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1. Introduction

Distance or divergence measures are of key importance
in a number of theoretical and applied statistical inference
and data processing problems, such as estimation, detection,
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classification, compression, and recognition [28,111,114],
and more recently indexing and retrieval in databases
[21,58,123,203], and model selection [37,140,184,277].

The literature on such types of issues is wide and has
considerably expanded in the recent years. In particular,
following the set of books published during the second half
of the eighties [8,43,66,112,156,167,231,268], a number of
books have been published during the last decade or so
[14,20,35,63,67,85,113,143,173,206,220,256,278,279,282].

The purpose of this paper is to provide an annotated
bibliography for a wide variety of investigations based on
or related to divergence measures for theoretical and
applied inference problems. The bibliography is presented
under the form of a soft classification with some text to
describe the addressed issues instead of a hard classifica-
tion made of lists of reference numbers.

The paper is organized as follows. Section 2 is devoted to
f-divergences and Section 3 is focussed on Bregman diver-
gences. The particular and important case of a-divergences is
the topic of Section 4. How to handle divergences between
more than two distributions is addressed in Section 5. Section
6 concentrates on statistical inference based on entropy and
divergence criteria. Divergence measures for multivariable
(Gaussian) processes, including spectral divergence measures,
are reported in Section 7. Section 8 addresses some mis-
cellaneous issues.

2. f-Divergences

f-Divergences between probability densities2 p(x) and
q(x) are defined as

If ðp,qÞ ¼

Z
qðxÞf

pðxÞ

qðxÞ

� �
dx ð1Þ

with f a convex function satisfying f ð1Þ ¼ 0, f 0ð1Þ ¼
0, f 00ð1Þ ¼ 1. They have been introduced in the sixties inde-
pendently by Ali and Silvey [6], by Csiszár [68,69] and by
Morimoto [193], and then again in the seventies by Akaı̈ke
[5] and by Ziv and Zakaı̈ [284]. Kullback–Leibler divergence

Kðp,qÞ ¼

Z
pðxÞ ln

pðxÞ

qðxÞ
dx, ð2Þ

Hellinger distance, w2-divergence, Csiszár a-divergence dis-
cussed in Section 4, and Kolmogorov total variation distance
are some well known instances of f-divergences. Other
instances may be found in [151,152,169,236].

f-Divergences enjoy some invariance properties inves-
tigated in [167,168] (see also [29]), among which the two
following properties:

for f̂ ðuÞ ¼ f ðuÞþguþd, I
f̂
ðp,qÞ ¼ If ðp,qÞþgþd ð3Þ

for �f ðuÞ ¼ uf
1

u

� �
, I �f ðp,qÞ ¼ If ðq,pÞ ð4Þ

are used in the sequel. They also enjoy a universal
monotonicity property known under the name of general-
ized data processing theorem [187,284]. Their topological
properties are investigated in [70]. An extension of the
2 With respect to the Lebesgue measure.
family of f-divergences to squared metric distances is
introduced in [270].

Non-asymptotic variational formulations of f-divergences
have been recently investigated in [48,199,232,233]. Early
results on that issue obtained for Kullback–Leibler diver-
gence trace back to [90,112]. Such variational formulations
are of key interest for the purpose of studying the properties
of f-divergences or designing algorithms based on duality.
The application of variational formulation to estimating
divergence functionals and the likelihood ratio is addressed
in [200]. Other methods for estimating divergences have
been proposed in [219,274].

f-Divergences can usefully play the role of surrogate

functions, that are functions majorizing or minorizing the
objective or the risk functions at hand. For example,
f-divergences are used for defining loss functions that
yield Bayes consistency for joint estimation of the dis-
criminant function and the quantizer in [199], as surro-
gate functions for independence and ICA in [183], and the
a-divergence in (14) is used in [182] as a surrogate
function for maximizing a likelihood in an EM-type
algorithm. Bounds on the minimax risk in multiple
hypothesis testing and estimation problems are expressed
in terms of the f-divergences in [41,116], respectively. An
f-divergence estimate is exploited for deriving a two-
sample homogeneity test in [139].

f-Divergences, used as general (entropic) distance-like
functions, allow a non-smooth non-convex optimization
formulation of the partitioning clustering problem, namely
the problem of clustering with a known number of classes,
for which a generic iterative scheme keeping the simplicity
of the k-means algorithm is proposed in [258,259].

f-Divergences also turn out useful for defining robust
projection pursuit indices [196]. Convergence results of
projection pursuit through f-divergence minimization
with the aim of approximating a density on a set with
very large dimension are reported in [263].

Nonnegative matrix factorization (NMF), of wide-
spread use in multivariate analysis and linear algebra
[89], is another topic that can be addressed with
f-divergences. For example, NMF is achieved with the
aid of Kullback divergence and alternating minimization
in [98], Itakura–Saito divergence in [102,163], f-diver-
gences in [61], or a-divergences in [62,154]; see also [63].

The maximizers of the Kullback–Leibler divergence
from an exponential family and from any hierarchical
log-linear model are derived in [229,185], respectively.

Other investigations include comparison of experiments
[262]; minimizing f-divergences on sets of signed mea-
sures [47]; minimizing multivariate entropy functionals
with application to minimizing f-divergences in both vari-
ables [78]; determining the joint range of f-divergences
[119]; or proving that the total variation distance is the
only f-divergence which is an integral probability metric
(IPM) used in the kernel machines literature [246].

Recent applications involving the use of f-divergences
concern feature selection in fuzzy approximation spaces
[175], the selection of discriminative genes from micro-
array data [174], speckle data acquisition [195], medical
image registration [218], or speech recognition [221], to
mention but a few examples. A modification of f-divergences
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for finite measures turns out to be useful for right-censored
observations [250].

3. Bregman divergences

Bregman divergences, introduced in [46], are defined for
vectors, matrices, functions and probability distributions.

The Bregman divergence between vectors is defined as

Djðx,yÞ ¼jðxÞ�jðyÞ�ðx�yÞTrjðyÞ ð5Þ

with j a differentiable strictly convex function Rd
�!R.

The symmetrized Bregman divergence writes

Djðx,yÞ ¼ ðrjðxÞ�rjðyÞÞT ðx�yÞ ð6Þ

The Bregman matrix divergence is defined as

DfðX,YÞ ¼fðXÞ�fðYÞ�TrððrfðYÞÞT ðX�YÞÞ ð7Þ

for X,Y real symmetric d� d matrices, and f a differenti-
able strictly convex function Sd

�!R. Those divergences
preserve rank and positive semi-definiteness [88].

For fðXÞ ¼ ln9X9, the divergence (7) is identical to the
distance between two positive matrices defined as the
Kullback–Leibler divergence between two Gaussian dis-
tributions having those matrices as covariance matrices.
According to [155], that distance is likely to trace back
to [129]. For example, it has been used for estimating
structured covariance matrices [54] and for designing
residual generation criteria for monitoring [30].

The divergence (7), in the general case for f, has been
recently proposed for designing and investigating a new
family of self-scaling quasi-Newton methods [137,138].

The Bregman divergence between probability densities
p(x) and q(x) is defined as [73,134]

Djðp,qÞ ¼

Z
ðjðpðxÞÞ�jðqðxÞÞ�ðpðxÞ�qðxÞÞj0ðqðxÞÞÞ dx ð8Þ

for j a differentiable strictly convex function. A Bregman
divergence can also be seen as the limit of a Jensen

difference [31,201], namely

Djðp,qÞ ¼ lim
b-0

1

b
JðbÞj ðp,qÞ, ð9Þ

where the Jensen difference JðbÞj is defined for 0obo1 as

JðbÞj ðp,qÞ9bjðpÞþð1�bÞjðqÞ�jðbpþð1�bÞqÞ ð10Þ

For b¼ 1=2, Jensen difference is the Burbea–Rao diver-

gence [53]; see also [93,169]. The particular case where D

and J are identical is of interest [228].
The Bregman divergence measures enjoy a number of

properties useful for learning, clustering and many other
inference [26,73,99] and quantization [24] problems. They
have been recently used for density-ratio matching [252].
In the discrete case, an asymptotic equivalence with the
f-divergence and the Burbea–Rao divergence is investi-
gated in [208]. More generally the relationships between
the f-divergences and the Bregman divergences have been
described in [29,31].

One important instance of the use of Bregman diver-
gences for learning is the case of inverse problems [134,160],3
3 See also [244] for another investigation of regularization.
where convex duality is extensively used. Convex duality is
also used for minimizing a class of Bregman divergences
subject to linear constraints in [81], whereas a simpler proof
using convex analysis is provided in [36], and the results are
used in [64].

Bregman divergences have been used for a general-
ization of the LMS adaptive filtering algorithm [150], for
Bayesian estimation of distributions [100] using functional
divergences introduced for quadratic discriminant analysis
[247], and for l1-regularized logistic regression posed as
Bregman distance minimization and solved with non-
linear constrained optimization techniques in [80]. Itera-
tive l1-minimization with application to compressed sen-
sing is investigated in [280]. Mixture models are estimated
using Bregman divergences within a modified EM algo-
rithm in [101]. Learning continuous latent variable models
with Bregman divergences and alternating minimization is
addressed in [275]. The use of Bregman divergences as
surrogate loss functions for the design of minimization
algorithms for learning that yield guaranteed convergence
rates under weak assumptions is discussed in [205].

Learning structured models, such as Markov networks
or combinatorial models, is performed in [257] using
large-margin methods, convex–concave saddle point pro-
blem formulation and dual extra-gradient algorithm
based on Bregman projections. Proximal minimization
schemes handling Bregman divergences that achieve
message-passing for graph-structured linear programs
(computation of MAP configurations in Markov random
fields) are investigated in [230].

There are also many instances of application of
Bregman divergences for solving clustering problems. Used
as general (entropic) distance-like functions, they allow a
non-smooth non-convex optimization formulation of the
partitioning clustering problem, for which a generic iterative
scheme keeping the simplicity of the k-means algorithm is
proposed in [258,259]. Clustering with Bregman divergences
unifying k-means, LBG and other information theoretic
clustering approaches is investigated in [26], together with
a connection with rate distortion theory.4 Scaled Bregman
distances are used in [251] and compared with f-divergences
for key properties: optimality of the k-means algorithm [26]
and invariance w.r.t. statistically sufficient transforma-
tions. Quantization and clustering with Bregman diver-
gences are investigated in [99] together with convergence
rates. k-means and hierarchical classification algorithms
w.r.t. Burbea–Rao divergences (expressed as Jensen–Breg-
man divergences) are studied in [201].

The interplay between Bregman divergences and
boosting, in particular AdaBoost, has been the topic of a
number of investigations, as can be seen for example in
[64,149,158,157] for an earlier study. Some controversy
does exist however, see for example [161] where under-
standing the link between boosting and ML estimation in
exponential models does not require Bregman diver-
gences. The extension of AdaBoost using Bregman diver-
gences, their geometric understanding and information
4 Note that minimum cross-entropy classification was addressed as

an extension of coding by vector quantization in [243].
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geometry is investigated in [194], together with consistency
and robustness properties of the resulting algorithms.

The problems of matrix learning, approximation, factor-

ization can also usefully be addressed with the aid of
Bregman divergences. Learning symmetric positive defi-
nite matrices with the aid of matrix exponentiated gra-
dient updates and Bregman projections is investigated in
[264]. Learning low-rank positive semi-definite (kernel)
matrices for machine learning applications is also
addressed with Bregman divergences in [155]. Matrix
rank minimization is achieved with a Bregman iterative
algorithm in [172]. Nonnegative matrix approximation
with low rank matrices is discussed in [87], whereas
matrix approximation based on the minimum Bregman
information principle (generalization to all Bregman loss
functions of MaxEnt and LS principles) is the topic of [25].
Nonnegative matrix factorization (NMF) with Bregman
divergences is addressed in [62]; see also [63]. The
particular case of using the density power divergence
and a surrogate function for NMF is investigated in [103].

Applications involving the use of Bregman divergences
concern nearest neighbor retrieval [57], color image
segmentation [201], 3D image segmentation and word
alignment [257], cost-sensitive classification for medical
diagnosis (UCI datasets) [238], magnetic resonance image
analysis [271], semi-supervised clustering of high dimen-
sional text benchmark datasets and low dimensional UCI
datasets5 [276], content-based multimedia retrieval with
efficient neighbor queries [203], efficient range search
from a query in a large database [58].
4. a-Divergences

A large number of divergence measures, parameter-
ized by a and possibly b and/or g, have been introduced in
the literature using an axiomatic point of view [3]. This
can be seen for example in [255], and the reader is
referred to [2,72] for critical surveys. However, a number
of useful a-divergence measures have been proposed,
tracing back to Chernoff [59] and Rao [223]. A recent
synthesis can be found in [60]; see also [63].

The Csiszár I-divergences of order a, also called
w2-divergence of order a, have been introduced in [69]
as f-divergences (1) associated with

gaðuÞ ¼

1

að1�aÞ
ðauþ1�a�uaÞ, aaf0,1g

u�1�ln u, a¼ 0

1�uþu ln u, a¼ 1

8>>><
>>>:

ð11Þ

namely

Iga ðp,qÞ ¼

1

að1�aÞ
1�
R

paq1�a dx
� �

, aaf0,1g

Kðq,pÞ, a¼ 0

Kðp,qÞ, a¼ 1

8>>><
>>>:

ð12Þ
5 For which a non-parametric approach to learning j in (6) in the

form jðxÞ ¼
PN

i ¼ 1 bihðx
T
i xÞ with h a strictly convex function R�!R is

used for distance metric learning.
where Kðp,qÞ is defined in (2). They could also be called
Havrda–Charvát’s a-divergences [121]. They are identical
to Read–Cressie’s power divergence [170,231]. See also
[3,167,267,268].

It is easily seen that, up to a transformation of a, they
are identical to Amari’s a-divergences [8,14]—see also [10],
and to the Tsallis divergences [265]. Actually, the f-diver-
gences (1) associated with

f aðuÞ ¼

4

1�a2
ðu�uð1þaÞ=2Þ, aa71

u ln u, a¼ þ1

�ln u, a¼�1

8>>><
>>>:

ð13Þ

considered in [10] write

If a
ðp,qÞ ¼

4

1�a2
1�
R

pð1þaÞ=2qð1�aÞ=2 dx
� �

, aa71

Kðp,qÞ, a¼ þ1

Kðq,pÞ, a¼�1

8>>><
>>>:

ð14Þ

and it can be checked that, for b¼ ð1þaÞ=2, we have
Igb ðp,qÞ ¼ If a

ðp,qÞ.
Moreover the equivalence with the f-divergences built

on the function

~f aðuÞ ¼

4

1�a2
ð1�uð1þaÞ=2Þ�

2

1�aðu�1Þ, aa71

u ln u�ðu�1Þ, a¼ þ1

�ln uþðu�1Þ, a¼�1

8>>><
>>>:

often considered stands from the invariance property (3).
For a¼ þ1 the divergence (14) is nothing but the

Kullback–Leibler information, and for a¼ 0 it is the
Hellinger distance up to a multiplicative constant.

The a-divergence (14) has been used earlier by Chernoff
for investigating the error exponents and asymptotic effi-
ciency of statistical tests with independent observations [59].

Some applications of those divergences are described
in particular for model integration in [10], in EM algo-
rithms in [180–182], and message-passing algorithms for
complex Bayesian networks approximation in [189].

It has been recently proved that they form the unique
class belonging to both the f-divergences and the Bregman
divergences classes [11]. This extends the result in [73]
that Kullback–Leibler divergence is the only Bregman
divergence which is an f-divergence.

f -Divergences based on Arimoto’s entropies [18] and
introduced in [248] define a-divergences different from
the above ones.

A different class of a-divergences, known under the
name of density power divergences, have been introduced
in [32] by Basu et al. as

Daðp,qÞ ¼
1=a

R
ðpaþ1�ðaþ1Þpqaþaqaþ1Þ dx, a40

Kðp,qÞ, a¼ 0

(

ð15Þ

They can be seen as Bregman divergences Dja
(8) asso-

ciated with

jaðuÞ ¼
1=aðuaþ1�uÞ, a40

u ln u, a¼ 0

(
ð16Þ
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They have been used for robust blind source separation
[188], analyzing mixtures ICA models [192], model selec-
tion [140,141,176,184], estimation of tail index of heavy
tailed distributions [148] and estimation in age-stratified
Poisson regression models for cancer surveillance [178].
They have recently been handled in [92] for distributions
with mass not necessarily equal to one, an extension
useful for designing boosting methods.

The Rényi’s a-divergences have been defined in [234] as

Daðp,qÞ ¼

1

aða�1Þ
ln
R

paq1�a dx, aa1

Kðp,qÞ, a¼ 1

8><
>: ð17Þ

although they may have been proposed earlier [40,239].
Those divergences exhibit direct links with the Chernoff
distance and with the moment generating function of the
likelihood ratio [29,123]. Their use for channel capacity6

and their link with cutoff rates are addressed in [74]. Their
involvement in estimation and coding problems is also
address in [16,17,198]. Scale and concentration invariance
properties have been investigated in [153].

A surrogate function for Rényi’s a-divergence is the
a-Jensen difference [123]. Entropy functionals derived
from Rényi’s divergences have been recently studied in
[39], whereas characterizations of maximum Rényi’s
entropy distributions are provided in [120,272].

In recent years, Rényi’s a-divergences have been used
for robust image registration [122], differentiating brain
activity [22], for feature classification, indexing, and
retrieval in image and other databases [123], and detect-
ing distributed denial-of-service attacks [166]. They have
been shown to be possibly irrelevant for blind source
separation [217,273].

A two-parameter family of divergences associated with a
generalized mean, and reducing to Amari’s a-divergences
or Jensen difference in some cases, is investigated in [283],
together with convex inequalities and duality properties
related to divergence functionals.

5. Handling more than two distributions

Defining divergences between more than two distribu-
tions is useful for discrimination [186] and taxonomy
[224,225], where they may be more appropriate than
pairwise divergences. They are often called generalized

divergences.
Generalized f-divergences have been introduced under

the name of f-dissimilarity in [117].
For a set of n probability distributions p1, . . . ,pn with

normalized positive weights b1, . . . ,bn, respectively, gen-
eralized Jensen divergences are defined as

JðbÞj ðp1, . . . ,pnÞ9
Xn

i ¼ 1

bijðpiÞ�j
Xn

i ¼ 1

bipi

 !
ð18Þ

where j is a convex function.
The case of Shannon entropy, where jðxÞ ¼ �HðxÞ with

HðxÞ9�x ln x, has been addressed in [169]. In this case, it
is easy to show that JðbÞj writes as the weighted arithmetic
6 In [18], another a-information is used for channel capacity.
mean of the Kullback distances between each of the pi’s
and the barycenter of all the pi’s. This property has been
applied to word clustering for text classification [86].

If in addition n¼2, the latter property holds for more
general convex functions j: Jensen divergence can be
written as the arithmetic mean of Bregman divergences to
the barycenter,

JðbÞj ðp1,p2Þ ¼ bDjðp1,bp1þð1�bÞp2Þþð1�bÞDjðp2,bp1þð1�bÞp2Þ

ð19Þ

Actually the interplay between divergence measures
and the notions of entropy, information and generalized

mean values is quite tight [2,29,31,234]. More precisely,
mean values can be associated with entropy-based diver-
gences in two different ways. The first way [3,234]
consists in writing explicitly the generalized mean values
f�1
ð
Pn

i ¼ 1 bifðpiÞÞ underlying the f-divergences. The
Rényi a-divergences (17) correspond to fðuÞ ¼ ua, and
this results in the a-mean values ð

Pn
i ¼ 1 bip

a
i Þ

1=a. The
second way [38] consists in defining mean values by
arg minv

Pn
i ¼ 1 bidðv,uiÞ, namely as projections, in the

sense of distance d, onto the half-line u1 ¼ � � � ¼ un40
[75]. When d is a f-divergence dðv,uiÞ ¼ uif ðv=uiÞ, this gives
the entropic means [38], which are characterized impli-
citly by

Pn
i ¼ 1 bif

0
ðv=uiÞ ¼ 0, and necessarily homogeneous

(scale invariant). The class of entropic means includes all
available integral means and, when applied to a random
variable, contains most of the centrality measures
(moments, quantiles). When d is a Bregman distance
dhðu,vÞ ¼ hðuÞ�hðvÞ�ðu�vÞh0ðvÞ, the corresponding mean
values are exactly the above generalized mean values (for
f¼ h0), which are generally not homogeneous.

Consequently some means other than the arithmetic
mean may be used in the definition (18) of generalized
divergences. For example, the information radius intro-
duced in [245] is the generalized mean of Rényi’s diver-
gences between each of the pi’s and the generalized mean
of all the pi’s, which boils down to [29]:

SðbÞa ðp1, . . . ,pnÞ ¼
a

a�1
ln

Z Xn

i ¼ 1

bip
a
i ðxÞ

 !1=a

dx ð20Þ

See also [74].
Mean values, barycenters, centroids have been widely

investigated. The barycenter of a set of probability mea-
sures is studied in [214]. Barycenters in a dually flat space
are introduced as minimizers of averaged Amari’s diver-
gences in [212]. Left-sided, right-sided and symmetrized
centroids are defined as minimizers of averaged Bregman
divergences in [202], whereas Burbea–Rao centroids
are the topic of [201] with application to color image
segmentation.

Geometric means of symmetric positive definite matrices
are investigated in [19]. A number of Fréchet means are
discussed in [91] with application to diffusion tensor
imaging. Quasi-arithmetic means of multiple positive
matrices by symmetrization from the mean of two matrices
are investigated in [216]. Riemannian metrics on space of
matrices are addressed in [215]. The relation of the symme-
trized Kullback–Leibler divergence with the Riemannian
distance between positive definite matrices is addressed in
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[191]. The Riemannian distance between positive definite
matrices turns out to be a useful tool for analyzing signal
processing problems such as the convergence of Riccati
[45,159,162].

6. Inference based on entropy and divergence criteria

The relevance of an information theoretic view of basic
problems in statistics has been known for a long time [235].
Whereas maximum likelihood estimation (MLE) minimizes
the Kullback–Leibler divergence KLðp̂,p%Þ between an
empirical and a true (or reference) distributions, minimizing
other divergence measures turns out useful for a number of
inference problems, as many examples in the previous
sections suggested. Several books exist on such an approach
to inference [35,67,167,173,206,268], and the field is highly
active.

A number of point estimators based on the minimiza-
tion of a divergence measure have been proposed. Power
divergence estimates, based on the divergence (16) and
written as M-estimates, are investigated in [32] in terms
of consistency, influence function, equivariance, and
robustness; see also [33,170,209]. Iteratively reweighted
estimating equations for robust minimum distance esti-
mation are proposed in [34] whereas a boostrap root
search is discussed in [177]. Recent investigations of the
power divergence estimates include robustness to outliers
and a local learning property [92] and Bahadur efficiency
[118]. An application to robust blind source separation is
described in [188].

The role of duality when investigating divergence
minimization for statistical inference is addressed in
[7,48]; see also [115,283]. A further investigation of the
minimum divergence estimates introduced in [48] can be
found in [260], which addresses the issues of influence
function, asymptotic relative efficiency, and empirical
performances. See also [213] for another investigation.

A comparison of density-based minimum divergence
estimates is presented in [135]. A recent comparative study
of four types of minimum divergence estimates is reported
in [50], in terms of consistency and influence curves: this
includes the power divergence estimates [32], the so-called
power superdivergence estimates [47,168,269], the power
subdivergence estimates [48,269], and the Rényi pseudo-
distance estimates [164,269].

The efficiency of estimates based on a Havrda–
Charvát’s a-divergence, or equivalently on the Kullback–
Leibler divergence with respect to a distorted version of
the true density, is investigated in [97].

Robust LS estimates with a Kullback–Leibler divergence
constraint are introduced and investigated in [165] where
a connection with risk-sensitive filtering is established.

Hypothesis testing may also be addressed within such a
framework [42]. The asymptotic distribution of a general-
ized entropy functional and the application to hypothesis
testing and design of confidence intervals are studied in
[94]. The asymptotic distribution of tests statistics built
on divergence measures based on entropy functions is
derived in [206,207]. This includes extensions of Burbea–
Rao’s J-divergences [52,53] and of Sibson’s information
radius [245].
Tests statistics based on entropy or divergence of
hypothetical distributions with ML estimated values of
the parameter have been recently investigated in [48–50].
Robustness properties of these tests are proven in [260].
The issue of which f-divergence should be used for testing
goodness of fit is to be studied with the aid of the results
in [119].

The key role of Kullback–Leibler divergence (2) for
hypothesis testing in the i.i.d. case is outlined in Chern-
off’s results about the error exponents [59]. These results
have been extended to Gaussian detection [23,65,253]
and to the detection of Markov chains [15,197]. The role
of Kullback–Leibler divergence for composite hypothesis
testing has been outlined and investigated by Hoeffding in
the multinomial case [126]. Those universal (asymptoti-
cally optimal) tests have been extended to the exponen-
tial family of distributions in [84].

Maximum entropy, minimum divergence and Bayesian
decision theory are investigated in [115] using the equili-
brium theory of zero-sum games. Maximizing entropy is
shown to be dual of minimizing worst-case expected loss.
An extension to arbitrary decision problems and loss
functions is provided, maximizing entropy is shown to
be identical to minimizing a divergence between distri-
butions, and a generalized redundancy-capacity theorem
is proven. The existence of an equilibrium in the game
is rephrased as a Pythagorean property of the related
divergence.

The extension of the properties of the K–L divergence
minimization [242] to Tsallis divergence is investigated in
[266].

Generalized minimizers of convex integral func-
tionals are investigated in detail in [79], extending the
results obtained for the Shannon case in [77] to the
general case.

Other learning criteria have been investigated in spe-
cific contexts. Whereas minimizing the Kullback–Leibler
divergence (ML learning) turns out to be difficult and/or
slow to compute with MCMC methods for complex high
dimensional distributions, contrastive divergence (CD)
learning [124] approximately follows the gradient of the
difference of two divergences:

CDn ¼ KLðp0,p%Þ�KLðpn,p%Þ ð21Þ

and provides estimates with typically small bias. Fast CD
learning can thus be used to get close to the ML estimate,
and then slow ML learning helps refining the CD esti-
mate [56,190]. The convergence properties of contrastive
divergence learning are analyzed in [254]. The applica-
tion to fast learning of deep belief nets is addressed in
[125].

On the other hand, score matching consists in mini-
mizing the expected square distance between the model
score function and the data score function:

JðyÞ ¼ 1=2

Z
x2Rn

pxðxÞJcyðxÞ�cxðxÞJ
2 dx

with cyðxÞ9rx ln pyðxÞ and cxð�Þ9rx ln pxð�Þ. This objec-
tive function turns out to be very useful for estimating
non-normalized statistical models [127,128].
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7. Spectral divergence measures

Spectral distance measures for scalar signal processing
have been thoroughly investigated in [111,114]. Spectral
distances between vector Gaussian processes have been
studied in [144–146,240,241]; see also [147, Chap. 11] for
general stochastic processes.

Kullback–Leibler divergence has been used for approx-
imating Gaussian variables and Gaussian processes and
outlining a link with subspace algorithm for system
identification [249]. A distance based on mutual informa-
tion for Gaussian processes is investigated in [44].

Kullback–Leibler and/or Hellinger distances have
been used for spectral interpolation [55,104,142], spectral
approximation [96,107,210], spectral estimation [222],
and ARMA modeling [108].

Differential-geometric structures for prediction and
smoothing problems for spectral density functions are
introduced in [105,130,131]. This work has been pursued
in [281] for the comparison of dynamical systems with
the aid of the Kullback–Leibler rate pseudo-metric.

An axiomatic approach to metrics for power spectra
can be found in [106].

The geometry of maximum entropy problems is add-
ressed in [211].
8. Miscellanea

Information geometry, which investigates information for
statistical inference based on differential geometry, has
been studied by Csiszár [71], Rao [51,227], Amari
[8,9,13,14] and Kass [143]. A recent book [20] explores
neighborhoods of randomness and independence as well as
a number of different applications. The tight connections
with algebraic statistics are explored in several chapters of
the recent book [109]. The role of information geometry in
asymptotic statistical theory is discussed in [27]. The
information geometric structure of the generalized empiri-
cal likelihood method based on minimum divergence
estimates is investigated in [204]. A geometric interpreta-
tion of conjugate priors, based on MLE and MAP expressed
as Bregman barycenters, is provided in [4]. An introduction
to information geometry may be found in [12].

Information theoretic inequalities are investigated in
[82,83,95,110,132,136,171]. Inequalities involving f-diver-
gences are studied in [110,119,261].

The axiomatic characterization of information and diver-
gence measures is addressed in [3,73,133,179,226,234,268,
Chapter 10]; see also [1]. Additional references are pro-
vided in [29]. More recent treatments may be found in
[76,237,106].
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ment and analysis, Sankhyā: The Indian Journal of Statistics—

Series A 44 (1) (1982) 1–22.
[226] C.R. Rao, Rao’s axiomatization of diversity measures, in: S. Kotz,

N.L. Johnson (Eds.), Encyclopedia of Statistical Sciences, vol. 7,
John Wiley & Sons Ltd, 1986, pp. 614–617.

[227] C.R. Rao, Differential metrics in probability spaces, in: S.-I. Amari,
O.E. Barndorff-Nielsen, R.E. Kass, S.L. Lauritzen, C.R. Rao (Eds.),
Differential Geometry in Statistical Inference, Lecture Notes—

Monograph Series, vol. 10, Institute of Mathematical Statistics,
Hayward, CA, USA, 1987, pp. 217–240.

[228] C.R. Rao, T. Nayak, Cross entropy, dissimilarity measures, and
characterizations of quadratic entropy, IEEE Transactions on
Information Theory 31 (September (5)) (1985) 589–593.

[229] J. Rauh, Finding the maximizers of the information divergence
from an exponential family, IEEE Transactions on Information
Theory 57 (June (6)) (2011) 3236–3247.

[230] P. Ravikumar, A. Agarwal, M.J. Wainwright, Message-passing for
graph-structured linear programs: proximal methods and round-
ing schemes, Journal of Machine Learning Research 11 (March)
(2010) 1043–1080.

[231] T. Read, N. Cressie, Goodness-of-Fit Statistics for Discrete Multi-
variate Data. Statistics, Springer, NY, 1988.

[232] M.D. Reid, R.C. Williamson, Composite binary losses, Journal of
Machine Learning Research 11 (September) (2010) 2387–2422.

[233] M.D. Reid, R.C. Williamson, Information, divergence and risk for
binary experiments, Journal of Machine Learning Research 12
(March) (2011) 731–817.
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maximum Rényi entropy distributions, in: Proceedings of the IEEE
International Symposium on Information Theory (ISIT’06), Seattle,
Washington, USA, July 2006, pp. 1822–1826.

[273] F. Vrins, D.-T. Pham, M. Verleysen, Is the general form of Renyi’s
entropy a contrast for source separation?, in: M.E. Davies, C.J.
James, S.A. Abdallah, M.D. Plumbley (Eds.), Proceedings of the 7th
International Conference on Independent Component Analysis
and Blind Source Separation (ICA’07), London, UK, Lecture Notes
in Computer Science, , Lecture Notes in Computer Science, vol.
4666, September 9–12, 2007, Springer-Verlag, Berlin, Heidelberg,
FRG, 2007, pp. 129–136.

[274] Q. Wang, S.R. Kulkarni, S. Verdu, Divergence estimation for multi-
dimensional densities via k-nearest-neighbor distances, IEEE Trans-
actions on Information Theory 55 (May (5)) (2009) 2392–2405.

[275] S. Wang, D. Schuurmans, Learning continuous latent variable
models with Bregman divergences, in: R. Gavald �a, K.P. Jantke,
E. Takimoto (Eds.), Proceedings of the 14th International Con-
ference on Algorithmic Learning Theory (ALT’03), Sapporo, Japan,
Lecture Notes in Artificial Intelligence, vol. 2842, Springer-Verlag,
Berlin Heidelberg, October 17–19, 2003, pp. 190–204.

[276] L. Wu, R. Jin, S.C.-H. Hoi, J. Zhu, N. Yu, Learning Bregman distance
functions and its application for semi-supervised clustering, in:
Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta
(Eds.), Advances in Neural Information Processing Systems 22,
Vancouver, British Columbia, Canada, NIPS Foundation, December
7–10, 2009, pp. 2089–2097.

[277] Y. Wu, Y. Jin, M. Chen, Model selection in loglinear models using
f-divergence measures and MfE s, Sankhyā: The Indian Journal of
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