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As an important data mining and knowledge discovery task, association rule min-
ing searches for implicit, previously unknown, and potentially useful pieces of
information—in the form of rules revealing associative relationships—that are
embedded in the data. In general, the association rule mining process comprises
two key steps. The first key step, which mines frequent patterns (i.e., frequently
occurring sets of items) from data, is more computationally intensive than the
second key step of using the mined frequent patterns to form association rules. In
the early days, many developed algorithms mined frequent patterns from tra-
ditional transaction databases of precise data such as shopping market basket
data, in which the contents of databases are known. However, we are living in
an uncertain world, in which uncertain data can be found almost everywhere.
Hence, in recent years, researchers have paid more attention to frequent pattern
mining from probabilistic databases of uncertain data. In this paper, we review
recent algorithmic development on mining uncertain data in these probabilistic
databases for frequent patterns. C© 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl
Discov 2011 1 316–329 DOI: 10.1002/widm.31

INTRODUCTION

D ata mining and knowledge discovery (DMKD)1

techniques are widely used in various applica-
tions in business, government, and science. Examples
include banking, bioinformatics, environmental mod-
eling, epidemiology, finance, marketing, medical di-
agnosis, and meteorological data analysis. Available
data in many of these applications are uncertain. Un-
certainty can be caused by our limited perception or
understanding of reality (e.g., limitations of the obser-
vation equipment; limited resources to collect, store,
transform, analyze, or understand data). It can also be
inherent in nature (e.g., due to prejudice). Moreover,
sensors (e.g., acoustic, chemical, electromagnetic, me-
chanical, optical radiation and thermal sensors) are
often used to collect data in applications such as en-
vironment surveillance, security, and manufacturing
systems. Dynamic errors include inherited measure-
ment inaccuracies, sampling frequency of the sensors,
deviation caused by a rapid change of the measured
property over time (e.g., drift, noise), wireless trans-
mission errors, or network latencies. There is also un-
certainty in survey data (e.g., number ‘1’ vs. uppercase
letter ‘I’ vs. lowercase letter ‘L’) and uncertainty due
to data granularity (e.g., city, province) in taxonomy.
Disguised missing data (which are not explicitly repre-
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sented as such but instead appear as potentially valid
data values) also introduce uncertainty. In privacy-
preserving applications, sensitive data may be inten-
tionally blurred via aggregation or perturbation so as
to preserve data anonymity. All these scenarios lead
to huge amounts of uncertain data in various real-life
situations.2–5 In this paper, we review recent algorith-
mic development on mining such uncertain data. Note
that there are different methodologies (e.g., probabil-
ity theory, fuzzy set theory, rough set theory) for min-
ing uncertain data. In this paper, we mainly focus on
uncertainty in a probabilistic setting.

Over the past few years, various DMKD al-
gorithms have been developed for clustering uncer-
tain data,6–8 classifying uncertain data,9,10 detecting
outliers from uncertain data,11 and mining associ-
ation rules from uncertain data. Association rule
mining12,13 is an important DMKD task where one
searches implicit, previously unknown, and poten-
tially useful associative relationships embedded in the
data. The mining process generally comprises two key
steps. The first key step mines frequent patterns14 (i.e.,
frequently occurring sets of items) from data, and the
second key step forms association rules of the form
‘A → C’ using these mined frequent patterns as the an-
tecedent A and consequence C of the rules. Between
the two key steps, the first step is more computa-
tionally intensive than the second one. This explains
why more attention has been focused on the first
step, and many algorithms have been developed over
the last two decades. In the early days, most of the
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FIGURE 1 | A traditional transaction database D1 of precise data.

FIGURE 2 | A probabilistic database D2 of uncertain data, in
which items in each transaction are independent.

developed algorithms mined frequent patterns from
traditional databases of precise data such as shop-
ping market basket data, in which the contents of
databases are known. In this paper, we focus on min-
ing uncertain data in probabilistic databases for fre-
quent patterns.

FREQUENT PATTERN MINING OF
UNCERTAIN DATA

Due to the uncertainty in various real-life situations,
users may not be certain about the presence or absence
of an item x in a transaction ti. They may suspect, but
cannot guarantee, that x is present in ti. The uncer-
tainty of such suspicion can be expressed in terms
of existential probability P(x,ti), which indicates the
likelihood of x being present in ti in a probabilistic
database D of uncertain data. The existential proba-
bility P(x,ti) ranges from a positive value close to 0
(indicating that x has an insignificantly low chance to
be present in D) to a value of 1 (indicating that x is
definitely present). With this notion, each item in any
transaction in traditional databases of precise data
(e.g., shopping market basket data) can be viewed as
an item with a 100% likelihood of being present in
such a transaction. Figures 1 and 2 show a traditional
transaction database D1 containing precise data and a
probabilistic database D2 containing uncertain data,
respectively.

Using the ‘possible world’ interpretation15–17 of
uncertain data, there are two possible worlds for an
item x in a transaction ti: (1) a possible world W1

where x is present in ti (i.e., x ∈ ti) and (2) another
possible world W2 where x is absent from ti (i.e., x �∈

ti). Although it is uncertain which of these two worlds
to be the true world, the probability of W1 to be the
true world is P(x,ti) and the probability of W2 to be
the true world is 1 − P(x,ti). To some extent, there
are multiple items in each of many transactions in a
probabilistic database D of uncertain data. Given a
total of q independent items (from a domain of m
distinct items, where m � q) in all transactions of D,
there are O(2q) possible worlds. The expected support
(expSup) of a pattern X in D can then be computed
by summing the support of X in possible world Wj

(while taking into account the probability of Wj to be
the true world) over all possible worlds, i.e.,

expSup(X, D) =
∑

j

[sup(X, W j ) × Prob(W j )],

where the probability Prob(Wj) of Wj to be the true
world can be computed by the following:

Prob(W j )

=
|D|∏
i=1

⎛
⎝ ∏

x∈ti in W j

P(x, ti ) ×
∏

y/∈ti in W j

(1 − P(y, ti ))

⎞
⎠ .

The above expression for computing the ex-
pected support of X in D can be simplified18 to be-
come the following:

expSup(X, D) =
|D|∑
i=1

(∏
x∈X

P(x, ti )

)
.

In other words, the expected support of X in D
can be computed as a sum (over all |D| transactions)
of product of existential probabilities of all items
within X.

Given (1) a probabilistic database D of uncer-
tain data and (2) a user-specified support threshold
minsup, the research problem of frequent pattern
mining of uncertain data is to find all frequent pat-
terns from D. Here, a pattern X is frequent if and only
if its expected support in D is no less than minsup,
i.e., expSup(X,D) ≥ minsup. See Figure 3 for all ‘pos-
sible worlds’ of the probabilistic database D2 shown
in Figure 2.

Apriori-Based Mining of Uncertain Data
To mine frequent patterns from uncertain data,
Chui et al.19 uses a levelwise breadth-first bottom-
up mining approach with a candidate generate-and-
test paradigm. Specifically, they modified the classi-
cal Apriori algorithm,20,21 and called the resulting
algorithm U-Apriori, to mine uncertain data. Like its
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FIGURE 3 | Possible worlds for D2.

counterpart for mining precise data (the Apriori algo-
rithm), U-Apriori also relies on the Apriori property22

(which is also known as the antimonotonic property
or the downward closure property) that all subsets
of a frequent pattern must also be frequent. Equiva-
lently, all supersets of any infrequent pattern are also
infrequent.

To improve efficiency, Chui et al. incorporated
the LGS-trimming strategy (which includes local trim-
ming, global pruning, and single-pass patch up) into
U-Apriori. The strategy trims away every item with an
existential probability below the user-specified trim-
ming threshold (which is local to each item) from
the original database D of uncertain data and then
mines frequent patterns from the resulting trimmed
database DTrim. If a pattern X is frequent in DTrim,
then X must be frequent in D. On the other hand,
a pattern Y is infrequent in D if expSup(Y,DTrim) +
e(Y) < minsup, where e(Y) is the upper bound of the
error estimated for expSup(Y,DTrim). Such an infre-
quent pattern Y can be pruned. Moreover, a pattern
Z is potentially frequent in D if expSup(Z,DTrim) ≤
minsup ≤ expSup(Z,DTrim) + e(Z). To patch up (i.e.,
to recover the missing frequent patterns), the expected
supports of these potentially frequent patterns are ver-
ified by an additional single-pass scan of D. Although
the LGS strategy improves the efficiency of U-Apriori,
the algorithm still suffers from the following prob-
lems: (1) there is an overhead in creating DTrim, (2)
only a subset of all the frequent patterns can be mined
from DTrim and there is overhead to patch up (i.e., to
recover the missing frequent patterns), (3) the effi-
ciency of the algorithm is sensitive to the percentage
of items having low existential probabilities, and (4)
it is not easy to find an appropriate value for the user-
specified trimming threshold.

To further improve the efficiency of U-Apriori,
Chui and Kao23 proposed a decremental pruning
technique. Inherited from the Apriori algorithm,
U-Apriori relies on the candidate generate-and-test
paradigm for mining. The decremental pruning tech-
nique helps reduce the number of candidate patterns
because it progressively estimates the upper bounds
of expected support of candidate patterns after each
database transaction is processed. If the estimated up-
per bound of a candidate pattern X falls below min-
sup, then X is immediately pruned.

Tree-Based Mining of Uncertain Data
Tree-based mining algorithms avoid the candi-
date generate-and-test mining paradigm used in the
Apriori-based mining algorithms. Instead, tree-based
algorithms use a depth-first divide-and-conquer ap-
proach to mine frequent patterns from a tree structure
that captures the contents of the databases. To mine
frequent patterns from uncertain data, Leung et al.24

proposed a tree-based algorithm called UF-growth.
Similar to the FP-growth algorithm25,26 (for

mining traditional transaction databases of precise
data), UF-growth leads to the construction of a tree
structure to capture the contents of the databases.
However, it does not use the FP-tree (as in the FP-
growth algorithm) because each node in the FP-tree
only maintains (1) an item and (2) its occurrence
count in the tree path. See Figure 4, which shows
the FP-tree capturing the contents of the traditional
database D1 of precise data shown in Figure 1. For
traditional transaction databases of precise data, the
actual support of a pattern X depends solely on
the occurrence counts of items within X. However,
for probabilistic databases of uncertain data, the
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FIGURE 4 | An FP-tree for capturing the contents of D1.

expected support of X is the sum of the product of the
occurrence count and existential probability of every
item within X. Hence, Leung et al. extended the FP-
tree to capture the contents of probabilistic databases
of uncertain data. The resulting tree structure is called
UF-tree. Each node in the UF-tree consists of three
components: (1) an item, (2) its existential prob-
ability, and (3) its occurrence count in the path.
Figure 5 shows a UF-tree capturing the contents of the
probabilistic database D2 of uncertain data shown in
Figure 2. Such a UF-tree is constructed in a similar
fashion as the FP-tree, except that a new transaction is
merged with a child node only if the same item and the
same existential probability exist in both the transac-
tion and the child node. As such, it may lead to a lower
compression ratio than the original FP-tree. Fortu-
nately, the number of nodes in a UF-tree is bounded
above by the sum of the number of items in all trans-
actions in the probabilistic database of uncertain data.
Moreover, Leung et al.27 also proposed two improve-
ment techniques to reduce the memory consumption.
First, they discretized the existential probability of
each node (e.g., rounded the existential probability
to k decimal places such as k = 2), which reduces

FIGURE 5 | The global UF-tree for capturing the contents of D2

(for mining all frequent patterns).

FIGURE 6 | A UF-tree for capturing the contents of {d}-projected
database for D2 (i.e., contents of only transactions containing the
singleton pattern {d}).

the potentially infinite number of possible existen-
tial probability values to a maximum of 10k possible
values. Second, during the process of mining uncer-
tain data, Leung et al. limited the construction of UF-
trees to only the first two levels (i.e., only constructed
the global UF-tree for the original D and a UF-tree
for each frequent singleton pattern) and enumerated
frequent patterns for higher levels (by traversing the
tree paths and decrementing the occurrence counts).
Figures 5 and 6 show the global UF-tree for D2 (in
Figure 2) and the UF-tree for the frequent singleton
pattern {d}, respectively.

Tree-Based Constrained Mining of
Uncertain Data
While the UF-growth algorithm finds all the frequent
patterns from probabilistic databases of uncertain
data, there are situations in which users are inter-
ested in only some of the frequent patterns. In these
situations, users express their interest in terms of con-
straints. This leads to constrained mining.28–30 Leung
et al.31–33 extended the UF-growth algorithm to mine
uncertain data for frequent patterns that satisfy user-
specified constraints. The two resulting algorithms,
called U-FPS31,32 and U-FIC,33 push the constraints
in the mining process and exploit properties of differ-
ent kinds of constraints (instead of a naı̈ve approach
of first mining all frequent patterns and then prun-
ing all uninteresting or invalid ones). For instance,
U-FPS exploits properties of succinct constraints.34,35

More specifically, by exploiting that ‘all patterns sat-
isfying any succinct and antimonotone (SAM) con-
straint CSAM must comprise only items that individ-
ually satisfy CSAM’, U-FPS stores only these items in
the UF-tree when handling CSAM. Similarly, by ex-
ploiting that ‘all patterns satisfying any succinct but
not antimonotone (SUC) constraint CSUC consist of at
least one item that individually satisfies CSUC and may
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FIGURE 7 | The global UF-tree for capturing the contents of D2

(for mining frequent patterns that satisfy a SUC constraint CSUC).

contain other items’, U-FPS partitions the domain
items into two groups (one group contains items indi-
vidually satisfying CSUC and another group contains
those not) and stores items belonging to each group
separately in the UF-tree. See Figure 7 on how U-
FPS stores the two groups in a UF-tree for D2 shown
in Figure 2. As arranging domain items in decreas-
ing order of their support in the original FP-tree is
a just heuristic, U-FIC exploits properties of convert-
ible constraints36–38 and arranges the domain items
in the UF-tree according to some monotonic order
of attribute values relevant to the constraints. By do-
ing so, U-FIC does not need to perform constraint
checking against any extensions of patterns satisfying
any convertible monotone (COM) constraint CCOM

because all these extensions are guaranteed to satisfy
CCOM. Similarly, U-FIC prunes all the patterns that
violate any convertible antimonotone (CAM) con-
straint CCAM because these patterns and their exten-
sions are guaranteed to violate CCAM. By exploiting
the user-specified constraints, computation of both U-
FPS and U-FIC is proportional to the selectivity of the
constraints.

Tree-Based Stream Mining of Uncertain Data
With advances in technology, streams of uncertain
data can be generated (e.g., by wireless sensors in ap-
plications like environment surveillance). This leads
to stream mining.39–45 Leung and Hao46 extended
the UF-growth algorithm and called the resulting al-
gorithm SUF-growth, which mines frequent patterns
from streams of uncertain data. When using a sliding
window model, SUF-growth captures only the con-
tents of streaming data in batches belonging to the
current window (of size w batches) in a tree struc-
ture called SUF-tree. When the window slides, SUF-
growth removes from the SUF-tree the data belonging
to older batches and adds to the SUF-tree the data
belonging to newer batches. Hence, each tree node
in the SUF-tree consists of three components: (1) an
item, (2) its existential probability, and (3) a list of its

FIGURE 8 | An SUF-tree (with a sliding window of w = 3 batches)
for capturing the contents of D3.

w occurrence counts in the path. By doing so, when
the window slides, the oldest occurrence counts (rep-
resenting the oldest streaming data) are replaced by
the newest occurrence counts (representing the newest
streaming data). Figure 8 shows an SUF-tree captur-
ing the contents of the streaming data in Figure 9.
Such an SUF-tree is constructed in a similar fashion
as the construction of the UF-tree, except that the oc-
currence count is inserted as the newest entry in the
list of occurrence counts.

Hyperlinked-Structure-Based Mining of
Uncertain Data
An alternative to tree-based mining is hyperlinked-
structure-based mining, which also employs a pattern-
growth mining paradigm to avoid generating a large
number of candidates. Instead of constructing many
trees and mining frequent patterns from these trees,
hyperlinked-array-based mining algorithms capture
the contents of the databases in a hyperlinked struc-
ture called H-struct47,48 and mine frequent patterns
from the H-struct.

To mine frequent patterns from uncertain data,
Aggarwal et al.49,50 extended H-mine algorithm47,48

(which mines frequent patterns from traditional trans-
action databases of precise data) and its corre-
sponding H-struct. The resulting algorithm is called
UH-mine. Like the original H-struct, each row in
the extended H-struct represents a transaction ti in the
database. However, unlike the original H-struct, the
extended H-struct maintains the existential probabil-
ity P(x,ti) of item x in ti (in addition to x and its hy-
perlink). See Figure 10 for how an extended H-struct
stores the contents of D2 shown in Figure 2. The UH-
mine algorithm mines frequent patterns by recursively
extending every frequent pattern X and adjusting its
hyperlinks in the extended H-struct. Although the ex-
tended H-struct is not as compact as the UF-tree (used
by the UF-growth algorithm), UH-mine keeps only
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FIGURE 9 | A probabilistic dataset D3 containing streams of uncertain data.

FIGURE 10 | An extended H-struct for capturing the contents of D2.

one extended H-struct and adjusts the hyperlinks in
it (instead of constructing more than one UF-tree as
required by UF-growth). Hence, it drastically reduces
the memory space requirement. Moreover, the algo-
rithm computes the expected support of X on-the-fly
so as to further reduce the space requirement.

Vertical Mining of Uncertain Data
The Apriori-based, tree-based, as well as hyperlinked-
structure-based mining algorithms use horizontal
mining, for which a database can be viewed as a col-
lection of transactions. Each transaction is a set of
items. Alternatively, vertical mining can be applied,
for which each database can be viewed as a collection
of items and their associated lists of transaction IDs
(which are also known as tidLists). Each tidList of
an item x represents all the transactions containing

x. With this vertical representation of databases, the
support of a pattern X can be computed by intersect-
ing the tidLists of items within X.

To mine frequent patterns using the vertical
representation of probabilistic databases containing
uncertain data, Calders et al.51 instantiated ‘possible
worlds’ of the databases and then applied the Eclat
algorithm52 to each of these samples of instantiated
databases. The resulting algorithm is called U-Eclat.
Given a probabilistic database D of uncertain data,
U-Eclat generates an independent random number r
for each item x in a transaction ti. If the existential
probability P(x,ti) of item x in transaction ti is no
less than such a random number r (i.e., P(x,ti) ≥ r),
then x is instantiated and included in a ‘certain’ sam-
pled database, which is then mined using the original
Eclat algorithm. This sampling and instantiation pro-
cess is repeated multiple times, and thus generates
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FIGURE 11 | Some samples of instantiated ‘possible worlds’ of D2.

multiple sampled ‘certain’ databases. The estimated
support of any pattern X is the average support of X
over the multiple sampled databases. Figure 11 shows
three sampled databases for probabilistic database D2

(shown in Figure 2). As a sampling-based algorithm,
U-Eclat gains efficiency but loses accuracy. More in-
stantiations (i.e., more sampled databases) helps im-
prove accuracy, but it comes at the cost of an increase
in execution time.

Discussion
So far, we have reviewed various algorithms for min-
ing uncertain data with probabilistic setting. Table 1
shows some key differences among these algorithms.
In terms of functionality, the U-Apriori, UF-growth,
UH-mine, and U-Eclat algorithms all mine static
databases of uncertain data, whereas SUF-growth
mines dynamic streams of uncertain data. Unlike these
five algorithms that find all frequent patterns, both
U-FPS and U-FIC algorithms find only those frequent
patterns satisfying the user-specified constraints.

In terms of accuracy, all these seven algorithms
except U-Eclat return all the patterns with expected
support (over all ‘possible worlds’) meeting or exceed-
ing the user-specified threshold minsup. In contrast,
U-Eclat returns patterns with estimated support (over
only the sampled ‘possible worlds’) meeting or ex-
ceeding minsup. Hence, U-Eclat may introduce false
positives (when the support is overestimated) or false
negatives (when the support is underestimated). More

instantiations (i.e., more samples) helps improve
accuracy.

In terms of memory consumption, U-Apriori
keeps a list of candidate patterns, whereas the tree-
based and hyperlinked-structure-based algorithms
construct in-memory structures (e.g., UF-trees, ex-
tended H-struct). On the one hand, a UF-tree is more
compact (i.e., requires less space) than the extended
H-struct. On the other hand, UH-mine keeps only
one extended H-struct, whereas tree-based algorithms
usually construct more than one tree. Sizes of the trees
may also vary. For instance, when U-FPS handles a
succinct and antimonotone constraint CSAM, the tree
size depends on the selectivity of CSAM because only
those items that individually satisfy CSAM are stored
in the UF-tree. When SUF-growth handles streams,
the tree size depends on the size of sliding window
(e.g., a window of w batches) because a list of w oc-
currence counts is captured in each node of SUF-trees
(cf. only one occurrence count is captured in each
node of UF-trees). Moreover, when items in prob-
abilistic databases take on a few distinct existential
probability values, the trees contain fewer nodes (cf.
the number of distinct existential probability values
does not affect the size of candidate lists or the ex-
tended H-struct). Furthermore, minsup and density
also affect memory consumption. For instance, for a
sparse dataset called kosarak, different winners (re-
quiring the least space) had been shown for differ-
ent minsup values: U-Apriori when minsup < 0.15%,
UH-mine when 0.15% ≤ minsup < 0.5%, and
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TABLE 1 Comparison of the Four Uncertain Data Mining Algorithms

U-Apriori19,23 UF-growth24,27 UH-mine49,50 U-Eclat51

Horizontal mining
(Apriori-based)

Horizontal mining
(Tree-based)

Horizontal mining
(Hyperlinked structure
based)

Vertical mining

Extension of Apriori20,21 Extension of FP-growth25,26 Extension of H-mine47,48 Application of Eclat52

Candidate generate-and-test
paradigm

Pattern growth paradigm Pattern growth paradigm Equivalence class
transformation paradigm

Push uncertain mining inside
the mining process

Push uncertain mining
inside the mining process

Push uncertain mining
inside the mining process

Apply precise mining on
sampled databases

Keep lists of candidate
patterns

Construct one or more
UF-trees

Construct an extended
H-struct

Obtain samples of
instantiated ‘possible
worlds’

Scan DB k times (where k =
maximum cardinality of
frequent patterns)

Scan DB twice Scan DB twice Scan DB s times (where s =
number of samples)

Return all and only those
patterns with expected
support (i.e., support over
all ‘possible worlds’) ≥
minsup; no false positives
or false negatives

Return all and only those
patterns with expected
support (i.e., support
over all ‘possible
worlds’) ≥ minsup; no
false positives or false
negatives

Return all and only those
patterns with expected
support (i.e., support
over all ‘possible
worlds’) ≥ minsup; no
false positives or false
negatives

Return patterns with
estimated support (i.e.,
average support over only
sampled ‘possible
worlds’) ≥ minsup; may
introduce false positives
and/or false negatives

#distinct existential
probability values do not
affect the size of
candidate pattern lists

Fewer distinct existential
probability values lead to
smaller UF-trees

#distinct existential
probability values do not
affect the size of the
extended H-struct

#distinct existential
probability values do not
affect the number of
samples

Has been extended for
constrained mining (e.g.,
U-FPS31,32 and U-FIC33

algorithms) and stream
mining (e.g., SUF-growth
algorithm46)

UF-growth when 0.5% ≤ minsup; for a dense dataset
called connect4, UH-mine was the winner for 0.2% ≤
minsup < 0.8%.49,50

In terms of performance, most algorithms per-
form well when items in probabilistic databases take
on low existential probability values because these
databases do not lead to long frequent patterns. When
items in probabilistic databases take on high existen-
tial probability values, more candidates are generated-
and-tested by U-Apriori, more and bigger UF-trees
are constructed by UF-growth, more hyperlinks are
adjusted by UH-mine, and more estimated supports
are computed by U-Eclat. Hence, longer runtimes are
required. Similarly, when minsup decreases, more fre-
quent patterns are returned and longer runtimes are
also required. The density of datasets also affects run-
times. For instance, when databases are dense (e.g.,
connect4), UF-trees lead to higher compression ra-
tio and thus require less time to traverse than sparse

databases (e.g., kosarak). Some experimental results
showed the following: (1) databases with a low num-
ber of distinct existential probabilities led to smaller
UF-trees and shorter runtime for UF-growth (than U-
Apriori)24,27; (2) U-Apriori took shorter runtime than
UH-mine when minsup was low (e.g., minsup < 0.3%
for kosarak, minsup < 0.6% for connect4) but vice
versa when minsup was high49,50; (3) depending on
the number of samples, U-Eclat could take longer or
shorter to run than U-Apriori.51

PROBABILISTIC FREQUENT PATTERN
MINING OF UNCERTAIN DATA

The aforementioned algorithms—namely, the U-
Apriori, UF-growth, U-FPS, U-FIC, SUF-growth,
UH-mine, and U-Eclat algorithms—all mine uncer-
tain data for frequent patterns. These are patterns
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FIGURE 12 | Frequent patterns mined from D2 based on expected support and probabilistic support.

with expected support meeting or exceeding the
user-specified threshold minsup. Note that expected
support of a pattern X provides users with fre-
quency information of X summarized over all ‘pos-
sible worlds’, but it does not reveal the confidence
on the likelihood of X being frequent (i.e., percent-
age of ‘possible worlds’ in which X is frequent).
However, knowing the confidence can be helpful in
some applications. Hence, in recent years, there is
also algorithmic development on extending the no-
tion of frequent patterns based on expected support
to useful patterns—such as probabilistic heavy hit-
ters, probabilistic frequent patterns, and probabilistic
association rules—based on probabilistic support as
reviewed below. Figure 12 illustrates the differences
between expected support and probabilistic support.

Mining Probabilistic Heavy Hitters
The expected support of an item x (i.e., a singleton
pattern x) provides users with an estimate of the fre-
quency of x. However, in some applications, it is also
helpful to know the confidence about the likelihood of
x being frequent in the uncertain data. Hence, Zhang
et al.53 formalized the notion of probabilistic heavy
hitters (i.e., probabilistic frequent items, which are
also known as probabilistic frequent singleton pat-
terns) following the ‘possible world’ semantics54 for
probabilistic databases of uncertain data. Given (1)
a probabilistic database D of uncertain data, (2) a
user-specified support threshold ϕ, and (3) a user-

specified frequentness probability threshold τ , the re-
search problem of mining probabilistic heavy hitters
from uncertain data is to find all (ϕ,τ )-probabilistic
heavy hitters (PHHs). An item x is a (ϕ,τ )-PHH if
P(sup(x,Wj) > ϕ|Wj|) > τ (where sup(x,Wj) is the sup-
port of x in a random possible world Wj and |Wj| is the
number of items in Wj), which represents the proba-
bility of x being frequent exceeds the user expectation.
Equivalently, given (1) D, (2) a user-specified support
threshold minsup, (3) a user-specified frequentness
probability threshold minProb, an item x is a PHH if
x is highly likely to be frequent, i.e., the probability
that x occurs in at least minsup transactions of D is no
less than minProb: P(sup(x) ≥ minsup) > minProb.

To find these probabilistic heavy hitters from
probabilistic databases of uncertain data (where items
in each transaction are mutually inclusive) such as D4

shown in Figure 13, Zhang et al. proposed two al-
gorithms: an exact algorithm and an approximate al-
gorithm. The exact algorithm uses dynamic program-
ming to mine offline uncertain data for PHHs. Such
an algorithm runs in polynomial time when there is
sufficient memory. When the memory is limited, the
approximate algorithm can be applied (which uses
sampling techniques) to mine streams of uncertain
data for approximate PHHs.

Mining Probabilistic Frequent Patterns
The expected support of a pattern X (that consists of
one or more items) provides users with an estimate
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FIGURE 13 | A probabilistic database D4 of uncertain data, in which items in each transaction are mutually exclusive.

of the frequency of X, but it does not take into ac-
count the variance or the probability distribution of
the support of X. In some applications, knowing the
confidence on which pattern is highly likely to be
frequent helps interpreting patterns mined from un-
certain data. Hence, Bernecker et al.55 extended the
notion of frequent patterns and introduced the re-
search problem of mining probabilistic frequent pat-
terns (p-FPs). Given (1) a probabilistic database D of
uncertain data, (2) a user-specified support threshold
minsup, (3) a user-specified frequentness probability
threshold minProb, the research problem of mining
probabilistic frequent patterns from uncertain data is
to find (1) all patterns that are highly likely to be fre-
quent and (2) their support. Here, the support sup(X)
of any pattern X is defined by a discrete probability
distribution function (pdf) or probability mass func-
tion (pmf). A pattern X is highly likely to be fre-
quent (i.e., X is a probabilistic frequent pattern) if
and only if its frequentness probability is no less than
minProb, i.e., P(sup(X) ≥ minsup) ≥ minProb. The
frequentness probability of X is the probability that
X occurs in at least minsup transactions of D. Note
that frequentness probability is antimonotonic: All
subsets of a p-FP are also p-FPs. Equivalently, if X
is not a p-FP, then none of its supersets is a p-FP,
and thus all of them can be pruned. Moreover, when
minsup increases, frequentness probabilities of p-FPs
decrease.

Bernecker et al.55 used a dynamic computation
technique in computing probability function fX(k) =
P(sup(X) = k), which returns the probability that
the support of a pattern X equals to k. Summing
the values of such a probability function fX(k) over
all k ≥ minsup gives the frequentness probability of
X because

∑|D|
k≥minsup fX (k) = ∑|D|

k≥minsup P(sup(X) =
k) = P(sup(X) ≥ minsup). Any pattern X having the
sum no less than minProb becomes a probabilistic
frequent pattern.

Sun et al.56 proposed the top-down inheritance
of support probability function (TODIS) algorithm,
which runs in conjunction with a divide-and-conquer
(DC) approach, to mine probabilistic frequent pat-
terns from uncertain data by extracting patterns
that are supersets of p-FPs and deriving p-FPs in
a top–down manner (i.e., descending cardinality of
p-FPs).

Mining Probabilistic Association Rules
Along the direction of extending the notion of fre-
quent patterns to the notion of probabilistic frequent
patterns, Sun et al.56 introduced the research prob-
lem of mining probabilistic association rules (p-ARs).
Given (1) a probabilistic database D of uncertain
data, (2) a user-specified support threshold minsup,
(3) a user-specified confidence threshold minconf, and
(4) a user-specified frequentness probability threshold
minProb, the research problem of mining probabilis-
tic association rules from uncertain data is to find all
rules that are highly likely to be interesting. Here, the
supports of probabilistic frequent patterns A and C in
the antecedent and the consequent of an association
rule of the form ‘A → C’ are defined by discrete pdfs
or pmfs. A rule ‘A → C’, where probabilistic frequent
patterns A and C are disjoint (i.e., A ∩ C Ø), is a
probabilistic association rule (i.e., ‘A → C’ is highly
likely to be interesting) if and only if its probability is
no less than minProb, i.e.,

P(A → C) = P(sup(A → C) ≥ minsup AND

confidence(A → C) ≥ minconf )

= P(sup(A∪ C) ≥ minsup AND

sup(A∪ C)/sup(A) ≥ minconf )

≥ minProb.

To check whether ‘A → C’ is a p-AR, Sun et al.
computed the probability P(A → C) and compared
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TABLE 2 Comparison of Uncertain Data Mining

Data Source Additional Input Parameters Output Results

Frequent pattern
mining19,23,24,27,49−51

Probabilistic database D of
uncertain data

minsup Frequent patterns, i.e., patterns with
expected support expSup(X) ≥ minsup

Constrained mining31−33 Probabilistic database D of
uncertain data

minsup and constraints (e.g.,
CSAM, CSUC, CCOM, CCAM)

Frequent patterns satisfying constraints

Stream mining46 Stream of uncertain data minsup Frequent patterns
Probabilistic heavy hitter

mining53
Probabilistic database D of

uncertain data
minsup and minProb Probabilistic heavy hitter (PHH), i.e.,

items with P(sup(x) ≥ minsup) >

minProb
Probabilistic frequent

pattern mining55,56
Probabilistic database D of

uncertain data
minsup and minProb Probabilistic frequent patterns (p-FPs),

i.e., patterns with P(sup(X) ≥
minsup) > minProb

Probabilistic association
rule mining56

Probabilistic database D of
uncertain data

minsup, minconf, and
minProb

Probabilistic association rules, i.e.,
patterns with P(sup(A → C) ≥ minsup
AND conf(A → C) ≥ minconf) >

minProb

it against minProb. If the probability is no less than
minProb, such a p-AR is returned to users. To speed
up the mining process, the antimonotonic property
of p-AR is exploited. Specifically, given three prob-
abilistic frequent patterns X1, X2 and X3, such that
X1 ⊂ X2 ⊂ X3, if ‘(X3– X2) → X2’ is a p-AR, then
‘(X3– X1) → X1’ is also a p-AR. Equivalently, if ‘(X3–
X1) → X1’ is not a p-AR, then for every superset S
of X1 (i.e., X1 ⊂ S ⊂ X3), ‘(X3– S) → S’ is also not
a p-AR. Hence, all ARs having superset of X1 as the
consequent can be pruned.

CONCLUSION

Association rule mining is an important DMKD task.
It consists of the mining of frequent patterns from
data and the formation of association rules using
the mined frequent patterns. As the mining of fre-
quent patterns is usually more computationally in-
tensive than the formation of association rule, it
has drawn attention of many researchers over the
past two decades. The research problem of frequent
pattern mining was originally proposed to analyze
shopping market basket transaction databases con-
taining precise data, in which the contents of trans-
actions in the databases are known. Such a re-
search problem also plays important role in other
DMKD tasks, such as the mining of interesting
or unexpected patterns, sequential mining, associa-
tive classification, as well as outlier detection, in
various real-life applications. Recently, researchers
have paid more attention to the mining of frequent

patterns from probabilistic databases of uncertain
data.

In this paper, we reviewed recent algorithmic
development on mining frequent patterns from uncer-
tain data with probabilistic setting. We studied (1) fre-
quent pattern mining of uncertain data and (2) prob-
abilistic pattern mining of uncertain data. See Table 2
for a brief summary. To mine frequent patterns from
uncertain data, researchers have proposed Apriori-
based, tree-based, hyperlinked-structure-based, and
vertical frequent pattern mining algorithms. Among
them, the U-Apriori algorithm generates candidate
patterns and tests if their expected support meets
or exceeds a user-specified threshold. To avoid such
a candidate generate-and-test approach, both UF-
growth and UH-mine algorithms use a pattern growth
mining approach. The UF-growth algorithm con-
structs an UF-tree and mines frequent patterns from
it; UH-mine keeps an extended H-struct and mines
frequent patterns from it. Instead of applying horizon-
tal mining, U-Eclat uses vertical mining. It vertically
mines frequent patterns from multiple instantiated
sampled possible worlds of uncertain data. Moreover,
researchers have also extended the UF-growth algo-
rithm for constrained mining and stream mining. The
resulting U-FPS and U-FIC algorithms exploit prop-
erties of the user-specified succinct constraints and
convertible constraints, respectively, to find from un-
certain data only those frequent patterns satisfying the
constraints. The SUF-growth algorithm uses a sliding
window to all frequent patterns from an SUF-tree,
which captures the contents of current few batches
of streaming uncertain data. Recently, researchers
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further extended the initial notion of mining frequent
patterns from uncertain data based on the expected
support of patterns to the notions of mining useful
probabilistic patterns such as probabilistic heavy hit-
ters (i.e., probabilistic frequent items), probabilistic
frequent patterns, as well as probabilistic association
rules, based on the confidence on the likelihood of the
patterns being useful. The corresponding algorithms

have been proposed to mine uncertain data for items
that are highly likely to be frequent, multi-item pat-
terns that are highly likely to be frequent, as well as
association rules that are highly likely to be interest-
ing. Future research directions include mining uncer-
tain data for frequent sequences and frequent graphs
as well as mining uncertain data in applications areas
like bioinformatics.
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