  111  121   48  121 … 
… 121   48  110  111   48 … 
… 110  121   48  121  110 … 
         

                  
  109    0.6588    0.4706    0.8471 
  110    0.2196    0.1569    0.2824 
  111    0.4706    0.3451    0.5961 
  112    0.5333    0.4078    0.6588 
  113    0.2824    0.2196    0.3451 
                  

                     
   109   168   120   216 
   110    56    40    72 
   111   120    88   152 
   112   136   104   168 
   113    72    56    88       
            

Indices contained in M(254:258,254:258) actual values in CMAP(109:113,:) 

255*CMAP(109:113,:) 

R G B 

R G B 
Last 

3 
cols. 
only 
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How to convert a colormapped image to true color  

>> [M,cmap] = imread(‘button_mapped.bmp’,‘bmp’); 

>> T = uint8(reshape(cmap(M+1,:),[size(M) 3])*255); 

M is a 512x512x1, 8-bit image.  
It has 262,144 pixels.   
Each pixel has a value between 
0 & 255.  

cmap is the colormap that is stored in ‘button_mapped.bmp’ 
along with image.  cmap is a 256x3 type-double matrix, each 
row of which lists a color in terms of its R, G, & B intensities, 
which are given as fractions between 0 and 1. 

By concatenating M’s columns, Matlab 
rearranges M into a 262,144 x 1 list.  Each 
number in the list (if it has 1 added to it) 
refers to a row of the colormap.  Then, 
cmap(M+1,:) produces a 262,144 x 3 matrix of 
intensity values of type double between 0 & 1.   

The 262,144 x 3 matrix of 
intensity values is reshaped 
into a 512x512x3 image of 
type double.  The values are 
scaled to lie between 0 & 255 
then converted to type uint8. 

[512 512] 

28 August 2014 1999-2014 by Richard Alan Peters II 39 



0 
0.0039 
0.0078 
0.0118 
0.0157 
 
 
0.9843
0.9882
0.9922
0.9961
1.0000 

How to Make Colormaps 

>> ramp = (0:255)'/255; 
>> kcm = [ramp ramp ramp]; 
>> 
>> 
>> 
>> rcm = [ramp zeros(256,2)]; 
>> 
>> 
>> 
>> gcm = [zeros(256,1) ramp zeros(256,1)]; 
>> 
>> 
>> 
>> bcm = [zeros(256,2) ramp ]; 
>> 
>> 
>> % apply one by selecting the figure 
>> % then entering: 
>> 
>> colormap(kcm) 

…
 

gray colormap: 
R(k)=G(k)=B(k)  

red colormap: 
G = B = 0;  

green colormap: 
R = B = 0;  

blue colormap: 
R = G = 0;  

This code,  0:255 , 
generates a 1 row by 
256 element vector 
of class double that 
contains numbers 0 
through 255 inclusive. 

This,  (0:255)’ , has 
the same contents 
and class but is a 256 
row by 1 column 
vector.  The 
apostrophe (‘) is the 
matrix transpose 
operator. 

256 × 3 matrix 
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>> I = imread('blue_grapes_sm.jpg','jpg'); >> Rd = I(:,:,1); 
>> colormap(kcm); 

>> Gn = I(:,:,2); 
>> colormap(kcm); 

>> Bl = I(:,:,3); 
>> colormap(kcm); 

R, G, & B bands of a 
truecolor image displayed 
with grayscale colormaps  
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>> I = imread('blue_grapes_sm.jpg','jpg'); >> Rd = I(:,:,1); 
>> colormap(kcm); 

>> Gn = I(:,:,2); 
>> colormap(kcm); 

>> Bl = I(:,:,3); 
>> colormap(kcm); 

R, G, & B bands of a 
truecolor image displayed 
with grayscale colormaps  

R 

G B 
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>> I = imread('blue_grapes_sm.jpg','jpg'); >> Rd = I(:,:,1); 
>> colormap(rcm); 

>> Gn = I(:,:,2); 
>> colormap(gcm); 

>> Bl = I(:,:,3); 
>> colormap(bcm); 

R, G, & B bands of a 
truecolor image displayed 
with tinted colormaps  
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>> I = imread('blue_grapes_sm.jpg','jpg'); >> Rd = I(:,:,1); 
>> colormap(rcm); 

>> Gn = I(:,:,2); 
>> colormap(gcm); 

>> Bl = I(:,:,3); 
>> colormap(bcm); 

R, G, & B bands of a 
truecolor image displayed 
with tinted colormaps  

R 

G B 
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>> I = imread('blue_grapes_sm.jpg','jpg'); >> Rd = I(:,:,1); 
>> colormap(kcm); 

>> Gn = I(:,:,2); 
>> colormap(kcm); 

>> Bl = I(:,:,3); 
>> colormap(kcm); 

R, G, & B bands of a 
truecolor image displayed 
with grayscale colormaps  

R 

G B 
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Saving Images as Files 

>>  
>> % truecolor as .bmp 
>> imwrite(I,’image_name.bmp’,’bmp’); 
>> 
>> % truecolor as .jpg (default quality = 75) 
>> imwrite(I,’image_name.jpg’,’jpg’); 
>> 
>> % truecolor as .jpg (quality = 100) 
>> imwrite(I,’image_name.jpg’,’jpg’,’Quality’,100); 
>> 
>> % colormapped as .bmp 
>> imwrite(I,cmap,’image_name.bmp’,’bmp’); 
>> 
>> % colormapped as .gif 
>> imwrite(I,cmap,’image_name.gif’,’gif’); 
>> 

Assuming that  
 ‘I’ contains the image of 

the correct class, 
that  
 ‘cmap’ is a colormap, 
and that 
 ‘image_name’ is the 

file-name that you 
want. 
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Jim Woodring - Bumperillo 

Mark Rayden – The Ecstasy of Cecelia 

Double Exposure: 
Adding Two Images 

Rayden Woodring – The Ecstasy of Bumperillo (?) 
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>> cd 'D:\Classes\EECE253\Fall 2006\Graphics\matlab intro' 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> figure 
>> image(JW) 
>> truesize 
>> title('Bumperillo') 
>> xlabel('Jim Woodring') 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> figure 
>> image(MR) 
>> truesize 
>> title('The Ecstasy of Cecelia') 
>> xlabel('Mark Ryden') 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Ecstasy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 

Double Exposure: Adding Two Images 
Example 
Matlab Code 
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Double Exposure: Adding Two Images 
>> cd 'D:\Classes\EECE253\Fall 2006\Graphics\matlab intro' 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> figure 
>> image(JW) 
>> truesize 
>> title('Bumperillo') 
>> xlabel('Jim Woodring') 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> figure 
>> image(MR) 
>> truesize 
>> title('The Ecstasy of Cecelia') 
>> xlabel('Mark Ryden') 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Ecstasy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 

Example 
Matlab Code 

Cut a section out of the middle of the larger 
image the same size as the smaller image. 
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>> cd 'D:\Classes\EECE253\Fall 2006\Graphics\matlab intro' 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> figure 
>> image(JW) 
>> truesize 
>> title('Bumperillo') 
>> xlabel('Jim Woodring') 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> figure 
>> image(MR) 
>> truesize 
>> title('The Ecstasy of Cecelia') 
>> xlabel('Mark Ryden') 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Ecstasy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 

Double Exposure: Adding Two Images 
Example 
Matlab Code 

Note that the images are averaged, 
pixelwise. 
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>> cd 'D:\Classes\EECE253\Fall 2006\Graphics\matlab intro' 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> figure 
>> image(JW) 
>> truesize 
>> title('Bumperillo') 
>> xlabel('Jim Woodring') 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> figure 
>> image(MR) 
>> truesize 
>> title('The Ecstasy of Cecelia') 
>> xlabel('Mark Ryden') 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Ecstasy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 

Double Exposure: Adding Two Images 
Example 
Matlab Code 

Note the data class 
conversions. 
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Intensity Masking: 
Multiplying Two Images 

Jim Woodring - Bumperillo 

Mark Rayden – The Ecstasy of Cecelia 

Rayden Woodring –  Bumperillo Ecstasy (?) 
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Intensity Masking: Multiplying Two Images 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Extacsy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 
>> JWtimesMR = double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:)).*double(MR); 
>> M = max(JWtimesMR(:)); 
>> m = min(JWtimesMR(:)); 
>> JWtimesMR = uint8(255*(double(JWtimesMR)-m)/(M-m)); 
>> figure 
>> image(JWtimesMR) 
>> truesize 
>> title('EcstasyBumperillo') 

Example 
Matlab Code 
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Intensity Masking: Multiplying Two Images 
>> JW = imread('Jim Woodring - Bumperillo.jpg','jpg'); 
>> MR = imread('Mark Ryden - The Ecstasy of Cecelia.jpg','jpg'); 
>> [RMR,CMR,DMR] = size(MR); 
>> [RJW,CJW,DJW] = size(JW); 
>> rb = round((RJW-RMR)/2); 
>> cb = round((CJW-CMR)/2); 
>> JWplusMR = uint8((double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:))+double(MR))/2); 
>> figure 
>> image(JWplusMR) 
>> truesize 
>> title('The Extacsy of Bumperillo') 
>> xlabel('Jim Woodring + Mark Ryden') 
>> JWtimesMR = double(JW(rb:(rb+RMR-1),cb:(cb+CMR-1),:)).*double(MR); 
>> M = max(JWtimesMR(:)); 
>> m = min(JWtimesMR(:)); 
>> JWtimesMR = uint8(255*(double(JWtimesMR)-m)/(M-m)); 
>> figure 
>> image(JWtimesMR) 
>> truesize 
>> title('EcstasyBumperillo') 

Example 
Matlab Code 

Note that the images are multiplied, pixelwise. 

Note how the image intensities are 
scaled back into the range 0-255. 
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A note on image intensity scaling 
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In the code on the previous slide we scaled the result of the image multiplication so that 
it would have the maximum possible dynamic range (0-255).  The formula for such 
linear scaling is 

( ) ( ) ( ) ( )min ,   max ,   and  255 .m M J m M m= = = − −I I I

In Matlab, if the images are of type uint8,  this requires class conversions: 

J = uint8(255*double(I-m)/double(M-m)); 

Without the double casts, the arithmetic is performed with 8 bits of precision, which 
yields incorrect results. 

I J 



More on image intensity scaling 
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Linear scaling is not always appropriate. If the image has 
some important features with very low intensity values and 
others that are large, the darker features may not be visible 
in a linearly scaled result. In such cases nonlinear scaling 
can perform better. The images below are differently scaled 
versions of  D = abs(I-J); where I is the image to the 
left and J was a quality-0 jpeg copy of itself. 

uint8(255*(D-m)/(M-m))) L=log(D+1),uint8(255*L/max(L(:)) uint8(D.^2) 



Pixel Indexing in Matlab 
“For” loops in Matlab are inefficient, whereas Matlab’s 
native indexing  procedures are very fast. 
 

for r = 1:R 
   for c = 1:C 
      J(r,c,:) = IP_Function(I(r,c,:)); 
   end 
end 

J = IP_Function(I); 

Rather than 

use, if possible 

But, sometimes that is not possible. 
For example, if the output, J, is decimated with respect to the input, I, 
the above will not work (unless, of course, it is done within IP_function).   

“IP_Function” is 
some arbitrary 
image processing 
function that you or 
someone else has 
written. 
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Pixel Indexing in Matlab 

r = 1:n:R; 

c = 1:n:C; 

To decimate the above image by a factor of n, 
create a vector, r, that contains the index of 
every nth row, and a similar vector, c. 

r = [1  4  7  10  13  16  19  22  25  28  31] 
c = [1  4  7  10  13  16  19  22  25  28  31] 

Here, 
n=3 

I(r,:,:) 

I(:,c,:) 
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Pixel Indexing in Matlab 

Then, vectors r and c used as index 
arguments for image I select every 
nth column in every nth row. 

I(r,c) 

Take the 
pixels 
indexed 
by both  
r and c.  

Here, 
n=3 

This is called, 
‘vectorizing’. 
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Pixel Indexing in Matlab 

image, I 

r = 1:n:R; c = 1:n:C; 

Here, 
n=3 

J = I(r,c,:); 
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Pixel Indexing in Matlab 
Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Pixel Indexing in Matlab 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 



Pixel Indexing in Matlab 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 



Pixel Indexing in Matlab 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 



Pixel Indexing in Matlab 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 



Pixel Indexing in Matlab 

Whenever possible, 
avoid using ‘for’ loops; 
vectorize instead. 
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Indexing in Matlab is fully general. 

If I is R x C x B, vectors  r and c 
can contain any numbers 1 ≤ rk ≤ R 
and 1 ≤ ck ≤ C. 

The numbers can be in any order 
and can be repeated within r and c. 

The result of I(r,c) is an ordinal 
shuffling of the pixels from I as 
indexed by r and c. 



Pixel Indexing in Matlab 
>> I = imread('Lawraa - Flickr - 278635073_883bd891ec_o.jpg','jpg'); 
>> size(I) 
ans = 
   576   768     3 
>> r = randperm(576); 
>> c = randperm(768); 
>> J = I(r,c,:); 
>> figure 
>> image(J) 
>> truesize 
>> title('Scrambled Image') 
>> xlabel('What is it?') 

Fun (if you’re an imaging geek) 
thing to try with Matlab 
indexing:  Scramble an image! 
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Pixel Indexing in Matlab 

>> … 
>> xlabel('What is it?') 
>> K(r,c,:) = J; 
>> figure 
>> image(K) 
>> truesize 
>> title('Yay!!!') 
>> xlabel('Photo: Lawraa on Flickr.com') 

The image can be 
unscrambled using 
the row and column 
permutation 
vectors, r & c. 
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Image Histograms 
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The histogram of an image is a tally of the number of pixels 
at each intensity level or color. The shape of the histogram is 
related to the ranges and groupings of intensity values in the 
image.  
In the following monochrome examples notice how the 
peaks of in the histogram correspond to concentrations of 
intensities in the image globally.   
In the color examples the primary that has the largest value 
at any intensity dominates the image. 



Monochrome Intensity Distributions 
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This image is a small, monochrome 
version of a huge color mosaic made by 
the ESO1. It contains both celestial 
hemispheres; it is what you would see in 
360° from empty space in the plane of the 
galaxy above or below the earth.  

http://www.eso.org/public/usa/images/eso0932a/ 

http://www.eso.org/public/usa/images/eso0932a/


2 September 2014 1999-2014 by Richard Alan Peters II 4 

Monochrome Intensity Distributions 

This picture, taken in the morning fog, 
displays low contrast – a narrow range of 
intensities – with energy at the extremes. 

http://hqwallbase.com/21961-trees-fog-wallpaper-[2]/ 

http://hqwallbase.com/21961-trees-fog-wallpaper-[2]/
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Monochrome Intensity Distributions 

Castner glacier in the Delta mountains, Alaska. 
Monochrome extracted from original color 
image. Note how the peaks in the histogram 
correspond to regions in the image. 

https://contest.thesca.org/snow2012/zig-zags-snow 

https://contest.thesca.org/snow2012/zig-zags-snow
https://contest.thesca.org/snow2012/zig-zags-snow
https://contest.thesca.org/snow2012/zig-zags-snow
https://contest.thesca.org/snow2012/zig-zags-snow
https://contest.thesca.org/snow2012/zig-zags-snow
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Color Intensity Distributions 

Castle Rock, Sedona, Arizona. There is 
one histogram for each of red, green, 
and blue. The red rock’s color is in the 
midrange of intensities while the 
greenery is darker. Blue peaks corres-
pond to the haze on the mountainside 
(dark) and the sky (bright).  

Photo by Edward Chavez, http://www.zensoulstyle.com 

http://www.zensoulstyle.com/
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Color Intensity Distributions 

http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/ 

Unidentified place in a photo from the website 
below. Notice that the intensity of green 
dominates the others over much of the range. 
Red dominant corresponds to yellow-green 
regions. Blue dominates in the shadows.  

http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/
http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/
http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/
http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/
http://forum.baboo.com.br/index.php?/gallery/image/20033-floresta-80/
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Color Intensity Distributions 

Blue Poison Dart Frog (Dendrobates azureus) 
in the Frankfurt Zoo, Germany. Dominant 
colors in increasing intensity: brown, blue, tan 
brown, blue. 

Photo by Wikipedia user, Quartl: http://en.wikipedia.org/wiki/File:Dendrobates_azureus_qtl1.jpg/ .  

http://en.wikipedia.org/wiki/File:Dendrobates_azureus_qtl1.jpg/
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Color Intensity Distributions 

Photo taken in the gardens at Keukenhof, 
Holland, The Netherlands. RGB primaries 
dominant at different intensities: blue 
shadows, green tulip stems, blue hyacinths, 
red tulip flowers. 

Photo by Jim Pyre: http://thedude.com/archives/2005/04/amsterdam.html 

http://thedude.com/archives/2005/04/amsterdam.html


Image Histograms: Monochrome 

2 September 2014 1999-2014 by Richard Alan Peters II 10 

The histogram of an image is a tally of the number of pixels at each 
intensity level or color. For a monochrome image G, 

   # .H g g G p G

The value of the histogram at g is the number of pixels for which 
image G has intensity level g.  For an 8-bit image, H has 256 values 

If G is an R× C image and all its pixels have the same intensity, g0, 
then H(g0) = RC and H(g) = 0 for all intensities g ≠ g0. 

   : 0, , 255 0, , .H RCG  



l If I is a 1-band (monochrome) image, then  
l the pixel I(r,c) is an 8-bit integer between 0 and 255. 
l The histogram, hI, of I is:  

–  a 256-element array, hI, where 
–  hI(g) is an integer for g = 1, 2, 3, …, 256, such that 
–  hI(g) = number of pixels in I that have value g-1. 
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Image Histograms: Monochrome 



Luminosity 

The Histogram of a Monochrome Image 
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hI (g+1) = the number of pixels 
in I with intensity 
level, g. 



24-bit truecolor image 
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During early summer in the Sonoran 
Desert of Southern Arizona, clusters 
of large, strange-looking, red and 
white bugs can be spotted on the 
foliage of mesquite trees (Prosopis 
spp.). These colorful bugs are the 
immature, wingless nymphs of the 
Giant Mesquite Bug or Leaf-footed 
Bug (Thasus neocalifornicus). 

Giant Mesquite Bug 
a.k.a. Banjo Beetle 

Photo by Alan Peters, 
Tucson, Arizona 1986. 

Photo and description by T. Beth Kinsey 
http://fireflyforest.net,  2008 

http://fireflyforest.net/


The Histogram of a 
Monochrome Image 

16-level (4-bit) image 
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The Histogram of a Monochrome Image 

Plot of histogram:   
number of pixels with intensity g  

Black marks 
pixels with 
intensity g 
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Plot of histogram:   
number of pixels with intensity g  

Black marks 
pixels with 
intensity g 
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The Histogram of a Monochrome Image 



Image Histograms: Color 
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The histogram of an image is a tally of the number of pixels at each 
intensity level or color. For a color image I, there are several 
possible histograms […] 

   # .H g g G p G
The value of the histogram at g is the number of pixels for which 
image G has intensity level g.  For an 8-bit image, H has 256 values 

If G is an R× C image and all its pixels have the same intensity, g0, 
then H(g0) = RC and H(g) = 0 for all intensities g ≠ g0. 

   : 0, , 255 0, , .H RCG  



l If I is a 3-band image (truecolor, 24-bit) 
l then I(r,c,b) is an integer between 0 and 255. 
l Either I has 3 histograms:  

– hR( g +1) = # of pixels in I(:,:,1)  with intensity value g 
– hG( g +1) = # of pixels in I(:,:,2)  with intensity value g 
– hB( g +1) = # of pixels in I(:,:,3)  with intensity value g 

l or 1 vector-valued histogram, h(g,1,b) where 
– h( g +1,1,1) = # of pixels in I with red intensity value g 
– h( g +1,1,2) = # of pixels in I with green intensity value g 
– h( g +1,1,3) = # of pixels in I with blue intensity value g 

The Histograms of a Color Image 
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RAPII: Add slides for 3D and 2D.  



The Histograms 
of a Color Image 
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Value Image 
If I is an rgb image, then I’s value image, V, has one band that is 
the pixel-wise average of I’s R, G, & B bands: 

        1, , , , .
3

r c r c r c r c  V R G B

The 3 in the 2nd argument of sum tells it to act along dimension 3 
of the image – across the color bands.   

2 September 2014 1999-2014 by Richard Alan Peters II 20 

V=sum(I,3)/3; 

This is easily computed in Matlab by 

How to extract a monochrome 
intensity image from a color image. 



Luminance Image 

The numbers were derived by the NTSC1 to weight each color band according 
to the relative intensity resolution that color by the human eye. The following 
Matlab code will compute it  

       , 0.299 , 0.587 , 0.114 ,r c r c r c r c     L R G B
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I’s luminance image, L, is a 1-band image that is a specific, weighted, pixel-
wise average of I’s R, G, and B bands: 

1 National Television System Committee, 1953, http://en.wikipedia.org/wiki/NTSC 

L = uint8(sum(bsxfun(@times,double(I),... 
    reshape([0.299 0.587 0.114],[1 1 3])),3)); 

but it is not obvious how it does. That is explained on the next slide. 

How to extract a monochrome 
intensity image from a color image. 



Computing the Luminance Image in Matlab 
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w = reshape([0.299 0.587 0.114],[1 1 3]); 

The first steps are to create a 1 × 1 × 3 matrix (vector) containing the weights:  

and to convert the uint8, 3-band image, I, to class double,  

bsxfun combines image J and vector w using @times, a multiplication 
operator.  Effectively, it makes an image, W, the same size as J with a copy of 
w in every pixel location. Then it multiplies the 2 images together pointwise. 

J = double(I); 

T = bsxfun(@times,J,w); 

T  has bands  0.299R, 0.587G, and 0.144B, which are then summed and 
converted (rounded) to class uint8. 

L = uint8(sum(T)); 
All the steps are combined into 1 
line of code on the previous page. 



Value Histogram 

Histogram of the value image.  Value image, V.  
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Luminance Histogram 

Histogram of the luminance image.  Luminance image, L.  
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Value Histogram vs. Average of R,G,&B Histograms 

R,G,B,&V 
histograms 

V & avg. of R,G,&B 
histograms 
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The value histogram is not the 
average of the three 1-D color 
intensity histograms.  



Multi-Band Histogram Calculator in Matlab 
% Multi-band histogram calculator 
function h=histogram(I) 
 
[R C B]=size(I); 
 
% allocate the histogram 
h=zeros(256,1,B); 
 
% range through the intensity values 
for g=0:255    
   h(g+1,1,:) = sum(sum(I==g)); % accumulate 
end 
 
return; 
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Multi-Band Histogram Calculator in Matlab 
% Multi-band histogram calculator 
function h=histogram(I) 
 
[R C B]=size(I); 
 
% allocate the histogram 
h=zeros(256,1,B); 
 
% range through the intensity values 
for g=0:255    
   h(g+1,1,:) = sum(sum(I==g)); % accumulate 
end 
 
return; 

Loop through all intensity levels (0-255) 
Tag the elements that have value g. 
The result is an RxCxB logical array that 
has a 1 wherever I(r,c,b) = g and 0’s 
everywhere else. 
Compute the number of ones in each band of 
the image for intensity g.   
Store that value in the 256x1xB histogram 
at h(g+1,1,b). 

sum(sum(I==g)) computes one 
number for each band in the image.   If B==3, then h(g+1,1,:) contains 

3 numbers: the number of pixels in 
bands 1, 2, & 3 that have intensity g. 
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Vectorized Multi-Band Histogram Calculator 
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% Vectorized multi-band histogram calculator using 
% Matlab’s built-in histogram calculator, histc(). 
% Result, h, is 256×1 for a one-band image and 256×1×3 
% for a three-band image. 
 
function h = histogram(I) 
 
h = sum(histc(I,0:255),2); 
 
end; 

Thanks to Cole Adams for 
finding this fast, vectorized 
solution to the problem. 



The Probability Density Function of an Image 
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This is the probability 
that an arbitrary pixel 
from Ik has value g.  

pdf 
[lower case] 
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• pband(g+1) is the fraction of pixels in (a specific band of) an 
image that have intensity value g. 

• pband(g+1) is the probability that a pixel randomly selected 
from the given band has intensity value g. 

• Whereas the sum of the histogram hband(g+1) over all g from 
1 to 256 is equal to the number of pixels in the image, the 
sum of pband(g+1) over all g is 1. 

• pband is the normalized histogram of the band. 

The Probability Density Function of an Image 

2 September 2014 1999-2014 by Richard Alan Peters II 30 



The Probability Distribution Function of an Image 
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This is the probability that any 
given pixel from Ik has value less 
than or equal to g.  

PDF 
[upper case] 

Let q = [q1 q2 q3] = I(r,c) be the value of a 
randomly selected pixel from I.  Let g be a 
specific graylevel.  The probability that qk ≤ g 
is given by 

where hIk(γ +1) is 
the histogram of 
the kth band of I. 
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The Probability Distribution Function of an Image 
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Let q = [q1 q2 q3] = I(r,c) be the value of a 
randomly selected pixel from I.  Let g be a 
specific graylevel.  The probability that qk ≤ g 
is given by 

where hIk(γ +1) is 
the histogram of 
the kth band of I. 

Also called CDF 
for “Cumulative 
Distribution 
Function”. 

This is the probability that any 
given pixel from Ik has value less 
than or equal to g.  

2 September 2014 1999-2014 by Richard Alan Peters II 32 



The Cumulative Distribution Function of an Image 

• Pband(g+1) is the fraction of pixels in (a specific band of) an 
image that have intensity values less than or equal to g. 

• Pband(g+1) is the probability that a pixel randomly selected from 
the given band has an intensity value less than or equal to g. 

• Pband(g+1) is the cumulative (or running) sum of  pband(g+1) 
from 0 through g inclusive. 

• Pband(1) = pband(1)  and  Pband(256) = 1;  Pband(g+1) is 
nondecreasing. 

Note: the Probability Distribution Function (PDF, capital letters) and the Cumulative Distribution Function (CDF) 
are exactly the same things.  Both PDF and CDF will refer to it.  However, pdf (small letters) is the density function. 
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The pdf vs. the CDF 
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pdf = backward 
difference of CDF. 

CDF = running sum 
of pdf. 

( ) ( )

( ) ( ) ( )

pdf CDF ,

pdf CDF CDF 1 .

x
dx
d

n n n

ξξ
ξ ==

= − −

( ) ( )

( ) ( )
0

CDF pdf ,

CDF pdf .

x

n

k

x d

n k

ξ ξ
−∞

=

=

=

∫

∑



EECE/CS 253   Image Processing 

Richard Alan Peters II 
Department of Electrical Engineering and 

Computer Science 
Fall Semester 2014 

Lecture Notes: 

This work is licensed under the Creative Commons Attribution-Noncommercial 2.5 License.  To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/2.5/ or 
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

Lecture Notes:  The Point Processing of Images 



Point Processing of Images 

l In a digital image, a point = a pixel. 
l Point processing transforms a pixel’s 

value as function of its value alone;  
l it does not depend on the values of 

the pixel’s neighbors. 
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Examples include: 
l Brightness and contrast adjustment 
l Gamma correction 
l Histogram equalization 
l Histogram matching 
l Color correction.  

Point Processing of Images 
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Point Processing 

original + gamma - gamma + brightness - brightness 

original + contrast - contrast histogram EQ histogram mod 
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Point Processing: Pixel Values 
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A point process transforms one intensity level (or color) into 
another as a function of that one alone. So a point process is 

( )out in .f=p p

( ) ( )( )out in, , .r c f r c=p p

That is, the pixel value output is dependent on only the pixel value 
input. That implies 

In words, the output at one location is dependent only the value of 
the input image at that same location.  Other locations don’t matter. 



( )
( )
( )

If  , ,   
and    
then  , , .

r c b g
f g k

r c b k

=

=

=

I

J

Point Ops via Functional Mappings 

Input Output 

I Φ, point 
operator J Image: 

I(r, c) function,  f J(r, c) Pixel: 

 J I

The transformation of image I into image J is 
accomplished by replacing each input intensity, g, with 
a specific output intensity, k, at every location (r,c,b) 
where I(r,c,b) = g.   

The rule that associates k with g is usually 
specified with a function, f, so that f (g) = k. 
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Point Ops via Functional Mappings 
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One-band Image 

Three-band Image 

J(r, c) = f ( I(r, c) ), 
for all pixel locations, (r,c). 

J(r, c, b) = f ( I(r, c, b) ), or 
J(r, c, b) = fb ( I(r, c, b) ), or 
for b = 1, 2, 3, and all (r, c). 



J(r, c) = f ( I(r, c) ), 
for all pixel locations, (r,c). 

J(r, c, b) = f ( I(r, c, b) ), or 
J(r, c, b) = fb ( I(r, c, b) ), or 
for b = 1, 2, 3, and all (r, c). 

One-band Image 

Three-band Image 

Point Ops via Functional Mappings 

Either all 3 bands 
are mapped through 
the same function, 
f, or … 

… each band is 
mapped through 
a separate func-
tion, fb.  
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Lookup Tables 
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A lookup table is an indexed list of numbers – a vector – that can 
be used to implement a discrete function – a one-to-one mapping 
from one set of numbers, {gin,1, gin,2, ... , gin,n} to another,  
{gout,1, gout,2, ... , gout,n}.  A lookup table can implement a function 
such as: 

( ) { } { }
( ) ( )

out in in out out, 1

in, out,

 if  ,   where 0, , 1  and   

 then define  LUT 1 LUT ,   for 1, n .

n
k k

k k

g f g g n g g

g k g k
=

= ∈ − ∈

+ = = =





We’ve already seen one of these, the colormap.1  

1 Lecture 2, slides 29-40. 



J = LUT(I+1) 

Point Operations using Lookup Tables 

A lookup table (LUT) 
can implement a 
functional mapping.  

( )
,255,,0

,
=

=
g

gfk
 for

   If

{ }   in values
 on takes  if and

,255,,0
k

… then the LUT 
that implements f 
is a 256x1 array 
whose (g +1)th 
value is k = f (g). 

To remap an 
image, I, to J :  

2 September 2014 1999-2014 by Richard Alan Peters II 10 

LUT is 256x1. 
But I may be 
RxC or  RxCx3. 



Point Operations = Lookup Table Ops 

0 127 255 

0 
12

7 
25
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input value 

ou
tp

ut
 v

al
ue

 

index value 
... 

101 
102 
103 
104 
105 
106 
... 

... 
64 
68 
69 
70 
70 
71 
... 

E.g.: 

input output 
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How to Generate a Lookup Table 

{ }

( ) 32/)127(1
255;

255,,0
.2

−−+
=

∈
=

xae
ax

x
a

σ

  Let
  Let

For example, a sigmoid: 

a = 2; 
x = 0:255; 
LUT = 255 ./ (1+exp(-a*(x-127)/32)); 

Or in Matlab: 

This is just 
one example. 
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If I is 3-band, then  
a) each band is mapped separately using the 

same LUT  for each band or  
b) each band is mapped using different LUTs – 

one for each band. 

Point Ops on RGB Images using Lookup Tables 
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a)  J = LUT(I+1),  

b)  J(:,:,b) = LUTb(I(:,:,b) +1), for b = 1, 2, 3.  
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1-Band Lookup Table for 3-Band Image 

input output 

a pixel with 
this value 

is mapped to 
this value 
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Example 3-Band Image … 
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Lightning at Ramasse, Rhone-Alpes, France by Flickr user, Regarde là-bas, 
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/ 

R 

G 

B 

R, G, B Bands 

https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
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Lightning at Ramasse, Rhone-Alpes, France by Flickr user, Regarde là-bas, 
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/ 

R 

G 

B 

… with 3-Band LUT. 

https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
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Lightning at Ramasse, Rhone-Alpes, France by Flickr user, Regarde là-bas, 
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/ 

3-Band Image with 3-Band LUT. 

https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/
https://www.flickr.com/photos/marcel_s_s/8624344496/in/pool-tbasab/


Point Processing 

original + gamma - gamma + brightness - brightness 

original + contrast - contrast histogram EQ histogram mod 
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Point Processes:  Original Image 

Kinkaku-ji (金閣寺, Temple of the 
Golden Pavilion), also known as 
Rokuon-ji (鹿苑寺, Deer Garden 
Temple), is a Zen Buddhist temple 
in Kyoto, Japan.   
Photo by Alan Peters, August 1993. 

Luminance Histogram 

2 September 2014 1999-2014 by Richard Alan Peters II 19 

For more information on this unique place read the 
historical novel by Mishima,Yukio, The Temple of 
the Golden Pavilion, translated by Ivan Morris, 
Shinchosha Publishing Co, Ltd., 1956. 
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Point Processes:  Decrease Brightness 
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Point Processes:  Decrease Contrast 
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s is the 
center of 
the contrast 
function. 
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Point Processes:  Increase Contrast 
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Point Processes:  Contrast Stretch 
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Information Loss from Contrast Adjustment 

orig 

lo-c 

hi-c 

histograms 
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Information Loss from Contrast Adjustment 
orig 

orig 

orig 

lo-c hi-c 

lo-c 

hi-c 

rest 

rest 

lo-c 

hi-c 

diff  

diff 

abbreviations: 
  original 
  low-contrast 
  high-contrast 
  restored 
  difference 

difference between 
original and restored 
low-contrast 

difference between 
original and restored 
high-contrast 
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Point Processes:  Increased Gamma 
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Point Processes:  Decreased Gamma 

 0 127 255  0
 

12
7 

25
5 

LUT mapping 
m M  

 
1

,
, 255   for  1.0

255
r cr c  

 
   
  

IJ

2 September 2014 1999-2014 by Richard Alan Peters II 28 



Gamma Correction: Effect on Histogram 
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The Probability Density Function of an Image 
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• pband(g+1) is the fraction of pixels in (a specific band of) an 
image that have intensity value g. 

• pband(g+1) is the probability that a pixel randomly selected 
from the given band has intensity value g. 

• Whereas the sum of the histogram hband(g+1) over all g from 
1 to 256 is equal to the number of pixels in the image, the 
sum of pband(g+1) over all g is 1. 

• pband is the normalized histogram of the band. 

The Probability Density Function of an Image 
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The Probability Distribution Function of an Image 
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This is the probability that any 
given pixel from Ik has value less 
than or equal to g.  

PDF 
[upper case] 

Let q = [q1 q2 q3] = I(r,c) be the value of a 
randomly selected pixel from I.  Let g be a 
specific graylevel.  The probability that qk ≤ g 
is given by 

where hIk(γ +1) is 
the histogram of 
the kth band of I. 
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The Probability Distribution Function of an Image 
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Let q = [q1 q2 q3] = I(r,c) be the value of a 
randomly selected pixel from I.  Let g be a 
specific graylevel.  The probability that qk ≤ g 
is given by 

where hIk(γ +1) is 
the histogram of 
the kth band of I. 

Also called CDF 
for “Cumulative 
Distribution 
Function”. 

This is the probability that any 
given pixel from Ik has value less 
than or equal to g.  
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The Cumulative Distribution Function of an Image 

• Pband(g+1) is the fraction of pixels in (a specific band of) an 
image that have intensity values less than or equal to g. 

• Pband(g+1) is the probability that a pixel randomly selected from 
the given band has an intensity value less than or equal to g. 

• Pband(g+1) is the cumulative (or running) sum of  pband(g+1) 
from 0 through g inclusive. 

• Pband(1) = pband(1)  and  Pband(256) = 1;  Pband(g+1) is 
nondecreasing. 

Note: the Probability Distribution Function (PDF, capital letters) and the Cumulative Distribution Function (CDF) 
are exactly the same things.  Both PDF and CDF will refer to it.  However, pdf (small letters) is the density function. 
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The pdf vs. the CDF 
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pdf = normalized  
value histogram 

CDF = running 
sum of pdf 



Point Processes:  Histogram Equalization 

                      be the cumulative (probability) distribution 
function of  I. Then J has, as closely as possible, a flat 
(constant) histogram if: 

 Let  1  P I

    , ,  255 , , 1 .r c b P r c b  IJ I

Task:  remap a 1-band image I so that its histogram is as 
close to constant as possible. This maximizes the contrast 
evenly across the entire intensity range.  

one-band 
image The scaled CDF itself is used as the LUT. 
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That is, to equalize a one-band image, map it through its own CDF 
multiplied by the maximum desired output value. 



Point Processes:  Histogram Equalization 
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and max = MJ . 

Then J has, as closely as possible, the correct histogram if 

Using 
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                      be the cumulative (probability) distribution 
function of  I. 

 Let  1  P I
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pdf 

Histogram EQ 

The CDF (cumulative 
distribution) × 255 is 
the LUT for remapping. 

CDF 
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Value Image  

Histogram EQ’d Value Image  



pdf 

Histogram EQ 

LUT 
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Value Image  

Histogram EQ’d Value Image  

The CDF (cumulative 
distribution) × 255 is 
the LUT for remapping. 



pdf 

Histogram EQ 

LUT 
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Value Image  

Histogram EQ’d Value Image  

The CDF (cumulative 
distribution) × 255 is 
the LUT for remapping. 



Histogram EQ 
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Value Image  

Histogram EQ’d Value Image  



Histogram EQ of a Grayscale Image 
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Luminance Image  Luminance Histogram  



Histogram EQ of a Grayscale Image 
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Luminance Image  Luminance CDF  



Histogram EQ of a Grayscale Image 
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Luminance Image  Equalization LUT  



Histogram EQ of a Grayscale Image 
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Equalized Luminance Image  Histogram of Eq’d Image 



Histogram EQ of a Grayscale Image 
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Luminance Image  Equalized Luminance Image 
Note the detail loss 
in saturated areas. 



Histogram EQ of the Individual Bands 
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Original Color Image  Color Histograms  
One histogram 
for each band. 



Histogram EQ of the Individual Bands 
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Original Color Image  Color CDFs  



Histogram EQ of the Individual Bands 
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Original Color Image  Equalization LUTs  
Each band is mapped 
through its own LUT. 



Histogram EQ of the Individual Bands 
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Equalized Color Image  Histogram of Eq’d Image 



Histogram EQ of the Individual Bands 
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Original Color Image  Equalized Color Image 
Note the unnatural 
color shifts. 



Luminance EQ of a Color Image 
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Original Color Image  Color Histograms  
One histogram 
for each band. 



Luminance EQ of a Color Image 
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Original Color Image  Color CDFs  



Luminance EQ of a Color Image 
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Original Color Image  Equalization LUT  

The scaled luminance CDF is 
used as the LUT for all 3 bands.  



Luminance EQ of a Color Image 
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Luminance Eq’d Color Image  Histo of Lum Eq’d Image 



Luminance EQ of a Color Image 
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Original Color Image  Luminance Eq’d Color Image 
Note the detail loss 
in saturated areas. 



Point Processes:  Histogram Matching 

Task:  remap image I so that it has, as closely as 
possible, the same histogram as image J.   

Q:  Why do this? 
A:  Restore a degraded image based on an original.  

 Match the characteristics of images of the same  
 scene from different cameras. 
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Point Processes:  Histogram Matching 

Task:  remap image I so that it has, as closely as 
possible, the same histogram as image J.   

Because the images are digital it is not, in general, 
possible to make hI ≡ hJ . Therefore, pI ≡ pJ .  

Q:  How, then, can the matching be done? 
A:  By matching percentiles. 
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Matching Percentiles 
Recall:   
• The CDF of image I is such that 0 ≤ PI ( gI ) ≤ 1.   
• PI ( gI +1) = c means that c is the fraction of pixels in I that have a 

value less than or equal to gI .   
• 100c is the percentile of pixels in I that are less than or equal to gI . 

To match percentiles, replace all occurrences of value gI in image 
I with the value, gJ, from image J whose percentile in J most 
closely matches the percentile of gI in image I.  

… assuming a 1-band image, 
one band of a color image 
or its luminance image. 
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Matching Percentiles 

If I(r,c) = gI then let K(r,c) = gJ where gJ is such that 

PI (gI) > PJ (gJ -1)  AND  PI (gI) ≤ PJ (gJ). 

So, to create an image, K, from image I such that K 
has nearly the same CDF as image J do the following: 

gI 

P I
 ( 

g I
 ) 

gJ 

P J
 ( 

g J
 ) 

Example: 
I(r,c) = 5 
PI (5) = 0.65 
PJ (9) = 0.56 
PJ (10) = 0.67 
K(r,c) = 10 
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… assuming a 1-band image, 
one band of a color image 
or its luminance image. 



Histogram Matching Algorithm 

( )
( )

1 : CDF of   

1 : CDF of .  

P g

P g
I I

J J

I

J

+

+
  min ,  
  max ,  
  min ,   
  max .

m
M
m
M

J

J

I

I

J
J
I
I

=
=
=
=

for gI  = mI  to MI  
   while   

   
255    1 1    

1 1  
g P g

P g P g
  

  
J I I

J J I I

AND AND

1;g g J J

end 

end 

[R,C] = size(I); 
K = zeros(R,C); 
gJ  = mJ; 

  g g   J IK K I

This directly matches 
image I to image J. 

Better to use a LUT. 
See slide 66. 
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… assuming a 1-band image, 
one band of a color image 
or its luminance image. 



Example: Histogram Matching 

Image pdf Image with 
16 intensity 
values 

g 
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Example: Histogram Matching 

Image CDF 

g 

C
D

F I
(g

) 

* 

*a.k.a Cumulative Distribution Function, CDFI. 
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Example: Histogram Matching 

Target pdf Target with 
16 intensity 
values 

g 

2 September 2014 1999-2014 by Richard Alan Peters II 64 



Example: Histogram Matching 

Target CDF 

g 

C
D

F I
(g

) 

* 

*a.k.a Cumulative Distribution Function, CDFJ. 
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Histogram Matching with a Lookup Table 
The algorithm on slide 61 matches one image to another directly. 
Often it is faster or more versatile to use a lookup table (LUT).  
Rather than remapping each pixel in the image separately, one 
can create a table that indicates to which target value each input  
value should be mapped.  Then 

K = LUT[I+1] 

In Matlab if the LUT is a 256 × 1 matrix with values from 0 to 
255 and if image I is one-band of type uint8, it can be 
remapped with the following code: 

K = uint8(LUT(I+1)); 
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Histogram Matching with a Lookup Table 
The E-Z teenage New York version* on the previous page only 
works for one-band images.  For truecolor or other multiband 
images you need to execute the LUT on each band separately. 
Viz:  
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*http://www.science.uva.nl/~robbert/zappa/albums/Zappa_In_New_York/10.html &  http://youtu.be/GDwRJK8bpb4 

 
if E == 1 % single band LUT 
   for d = 1:D 
       J(:,:,d) = LUT(1+double(I(:,:,d))); 
   end 
else   % multiband LUT 
   for d = 1:D 
       LUT1D = squeeze(LUT(:,1,d)); 
       J(:,:,d) = LUT1D(1+double(I(:,:,d))); 
   end 
end 
 



LUT Creation 

10 

Image CDF Target CDF 

LUT 
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Look Up Table for Histogram Matching  

for gI  = 0  to 255  
   while     1 1  AND  255   P g P g g   J J I I J

1;g g J J

end 

end 

LUT = zeros(256,1); 
gJ  = 0; 

 LUT 1 ;g g I J

This creates a look-up 
table which can then be 
used to remap the image. 

( )
( )
( )

1 :   CDF of , 

1 :   CDF of ,

LUT 1 :   Look- Up Table  

P g

P g

g

I I

J J

I

I

J

+

+

+
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Input & Target CDFs, LUT and Resultant CDF 

P I
 ( 

g 
) 

P J
 ( 

g  
 ) 

LU
T  

( g
  )

 

P K
 ( 

g  
 ) 

g g 

g g 

Input Target 

LUT Result 
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Example: Histogram Matching 

original target remapped 
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Probability Density Functions of a Color Image 

red pdf 
green pdf 

blue pdf 
luminosity pdf Atlas-Mercury  
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Cumulative Distribution Functions (CDF) 

red CDF 
green CDF 

blue CDF 
luminosity CDF 
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Probability Density Functions of a Color Image 

red pdf 
green pdf 

blue pdf 
luminosity pdf TechnoTrousers  
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Cumulative Distribution Functions (CDF) 

red CDF 
green CDF 

blue CDF 
luminosity CDF 
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Remap an Image to have the Lum. CDF of Another 

original target luminosity remapped 
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CDFs and the LUT  
Atlas-Mercury Luminosity CDF 

TechnoTrousers Luminosity CDF 

LUT (Luminosity) Atlas-Mercury to TechnoTrousers  

Atlas-Mercury Remapped Luminosity CDF 
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Effects of Luminance Remapping on pdfs 

Before After 
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Effects of Luminance Remapping on CDFs 

Before After 
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Histogram Equalization Revisited 
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Our previous attempts to equalize the color version of Kinkaku-ji led to the  
unsatisfactory results below: 

(a) Direct equalization of the color bands by 
mapping each band though its own CDF.   
LUTb = 255*CDFb. 

(b) Equalization of the color bands by mapping 
each band though the CDF of the luminance 
image.   LUTb = 255*CDFL. 



Histogram Equalization Revisited 
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Histogram matching presents another alternative:  Match each color band CDF 
with the CDF from the luminance image. Then we get: 

(a) Original image. (b) Equalization by mapping band, b, 
though LUTb = 255*[CDFL]-1.*CDFb. 



2 September 2014 1999-2014 by Richard Alan Peters II 82 

EQ of a Color Image via Luminance Matching  
1. Convert image I into grayscale image, L, via your 

favorite weighting scheme. 

2. Compute the 3 color histograms, hC, C ∈ {R,G,B} of  I 
and the histogram, hL, of L. 

3. Compute the 4 probability density functions, pC, 
C ∈  {R,G,B,L}, from the hC. 

4. Compute the 4 cumulative distribution functions, HC, 
C ∈ {R,G,B,L}, from the pC. 

5. Generate 3 lookup tables, TC, C ∈ {R,G,B}, by 
matching HR to HL, HG to HL, & HB to HL. 

6. Map each image band {R,G,B} through its 
corresponding lookup table TC. 

In 6 (count ‘em) 
6 E-Z steps! 



EQ of a Color Image via Luminance Matching  

2 September 2014 1999-2014 by Richard Alan Peters II 83 

Original Color Image  Color & Lum.  Histograms  
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Original Color Image  Color & Lum. CDFs  

EQ of a Color Image via Luminance Matching  
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Original Color Image  Equalization LUT  
Each color band CDF is matched 
to the  luminance CDF to 
generate the LUT..  

EQ of a Color Image via Luminance Matching  
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Luminance matched image  Histo of lum matched image 

EQ of a Color Image via Luminance Matching  
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Original Color Image  

Note the slight 
desaturation of the colors. 

EQ of a Color Image via Luminance Matching  

Luminance matched image  



target 

Remap an Image to have the rgb CDF of Another 

R, G, & B remapped original 
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CDFs and the LUTs  
Atlas-Mercury Red PDF 

TechnoTrousers Red PDF 

LUT (Red) Atlas-Mercury to TechnoTrousers 

Atlas-Mercury RGB Remapped Red PDF 

Atlas-Mercury Green PDF 

TechnoTrousers Green PDF 

LUT (Green) Atlas-Mercury to TechnoTrousers 

Atlas-Mercury RGB Remapped Green PDF 

Atlas-Mercury Blue PDF 

TechnoTrousers Blue PDF 

LUT (Blue) Atlas-Mercury to TechnoTrousers 

Atlas-Mercury RGB Remapped Blue PDF 
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Effects of RGB Remapping on pdfs 

Before After 
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Effects of RGB Remapping on CDFs 

Before After 
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Histogram Matching for Image Restoration 
Degraded image 

Lotus Flowers at Turtle Head Park, Lake Tai, Wuxi, Jiangsu Province, China.  
莲花 在 鼋头渚  太湖  无锡市  江苏省  中国.   Photos by R. A .Peters II, July 2013. 

Another image of the same scene, not degraded 
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Histogram Matching for Image Restoration 
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Histogram Matching for Image Restoration 

Lotus Flowers at Turtle Head Park, Lake Tai, Wuxi, Jiangsu Province, China.  
莲花 在 鼋头渚  太湖  无锡市  江苏省  中国.   Photos by R. A .Peters II, July 2013. 

Degraded image Another image of the same scene, not degraded 
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Histogram Matching for Image Restoration 

Lotus Flowers at Turtle Head Park, Lake Tai, Wuxi, Jiangsu Province, China.  
莲花 在 鼋头渚  太湖  无锡市  江苏省  中国.   Photos by R. A .Peters II, July 2013. 

Remapped degraded image Another image of the same scene, not degraded 
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Histogram Matching for Image Restoration 
Left Image Right Image 

Images from a stereo pair of inexpensive web cams. Such cameras have different color 
characteristics of-the-shelf. Once can be corrected to match the other using histo. matching. 
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Histogram Matching for Image Restoration 
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Histogram Matching for Image Restoration 
Left Image Right Image 

Images from a stereo pair of inexpensive web cams. Such cameras have different color 
characteristics of-the-shelf. Once can be corrected to match the other using histo. matching. 
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Histogram Matching for Image Restoration 
Left Image Right Image 

Right image histogram matched to left image. 
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Color Images 
l Are constructed from three 

intensity maps. 
l Each intensity map is projected 

through a color filter (e.g., red, 
green, or blue, or cyan, magenta, 
or yellow) to create a single 
color image. 

l The intensity maps are overlaid 
to create a color image. 

l Each pixel in a color image is a 
three element vector. 
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Color 
Images 
on a 
CRT or 
LCD 
Display 

Intensity images 
are projected 
through dot-array 
color filters which 
are slightly offset 
from one another. 

Projected image 
primary colors: 
red, green, and 
blue. 
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Color 
Images 
on a 
CRT or 
LCD 
Display 
Photographs of various displays, showing 
various pixel geometries.  Clockwise from 
top left, a standard definition CRT television, 
a CRT computer monitor, a laptop LCD, and 
the OLPC XO-1 LCD display.  [Peter Halasz 
(user:Pengo), Wikipedia, 
http://en.wikipedia.org/wiki/Pixel_geometry]  

http://en.wikipedia.org/wiki/Pixel_geometry
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Color Images In Print 

Images are separated into four color 
bands, each of which is printed as a 
grid regularly spaced dots.  A dot’s 
diameter varies in proportion to the 
intensity of the color. 
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Color 
Images 
in Print 

The four 
colors are 
magenta, 
cyan, 
yellow,  
and black 
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Standard Halftone Screen Angles 

Cyan:  105° 
Yellow:    90° 

Magenta:    75° 
Black:    45° 

The dot grids are created with a screen 
that overlays the intensity images. 

The screens are 
oriented at 
different angles.  
The resulting 
patterns are 
called “rosettes”. 
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Color Separation / Halftoning 

The original is separated into 
an intensity image for each of 
the four color bands. 



2014-09-09 9 1999-2014 by Richard Alan Peters II 

Color Separation / Halftoning 
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Color Separation / Halftoning 

Each screened image is printed in 
its own color on the same page. 

Each intensity image is multiplied 
by a corresponding “screen”, 

Cyan Magenta 

Yellow Black 
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Color Separation / Halftoning 
Cyan Magenta 

Yellow Black 

Results: 
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The Eye 

Diagram from http://webvision.med.utah.edu/ 
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The  
Retina 

Diagram from http://webvision.med.utah.edu/ 

Fovea 

Macula Optic nerve 

When measured in 104 
healthy people, the 
horizontal angle from the 
center of the fovea to the 
meridian through the 
center of the optic nerve 
head varied from 13.0° to 
17.9°; the vertical angle 
from the foveal center to 
the parallel through the 
optic nerve head  was in 
the range -3.65 to +0.65°.1 

1Klaus Rohrschneider, “Determination of the Location 
of the Fovea on the Fundus,” Invest. Ophthalmol. Vis. 
Sci. September 2004  vol. 45  no. 9  3257-3258 
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The Retina 

Diagram from http://webvision.med.utah.edu/ 

Light 
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Retinal Mosaic 

Cepko, Connie, “Giving in to the blues”, 
Nature Genetics,  24, 99 - 100 (2000)  
cepko@genetics.med.harvard.edu 
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Photoreceptor Densities 

Diagrams from http://webvision.med.utah.edu/ 
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Photoreceptor Densities 

Figure: Anatomical Distribution of Rods and Cones 
from Neuroscience. 2nd edition. 
Purves D, Augustine GJ, Fitzpatrick D, et al., editors. 
Sunderland (MA): Sinauer Associates; 2001. 
http://www.ncbi.nlm.nih.gov/books/NBK10848/ 

The density of cone photoreceptors 
decreases from the high-resolution 
fovea  to the periphery of the eye.  A 
human eye’s field of view is about 155° 
of that, the fovea comprises the central 
2°.  To see the world in detail requires 
active scanning by the eyes.  A person 
does not see much more than he or she 
does see in most situations.  The slides 
that follow mimic a multiresolution scan 
of a painting by a single eye. (The digital  
image processing in this case was done 
with a log-polar transform.) 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  Log-polar transform

 applied. 



Retinal Space-Variant Sensing 

2014-09-09 26 1999-2014 by Richard Alan Peters II 

Louis B
oilly (1761-1845) Thirty-Six Faces of Expression.  



The Log Polar Transform 
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(a) Original image with a left-handed 
coordinate system originating at (x0, y0), 
the center of the image. (b) Fovea (actual 
size for this particular transform). 
(c) Fovea (enlarged 2×). (d) Log-polar 
transform (LPT), unwrapped (actual size). 
The origin is in the upper left-hand 
corner. The ρ-axis is down and the φ-axis 
is to the right. (e) LPT, unwrapped,  
enlarged 2×. (f) LPT on cylinder. The 
origin is at the bottom. The ρ-axis is up 
and the φ-axis is clockwise to the left. 
(g) LPT image backward-mapped onto 
the original image. 
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Space Variant Visual Motion 
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Retina: 
Center-
Surround 
Edge 
Detector 
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Laplacian of Gaussian 
(LoG) Filter 

( ) 
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The interconnection of the 
photoreceptors by the 
other cells in the retina 
cause its output to be an 
edge map, similar to the 
action of a Laplacian of 
Gaussian filter on  a digital 
image. 



Retinal Edge Detection 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression. Photo negative of LoG

 output. 



Space Variant Retinal Edge Detection 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression. Photo negative of LoG

 output. 



The Retinal Transform Minimizes Data Bandwidth 
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Louis B
oilly (1761-1845) Thirty-Six Faces of Expression. Photo negative of LoG

 output. 

This is the reduction in size 
from the full image to a 
compact multiresolution 
representation including 
the fovea (the disk) and the 
periphery. 
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Pixelization of 
Color Images: 
All Bands Equal 

L – downsample factor 
R – information content 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 
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16× Pixelization 
of Color Images: 
R, G, & B Bands 

L – downsampled band 
R – information content 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 
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Visual Areas in the Brain 

Retina: center-surround 
color feature 
detectors 

LGN: (lateral geniculate 
nucleus) relay to V1; 
audio attention 

V1: selective 
spatiotemporal 
filters 

V2: feature aggregation 
V4: visual attention 
IT: (Inferior temporal 

gyrus) complex 
object features 

Graphic from M. Lewicky 
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In the Brain: from RGB to LHS  

lum
inance 

hue 
saturation 

photo receptors brain 

The eye has 3 types of photoreceptors:  
sensitive to red, green, or blue light. 

The brain transforms RGB into separate 
brightness and color channels (e.g., LHS). 
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L – downsample factor 
R – information content 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 

16× Pixelization 
of Color Images: 
Luminance Only 
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L – downsample factor 
R – information content 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 

16× Pixelization 
of Color Images: 
Chrominance 
(H+S) Only 
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16
× 

Pi
xe

liz
at

io
n 

L – downsampled band 
R – information content 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 
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16
× 

Pi
xe

liz
at

io
n 

L – downsampled band 
R – information content 

These 4 images all have 
the same amount of 
digital information… 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 
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16
× 

Pi
xe

liz
at

io
n 

L – downsampled band 
R – information content 

… but different visual information. 

Photo:  R. A. Peters II, 1998, The Lake, Central Park, NYC. 
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Color Sensing / Color Perception 
These are approximations 
of the responses to the 
visible spectrum of the 
“red”, “green”, and “blue” 
receptors of a typical 
human eye. 



2014-09-09 43 1999-2014 by Richard Alan Peters II 

Color Sensing / Color Perception 
Note that the “red” 
receptor exhibits the 
same response at 4 
different wavelengths … 

1 2 3 4 
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1 2 3 4 

b1 

g1 

r1 

Color Sensing / Color Perception 
… but the responses of 
the “green” and “blue” 
receptors differ … 
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1 2 3 4 

b2 

g2 

r2 

Color Sensing / Color Perception 
… at each of the 4 
locations so that … 
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1 2 3 4 

g3 

b3 

r3 

Color Sensing / Color Perception 
… each of the 4 wavelengths 
is represented by a unique 
response from the set of 3 
receptors. 
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1 2 3 4 

g4 

b4 

r4 

Color Sensing / Color Perception 



2014-09-09 48 1999-2014 by Richard Alan Peters II 

Color Sensing / Color Perception 
These are 
approximations of 
the responses to 
the visible 
spectrum of the 
“red”, “green”, and 
“blue” receptors of 
a typical human eye. 

The simultaneous red + blue 
response causes us to 
perceive a continuous range 
of hues on a circle.  No hue is 
greater than or less than any 
other hue. 



Complementary Colors 
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Colors opposite each other on the color disk are called “complementary”. 

CYAN - RED CYAN - RED GREEN - MAGENTA GREEN - MAGENTA BLUE - YELLOW BLUE - YELLOW 



Complementary Colors 

1/12/2016 50 1999-2011 by Richard Alan Peters II 

To complementary colors, the response of the retina’s photoreceptors is opposite. 

  photoreceptor response is represented as proportional to brightness  

0° 

180° 

red 
green 
blue 

red 
green 
blue 

color 

response 

response 

color 
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Stare at the dot in the center of the image 

Color Perception: The Afterimage Effect 
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The color “negatives” saturate the local receptors so that when the color is removed the 
agonist (opposite) color receptors remain saturated. 

Color Perception: The Afterimage Effect 
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Dale Purves, R. Beau Lotto, Surajit Nundy, “Why We See What We Do”,  
American Scientist, Volume 90, No. 3, May-June 2002 

Color Perception: the Cornsweet Effect 
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Dale Purves, R. Beau Lotto, Surajit Nundy, “Why We See What We Do”,  
American Scientist, Volume 90, No. 3, May-June 2002 

Color Perception: the Cornsweet Effect 

Right? 

The top is darker… 

…than the bottom, 



2014-09-09 58 1999-2014 by Richard Alan Peters II 

Dale Purves, R. Beau Lotto, Surajit Nundy, “Why We See What We Do”,  
American Scientist, Volume 90, No. 3, May-June 2002 

Color Perception: the Cornsweet Effect 

Wrong! 
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Dale Purves, R. Beau Lotto, Surajit Nundy, “Why We See What We Do”,  
American Scientist, Volume 90, No. 3, May-June 2002 

Color Perception: the Cornsweet Effect 
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Color Perception: the Munker Illusion 

Blue and green spirals? 
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Color Perception: the Munker Illusion 

No. Blue-green spirals. 
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Brightness Perception 

Linear intensity changes are not seen as such.  

image intensity profile 

255 

0 
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The previous slide 
demonstrates the Weber-
Fechner relation.  The 
linear slope of the 
intensity change is 
perceived as logarithmic. 

The green curve is the actual 
intensity; the blue curve is the 
perceived intensity. 

1 2

1 2

g g
g

g g


 


1

2

:   Intensity 1
:   Intensity 2
:  Apparent change in brightness

g
g

g∆

Brightness Perception 



Uniform Change in Frequency and Contrast 
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de
cr

ea
si

ng
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on
tra

st
 

increasing frequency 



An Excellent and Amusing Website 
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Optical Illusions & Visual Phenomena 

http://www.michaelbach.de/ot/
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Color Images 
l Are constructed from three 

overlaid intensity maps. 
l Each map represents the 

intensity of a different 
“primary” color. 

l The actual hues of the 
primaries do not matter as 
long as they are distinct. 

l The primaries are 3 vectors 
(or axes) that form a 
“basis” of the color space. 
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Vector-Valued Pixels 
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Each color corresponds to a point in a 3D vector space  



Color Space 
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for standard digital images 

• primary image colors red, green, and blue  
– correspond to R,G, and B axes in color space. 

• 8-bits of intensity resolution per color 
– correspond to integers 0 through 255 on axes. 

• no negative values 
– color “space” is a cube in the first octant of 3-space. 

• color space is discrete  
– 2563 possible colors = 16,777,216 elements in cube. 



Different Axis Sets in Color Space 
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RGB axes CMY axes 



Color With Respect To Different Axes 
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The same color has different RGB and CMY coordinates. 



Color Correction 
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Global changes in the coloration 
of an image to alter its tint, its 
hues or the saturation of its 
colors with minimal changes to 
its luminant features 



Gamma Adjustment of Color Bands 
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David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture 
Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003). 

original 



Gamma Adjustment of Color Bands 
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red γ=2 



Gamma Adjustment of Color Bands 
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original 



Gamma Adjustment of Color Bands 
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red γ=0.5 

reduced red = increased cyan 



Gamma Adjustment of Color Bands 
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original 



Gamma Adjustment of Color Bands 
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green γ=2 



Gamma Adjustment of Color Bands 
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original 



Gamma Adjustment of Color Bands 
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green γ=0.5 

reduced green = incr. magenta 



Gamma Adjustment of Color Bands 
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original 



Gamma Adjustment of Color Bands 
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blue γ=2 



Gamma Adjustment of Color Bands 
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original 



Gamma Adjustment of Color Bands 
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blue γ=0.5 

reduced blue = incr. yellow 



Color 
Images 
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R G B 

L a* b* 

are represented by three bands (not 
uniquely) e.g., R, G, & B or L, a*, & b*. 

Red 

Green 

Blue 

Luminance 

a*-chroma 

b*-chroma 



RGB to LHS:  A Perceptual Transformation 
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lum
inance 

hue 
saturation 

photo receptors brain 

The eye has 3 types of photoreceptors:  
sensitive to red, green, or blue light. 

The brain transforms RGB into separate 
brightness and color channels (e.g., LHS). 



Maxwell’s Triangle 
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D. Malacara-Hernandez, Color Vision and Colorimetry: 
Theory and Applications, SPIE Press, (2002). 

Probably the first attempts to produce 
color curves describing the trichromatic 
theory of color were those by Maxwell 
(1857, 1860).… [The] first chromaticity 
diagram was a circle devised by Newton. 
Later, Maxwell used an equilateral 
triangle.… In his trichromatic theory, 
each of the three primary colors—red, 
green, and blue—is located at a corner 
of the triangle. The white color is in the 
middle. Other colors are formed by a 
combination of the r, g, b components 
depending on the distances from each of 
the three sides of the triangle. This 
triangular representation has been used 
often with several modifications.  



Brightness + Chrominance Representation 
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There are many different ways to 
encode color in terms of 1D brightness 
and  2D chrominance.  Chrominance 
is usually represented in terms of hue 
and saturation.  A given brightness 
measure (e.g. value or NTSC 
luminance) defines a planar surface in 
the color cube on which the brightness 
is constant.  One point on that surface 
is gray.  The saturation of any color 
with the given brightness is defined as 
the distance on the plane from the 
color to the gray point.  The hue is 
defined as the angular deviation from 
red measured in the same plane. 



Brightness + Chrominance Representation 
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The HSV encoding scheme presented in 
the first part of this lecture is a direct 
implementation of the vector math. Although 
it is nonstandard, it demonstrates the ideas 
that underlie most of these representations. 
 
For a good explanation of more standard 
HSV and LHS representations please see: 
HSL and HSV - Wikipedia, the free encyclopedia. 
 
A brief explanation of the hexagonal 
representation of HSV is given later in this 
lecture. 

http://en.wikipedia.org/wiki/HSL_and_HSV
http://en.wikipedia.org/wiki/HSL_and_HSV
http://en.wikipedia.org/wiki/HSL_and_HSV
http://en.wikipedia.org/wiki/HSL_and_HSV


Equivalue  
Color Triangle 
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A plane through the colors 

0 0
0 ,   ,   and  0 ,
0 0

r c r r
g g c g
b b b c

           
                        
                      

forms a triangle inside the color 
cube if c ≤ 255 or c ≥ 510, or a 
hexagon if 255 < c < 510.  Every 
color on the planar surface is such 
that r + g + b = c. Therefore its 
value is c/3.  It is on this equivalue 
plane that hue and saturation are 
computed. 

c=255, v=85 



Equivalue  
Color Triangle 
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On the g = 0 face of the 
cube the triangle traces 
the line, r + b = 255. 

c=255, v=85 



Equivalue  
Color Hexagon 
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A plane through the colors 

0 0
0 ,   ,   and  0 ,
0 0

r c r r
g g c g
b b b c

           
                        
                      

forms a triangle inside the color 
cube if c ≤ 255 or c ≥ 510, or a 
hexagon if 255 < c < 510.  Every 
color on the planar surface is such 
that r + g + b = c. Therefore its 
value is c/3.  It is on this equivalue 
plane that hue and saturation are 
computed. 

c=384, v=128 



Equivalue  
Color 
Hexagon 
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On the g = 0 face of the 
cube the hexagon traces 
the line, r + b = 383. 

c=383, v=128 

Right Side 

Outside looking in. 



Equivalue  
Color 
Hexagon 
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On the g = 255 face of 
the cube the hexagon 
traces the line, 
r + b + g = 383. 

Left Side 

c=383, v=128 

Outside looking in. 



Back Bottom 

Equivalue Color Hexagon 
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The lines on the other four faces 
similarly have r + b + g = 383. 

top fRont Outside looking in. 



Color Cube:  
Equivalue 
Triangle 
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Color Cube:  
Equivalue 
Triangle 

2014-09-23 32 1999-2014 by Richard Alan Peters II 



HSV Color Representation 
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Color vector p0 

+ marks the 
spot where 

R=G=B= 
(r0+g0+b0)/3 

( ){ }0 0 0 0 0 0ˆ ,h r g b = ∠ + + − r v s

0 0s = s
0 0v = v

 intersects R, G, & B at r0+g0+b0, and contains p0. 

   lies in plane R+G+B=(r0+g0+b0), 

Triangle: 

p0 = (r0, g0, b0) 

( ) ( )1
0 0 0 03

0 0 0

ˆˆ ˆr g b= + + + +

= −

v r g b

s p v



  



Color Point on Equivalue Triangle 
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Color Vector Associated with Point 
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Color Coordinates and Component Vectors 
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Color Cube, Equivalue Triangle, & Gray Line 
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Color Point and Gray Line 
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Saturation Component of Color Vector 
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Saturation and Value Components of Color Vector 
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Hue, Saturation and Value 
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Hue and Saturation on Equivalue Plane 
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Hue, Saturation and Value with Gray Line 
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HSV Color Representation 
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Color vector p0 

+ marks the 
spot where 

R=G=B= 
(r0+g0+b0)/3 

( ){ }0 0 0 0 0 0ˆ ,h r g b = ∠ + + − r v s

0 0s = s
0 0v = v

 intersects R, G, & B at r0+g0+b0, and contains p0. 

   lies in plane R+G+B=(r0+g0+b0), 

Triangle: 

p0 = (r0, g0, b0) 

( ) ( )1
0 0 0 03

0 0 0

ˆˆ ˆr g b= + + + +

= −

v r g b

s p v



  



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 

Equivalue plane at v = 0: single point, pure black. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 

Equivalue plane at v = 85: largest upright triangle, start of hexagonal intersections. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 

Equivalue plane at v = 128: symmetric hexagon, intersecting plane with largest area. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 

Equivalue plane at v = 170: largest inverted triangle, end of hexagonal intersections. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 

2014-09-23 65 1999-2014 by Richard Alan Peters II 

Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 

2014-09-23 66 1999-2014 by Richard Alan Peters II 

Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 



Equivalue Plane Intersecting Color Cube 
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Projection: the gray line is perpendicular to this page. 

Equivalue plane at v = 255: single point, pure white. 



RGB to HSV Conversion 
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1
0 0 0 03 ,   where  .

c
c c r g b
c

 
     
  

v

31
0 03 3,   whereas  .v c c v

0

0 0

0

.
r
g
b

 
   
  

p
0 0

0 0 0 0 0

0 0

.
r v

g v
b v

 
     

  
s p v

     2 2 2
0 0 0 0 0 0 0 0 .s r v g v b v      s

97 

p0 

v0 

s0 

0

0 0

0

r
g
b

 
   
  

p

x 



31
0 03 3,   whereas  .v c c v

RGB to HSV Conversion 
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1
0 0 0 03 ,   where  .

c
c c r g b
c

 
     
  

v

0

0 0

0

.
r
g
b

 
   
  

p
0 0

0 0 0 0 0

0 0

.
r v

g v
b v

 
     

  
s p v

     2 2 2
0 0 0 0 0 0 0 0 .s r v g v b v      s

97 

p0 

v0 

s0 

c/3 is the usual value-
image intensity (the 
average of r, g, & b) … 

… c √3/3 is the 
length of the 
value vector…  

0

0 0

0

r
g
b

 
   
  

p

x 

… but that does 
not enter into 
the calculations.  



RGB to HSV Conversion 
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  1 0
0 0

0

, cos .h 
        

s xs x
s x

1
0 3

2
0 1

30 1

c c cc
c

     
               

          
x R v

p0 

v0 

s0 

x 

89 

0 0

0 0 0 0 0

0 0

.
r v

g v
b v

 
     

  
s p v

0

0 0

0

r
g
b

 
   
  

p



RGB to HSV Conversion 
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1
0 3

2
0 1

30 1

c c cc
c

     
               

          
x R v

Note that:  
(1)For c > 85, the red vector, x extends 

beyond the color cube. 
(2)Vector x = 0 if and only if c = 0. 



p0 

v0 

s0 

x 

RGB to HSV Conversion 
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1 0
0

0

cos .h 
       

s x
s x

1
0 3  v c

     2 2 2
0 0 0 0 0 0 0 ,s r v g v b v     

In summary, 

where  c = r0 + g0 + b0 , the sum of the components of p0. 

and 

Usually, s0 is normalized to 
lie in the interval (0,1) and h0 
is shifted to lie in (0,2π). 

0

0 0

0

r
g
b

 
   
  

p



p0 

v0 

s0 

x 

which has length   

Normalizing the Saturation 
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     2 2 2
0 0 0 0 0 0 0 ,s r v g v b v     

The scalar saturation, 

usually is normalized to lie between 0 and 1.  There are a 
number of possible ways to do this. One is to use the largest 
possible length of a saturation vector in the color cube.  That 
vector lies in the triangle with vertices  [r  g  b]T  = 
[255  0  0] T, [0  255  0] T, and [0  0  255] T.  There are 3 such 
vectors, from the gray point to pure red, pure green, or pure 
blue.  The red one is 

208.2066.maxmax ≈= ss

     1
max 3255 0 0 255 255 255 170 85 85 ,    s T T T

Therefore, s0 is replaced by              .  max0 ss

0

0 0

0

r
g
b

 
   
  

p



Other Steps to Include in RGB→HSV 
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There are a few places in the algorithm where computation can be problematic. These 
include division by zero, exceeding limits due to round-off errors, and values returned by 
library functions that are inconsistent with the RGB→HSV algorithm. 

Recall that the hue calculation for color, p, requires division by the product of the length of 
the red vector, x(p), and the length of the saturation vector, s(p). If either of these is 0, 
then the argument could be undefined. Matlab returns NaN for acos(0/0). 

1cos .h θ
s x
s x


        

s is the zero vector whenever p is a gray level (all its components are equal). Vector x = 0 
if and only if color p = 0. The workaround is to add 1 to the denominator at every pixel 
where either p = 0 or s = 0. Then set h = 0 at those same pixel locations. 



Other Steps to Include in RGB→HSV 
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Inverse cosine routines, like Matlab’s acos, 
return angles in the range [0,π], whereas 
the RGB→HSV algorithm needs them to be 
in the range [0,2π).   

 if ,
2 if ,

b gh b g
θ
θ

  

Note that θ∈[0,π] if and only if b ≤ g in p and  
θ∈(-π,0) if and only if b > g.  Therefore the 
workaround is to let: 

.
r
g
b

 
   
  

p1cos ,θ
s x
s x


       

where 



ˆ 

ˆ 

ˆ 

HSV to RGB Conversion 
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form an orthonormal basis with respect to the equivalue plane. 

1 0 0
ˆ ˆ ˆ0 ,     1 ,    and  0 ,

0 0 1

     
            
          

x y v

The equivalue plane is perpendicular 
to the value vector, v.   
The plane contains vector x defined 
on slide 81. 
Therefore, v is perpendicular to x and   
y = v × x is also in the plane. 
If we keep the directions but ignore 
the magnitudes, the unit vectors 

This conversion requires a 
change of coordinates through 
a rotation and a translation. 



ˆ 

ˆ 

ˆ 

HSV to RGB Conversion 
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Given values h, s, and v, where 

     max0, 2 ,    0, ,    and   0, 255 ,h s s v  

the saturation vector is 

   ˆ ˆ ˆcos sin 0 .s h s h  s x y v

 
 
 

cos
sin ,

0

s h
s h
 
   
  

xyv

xyv

s

with respect to unit vectors x, y, 
and v, in the equivalue plane. 

ˆ ˆ 
ˆ 

Since the x- and y-axes lie in 
the equivalue plane and the 
cdt. origin is the gray point, 
we set v = 0 for now.  



ˆ 

ˆ 

ˆ 

   ˆ ˆ ˆcos sin 0 .s h s h  s x y v

 
 
 

cos
sin ,

0

s h
s h
 
   
  

xyv

xyv

s

     max0, 2 ,    0, ,    and   0, 255 ,h s s v  

HSV to RGB Conversion 
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Given values h, s, and v, where 

the saturation vector is 

with respect to unit vectors x, y, 
and v, in the equivalue plane. ˆ 

These are the coordinates of 
s with respect to x, y, & v. ˆ ˆ ˆ 

This is s written as a linear 
combination of vectors x, y, & v. ˆ ˆ ˆ 

If s is in the range 0 to 1, 
then it must be denormalized 
first by multiplying by smax. 



ˆ 

ˆ 

ˆ 

ˆ 

ˆ 

ˆ 

HSV to RGB Conversion 
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0 0 0

0 0 0
ˆˆ ˆ ,

ˆ ˆ ˆcos sin 0 .

r g b

r g b
s h s h



  

  

rgbs

s r g b
s x y v

T

We need to find r0, g0, & b0…  

x, y, and v, are not in the same 
directions as the red, green, and 
blue unit vectors, r, g, and b.   
Therefore, [s]xyv , which we 
know, is not equal to [s]rgb , 
which we do not know, but need  
in order to find the color, p0, 
with respect to r, g, and b. 

ˆ ˆ ˆ 

ˆ ˆ ˆ 

ˆ ˆ ˆ 



ˆ 

ˆ 

ˆ 

ˆ 

ˆ 

ˆ 

HSV to RGB Conversion 

2014-09-23 82 1999-2014 by Richard Alan Peters II 

   

      

0 0 0

cos sin 0

r g b

s h s h





rgb

xyz

s

s

T

T

   
0 0 0

ˆˆ ˆ ,
ˆ ˆ ˆcos sin 0 .

r g b
s h s h

  

  

s r g b
s x y v

The specific numbers in [s]rgb and 
in [s]xyv (that represent the point 
w.r.t. the two coordinate systems) 
are, however, different. 

   rgb xyzs sbut 

and 

Vector s written as a linear combination of  vectors, r, g, and 
b, and s written as a linear combination of  vectors, x, y, and 
v both refer to the same point on the equivalue plane. 

ˆ ˆ 
ˆ ˆ ˆ 
ˆ 

… which means we have to find 
the x, y, & v vectors in terms 
of the r, g, & b vectors. 



ˆ 

ˆ 

ˆ 

ˆ 

ˆ 
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Then, 
   

       

         

       

ˆ ˆ ˆcos sin 0

ˆ ˆ ˆcos sin 0

ˆ ˆ ˆcos sin 0 .

A

A s h s h

s h A s h A A

s h s h



     
  

  

rgb xyv

xyv xyv xyv

xyv xyv xyv

rgb rgb rgb

s s

x y v

x y v

x y v

We can find r0, g0, and b0, from h0, s0, 
and v0, if we know how the unit vectors 
x, y, and v, are expressed with respect 
to  r, g, and b. That relationship is in 
the form of a rotation matrix, A, such 
that, 

ˆ ˆ ˆ 
ˆ ˆ ˆ 

           ˆ ˆ ˆ ˆ ˆ ˆ,    ,   .A A A  rgb xyv rgb xyv rgb xyvx x y y v v

97 
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When written w.r.t the xyz 
coordinate system we have 

     ˆ ˆ ˆ .A     rgb rgb rgbx y v

1 0 0
ˆ ˆ ˆ0 ,     1 ,    and  0 ,

0 0 1

     
            
          

x y v

     
1 0 0
0 1 0
0 0 1

ˆ ˆ ˆ,   ,   .A A A            
     rgb rgb rgbx y v

So that, 

But that implies, 

The columns of the rotation matrix, A, are the 
x, y, & v unit vectors in r, g, & b coordinates.  



ˆ 

ˆ ˆ 

ˆ 

ˆ 

ˆ 
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13ˆ 1

3 1

 
   
  

rgbv

 
26ˆ 1

6 1

 
   
  

rgbx

     ˆ ˆ ˆ

02 1
2 1

 

 
   
  

rgb rgb rgby v x

v is the unit vector in 
the direction [1 1 1]T 
when written w.r.t 
rgb coordinates. 

ˆ 

x is perpendicular to 
v and has equal g 
and b components. 

ˆ 
ˆ ˆ 

ˆ 

y is the cross 
product of v 
with x.  

ˆ 
ˆ 

ˆ 

How to find the x, y, & z 
unit vectors in r, g, & b 
coordinates:  



p0 

v0 

s0 
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Therefore, the rotation matrix is 

2 0 2
6 1 3 2 .

6 1 3 2
A

 
 
   
   

Substitute that into the 2nd equation on slide 94 to get: 

     

   

2 0 16 321 1 16 2 31 1 1

2 06 21 16 21 1

cos sin 0

cos sin .

s h s h

s h s h


 


 

            
     
       
   

rgbs

Finally, [s]rgb must be translated to the value vector to obtain 
the rgb color of p0: 

     0 ,  rgb rgb rgbp p s v where s0 = [s]rgb  and [v]rgb= v0 as def ’d. on slide 81. 

The x, y, & z unit vectors in r, g, 
& b coordinates are the columns 
of the rotation matrix:  
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Color Hexagon at Value 128 

2014-09-23 87 

Red 

Green Blue 

r+g+b = 384 r∈{0,…,255} 

b∈{0,…,255} g∈{0,…,255} 
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Color Hexagon at Value 128 

2014-09-23 88 

hue 

saturation value 

r+g+b = 384 

s∈[0,1] v = 128 

h∈(π/128)×
{0,…,255} 

s∈(1/255)×
{0,…,255} 
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Color Hexagon at Value 128 

2014-09-23 89 

hue 

saturation value 

r+g+b = 384 h∈[0,2π) 

s∈[0,1] v = 128 
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original 



Saturation Adjustment 
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saturation + 50% 

All the colors become 
closer to pure primaries. 



Saturation Adjustment 
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original 



Saturation Adjustment 
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saturation - 50% 

The r, g, & b histograms approach the value 
histogram as the color fades to grayscale. 
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original → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

R 
Y 
G 
C 
B 
M 
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hue + 60° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

Y 
G 
C 
B 
M 
R 

The effects of a hue shift are nonlinear. They 
difficult to characterize on the r, g, & b histograms  
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hue + 120° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

G 
C 
B 
M 
R 
Y 
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hue + 180° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

C 
B 
M 
R 
Y 
G 
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hue + 240° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

B 
M 
R 
Y 
G 
C 
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hue + 300° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

M 
R 
Y 
G 
C 
B 
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hue + 360° = original → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

R 
Y 
G 
C 
B 
M 
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original → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

R 
Y 
G 
C 
B 
M 

The effect of a hue shift on the 
hue histogram is quite obvious…  
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hue + 60° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

Y 
G 
C 
B 
M 
R 

…  the entire histogram 
is shifting…  
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hue + 120° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

G 
C 
B 
M 
R 
Y 

…  and the shift is circular since the hue is a 
circular function – it is defined on a circle.  
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hue + 180° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

C 
B 
M 
R 
Y 
G 

The part of the histogram that leaves 
one side appears on the other.  
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hue + 240° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

B 
M 
R 
Y 
G 
C 
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hue + 300° → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

M 
R 
Y 
G 
C 
B 
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hue + 360° = original → 
→ 
→ 
→ 
→ 
→ 

R 
Y 
G 
C 
B 
M 

R 
Y 
G 
C 
B 
M 
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is a point process;  the transformation is applied to each 
pixel as a function of its color alone. 

        , , , , supp .r c r c r c  J I I

Each pixel is vector valued, therefore the transformation 
is a vector space operator. 

 
 
 
 

,
, , ,

,

r c
r c r c

r c

 
   
  

I

I

I

R
I G

B
 

 
 
 

  
 
 
 

, ,
, , , , .

, ,

r c r c
r c r c r c r c

r c r c

                          

J I

J I

J I

R R
J G I G

B B
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green yellow 

blue magenta 

cyan red original 
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11 12 13 01

1 21 22 23 0

1 31 32 33 0

a a a rr
g a a a g
b a a a b

    
          
         

 
 
 

1/
01 1/

1 0
1/

1 0

/ 255
255 / 255

/ 255

r

g

b

rr
g g
b b







                 

Linear operators 
are matrix 
multiplications  

Example of a 
nonlinear operator: 
gamma correction 
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1 0 01

0 0

0 0

/ 0 0
0 1 0
0 0 1

r r rr
g g
b b

     
          
          

125 
75 

175 

175 
75 

175 
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0 0

1 1 0 0

0 0

1 0 0
0 / 0
0 0 1

r r
g g g g
b b

    
        
        

125 
75 

175 

125 
150 
175 
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0 0

0 0

1 01 0

1 0 0
0 1 0
0 0 /

r r
g g

b bb b

    
        
        

125 
75 

175 

125 
75 

225 
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1 0 01

1 1 0 0

1 1 0 0

/ 0 0
0 / 0
0 0 /

r r rr
g g g g
b b b b

    
          
         

125 
75 

175 

175 
150 
225 
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Assume J is a discolored version of 
image I such that J = Φ[ I ].  If Φ is 
linear then it is represented by a 3×3 
matrix, A: 

11 12 13

21 22 23

31 32 33

.
a a a
a a a
a a a

 
   
  

A

Then  J = AI  or, more accurately,  
J(r,c) = AI(r,c)  for all pixel locations 
(r,c) in image I. 
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11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

.

a a a
a a a
a a a
a a a
a a a
a a a

 
 



  
  
  

     
          
         

  
    
   

J I

J I

IJ

I I I

I I I

I I I

   then    , , ,   orr c r cJ AI If at pixel location , ,r c

 image  ,    and r c




 
   
  

I

I

I

I

 image , ,r c




 
   
  

J

J

J

J



The inverse transform Φ-1 (if it exists) maps the discolored 
image, J, back into the correctly colored version, I, i.e., 
I = Φ-1[ J ].  If Φ is linear then it is represented by the 
inverse of matrix A: 




1
11 22 33 11 23 32 12 21 33

1
12 23 31 13 21 32 13 22 31

22 33 23 32 13 32 12 33 12 23 13 22

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 1

           

          

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a




   

 
  
  
  

A


2 21

  

.
a
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,

,

, 1

n
k

k

k k







               

I

I

I

,

,

, 1

n
k

k

k k







               

J

J

J

, ,

, ,

, ,

k k

k k

k k

 
 
 

   
   
   
   
      

J I

J I

J I

for 1, , .k n 

Assume we know n colors in the discolored image, J, that 
correspond to another set of n colors (that we also know) 
in the original image, I.  

known 
wrong 
colors 

known 
correct 
colors 

known 
correspondence 
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To remap the discolored image so that the result 
matches the original image in a linearly optimal 
way, we need to find the matrix, A, that minimizes 

2
, ,

12
, ,

1
, ,

k kn

k k
k

k k

 
 
 





   
   

    
   
      

I J

I J

I J

A
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To find the solution of this problem, let 

, 1 ,

, 1 ,

, 1 ,

,
n

n

n

 
 
 

    
    
    
    
        

I I

I I

I I

Y  and 
, 1 ,

, 1 ,

, 1 ,

.
n

n

n

 
 
 

    
    
    
    
        

J J

J J

J J

X 

Then X and Y are known 3×n matrices such that 

1 ,Y A X

where A is the 3×3 matrix that we want to find. 
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The linearly optimal solution is the least mean squared 
solution that is given by 

where X T represents the transpose of matrix X. 

  11  B A YX XXT T

Notes: 1.  n, the number of color pairs, must be ≥ 3, 
2.  XX T must be invertible, i.e., rank(XX T ) = 3, 
3.  If n=3, then X T(XX T)-1 = X -1. 
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important 



where X T represents the transpose of matrix X. 

  11  B A YX XXT T

Notes: 1.  n, the number of color pairs, must be ≥ 3, 
2.  XX T must be invertible, i.e., rank(XX T ) = 3, 
3.  If n=3, then X T(XX T)-1 = X -1. 

The linearly optimal solution is the least mean squared 
solution that is given by 
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input colors (to be changed): 
 
 
 
 

, 1 , , 1 , 1 , 1
, 1 ,

, , ,, 1 ,

n

n

n n nB n

    
 

   

                    
                    

J J J J J
J J

J J JJ





output colors (wanted): 
 
 
 
 

, 1 ,

, 1 ,

, 1 ,

n

n

n

 
 
 

    
    
    
    
        

I I

I I

I I





where X T represents the transpose of matrix X. 

  11  B A YX XXT T

Notes: 1.  n, the number of color pairs, must be ≥ 3, 
2.  XX T must be invertible, i.e., rank(XX T ) = 3, 
3.  If n=3, then X T(XX T)-1 = X -1. 

The linearly optimal solution is the least mean squared 
solution that is given by 
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input colors (to be changed): 
 
 
 
 

, 1 , , 1 , 1 , 1
, 1 ,

, , ,, 1 ,

n

n

n n nB n

    
 

   

                    
                    

J J J J J
J J

J J JJ





output colors (wanted): 
 
 
 
 

, 1 ,

, 1 ,

, 1 ,

n

n

n

 
 
 

    
    
    
    
        

I I

I I

I I





Then the image is color corrected by performing 

I = reshape(((B*(reshape(J,R*C,3))')'),R,C,3); 

       , , ,  for all  , supp .r c r c r c I B J J

In Matlab this is easily performed by 

where B=A-1 is computed directly through the LMS formula 
on the previous page, and R & C are the number of rows and 
columns in the image.  
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Linear Color Correction 

2014-09-23 125 1999-2014 by Richard Alan Peters II 

Original Image “Aged” Image 

NASA Summer Faculty Fellows at Ellington Air Force Base, Houston, TX, July 2002.  Airplane is a T-38. 

















171
121
17















114
122
17

Color Mapping 1 

2014-09-23 126 1999-2014 by Richard Alan Peters II 

Original Image “Aged” Image 

















185
222
222















218
222
222

Color Mapping 2 
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Original Image “Aged” Image 
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160
171
240















103
171
240

Original Image “Aged” Image 
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166
230
240















106
227
236

Original Image “Aged” Image 
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218
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114
122
17
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103
171
240















160
171
240















171
121
17















166
230
240

17 17
122 121
114 171

                        

222 222
222 222
185 218

                        

240 240
171 171
103 160

                        

236 240
227 230
106 166

                        

The aging process was a transformation, Φ, that mapped: 



Color Transformations  

2014-09-23 131 1999-2014 by Richard Alan Peters II 















218
222
222















185
222
222















114
122
17















106
227
236















103
171
240















160
171
240















171
121
17















166
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240

1
17 17
121 122
171 114


                         

1
222 222
222 222
218 185


                         

1
240 240
171 171
160 103


                         

1
240 236
230 227
166 106


                         

To undo the process we need to find, Φ-1, that maps: 
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222 17 240
222 122 171
185 114 103

 
   
  

X
222 17 240
222 121 171
218 171 160

 
   
  

Y

1 1  B A YX



222 17 240
222 122 171
185 114 103

 
   
  

X
222 17 240
222 121 171
218 171 160

 
   
  

Y

original corrected 
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1 1  B A YX



222 17 236
222 122 227
185 114 106

 
   
  

X
222 17 240
222 121 230
218 171 166

 
   
  

Y

Another Correction Using 3 Mappings  
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1 1  B A YX



original corrected 
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1 1  B A YX

222 17 236
222 122 227
185 114 106

 
   
  

X
222 17 240
222 121 230
218 171 166

 
   
  

Y

Another Correction Using 3 Mappings  



  11  B A YX XXT T

222 17 236 240
222 122 227 171
185 114 106 103

 
   
  

X
222 17 240 240
222 121 230 171
218 171 166 160

 
   
  

Y

Correction Using All 4 Mappings  
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  11  B A YX XXT T
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222 17 236 240
222 122 227 171
185 114 106 103

 
   
  

X
222 17 240 240
222 121 230 171
218 171 166 160

 
   
  

Y

Correction Using All 4 Mappings  

original corrected 



Linear Color Transformation Program 
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function J = LinTrans(I,A) 
 
[R C B] = size(I); 
 
I = double(I); 
 
J = reshape(((A*(reshape(I,R*C,3))')'),R,C,3); 
 
J = uint8(J); 
 
return; 
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Fact: Any Real Signal has 
a Frequency-Domain 
Representation 
The modes shown (blue) 
sum to the rippling square 
wave (black). 

As the number of modes 
in the sum becomes large, 
it approaches a square 
wave (red). 

   
1 2sq sin 2 1

2 1n

t n t
n








 
  

   


Odd-order harmonics 
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Frequency-Domain Representation  

   
1 2sq sin 2 1

2 1n

t n t
n








 
  

   


The sinusoids are called 
“basis functions”. 

Any periodic signal can be described by a sum of sinusoids.   

The multipliers are called 
“Fourier coefficients”. 
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The sinusoids are called 
“basis functions”. 

Any periodic signal can be described by a sum of sinusoids.   

The multipliers are called 
“Fourier coefficients”. 

Frequency-Domain Representation  

Basis 
functions 

   
1 2sq sin 2 1

2 1n

t n t
n
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The sinusoids are called 
“basis functions”. 

Any periodic signal can be described by a sum of sinusoids.   

The multipliers are called 
“Fourier coefficients”. 

Frequency-Domain Representation  

The Fourier 
coefficients 
(of a square 
wave). 

   
1 2sq sin 2 1

2 1n

t n t
n
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Example: Partial Sums of a Square Wave 

1 sine 2 sines 4 sines 

8 sines 16 sines 32 sines 

The limit of the  
given sequence 
of partial sums1 
is exactly a 
square wave 

1 the limit as n 
approaches 
infinity of the 
sum of n sines.  
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Anatomy of a Sinusoid 
f (t) 

1/   is the frequencyof the sinusoid (Hz).
2 /  is the angular frequency (radians/s).

 

0 

 
2sinf t A t
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The Inner Product: a Measure of Similarity 
 

   

   

/2
*

/2
*

The similarity between functions  and  on the interval / 2 / 2  
can be defined by

,

where  is the complex conjugate of . 

f g  -λ ,λ

f g f t g t dt

g t g t





 

This number, called the  and , can also be 
thought of as the amount of  in  or as the projection of  onto .

inner product of f g
g f f g
   

If  and  have the same energy, then their inner product is 
maximal if  .  On the other hand if , 0, then  and  
have nothing in common.

f g
f g f g f g 
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Inner Products 

( ) ( ) 12.0
1024

0

≈∫ dttgtf

a function, f 

g is a component of f 

pointwise product f(t)g(t) 
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Inner Products 

( ) ( ) 0
1024

0

≈∫ dtthtfh is a not a comp. of f 

pointwise product f(t)h(t) a function, f 
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Inner Product of a Periodic Function and a Sinusoid 

real number results 
yield the amplitude 
of that sinusoid in 
the function. 
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Inner Product of a Periodic Function and a Sinusoid 

Complex number result 
yields the amplitude and 
phase of that sinusoid in 
the function. 
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is the decomposition of a λ-periodic 
signal into a sum of sinusoids. 

Fourier coefficients are 
generated by taking the 
inner product of the 
function with the basis. 

The representation of a 
function by its Fourier 
Series is the sum of sinu-
soidal “basis functions” 
multiplied by coefficients. 

The basis functions 
correspond to modes 
of vibration. 

The Fourier Series 
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The Fourier Series can also be written in terms 
of complex exponentials 

1i  

ni
n nC C e 

cos sinixe x i x  

   
for all integers 
f t n f t

n
 



intensity 

frequency, ω = 1/λ 

0 
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Why are Fourier Coefficients Complex Numbers? 
2

( )   where   .n

ni t i
n n n

n

f t C e C C e



  



 

Cn represents the 
amplitude, A=|Cn|, and 
relative phase, φ , of 
that part of the original 
signal, f (t), that is a 
sinusoid of frequency 
ωn = 2πn / λ. 

0 
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The Fourier Transform 
is the decomposition of a nonperiodic signal into a 
continuous sum* of sinusoids. 

* i.e., an integral. 
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Mammals Use the FT in Hearing 
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The Discrete Fourier Transform 
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The Two-Dimensional Fourier Transform 

l Explains why down-sampling can add distortion to 
an image and shows how to avoid it. 

l Useful for certain types of noise reduction, 
deblurring, and other types of image restoration. 

l For feature detection and enhancement, especially 
edge detection. 

Primary Uses of the FT in Image Processing: 
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The Fourier Transform: Discussion 
The expressions 

     2 2

1
2 / 2 /
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for the Fourier coefficients are “inner products” which can be 
thought of as measures of the similarity between the functions  

( ) ( ) sequences  thebetweenor  ,for  and 2 ∞∞−∈+ tetf ti ωπ

continuous signals 
defined over all 
real numbers 

discrete signals 
with N terms or 
samples. 
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The Fourier Transform: 
Discussion (cont’d.) 

In the context of inner products, the complex exponentials 

    2 2 /
 and ,   and  , 2, 1,0,1, 2,

i t i kn Ne e 
 

 
      

are called “orthogonal sets”  since they have the property: 
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They are called “basis sets” since for any function1, f (t), of a real variable 
there exists a complex-valued function F(w), and for any sequence1, hk , there 
exist complex numbers, Hn , such that  

   
1

0

2 2 /   and   .
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i t i k n N
nkf t F e d h H e  






 



 
1 with finite energy. 

The function 
sets are called 
“orthogonal 
basis sets” 
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Consider the 2-dimensional functions 

   2 ( )2 ( ) , , , , 0, ..., 1,   , 0, ..., 1  and  
jm kn
M Nii ux vy u v x y j m M k n Ne e          

These are, likewise, orthogonal: 
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The Fourier Transform: 
Discussion (cont’d.) 
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Therefore 

    22 ( ) , , ,   and  , , , ,
jm kn
M Nii ux vye u v x y  e j k m n M      

   
1 1 22 ( )

0 0
, ,    and   .

jm knM N ii ux vy M N
mn jk

j k
f x y F u v e dudv h H e




           

 


    

are orthogonal basis sets.  This suggests that function  f (x,y) defined on the 
real plane, and sequence {{ hmn }} for integers m and n have analogous 
Fourier representations, 

where the Fourier coefficients are given by 

   
1 1 22 ( )

0 0
, ,    and   .

jm knM N ii ux vy M N
mnjk

m n
F u v f x y e dxdy H h e


           

 


    

(True for finite energy functions  f (x,y) and {{ hmn }}.) 

The Fourier Transform: 
Discussion (cont’d.) 
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Continuous Fourier Transform 

The continuous Fourier 
transform assumes a 
continuous image exists 
in a finite region of an 
infinite plane. 

    2 ( ), , i vr ucr c v u e dudv
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The BoingBoing Bloggers 
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Discrete Fourier Transform 

The discrete Fourier 
transform assumes a 
digital image exists on a 
closed surface, a torus. 

The BoingBoing Bloggers 
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Discrete Fourier Transform 

The discrete Fourier 
transform assumes a 
digital image exists on a 
closed surface, a torus. 
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The BoingBoing Bloggers 



1/12/2016 28 1999-2013 by Richard Alan Peters II 

The 2D Fourier Transform of a Digital Image 
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Let I(r,c) be a single-band (intensity) digital image with R 
rows and C columns.  Then, I(r,c) has Fourier representation 

where 

are the R x C Fourier coefficients. 

these complex 
exponentials are 
2D sinusoids. 
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What are 2D sinusoids? 

Cont’d. on next page. 

( ) ( ) ( )2 2 sinθ cosθ2 ,
vr uc
R C

i vr uc i r ci N Ne e e
π πω

π ± + ± +± + = =

 2 2 1sin θ,   cosθ,   ,   and θ tan    .v
uv u v u       

where 

To simplify the situation assume R = C = N.  Then 

λ ,N




Write 

       
12 sinθ cosθ 2 2cos sin θ cosθ sin sin θ cosθ .i r ce r c i r c  

 
     

Then by Euler’s relation, 

Note: since images are indexed 
by row & col with r  down and c 
to the right, θ is positive in the 
clockwise direction. 
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What are 2D sinusoids? (cont’d.) 

     
12 sinθ cosθ 2Re cos sin θ cosθi r ce r c 


   

     
12 sinθ cosθ 2Im sin sin θ cosθi r ce r c 


   

Both the real part of this, 

and the imaginary part, 

are sinusoidal “gratings” of unit amplitude, period λ and direction θ. 

Then   is the radian frequency, and the frequency, of the wavefront   

and is the wavelength in pixels in the wavefront direction. 

2
N


N


λ N
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2D Sinusoids: 

orientation 

... are plane waves with 
grayscale amplitudes,  
periods in terms of lengths, ... 

    2, cos sin θ cosθ 1
2
Ar c r c




 
      

  
I

A 

θ 

φ = phase shift 
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2D Sinusoids: ... specific orientations,   
    and phase shifts. 
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The Fourier Transform of an Image 

I Re[F{I}] Im[F{I}] 

u 

v 

u 

v 

r 

c 
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Points on the Fourier Plane 

If R=C=N the point at 
column freq. u and row 
freq. v represents a 
sinusoid with freq. ω and 
orientation θ.   

If R ≠ C then ω = 1/λ 
where λ is the length of 
vector (C/u, R/v) and the 
wavefront orientation is 
θ = tan-1[(v/R)/(u/C)]. 
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Points on the Fourier Plane (of a Digital Image) 

   
1
22 2

wfλ .RC uR vC
    

-v direction 

u direction 

-θ direction 

(0,0) 

 λ    and  λ   pixels,C R
u vu v 

and the wavelength in the wavefront direction is 

   

 

2 2
wf

ω  ,  ω , and 
1ω    cycles.

u v
u vC R

uR vC
RC

 

 

of a digital image 

More about 
this later 
(pp. 66-87). 

Note that the wave 
front direction = θ 
only if R=C. 

In the Fourier transform of an R×C digital image, 
positions u and v indicate the number of repetitions 
of the sinusoid in those directions. Therefore the 
wavelengths along the column and row axes are  

The wavefront direction is given by 

   1 1
wfθ tan tan .v C

u R
  ω

ω
v

u

row freq. 
──────── 
column freq. 

The frequency is the fraction of the sinusoid 
traversed over one pixel, 
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Points on the Fourier Plane 

This point represents this particular sinusoidal grating 

x 

y 

Note that θ is the wavefront 
direction only if R=C. 
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… is a complex 
number with a 
real part and an 
imaginary part. 

The Value of a Fourier Coefficient … 

If you represent 
that number as a 
magnitude, A, and 
a phase, φ, … 

..these represent the amplitude 
and offset of the sinusoid with 
frequency ω and direction θ.* 

*See p. 49. 
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The Value of a Fourier Coefficient 
The magnitude and phase 
representation makes 
more sense physically… 

…since the Fourier magni-
tude, A (ω,θ), at point (ω,θ) 
represents the amplitude 
of the sinusoid… 

and the phase, φ(ω,θ), 
represents the offset of the 
sinusoid relative to origin.  
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The Fourier Coefficient at (u,v) 
So, the point (u,v) on the 
Fourier plane… 

…represents a sinusoidal 
grating of frequency ω 
and orientation θ.* 

…represents the ampli-
tude, A, and the phase 
offset, φ, of the sinusoid.  

The complex value, F(u,v), 
of the FT at point (u,v)… 

*See p. 49. 
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The Sinusoid from the Fourier Coeff. at (u,v) 

Note that the wave 
front direction = θ 
only if R=C. 
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FT of an Image (Magnitude + Phase) 

I log{|F{I}|2+1} ∠[F{I}] 
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FT of an Image (Real + Imaginary) 

I Re[F{I}] Im[F{I}] 
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The Power Spectrum 
The power spectrum of a signal is the square of 
the magnitude of its Fourier Transform. 

     
         

     

2 *

2 2

, , ,
Re , Im , Re , Im ,

Re , Im , .

u v u v u v
u v i u v u v i u v

u v u v



  

 

I I I

I I I I

I I

For display, 
the log of 
the power 
spectrum is 
often used. 

At each location (u,v) it indicates the squared intensity of the 
frequency component with period                     and orientation 2 21   / u v 

 1tan / .v u 
For display in Matlab:  
PS = fftshift(2*log(abs(fft2(I))+1)); 
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The power spectrum (PS) is defined by                               . 
We take the base-e logarithm of the PS in order to view it. Otherwise its dynamic range could be 
too large to see everything at once. We add 1 to it first so that the minimum value of the result is 
0 rather than –infinity, which it would be if there were any zeros in the PS. Recall that  
log( f 2) = 2log( f  ). 
Multiplying by 2 is not necessary if you are generating a PS for viewing, since you'll probably 
have to scale it into the range 0-255 anyway. It is much easier to see the structures in a Fourier 
plane if the origin is in the center. Therefore we usually perform an fftshift on the PS before it is 
displayed.  
     >> PS = fftshift(log(abs(fft2(I))+1));  

     >> M  = max(PS(:));  

     >> image(uint8(255*(PS/M)));  

If the PS is being calculated for later computational use -- for example the autocorrelation of a 
function is the inverse FT of the PS of the function -- it should be calculated by  
     >> PS = abs(fft2(I)).^2;  

On the Computation of the Power Spectrum 
( ) ( ){ } 2,IIPS vuF=
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The Uncertainty Relation 

FT 

space frequency 

FT 

space frequency 

A small object in space 
has a large frequency 
extent and vice-versa. 

216
1
π

≥∆∆⋅∆∆
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vuyx

vu

yx

then, frequency
 in extent its is  if

and space in object the
 of extent the is  If
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The Uncertainty Relation 

Recall: a symmetric 
pair of impulses in the 
frequency domain 
becomes a sinusoid in 
the spatial domain. 

A symmetric pair of 
lines in the frequency 
domain becomes a 
sinusoidal line in the 
spatial domain. 
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The Fourier Transform of an Edge 

edge Power Spectrum Phase Spectrum 
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The Fourier Transform of a Bar 

bar Power Spectrum Phase Spectrum 
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Coordinate Origin of the FFT Center = 
(floor(R/2)+1, floor(C/2)+1) 

Even Even Odd Odd 

Image Origin Weight Matrix Origin Image Origin Weight Matrix Origin 

After FFT shift After IFFT shift After FFT shift After IFFT shift 
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Matlab’s fftshift and ifftshift 
J = fftshift(I):  

I (1,1) → J ( R/2 +1, C/2 +1) 

I = ifftshift(J): 

J ( R/2 +1, C/2 +1) → I (1,1) 

where x = floor(x) = the largest integer smaller than x. 

from FFT2 
or ifftshift after fftshift 

origin origin 
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5 6 4 

8 9 7 

2 3 1 

1 2 3 

4 5 6 

7 8 9 

Matlab’s fftshift and ifftshift 

J = fftshift(I):  

I (1,1) → J ( R/2 +1, C/2 +1) 

I = ifftshift(J): 

J ( R/2 +1, C/2 +1) → I (1,1) 

where x = floor(x) = the largest integer smaller than x. 

1 2 3 

4 5 6 

7 8 9 

5 6 4 

8 9 7 

2 3 1 
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Points on the Fourier Plane (of a Digital Image) 

   
1
22 2

wfλ .RC uR vC
    

-v direction 

u direction 

-θ direction 

(0,0) 

 λ    and  λ   pixels,C R
u vu v 

and the wavelength in the wavefront direction is 
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of a digital image 

Note that the wave 
front direction = θ 
only if R=C. 

In the Fourier transform of an R×C digital image, 
positions u and v indicate the number of repetitions 
of the sinusoid in those directions. Therefore the 
wavelengths along the column and row axes are  

The wavefront direction is given by 

   1 1
wfθ tan tan .v C

u R
  ω

ω
v

u

row freq. 
──────── 
column freq. 

The frequency is the fraction of the sinusoid 
traversed over one pixel, 
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Geometrical Derivation of Wavelength 

Since the wavelength of a horizontal* wave 
is R/v and that of a vertical is C/u, the line 
segment, h, that connects the two distances 
is parallel to the wavefront. The wavelength 
is the “altitude” of the triangle w.r.t. h (the 
perpendicular to h that intersects the origin).  
The area of the triangle, one half of base 
times height, is independent of the leg that is 
taken to be the base.  Equate the expression 
with base C/u to that with base h, to find λ 
w.r.t R, C, v, u, & h.  Then replace h with its 
expression as a function of R, C, v, & u to 
get the final expression. 
*The equivalue lines are horizontal in a wave with a vertical wave front and vice versa. 
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Coordinates and Directions in the Fourier Plane 

Since rows increase down and columns to the right, slopes and 
angles are opposite those of a right-handed coordinate system.   

increasing rows 

increasing cols 

(+r,+c) (+r,-c) 

(-r,-c) (-r,+c) 

θ < 0 

θ < 0 

decreasing rows 

decreasing cols 
(+r,+c) (+r,-c) 

(-r,-c) (-r,+c) 

θ > 0 

θ > 0 
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Inverse FFTs of Impulses 

highest-possible-frequency horizontal sinusoid (C is even) 

“horizontal” is the 
wavefront direction. 

fftshifted 
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Inverse FFTs of Impulses 

highest-possible-frequency vertical sinusoid (R is even) 

“vertical” is the 
wavefront direction. 

fftshifted 
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Inverse FFTs of Impulses 

highest-possible-freq horizontal+vertical sinusoid (R & C even) 

a checker-board 
pattern. 

fftshifted 
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Inverse FFTs of Impulses 

fftshifted 

lowest-possible-frequency horizontal sinusoid 

“horizontal” is the 
wavefront direction. 
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Inverse FFTs of Impulses 

fftshifted 

lowest-possible-frequency vertical sinusoid 

“vertical” is the 
wavefront direction. 
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Inverse FFTs of Impulses 

fftshifted 

lowest-possible-frequency negative diagonal sinusoid 

“negative diagonal” is  
the wavefront direction. 
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Inverse FFTs of Impulses 

fftshifted 

lowest-possible-frequency positive diagonal sinusoid 

“positive diagonal” is  
the wavefront direction. 
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+v direction 

+u direction 

512 columns 

38
4 

ro
w

s 

frequencies: (u,v) = (4,3);  wavelengths: (λu, λv) = (128,128) 

Note this … … and this. 

How can that be? 

Frequencies and Wavelengths in the Fourier Plane 
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frequencies: (u,v) = (1,0);  wavelength: λu= 512 

u = # of complete cycles 
in the horizontal direction 

λu = C / u 

512 columns 

38
4 

ro
w

s 

Frequencies and Wavelengths in the Fourier Plane 
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frequencies: (u,v) = (0,1);  wavelength: λv= 384 

v = # of complete 
cycles in the 
vertical direction 

λv = R / v 

512 columns 

38
4 

ro
w

s 

Frequencies and Wavelengths in the Fourier Plane 



1/12/2016 65 1999-2013 by Richard Alan Peters II 

Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (2,0);  wavelength: λu= 256 

u = # of complete cycles 
in the horizontal direction 

λu = C / u 

512 columns 

38
4 

ro
w

s 
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Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (0,2);  wavelength: λv= 192 

v = # of complete 
cycles in the 
vertical direction 

λv = R / v 

512 columns 

38
4 

ro
w

s 
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Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (3,0);  wavelength: λu= 170 ⅔ 

u = # of complete cycles 
in the horizontal direction 

λu = C / u 

512 columns 

38
4 

ro
w

s 
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Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (0,3);  wavelength: λv= 128 

v = # of complete 
cycles in the 
vertical direction 

λv = R / v 

512 columns 

38
4 

ro
w

s 



Frequencies and Wavelengths in the Fourier Plane 
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θ 

θ 

θ 

θ 

frequencies: (u,v) = (3,3);  wavelengths: (λu, λv) = (170 ⅔,128) 

512 columns 

38
4 

ro
w

s 

In the Fourier plane of a 
square image, the orientation 
of the line through the point 
pair = the orientation of the 
wave front in the image.  Not 
so for a non-square image. 

In the F plane the angle is -45˚ 
in this image it’s about -53˚ 
(yellow line).  That’s because 
the fraction of R covered by 
one pixel is 4/3 the fraction of 
C covered by one pixel. 

Also as a result, the 
wavelength is 102.4. 
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θ 

θ 

θwf 

θwf 

λwf 

Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (3,3);  wavelengths: (λu, λv) = (170 ⅔,128) 

512 columns 

38
4 

ro
w

s 

and the wavelength is: 
 
 
 
 

In general the slope of the 
wavefront direction in the 
image is given by (v/R) / (u/C). 
Therefore its angle is  
 
 
 

1
wfθ tan ,vC

uR
     

   
1
22 2

wfλ .RC uR vC
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Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (3,3);  wavelengths: (λu, λv) = (170 ⅔,128) 

512 columns 

38
4 

ro
w

s 
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Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (4,3);  wavelengths: (λu, λv) = (128,128) 

512 columns 

38
4 

ro
w

s 
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θwf 

θwf 

λwf 

Frequencies and Wavelengths in the Fourier Plane 

frequencies: (u,v) = (4,3);  wavelengths: (λu, λv) = (128,128) 

512 columns 

38
4 

ro
w

s 

The ratio R/C = ¾ in this image. Therefore at 
frequency (4,3) the wave front angle is 
 
 
 

 1 1 1
wf

3 512 3 4θ tan tan tan 1 45 ,
4 384 4 3

                   


and the wavelength is  
 
 
 
 

   
1
22 2

wfλ 384 512 3 384 4 512 83.67,
        



1/12/2016 74 1999-2013 by Richard Alan Peters II 

Power Spectrum of an Image 
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Relationship between Image and FT  

power spectrum phase 

power spectrum phase 
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Fourier Magnitude and Phase 

I 
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Fourier Magnitude 

 log IF
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Fourier Phase 

  IF
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Q:  Which contains more visually relevant 
information; magnitude or phase? 

original image Fourier log 
magnitude 

Fourier phase 
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Magnitude Only Reconstruction  
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Phase Only Reconstruction 
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Spatial Filtering 

    

       
, T ,

, ,..., ,... , ,..., ,... .
r c r c
f r s r r s c d c c d   

 

     

J I
I

That is, the value of the transformed image, J, at pixel location 
(r,c) is a function of the values of the original image, I,  in a 2s +1 
× 2d +1 rectangular neighborhood centered on pixel location (r,c). 

Let I and J  be images such that J = T [I].  
T [·] represents a transformation, such that, 
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Moving Windows 

l The value, J(r,c) = T[I](r,c), is a function of a 
rectangular neighborhood centered on pixel 
location (r,c) in I.   

l There is a different neighborhood for each pixel 
location, but if the dimensions of the neighbor-
hood are the same for each location, then trans-
form T is sometimes called a moving window 
transform. 



1/12/2016 4 1999-2011 by Richard Alan Peters II 

Moving-Window Transformations 

Neutral 
Buoyancy 
Facility at 
NASA 
Johnson 
Space 
Center 

We’ll take a 
section of 
this image to 
demonstrate 
the MWT 

photo: R.A.Peters II, 1999 
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Moving-Window Transformations 

operate on this region 
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Moving-Window Transformations 

apply a pixel grid 

Pixelize the section to 
better see the effects.  
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Moving-Window Transformations 

sample (average 
in the squares). 

Pixelize the section to 
better see the effects.  
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Moving-Window Transformations 

lets get 
some 
perspective 
on this 
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Moving-Window Transformations 

a neighborhood defined 
by a weight matrix 
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Moving-Window Transformations 

neighborhoods at other pixel locations 
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Linear Moving-Window 
Transformations 
( i.e. convolution) 

The output of the 
transform at each pixel 
is the (weighted) 
average of the pixels in 
the neighborhood. 
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Moving-Window Transformations 

result of a 9 x 9 
uniform averaging 
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Convolution: Mathematical Representation 

If a MW transformation is linear then it is a convolution:  

 ( , ) ( , ) ( , ) ( , ) ,r c r c r c d d     
 



     J I h I h

 ( , ) ( , ) ( , ) ( , )
s d

s d

r c r c B r c
 

   
 

     J I h h

for a real image (I:×→), or for a digital image (I:×→):  
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Convolution Mask (Weight Matrix) 
• The object, h(ρ,χ), in the equation is a weighting function, or in 

the discrete case, a rectangular matrix of numbers. 
• The matrix is the moving window. 
• Pixel (r,c) in the output image is the weighted sum of pixels 

from the original image in the neighborhood of (r,c) traced by 
the matrix. 

• Each pixel in the neighborhood of (r,c) is multiplied by the 
corresponding matrix value — after the matrix is rotated  by 
180º.  (See slide 22). 

• The sum of those products is the value of pixel (r,c) in the 
output image 
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Convolution Masks: Moving Window 

mask 
origin 

rotate 180°… 

translate 
to pixel 
loc (r,c) 

… around 
pixel loc 

(r,c) 
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Convolution Masks: Moving Window 

multiplies 
pixel 

I(r+1,c+1) 

multiplies 
pixel   

I(r-1,c-2) 

multiplies 
pixel   

I(r,c-1) 

multiplies   
pixel   

I(r-1,c) 
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Convolution by Moving Window 
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Moving Window Transform: Example 

original 3x3 average 

Another example  
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Moving Window Transform: Example 

original 3x3 average 
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Moving Window Transform: Example 

original 3x3 average 
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Moving Window Transform: Example 

original 3x3 average 
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Moving Window Transform: Example 

original 3x3 average 
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Moving Window Transform: Example 

original 3x3 average 
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Moving Window Transform: Example 

original 3x3 average 
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Convolution by Rotating and Shifting the Weight Matrix 

Result of sum 
of products 

Shifted weight 
matrix 

The original image has a 
black impulse at the center 
and zeros (white) elsewhere. 

The weight matrix has a 
gray ‘L’ at its left and zeros 
(white) elsewhere. 

The resulting image has a copy 
of the weight matrix pegged 
to the impulse location. 

Accumulated 
nonzero results 

Location of 
impulse 

At the locations 
not shown, the 
results were 
zeros. 

14 
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Symmetric Weight Matrix 

A symmetric weight matrix is unchanged by rotation through 180°.  



1/12/2016 27 1999-2011 by Richard Alan Peters II 

Three ways to compute a convolution 

1. Moving window transform as just shown. 
2. Shift multiply add. 
3. Fourier transform. 

1. 2. 3. 
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Shift-Multiply-Add Approach 
• The image is copied 1 time for each element in 

the convolution mask. 
• Each copy is shifted relative to the original by 

the displacement of its associated mask element. 
• Each copy is multiplied by the value of its 

associated mask element. 
• The set of shifted and multiplied images is 

summed pixel wise. 
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Convolution by an Impulse 

    , ( , ) , .w r c r c w r c         I I

  1,   if    and   , 0,   otherwise
r cr c        

An impulse is a digital image, that has a single pixel with 
value 1; all others have value zero. An impulse at location 
(ρ, χ) is represented by: 

If an image is convolved with an impulse of weight w at 
location (ρ, χ), then the image is multiplied by w and shifted 
in location down by ρ pixels and to the right by χ pixels. 
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Convolution by an Impulse 

( )16,16 −− crδ

Shifted down and to 
the right by 16 pixels. 
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Convolution by Two Impulses 

 1
2 16, 16r c  

 1
2 0, 0r c  

Two copies, one moved, 
one not moved, averaged. 
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Convolution by Three Impulses 

 1
3 16, 16r c  

 1
3 16, 16r c  

 1
3 0, 0r c  

Weights = 1/3 Three copies, two moved, 
one not moved, averaged. 
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Convolution by Five Impulses 

 1
5 16, 16r c  

 1
5 16, 16r c  

 1
5 16, 16r c  

 1
5 16, 16r c  

 1
5 0, 0r c  

Five copies, four moved, 
one not moved, averaged. 
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Convolution by Five Impulses 

Moved adjacent to each 
other, the convolution 
becomes a blurring filter. 
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Convolution by Five Impulses 

The impulses become values 
in a 3x3 neighborhood. 
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Convolution by Five Impulses 

The convolution mask 
has five elements at 
1/5 and four at 0. 
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Convolution by Copying, Multiplying, and Shifting the Image 

original image, I 
padded image, P 
effective neighborhood 

aligned pixels to 
be summed  

weight for image 

w
eight m

atrix 

For each element h(rh,ch) 
in weight matrix, h, 
image I is copied into a 
zero-padded image, P, 
starting at (rh,ch).   
Each P is multiplied by  
the corresponding weight, 
h(rh,ch).   
All the P images are 
summed pixel-wise then 
divided by the sum of the 
elements of h.  The result 
is cropped out of the 
center of the accumulated 
Ps. 
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The original image has a 
black impulse at the center 
and zeros (white) elsewhere. 

The weight matrix has a 
gray ‘L’ at its left and zeros 
(white) elsewhere. 

The resulting image has a 
copy of the weight matrix 
pegged to the impulse 
location. 

In the result, the origin of the 
weight matrix coincides with the 
original location of the impulse. 

original image, I 
effective neighborhood 
padded image, P 

Convolution by Copying, Multiplying, and Shifting the Image 
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The position of 
the black 
square relative 
the center of 
the weight 
matrix 
indicates the 
shift of the 
original image 
relative to the 
middle of the 
padded image. 

Each copy of the (entire) image is multiplied by the value 
of the weight matrix in black square (here, white = 0) 
before being accumulated (pixelwise) in the padded image 

In this 
image, only 
the pixel in 
the center is 
nonzero so 
only it shows 
a result when 
the image is 
multiplied by 
a nonzero 
value 

Convolution by 
Copying, Multiplying, 
and Shifting the Image 
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The position of 
the black 
square relative 
the center of 
the weight 
matrix 
indicates the 
shift of the 
original image 
relative to the 
middle of the 
padded image. 

Each copy of the (entire) image is multiplied by the value 
of the weight matrix in black square (here, white = 0) 
before being accumulated (pixelwise) in the padded image 

In this 
image, only 
the pixel in 
the center is 
nonzero so 
only it shows 
a result when 
the image is 
multiplied by 
a nonzero 
value 

Convolution by 
Copying, Multiplying, 
and Shifting the Image 
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Zero Padding an Image for 
Convolution: Variable Names.  

C weight matrix, h 

d 

m 

n 

R 

B 

Image, I 

cpad 

rpad 

cpad = floor( n / 2 )  
rpad = floor( m / 2 ) 
hcorig = cpad + 1 
hrorig = rpad + 1 
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R I 

C 

C + n - 1 

R 
+ 

m
 - 

1 

n 

m 

To use the image 
shift-multiply-
accumulate 
algorithm, create 
an accumulator 
image, A, that is 
R+m-1 rows by 
C+n-1 columns 

Convolution 
by Copying 
and Shifting 
the Image A 

h 

Image I is RxC 
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Convolution by Copying, Multiplying, and Shifting the Image 

13x13 image 
convolved by 
6x6 mask. 

Image is constant;  
mask has only 6 
nonzero values all 
on the diagonal. 

Image is shifted to 
mask location, 
multiplied by value, 
and accumulated. 

accumulator 

output image 

conv. mask 
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R 

C 

When done, copy the 
output image from the 
accumulator starting 
at (hrorig, hcorig) and 
ending at (hrorig+R-1, 
hcorig+C-1) 

Convolution 
by Copying 
and Shifting 
the Image 

output image, J 

hcorig hcorig+C-1 

h
r
o
r
i
g
 

h
r
o
r
i
g
+
R
-
1
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Convolution Examples:  Original Images 
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Convolution Examples:  3×3 Blur 
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9
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Convolution Examples:  5×5 Blur 
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Convolution Examples:  9×9 Blur 
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Convolution Examples:  17×17 Blur 
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Convolution Examples:  Original Images 
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Convolution Examples:  Vertical Difference 
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Convolution Examples: Horizontal Difference 

[ ]121 −−
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Convolution Examples:  H + V  Diff. 
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Convolution Examples:  Diagonal Difference 
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Convolution Examples:  Diagonal Difference 















−

−

001
020
100



1/12/2016 58 1999-2011 by Richard Alan Peters II 

Convolution Examples:  D + D  Difference 
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Convolution Examples:  H + V + D  Diff. 
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Convolution Examples:  Original Images 
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Convolution Property of the Fourier Transform 

Let functions ( , ) and ( , ) have 
Fourier Transforms F( , ) and G( , ).  
Then,

          { } .
Moreover,

          { } .

r c r c
u v u v

  

  

f g

f g F G

f g F G

F

F

The Fourier Transform of a 
convolution equals the 
product of the Fourier 
Transforms.  Similarly, the 
Fourier Transform of a 
convolution is the product of 
the Fourier Transforms 

* = convolution 
 · = multiplication 
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Convolution via 
Fourier Transform 

Image & Mask Transforms 

Pixel-wise 
Product 

Inverse 
Transform 
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1. Read the image from a file into a variable, say I. 
2. Read in or create the convolution mask, h. 
3. Compute the sum of the mask:  s = sum(h(:)); 
4. If  s == 0, set  s = 1; 
5. Replace h with  h = h/s; 
6. Create:  H = zeros(size(I)); 
7. Copy h into the middle of H. 
8. Shift H into position:  H = ifftshift(H); 
9. Take the 2D FT of I and H: FI=fft2(I); FH=fft2(H); 
10. Pointwise multiply the FTs:  FJ=FI.*FH; 
11. Compute the inverse FT:  J = real(ifft2(FJ)); 

How to Convolve via FT in Matlab 

For color images you may 
need to do each step for 
each band separately. 

The mask is usually 1-band 
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Coordinate Origin of the FFT Center = 
(floor(R/2)+1, floor(C/2)+1) 

Even Even Odd Odd 

Image Origin Weight Matrix Origin Image Origin Weight Matrix Origin 

After FFT shift After IFFT shift After FFT shift After IFFT shift 
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5 6 4 

8 9 7 

2 3 1 

1 2 3 

4 5 6 

7 8 9 

Matlab’s fftshift and ifftshift 

J = fftshift(I):  

I (1,1) → J ( R/2 +1, C/2 +1) 

I = ifftshift(J): 

J ( R/2 +1, C/2 +1) → I (1,1) 

where x = floor(x) = the largest integer smaller than x. 

1 2 3 

4 5 6 

7 8 9 

5 6 4 

8 9 7 

2 3 1 
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Blurring: Averaging / Lowpass Filtering  

Blurring results from:  
l Pixel averaging in the spatial domain: 

– Each pixel in the output is a weighted average of its neighbors. 
– Is a convolution whose weight matrix sums to 1. 

l Lowpass filtering in the frequency domain: 
– High frequencies are diminished or eliminated 
– Individual frequency components are multiplied by a nonincreasing 

function of ω such as 1/ω = 1/√(u2+v2). 

The values of the output image are all non-negative. 
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Sharpening: Differencing / Highpass Filtering  
Sharpening results from adding to the image, a copy of 
itself that has been:  
l     Pixel-differenced in the spatial domain: 

– Each pixel in the output is a difference between itself and a weighted 
average of its neighbors. 

– Is a convolution whose weight matrix sums to 0. 
l     Highpass filtered in the frequency domain: 

– High frequencies are enhanced or amplified. 
– Individual frequency components are multiplied by an increasing 

function of ω such as αω = α√(u2+v2), where α is a constant. 

The values of the output image  positive & negative. 
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Convolution Property of the Fourier Transform 

 1

Let functions ( , ) and ( , ) have 
Fourier Transforms ( , ) and ( , ).  
Then,

          { } .
Moreover,

          { } .
Thus we can compute  by

         .-

r c r c
u v u v

  

  


  

f g
F G

f g F G

f g F G
f g

f g F G

F

F

F

The Fourier Transform of a 
convolution equals the 
product of the Fourier 
Transforms.  Similarly, the 
Fourier Transform of a 
convolution is the product of 
the Fourier Transforms 

* = convolution 
 · = multiplication 

Recall: 
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Ideal Lowpass Filter 



Ideal Lowpass Filter 

Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
FD filter radius: 16 

Multiply by 
this, or … 

… convolve 
by this 
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Spatial Representation Central Profile 

Ideal Lowpass Filter Image size: 512x512 
FD filter radius: 8 

Multiply by 
this, or … 

… convolve 
by this 
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Fourier Domain Rep. 



Power Spectrum and Phase of an Image 

Consider the 
image below: 

Original Image Power Spectrum Phase 
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Ideal LPF in FD Original Image Power Spectrum 

Ideal Lowpass Filter Image size: 512x512 
FD filter radius: 16 
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Original Image Filtered Image Filtered Power Spectrum 

Ideal Lowpass Filter Image size: 512x512 
FD filter radius: 16 
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Filtered Power Spectrum 

Ideal Lowpass Filter Image size: 512x512 
FD filter radius: 16 
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Filtered Image Original Image 
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Ideal Highpass Filter 



Ideal Highpass Filter 

Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
FD notch radius: 16 

Multiply by 
this, or … 

… convolve 
by this 
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Ideal HPF in FD Original Image Power Spectrum 

Ideal Highpass Filter Image size: 512x512 
FD notch radius: 16 
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Original Image Filtered Image* Filtered Power Spectrum 

Ideal Highpass Filter Image size: 512x512 
FD notch radius: 16 
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*signed image:  
0 mapped to 128 
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Ideal Bandpass Filter 



Ideal Bandpass Filter 
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A bandpass filter is created by  
(1) subtracting a FD radius ρ2 lowpass filtered image from a FD radius ρ1 lowpass 

filtered image, where ρ2 < ρ1, or  
(2) convolving the image with a mask that is the difference of the two lowpass masks. 

FD LP mask with radius ρ1 FD LP mask with radius ρ2 FD BP mask ρ1 - ρ2 

- = 



Ideal Bandpass Filter 
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*signed image:  
0 mapped to 128 

image LPF radius ρ1 image LPF radius ρ2 image BPF radii ρ1, ρ2* 



Ideal Bandpass Filter 

original image* filter power spectrum filtered image 
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*signed image:  0 
mapped to 128 



A Different Ideal Bandpass Filter 

original image filter power spectrum filtered image* 
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*signed image:  
0 mapped to 128 



1/12/2016 1999-2011 by Richard Alan Peters II 26 

The Optimal Filter 



The Uncertainty Relation 

FT 

space frequency 

A small object in space 
has a large frequency 
extent and vice-versa. 

216
1
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vuyx

vu

yx

then, frequency
 in extent its is  if

and space in object the
 of extent the is  If
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space frequency 

FT 



The Uncertainty Relation 
Recall: a symmetric 
pair of impulses in the 
frequency domain 
becomes a sinusoid in 
the spatial domain. 

A symmetric pair of 
lines in the frequency 
domain becomes a 
sinusoidal line in the 
spatial domain. 
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Ideal Filters Do Not Produce Ideal Results 

A sharp cutoff in the 
frequency domain… 

…causes ringing in the 
spatial domain. 

IFT 

1/12/2016 1999-2011 by Richard Alan Peters II 29 



Ideal Filters Do Not Produce Ideal Results 

Ideal LPF 

Blurring the image above 
w/ an ideal lowpass filter… 

…distorts the results with 
ringing or ghosting. 
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Optimal Filter:  The Gaussian 

The Gaussian filter optimizes the uncertainty relation. 
It provides the sharpest cutoff with the least ringing. 

IFT 
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One-Dimensional Gaussian 
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Two-Dimensional Gaussian 
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If µ and σ are 
different for r & c… 

…or if µ and σ are 
the same for r & c. 

r 

c 
R = 512, C = 512 

µ = 257, σ = 64 
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Gaussian LPF 

With a gaussian lowpass 
filter, the image above … 

… is blurred without ringing 
or ghosting. 

Optimal Filter:  The Gaussian 
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Compare with an “Ideal” LPF 

Ideal LPF 

Blurring the image above w/ 
an ideal lowpass filter… 

…distorts the results with 
ringing or ghosting. 
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Gaussian Lowpass Filter 



Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
SD filter sigma = 8 Gaussian Lowpass Filter 

Multiply by 
this, or … 

… convolve 
by this 
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Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
SD filter sigma = 2 

Multiply by 
this, or … 

… convolve 
by this 

1/12/2016 1999-2011 by Richard Alan Peters II 38 

Gaussian Lowpass Filter 



Gaussian LPF in FD Original Image Power Spectrum 

Image size: 512x512 
SD filter sigma = 8 
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Gaussian Lowpass Filter 



Original Image Filtered Image Filtered Power Spectrum 

Image size: 512x512 
SD filter sigma = 8 
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Gaussian Lowpass Filter 
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Gaussian Highpass Filter 



Gaussian Highpass Filter 

Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
FD notch sigma = 8 

Multiply by 
this, or … 

… convolve 
by this 
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Gaussian HPF in FD Original Image Power Spectrum 

Gaussian Highpass Filter Image size: 512x512 
FD notch sigma = 8 
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Filtered Image* Filtered Power Spectrum 

Gaussian Highpass Filter Image size: 512x512 
FD notch sigma = 8 

*signed image:  
0 mapped to 128 

Original Image 
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Another Gaussian Highpass Filter 

original image filter power spectrum filtered image* 
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*signed image:  
0 mapped to 128 
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Gaussian Bandpass Filter 



Gaussian Bandpass Filter 
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A bandpass filter is created by  
(1) subtracting a FD radius ρ2 lowpass filtered image from a FD radius ρ1 lowpass 

filtered image, where ρ2 < ρ1, or  
(2) convolving the image with a mask that is the difference of the two lowpass masks. 

FD LP mask with radius σ1 FD LP mask with radius σ2 FD BP mask σ1 - σ2 

- = 



Gaussian Bandpass Filter 
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*signed image:  
0 mapped to 128 

image LPF radius ρ1 image LPF radius ρ2 image BPF radii ρ1, ρ2* 



Ideal Bandpass Filter 

original image filter power spectrum filtered image* 
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*signed image:  
0 mapped to 128 



Gaussian Bandpass Filter 

Fourier Domain Rep. Spatial Representation Central Profile 

Image size: 512x512 
sigma = 2 - sigma = 8 
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Gaussian BPF in FD Original Image Power Spectrum 

Gaussian Bandpass Filter Image size: 512x512 
sigma = 2 - sigma = 8 
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Original Image Filtered Image* Filtered Power Spectrum 

Gaussian Bandpass Filter Image size: 512x512 
sigma = 2 - sigma = 8 
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*signed image:  
0 mapped to 128 
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Ideal vs. Gaussian Filters 



Original Image Ideal HPF* Ideal LPF 

Ideal Lowpass and Highpass Filters 
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*signed image:  
0 mapped to 128 



Original Image Gaussian HPF* Gaussian LPF 
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*signed image:  
0 mapped to 128 

Gaussian Lowpass and Highpass Filters 



Original Image Gaussian BPF* Ideal BPF* 
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*signed image:  
0 mapped to 128 

Ideal and Gaussian Bandpass Filters 



Original Image Ideal BPF* Gaussian BPF* 
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*signed image:  
0 mapped to 128 

Gaussian and Ideal Bandpass Filters 
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Effects on Power Spectrum 



Power Spectrum and Phase of an Image 

original image power spectrum phase 
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Power Spectrum and Phase of a Blurred Image 
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blurred image power spectrum phase 



Power Spectrum and Phase of an Image 

original image power spectrum phase 
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Power Spectrum and Phase of a Sharpened Image 

1/12/2016 1999-2011 by Richard Alan Peters II 62 

power spectrum phase sharpened image 
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Sharpening 
l Results from high frequency enhancement since 

small features correspond to short wavelength 
sinusoids. 

l Relative amplification of high frequencies in the 
Fourier domain corresponds to differentiation in 
the spatial domain. 

l On a discrete image, differentiation corresponds to 
pixel differencing. 
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The Derivative Property of the Fourier Transform 

The FT of the partial 
derivative w.r.t. r (in 
the row direction) of 
an image, I … 

… is equal to the product of 
the FT of the image and the 
corresponding frequency 
variable, v. 

Integration 
by parts 

This results in 
horizontal HF 
enhancement 
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Differentiation is Highpass Filtering 

Directional 
derivative in r. 

Vertical HF 
Enhancement 

Directional 
derivative in c. 

Horizontal HF 
Enhancement 

     
     

, ,

, ,
c
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u v u u v
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Fourier Transforms of Sums of  Derivatives 

Sum of first-order 
partial derviatives… 

…linear amplification 
of high frequencies 

Sum of second-order 
partial derviatives… 

…quadratic  amplification 
of high frequencies 

         2 2 , .
r c

i u v i u v u v  


 
       I I FF F
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Sharpening: Differencing / Highpass Filtering  

Sharpening results from adding to the image a 
copy of itself that has been:  

l Pixel-differenced in the spatial domain: 
– Each pixel in the output is a difference between itself 

and a weighted average of its neighbors. 
– Is a convolution whose weight matrix sums to 0. 

l Highpass filtered in the frequency domain: 
– High frequencies are enhanced or amplified. 
– Individual frequency components are multiplied by an 

increasing function of ω such as αω = α√(u2+v2), where 
α is a constant. 
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Sharpening: Differencing / Highpass Filtering 

original image, I power spectrum 



1/12/2016 8 1999-2011 by Richard Alan Peters II 

Sharpening: Differencing / Highpass Filtering 

power spectrum of h = [-1 1] power spectrum of I∗h = I(r,c)-I(r,c-1) 
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Sharpening: Differencing / Highpass Filtering 

negative pixels in differenced image positive pixels in differenced image 
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Sharpening: Differencing / Highpass Filtering 

original image, I power spectrum 
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Sharpening: Differencing / Highpass Filtering 

sharpened image, 2I(r,c)-I(r,c-1) power spectrum 
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HP Filter: Direct Linear Frequency Enhancement 

  2 2HF enhanced:  ,u v u v  IForiginal image power spectrum 
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original + linearly enhanced 

Sharpening: Direct Linear Frequency Enhancement 

original image power spectrum 
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thresholded linear HF image  original image 

HF Enhancement and Edge Detection 
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    2 2HF enhanced:   ,u v u v  IF

HF Filtering: Direct Quadratic Frequency Enhancement 

original image power spectrum 
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original + quadratically enhanced 

Sharpening: Direct Quadratic Frequency Enhancement 

original image power spectrum 
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thresholded quad. HF image  

HF Enhancement and Edge Detection 

original image 
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Differentiation Through Integration 
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1. 

2. 

3. 

Assume that h(ρ,χ) = 
δ(ρ,χ).  Then I∗h = I.  and 
∂I/∂w = ∂(I∗h)/∂w. 

Differentiation property 
of the Fourier Transform. 

Convolution property of 
the Fourier Transform. 

,    1w x y α β    

  
 

   
supp

, , ,r c r c d d
w w

     
 

   
  

I

I h I h

,    1z u v      

     , ,r c r c
w

jz


J JF F



1/12/2016 19 1999-2011 by Richard Alan Peters II 

Differentiation Through Integration 

4. 

5. 

Apply 2 and 3 to 
1 to get this. 

The derivative of a 
convolution of I by h 
is the convolution of I 
by the derivative of h. 

w and z are directions 
in the plane. 
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Original Image 

power spectrum of I image I 
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Left Difference 

power spectrum of I∗h = I∗[-1 1] I∗h = I∗[-1 1] 
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Original Image + Left Difference 

image I I+(I∗h) = I+(I∗[-1 1]) 
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Right Difference 

power spectrum of I∗h = I∗[1 -1] I∗h = I∗[1 -1] 
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Original Image + Right Difference 

image I I+(I∗h) = I+(I∗[-1 1]) 
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Vertical Edges (L+R Diffs) 

power spectrum of I∗h = I∗[-1 2 -1] I∗h = I∗[-1 2 -1] 
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Original Image + Vertical Edges 

image I I+(I∗h) = I+(I∗[-1 2 -1]) 
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Down Difference  

power spectrum of I∗h = I∗ 1
1

 
  

I∗h = I∗ 1
1
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Original Image + Down Difference 

image I I+(I∗h) = I+( I∗      ) 1
1
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Up Difference  

power spectrum of I∗h = I∗ I∗h = I∗ 1
1

 
  

1
1
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Original Image + Up Difference 

image I I+(I∗h) = I+(I∗      ) 1
1
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Horizontal Edges (D+U Diffs) 

power spectrum of I∗h = I∗ 1
2
1





 
 
  I∗h = I∗ 1

2
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Original Image + Horizontal Edges 

image I I+(I∗h) = I+(I∗      ) 1
2
1
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Horiz. + Vert. Edges (L+R+D+U Diffs) 

power spectrum of I∗h = I∗ 0 1 0
1 4 1
0 1 0


 



 
 
  I∗h = I∗ 0 1 0

1 4 1
0 1 0
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Original Image + Horiz. + Vert. Edges 

sharpened original 
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Original Image + Horiz. + Vert. Edges 

original sharpened 
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Sharpening Through Blurring: Unsharp Masking 

Let I be an image. 
Let Gσ be a Gaussian convolution mask. 
Then  J = I * Gσ is a blurred image and K = I – J contains 
all the high spatial frequencies from I. 
Define: 
            U = (1+α) K + J  = α K + I, 
where, typically 0 < α < 2. 
U is called the unsharp masking of image I. 

Often, the control, α, is 
given as a percent value.   
Then the formula is  
(α/100)*K+I. 
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Sharpening Through Blurring: Unsharp Masking 

original image log power spectrum 
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Sharpening Through Blurring: Unsharp Masking 

Gaussian blur σ=4 log power spectrum 
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Sharpening Through Blurring: Unsharp Masking 

original minus Gaussian blur log power spectrum 
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Sharpening Through Blurring: Unsharp Masking 

unsharp masked image log power spectrum 
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Sharpening Through Blurring: Unsharp Masking 

unsharp masked image original image 
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Image Sharpening 

linearly enhanced quadratic enh. original image unsharp masked 
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Noise Enhancement: Problem with Sharpening 
l Noise occurs in every natural imaging device 

– Quantum effects in CCD arrays 
– Random distribution of silver halide grains in film 
– Neuronal noise in the retina 

l Spatially independent noise 
– The noise in one sensor has no effect on that in its neighbors 
– ⇒ the autocorrelation of the signal is an impulse at the origin 
– The chances of getting repeated patterns of any frequency are virtually nil 
– ⇒ the frequency spectrum of the noise is flat 

Recall:  Autocorrelation = inverse Fourier transform of power 
spectrum; Fourier transform of an impulse at (0,0) is a constant. 
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Gaussian IID Noise Field 

µ = 128 
σ =   32 

IID: Independent, Identically Distributed 

No spatial 
correlation 
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Power Spectrum and Autocorrelation of IID  

    1PS log  II F

Power Spectrum Autocorrelation 

     1ReR  II FF
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Noise Enhancement: Problem with Sharpening 

l The spectra of most natural images fall-off toward the high 
frequencies. 

l IID noise has a flat spectrum. 
l Therefore, at some relatively high frequency (HF) the 

energy in the noise is greater than that in the uncorrupted 
image. 

l Sharpening multiplies the FT of the image by u and v (or 
by linear combinations of them) which, at HF, increases 
the noise more than the uncorrupted image. 
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noise field image 

Effects of Noise on Images 
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Effects of Noise on Images 

noise field center row log power spectrum image center row log power spectrum 
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Effects of Noise on Images 

image + noise field image + noise field center row log PS 
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Effects of Noise on Images (Power Spectra) 

noise image original image 
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noisy image original image 

Effects of Noise on Images (Power Spectra) 
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blue indicates noise > image original image 

Effects of Noise on Images (Power Spectra) 
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red indicates image > noise noise image 

Effects of Noise on Images (Power Spectra) 
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image & noise noisy image 

Effects of Noise on Images (Power Spectra) 
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Effects of Noise on Linear Enhancement of HF 

noisy image original image 
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HF enhanced original HF enhanced noisy image 

Effects of Noise on Linear Enhancement of HF 
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noisy image original image 

Effects of Noise on Linear Enhancement of HF 
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HF enhanced original HF enhanced noisy image 

Effects of Noise on Linear Enhancement of HF 
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HF enhanced original 

Effects of Noise on Linear Enhancement of HF 

original image 
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Effects of Noise on Linear Enhancement of HF 

noisy image HF enhanced noisy image 
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Effects of Noise on Linear Enhancement of HF 

  2 2HF enhanced:  ,u v u v  IFnoisy image power spectrum 
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noisy + linearly enhanced 

Sharpening: Effects of Noise on Linear Enhancement 

noisy image power spectrum 
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    2 2HF enhanced:   ,u v u v  IF

Effects of Noise on Quadratic Enhancement of HF 

noisy image power spectrum 
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original + quadratically enhanced 

Sharpening: Effects of Noise on Quadratic Enhancement 

noisy image power spectrum 
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Pixelization … 

… is a special effect often used to hide identities … 
1999-2011 by Richard Alan Peters II 12 January 2016 



3 3 

Pixelization and Quantization 

pixelated high-res image quantized pixelated 
 & quantized 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization and Quantization 
pixel grid 

column index 

ro
w 

in
de

x 

pixelated high-res image quantized pixelated 
 & quantized 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 

 , I

high-res image pixelated image 

Take the average 
within each square. 

1999-2011 by Richard Alan Peters II 12 January 2016 

(upsampled) (upsampled) 
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Take the average 
within each square. 

6 

( , )P r cI , I

high-res image pixelated image 

Pixelization 

1999-2011 by Richard Alan Peters II 12 January 2016 

(upsampled) (upsampled) 
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high-res image pixelated image 

Pixelization 

1999-2011 by Richard Alan Peters II 12 January 2016 

Take the average 
within each square. 

(upsampled) (upsampled) 

   
  1 1 1 1
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high-res image pixelated image 

Pixelization 

1999-2011 by Richard Alan Peters II 12 January 2016 

Take the average 
within each square. 

(upsampled) (upsampled) 

   
  1 1 1 1
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r & c are indices in the 
downsampled image. 
r·s & c·s are indices in 
the original image. 

Pixelization Procedure (Part 1) 
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To pixelize an R×C×B image I by a factor, s: 

Let IDS be an  R/s×C/s×B  image. 

Let the value of  IDS at location (r,c,b) be the average value of  I 
in the s-square neighborhood starting at (rs,cs,b). 

where 

Notation:   
              IDS = I ↓ s 
IDS is I downsampled by a factor of s. 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization Procedure (Part 2) 

       
PP DS, ,  , ,   for  , , .b r c b r c     II I N

   
  
  P

, 1, , 1 1 ,
, , .

, 1, , 1 1
rs rs r s

r c
cs cs c s


 



             
I





N

Let IP be an R×C×B image. 

Let the value of  IP in neighborhood, N(r,c) be IDS(r,c). 

where 

Notation:   
              IP = IDS↑ s 
IP is IDS upsampled by a factor of s. 

r & c are indices in the 
downsampled image. 
r·s & c·s are indices in 
the upsampled image. 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 8 of 8: 256x256 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 7 of 8: 128x128 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 6 of 8: 64x64 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 5 of 8: 32x32 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 4 of 8: 16x16 

1999-2011 by Richard Alan Peters II 12 January 2016 
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Pixelization 3 of 8: 8x8 

1999-2011 by Richard Alan Peters II 
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Pixelization 2 of 8: 4x4 

1999-2011 by Richard Alan Peters II 
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Pixelization 1 of 8: 2x2 

1999-2011 by Richard Alan Peters II 
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Pixelization original image 

1999-2011 by Richard Alan Peters II 
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Pixelization by Factor 32 original image 

1999-2011 by Richard Alan Peters II 
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Quantization 

16 m
illion colors 

16
 c

ol
or

s 
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Quantization 

8 bits 256 levels 7 bits 128 levels 6 bits 64 levels 5 bits 32 levels 

4 bits 16 levels 3 bits  8 levels 2 bits 4 levels 1 bit 2 levels 

1999-2011 by Richard Alan Peters II 
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Intensity Quantization 

1999-2011 by Richard Alan Peters II 
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Intensity Quantization 

Usually with 2-bit 
quantization, the 
output intensities 
are mapped to 
{0,85,170,255}, 

and with with 1-bit 
quantization, the 
output intensities 
are taken to be 
{0,255}. 

1999-2011 by Richard Alan Peters II 
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Enhancement of an 8-bit image 

a. original b. contrast enh. b. dark enhanced b. bright enh. 

1999-2011 by Richard Alan Peters II 
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Enhancement of a 16-bit image 

a. original b. contrast enh. b. dark enhanced b. bright enh. 

1999-2011 by Richard Alan Peters II 



27 12 January 2016 27 

Effect of Quantization on Equalization 

a. original 

b. contrast enh. 

c. dark enh. 

d. bright enh. 

a. original 

b. contrast enh. 

c. dark enh. 

d. bright enh. 

1999-2011 by Richard Alan Peters II 
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Effect of Quantization on Equalization 

1999-2011 by Richard Alan Peters II 
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Effect of Quantization on Equalization 

enhanced 8-bit enhanced 16-bit 

1999-2011 by Richard Alan Peters II 
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Effect of Quantization on Equalization 

enhanced 16-bit enhanced 8-bit 

1999-2011 by Richard Alan Peters II 
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original 

8-bit enhanced 

16-bit enhanced 

Effect of Quantization on Equalization 

1999-2011 by Richard Alan Peters II 



32 12 January 2016 32 

What’s in the lower eight bits? 

1999-2011 by Richard Alan Peters II 
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Application of Quantization: Steganography 

If an image is quantized, say from 8 bits to 6 bits and redisplayed  it 
can be all but impossible to tell the difference visually between the two. 

Pieter B
ruegel (the Elder, ca. 1525-69), The 

Peasant D
ance, 1568, O

il on oak panel, 114x164 
cm

,  K
unsthistorisches M

useum
 W

ien, V
ienna 

8-bit-per-band, 3-band, 
“original” image 

1999-2011 by Richard Alan Peters II 
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6-bit-per-band, 3-band, 
quantized image 

Application of Quantization: Steganography 
Pieter B

ruegel (the Elder, ca. 1525-69), The 
Peasant D

ance, 1568, O
il on oak panel, 114x164 

cm
,  K

unsthistorisches M
useum

 W
ien, V

ienna 

If an image is quantized, say from 8 bits to 6 bits and redisplayed  it 
can be all but impossible to tell the difference visually between the two. 

1999-2011 by Richard Alan Peters II 
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Application of Quantization: Steganography 

With simple image analysis, it is easy to tell the difference:  The histograms of 
the two versions indicate which is which. If the 6-bit version is displayed as an 
8-bit image it has only pixels with values 0, 4, 8, … , 252. 

green-band histogram of 8-bit image green-band histogram of 6-bit image 

1999-2011 by Richard Alan Peters II 
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That other information could be 
a message, perhaps encrypted, or 
even another image. 

Application of Quantization: Steganography 
If the 6-bit version is 
displayed as an 8-bit 
image then the 8-bit 
pixels all have zeros 
in the lower 2 bits: 

0 0 b b b b b b 

b = 0 or 1 always 0 

This introduces the 
possibility of encoding 
other information in 
the low-order bits. 

Image 2 

R-Shift 6 

Image Out 

Image 1 

R-Shift 2 

L-Shift 2 

X-Shift n = logical left or right shift by n bits. 

logical 
OR 

1999-2011 by Richard Alan Peters II 
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Image 1 in upper 6-bits. 
Image 2 in lower 2-bits. 

Application of Quantization: Steganography 

The second image is invisible because the value of each pixel is between 0 and 3.  
For any given pixel, its value is added to the to the collocated pixel in the first image 
that has a value from the set {0, 4, 8, … , 252}.  The 2nd image is noise on the 1st. 

Pieter B
ruegel (the Elder, ca. 1525-69), The 

Peasant D
ance, 1568, O

il on oak panel, 114x164 
cm

,  K
unsthistorisches M

useum
 W

ien, V
ienna 
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Image 1 in upper 6-bits. 
Image 2 in lower 2-bits. 

Application of Quantization: Steganography 

To recover the second image (which is 2 bits per pixel per 
band) simply left shift the combined image by 6 bits. 

Pieter B
ruegel (the Elder, ca. 1525-69), The 

Peasant D
ance, 1568, O

il on oak panel, 114x164 
cm

,  K
unsthistorisches M

useum
 W

ien, V
ienna 

L-
S

hi
ft 

6 

? 
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Image 2 in upper 2-bits. 
Image 1 shifted out 

Application of Quantization: Steganography 

To recover the second image (which is 2 bits per pixel per 
band) simply left shift the combined image by 6 bits. 

From
 the video gam

e, ZeroW
ing, by Toaplan.  

See http://en.w
ikipedia.org/w

iki/A
ll_your_base 

L-
S

hi
ft 

6 

image 
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Images 1 and 2 each 
have 4-bits per pixel 
when combined. 

Application of Quantization: Steganography 

This is so effective that two     
4-bit-per-pixel images can be 
superimposed with only the 
image in the high-order bits 
visible.  Both images contain 
the same amount of information 
but because one takes on values 
between 0 and 15, the other 
takes on values from {16, 32, 
48, … , 240}, and the smaller 
values are added to the larger, 
the image in the low-order bits 
is effectively invisible  

Image 2 

R-Shift 4 

Image Out 

Image 1 

R-Shift 4 

L-Shift 4 

1999-2011 by Richard Alan Peters II 
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Original Image 

Application of Quantization: Steganography 

Photo:  C
ypherO

ne 
http://w

w
w

.flickr.com
/people/cypherone/ 
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Image quantized to 
4-bits per pixel. 

Application of Quantization: Steganography 

Photo:  C
ypherO

ne 
http://w

w
w

.flickr.com
/people/cypherone/ 
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Image 1 in upper 4-bits. 
Image 2 in lower 4-bits. 

Application of Quantization: Steganography 

Photo:  C
ypherO

ne 
http://w

w
w

.flickr.com
/people/cypherone/ 
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Image 2 in upper 4-bits. 
Image 1 shifted out. 

Application of Quantization: Steganography 

Phototographer U
nknow

n 

1999-2011 by Richard Alan Peters II 
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Separate EQ of Dark and Light Regions in 16-bit Images 

original 16-bit image contr. stretched dark reg. contr. stretched light reg. 

1999-2011 by Richard Alan Peters II 
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original 16-bit image contr. stretched light + dark reg. 

Separate EQ of Dark and Light Regions in 16-bit Images 

1999-2011 by Richard Alan Peters II 
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Dithering:  Noise Improves Quantization 
• Quantizing an image into 1, 2, or 3 bits can introduce false contours. 
• The addition of signed noise to the image before quantization can 

improve the appearance of the result.  This is called dithering. 
• The noise usually should have µ = 0.   
• The σ of the noise must be determined through experimentation since it 

depends on the image being quantized.  A reasonable first choice for 
uniformly distributed noise is σ = M/q, where M is the maximum 
intensity value in the image (e.g. 255) and q is the number of bits in the 
quantized image. 

I N(µ,σ) Quant(q) J + 

1999-2011 by Richard Alan Peters II 
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Dithering: use noise to reduce quant. error 

 8 bits  4 bits  4 bits + noise 

1999-2011 by Richard Alan Peters II 
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Dithering: use noise to reduce quant. error 

 8 bits  3 bits  3 bits + noise 

1999-2011 by Richard Alan Peters II 
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Dithering: use noise to reduce quant. error 

 8 bits  2 bits  2 bits + noise 

1999-2011 by Richard Alan Peters II 



51 12 January 2016 51 

Dithering: use noise to reduce quant. error 

 8 bits  1 bit  1 bit + noise 

1999-2011 by Richard Alan Peters II 
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Image Resampling Can Lead to the Jaggies! 

zoomed × 2 

The jaggies! 

Warning: 

2 
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>> J = I(1:2:R,1:2:C,:); 

Downsampling (Decimation) 

E.g.: every 2nd pixel in every 2nd row 

This is a bad way to do it. 

3 
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>> J = I(1:2:R,1:2:C,:); 

Downsampling (Decimation) 

E.g.: every 2nd pixel in every 2nd row 

Bad, bad, very bad. 

4 
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Power Spectrum from Discrete Fourier Transform 

Recall: 

DFT 

5 
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Power Spectrum from Discrete Fourier Transform 

The DFT of an image is the same size as the image. 

DFT 

de
ci

m
at

ed
 im

ag
e 

po
w

er
 s

pe
ct

ru
m

 

Recall: 

6 
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The Scaling Property of the FT 

    

  

2 ( )If       , , ,

then    , , .

i uc vrv u r c e dcdr

r c ab av bu
a b


 

 





    

 I I

I I

F

F

This implies that if an image is reduced in size, its 
features in the spatial domain become smaller and 
its features in the frequency domain become larger. 

Recall: 

7 
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The Uncertainty Relation 

FT 

space frequency 

FT 

space frequency 

A small object in space 
has a large frequency 
extent and vice-versa. 

Recall: 

8 

If ΔxΔy is the extent of 
the object in space and 
if ΔxΔy is its extent in 
frequency then 
 
 

2
1

16
x y u v
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First Alternative Explanation of Aliasing 
The aliasing phenomenon can be described in terms of the so-called “wagon 
wheel” effect.  The name comes from the appearance in a 24 frame per 
second movie of a wagon wheel rotating slightly faster than 12 frames per  
second.  It appears to be rotating slowly backward. 

https://www.youtube.com/watch?v=6XwgbHjRo30  

https://www.youtube.com/watch?v=6XwgbHjRo30
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Second Alternative Explanation of Aliasing 
The aliasing phenomenon can also be described in terms of 
the convolution property of the Fourier Transform.  In fact, 
this is the way it is usually explained. 

10 
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The Sampling Function 

The sampling 
function is a 
set of impulses 
evenly spaced 
on a grid. 

27 

11 
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The Sampling of an Image 

An image is sampled 
by multiplying it by 
the sampling function 

( , )  samp ( , )Nr c r cI

12 
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Image Sampling in the Spatial Domain 

        samp , ,N

j k

r c r c r jN c kN 
 

 

    I I

This results in an 
image whose pixels 
have the values of 
the original image at 
the impulse locations. 

13 
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Convolution Property of the Fourier Transform 

The Fourier Transform of 
a product equals the 
convolution of the Fourier 
Transforms.  Similarly, the 
Fourier Transform of a 
convolution is the product 
of the Fourier Transforms 

Let functions ( , ) and ( , ) have 
Fourier Transforms ( , ) and ( , ).  
Then,

          { } .
Moreover,

          { } .
 represents convolution

 represents pointwise multiplication

f r c g r c
F u v G u v

f g F G

f g F G

  

  



F

F

14 
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The Fourier Transform of the Sampling Function 
The Fourier 
Transform of the 
sampling function is 
another sampling 
function but with 
impulses 1/N apart. 

Cf. slide 23 

15 
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Convolution by an Impulse 

    , ( , ) , .r c r c r c         I I

  1,   if    and   , 0,   otherwise
r cr c        

An impulse is a digital image, that has a single 
pixel with value 1; all others have value zero. An 
impulse at location (r, c) is represented by: 

If an image is convolved with an impulse at location 
(r, c), the image is shifted in location down by r 
pixels and to the right by c pixels. 

16 
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Convolution by an Impulse 

The convolution of any function with a delta function 
translates the function to the location of the impulse. 

17 
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  ,
j k

j ku v u v
N N

 
 

 

                IF

The Fourier Transform of a Sampled Image 
If the 
support of 
         has 
a radius  
³ 1/(2N) 
then 
there will 
be overlap 
— aliasing 

 IF

The 
sampling of 

image I 
causes its 

Fourier 
Transform  
        to be 

repeated at 
intervals of 

1/N. 

18 
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The FT of a Sampled Image with No Aliasing 

For aliasing not 
to occur the 
frequency 
support of I 
must have a 
radius of < 1/(2N) 

19 
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N N
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Part of the Transform Computed by the FFT 

Although the FT of the sampled image continues on indefinitely in theory, only 
one copy of the complete pattern is required for processing.  The Fast Fourier 
Transform (FFT) algorithm computes the transform with the origin in the upper 
left.  Usually the transform is displayed with the origin in the center. 

as computed 
(aliasing) 

origin shifted 
(aliasing) 

as computed 
(no aliasing) 

origin shifted 
(no aliasing) 

20 
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1 1, 0 for  or 

2 2
u v u v

N N
  H

That is equivalent to convolving I(r,c) 
with a spatial filter of width 2N. 

Filtering Before Downsampling to Prevent Aliasing 
Thus, to down-
sample I(r,c) 
by a factor of 2, 
use a spatial 
filter of width 4.  
Since this is 
midway be-
tween 3 and 5, 
use a 5x5 
convolution 
mask. 

FT 

If the image 
is a bit blurry 
then a 3x3 will 
usually suffice 

that 

21 

To sample 
I(r,c) every N 
pixels multiply 
I(u,v) = F{I} 
by a window 
H(u,v) such 
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Filtering to Prevent Aliasing 

original image power spectrum 

22 
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Filtering to Prevent Aliasing 

to decimate original by 2 … … zero outside red square 

23 
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Filtering to Prevent Aliasing 

notice ringing in the result ideal filter 

zoomed × 2 

24 
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Filtering to Prevent Aliasing 

To reduce ringing try multiplying the FT by a Gaussian w/ (sv,su)=(¼R, ¼C) 

25 
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Filtering to Prevent Aliasing 

PS of FT × Gaussian ringing is reduced but result is blurry 

zoomed × 2 

26 
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Filtering to Prevent Aliasing 

try multiplying the FT by a Gaussian w/ (sv,su)=(½R, ½C) 

27 
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Filtering to Prevent Aliasing 

PS of FT × Gaussian some aliasing but result is less blurry 

zoomed × 2 

28 
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Filtering to Prevent Aliasing 

zoomed × 2 

ideal filtered original 

29 
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zoomed × 2 

Filtering to Prevent Aliasing 

original Gaussian w/ (sv,su)=(¼R, ¼C) 

zoomed × 2 

30 
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zoomed × 2 

Filtering to Prevent Aliasing 

Gaussian w/ (sv,su)=(½R, ½C) original 

31 
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zoomed × 2 

Filtering to Prevent Aliasing 

original decimated by factor of 2 

zoomed × 2 

32 
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Effect of Decimation on the DFT of an Image 

1. Decimation of an R×C image, I, by a factor of n results 
in an ëR/nû × ëC/nû image, J. 

2. The DFT of image J is the same size as J. 
3. The uncertainty relation implies that the FT of J should 

be  (R-1) × (C-1)  <  n ëR/nû × n ëC/nû  ≤  R × C. 

Contradiction? 

Q:  How can these 3 facts be true simultaneously? 

A:  The FT of J folds over or aliases itself on the DFT of J 
because the DFT is defined on a torus. 

33 
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Discrete FT is on a Torus Recall:  the DFT of a 
digital image assumes 
the image has a 
toroidal topology… 

34 
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Discrete Fourier Transform is on a Torus 

… which implies that 
the result also has a 
toroidal topology. 

35 
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Discrete FT is on a Torus 

Point 1 (p. 9) 

If the image is made 
smaller the torus is 
likewise … 

36 
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Discrete FT is on a Torus 
… and the DFT is the 
same size. 

Point 2 (p. 9) 

37 
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Ideal PS of 2× Decimated Image zoomed × 2 

One might assume 
that the smaller DFT 
is the central region 
of the larger … but 
it’s not. 

38 
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To Make Actual PS of  2 × Decimated Image: 

Partition F{I} into these four parts, … 

All of the larger one is 
present in the smaller one.   

low freqs. high freqs. of cols. 

low freqs. of rows of cols & rows 

low freqs. of cols. 

high freqs. of rows 

high freqs. 

of cols & rows 

39 
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Actual PS of  2× Dec: 

40 

… four parts that are contiguous 
on the full-sized DFT torus. 
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Actual PS of  2× Decimated Image 

Each of the 4 PS regions 
forms a torus. The 4 torii 
are superpositioned onto 1.  

low freqs. high freqs. of cols. 

low freqs. of rows of cols & rows 

high freqs. 

of cols & rows 

low freqs. of cols. 

high freqs. of rows 

41 
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DFT Aliasing on the Torus 

The 4 superpositioned torii 
alias the high frequencies 
onto the low frequencies.  

42 
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PS of Original and PS of  2× Decimated Image 

original 

Aliased 
frequency-
plane 
features … 

decimated × 2, zoomed × 2  

43 
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Original Image and 2× Decimated Image 

decimated × 2, zoomed × 2  original 

… lead to jaggies in 
the decimated image. 

44 
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Three Methods for Resizing Images 
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Enlarging Images Through Pixel Replication 

Example:  
zoom this 
image 4x to 
get this 
image. 

Start with a blank image 4 times the 
linear dimensions of the original. 

Fill in every 4th pixel in every 4th 
row with the original pixel values. 
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Enlarging Images Through Pixel Replication 

Detail showing every 4th pixel in every 4th row with the original pixel values.  

1999-2011 by Richard Alan Peters II 
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For each original value:  replicate it 15 times to create a new, larger “pixel”.  

Enlarging Images Through Pixel Replication 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. 

Decimation by 
a factor of n: 
take every nth 
pixel in every 
nth row 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. Zoom in on a 

section for a 
closer look at 
the process 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. 

Keep every 
4th pixel in 
every 4th row 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. 

ignore all 
the others 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. 

Copy them 
into a new 
image. 

1999-2011 by Richard Alan Peters II 
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Reducing Images Through Pixel Decimation 

Example:  
decimate 
this image 
4x to get 
this image. 

1999-2011 by Richard Alan Peters II 
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The “Nearest Neighbor” algorithm is 
a generalization of pixel replication 
and decimation.   

It also includes fractional resizing, 
i.e. resizing an image so that it has 
p/q of the pixels per row and p/q of 
the rows in the original.  (p and q are 
both integers.) 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Zoom in on a 
section for a 
closer look at 
the process 

Nearest 
Neighbor 
Resampling 

Example: 
resize to 3/7 
of the original 

1999-2011 by Richard Alan Peters II 
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Zoom in for a 
better look 

3/7 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Outlined in 
blue:  7x7 
pixel squares 

3/7 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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In yellow: 3 pixels 
for every 7 rows, 
3 pixels for every 
7 cols. 

3/7 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Keep the 
highlighted 
pixels… 

3/7 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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… don’t keep 
the others. 

3/7 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

Copy them into 
a new image. 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

Copy them into 
a new image. 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

Copy them into 
a new image. 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

Copy them into 
a new image. 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

Copy them into 
a new image. 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 resize  

3/7 times the 
linear dimensions 
of the original 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3/7 times the 
linear dimensions 
of the original 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Resize to 3/7 of 
the original dims. 

Original 
image 

Detail of 
resized image 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Resize to 3/7 of 
the original dims. 

Original 
image 

Detail of 
resized image 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Original 
image Pixels spread out 

for a 7/3 resize … 
… then filled in. 

7/3 resize  
Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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7/3 resize  

Detail  

Each 3x3 block 
of pixels from 
here … 

… is spread out over 
a 7x7 block here 

Original 
image 

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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3x3 blocks 
distributed over 
7x7 blocks 

7/3 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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Empty pixels filled 
with color from ULH 
non-empty pixel 

7/3 resize  Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 



1/12/2016 32 

7/3 resize  Nearest 
Neighbor 
Resampling 

Empty pixels filled 
with color from ULH 
non-empty pixel 

1999-2011 by Richard Alan Peters II 
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Original 
image 

7/3 resized  

Nearest 
Neighbor 
Resampling 

1999-2011 by Richard Alan Peters II 
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   , ,f f R Cr c S r S c   

The closest integer pixel location (r, c), 
in I is 

   , round , .f fr c r c

Size of original image,  I:   R × C 
Size of scaled image,  J:    R′ × C′ 
Row scale factor (input to output):  

  / , if ,
1 / , if ,r

R R R RS R R R R
    

Column scale factor (input to output):  

  / , if ,
1 / , if  c

C C C CS C C C C
    

For each (r′, c′ ) in J, the corresponding 
fractional pixel location, (rf, cf ), in I is: Then  

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

   , , .r c r c  J I

, , ,
, , .

r R
c C





 
 





If  Sr  ≥ 0.5 then α =1. 

If  Sc < 0.5 then 1 .
cS     

If  Sc  ≥ 0.5 then β =1.  

If  Sr < 0.5 then 1 .
rS     

for  



   , ,f f R Cr c S r S c   

Size of original image,  I:   R × C 
Size of scaled image,  J:    R′ × C′ 
Row scale factor (input to output):  

  / , if ,
1 / , if ,r

R R R RS R R R R
    

Column scale factor (input to output):  

  / , if ,
1 / , if  c

C C C CS C C C C
    

For each (r′, c′ ) in J, the corresponding 
fractional pixel location, (rf, cf ), in I is: 
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Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

If the output image is 
larger than the input 
image then the scale 
factor is less than 1. 

If the output image is 
smaller than the input 
image then the scale 
factor is greater than 1. 

Which pixel to 
start with? 

The closest integer pixel location (r, c), 
in I is 

   , round , .f fr c r c

Then  

   , , .r c r c  J I

, , ,
, , .

r R
c C





 
 





If  Sr  ≥ 0.5 then α =1. 

If  Sc < 0.5 then 1 .
cS     

If  Sc  ≥ 0.5 then β =1.  

If  Sr < 0.5 then 1 .
rS     

for  



   , ,f f R Cr c S r S c   

Size of original image,  I:   R × C 
Size of scaled image,  J:    R′ × C′ 
Row scale factor (input to output):  

  / , if ,
1 / , if ,r

R R R RS R R R R
    

Column scale factor (input to output):  

  / , if ,
1 / , if  c

C C C CS C C C C
    

For each (r′, c′ ) in J, the corresponding 
fractional pixel location, (rf, cf ), in I is: 
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Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

The idea here is that the 4x4 
neighborhood in I of the point (rf,cf,) 
has (r,c) = ë(rf,cf,)û as its upper left 
corner and has (r+1,c+1) as its lower 
right corner.   

Thus for each (rf,cf,):  (1) neither r 
nor c can be less than one and (2) r+1 
cannot be greater than R and c+1 
cannot be greater than C´.  

If the set of all indices {(r,c)} do not 
satisfy (1) or (2), you must adjust 
the indices so that they do. 

The closest integer pixel location (r, c), 
in I is 

   , round , .f fr c r c

Then  

   , , .r c r c  J I

, , ,
, , .

r R
c C





 
 





If  Sr  ≥ 0.5 then α =1. 

If  Sc < 0.5 then 1 .
cS     

If  Sc  ≥ 0.5 then β =1.  

If  Sr < 0.5 then 1 .
rS     

for  
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r = 1 

r+1 = R 

c = 1 c +1 = C 

pixel size 

They are also 
the extrema of 
4-pixel 
neighborhoods 
in the image. 

These 4 blocks 
represent  the 
corners of an 
image ― the 
extrema of r 
and c in the 
input image. 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 
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input pixel 
spacing = 1 

point location 
of input pixel 

Here the image is 
supersampled with 
the original pixels in 
the center.  This is 
not actually none by 
the algorithm but it 
helps one  visualize 
the procedure 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 
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If the output 
image is smaller 
than the input 
image, then 
R’ < R, C’ < C. 

output pixel 
spacing > 1 

sampling 
locations for 
output pixels 

using scale 
factors 
sR = R/R’ and 
sC = C/C’. 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 
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output pixel 
spacing < 1 

sampling 
locations for 
output pixels 

using scale 
factors 
sR = R/R’ and 
sC = C/C’. 

Nearest Neighbor Resampling 

If the output 
image is larger 
than the input 
image, then 
R’ > R, C’ > C.. 

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 
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pixel spacing < 1 

sampling 
locations for 
output pixels 

Output image 
larger than 
input image, 
R’ > R, C’ > C. 

Output pixel 
indices are 
outside image   

using scale 
factors 
sR = R/R’ and 
sC = C/C’. 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 
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pixel spacing < 1 

sampling 
locations for 
output pixels 

using scale 
factors 
sR = (R-1)/R’  
sC = (C-1)/C’  

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 

Output image 
larger than 
input image, 
R’ > R, C’ > C. 
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pixel spacing < 1 

sampling 
locations for 
output pixels 

Nearest Neighbor Resampling 

Output pixel 
indices are 
inside image   

1999-2011 by Richard Alan Peters II 

r = 1 

r+1 = R 

c = 1 c +1 = C 

using scale 
factors 
sR = (R-1)/R’  
sC = (C-1)/C’  

Output image 
larger than 
input image, 
R’ > R, C’ > C. 
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(1,1)IN 

(2,2)IN 

(3,3)IN 

This and the next 7 slides 
explain the scale factor 
selection algebraically 

Nearest Neighbor Resampling 

If the output is smaller than the input, R′ < R and C′ < C . 

1999-2011 by Richard Alan Peters II 

   OUT IN1,1 1,1

   OUT IN2, 2 1,1 ,R C
R C

      

       OUT IN, 1,1 1 , 1R Cn n n n
R C

        

( ) ( )2,2  and  1,1  between lies ++++ nnnn χρχρ

   1   and  1n n
R Cn n
R C
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(3,3)IN 
(2,2)OUT 

(2,2)OUT lies between 
(2,2)IN and (3,3)IN  
since R/R′ > 1 & C/C′>1. 

Nearest Neighbor Resampling 

If the output is smaller than the input, R′ < R and C′ < C . 

1999-2011 by Richard Alan Peters II 

   OUT IN1,1 1,1

   OUT IN2, 2 1,1 ,R C
R C

      

       OUT IN, 1,1 1 , 1R Cn n n n
R C

        

( ) ( )2,2  and  1,1  between lies ++++ nnnn χρχρ

   1   and  1n n
R Cn n
R C
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(R,C)IN 

(R-1,C-1)IN 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

       INOUT
, 1,1 1 , 1R CR C R C

R C
           

 
   

OUT

IN IN

Thus  ,   lies between  

1, 1   and  , .

R C

R C R C

 

 

but    and    where  1  and  1.R R C C       

     
1 11 1 1 2.R

R RR R R R R
R R

  
  

                                    

Similarly,   2.C C  

If the output is smaller than the input, R′ < R and C′ < C . 
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(R′,C′)OUT 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

(R,C)IN 

(R-1,C-1)IN 

       INOUT
, 1,1 1 , 1R CR C R C

R C
           

 
   

OUT

IN IN

Thus  ,   lies between  

1, 1   and  , .

R C

R C R C

 

 

but    and    where  1  and  1.R R C C       

     
1 11 1 1 2.R

R RR R R R R
R R

  
  

                                    

Similarly,   2.C C  

If the output is smaller than the input, R′ < R and C′ < C . 
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(1,1)IN 

(2,2)IN 

(3,3)IN 

If the output is larger than the input, R < R′ and C < C′. 

   
1 11   and  1n n

R Cn n
R C

 
    

      
       

( ) ( )1,1  and  ,  between  lies ++ nnnn χρχρ

   OUT IN1,1 1,1

   OUT IN

1 12,2 1,1 ,R C
R C

        

       OUT IN

1 1, 1,1 1 , 1R Cn n n n
R C

          

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 
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(3,3)IN 

(2,2)OUT lies between 
(1,1)IN and (2,2)IN  
since (R-1)/R′ < 1. 

(2,2)OUT 

(1,1)OUT 

(2,2)IN 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

If the output is larger than the input, R < R′ and C < C′. If the output is larger than the input, R < R′ and C < C′. 

   
1 11   and  1n n

R Cn n
R C

 
    

      
       

( ) ( )1,1  and  ,  between  lies ++ nnnn χρχρ

   OUT IN1,1 1,1

   OUT IN

1 12,2 1,1 ,R C
R C

        

       OUT IN

1 1, 1,1 1 , 1R Cn n n n
R C
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       INOUT

1 1, 1,1 1 , 1R RR C R C
R C

            

but    and    where  1  and  1.R R C C       

   
1 1 1 11 1 1 2.R

R RR R R R
R R R

 
  

                             

Similarly,   2.C C  

(R,C)IN 

(R-1,C-1)IN 

If the output is larger than the input, R < R′ and C < C′. 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

 
   

OUT

IN IN

Thus  ,   lies between  

1, 1   and  , .

R C

R C R C
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(R′,C′)OUT 

Nearest Neighbor Resampling 

1999-2011 by Richard Alan Peters II 

       INOUT

1 1, 1,1 1 , 1R RR C R C
R C

            

 
   

OUT

IN IN

Thus  ,   lies between  

1, 1   and  , .

R C

R C R C

 

 

but    and    where  1  and  1.R R C C       

   
1 1 1 11 1 1 2.R

R RR R R R
R R R

 
  

                             

Similarly,   2.C C  

If the output is larger than the input, R < R′ and C < C′. 

(R,C)IN 

(R-1,C-1)IN 
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Enlarging Images: Replication vs. Interpolation 

Pixel replication  
produces a “jagged” 
result since each 
individual square 
pixel is made larger. 

Bilinear interpolation  
creates new pixels that have 
values intermediate between 
the originals.  The result is 
smoother but blurry. 

1999-2011 by Richard Alan Peters II 
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Pixel Replication 

Small square pixels become large square pixels.  

Red dots mark original pixel values.  

1999-2011 by Richard Alan Peters II 
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Bilinear Interpolation 

Intermediate locations are filled with intermediate values.  

Red dots mark original pixel values.  

1999-2011 by Richard Alan Peters II 



1/12/2016 55 

Resampling Through Bilinear Interpolation  

want to 
upsample this 
image by a 
factor of two 

1999-2011 by Richard Alan Peters II 
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new samples 
to be added 
at light gray 
locations. 

Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 



1/12/2016 57 

treat gray levels 
as heights above 
the image plane 

center = 
weighted 
average of 
four 
corners 

Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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treat gray levels 
as heights above 
the image plane 

center = 
weighted 
average of 
four 
corners 

Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 



1/12/2016 59 

new row and 
column sample 
values lie on 
the lines 
connecting 
the old values 

Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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the results 

Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Bilinear Interpolation Example 

We’ll enlarge this image 
by a factor of 4 … 

… via bilinear interpolation 
and compare it to a nearest 
neighbor enlargement. 

1999-2011 by Richard Alan Peters II 
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To better see what happens, we’ll look at the parrot’s eye.  

Original 
Image 

Example: Bilinear Interpolation – 4× Zoom 

1999-2011 by Richard Alan Peters II 
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To better see what happens, we’ll look at the parrot’s eye.  

Example: Bilinear Interpolation – 4× Zoom 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

For a 4x zoom, create a 
blank image, four times 
the size of the original. 

1999-2011 by Richard Alan Peters II 
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Then fill in every 4th 
pixel in every 4th row 
with the original values. 

Bilinear 
Interpolation 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

4x replication 

Then fill in every 4th 
pixel in every 4th row 
with the original values. 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

4x replication with the 
original pixels overlaid. 

Then fill in every 4th 
pixel in every 4th row 
with the original values. 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

Each pink dot is 
a pixel location. 

Next you want to fill in 
the other 15 pixels in 
each block with the  
intermediate values. 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

Next you want to fill in 
the other 15 pixels in 
each block with the  
intermediate values. 

Intermediate values filled in.  
Spaces left so individual 

pixels can be seen. 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

Next you want to fill in 
the other 15 pixels in 
each block with the  
intermediate values. 

Intermediate values filled in.  
Red dots mark individual pixels. 

1999-2011 by Richard Alan Peters II 
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Bilinear 
Interpolation 

The result: 

Compare to the next slide 
which contains a 4x pixel 

zoom via pixel replication. 

1999-2011 by Richard Alan Peters II 
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Compare to the prev. slide 
which contains a 4x pixel 
zoom via bilinear interp. 

Pixel 
Replication 

The result: 

1999-2011 by Richard Alan Peters II 



1/12/2016 73 

Result with original 
pixels marked: 

Bilinear 
Interpolation 

Compare to the next slide 
which contains a 4x pixel 

zoom via pixel replication. 

1999-2011 by Richard Alan Peters II 
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Pixel 
Replication 

Result with original 
pixels marked: 

Compare to the prev. slide 
which contains a 4x pixel 
zoom via bilinear interp. 

1999-2011 by Richard Alan Peters II 
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Pixel replication  Bilinear interpolation 

Pixel Replication vs. Bilinear Interpolation 

1999-2011 by Richard Alan Peters II 
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Pixel replication  Bilinear interpolation 

Pixel Replication vs. Bilinear Interpolation 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

Example: reduce 
the cactus image 
to 3/7 its 
original size  
using bilinear 
interpolation 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

For each 7x7 
block of pixels 
select 3x3 = 9 
pixel locations. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

For nearest 
neighbor sampling 
the 9 pixel 
locations 
correspond to 
pixel locations in 
the original image. 

Nearest neighbor 
selected pixels 
outlined in yellow. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

In bilinear 
interpolation the 9 
pixel locations are 
distributed evenly. 

Nearest neighbor 
selected pixels 
outlined in yellow. 

Bilinear interp. 
pixels locations 
outlined in red. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

In bilinear 
interpolation the 9 
pixel locations are 
distributed evenly. 

Nearest neighbor 
selected pixels 
outlined in yellow. 

Bilinear interp. 
pixels locations 
outlined in red. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

Notice that the 
locations overlap 
pixels in the 
original image. 

In bilinear 
interpolation the 9 
pixel locations are 
distributed evenly. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

For each 7x7 
block of pixels 
select 3x3 = 9 
pixel locations. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

Examine one 
section in detail. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

Shrink the pixels for 
visualization of this 
example. 

The blue square is 
the output location. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

The blue square is 
the output location. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

The blue square is 
the output location. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

locations of new pixels locs & colors of new pixels 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

locs & colors of new pixels locs & colors of new pixels 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

New image from new pixels 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  

1999-2011 by Richard Alan Peters II 
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Resampling Through Bilinear Interpolation  
Let I be an R × C image. 
We want to resize I to R′ × C′.  
Call the new image J. 

       
   
   
 

, , 1 1

1, 1

, 1 1

1, 1 .

r c r c r c

r c r c

r c r c

r c r c

      

    

    

    

 
 

 
 

J I

I

I

I

Then 

Let  /    and   / .R Cs R R s C C  

Let   and   .f fr r c c       
Let    and  .f fr r r c c c    

Let    for  1, ,

and    for  1, ,  .
f R

f C

r r s r R

c c s c C

    

    





rf 
,cf 

1999-2011 by Richard Alan Peters II 

( )cr ′′,

( )cr ′+′ ,1

( )1, +′′ cr

( )1,1 +′+′ cr

( )r∆−1

( )c∆−1
r∆

c∆

( )cr,

(r,c) (r,c+1) 

(r +1,c) (r +1,c+1) 



Let I be an R × C image. 
We want to resize I to R′ × C′.  
Call the new image J. 

       
   
   
 

, , 1 1

1, 1

, 1 1

1, 1 .

r c r c r c

r c r c

r c r c

r c r c

      

    

    

    

 
 

 
 

J I

I

I

I

Then 

Let  /    and   / .R Cs R R s C C  

Let   and   .f fr r c c       
Let    and  .f fr r r c c c    

Let    for  1, ,

and    for  1, ,  .
f R

f C

r r s r R

c c s c C
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Resampling Through Bilinear Interpolation  

( )cr ′′,

( )cr ′+′ ,1

( )1, +′′ cr

( )1,1 +′+′ cr

( )r∆−1

( )c∆−1
r∆

c∆

( )cr,rf 
,cf 

1999-2011 by Richard Alan Peters II 

Scale factors 

(r,c) (r,c+1) 

(r +1,c) (r +1,c+1) 

The location of (rf,cf) as  
fractions of the distances 
between (r,c) and its 3 
neighbors. 

For each pixel (r′,c′) in output 
image, J, compute the fractional 
location (rf,cf) in I.  Use (r,c), the 
integer part of (rf,cf), to find the 
4 neighboring locations in I.  
Compute J(r′,c′) from a weighted 
sum of I at each of the locations.  
The weights are computed from 
Δr and Δc.  

Fractional location (rf,cf) 
in I of pixel (r′,c′) in J. 

Integer part of (rf,cf).   
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Resampling Through Bilinear Interpolation  
Size of original image:   R × C 

Size of scaled image:     R′ × C′ 

Row scale factor:  

  / ,           if    ,
1 / ,   if    .r

R R R RS R R R R
    

Column scale factor:  

  / ,          if    ,
1 / ,  if    .c

C C C CS C C R C
    

(rf, cf ) is the fractional location in the input 
image from which to sample the output 
pixel (r , c  ) . 

     1,..., ,  1,...,f r f cr R S c C S    

(r, c ) are the row and column indices of 
the pixels in the input image to use in the 
algorithm. 

   , ,f fr c r c       
(∆r, ∆c)  are the fractional parts of the row 
and column locations,  (rf , cf ). 

   , ,f fr c r r c c    

Then the value of each output pixel 
is given by 

       

   
   
 

, , 1 1
1, 1

, 1 1
1, 1 .

r c r c r c
r c r c
r c r c
r c r c

 

 

 

 

      

    

    

    

J I
I
I
I
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Resampling Through Bilinear Interpolation  
Size of original image:   R × C 

Size of scaled image:     R′ × C′ 

Row scale factor:  

  / ,           if    ,
1 / ,   if    .r

R R R RS R R R R
    

Column scale factor:  

  / ,          if    ,
1 / ,  if    .c

C C C CS C C R C
    

(rf, cf ) is the fractional location in the input 
image from which to sample the output 
pixel (r , c  ) . 

     1,..., ,  1,...,f r f cr R S c C S    

(r, c ) are the row and column indices of 
the pixels in the input image to use in the 
algorithm. 

   , ,f fr c r c       
(∆r, ∆c)  are the fractional parts of the row 
and column locations,  (rf , cf ). 

   , ,f fr c r r c c    

Then the value of each output pixel 
is given by 

       

   
   
 

, , 1 1
1, 1

, 1 1
1, 1 .

r c r c r c
r c r c
r c r c
r c r c

 

 

 

 

      

    

    

    

J I
I
I
I
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Like nearest neighbor resampling 
the 4x4 neighborhood in I of the 
point (rf,cf,) has (r,c) = (rf,cf,) as 
its upper left corner and has 
(r+1,c+1) as its lower right corner.   

Thus for each (rf,cf,):  (1) neither r 
nor c can be less than one and 
(2) r+1 cannot be greater than R and 
c+1 cannot be greater than C.  

If the set of all indices {(r,c)} do 
not satisfy (1) or (2), you must 
adjust the indices so that they do. 
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Bilinear Interpolation 

1:1 
5:7 

11:7 
1999-2011 by Richard Alan Peters II 
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Bi-Interp Example: resize to 5/7 of original dimensions. 

2/5 3/5 

 180  
 172  
 135  

 109  
 105  
 70  

 249  
 240  
 183  

 218  
 210  
 154  

 186  
 178  
 134  

1999-2011 by Richard Alan Peters II 

2 2186 180 249 109 2183 2 3 3 2 2178 172 240 105 210 0.5
5 5 5 5 5 5134 135 183 70 154
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Resampling Through Bicubic Interpolation  

Bilinear interpolation computes a value for 
J(r′,c′) as the weighted combination of  I(r,c), 
I(r+1,c), I(r+1,c+1), and I(r,c+1).  

Bicubic interpolation uses not only those 4 
input image pixels, but also their partial 
derivatives: 

Since the derivatives are  are computed digitally on the 8 neighborhoods of the 4 pixel 
locations, a 4×4 neighborhood of the input image is needed for each output value. 

 
 

   11

0 0

, ,

, ,

,

c

r

c r j i

r i c j
r i c j

r i c j








   

 

 

 

I
I

I
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Resampling Through Bicubic Interpolation  

 ,r cN  , 1r c N

 1, 1r c N 1,r cN

N(r,c) is the 8-pixel 
neighborhood of (r,c). 

 
 

    
    

    

1
2

1
2

,  avg. of forward diff and
   backward diff @ ,

1, ,
  , 1,

1, 1,

r r c
r c

r c r c
r c r c

r c r c


 

  

  

   

I

I I
I I

I I

 
 
 

,
,
,

r

c

rc

r c
r c
r c










I
I
I
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Resampling Through Bicubic Interpolation  

      1
2, 1, 1, ,r r c r c r c

    I I I

     
   

1
4, 1, 1 1, 1

   1, 1 1, 1
cr r c r c r c

r c r c


      

     

I I I
I I

      1
2, , 1 , 1 ,c r c r c r c

    I I I

 ,r cN
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Resampling Through Bicubic Interpolation  

1999-2011 by Richard Alan Peters II 

 , 1r c N

      1
2, 1 1, 1 1, 1 ,r r c r c r c

       I I I

      1
2, 1 , 2 , ,c r c r c r c

    I I I

     
   

1
4, 1 1, 2 1,

   1, 1, 2
cr r c r c r c

r c r c


      

    

I I I
I I
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Resampling Through Bicubic Interpolation  

1999-2011 by Richard Alan Peters II 

 1, 1r c N

      1
21, 1 2, 1 , 1 ,r r c r c r c

       I I I

      1
21, 1 1, 2 1, ,c r c r c r c

       I I I

     
   

1
41, 1 2, 2 2,

   , , 2
cr r c r c r c

r c r c


       

  

I I I
I I
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Resampling Through Bicubic Interpolation  

1999-2011 by Richard Alan Peters II 

 1,r cN

      1
21, 2, , ,r r c r c r c

    I I I

      1
21, 1, 1 1, 1 ,c r c r c r c

       I I I

     
   

1
41, 2, 1 2, 1

   , 1 , 1
cr r c r c r c

r c r c


       

   

I I I
I I
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Resampling Through Bicubic Interpolation  

  / ,          if  ,
1 / ,  if  .r

R R R RS R R R R
    

  / ,          if   ,
1 / ,  if   .c

C C C CS C C C C
    

     1,...,  , 1,...,f r f cr R S c C S    

   , ,f fr c r c       

   , ,f fdr dc r r c c  

This part is the 
same as NN 
interpolation. 

1999-2011 by Richard Alan Peters II 
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Resampling Through Bicubic Interpolation  

       
2 2

1 1

, ,
m n

r c r m c n P dr m P n dc
 

       J I

     

   

3 31
6

3 3

2 4 1

6 4 1

P x Q x Q x

Q x Q x

    
  

     for  0
0  for  0
x xQ x x

 
The differentials 
on pp 103-107 are 
combined in this 
sum of products 
of polynomials. 
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Size Reduction 3/7 

original 

nearest neighbor 
bicubic 

bilinear 

1999-2011 by Richard Alan Peters II 
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Size Reduction 3/7 

original 

1999-2011 by Richard Alan Peters II 
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nearest neighbor 

Size Reduction 3/7 (zoomed) 

1999-2011 by Richard Alan Peters II 
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bilinear 

Size Reduction 3/7 (zoomed) 

1999-2011 by Richard Alan Peters II 



1/12/2016 114 

bicubic 

Size Reduction 3/7 (zoomed) 
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Size Reduction 3/7 

original 

1999-2011 by Richard Alan Peters II 
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Enlargement 

nearest neighbor  
7/3 
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Enlargement 

bilinear 7/3 
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Enlargement 

bicubic 7/3 
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Geometric Remapping 

Input Image 

Warping Function 

Interpolation Function 

Output Image 
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Geometric Remapping 
1. Assume the input image, I, has infinite spatial resolution. 
2. Calculate the size, Rout×Cout×B, of the output image, J, and 

allocate it. 
3. Create an image map (a warping function, Φ) as follows: 

a) Allocate an Rout×Cout×2 array, Φ.  
b) For every pixel location (r,c) in J find the corresponding 

real-valued pixel location (rf ,cf) in I.  
c) Set Φ(r,c,1) = rf  and set Φ(r,c,2) = cf . 

4. Create an interpolation function, Θ, that generates a pixel 
value from the values of I on a neighborhood, N(rf ,cf). 

5. Then set J(r,c) = Θ{I; N(rf ,cf)}. 
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Linear Warping of Images 

Original image with perspective distortion. 
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Linear Warping of Images 

Image warped to correct perspective distortion. 
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Linear Warping of Images 

Selected correction points. 

Select at least 4 key 
points that are easy 
to correct. 

E.g. in this case, 
the lines should be 
perfectly vertical. 

(52, 632) 

(80, 326) 

(403, 652) 

(412, 34) 

(913, 624) 

(872, 239) 
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Linear Warping of Images 

Target correction points. 

(52, 632) 
(403, 652) (913, 624) 

Here, align the top 
points with the 
bottom points. 

I.e. the top column 
coordinates == the 
bottom col. Cdts. 

(403, 34) 

(52, 326) (913, 239) 
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Linear Warping of Images 

(52, 632) 
(403, 652) (913, 624) 

Now the building 
corners are vertical. 

The top part of the 
image has been 
stretched more than 
the bottom 

(403, 34) 

(52, 326) (913, 239) 

Result of linear LMS point remapping. 
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Linear Warping of Images 

Now the building 
corners are vertical. 

The top part of the 
image has been 
stretched more than 
the bottom 

Image warped to correct perspective distortion. 
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Linear Warping of Images – How To Do It 

Y HXGiven a set, X, of points from image I and 
a set, Y, of target points find H such that: where 

then is the warped 
image.   1, cr c r

              
J

J J
J

J I H1 c c
r r

            
J I

J I
H

1 2
1 2

1 2

p
p

p

x x x
y y y
         

X x x x






1 2
1 2

1 2

p
p

p

u u u
v v v
         

Y y y y






11 12

21 22

h h
h h
     

Hand 
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Linear Warping of Images – How To Do It 

.Y HX

Given a set, X, of points from 
image I and a set, Y, of target 
points find H such that: 
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  1
.


H YX XXT T

The H that minimizes the 
square of the difference 
between Y and HX is: 

   , , , h hr c r cJ I

Then for each pixel in the 
output image, select the 
corresponding input pixel: 

10.5
0.5 .h

h

r r
c c

                   
H

where 



Linear Warping of Images – How To Do It 
Example: 
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Next 2 images: 
p. 13 original; 
p. 14 result of warping 
the image with the H 
above. 

52 52 403 403 913 913
632 326 652 34 624 239
   
 

Y

52 80 403 412 913 872
632 326 652 34 624 239
   
 

X 1.0285 0.0228
0 1

   
 

H

1 0.9723 0.0221
0 1

    
 

H

1 65 58 406 393 902 893
632 326 652 34 624 239

    
 

H Y

39 75 400 423 925 891
632 326 652 34 624 239
   
 

HX
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Linear Warping of Images – How To Do It 

Original image with distorted (red) and undistorted (blue) lines. 
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Linear Warping of Images – How To Do It 

Warped image with distorted (red) and undistorted (blue) lines. 

This is pretty bad! 
Why? 
Because the stretch that 
we want to perform is not 
linear in 2D. 



Linear Warping of Images – How To Do It 
Multiplication of a vector by an arbitrary matrix rotates the vector, 
stretches the result along its coordinates and rotates the result of that. 
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,H USVT

where U and V are rotations and S is diagonal.  For the example: 

0.9419 0.3359
0.3359 0.9419

   
 

VT

0.9456 0.3253
0.3253 0.9456

    
U

1.0326 0
0 0.9961S    

 

CW rotation 19.6293° 

CCW rotation -18.9863° 

stretch rotated columns by 3.2%; 
compress rotated rows by 99.6% 

1.0285 0.0228
0 1

   
 

H

Recall: 

Next 3 images:  
p. 16 rotated by VT;  
p. 17 rot. VT, scaled by S; 
p. 18 rot. VT, scaled S, rot. U; 
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Linear Warping of Images – How To Do It 

Original image rotated by VT. 



1/12/2016 17 1999-2011 by Richard Alan Peters II 

Linear Warping of Images – How To Do It 

Original image rotated by VT and stretched by S. 
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Linear Warping of Images – How To Do It 

Original image rotated by VT, stretched by S, and rotated by U. 



Linear Warping of Images – How To Do It 

Y HXGiven a set, X, of points from image I and 
a set, Y, of target points find H such that where 

then is the warped 
image.   1, cr c r

        
J

J J
J

J I H1 c c
r r

            
J I

J I
H

1 2
1 2

1 2

p
p

p

x x x
y y y
         

X x x x






1 2
1 2

1 2

p
p

p

u u u
v v v
         

Y y y y






11 12

21 22

h h
h h
     

Hand 
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There is a problem, however.  
This does not work very well. 
This is a 2D linear transform. 
What we need is a 3D affine 
transform.  A 3rd dimension 
enables us to model more ge-
neral projections.  Thus we use 
3D homogeneous coordinates. 



Linear Warping of Images – Homogeneous Cdts. 

Place a 1 in the 3rd 
dimension of each 
input pixel location. 

The remapped pixel locs are 
also 3D.  Call each 3rd element 
ki and write the other two as 
proportional to ki. 

i iy Hx H is 
3×3. 

1

i

i i

x
y
 
   
  

x

i i

i i i

i

k u
k v
k

 
   
  

y
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Linear Warping of Images – Homogeneous Cdts. 

1 1 2 2

1 1 2 2

1 2

p p

p p

p

k u k u k u
k v k v k v
k k k

 
 

  
 
  

Y






Remapped pixel locations in 
homogeneous form written as 
a 3×3 matrix. Note that 
usually each ki is different. 

1 2

1 2

1 1 1

p

p

x x x
y y y
 
   
 
 

X






Input pixel locations 
in homogeneous form 
written as a 3×3 
matrix. 

Y HX H is 
3×3. 

11 12 13

21 22 23

31 32 33 1

i i i

i i i

i

k u h h h x
k v h h h y
k h h h

     
          
          

Here, for vectors xi 
and yi are the elements 
of the transform.  
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Linear Warping of Images – Derivation 
11 12 13

21 22 23

31 32 33

i i i i

i i i i

i i i

k u h x h y h
k v h x h y h

k h x h y h

  

  

  

For each pixel 
location there 
are 3 equations 
in 3 unknowns. 

11 12 13

31 32 33

21 22 23

31 32 33

i i
i

i i

i i
i

i i

h x h y hu
h x h y h
h x h y hv
h x h y h

 


 

 


 

Divide the 1st and 2nd 
equations by the 3rd. 

11 12 13

31 32

21 22 23

31 32

1

1

i i
i

i i

i i
i

i i

h x h y hu
h x h y

h x h y hv
h x h y

 


 

 


 

Divide both numerator 
and denominator by 
h33. Then relabel the 
coefficients. 
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Linear Warping of Images – Derivation 

 
 

31 32 11 12 13

31 32 21 22 23

1
1

i i i i i

i i i i i

h x h y u h x h y h
h x h y v h x h y h

    

    
Multiply both sides by 
the right’s denominator. 

11 12 13 31 32

21 22 23 31 32

0
0

i i i i i i i

i i i i i i i

h x h y h h x u h y u u
h x h y h h x v h y v v

      

      
Subtract the right 
side from both sides. 

1 0 0 0 00 0 0 1
i i i i i i i

i i i i i i i

x y x u y u u
x y x v y v v

         
h Write as a matrix 

equation where … 

  T
11 12 13 21 22 23 31 32 1h h h h h h h hh … the elements of matrix H 

are written as vector h. 
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Linear Warping of Images – Derivation 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1
p p p p p p p

p p p p p p p

x y x u y u u
x y x v y v v

x y x u y u u
x y x v y v v

x y x u y u u
x y x v y v v

   
    
        
 
 
   
     

A


Collect p ≥ 4 
pixel locations, 
remap them as 
desired, and 
form the 
matrix A. 

  T
11 12 13 21 22 23 31 32 1h h h h h h h hh

0.Ah
Solve for h 
such that, 

1/12/2016 1999-2011 by Richard Alan Peters II 24 



Linear Warping of Images – Derivation 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

0 0 0 1
1 0 0 0

0 0 0 1
1 0 0 0

0 0 0 1
1 0 0 0

p p p p p p p

p p p p p p p

x y x v y v v
x y x u y u u

x y x v y v v
x y x u y u u

x y x v y v v
x y x u y u u

   
    
        
 
 

   
     

A


Collect p ≥ 4 
pixel locations, 
remap them as 
desired, and 
form the 
matrix A. 

  T
11 12 13 21 22 23 31 32 1h h h h h h h hh

0.Ah
Solve for h 
such that, 
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If the previous def of A 
led to H that gave wrong 
results, try this one: 



Linear Warping of Images – Derivation 

  Tsvd A USV To find h compute the singular 
value decomposition (svd) of A. 

1

2

0 0
0 0

0 0 p






 
 
   
 
  

S





   



S is a diagonal matrix 
of singular values. 

 1 2arg min , , , pk   


Find σk, the 
smallest sv. 

1 2 p
   V v v v

Write matrix V in 
terms of its columns. 

kvh = Then vector h is given by 
the kth column vector, vk. 
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1 2 3

4 5 6

7 8 9

k k k

k k k

k k k

v v v
v v v
v v v

 
   
  

H
If vk is the column vector 
of V that corresponds to 
the smallest singular 
value, then H is given by 

   , ,r c r cJ J I IJ INow (rI,cI) maps to (rJ,cJ) 
through H so that. 

  1, N
1

c
r c r

                         

J

J J JJ I H

But we want to scan the 
output image, J,  and at 
each location (rJ,cJ) take 
a value from I at location 
(rI,cI), so we do this: 

Linear Warping of Images – Derivation 
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Linear Warping of Images – Remapping 

…and that must be 
normalized as follows: 

 

 

 

 

 

 
,

,
,1

,
,

,

r c

Ir c
Ir c

Ir c k
Ir c

r c

k c k c ck r k r r
k

                                 

I

I

The inverse mapping 
of (rJ,cJ,1) through  
H-1 is (krI,kcJ,k)… 

 

 

 

,
1

,

,
1

r cJ

J r c

r c

k cc
r k r

k



                

I

IH

  1, N
1

J

J J J

c
r c r

                         
J I H

Thus for each pixel 
location (rJ,cJ) in the 
warped image, 
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1. Select at least four pixel locations from I, the image to be warped. 
2. Create target locations by altering the values of the selected locs. 
3. Construct from the location pairs, matrix A as described on slide 16. 
4. Compute the singular value decomposition of A = USVT. 
5. Select the vector vk that corresponds to the smallest singular value. 
6. Construct H from vk . 
7. Compute H-1. 
8. Create an output image J.   
9. For each (rJ , cJ ) in J, select (rI , cI ) from I using the eqns. on slide 19. 
10. Since (rI , cI ) is fractional, interpolate on the neighborhood of (rI , cI ) 

in I to compute J(rJ , cJ ). 
 

Linear Warping of Images – Steps 
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Image Rotation 

 in in, , sizeR C B    I

2
in

2
in CRD +=












= −

in

in1tanθ
C
R

A

image size: 

aspect angle: 

length of diagonal: 
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Image Rotation 

( )    ( )1,1, in2
1

in2
1

in0in0 ++= CRCR







0in

0in

C
R

  cosθ sinθθ sinθ cosθ
    

Ρ

angle of rotation: θ 

rotation matrix: 

  in in0 out0

in in0 out0
θ r R Rr

c c C R
                   

Ρ

transforms input image cdts.1 
to output image cdts. 

1 cdts. measured w.r.t. the center of the image: 
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Image Rotation 
Compute the dimensions 
of the output image: 
number of rows. 

if 0° < θ ≤ 90°. 

  out Dsin θ θround ,AR 
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Image Rotation 
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Compute the dimensions 
of the output image: 
number of columns. 

  out Dcos θ θround AC 

if 0° < θ ≤ 90°. 



Image Rotation 
The output dimension calculation depends on the value of θ as follows: 

If 0° ≤ θ < 90°: 

  out Dsin θ θround ,AR 

  out Dcos θ θround .AC 

If  – 90° ≤ θ < 0°: 

  out Dsin θ θround ,AR 

  out Dcos θ θround .AC 

If 90° ≤ θ < 180°: 

  out Dcos θ 90 θround ,AR  

  out Dsin θ 90 θround .AC  

If  – 180° ≤ θ < – 90°: 

  out Dcos θ 90 θround ,AR  

  out Dsin θ 90 θround .AC  
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Image Rotation 

 
 

out0 out0

1 1
out out2 2

,

1, 1 .

R C

R C



       







0out

0out

C
R

Allocate an output 
image with dimensions 
(Rout,Cout), where1 

  out Dsin θ θround AR 

  out Dcos θ θround AC 

and center point 

1Rout and Cout below are valid for 0° < θ ≤ 90°.  Otherwise see slide 7. 

1/12/2016 1999-2011 by Richard Alan Peters II 35 



Image Rotation 

 

 1 out0

out0

in0

in0

, ,:

θ

f

f

r
r c c

r R
c C

R
C



 
  
  

 
    

 
 
  

Ρ

 

 

1 cosθ sinθθ sinθ cosθ
θ

    
 

 

Ρ

Ρ

Work backward.  For 
every output loc. (r,c) 
select an input loc. (rf ,cf) 
by rotating (r,c) around 
the image center by -θ. 







0out

0out

C
R
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   1 in0out0

in0out0
, ,: θ

Rr Rr c Cc C
   

          
Ρ

Image Rotation 

Rotating the input image 
by θ is equivalent to 
rotating the ouput image 
by -θ. 
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Image Rotation 
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Ρ

After rotation by -θ, 
J(r,c) is in nearly 
the same position 
as I(rf,cf). 
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Image Rotation 
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After rotation by -θ, 
J(r,c) is in nearly 
the same position 
as I(rf,cf). 
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Ρ

After rotation by -θ, 
J(r,c) is in nearly 
the same position 
as I(rf,cf). 



Image Rotation 
    , ; , .f fr c r cJ I N

Interpolation: 
The output pixel value is 
(usually) a function of the 
values on a neighborhood 
– a set of pixels that 
surrounds –  (rf ,cf ). 

Bilinear Interp. uses a 2×2 
neighborhood, bicubic 
uses a 4×4. 

Nearest neighbor is simply,  
J(r,c) = I(ri ,ci ) where 
(ri ,ci ) = round(rf ,cf ). 
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Image Rotation with Interpolation  

Original image:  San Francisco financial district 
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Image Rotation with Nearest Neighbor Interpolation  

Bicubic – Nearest Neighbor Nearest Neighbor – Bilinear 
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Image Rotation with Bilinear Interpolation  

Nearest Neighbor – Bilinear Bilinear – Bicubic 
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Image Rotation with Bicubic Interpolation  

Bilinear – Bicubic Bicubic – Nearest Neighbor 
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Example of Warping:  Map Image to Sphere 

( )0 out out
1 min , .
2
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( )
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out
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2 2
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For each output pixel, 

For the output image, For the input image, 

For each output pixel, 
the input pixel loc is, 
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Example of Warping:  Map Image to Sphere 
d: radial distance 
from center of 
input image. 
ρ: same for 
output image. 
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Noise in Images All images created through optical 
projection onto a sensor array are noisy. 

Uncorrelated noise 
– Quantum noise in CCD arrays 
– Silver halide grains in film photography 
– Neuronal noise in a retina 
– Quantization noise in digital photographs 

Correlated noise 
– Due to electrical interference 
– Due to source / sensor interference 
– Halftone distortion / moiré patterns  
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Image with Additive Noise 

     , , , .r c r c r c J I N

undegraded 
image 

noisy  
image 

additive 
noise 

undegraded 
image 

noisy  
image 

additive 
noise 

     , , , .v u v u v u   

spatial domain frequency domain 
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Uncorrelated Noise 

Intensity distributions – 
normalized histograms 

Each pixel’s value has probability of occurrence given by the associated distribution. 



Tuesday, January 12, 2016 5 Tuesday, January 12, 2016 5   1999-2011 by Richard Alan Peters II 

Uncorrelated Noise 

Each pixel’s value has probability of occurrence given by the associated distribution. 

… black pixels occur 
75% of the time and 

white pixels occur 
25% of the time. 

All values occur with 
equal probability. 

This is sparse noise: 
Only 12.5% of the 
pixels contain noise.  
Of those 12.5% … 

The most likely value is 128 
with an average difference 
of 25 from 128 (std. dev.). 

Intensity distributions – 
normalized histograms 
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Uncorrelated Color Noise:  Gaussian 
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Uncorrelated Color Noise:  Uniform 
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Gaussian IID Noise Field 

µ = 128 
σ =   32 

IID: Independent, Identically Distributed 

IID ⇒ no spatial 
correlation 
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IID ⇒ no spatial 
correlation 
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Gaussian IID Noise Field 

… is this number 
divided by the number 
of pixels in the image. 

µ = 128 
σ =   32 

IID: Independent, Identically Distributed 

2 

The probability of 
any one pixel 
having this value … 

1 
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Autocorrelation of an Image 

        

     

 
 
 

1
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Let the support of I be a torus.  (I is defined on a torus a la the Fourier transform.) 
Let    be I minus the mean value of I.  Make a copy of   .  Shift the copy by (ρ,χ) 
on the torus.  Pixel-wise multiply the shifted version by the original and sum the 
products. 

I I

AI(ρ,χ), the autocorrelation of 
I at offset (ρ,χ), is a measure 
of the similarity of I to itself 
when shifted by (ρ,χ). 
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Power Spectrum & Autocorrelation of IID Noise 

    2PS  II F

Power Spectrum Autocorrelation 

0 C/2 -C/2 

ρ = 0 

χ 

The autocorrelation is 
the inverse FT of the 
power spectrum. 

    21, Re      IA IF F
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Power Spectrum & Autocorrelation of IID Noise 

Power Spectrum Autocorrelation 

0 C/2 -C/2 

ρ = 0 

χ 

The autocorrelation of 
an IID noise image is ≈ 
δ(ρ,χ). That implies 
the PS is ≈ constant 

    2PS  II F     21, Re      IA IF F
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Gaussian noise field image 

Noise-Free Image and Uncorrelated Noise Field 
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noise field center row log power spectrum image center row log power spectrum 

IID noise 
spectrum 
is flat.  

Image  
spectrum 
falls off.  

Spectra of Noise-Free Image and Uncorr. Noise Field 
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image + noise field image + noise field center row log PS 

Noise energy 
exceeds image 
energy beyond 
a certain freq.  

    22, ,v u v u     22, ,v u v u      22, ,v u v u 

Sum of Noise-Free Image and Uncorrelated Noise Field 
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Power Spectra of Noise-Free Image and Noise Field 

noise image original image 
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original image noisy image 

Power Spectra of Sum of Image and Noise Field 
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blue indicates noise > image original image 

Power Spectra of Sum of Image and Noise Field 
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red indicates image > noise noise image 

Power Spectra of Sum of Image and Noise Field 
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image & noise noisy image 

Power Spectra of Sum of Image and Noise Field 
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Additive Noise: Another Example 

original image noise image image+noise 
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image PS noise PS image+noise PS 

displayed:  
 
   2log 1IFAdditive Noise: Another Example 
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image PS image PS > noise PS image+noise PS 

Additive Noise: Another Example displayed:  
 
   2log 1IF
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red indicates image > noise image PS > noise PS 

Additive Noise: Reduce Through Blurring? 

f0 
f0 

At some frequency, 
f0, there are more 
components where 
the noise power is 
greater than the 
image power.   
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pass 

reject 

pass 

reject 

red indicates image > noise image PS > noise PS 

Additive Noise: Reduce Through Blurring? 

Thus, it makes 
sense to apply a LPF 
with cutoff f0, (a 
blurring filter) to 
the images and see 
what happens.   
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PS of Gaussian blurred image Gaussian Blurred Image 

Additive Noise: Reduction Through Blurring. 

The result 
is actually 
no better.  
There’s less 
noise but 
the blurring 
looks worse. 
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PS of Gaussian blurred image Gaussian Blurred Image 

Additive Noise: Reduction Through Blurring. 

The result 
is actually 
no better.  
There’s less 
noise but 
the blurring 
looks worse. 
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red: image > noise  
blue: image < noise power spec. of noisy image 

Noise Masking 

If the freq. comps. 
for which noise-
power > image-
power are known1… 

1of course they almost never are. 
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Noise Masking 

… mask those out 
of the FT and 
invert the result 
to get… 

image < noise masked out power spec. of noisy image 
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noisy image noise-masked mage 

Noise Masking 

… this: 
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blurred noisy image noise-masked mage 

Noise Masking 
Although the noise-masked image looks better than the blurred one, it is still 
noisy.  Moreover, this example is unrealistic because we know the exact noise 
power spectrum.  In any real case we will at most know its statistics. 
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Image Degradation Model 

       , , , , .r c r c r c r c  J I H N

undegraded 
image 

additive 
noise 

degraded 
image 

pointspread 
function 

So far, we have considered 
only additive noise.  Before 
going further it will be 
useful to consider a more 
general model of image 
degradation, one that 
includes convolution with a 
pointspread1 function, H, as 
well as additive noise. 

1H is also referred to as the optical transfer function. 
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Pointspread Operators 
A pointspread operator is a linear model of the distortion acquired during the 
imaging process.  Since it is a linear model, it is a convolution operator.  One 
example of this is aperture distortion, an unavoidable consequence of making 
an image with a camera that has an opening larger than a point. 
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Pointspread Operators 
pinhole camera aperture camera 

A pinhole camera maps one 
object point to one image 
point; it is one-to-one. 

An aperture camera maps one 
object point to many image 
points; it spreads the points. 
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Pointspread Operators and Convolution 
( ) ( ) ( ), , ,r c r c r cJ I H= ∗

( ),r cH

( ),r cI

Recall how a convolution works through multiply, shift, and add (See Lect. 7 p. 25ff).  
That is precisely the effect of imaging through an aperture.  It results in a blurry image. 
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Lenses  
A properly designed lens will focus the light emanating from a point and thereby 
reduce the blurring.  But no lens can do this perfectly.  In fact, the lens adds its 
own distortion.  The result is an optical transfer function, H(r,c), that is 
convolved with the image.   
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Image Degradation Model 

       J , I , H , N , .r c r c r c r c  

undegraded 
image 

additive 
noise 

degraded 
image 

pointspread 
function 

Note: The term pointspread operator refers to convolution by the pointspread function. 
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Image Degradation Model  

 I ,r c

 J ,r c

 N ,r c

   I , H ,r c r c

 H ,r c
( ) ( ) ( ) ( )J , I , H , N ,r c r c r c r c= ∗ +
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Image Degradation Model (Frequency Domain) 

       , , , , .v u v u v u v u     

undegraded 
image 

additive 
noise 

degraded 
image 

pointspread 
operator 
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Image Degradation Model (Frequency Domain) 

 ,v u

 ,v u

 ,v u

   , ,v u v u 

 ,v u
Images shown are log magnitude. 

       , , , , .v u v u v u v u     
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Let I be a perfect image and let K be 
the image convolved with a pointspread 
function, H.  Then in the frequency 
domain: 

Image Restoration 

     , , , .v u v u v u  

     , , , .u v u v u v   

     , , , .u v u v u v  

 
 
 

   
 

, , ,
, .

, ,
u v u v u vu v
u v u v

 
  


 





If the process of imaging adds noise then 
we get J = K + N, or in freq.:  

We want a filter, W, to remove as much 
of the noise from J as possible: 

Then an estimate of I would be the 
inverse Fourier transform of 

We want to find the filter, W, that results 
in the closest possible estimate of I i.e. 
the W that minimizes the energy of the 
difference between the estimate and I. 
That is we want to find W such that 

22 dudv    

is as small as possible. This is called 
least mean squared (LMS) minimization. 
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Image Restoration 
There are a number of ways to solve for 
the minimum squared error.  All make use 
of the assumption that the image and the 
noise are uncorrelated.  Depending on 
how that fact is used, slightly different 
solutions are found.  The most common 
one used in image processing is the 
Wiener filter: 

2*

22 2 .


 


  

2 *

2
2

2

.






   







For frequencies (u,v) where noise power 
is smaller than the image power  acts 
like an inverse filter since 
(u,v)/(u,v) < 1 and 

     
2

2, , , ,u v u v u v 


  


Then, with a little bit of algebra, we get 

and at frequencies where the noise 
power dominates, (u,v)/(u,v) > 1 and 

   
2 *

22 2, , ,u v u v


 
 

  

the fraction is small so the noise power 
is diminished. 
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Image Restoration 
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This is one of the 
possible derivations 
of the Wiener filter 
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Image Restoration 
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   222 22 1 2Re 1 .dudv dudv                

 12Re 1 ,dudv    

1
0.dudv  

  2222 1 .dudv           

From the previous page, the squared error is 

The second term should be small compared to the first since it can be written  

and the image and the noise are assumed to be uncorrelated1. Thus the error 
can be approximated by 

The mean squared error, ε2, is minimized when W is given by, 
2*

22 2 .
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Gaussian noise field image 

Noise Reduction Through LMS Filtering1 

1Here the PSF is the identity. 
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noisy image image 

Noise Reduction Through LMS Filtering1 

1Here the PSF is the identity. 
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Additive Noise (Power Spectra) 

noisy image original image 
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Additive Noise (Power Spectra) 

Wiener filter noisy image 

In this example we 
knew the exact image 
and noise power 
spectra and the PSF 
was the identity 
because the image is 
synthetic.  In a real 
example, none of that 
is true. 
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Additive Noise (Power Spectra) 

Wiener filter noisy image 
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Additive Noise (Power Spectra) 

original image Wiener filtered image 
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Additive Noise 

Wiener filtered image noisy image 
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Wiener filtered image 

Additive Noise 

original image 
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Gaussian blurred image 

Additive Noise 

original image 
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noisy image J = I*h + N image 

Noise Reduction Through LMS Filtering1 

1Least Mean Squared.  PSF, h, is Gaussian µ=0, σ=2. 
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Image*PSF + Noise (Power Spectra) 

original image noisy image J = I*h + N 



Tuesday, January 12, 2016 56 Tuesday, January 12, 2016 56   1999-2011 by Richard Alan Peters II 

Wiener filter Wiener filtered image 

In this example we 
knew the exact image 
and noise power 
spectra and the PSF 
was Gaussian w/ μ=0, 
σ=2.  In a real example, 
none of that is true. 

Image*PSF + Noise (Power Spectra) 
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Image*PSF + Noise (Power Spectra) 

Wiener filter Wiener filtered image 
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Image*PSF + Noise (Power Spectra) 

original image Wiener filtered image 
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Image*PSF + Noise  

Wiener filtered image noisy image J = I*h + N 
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Wiener filtered image 

Image*PSF + Noise 

original image 
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LMS Image Restoration (Real Example) 

For this real example we 
need to estimate the 
image power spectrum, the 
pointspread function and 
the noise power spectrum. 
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LMS Image Restoration (Real Example) 

To estimate the noise 
power spectrum, 
analyze a constant 
area from the image. 
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Noise Estimation 

+ - + 

original blurred w/ Gaussian σ=5 

difference 
σR = 5.0981        
σG = 4.0672 
σB = 6.9212 

Find the std. 
deviations of 
each band: 
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Pointspread Function Estimation 

To estimate the PSF, 
find the image of a point 
and construct a convo-
lution mask from it.  
















=

0625.01250.00625.0
1250.02500.01250.0
0625.01250.00625.0

h
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Wiener Filter Estimation 
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2

2
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LMS Image Restoration (original) 
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LMS Image Restoration (filtered) 
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Detail of Results  

filtered image original image matlab’s wiener2 

The contrast of these has 
been increased to make the 
differences more visible. 
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Periodic Noise 

image + noise original image 

Pratt & Whitney Rocketdyne J-2 rocket engines 
on Apollo 18’s Saturn V second stage. 
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Noise Reduction through Directional Blurring  

* = 

image + noise blurred image 

diagonal 
convolution 

mask 

Pratt & Whitney Rocketdyne J-2 rocket engines 
on Apollo 18’s Saturn V second stage. 
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Power Spectrum of Image with Periodic Noise 

image + noise original image 
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image + noise 

Low Frequency Region 

original image 
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Noise Reduction through Notch Filtering 

noise mask masked power spectrum 
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Inverse of Masked Fourier Transform 

original image noise reduced image 

Pratt & Whitney Rocketdyne J-2 rocket engines 
on Apollo 18’s Saturn V second stage. 



8 15 November 2011 8 1999-2011 by Richard Alan Peters II 

Notch filter reduction of periodic noise 
1. Take the FFT of the input image.  F = fft2(I). 
2. Display the log power spectrum of the fftshift-ed F. 
3. Find the locations, xi, of the spikes that correspond to the periodic distortion. 
4. Create a 1-band image, M, of class double the same size as I. 
5. Set all M’s pixels to 1.0. 
6. Let N(xi) be a neighborhood of xi with area sufficient to cover the spike at xi. 
7. For each xi do: for each yj ϵ N(xi), set M(yj) = 0. 
8. Blur M with a Gaussian whose s is smaller than ½ the radius of N(xi). 
9. Take the ifftshift of M. 
10. For each band, k, of the image let Gk = Fk .*M. 
11. Then the noise-reduced image is:  J = real(ifft2(G)). 

8 
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How to determine the frequency and period of a 
point in the log power spectrum of an image (ex.): 

R 

C C/2 + 1 C/2 - 1 

R
/2

 -
 1

 
R

/2
 +

 1
 

C/2 + 1 

original image quadrant partition of PS loc of (0,0) in fftshift(PS) 

(0,0) 
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24
1 

How to determine the frequency and period of a 
point in the log power spectrum of an image (ex.): 

48
0 

339 170 169 

23
9 

24
1 

170 

original image quadrant partition of PS loc of (0,0) in fftshift(PS) 

(0,0) 
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How to determine the frequency and period of 
a point in the log power spectrum of an image: 
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How to determine the frequency and period of 
a point in the log power spectrum of an image: 



13 15 November 2011 13 1999-2011 by Richard Alan Peters II 13 

Points on the Fourier Plane (of a Digital Image) 
-v direction 

u direction 

-θ direction 

(0,0) 

 1
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In the Fourier transform of an  R×C digital 
image the wavelengths, u and v represent a 
fraction of the R and C values.   That is, 

 and pixels      .C R
u vu v  

The wavefront direction is given by 

and the wavelength is 

The frequencies represent fractions of R & C, 
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cosine grating  = 32Ö2,   = -/4  Þ  r = 64 = 512/v, c = 64 = 512/v 
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How to determine the frequency 
plane location of a sinusoid: 



15 15 November 2011 15 1999-2011 by Richard Alan Peters II 15 

-8 

8 

u 

v 

u 

v 

c =512 « v=255 c =1 « v=-256 

r =1 «  u=-256 

u= ±512/64 
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cosine grating  = 8Ö2, orientation = 3/4  Þ  u = ±8, v = ±8 
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How to determine the frequency 
plane location of a sinusoid: 

(0,0)  «  (257,257) 
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Sinusoidal grating image with 
an even number or rows and 
an odd number of columns. 

512´767 sine grating 
 = 20, orient. = 5/6   
Þ  r= 20/cos(5/6) » -23 ,  
c= 20/sin(5/6) = 40 

c= 40 

r » -23 

r 

c 
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FT of Sinusoidal 
Grating Image 

752´937 sine grating 
 = 20, orient. = 5/6   
Þ  u = ±512/r » ±22 ,  
v = ±767/ c » ±19 
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Processing Scanned Press-Printed Images 
4-color printing: 

1. A photograph or other color image is separated into four 
intensity band images: cyan, magenta, yellow, and black. 

2. Each of these is multiplied by a halftone screen1 – a dot mask 
with a unique orientation. 

3. Each of the resulting four images shows a pattern of dots 
whose individual sizes indicate the amount of ink to be 
applied at each point. 

4. The four images are printed, one atop the other, in the 
corresponding color. 

1Merriam-Webster Dictionary: half·tone 2 (1): a photoengraving made from an image photographed 
through a screen and then etched so that the details of the image are reproduced in dots. 
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Halftone Screen  (45°) 
is the pointwise product of 
2 sinusoidal gratings with 
perpendicular orientations. 
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Halftone Screens  (90°) 
The orientation of the 
screen is the average of 
the grating orientations. 
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Standard Halftone Screen Angles 
Cyan:  105° 

Yellow:    90° 
Magenta:    75° 

Black:    45° 

Image from Adobe Photoshop CS2 documentation.  
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CMYK Standard Halftone Screens 

Power Spectra 

Each band has 2 perpendicular 
sinusoids + a DC component… 
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CMYK Standard Halftone Screens 

space domain images 

cyan 

105° 

magenta 

75° 

yellow 

90° 

black 

45° 

… which creates rectangular 
grids at 4 different angles. 
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CMYK Standard Halftone Screens 

space domain images 

When the 4 are summed, the 
result is a “rosette” image. 

cyan 

105° 

magenta 

75° 

yellow 

90° 

black 

45° 



25 15 November 2011 25 1999-2011 by Richard Alan Peters II 25 

That is, an intensity image is 
created for each of the four 
color bands. 

Example:  Color Separation / Halftoning 

To print an image, it is 
separated into 4 color bands … 
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Color Separation / Halftoning 

each screened image is printed in 
its own color on the same page. 

Each intensity image is multiplied 
by a corresponding screen, then 

Cyan Magenta 

Yellow Black 

… each of which is multiplied by 
a corresponding screen. 
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Example:  Color Separation / Halftoning 

To print an image, it is 
separated into 4 color bands … 

Here the bands tinted in their 
corresponding colors. 
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Example:  Color Separation / Halftoning 

… each of which is multiplied by 
a corresponding screen … 

Here the screens tinted in 
their corresponding colors. 
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Example:  Color Separation / Halftoning 

…to get dot patterns for printing. 
The 4 are printed over each other 
to get the final result. 



30 15 November 2011 30 1999-2011 by Richard Alan Peters II 30 

Halftone Dots 

Image scanned (600 dpi) 
from a magazine 

Detail: Circular patterns, the rosettes, 
are the result of the halftone dots. 
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Filtering Out Halftone Dot Distortion 

original log power spectrum 
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Filtering Out Halftone Dot Distortion 

original log power spectrum 

Each pair of peaks 
corresponds to a 
sinusoidal sub-pattern 
in the HTD pattern. 
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Blurring with a Gaussian (ó  = 1) 

blurred image ó =1 log power spectrum ó =1 
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Blurring with a Gaussian (ó  = 2) 

blurred image ó =2 log power spectrum ó =2 
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Blurring with a Gaussian (ó  = 4) 

blurred image σ=4 log power spectrum σ=4 
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Blurring with a Gaussian (σ = 8) 

blurred image σ=8 log power spectrum σ=8 
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Blurring with a Gaussian (σ = 1) 

blurred σ = 1 original 

middle gray = 0, normalized 

difference 
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blurred σ = 2 original 

Blurring with a Gaussian (σ = 2) 

difference 

middle gray = 0, normalized 
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Blurring with a Gaussian (σ = 4) 

blurred σ = 4 original difference 

middle gray = 0, normalized 
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blurred σ = 8 original 

Blurring with a Gaussian (σ = 8) 

difference 

middle gray = 0, normalized 
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Problem with Blurring to Reduce HTD Distortion 
 ”  It blurs everything. 

Better to remove the HTD frequency components selectively:   

1. Read in the image. 
2. Compute the log power spectrum of the image. 
3. Find the locations of the HTD spectrum peaks. 
4. Mark these on a mask. 
5. Enlarge the points to regions that cover most of the energy. 
6. Blur the mask for used as a notch filter. 
7. Multiply the Fourier transform of the image by the mask. 
8. Take the inverse Fourier transform of the result. 
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Remove HTD Distortion Selectively 

1. Read in image;  2. Compute power spectrum;  3. Locate HTD frequency components;  4. Mark locs on a mask; 
5. Enlarge points to regions;  6. Blur the mask;  7. Multiply FT of image by mask;  8. Take inverse FT of result; 

… through notch 
filtering. 
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Notch Filtering of Halftone Dot Distortion 

original log power spectrum 
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Notch Filtering 

frequency masked 1 log power spectrum 

Since not much distortion was 
removed, these must be subharmonics 
of the true dot frequencies 
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frequency masked 2 log power spectrum 

Notch Filtering The outer ring are the actual HTD 
frequencies.  Can we do any better? 



46 15 November 2011 46 1999-2011 by Richard Alan Peters II 46 

frequency masked 3 log power spectrum 

Notch Filtering Not much. The harmonics contribute 
little energy to the image. 



47 15 November 2011 47 1999-2011 by Richard Alan Peters II 47 

Notch Filter Difference Images 

frequency masked  1 original difference 

middle gray = 0, normalized 
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frequency masked  2 original difference 

middle gray = 0, normalized 

Notch Filter Difference Images 
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frequency masked  3 original difference 

middle gray = 0, normalized 

Notch Filter Difference Images 



50 15 November 2011 50 1999-2011 by Richard Alan Peters II 50 

frequency masked  2 frequency masked  1 difference 

middle gray = 0, normalized 

Notch Filter Difference Images 
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frequency masked  2 difference 

middle gray = 0, normalized 

frequency masked  3 

Notch Filter Difference Images 
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The Median Filter 
l Returns the median value of the pixels in a neighborhood 
l Is non-linear 
l Is a morphological filter 
l Is similar to a uniform blurring filter which returns the mean 

value of the pixels in a neighborhood of a pixel 
l Unlike a mean value filter the median tends to preserve step edges 

original 

median 
filtered 
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This can be computed as follows: 
1. Let I be a monochrome (1-band) image. 
2. Let Z define a neighborhood of arbitrary shape. 
3. At each pixel location, p = (r,c), in I … 
4. … select the n pixels in the Z-neighborhood of p, 
5. … sort the n pixels in the neighborhood of p, by 

 
6. The output value at p is L(m), where m = ën/2û+1. 

value, into a list L( j) for j = 1,…,n. 

Median Filter: General Definition 

  
 

  
supp

med , median
 


q Z p

I Z p I q
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Median Filter: General Definition 

sorted intensity 
values from 
neighborhood 
of p. 

131 
133 
133 
136 
140 
143 
147 
152 
154 
157 
160 
162 
163 
164 
165 
171 

p 

median 
assigned to 

pixel loc p in 
output image. 
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A Noisy Step Edge 
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Blurred Noisy 1D Step Edge 
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Blurred Noisy 1D Step Edge 
J(32-4:32+4)= 

0.1920 
0.3416 
0.0464 
0.0177 
0.3062 
1.3043 
1.0079 
1.0082 
1.0950 

J(33-4:33+4)= 
0.3416 
0.0464 
0.0177 
0.3062 
1.3043 
1.0079 
1.0082 
1.0950 
 1.2935 

0.5910 

0.7134 

mean 

mean 
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Median Filtered Noisy 1D Step Edge 

    4
4med kh n h n k  
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Median Filtered Noisy 1D Step Edge 
J(32-4:32+4)= 

0.1920 
0.3416 
0.0464 
0.0177 
0.3062 
1.3043 
1.0079 
1.0082 
1.0950 

    0.0177 
    0.0464 
    0.1920 
    0.3062 
    0.3416 
    1.0079 
    1.0082 
    1.0950 
    1.3043 

J(33-4:33+4)= 
0.3416 
0.0464 
0.0177 
0.3062 
1.3043 
1.0079 
1.0082 
1.0950 
 1.2935 

    0.0177 
    0.0464 
    0.3062 
    0.3416 
    1.0079 
    1.0082 
    1.0950 
    1.2935 
    1.3043 

sorted 

sorted 

median 

median 
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Median vs. Blurred 

step 

noisy 

blurred 

median 
The median filter 
preserves the step 
edge better than the 
blurring filter. 
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Median vs. Blurred 

median 

blurred 
The median filter 
preserves the step 
edge better than the 
blurring filter. 

step 
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Median vs. Blurred 

blurred 

median 
The median filter 
preserves the step 
edge better than the 
blurring filter. 

step 
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Median Filtering of Binary Images 

Original Noisy 
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Median Filtered Noisy Original 

Median Filtering of Binary Images 
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Original Noisy 

Filtering of Grayscale Images 
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Noisy Noisy 

Filtering of Grayscale Images 
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3x3-median x 1 3x3-blur x 1 

Filtering of Grayscale Images 
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3x3-median x 2 3x3-blur x 2 

Filtering of Grayscale Images 
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3x3-median x 3 3x3-blur x 3 

Filtering of Grayscale Images 



20 15 November 2011 20 1999-2011 by Richard Alan Peters II 20 

3x3-median x 4 3x3-blur x 4 

Filtering of Grayscale Images 
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3x3-median x 5 3x3-blur x 5 

Filtering of Grayscale Images 
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3x3-median x 10 3x3-blur x 10 

Filtering of Grayscale Images 
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Noisy Noisy 

Filtering of Grayscale Images 
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Limit and Root Images 
Fact: if you repeatedly filter an image with the same blurring filter or 

median filter, eventually the output does not change.  That is, let 

[ ] ( )( )( )
[ ] ( )( )( )

,    times, and

med  med  med med ,    times.

k

k

k

k

I h I h h h

I Z I Z Z Z
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≡





Then 

[ ] [ ]
[ ] [ ]

0

r

lim ,   and

lim med = med ,

k n

k
k m

k

I h I h I

I Z I Z I
→∞

→∞

∗ = ∗ =

=

where n and m are integers (< ∞) ,  I0 is a single-valued image and Ir is 
called the median root of I. 
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3x3-median x 10 3x3-blur x 10 

Limit and Root Images 
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Limit and Root Images 

3x3-median root 3x3-blur x n®¥ 
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Median Filter Algorithm in Matlab 
function D = median_filt(I,SE,origy,origx) 
[R,C] = size(I);    % assumes 1-band image 
[SER,SEC] = size(SE); % SE < 0 Þ not in nbhd 
 
N = sum(sum(SE>=0));  % no. of pixels in nbhd  
A = -ones(R+SER-1,C+SEC-1,N); % accumulator 
n=1; % copy I into band n of A for nbhd pix n 
for j = 1 : SER % neighborhood is def’d in SE 
   for i = 1 : SEC 
      if SE(j,i) >= 0 % then is a nbhd pixel 
         A(j:(R+j-1),i:(C+i-1),n) = I; 
         n=n+1; % next accumulator band 
      end 
   end 
end 
% pixel-wise median across the bands of A 
A = shiftdim(median(shiftdim(A,2)),1); 
D = A( origy:(R+origy-1) , origx:(C+origx-1) ); 
return; 
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Vector Median Filter 

{ }arg min , .k j k j
k j

Sv v v v v
≠

= − ∈

A vector median filter selects 
from among a set of vectors, 
the one vector that is closest 
to all the others. 

That is, if S is a set of vectors, 
in n the median, v, is 

n is an n-dimensional linear vector space over the field, .) 
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Color Median Filter 
If we let n = 3 then the 
vector median can be used 
as a color median filter. 

(a) (b) 

(c) (d) 
(a)  original image  
(b)  image (a) with sparse noise 
(c)  image (b) color median filtered 
(d)  image (c) color median filtered 

Median filter performed on 3×3 nbhd. 

original image: Jim Woodring 
www.jimwoodring.com 
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Color Median Filter 

noisy 3×3 MF (3×3 MF)2 

original 3×3 MF (3×3 MF)2 

The output 
color at (r,c) is 
always selected 
from a nbhd of 
(r,c) in the 
input image. 
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Color Median Filter 

noisy 3×3 MF (3×3 MF)2 

original 3×3 MF (3×3 MF)2 

The output 
color at (r,c) is 
always selected 
from a nbhd of 
(r,c) in the 
input image. 
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Color Median Filter 

noisy 3×3 MF (3×3 MF)2 

original 3×3 MF (3×3 MF)2 

The output 
color at (r,c) is 
always selected 
from a nbhd of 
(r,c) in the 
input image. 
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Color Median Filter 

noisy 3×3 MF (3×3 MF)2 

original 3×3 MF (3×3 MF)2 

The output 
color at (r,c) is 
always selected 
from a nbhd of 
(r,c) in the 
input image. 
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Color Median Filter 

Jim Woodring – A Warm Shoulder 
www.jimwoodring.com 

Sparse noise, 32% coverage in each band  
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Color Median Filter 

3×3 color median filter applied twice 3×3 color median filter applied once 

original image: Jim Woodring 
www.jimwoodring.com 
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Color Median Filter 

Jim Woodring – A Warm Shoulder 
www.jimwoodring.com 

Sparse noise, 32% coverage in each band  
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Color Median Filter 

(3×3 CMF2 of noisy) – original (3×3 CMF2 of noisy) – (3×3 CMF2 of original)  

Absolute differences 
displayed as negatives 
to enhance visibility 

original image: Jim Woodring 
www.jimwoodring.com 
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CMF vs. Standard Median on Individual Bands 
A color median filter has to compute the distances between all the color vectors 
in the neighborhood of each pixel.  That’s expensive computationally. 

Q:  Why not simply take the 1-band median of each color band individually? 
A:  The result at a pixel could be a color that did not exist in the pixel’s 

neighborhood in the input image.  The result is not the median of the 
colors – it is the median of the intensities of each color band treated 
independently. 

Q:  Is that a problem? 
A:  Maybe.  Maybe not.  It depends on the application.  It may make little 

difference visually.  If the colors need to be preserved, it could be 
problematic. 
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Jim Woodring – A Warm Shoulder 
www.jimwoodring.com 

Sparse noise, 32% coverage in each band  

CMF vs. Standard Median on Individual Bands 
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3×3 color median filter applied twice 3×3 color median filter applied once 

original image: Jim Woodring 
www.jimwoodring.com 

CMF vs. Standard Median on Individual Bands 
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original image: Jim Woodring 

www.jimwoodring.com 

CMF vs. Standard Median on Individual Bands 

3×3 median filter applied to each band twice 3×3 median filter applied to each band once  
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Jim Woodring – A Warm Shoulder 
www.jimwoodring.com 

Sparse noise, 32% coverage in each band  

CMF vs. Standard Median on Individual Bands 
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CMF vs. Standard Median on Individual Bands 

Fraction of pixels in 
CMF2 noisy image 
identical to original:  
0.29  

Fraction of pixels in 
CMF2 noisy image 
identical to CMF2 
original:  0.43  

Fraction of pixels in 
MF2 noisy image 
identical to original:  
0.14  

Fraction of pixels in 
MF2 noisy image 
identical to MF2 
original:  0.28  

original image: Jim Woodring 
www.jimwoodring.com 
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What is Mathematical Morphology? 

l nonlinear, 
l built on Minkowski set theory, 
l part of the theory of finite lattices,  
l for image analysis based on shape, 
l extremely useful, yet not often used.  

It is: 
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Uses of Mathematical Morphology 
l image enhancement 
l image segmentation 
l image restoration 
l edge detection 
l texture analysis 
l particle analysis 
l feature generation 
l skeletonization 

l shape analysis 
l image compression 
l component analysis 
l curve filling 
l general thinning 
l feature detection 
l noise reduction 
l space-time filtering 
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Notation and Image Definitions 
An image is a mapping, I, from a set, SP, of pixel coordinates to a set, G, of 
values such that for every coordinate vector, p = (r,c) in SP, there is a value 
I(p) drawn from G.  SP is also called the image plane. 

A binary image has only 2 values.  That is, G = {vfg , vbg}, where vfg, is called 
the foreground value and vbg is called the background value. 

Often, the foreground value is  vfg = 0, and the background is vbg = –∞.  Other 
possibilities are {vfg , vbg} = {0,∞}, {0,1}, {1,0},  {0,255}, and {255,0}.    

In this lecture we assume that {vfg , vbg} = {255, 0}, although the fg is often 
displayed in different colors for contrast. 
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The foreground of binary image I is 

i.e. the set of locations, p, where I(p) = vfg.  Similarly, the background is 

{ } ( ) ( ){ }P fgFG , , ( ) ,r c S vI I p p I p= = ∈ =

{ } ( ) ( ){ }P bgBG , , ( ) .r c S vI I p p I p== = ∈ =

Note that 

   FG BG I I I    FG BG I Iand    ∅, 

and that 

    CBG FGI I and     CFG BG .I I

The background is the complement of the foreground and vice-versa. 

Notation and Image Definitions 
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A Binary Image 

This represents a digital image.  Each square is one pixel. 

foreground: 
( ) c

c





I p
where

R
( ) 0I p

background 
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Support of an Image 

( ) { }P fsupp ( , ) ( ) .gr c S vI p I p= = ∈ =

That is, the support of a binary image 
is the set of foreground pixel 
locations within the image plane. 

The complement of the support is, 
therefore, the set of background pixel 
locations within the image plane. 

The support of a binary 
image, I, is 

( ){ } { }C
P bsupp ( , ) ( ) .gr c S vI p I p= = ∈ =
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Structuring Element (SE) 
 A structuring element is a small image – used as a moving window 
– whose support delineates pixel neighborhoods in the image plane. 

It can be of any shape, size, or connectivity (more than 1 piece, have 
holes).  In the figure the circles mark the location of the structuring 
element’s origin which can be placed anywhere relative to its support.   

Ex
am

pl
e 

SE
s FG
 is gray ; 

B
G

 is w
hite 
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Structuring Element 

Let I be an image and Z a SE. 

Z+p means that Z is moved 
so that its origin coincides 
with location p in SP. 

Z+p is the translate of Z to 
location p in SP. 

The set of locations in the 
image delineated by Z+p is 
called the Z-neighborhood of 
p in I denoted N{I,Z}(p).  
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Reflected Structuring Elements 

( ) ( ) ( ), ,    for all   , .Z Zρ χ ρ χ ρ χ= − − ∈


S

Let Z be a SE and let S be the square of pixel locations 
that contains the set {(r,c), (−r,−c) | (r,c)∈supp(Z)}. Then 

is the reflected structuring element. 

         rotated by 180º around its origin.  is Z Z
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Dilation 
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Dilation of Binary Images 
There are a number of equivalent definitions of dilation.  Three of them 
that apply to binary images are: 

 P ( )      .B S        I p Z p I


 ∅ 
The set of all pixel locations, p, in the 
image plane where the intersection of 
Ž+p with I is not empty. 

 supp

( ).


  
p I

I Z Z p


The union of copies of the SE, one translated to 
each pixel location in the support of the image. 

 supp

( ).


  
p Z

I Z I p


The union of copies of the image, one translated 
to each pixel location in the support of the SE. 
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Dilation 

original image original / dilation dilated image 

The locus of pixels p∈SP such that                    ∅. ( ) I  Z p


SE = Z8 This is a piece of a larger image.  Boundary effects are not apparent 
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Dilation using a Reflected SE 
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Fast Computation of Dilation 

.


   
q Z

J I Z I q


The fastest way to compute binary dilation is to use the union-of-
translates-of-the-image definition.  That is, use  

Assume the dimensions of I are R×C, the dimensions of Z are N×M, and 
Z’s origin is offset from the upper left hand corner (ULHC) by ρ rows 
and χ columns.  Allocate a scratch image, T, that is (R+N−1)×(C+M−1) 
and initialized to zeros.  Then, for each FG pixel loc (v, u) in Z 
(measured from the ULHC of Z ) perform a logical OR between I+(v, u) 
and T.  Put the results in T.  When done, copy to J the R×C subarray of 
T starting at (ρ,χ). 
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Dilation through Image Shifting 
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Dilation through Image Shifting 

The red outlines indicate the positions of the features in the original images. 
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Erosion 
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Erosion of Binary Images 
There are a number of equivalent definitions of erosion.  Three of them 
that apply to binary images are: 

 
 supp

    .


 
p Z

I Z I p




 The intersection of copies of the image, one translated 
to each pixel location in the support of the refl. SE. 

The set of all pixel locations, p, in the 
image plane where Z+p is contained 
in I. 

       S   pI Z p Z p I 

The intersection of copies of the refl. SE, one translated 
to each pixel location in the support of the image.  

 supp

    .


 
p I

I Z Z p
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original image erosion / original eroded image 

The locus of pixels p∈SP such that              . I Z p

Erosion 

SE = Z8 This is a piece of a larger image.  Boundary effects are not apparent 
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Fast Computation of Erosion 
The fastest way to compute binary erosion is to use the intersection-of-
translates-of-the-image definition.  That is, use  

Assume the dimensions of I are R×C, the dimensions of Z are N×M, and 
Z’s origin is offset from the upper left hand corner (ULHC) by ρ rows and 
χ columns.  Allocate a scratch image, T, that is (R+N−1)×(C+M−1) and 
initialized to I. Rotate1 Z by 180º.  Then, for each FG pixel loc (v, u) in Ž 
(measured from the ULHC of Ž ) perform a logical AND between I+(v, u) 
and T.  Put the results in T.  When done, copy to J the R×C subarray of 
T starting at (N−ρ, M−χ). 

.


  
q Z

J I    Z I q




 

1In matlab the fastest way to rotate Z by 180º is 
» Zrefl = flipud(fliplr(Z)); 
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Comparison of Erosion and Dilation 

erosion / original / dilation erosion / original 

original contains erosion 

original / dilation 

dilation contains original 

SE = Z8 This is a piece of a larger image.  Boundary effects are not apparent 
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Erosion from Dilation / Dilation from Erosion 
Dilation and erosion are duals of each other with respect to complementation: 

That is, dilation with the reflected SE of the complement of a binary image is 
the complement of the erosion.  Erosion with the reflected SE of the 
complement of the image is the complement of the dilation.  It follows that, 

erosion can be performed with dilation and vice versa.  That implies that only 
one or the other must be implemented directly. 

     cc  I Z I Z


      .cc  I Z I Z


 and 

 cc I    Z I Z


      ,
cc I Z I Z



 and 
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Opening and Closing 
Opening is erosion by Z followed by dilation by Z. 

Closing is dilation by Ž followed by erosion by Ž. 

      I Z I Z Z

        I Z I Z Z
 

The opening is the best approximation of the image FG that can be made 
from copies of the SE, given that the opening is contained in the original.  
I  Z contains no FG features that are smaller than the SE.  

The closing is the best approximation of the image BG that can be made 
from copies of the SE, given that the closing is contained in the image BG. 
I • Z contains no BG features that are smaller than the SE.   
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Opening 
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Opening is Erosion Followed by Dilation 

opening / original erosion / opening 

dilate the erosion 

erosion / original 

erode the original 

SE = Z8 

dilated erosion 

This is a piece of a larger image.  Boundary effects are not apparent 
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original erosion opening 

SE = Z8 

Opening is Erosion Followed by Dilation 
original image eroded image dilated erosion 

This is a piece of a larger image.  Boundary effects are not apparent 
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original image opening / original open image 

The union of translates of Z such that                .  Z p I

The opening of I by Z is the best approximation of I that can be made 
by taking the union of translated copies of Z, subject to the constraint 
that the opening be contained by the original image. 

SE = Z8 
Opening 
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Closing 
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Closing is Dilation Followed by Erosion1 

closing / original 

to get the closing 

closing / dilation 

erode the dilation 

original / dilation 

SE = Z8 1using the reflected SE, Ž 

original image 
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original dilation closing 

SE = Z8 1using the reflected SE, Ž 

Closing is Dilation Followed by Erosion1 
original image dilated image eroded dilation 
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Duality Relationships 

CC

CC

CC

CC

 

   

 

 

   
    
   
    

I   Z I Z

I Z I Z

I Z I Z

I Z I Z









Erosion in terms of dilation: 

Dilation in terms of erosion: 

Opening in terms of closing: 

Closing in terms of opening: 

IC is the complement of  I and Ž is the reflected SE. 
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Binary Ops with Asymmetric SEs 

“L” shaped SE 

O marks origin 

Foreground:  white pixels 

Background:  black pixels 

Cross-hatched 
pixels are 
indeterminate. 
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CI - CSE +1 

Since morph. ops. 
are neighborhood 
ops., there is a 
band of pixels 
around the border 
of the resultant 
image where the 
values are 
indeterminate. 

Border Effects 

deterministic region 

coSE CI - CSE +coSE 

ro
SE

 
R I

 - 
R S

E 
+

ro
SE

 

Erosion & Dilation 

R I
 - 

R S
E +

1 

CSE 

RSE 

The actual values of pixels in 
the indet. region depend on 
the specific algorithm used. 
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Since opening & 
closing iterate 
erosion & dilation, 
the boundaries of 
the deterministic 
region are 2x as 
far from the 
image border as 
are those of 
erosion or  
dilation. 

Border Effects 
Opening & Closing 

CI - 2CSE +1 

deterministic 
region 

CSE CI - CSE +1 

R S
E 

R I
 - 

R S
E 

+
1  

R I
 - 

2R
SE

 +
1 
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Boundary Extraction 

original 

binary image 

erosion by square 

8-connected SE 

difference 

4-conn inside bdry 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

original 

binary image 

erosion by plus 

4-connected SE 

difference 

8-conn inside bdry 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

original 

binary image 

dilation by plus 

4-connected SE 

difference 

8-conn outside bdry 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

original 

binary image 

dilation by square 

8-connected SE 

difference 

4-conn outside bdry 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

original 

binary image 

in erosion by plus 

erosion by square is 

in 4-conn inside bdry 

8-conn inside bdry is 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

original 

binary image 

in dilation by square 

dilation by plus is 

in 4-conn outside bdry 

8-conn outside bdry is 

This is a piece of a larger image.  Boundary effects are not apparent 
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Boundary Extraction 

8-bdry/4-bdry/orig 

inside boundaries 

all 4 boundaries 

are disjoint from 

orig/8-bdry/4-bdry 

outside boundaries 

This is a piece of a larger image.  Boundary effects are not apparent 
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Conditional Dilation 
original image mask over original dilated original 

dilation inside a mask 
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Conditional Dilation 

mask 
over 

dilated 

masked 
dilated 

masked 
dilated 

union with 
original 

conditionally 
dilated with 
respect to 
mask 
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Connected Component Extraction 

tag dilated  
tag 

masked 
dilated 

tag 
tags 

dilated 
tags 

masked 
dilated  
tags 
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Connected Component Extraction 

tags dilated  
tags 

masked 
tags 

dilated 
tags 

masked 
dilated 

tags 
connected 
component 
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original opened reconstructed 

Used after opening to grow back pieces of the original image 
that are connected to the opening. 

Binary Reconstruction 

Removes of small regions that are disjoint from larger objects 
without distorting the small features of the large objects. 
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Algorithm for Binary Reconstruction 

This is the same as connected component extraction with the opened 
image, J, containing the tags.  The choice of Zk determines the 
connectivity of the result. 

1.   J = I o Z, where Z is any SE. 

2.   T = J, 
3.   J = J ⊕ Zk, where k=4 or k=8, 

4.   J = I AND J,[Take only those pixels from J that are also in I .] 

5.   if J ≠ T then go to 2, 

6.   else stop;    [ J is the reconstructed image. ] 
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1.   J = I o Z, where Z is any SE. 

2.   T = J, 
3.   J = J ⊕ Zk, where k=4 or k=8, 

4.   J = I AND J,[Take only those pixels from J that are also in I .] 

5.   if J ≠ T then go to 2, 

6.   else stop;    [ J is the reconstructed image. ] 

Algorithm for Binary Reconstruction 

This is the same as connected component extraction with the opened 
image, J, containing the tags.  The choice of Zk determines the 
connectivity of the result. 

Usually a program for reconstruction 
will take both J and I as inputs.  E.g, 
 
 K = ReconBin(I,J,Z); 
 
Then the algorithm starts at step 2.  
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Let Skel(I,r) be the set of pixels in I such that if p ⊆ Skel(I,r) 
then Dp(r), is a maximal disk of radius r in I.  That is, Skel(I,r) 
is the locus of centers of maximal disks of radius r in I.  Then 

0

Skel ( , )
r

S r




 I


That is, the skeleton of I is the union of all the sets of centers of 
maximal disks. 

Note that for any actual image I, the union will not be infinite, 
since I is bounded (not infinite in extent). 

Skeletonization 
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Skeletonization 
Original shape Raw skeleton (red) 

is the locus of centers of 
maximal disks.  

Pruned and connected 

skeleton 
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Skeletonization: Maximal Disks 
maximal disks (red) 

non max disks (blue) 

non max & max disks 

over skeleton 

non maximal “disks” 

“disks” are squares 
The maximal disk at pixel loc p is the largest disk in the fg that includes p. 
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Skeletonization: Maximal Disks 
maximal disks (red) 

non max disks (blue) over skeleton 

non maximal “disks” 

“disks” are squares 
The maximal disk at pixel loc p is the largest disk in the fg that includes p. 

non max & max disks 



1999-2011 by Richard Alan Peters II 29 November 2011 54 

Computation of the Skeleton 
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• SE = Z8 =     = Sq(3) 

• n = 0: SE = 1 pixel 

• n = 1: SE = Sq(3) 

• n = 2: SE = Sq(5) 

• n = 3: SE = Sq(7) 

Note that the 
result is  
disconnected  
and has  
spurious points. Sk

el
( I

, 0
 ) 

Sk
el

( I
, 1

 ) 

Sk
el

( I
, 2

 ) 

Sk
el

( I
, 3

 ) 
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Skeletonization: Delete Spurious Pixels 
def. spurious pixels as 

conn. comp. of < 3 pix. 

pruned skeleton 

raw less spurious 

raw skeleton 

has spurious pixels 
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Skeletonization: Reconnect Components 
2 other components 

 of pruned skel dilated. 

Intersection of  

dilated components. 

2 components of 

pruned skel. dilated. 
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Skeletonization 
raw skeleton  pruned skeleton reconnected skeleton  
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Grayscale Morphology 
Grayscale morphology is a multidimensional generalization of  
the binary operations.  Binary morphology is defined in terms of 
set-inclusion of pixel sets.  So is the grayscale case, but the pixel 
sets are of higher dimension.  In particular, standard R×C, 1-
band intensity images and the associated structuring elements 
are defined as 3-D solids wherein the 3rd axis is intensity and 
set-inclusion is volumetric. 

set inclusion 
(explained 
on p. 11 )   

(a) binary, 
(b) & (c) 
grayscale  

(a) (b) (c) 

2 
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Extended Real Numbers 

Define the extended real numbers, *, as the real 
numbers plus two symbols, −∞ and ∞ such that 

for all numbers x ∈ .  

That is if x is any real number, then ∞ is always greater 
than x and −∞ is always less than x.  Moreover, 

Let  represent the real numbers.   

,    ,   0,x x         

for all numbers x∈. 
 ,x   

4 
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p, in an n-dimensional vector space n.  Associated with each 
p is a value from *.  The set of pixel locations together with 
their associated values form the image – a set in n+1: 

In mathematical morphology a real image, I, is defined as a 
function that occupies a volume in a Euclidean vector space.  
I comprises a set, Sp, of coordinate vectors (or pixel locations),  

Real Images 

    p, ,   nS      I p I p p I p 

Thus, a conventional, 1-band, R×C image is a 3D structure 
with Sp ⊂ 2 and I(p)∈.  By convention in the literature of 
MM,  Sp ≡ n, a real image is defined over all of n. 

5 
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Support of an Image 
The support of a real image, I, is 

( ) ( ){ }supp .nI p I p= ∈ ∈ 

in n where  

The complement of the support is, 
therefore, the set of pixel locations  

I(p) ≠ −∞  and  I(p) ≠ ∞. 

That is, the support of a real image is  
the set pixel locations in n such that 

I(p) = −∞  or  I(p) = ∞. 

6 
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Grayscale Images 
If over its support, I takes on more than one real value, then I is 
called grayscale.   

The object commonly known as a black and white photograph is a 
grayscale image that has support in a rectangular subset of 2. 
Within that region, the image has gray values that vary between 
black and white.  If the intensity of each pixel is plotted over the 
support plane, then 

is a volume in 3.  In the abstraction of MM we assume the image 
does exist outside the support rectangle, but that I(p) = −∞ there.   

     , supp I p I p p I

7 
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Grayscale Images 

In MM, a 2D grayscale image is treated as a 3D solid in space 
– a landscape – whose height above the surface at a point is 
proportional to the brightness of the corresponding pixel.  

grayscale image 

3D solid representation 

8 
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Representation of Grayscale Images 

Example: grayscale cones 

image landscape 

9 
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J ⊄ I  J ⊂ I 

Set Inclusion in Grayscale Images 
In grayscale morphology, set inclusion depends on the implicit 3D 
structure of a 2D image.  If I and J are grayscale images then  

                supp supp   supp .    J I J I J p I p p J   AND

That is J ⊆ I if and only if the support of J is contained in that of 
I and the value of J is nowhere greater than the value of I on the 
support of J. 

bi
na

ry
 

gr
ay

sc
al

e 

gr
ay

sc
al

e 

J          I I          J I          J 

J ⊄ I  J ⊂ I J ⊄ I  J ⊄ I 

10 
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Recall:  Binary Structuring Element (SE) 

Let I be an image and Z a SE. 

Z+p means that Z is moved 
so that its origin coincides 
with location p in SP. 

Z+p is the translate of Z to 
location p in SP. 

The set of locations in the 
image delineated by Z+p is 
called the Z-neighborhood of 
p in I denoted N{I,Z}(p).  

11 
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Grayscale Structuring Elements 
 A grayscale structuring element is a small image that delineates a volume at 
each pixel [p , I(p)] through out the image volume.  

flat SE 

grayscale 
SE 

translated 
flat SE 

Translation of a flat SE on its 
support plane and in gray value. 

SE Translation: × marks the location of the structuring element origin. 

12 
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flat SE 

grayscale 
SE 

translated 
flat SE 

Translation of a flat SE on its 
support plane and in gray value. 

If Z = [ p, Z(p) ] is a structuring element and if q = [ qs, qg ] is a pixel 
[location, value] then Z+q = [ p+qs, Z(p)+qg ] for all p ∈ supp{Z}. 

Grayscale Structuring Elements 

13 
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Reflected Structuring Elements 

Note that the 
SE, Z, is to the 
bright regions… 

… as the reflected 
SE, Ž, is to the 
dark regions. 

14 



2 December 2011 1999-2011 by Richard Alan Peters II 15 

Grayscale Morphology: Basic Operations 

15 
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Dilation: General Definition 

16 

  
 

    
 

    
supp supp
max max .

q Z p q Z p
I Z p I q Z p q I q Z q p

   
      

 



The dilation of image I by structuring element Z at coordinate pn is defined by 

This can be computed as follows: 

1. Translate Ž to p. 
2. Trace out the Ž –neighborhood of I at p. 
3. Let p be the origin of I temporarily during the operation 
4. Compute the set of numbers 

 
 

5. The output value, [I  Z](p), is the maximum value in the set, D. 

             supp supp .I q Z q q Z I q Z q q Z      
  

D
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Fast Computation of Dilation 

      supp
max .q ZJ J Z I q Z q    

The fastest way to compute grayscale dilation is to use the translates-of-
the-image definition of dilation.  That is, use  

That is,  
(1) Make a copy of I for each foreground element, q, in Z.                   
(2) Translate the qth copy so that its ULHC (origin) is at position q in Z.        
(3) Add Z(q) to every pixel in the qth copy.   
(4) Take the pixelwise maximum of the resultant stack of images.   
(5) Copy out the result starting at the SE origin in the maximum image. 

Note that if Z is flat 
-- all its foreground 
elements are 0 -- 
then step (3) is 
unnecessary.  Then it 
is a maximum filter. 

17 
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Grayscale Morphology: Dilation 

dilation dilation over original 

18 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 
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Grayscale Morphology: Dilation 

19 
SE, Z, is a flat disk. 
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Erosion: General Definition 

20 

  
 

    
supp
min .

q Z p
I Z p I q Z q p

 
  

The erosion of image I by structuring element Z at coordinate pn is defined by 

This can be computed as follows: 

1. Translate Z to p. 
2. Trace out the Z –neighborhood of I at p. 
3. Let p be the origin of I temporarily during the operation 
4. Compute the set of numbers 

 
 

5. The output value, [I  Z](p), is the minimum value in the set, E. 

      supp .I q Z q q Z  E
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SE, Z, is the same flat 
disk as used for the 
dilation on page 19. 

Grayscale Morphology: Erosion 

erosion erosion under original 

21 
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Fast Computation of Erosion 
The fastest way to grayscale erosion is to create a stack of images translated 
to minus the values of the reflected SE then take the pixelwise minimum: 

    min
q Z

J I Z I q Z q


   




That is, (1) make a copy of I for each foreground element, q, in Ž.  (Note 
that if q is a foreground element in Ž then -q is a foreground element in Z.) 
(2) Translate each copy so that its ULHC (origin) is at position q in Ž (or -q 
in Z).  (3) Then add Ž(q) (or subtract Z(-q)) to every pixel in the qth copy.  
Finally, (4) take the pixelwise minimum of the resultant stack of images. 

  2|Z Z q q    


Note that if Z is 
symmetric and if all 
the foreground 
elements are 0, then 
Ž=Z and step (3) is 
unnecessary.  Then it 
is a minimum filter 

22 
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Grayscale Morphology: Erosion 

23 
SE, Z, is a flat disk. 
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Grayscale Morphology: Opening 

opening: erosion then dilation opened & original 

24 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 
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Grayscale Morphology: Opening 

erosion & opening erosion & opening & original 

25 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 
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Opening and Closing 
Opening is erosion by Z followed by dilation by Z. 

Closing is dilation by Ž followed by erosion by Ž. 

The opening is the best approximation of the image FG that can be made 
from copies of the SE, given that the opening is contained in the original.  
I  Z contains no FG features that are smaller than the SE.  

The closing is the best approximation of the image BG that can be made 
from copies of the SE, given that the closing is contained in the image BG. 
I • Z contains no BG features that are smaller than the SE.   

26 

  .I Z I Z Z 
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Grayscale Morphology: Opening 

27 
SE, Z, is a flat disk. 
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Grayscale Morphology: Closing 

closing: dilation then erosion closing & original 

28 

SE, Z, is the same flat 
disk as used for the 
dilation on page 19. 
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Grayscale Morphology: Closing 

dilation over closing dilation & closing & original 

29 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 
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Grayscale Morphology: Closing 

30 
SE, Z, is a flat disk. 
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Duality Relationships 

Erosion in terms of dilation: 

Dilation in terms of erosion: 

Opening in terms of closing: 

Closing in terms of opening: 

IC is the complement of  I and Ž is the reflected SE. 

31 

C C.I Z I Z    


C C.I Z I Z    


C C.I Z I Z   

C C.I Z I Z    
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Duality Relationships 

CI

SE, Ž, operates on IC as if 
it were Z operating on I. 

SE, Z, operates on IC as if 
it were Ž operating on I. 

32 
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Gray Ops with Asymmetric SEs 

“L” shaped SE 

O marks origin 

Foreground:  white pixels 

Background:  black pixels 

Cross-hatched 
pixels are 
indeterminate. 

33 
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Grayscale Morphology: Tophat 

tophat + opened = original tophat: original - opening 

34 

SE, Z, is the same flat 
disk as used for the 
dilation on page 19. 
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Grayscale Morphology: Tophat 

35 

shown as a negative for visibility 
SE, Z, is a flat disk. 
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Grayscale Morphology: Bothat 

region added by dilation superimposed on original 

36 

SE, Z, is the same flat 
disk as used for the 
dilation on page 19. 
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Grayscale Morphology: Bothat 

region added by dilation Bothat: closing - original 

37 

SE, Z, is the same flat 
disk as used for the 
dilation on page 19. 
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Grayscale Morphology: Bothat 

38 

shown as a negative for visibility 
SE, Z, is a flat disk. 
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Grayscale Morphology: Tophat and Bothat 

tophat bothat 

shown as negatives for visibility 

39 
SE, Z, is a flat disk. 
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Grayscale Morphology: Small Feature Detection 
tophat minus bothat 

middle gray = 0 
original 

40 
SE, Z, is a flat disk. 
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Algorithm for Grayscale Reconstruction 
1.   J = I  Z , where Z is any SE. 
2.   T = J, 
3.   J = J Å Zk ,  where  k=4 or k=8, 
4.   J = min{I, J}, [pixelwise minimum of I and J.] 

5.   if  J ≠ T  then go to 2, 

6.   else stop;    [ J is the reconstructed image. ] 

This is the same as binary reconstruction but for grayscale images 
J(r,c) ∈ I if and only if J(r,c) ≤ I(r,c).   

41 
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1.   J = I  Z , where Z is any SE. 
2.   T = J, 
3.   J = J Å Zk ,  where  k=4 or k=8, 
4.   J = min{I, J}, [pixelwise minimum of I and J.] 

5.   if  J ≠ T  then go to 2, 

6.   else stop;    [ J is the reconstructed image. ] 

Algorithm for Grayscale Reconstruction Usually a program for reconstruction 
will take both J and I as inputs.  E.g, 
 
 K = ReconGray(I,J,Z); 
 
Then the algorithm starts at step 2.  

42 

This is the same as binary reconstruction but for grayscale images 
J(r,c) ∈ I if and only if J(r,c) ≤ I(r,c).   
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Grayscale Reconstruction 

opened image opened image & original 

43 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 



2 December 2011 1999-2011 by Richard Alan Peters II 44 

Grayscale Reconstruction 

opened & recon. image opened, recon., & original 

44 

SE, Z, is a flat disk 
the size of the tops of 
the truncated cones. 
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Grayscale Morphology: Reconstruction 

45 
SE, Z, is a flat disk. 
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reconstructed opening 

Grayscale Reconstruction 
original 

46 
SE, Z, is a flat disk. 
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original opening 

Grayscale Reconstruction 

47 
SE, Z, is a flat disk. 
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opening reconstructed opening 

Grayscale Reconstruction 

48 
SE, Z, is a flat disk. 
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From the Article by Wallace: 
    Title: The JPEG Still Picture Compression Standard 
  Source:   Communications of the ACM archive 
  Volume 34, Issue 4 (April 1991) 
  Special issue on digital multimedia systems  
 Pages:  30-44    
 Year:  1991  
 ISSN: 0001-0782  
 Author:  Gregory K. Wallace    
  Digital Equipment Corp., Maynard, MA   
 Publisher: ACM Press   New York, NY, USA 
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The JPEG Still Picture Compression Standard 

l Joint Photographic Experts Group 
l A standards committee set up by the CCITT and     

the ISO. 
l Tasked in the late 1980’s to generate a general-

purpose standard for compression of almost all 
continuous tone and still-image applications. 

l Published Standard: “Digital Compression and Coding 
of Continuous-tone Still Images – Requirements and 
Guidelines,” ISO/IEC 10918-1:1993(E) 



29 November 2011 4 1999-2011 by Richard Alan Peters II 

JPEG’s Goals for the Standard 
l Be at or near the state of the art in compression rate 

and image fidelity. 
l User decides on the trade-off between image fidelity 

and compression ratio. 
l Be applicable to any kind of continuous-tone digital 

image source (unrestricted with respect to content, 
complexity, color-range, statistics, etc.) 

l Have tractable computational complexity for 
implementation on a wide range of computational 
hardware. 
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JPEG’s Modes of Operation 
1. Sequential encoding:  each component (band) 

encoded in a single raster scan 

2. Progressive encoding:   progressive coarse–to-fine 
encoding and decoding of entire image 

3. Lossless encoding:  exact recovery of original image 

4. Hierarchical encoding:  multiresolution compression 
with independently retrievable lower-resolution versions 
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JPEG Codec 

Compressed Data 

RGB → 
YCbCr 

conversion 

down 
sample 
color  

partition 
into 8×8 
blocks 

FDCT quantizer 
entropy 
encoder 

table spec table spec 

image 

image entropy 
decoder 

de-
quantizer 

table spec 

IDCT 

table spec 

YCbCr → 
RGB 

conversion 

up 
sample 
color  
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JPEG Baseline Process 
l DCT-based process 
l Source image: 8-bit samples within each component 
l Sequential 
l Huffman coding: 2 AC and 2 DC tables 
l Decoders process scans with 1, 2, 3, or 4 

components 
l Interleaved and non-interleaved scans 
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A Standard Color Test Chart 
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We’ll use the image in some of the following slides. 
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Color Conversion:  RGB → YCbCr 

RGB Y Cb Cr 

+ + → 
















+
































=

















128
128
16

B
G
R

0.07142737-0.36778831-0.43921569
0.439215960.29099279-0.14822290-
0.097905880.504129410.25678824

Cr
Cb
Y
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Downsample Color Bands 

+ + 

→
 

Y Cb Cr 

+ + 

→
 

by a factor 
of 2 
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Partition Each Band into 8×8 Blocks 
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Prep for Forward Discrete Cosine Transform 

l Each image band is operated on independently. 

l Each 8×8 image block is operated on independently.  

l Shift all image values from I∈[0, 2P-1] to                   
I∈[-2P-1, 2P-1-1].  E.g. [0, 255] → [-128, 127]. 

l The FDCT decomposes each block into a set of 
coefficients with respect to the 64 orthogonal basis 
functions shown on the next slide. 



29 November 2011 14 1999-2011 by Richard Alan Peters II 

DCT Functions and Variables 

r 
c 
ρ 
χ 
v 
u 

- image row index  (vertical, increasing down) 
- image column index  (horizontal, increasing right) 
- DCT row index  (horizontal wave fronts, vertical propagation down) 
- DCT column index  (vertical wave fronts, horizontal propagation right)  
- DCT row frequency index  (vertical, increasing down)  
- DCT column frequency index  (horizontal, increasing right) 

 
 

 

, ; ,

, ; ,

v u r c

v u



Ι


 

F{ }

φ

- DCT of 8×8 block from I starting at (r,c) 

- Normalization Factor 

- 2D Cosine Basis Function, (v,u) 
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DCT Basis Functions 

white = 1 
black = -1 

u = 0 

v = 0 

φ(v, u; ρ, χ ) 

v = 7 

u = 7 

ρ 
↓ 

χ → 
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7 7
1
4

0 0

1
2

1 1
16 16

for 0

otherwise

2 1 2 1

, ; , , ; , ,

1

, ; , cos cosv u

v u r c v u v u r c

v u
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F{ } φ

φ

Forward Discrete Cosine Transform 

F{I}(4,4; r,c) 

(r, c ) Î {0,8,16,…,R} x {0,8,16,…,C}, 

(v, u ) , ( ρ, χ ) Î {0,…,7} x {0,…,7}. 

→ × = × = 

p.w. product 

ρ 
↓ 

χ → 

F(v,u;r,c) 

u → 
v 
↓ 

Φ = col cos × row cos 

ρ 
↓ 

χ → 

col cos: (u=4, χ) 

ρ 
↓ 

χ → 

row cos: (v=4, ρ) 

ρ 
↓ 

χ → 

8x8 block of I @ (r,c) 

r+ρ 
↓ 

c+χ → 

∑ ∑ 
ρ  χ 
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× 

ΣΣ ↑ 

↑ 

ρ  χ 

Forward Discrete Cosine Transform 
F{I}(0,0;r,c) is the 
DC component of 
the 8x8 block 
from I at (r,c) … 

…the others are 
the AC components, 
e.g. F{I}(4,4;r,c). 
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Forward Discrete Cosine Transform 

Input Output 

Negative 

-log Out. 

Neg. & neg. log 
just for 
visibility here. 
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Forward Discrete Cosine Transform 

Input Output 

Negative 

-log Out. 

Neg. & neg. log 
just for 
visibility here. 

Each value, F(v,u ; r,c), in the 8x8 output 
is the sum of the pixel-wise product of 
the 8x8 block that starts at (r,c) in the 
image and the cosine basis function at 
row v, column u in the table. 

(r,c ) Î {0,8,16,…,R} x {0,8,16,…,C}, 

(v,u ) Î {0,…,7} x {0,…,7}. 
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 Example FDCT Quantization Tables 
Luminance Quantization Table 

2 2 3 4 5 6 8 11 

2 2 2 4 5 7 9 11 

3 2 3 5 7 9 11 12 

4 4 5 7 9 11 12 12 

5 5 7 9 11 12 12 12 

6 7 9 11 12 12 12 12 

8 9 11 12 12 12 12 12 

11 11 12 12 12 12 12 12 

Chrominance Quantization Table 

3 3 7 13 15 15 15 15 

3 4 7 13 14 12 12 12 

7 7 13 14 12 12 12 12 

13 13 14 12 12 12 12 12 

15 14 12 12 12 12 12 12 

15 12 12 12 12 12 12 12 

15 12 12 12 12 12 12 12 

15 12 12 12 12 12 12 12 

Precision:  8 bits 
Approximate quality factor:  91.64 
Scaling:  16.71   Variance:  22.54 

Precision:  8 bits 
Approximate quality factor:  92.57 
Scaling:  14.85   Variance:  23.00 
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255 23 34 13 44 11 44 6 

19 4 19 12 18 9 16 15 

58 10 11 2 14 6 12 7 

22 18 9 12 7 11 12 9 

42 26 19 9 23 15 16 6 

9 6 23 14 20 10 19 21 

48 13 13 11 15 12 18 10 

3 0 13 18 16 4 11 14 

255 23 34 7 15 2 6 1 

19 4 10 4 5 1 2 2 

29 5 6 1 2 1 1 1 

11 9 3 3 1 1 1 1 

14 9 2 1 2 1 1 1 

3 1 3 1 2 1 1 2 

7 1 1 1 1 1 1 1 

0 0 1 1 1 0 1 1 

1 1 1  2 3 6 8 10 

1 1  2 3 4 8 9 8 

 2  2  2 3 6 8 10 8 

 2  2 3 4 7 12 11 9 

3 3 8 11 10 16 15 11 

3 5 8 10 12 15 16 13 

7 10 11 12 15 17 17 14 

14 13 13 15 15 14 14 14 

FDCT Quantization Procedure 

Output of FDCT, F(u,v), at 
image pixel location (r,c). 

Quantization Table, Q(u,v) Quantized Result, FQ(u,v) at 
image pixel location (r,c). 

 
 
 

,
, round

,
Q u v

u v
Q u v

     

FF
This Q(u,v) is yet another 
quantization table. 

(r,c ) Î  
 {0,8,16,…,R} x {0,8,16,…,C}, 
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Image DC Components (8×8 constant blocks) 
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DC Component Coding (DPCM) 

DC components from 32 blocks Differential PCM coding of same 

DC components are coded separately from the AC components. 
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Quantized 
coefficient 
encoding 
order 

start 

end 

255 23 34  7 15  2  6  1 
 19  4 10  4  5  1  2  2 
 29  5  6  1  2  1  1  1 
 11  9  3  3  1  1  1  1 
 14  9  2  1  2  1  1  1 
  3  1  3  1  2  1  1  2 
  7  1  1  1  1  1  1  1 
  0  0  1  1  1  0  1  1 

AC:  23 19 29 4 34 7 10 5 11 14 9 6 4 15 2 5 1 3 9 3 7 1 2 3 2 1 6 1 2 1 1 1 3 1 0 0 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 

DC 
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Entropy Encoding of AC Coefficients 

1. Convert zigzag sequence of quantized 
coefficients into a sequence of symbols. 

2. Convert symbols to a data stream of 
variable length codes. 

Two step process: 

Symbol 1 = (Runlength, Size)    
Symbol 2 = Amplitude 
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Entropy Encoding of Coefficients 
Symbol 1: (Runlength, Size);   
Symbol 2: Amplitude 

AC: 
Runlength:  number of consecutive zero values (0-15) 
Size:  number of bits used to encode amplitude (1-10) 
Amplitude:  quantized value 

DC: 
Runlength:  not included 
Size:  number of bits used to encode amplitude (1-11) 
Amplitude:  quantized value 
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Variable Length Entropy Encoding 
size amplitude 

1 -1,1 
2 -3,-2,2,3 
3 -7…-4,4…7 
4 -15…-8,8…15 
5 -31…-16,16…31 
6 -63…-32,32…63 
7 -127…-64,64…128 
8 -255…-128,128…255 
9 -511…-256,256…511 
10 -1023…-512,512…1023 
11 -2047…-1024,1024…2047 

S
ym

bol 2 C
oding 

DC only 
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Effects of Quality Settings 

Image:   http://en.wikipedia.org/wiki/File:Quality_comparison_jpg_vs_saveforweb.jpg 
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JFIF Information Display Program 

http://www.impulseadventure.com/photo/ 

JPEGsnoop - JPEG File Decoding Utility 
by Calvin Hass © 2010 

From the web page: 
 
Every digital photo contains a wealth of hidden information -- JPEGsnoop was written 
to expose these details to those who are curious.  Not only can one determine the 
various settings that were used in the digital camera in taking the photo (EXIF 
metadata, IPTC), but one can also extract information that indicates the quality and 
nature of the JPEG image compression used by the camera in saving the file. Digital 
cameras specify compression quality levels, many of them wildly different, leading to 
the fact that some cameras produce far better JPEG images than others. 
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Example: JPEG/JFIF Encoded Image 
K

eith H
am

shere – Soairse R
onan – 2007 
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Short name Code Payload Name Comments 

SOI 0xFFD8 none Start Of Image 

SOF0 0xFFC0 variable size Start Of Frame 
(Baseline) 

Indicates that this is a baseline DCT-based JPEG, and specifies the width, height, number of components, and 
component subsampling (e.g., 4:2:0). 

SOF2 0xFFC2 variable size Start Of Frame 
(Progressive) 

Indicates that this is a progressive DCT-based JPEG, and specifies the width, height, number of components, 
and component subsampling (e.g., 4:2:0). 

DHT 0xFFC4 variable size Define Huffman 
Table(s) Specifies one or more Huffman tables. 

DQT 0xFFDB variable size 
Define 
Quantization 
Table(s) 

Specifies one or more quantization tables. 

DRI 0xFFDD 2 bytes Define Restart 
Interval 

Specifies the interval between RSTn markers, in macroblocks. This marker is followed by two bytes indicating 
the fixed size so it can be treated like any other variable size segment. 

SOS 0xFFDA variable size Start Of Scan 
Begins a top-to-bottom scan of the image. In baseline DCT JPEG images, there is generally a single scan. 
Progressive DCT JPEG images usually contain multiple scans. This marker specifies which slice of data it will 
contain, and is immediately followed by entropy-coded data. 

RSTn 0xFFD0…D7 none Restart Inserted every r macroblocks, where r is the restart interval set by a DRI marker. Not used if there was no DRI 
marker. The low 3 bits of the marker code cycle in value from 0 to 7. 

APPn 0xFFEn variable size Application-
specific 

For example, an Exif JPEG file uses an APP1 marker to store metadata, laid out in a structure based closely 
on TIFF. 

COM 0xFFFE variable size Comment Contains a text comment. 

EOI 0xFFD9 none End Of Image 

Source:  ISO/IEC 10918-1:1994, p.36, via http://en.wikipedia.org/wiki/JPEG 

Data Markers from the JPEG File Interchange Format (JFIF)  
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JPEG / JFIF Information (via JPEGsnoop)  
Filename: [Saoirse Ronan - Ember.jpg] 
Filesize: [3156857] Bytes 
 
Start Offset: 0x00000000 
*** Marker: SOI (xFFD8) *** 
  OFFSET: 0x00000000 
  
*** Marker: APP13 (xFFED) *** 
  OFFSET: 0x00000002 
  length  = 28 
  Identifier = [Photoshop 3.0] 
    8BIM: [0x0404] Name=[] Len=[0x0000] 
    IPTC [0xFFE1:002] ? size=12392 
  
*** Marker: APP1 (xFFE1) *** 
  OFFSET: 0x00000020 
  length          = 560 
  Identifier      = [http://ns.adobe.com/xap/1.0/] 
    XMP =  
 
*** Marker: APP0 (xFFE0) *** 
  OFFSET: 0x00000252 
  length     = 16 
  identifier = [JFIF] 
  version    = [1.2] 
  density    = 300 x 300 DPI (dots per inch) 
  thumbnail  = 0 x 0 

*** Marker: APP2 (xFFE2) *** 
  OFFSET: 0x00000264 
  length          = 576 
  Identifier      = [ICC_PROFILE] 
    ICC Profile: 
      Marker Number = 1 of 1 
        Profile Size : 560 bytes 
        Preferred CMM Type : 'ADBE' (0x41444245) 
        Profile Version : 0.2.1.0 (0x02100000) 
        Profile Device/Class : Display Device profile ('mntr' (0x6D6E7472)) 
        Data Colour Space : rgbData ('RGB ' (0x52474220)) 
        Profile connection space (PCS)    : 'XYZ ' (0x58595A20) 
        Profile creation date : 1999-06-03 00:00:00 
        Profile file signature : 'acsp' (0x61637370) 
        Primary platform                  : Apple Computer, Inc. ('APPL' (0x4150504C)) 
        Profile flags  : 0x00000000 
        Profile flags  > Profile not embedded 
        Profile flags  > Profile can't be used independently of embedded 
        Device Manufacturer : 'none' (0x6E6F6E65) 
        Device Model : '....' (0x00000000) 
        Device attributes : 0x00000000_00000000 
        Device attributes > Reflective 
        Device attributes > Glossy 
        Device attributes > Media polarity = negative 
        Device attributes > Black & white media 
        Rendering intent : Perceptual 
        Profile creator : 'ADBE' (0x41444245) 
        Profile ID  : 0x00000000_00000000_00000000 
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*** Marker: DQT (xFFDB) *** 
  Define a Quantization Table. 
  OFFSET: 0x000004B6 
  Table length = 132 
  ---- 
  Precision=8 bits 
  Destination ID=0 (Luminance) 
     DQT, Row #0:    2    2    3    4    5    6    8  11  
     DQT, Row #1:    2    2    2    4    5    7    9  11  
     DQT, Row #2:    3    2    3    5    7    9  11  12  
     DQT, Row #3:    4    4    5    7    9  11  12  12  
     DQT, Row #4:    5    5    7    9  11  12  12  12  
     DQT, Row #5:    6    7    9  11  12  12  12  12  
     DQT, Row #6:    8    9  11  12  12  12  12  12  
     DQT, Row #7:  11  11  12  12  12  12  12  12  
    Approx quality factor = 91.64 (scaling=16.71 variance=22.54) 
  - --- 
  Precision=8 bits 
  Destination ID=1 (Chrominance) 
     DQT, Row #0:    3    3    7  13  15  15  15  15  
     DQT, Row #1:    3    4    7  13  14  12  12  12  
     DQT, Row #2:    7    7  13  14  12  12  12  12  
     DQT, Row #3:  13  13  14  12  12  12  12  12  
     DQT, Row #4:  15  14  12  12  12  12  12  12  
     DQT, Row #5:  15  12  12  12  12  12  12  12  
     DQT, Row #6:  15  12  12  12  12  12  12  12  
     DQT, Row #7:  15  12  12  12  12  12  12  12  
     Approx quality factor = 92.57 (scaling=14.85 variance=23.00) 
  

*** Marker: SOF0 (Baseline DCT) (xFFC0) *** 
  OFFSET: 0x0000053C 
  Frame header length = 17 
  Precision = 8 
  Number of Lines = 2592 
  Samples per Line = 3872 
  Image Size = 3872 x 2592 
  Raw Image Orientation = Landscape 
  Number of Img components = 3 
    Comp[1]: ID=0x01, Samp Fac=0x11 (Subsamp 1 x 1), Quant Tbl Sel=0x00 (Lum:     Y) 
    Comp[2]: ID=0x02, Samp Fac=0x11 (Subsamp 1 x 1), Quant Tbl Sel=0x01 (Chrom: Cb) 
    Comp[3]: ID=0x03, Samp Fac=0x11 (Subsamp 1 x 1), Quant Tbl Sel=0x01 (Chrom: Cr) 
  
*** Marker: DRI (Restart Interval) (xFFDD) *** 
  OFFSET: 0x0000054F 
  length     = 4 
  interval   = 484 

JPEG / JFIF Information (via JPEGsnoop)  
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*** Marker: DHT (Define Huffman Table) (xFFC4) *** 
  OFFSET: 0x00000555 
  Huffman table length = 418 
  ---- 
  Destination ID = 0 
  Class = 0 (DC / Lossless Table) 
    Codes of length 01 bits (000 total):  
    Codes of length 02 bits (000 total):  
    Codes of length 03 bits (007 total): 04 05 03 02 06 01 00  
    Codes of length 04 bits (001 total): 07  
    Codes of length 05 bits (001 total): 08  
    Codes of length 06 bits (001 total): 09  
    Codes of length 07 bits (001 total): 0A  
    Codes of length 08 bits (001 total): 0B  
    Codes of length 09 bits (000 total):  
    Codes of length 10 bits (000 total):  
    Codes of length 11 bits (000 total):  
    Codes of length 12 bits (000 total):  
    Codes of length 13 bits (000 total):  
    Codes of length 14 bits (000 total):  
    Codes of length 15 bits (000 total):  
    Codes of length 16 bits (000 total):  
    Total number of codes: 012 
 

 
  ---- 
  Destination ID = 1 
  Class = 0 (DC / Lossless Table) 
    Codes of length 01 bits (000 total):  
    Codes of length 02 bits (002 total): 01 00  
    Codes of length 03 bits (002 total): 02 03  
    Codes of length 04 bits (003 total): 04 05 06  
    Codes of length 05 bits (001 total): 07  
    Codes of length 06 bits (001 total): 08  
    Codes of length 07 bits (001 total): 09  
    Codes of length 08 bits (001 total): 0A  
    Codes of length 09 bits (001 total): 0B  
    Codes of length 10 bits (000 total):  
    Codes of length 11 bits (000 total):  
    Codes of length 12 bits (000 total):  
    Codes of length 13 bits (000 total):  
    Codes of length 14 bits (000 total):  
    Codes of length 15 bits (000 total):  
    Codes of length 16 bits (000 total):  
    Total number of codes: 012 
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  ---- 
  Destination ID = 0 
  Class = 1 (AC Table) 
    Codes of length 01 bits (000 total):  
    Codes of length 02 bits (002 total): 01 02  
    Codes of length 03 bits (001 total): 03  
    Codes of length 04 bits (003 total): 11 04 00  
    Codes of length 05 bits (003 total): 05 21 12  
    Codes of length 06 bits (002 total): 31 41  
    Codes of length 07 bits (004 total): 51 06 13 61  
    Codes of length 08 bits (002 total): 22 71  
    Codes of length 09 bits (006 total): 81 14 32 91 A1 07  
    Codes of length 10 bits (007 total): 15 B1 42 23 C1 52 D1  
    Codes of length 11 bits (003 total): E1 33 16  
    Codes of length 12 bits (004 total): 62 F0 24 72  
    Codes of length 13 bits (002 total): 82 F1  
    Codes of length 14 bits (006 total): 25 43 34 53 92 A2  
    Codes of length 15 bits (002 total): B2 63  
    Codes of length 16 bits (115 total):  
        73 C2 35 44 27 93 A3 B3 36 17 54 64 74 C3 D2 E2  
        08 26 83 09 0A 18 19 84 94 45 46 A4 B4 56 D3 55  
        28 1A F2 E3 F3 C4 D4 E4 F4 65 75 85 95 A5 B5 C5  
        D5 E5 F5 66 76 86 96 A6 B6 C6 D6 E6 F6 37 47 57  
        67 77 87 97 A7 B7 C7 D7 E7 F7 38 48 58 68 78 88  
        98 A8 B8 C8 D8 E8 F8 29 39 49 59 69 79 89 99 A9  
        B9 C9 D9 E9 F9 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA  
        DA EA FA  
    Total number of codes: 162 

  ---- 
  Destination ID = 1 
  Class = 1 (AC Table) 
    Codes of length 01 bits (000 total):  
    Codes of length 02 bits (002 total): 01 00  
    Codes of length 03 bits (002 total): 02 11  
    Codes of length 04 bits (001 total): 03  
    Codes of length 05 bits (002 total): 04 21  
    Codes of length 06 bits (003 total): 12 31 41  
    Codes of length 07 bits (005 total): 05 51 13 61 22  
    Codes of length 08 bits (005 total): 06 71 81 91 32  
    Codes of length 09 bits (004 total): A1 B1 F0 14  
    Codes of length 10 bits (005 total): C1 D1 E1 23 42  
    Codes of length 11 bits (006 total): 15 52 62 72 F1 33  
    Codes of length 12 bits (004 total): 24 34 43 82  
    Codes of length 13 bits (008 total): 16 92 53 25 A2 63 B2 C2  
    Codes of length 14 bits (003 total): 07 73 D2  
    Codes of length 15 bits (003 total): 35 E2 44  
    Codes of length 16 bits (109 total):  
        83 17 54 93 08 09 0A 18 19 26 36 45 1A 27 64 74  
        55 37 F2 A3 B3 C3 28 29 D3 E3 F3 84 94 A4 B4 C4  
        D4 E4 F4 65 75 85 95 A5 B5 C5 D5 E5 F5 46 56 66  
        76 86 96 A6 B6 C6 D6 E6 F6 47 57 67 77 87 97 A7  
        B7 C7 D7 E7 F7 38 48 58 68 78 88 98 A8 B8 C8 D8  
        E8 F8 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9 2A  
        3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA  
    Total number of codes: 162 
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 *** Marker: SOS (Start of Scan) (xFFDA) *** 
  OFFSET: 0x000006F9 
  Scan header length = 12 
  Number of img components = 3 
      Component[1]: selector=0x01, table=0x00 
      Component[2]: selector=0x02, table=0x11 
      Component[3]: selector=0x03, table=0x11 
  Spectral selection = 0 .. 63 
  Successive approximation = 0x00 
 
*** Decoding SCAN Data *** 
  OFFSET: 0x00000707 
  Scan Decode Mode: No IDCT (DC only) 
      NOTE: Low-resolution DC component shown.  
 
  Scan Data encountered marker    
      0xFFD9 @ 0x00302B77.0 
 
  Compression stats: 
      Compression Ratio: 3028.43:1 
      Bits per pixel:     0.01:1 

   Huffman code histogram stats: 
    Huffman Table: (Dest ID: 0, Class: DC) 
      # codes of length 01 bits:        0 (  0%) 
      # codes of length 02 bits:        0 (  0%) 
      # codes of length 03 bits:   142702 ( 91%) 
      # codes of length 04 bits:     8490 (  5%) 
      # codes of length 05 bits:     3974 (  3%) 
      # codes of length 06 bits:     1649 (  1%) 
      # codes of length 07 bits:        1 (  0%) 
      # codes of length 08 bits:        0 (  0%) 
      # codes of length 09 bits:        0 (  0%) 
      # codes of length 10 bits:        0 (  0%) 
      # codes of length 11 bits:        0 (  0%) 
      # codes of length 12 bits:        0 (  0%) 
      # codes of length 13 bits:        0 (  0%) 
      # codes of length 14 bits:        0 (  0%) 
      # codes of length 15 bits:        0 (  0%) 
      # codes of length 16 bits:        0 (  0%) 

  
    Huffman Table: (Dest ID: 1, Class: DC) 
      # codes of length 01 bits:        0 (  0%) 
      # codes of length 02 bits:   162056 ( 52%) 
      # codes of length 03 bits:   128895 ( 41%) 
      # codes of length 04 bits:    22673 (  7%) 
      # codes of length 05 bits:        8 (  0%) 
      # codes of length 06 bits:        0 (  0%) 
      # codes of length 07 bits:        0 (  0%) 
      # codes of length 08 bits:        0 (  0%) 
      # codes of length 09 bits:        0 (  0%) 
      # codes of length 10 bits:        0 (  0%) 
      # codes of length 11 bits:        0 (  0%) 
      # codes of length 12 bits:        0 (  0%) 
      # codes of length 13 bits:        0 (  0%) 
      # codes of length 14 bits:        0 (  0%) 
      # codes of length 15 bits:        0 (  0%) 
      # codes of length 16 bits:        0 (  0%) 
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      Huffman Table: (Dest ID: 0, Class: AC) 
      # codes of length 01 bits:        0 (  0%) 
      # codes of length 02 bits:  2103874 ( 53%) 
      # codes of length 03 bits:   393151 ( 10%) 
      # codes of length 04 bits:   712367 ( 18%) 
      # codes of length 05 bits:   368952 (  9%) 
      # codes of length 06 bits:   148211 (  4%) 
      # codes of length 07 bits:   116694 (  3%) 
      # codes of length 08 bits:    52460 (  1%) 
      # codes of length 09 bits:    49772 (  1%) 
      # codes of length 10 bits:    19533 (  0%) 
      # codes of length 11 bits:     2118 (  0%) 
      # codes of length 12 bits:     2566 (  0%) 
      # codes of length 13 bits:      726 (  0%) 
      # codes of length 14 bits:      367 (  0%) 
      # codes of length 15 bits:       24 (  0%) 
      # codes of length 16 bits:     1861 (  0%) 

      Huffman Table: (Dest ID: 1, Class: AC) 
      # codes of length 01 bits:        0 (  0%) 
      # codes of length 02 bits:   580346 ( 62%) 
      # codes of length 03 bits:   209085 ( 22%) 
      # codes of length 04 bits:    25344 (  3%) 
      # codes of length 05 bits:    50682 (  5%) 
      # codes of length 06 bits:    50395 (  5%) 
      # codes of length 07 bits:    10862 (  1%) 
      # codes of length 08 bits:     2482 (  0%) 
      # codes of length 09 bits:     2378 (  0%) 
      # codes of length 10 bits:      941 (  0%) 
      # codes of length 11 bits:      273 (  0%) 
      # codes of length 12 bits:        0 (  0%) 
      # codes of length 13 bits:        1 (  0%) 
      # codes of length 14 bits:        0 (  0%) 
      # codes of length 15 bits:        0 (  0%) 
      # codes of length 16 bits:        0 (  0%)    

YCC clipping in DC: 
    Y  component: [<0=    0] [>255=    0] 
    Cb component: [<0=    0] [>255=    0] 
    Cr component: [<0=    0] [>255=    0] 
 
  RGB clipping in DC: 
    R  component: [<0=    0] [>255=    0] 
    G  component: [<0=    0] [>255=    0] 
    B  component: [<0=    0] [>255=    0] 
 
  Average Pixel Luminance (Y): 
    Y=[ 86] (range: 0..255) 
 
  Brightest Pixel Search: 
    YCC=[ 1016,    0,    0]  
    RGB=[255,255,255] @ MCU[ 94,  1] 
 
  Finished Decoding SCAN Data 
    Number of RESTART markers decoded: 323 
    Next position in scan buffer:  
        Offset 0x00302B75.1 

JPEG / JFIF Information (via JPEGsnoop)  



29 November 2011 38 1999-2011 by Richard Alan Peters II 

 
*** Marker: EOI (End of Image) (xFFD9) *** 
  OFFSET: 0x00302B77 
 
*** Searching Compression Signatures *** 
 
  Signature:  0166B0BC0B82C8233430BF67FA31C829 
  Signature (Rotated): 0166B0BC0B82C8233430BF67FA31C829 
  File Offset:  0 bytes 
  Chroma subsampling: 1x1 
  EXIF Make/Model: NONE 
  EXIF Makernotes: NONE 
  EXIF Software:  NONE 
 
    Searching Compression Signatures: (3327 built-in, 0 user(*) ) 
 
          EXIF.Make / Software        EXIF.Model                            Quality           Subsamp Match? 
          -------------------------   -----------------------------------   ----------------  -------------- 
          SW :[Adobe Photoshop]                                                [Save As 10]                   
 
    Based on the analysis of compression characteristics and EXIF metadata: 
 
    ASSESSMENT: Class 1 - Image is processed/edited 
 
Position Marked @ MCU=[ 177,  52](0,0) YCC=[ -468,  -60,   30] 

JPEG / JFIF Information (via JPEGsnoop)  
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