Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

On the fractional signals and systems

Richard Magin^a, Manuel D. Ortigueira^{b,*, *}, Igor Podlubny^c, Juan Trujillo^d

^a University of Illinois at Chicago, Bioengineering Department, 851 South Morgan, Room 212, Chicago, IL 60607-7052, USA

^b UNINOVA and Department of Electrical Engineering, Universidade Nova de Lisboa Campus da FCT da UNL, Quinta da Torre,

2825-114 Monte da Caparica, Portugal

^c BERG Faculty, Technical University of Kosice, B. Nemcovej 3, 04200 Kosice, Slovak Republic

^d University of La Laguna, Departamento de Análisis Matemático, 38004 La Laguna, Tenerife, Spain

ARTICLE INFO

Available online 12 August 2010

Keywords: Fractional derivative Grunwald-Letnikov derivative Fractional linear systems Riemann-Liouville Caputo

ABSTRACT

A look into fractional calculus and its applications from the signal processing point of view is done in this paper. A coherent approach to the fractional derivative is presented, leading to notions that are not only compatible with the classic but also constitute a true generalization. This means that the classic are recovered when the fractional domain is left. This happens in particular with the impulse response and transfer function. An interesting feature of the systems is the causality that the fractional derivative imposes. The main properties of the derivatives and their representations are presented. A brief and general study of the fractional linear systems is done, by showing how to compute the impulse, step and frequency responses, how to test the stability and how to insert the initial conditions. The practical realization problem is focussed and it is shown how to perform the input–ouput computations. Some biomedical applications are described.

© 2010 Elsevier B.V. All rights reserved.

Contents

1.	Intro	Introduction						
2.	Fractional derivative							
	2.1.	Definit						
	2.2.	Existence						
	2.3.							
		2.3.1.	Linearity					
		2.3.2.	Causality					
		2.3.3.	Scale change.					
		2.3.4.	Time reversal					
		235	Time shift	353				
		2.3.6.	Derivative of a product					
	2.4	Group structure of the fractional derivative		353				
		2.4.1	Additivity and commutativity of the orders	353				
		242	Associativity	353				
		2.4.2.	Neutral element	353				
		2.4.5.	neutral clement					

Review

^{*} Corresponding author.

E-mail addresses: rmagin@uic.edu (R. Magin), mdo@fct.unl.pt (M.D. Ortigueira), igor.podlubny@tuke.sk (I. Podlubny), jtrujill@ullmat.es (J. Trujillo).

^{0165-1684/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.sigpro.2010.08.003

		2.4.4. Inverse element					
	2.5.	Simple examples					
		2.5.1.	The exponential	.353			
		2.5.2.	The constant function	354			
		2.5.3.	The step and impulse functions	354			
		2.5.4.	The power function	354			
	2.6.	. Integral representations					
	2.7.	7. Riemann–Liouville and Caputo derivatives					
	2.8.	transform of the fractional derivative and the frequency response	355				
	2.9.	Modelin	ng, identification and implementation	355			
		2.9.1.	Fractional devices	356			
		2.9.2.	Trans-finite Circuits	356			
		2.9.3.	Band-limited approximations	356			
3.	Fractio	Fractional linear systems					
	3.1.	Transfer	· function and frequency response	356			
	3.2.	From the transfer function to the impulse response					
	3.3.	The stat	bility problem	357			
	3.4.	The init	ial conditions	358			
	3.5.	Discrete-time implementations					
4.	Input-output numerical computations in general nonlinear systems.						
	4.1.	Diethelr	n's method based on quadrature	360			
	4.2.	Lubich's	difference methods	360			
	4.3.	Bashforth–Moulton method	361				
	4.4.	Adomia	n's decomposition method (ADM)	361			
	4.5.	Homoto	py-perturbation method (HPM)	362			
5.	Biomedical applications						
	5.1.	Some co	onsiderations concerning fractional order models	363			
	5.2.	Fraction	al dynamics model	363			
	5.3.	Fraction	al impedance model	364			
6.	Fractio	ractional Brownian motion					
7.	Conclusions						
	Ackno	wledgem	ients	368			
	References						
	g	371					

1. Introduction

Fractional calculus has been attracting the attention of scientists and engineers from long time ago. During this period the main applications involved the use of the so called fractional integral operators to obtain explicit solutions of regular models. However, most of the mentioned development was done by mathematicians [10,18,22-24,26-28,30]. Since the nineties of the last century fractional calculus has been rediscovered and applied in an increasing number of fields, namely in several areas of physics [19,20,25,33,50, 80-83,85,86,116-119,133,162,167,168], control engineering [25,29,36,37,53,107,114,115,132,148,151,171-176] and signal processing [38,39,82,83,121,148,160,169]. A complete theory of the linear systems of fractional differential equation with constant or variable coefficients can be found in the literature [18,20,22,28,30]. On the other hand, we must remark that in 80% of the papers that appear in the scientific literature, in the framework of the fractional calculus and their applications, the corresponding authors use different fractional differential operators but at the end they contrast their model using a numerical approach based in a finite number of terms of the series that define the known Grünwald-Letnikov derivative [30]. Then they obtain excellent results. Therefore we can conclude that a generalization of the linear systems of differential equation is very useful to be used in modeling such a process [28,135]. Later they showed that the same results could be obtained using as starting point the Grünwald–Letnikov derivative [140]. This theory was updated recently [146]. With this approach a linear system theory can be formulated in a fashion very similar to the classic, being effectively a generalization in the sense of obtaining the classic results when the order becomes integer. This theory will be revised here, taking into account recent developments. We will consider the associated problems: establishment of the initial conditions and the stability of the systems. A self-contained theory suitable for dealing with problems like filtering, modeling, and realization is intended to be present here.

As referred to above the number of applications has been increasing. One of the areas where this can be verified is the biomedical [20,45,46,67,87]. Here we describe some of the recent applications in this field. The now classic fractional Brownian motion (fBm) modeling is also considered, as an application of fractional calculus [21,104,120,144]. We define a fractional noise that is obtained through a fractional derivative of white noise. The fBm is an integral of the fractional noise.

The paper is organized as follows. In Section 2, we present the Grünwald–Letnikov fractional derivative and its main properties and relations with other fractional derivatives like the so called Riemann–Liouville derivative

and the Caputo derivative. Some examples of derivative computations are shown. Practical implementations and simulation are also considered. The introduction of the fractional linear systems is done in Section 3. We define transfer function and impulse response and show how to compute it. Stability and establishment of correct initial conditions are also studied. The continuous to discrete conversion is considered in Section 3.5 and the general input/output computations will be studied in section 4. In Section 5 we describe some applications in biomedical engineering. To finish, we study the fractional Brownian motion and present some conclusions.

Remarks: 1—In this paper we deal with a multivalued expression z^{α} . As is well known, to define a function we have to fix a branch cut line and choose a branch (Riemann surface). It is a common procedure to choose the negative real half-axis as branch cut line. Unless stated to the contrary, in what follows we will assume that we adopt the principal branch and assume that the obtained function is continuous above the branch cut line. With this, we will write $(-1)^{\alpha} = e^{j\alpha\pi}$. 2—Unless otherwise stated, we will assume to be in the context of the generalized functions (distributions). We always assume that they are either of exponential order or tempered distributions.

2. Fractional derivative

2.1. Definitions

Similarly to the classic case, the known Grünwald-Letnikov definition of fractional differential equation is introduced. We here introduce the following modification of the mentioned fractional derivative by the limit of the fractional incremental ratio [146]:

$$D_{\theta}^{\alpha}f(z) = e^{-j\theta\alpha} \lim_{|h| \to 0} \frac{\sum_{k=0}^{\infty} (-1)^k \binom{\alpha}{k} f(z-kh)}{|h|^{\alpha}}$$
(1)

where $\begin{pmatrix} \alpha \\ k \end{pmatrix}$ stands for the binomial coefficients and $h = |h|e^{i\theta}$ is a complex number, with $\theta \in (-\pi,\pi]$. The above definition is valid for any order, real or complex [70]. In order to understand and give an interpretation to the above formula, assume that *z* is time and that *h* is real, θ =0 or θ = π . If θ =0, only the present and past values are being used, while, if $\theta = \pi$, only the present and future values are used. This means that if we look at (1) as a linear system, the first case is causal, while the second is anti-causal¹ [140].

In general, if θ =0, we call (1) the forward Grünwald– Letnikov derivative:

$$D_f^{\alpha}f(z) = \lim_{h \to 0+} \frac{\sum_{k=0}^{\infty} (-1)^k \binom{\alpha}{k} f(z-kh)}{h^{\alpha}}$$
(2)

If $\theta = \pi$, we put h = -|h| to obtain the backward Grünwald-Letnikov derivative:

$$D_b^{\alpha}f(z) = \lim_{h \to 0+} e^{-j\pi\alpha} \frac{\sum_{k=0}^{\infty} (-1)^k \binom{\alpha}{k} f(z+kh)}{h^{\alpha}}$$
(3)

It is important to enhance an interesting fact—when α is a positive integer we obtain the classic expressions for the integer order derivatives.

2.2. Existence

It is not a simple task to formulate the weakest conditions that ensure the existence of the fractional derivatives (1)–(3), although we can give some necessary conditions for their existence. To study the existence conditions for the fractional derivatives we must care about the behavior of the function along the half straight line $z \pm nh$ with $n \in Z^+$. If the function is zero for $\operatorname{Re}(z) <$ $a \in R$ (correspondingly $\operatorname{Re}(z) > a$) the forward (backward) derivative exists at every finite point of f(z). In the general case, we must have in mind the behavior of the binomial coefficients. They satisfy

$$\left| \begin{pmatrix} \alpha \\ k \end{pmatrix} \right| \le \frac{A}{k^{\alpha+1}}$$

meaning that $f(z)(A/k^{\alpha+1})$ must decrease, at least as $A/k^{|\alpha|+1}$ when k goes to infinite. For example considering the forward case, if $\alpha > 0$, it is enough that f(z) be bounded in the left half plane, but if $\alpha < 0$, f(z) must decrease to zero to obtain a convergent series. In particular, this suggests that $\operatorname{Re}(h) > 0$ and $\operatorname{Re}(h) < 0$ should be adopted for right and left functions,² respectively in agreement with Liouville reasoning [10]. In particular, they should be used for the functions such that f(z)=0 for $\operatorname{Re}(z) < 0$ and f(z)=0 for Re(z) > 0, respectively.³ This is very interesting, since we conclude that the existence of the fractional derivative depends only on what happens in one half complex plane, left or right. Consider $f(z)=z^{\beta}$, with $\beta \in R$ with a suitable branch cut line. If $\beta > \alpha$, we conclude immediately that $D^{\alpha}[z^{\beta}]$ defined for every $z \in C$ does not exist, unless α is a positive integer, because the summation in (1) is divergent.

2.3. Main properties

We are going to present the main properties of the derivative presented above.

2.3.1. Linearity

The linearity property of the fractional derivative is evident from the above formulae. In fact, we have

$$D^{\alpha}_{\theta}[f(z) + g(z)] = D^{\alpha}_{\theta}f(z) + D^{\alpha}_{\theta}g(z)$$
(4)

352

² We say that f(z) is a right [left] function if $f(-\infty)=0[f(+\infty)=0]$.

³ By breach of language we call them causal and anti-causal functions borrowing the system terminology.

¹ We will return to this subject later.

2.3.2. Causality

The causality property was already referred to above and can also be obtained easily. We only have to use (2), or (3). Assume that $t=z \in R$ and that f(t)=0, for t < 0; we conclude immediately from (2) that $D_f^{\alpha}f(t) = 0$ for t < 0. For the anti-causal case, the situation is similar.

2.3.3. Scale change

Let f(z)=g(az), where $a=|a|e^{j\varphi}$ is a constant. From (1), we have

$$D_{\theta}^{\alpha}g(az) = |a|^{\alpha} e^{-j(\theta)\alpha} \lim_{|h| \to 0} \frac{\sum_{k=0}^{\infty} (-1)^{k} \binom{\alpha}{k} g(az-kah)}{|ah|^{\alpha}}$$
$$= |a|^{\alpha} D_{\theta}^{\alpha}g(\tau)|_{\tau = az}$$
(5)

2.3.4. Time reversal

If f(z)=g(-z), we obtain from the property we just deduced that

$$D_{\theta}^{\alpha}g(-z) = (-1)^{\alpha}\lim_{h \to 0} \frac{\sum_{k=0}^{\infty} {\alpha \choose k} g(-z+kah)}{\left|-h\right|^{\alpha}} = (-1)^{\alpha} D_{\theta}^{\alpha}g(\tau)\big|_{\tau=-z}$$
(6)

in agreement with (2) and (3). This means that the time reversal converts the forward derivative into the backward and vice versa.

2.3.5. Time shift

The derivative operator is shift invariant:

$$D^{\alpha}_{\theta}g(z-a) = D^{\alpha}_{\theta}g(\tau)\big|_{\tau = z-a}$$
⁽⁷⁾

2.3.6. Derivative of a product

We are going to compute the derivative of the product of two functions: $f(t) = \varphi(t)\psi(t)$ assumed to be defined for $t \in R$, for simplicity, although the result we will obtain is valid for $t \in C$, except over an eventual branch cut line. Assume that one of them is analytic in a given region. We obtain the derivative of the product [18,22–28,30]

$$D^{\alpha}[\varphi(t)\psi(t)] = \sum_{n=0}^{\infty} {\alpha \choose n} \varphi^{(n)}(t)\psi^{(\alpha-n)}(t)$$
(8)

which is the generalized Leibniz rule. This rule gives us a curious result when α is a negative integer and $\psi(t)=1$. For example, if $\alpha = -1$, we obtain

$$D^{-1}[\varphi(t)] = \sum_{n=0}^{\infty} (-1)^n \varphi^{(n)}(t) \frac{t^{n+1}}{(n+1)!}$$

similar to the McLaurin series and can be useful in computing the primitive of some functions.

2.4. Group structure of the fractional derivative

2.4.1. Additivity and commutativity of the orders

We are going to apply (1) twice for two orders. We have [138]

$$D^{\alpha}_{\theta}[D^{\beta}_{\theta}f(t)] = D^{\beta}_{\theta}[D^{\alpha}_{\theta}f(t)] = D^{\alpha+\beta}_{\theta}f(t)$$
(9)

2.4.2. Associativity

This property comes easily from the above results. In fact, it is easy to show that

$$D^{\gamma}_{\theta}[D^{\alpha+\beta}_{\theta}f(t)] = D^{\gamma+\alpha+\beta}_{\theta}f(t) = D^{\alpha+\beta+\gamma}_{\theta}f(t) = D^{\alpha}_{\theta}[D^{\beta+\gamma}_{\theta}f(t)]$$
(10)

2.4.3. *Neutral element* If we put $\beta = -\alpha$ in (10) we obtain

$$D^{\alpha}_{\theta}[D^{-\alpha}_{\theta}f(t)] = D^{0}_{\theta}f(t) = f(t)$$
(11)

or again by (10)

$$D_{\theta}^{-\alpha}[D_{\theta}^{\alpha}f(t)] = D_{\theta}^{0}f(t) = f(t)$$
(12)

This is very important because it states the existence of inverse.

2.4.4. Inverse element

From the last result we conclude that there is always an inverse element: for every α order derivative, there is always a $-\alpha$ order derivative. This seems to be contradictory with our knowledge from the classic calculus, where the *N*th order derivative has *N* primitives. To understand the situation we must see that the inverse is given by (1) and that it does not have any primitivation constant. This forces us to be consistent and careful with the used language. So, when α is positive we will speak of the operator as a derivative. When α is negative, we will use the term anti-derivative or primitive (not integral). This clarifies the situation.

2.5. Simple examples

2.5.1. The exponential

Let us apply the above definitions to the function $f(z)=e^{sz}$. Convergence of (1) is dependent on *s* and of *h*. Let h > 0; the series in (2) becomes

$$e^{sz}\sum_{k=1}^{\infty}(-1)^k \binom{\theta}{k}e^{-ksh}$$

The binomial series

$$\sum_{k=1}^{\infty} (-1)^k \binom{\theta}{k} e^{-ksh}$$

is convergent to the main branch of

$$F(s) = (1 - e^{-sh})$$

provided $|e^{-sh}| < 1$, that is if Re(s) > 0. This means that the branch cut line of F(s) must be in the left hand half of the complex plane. Then

$$D_{f}^{\alpha}f(z) = \lim_{n \to 0+} \frac{(1 - e^{-sh})^{\alpha}}{h^{\alpha}} = \lim_{h \to 0+} \left(\frac{1 - e^{-sh}}{h}\right)^{\alpha} e^{sz} = |s|^{\alpha} e^{j\theta\alpha} e^{sz}$$
(13)

iff $\theta \in (-\pi/2, \pi/2)$, which corresponds to working with the principal branch of $(.)^{\alpha}$ and assuming a branch cut line in the left hand complex half plane.

Now, consider the series in (3) with $f(z)=e^{sz}$. Proceeding as above, we obtain another binomial series:

$$\sum_{k=1}^{\infty} (-1)^k \binom{\alpha}{k} e^{ksh}$$

that is convergent to the main branch of

$$F(s) = (1 - e^{sh})^{\alpha}$$

provided $\operatorname{Re}(s) < 0$. This means that the branch cut line of F(s) must be in the right hand half complex plane. We obtain directly for $f(z)=e^{sz}$

$$D_b^{\alpha} f(z) = \left| s \right|^{\alpha} e^{j\theta\alpha} e^{sz}$$

with $\theta \in (3\pi/2, \pi/2)$, and

.

$$D_b^{\alpha}f(z) = |s|^{\alpha}e^{j\theta\alpha}e^{sz}$$

valid iff $\theta \in (\pi/2, 3\pi/2)$. These results can be used to generalize a well known property of the Laplace transform. If we return back to Eq. (2) and apply the bilateral Laplace transform

$$F(s) = \int_{-\infty}^{+\infty} f(t)e^{-st} dt$$
(14)

to both sides, we conclude that

$$L[D_f^{\alpha}f(t)] = s^{\alpha}F(s) \quad \text{for } \operatorname{Re}(s) > 0 \tag{15}$$

where for s^{α} we assume the principal branch and a cut line in the left half plane. With Eq. (3) we obtain

$$L[D_h^{\alpha}f(t)] = s^{\alpha}F(s) \quad \text{for } \operatorname{Re}(s) < 0 \tag{16}$$

where now the branch cut line is in the right half plane. These results have a system interpretation: there are two systems (differintegrators) with the same expression for the transfer function $H(s)=s^{\alpha}$, but different regions of convergence. One is causal and the other is anti-causal. Later we will compute the corresponding impulse responses. The $s=j\omega$ case will be considered later also.

2.5.2. The constant function

We are going to compute the fractional derivative of the constant function. Let f(z)=1 for every $z \in C$ and $\alpha \in R \setminus Z^-$. We have

$$D_{f}^{\alpha}f(z) = \lim_{h \to 0} \frac{\sum_{k=0}^{\infty} (-1)^{k} \binom{\alpha}{k}}{h^{\alpha}} = \lim_{h \to 0} \frac{(1-1)^{\alpha}}{h^{\alpha}} = \begin{cases} 0, & \alpha > 0\\ \infty, & \alpha < 0 \end{cases}$$
(17)

The α order fractional derivative of f(z) is the null function. If $\alpha < 0$, Eq. (17) leads to infinity. So there is no fractional "primitive" of a constant.

2.5.3. The step and impulse functions

Let u(t) be the Heaviside unit step function. It can be shown, with some work, that [22]

$$D_f^{\alpha}u(t) = \frac{t^{-\alpha}}{\Gamma(-\alpha+1)}u(t)$$
(18)

where u(t) is the Heaviside unit step. Relation (18) allows us to obtain the interesting result

$$D_f^{\alpha}\delta(t) = \frac{t^{(-(\alpha)-1)}}{\Gamma - \alpha} u(t)$$
(19)

valid for non-positive integer orders. In terms of linear system theory, (15) tells us that the fractional forward differintegrator (a current terminology) is a linear system with impulse response equal to the right hand side in (19). We could use (3) and obtain the impulse response of the anti-causal differintegrator by starting with u(-t). The procedure is similar and the result is [135]

$$D_b^{\alpha}\delta(t) = -\frac{t^{(-\alpha-1)}}{\Gamma-\alpha}u(-t)$$
⁽²⁰⁾

The impulse responses (19) and (20) of the causal and anti-causal differintegrators have s^{α} as transfer functions with regions of convergence Re(s) > 0 and Re(s) < 0, respectively.

2.5.4. The power function

The general power function does not have fractional derivative as is easy to observe from (1), because it increases without bound as t goes to $\pm \infty$. This does not happen with the causal (or anti-causal power). The results obtained in the above closed section allow us to obtain the derivative of $t^{\beta}u(t)$. In the sequence of computations in the following we shall be assuming that the exponents in the powers are not negative integers. Using (18) again, we obtain

$$D_f^{\alpha} t^{\beta} u(t) = \frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)} t^{\beta-\alpha} u(t)$$
(21)

which generalizes the usual formula for $\beta \in \mathbb{Z}$ and $\beta \notin \mathbb{N}^-$. Eq. (21) can be considered valid for $\beta - \alpha = -1$ provided that we write

$$D_f^{\alpha} \frac{t^{\alpha-1}u(t)}{\Gamma(\alpha)} = \delta(t)$$
(22)

To see that this is correct, we use (18) to obtain

$$D_f^{\alpha} \frac{t^{\alpha-1}u(t)}{\Gamma(\alpha)} = D_f^{\alpha} D_f^{-\alpha+1} u(t) = D_f^1 u(t) = \delta(t)$$

2.6. Integral representations

Above we introduced the elemental system base for fractional system building—the differintegrator. In (19) and (20) we presented the impulse responses corresponding to the forward and backward cases. This means that the output of the differintegrator is given by the convolution of the input with (15) or (19). This leads to integral representations of fractional derivatives (called Liouville derivatives [10]):

$$D_f^{\alpha} f(t) = \frac{1}{\Gamma(-\alpha)} \int_0^\infty f(t-\tau) \tau^{-\alpha-1} d\tau$$
(23)

valid for functions with the Laplace Transform converging in a region that includes the right hand side of the complex plane. As the convolution is commutative we can also write:

$$D_f^{\alpha}f(t) = \frac{1}{\Gamma(-\alpha)} \int_{-\infty}^t f(\tau)(t-\tau)^{-\alpha-1} d\tau$$
(24)

Similarly, we have an anti-causal (backward) derivative valid for functions with Laplace Transform converging in a region that includes the left hand side of the complex plane. It is the backward Liouville derivative obtained from (16) and (20):

$$D_b^{\alpha} f(t) = \frac{(-1)^{-\alpha}}{\Gamma(-\alpha)} \int_0^{\infty} f(t+\tau) \tau^{-\alpha-1} d\tau$$
(25)

These definitions were introduced both exactly with this format by Liouville [10]. Unhappily in the common literature the factor $(-1)^{-\alpha}$ in (25) has been removed and is called the Weyl derivative [22,30]. Although the above results were obtained for functions with Laplace transform their validity can be extended to other functions [18,30].

2.7. Riemann-Liouville and Caputo derivatives

The Riemann–Liouville and Caputo derivatives are multistep derivatives that use several integer order derivatives and a fractional integration [18,20,22, 24–28,30]. To present them, we use (19) and (20) to obtain the following distributions [139]:

$$\delta_{\pm}^{(-\nu)}(t) = \pm \frac{t^{\nu-1}}{\Gamma(\nu)} u(\pm t), \quad 0 < \nu < 1$$
(26)

and

$$\delta_{\pm}^{(n)}(t) \begin{cases} \pm \frac{t^{-n-1}}{\Gamma(v)} u(\pm t) & \text{for } n < 0\\ \delta^{(n)}(t) & \text{for } n \ge 0 \end{cases}$$

$$(27)$$

where $n \in Z$. With them we define two differintegrations usually classified as left and right sided, respectively:

$$f_l^{(\alpha)}(t) = [f(t)u(t-a)] * \delta_+^{(n)}(t) * \delta_+^{(-\nu)}(t)$$
(28)

$$f_r^{(\alpha)}(t) = [f(t)u(b-t)] * \delta_+^{(n)}(-t) * \delta_+^{(-\nu)}(-t)$$
(29)

with $a < b \in \mathbf{R}$. The orders are given by $\alpha = n - v$, *n* being the least integer greater than α and 0 < v < 1. In particular, if α is integer then v = 0.⁴ From different orders of commutability and associability in the double convolution we can obtain distinct formulations. For example, from (28) we obtain the left Riemann–Liouville and the Caputo derivatives [139]:

$$f_{RL+}^{(\beta)}(t) = \delta_{+}^{(n)}(t) * \left\{ [f(t)u(t-a)] * \delta_{+}^{(-\nu)}(t) \right\}$$
(30)

$$f_{C+}^{(\beta)}(t) = \left\{ [f(t)u(t-a)] * \delta_{+}^{(n)}(t) \right\} * \delta_{+}^{(-\nu)}(t)$$
(31)

For the right the procedure is similar. We are going to study more carefully the characteristics of these derivatives. Consider (28). Let $\varphi^{(-\nu)}(t) = \{[f(t) \ u(t-a)]\delta^{(-\nu)}_+(t)\}$. We have

$$\varphi^{(-\nu)}(t) = \begin{cases} \frac{1}{\Gamma(\nu)} \int_a^t f(\tau)(t-\tau)^{\nu-1} d\tau & \text{if } t > a, \\ 0 & \text{if } t < a \end{cases}$$

So, in general when doing the second convolution in (30) we are computing the integer order derivative of a

function with a jump. This leads to

$$f_{RL+}^{(\beta)}(t) = \frac{1}{\Gamma(-\alpha)} \int_{a}^{t} f(\tau)(t-\tau)^{-\alpha-1} d\tau - \sum_{i=0}^{n-1} f^{(\alpha-1-i)}(a) \delta^{(i)}(t)$$
(32)

The appearance of the "initial conditions" $f^{(\alpha-1-i)}(a+)$ provoked some confusions because they were used as initial conditions of linear systems. This is not correct in general. They represent what we need to join to the Riemann–Liouville derivative to obtain the Liouville derivative (28) [145]. Now let us do a similar analysis to the Caputo derivative. The expression {[f(t) u(t-a)] $*\delta^{(n)}_{+}(t)$ } states the integer order derivative of the function f(t)u(t-a). The so called jump formula gives [35,137,147]

$$y^{(n)}(t)u(t-a) = [y(t)u(t-a)]^{(n)} - \sum_{i=0}^{n-1} y^{(n-1-i)}(a)\delta^{(i)}(t)$$
(33)

which leads to

$$f_{C+}^{(\beta)}(t) = \frac{1}{\Gamma(-\alpha)} \int_{a}^{t} f(\tau)(t-\tau)^{-\alpha-1} d\tau - \sum_{i=0}^{n-1} f^{(n-1-i)}(a) \delta^{(i-\nu)}(t)$$
(34)

In this case, we can extract conclusions similar to those we did in the Riemann–Liouville case. Relation (34) explains why sometimes the first n terms of the Taylor series of f(t) are subtracted from it before doing a fractional derivative computation. It is like a regularization.

2.8. Fourier transform of the fractional derivative and the frequency response

Now, we are going to see if the above results can be extended to functions with a Fourier Transform. We note that the multivalued expression $F(s)=s^{\alpha}$ becomes an analytic function, as soon as we fix a branch cut line, in all the complex plane excepting the branch cut line. Computation of the derivative of functions with Fourier Transform is dependent on the way used to define $(j\omega)^{\alpha}$. If we define it doing the limit as $s \rightarrow j\omega$ from the right we have

$$j\omega)^{\alpha} = |\omega|^{\alpha} \begin{cases} e^{j\alpha\pi/2} & \text{if } \omega > 0\\ e^{-j\alpha\pi/2} & \text{if } \omega < 0 \end{cases}$$
(35)

This means that the forward derivatives of a cisoid is given by

$$D_{f}^{\alpha} e^{j\omega t} = e^{j\omega t} |\omega|^{\alpha} \begin{cases} e^{j\alpha \pi/2} & \text{if } \omega > 0\\ e^{-j\alpha \pi/2} & \text{if } \omega < 0 \end{cases}$$
(36)

For $x(t) = \cos(\omega_0 t)$ we obtain

$$D_f^{\alpha}\cos(\omega_0 t) = \left|\omega_0\right|^{\alpha}\cos(\omega_0 t + \alpha\pi/2)$$
(37)

It can be show [146] that these results are not valid in the backward case.

2.9. Modeling, identification and implementation

As in the usual systems, modeling, identification and implementation are very interesting tasks. In the fractional case, they are slightly more difficult due to the fact of having, at least, one extra degree of freedom—the

⁴ All the above formulae remain valid in the case of integer integration, provided that we put $\delta^{(0)}(t) = \delta(t)$.

fractional order. However, this difficulty increments the possibilities of obtaining more reliable and robust systems. This is challenging and people working in the area have been giving different interesting answers. We can refer to the following approaches:

2.9.1. Fractional devices

The famous Curie law stating that the current in an insulator decreases proportionally to a negative power of time leads to the known "supercapacitors", which have impedance proportional to $1/s^{\alpha}$, with $0 < \alpha < 1$ [34,116]. Electrochemists have used the Constant Phase Elements (CPE) description for over 60 years. The fractors (fractional capacitors) [53,99,105,170] and coils [162] have been presented. The new terminology is "fractance" to indicate an impedance with fractional order response. As these devices become available commercially, we will be rewriting many of the rules for design of filters and controllers [29,36,37,53].

2.9.2. Trans-finite Circuits

Infinite transmission lines are circuits with fractional behavior [65], but there are other interesting circuits with similar characteristics like the tree fractance (a tree of RC circuits) and chain fractance (a series of parallel RC) circuits [66,101,156].

2.9.3. Band-limited approximations

It is an engineering approach. There are several ways of doing the design and implementation. We can refer to (a) the CRONE, which uses the Bode diagrams [36–39,107, 149–151] and (b) the continued fraction approaches [171,172]. Both construct pole–zero systems with interlaced poles and zeros.

Other similar alternative is approximation by a weighted summation of exponentials, which as the number of elements increases toward infinity describes fractional behavior. This concept has more recently been used by Anastasio [45] to approximate fractional order operators in his analysis of the vestibulo-ocular system. The basic idea developed by Thorson and Biederman-Thorson [167] is to represent a power law relaxation decay in time (e.g., $t^{-\alpha}$, where $0 < \alpha < 1$) by a sum of exponentials weighted in an appropriate manner. Starting with the integral definition of the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \alpha > 0$$
(38)

if we let x = ta, where t > 0, we can solve for t^{α} :

$$t^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty v^{\alpha - 1} e^{-\nu t} \, d\nu \tag{39}$$

This integral can be interpreted as the Laplace transform of the function $v^{\alpha-1}/\Gamma(\alpha)$. Hence, we see that (39) provides a representation for the power-law decay as a weighted integral of exponentials. Thus, between the values of v and v+dv there exists an exponential $e^{-vt}u(v)$ with a weight, $v^{\alpha-1}/\Gamma(k)$. Here v has the units of $(s)^{-1}$, and can be viewed as a rate constant. The overall power law relaxation given by (39) is the summation of all these contributions for the entire range of possible rate constants. In order to convert this time-domain representation into a model for fractional operations we take the Laplace transform of both sides of (39). As seen in Section 2.5

$$L[t^{-\alpha}u(t)] = \Gamma(1-\alpha)s^{\alpha-1}$$
(40)

and assuming that we can interchange the order of integration for v and t we obtain

$$s^{\alpha-1} = \frac{1}{\Gamma(\alpha)\Gamma(1-\alpha)} \int_0^\infty \frac{\nu^{\alpha-1}}{s+\nu} d\nu = \frac{\sin(\alpha\pi)}{\pi} \int_0^\infty \frac{\nu^{\alpha-1}}{s+\nu} d\nu$$
(41)

which is the Stieltjes transform of $v^{\alpha-1}/\Gamma(\alpha)\Gamma(1-\alpha)$.⁵ Finally, solving for s^{α} and if we let $v=1/\tau$ where τ is the relaxation time corresponding to a particular value of v we obtain

$$s^{\alpha} = \frac{\sin(\alpha\pi)}{\pi} \int_0^{\infty} \tau^{-\alpha} \frac{\tau s}{\tau s+1} \frac{d\tau}{\tau} = \frac{\sin(\alpha\pi)}{\pi} \int_0^{\infty} \tau^{-\alpha} \frac{\tau s}{\tau s+1} d(\log\tau)$$
(42)

Thus, in this interpretation, we see that the fractional derivative operator is represented as an integral or summation of Laplace domain terms that correspond to high-pass filters, and by a similar derivation the fractional integral operator is expressed in terms of an integral of low-pass filters. This is a unifying hypothesis because it extends in a natural way the usual progression of modeling linear systems as a series of exponentials, which typically increases as the degree of the integer order transfer function grows. With the above formulation, we see that the poles are logarithmically distributed.

3. Fractional linear systems

3.1. Transfer function and frequency response

The results of the previous section are very important in applications since they allow us to introduce the useful concept of transfer function. In fact, we define a linear system through a fractional differential equation with the general format

$$\sum_{n=0}^{N} a_n D^{\nu_n} y(t) = \sum_{m=0}^{M} b_m D^{\nu_m} x(t)$$
(43)

where the differentiation orders, v_n , are, in the general case, complex numbers. As usual, we apply the LT to Eq. (43) and use the results of Section 2.5, to obtain the transfer function of the system:

$$H(s) = \frac{\sum_{m=0}^{M} b_m s^{v_m}}{\sum_{n=0}^{N} a_n s^{v_n}}$$
(44)

with region of convergence defined by Re(s) > 0 (causal case) or Re(s) < 0 (anti-causal case).

We may put the question of what happens with the frequency response of a given fractional linear system. From the conclusions we presented in 2.8, we can say that, having a causal fractional linear system with transfer

⁵ To obtain the last expression, we used the reflection property of the gamma function [14].

function equal to H(s), the frequency response must be computed from

$$H(j\omega) = \lim_{s \to j\omega} H(s) \tag{45}$$

This is in agreement with other known results. For example, if the input to the system is white noise, with unit power, the output spectrum is given by

$$S(\omega) = \lim_{s \to j\omega} H(s)H(-s)$$
(46)

3.2. From the transfer function to the impulse response

The general case represented in (43) is not easy to solve, because it is difficult to find the poles. For this reason, in the following, we shall be restricting our attention to the cases in which

- the *v_n* are irrational numbers but multiples of a given *v*,
- the v_n are any rational numbers; in this case, write them in the format p_n/q_n .

Let *v* be the greater common divider of the v_n . Then $v_n = nv$. We will assume that v < 2, for stability reasons.

With this formulation, Eqs. (43) and (44) assume the general formats

$$\sum_{n=0}^{N} a_n D^{n\nu} y(t) = \sum_{m=0}^{M} b_m D^{m\nu} x(t)$$
(47)

and

$$H(s) = \frac{\sum_{m=0}^{M} b_m s^{m\nu}}{\sum_{n=0}^{N} a_n s^{n\nu}}$$
(48)

With a Transfer Function as in (48) we can perform the inversion quite easily, by the following steps:

- (1) Transform H(s) into H(z), by substitution of s^{ν} for z. We are assuming that H(z) is a proper fraction; otherwise, we have to decompose it as a sum of a polynomials (inverted separately) and a proper fraction.
- (2) The denominator polynomial in H(z) is the indicial polynomial [59,60] or characteristic pseudo-polynomial [22]. Perform the expansion of H(z) in partial fractions.
- (3) Substitute back s^{ν} for *z*, to obtain the partial fractions in the form

$$F(s) = \frac{1}{(s^{\nu} - a)^{k}}, \quad k = 1, 2, \dots$$
(49)

- (5) Invert each partial fraction.
- (6) Add the different partial impulse responses.

We are going to see how to invert $F(s)=1/(s^v-a)$ Using the properties of the geometric series, it is a simple task to obtain

$$F(s) = s^{-\nu} \sum_{n=0}^{\infty} a^n s^{-n\nu}$$
(50)

with $\operatorname{Re}(s) > |a|^{1/\nu}$ defining the region of convergence. However, all terms of the series are analytic for $\operatorname{Re}(s) > 0$. For this reason, we can invert this series term by term, to obtain

$$f(t) = t^{\nu - 1} \sum_{n = 0}^{\infty} \frac{a^n t^{n\nu}}{\Gamma(n\nu + \nu)} u(t)$$
(51)

which is a special case of the two parameter Mittag– Leffler function, which is a generalization of the exponential, to which it reduces when v=1. This function is well studied {see [18,20,28,65]}.⁶ Eq. (51) suggests us to work with the step response instead of the impulse response to avoid derivatives or working with non-regular functions near the origin.

When v=1/q, q being a positive integer, we obtain a different formulation for the inverse of the partial fraction (49). Using the well known result of the sum of the first q terms of a geometric sequence we obtain⁷ [22]:

$$F(s) = \frac{1}{S^{\nu} - a} = \frac{\sum_{j=1}^{q} a^{j-1} s^{1-j\nu}}{s - a^{q}}$$
(52)

We conclude that the inverse LT of a partial fraction as $F(s)=1/(s^{1/q}-a)$ is a linear combination of q fractional derivatives of $E_0(t,a^q) = e^{a^q t}u(t)$.

The k > 1 case in (45) does not present great difficulties except some additional work. It can be obtained from the k=1 case by repeated convolution or by differentiation [135].

3.3. The stability problem

The study of stability of the fractional linear time invariant (FLTI) systems we are going to do is based on the BIBO stability criterion, which implies stability when the impulse response is absolutely integrable.

The simplest FLTI system is the system with transfer function $H(s)=s^{\nu}$ with s belonging to the principal Riemann surface. If $\nu > 0$, the system is definitely unstable, since the impulse response is not absolutely integrable, even in a finite interval. If $-1 < \nu < 0$, the impulse response remains a limited function when t increases indefinitely and it is absolutely integrable in every finite interval. Therefore, we will say that the system is in a wide sense stable. This case is interesting to the study of fractional stochastic processes. If $\nu = -1$, the normal integrator, the system is in a wide sense stable. The case $\nu < -1$ corresponds to an unstable system, since the impulse response is not a limited function when t goes to $+\infty$.

$$\sum_{j=0}^{q-1} r^j \frac{1-r^q}{1-r} \Rightarrow \sum_{j=0}^{q-1} b^j x^{-j} = \frac{1-b^q x^{-q}}{1-b/x} \quad \text{or} \quad x^q - b^q = (x-b) \sum_{j=1}^q b^{j-1} x^{q-j}$$

from where

$$\frac{1}{x-b} = \frac{\sum_{j=1}^{q} b^{j-1} x^{q-j}}{x^{q} - b^{q}}$$

⁶ An interesting implementation was done by Prof. Podlubny and can be found at the site of MatLab. It is an implementation of the two parameter generalized Mittag–Leffler function with precision control—usage: mlf(alfa, beta, z, p) [153].

⁷ With reason r=b/x, we obtain

Consider the LTI systems with transfer function H(s) a quotient of two polynomials in s^v . The transformation $w=z^q$ transforms the sector $0 \le \theta \le 2\pi/q$ { $\theta=\arg(z)$ } to the entire complex plane. So, the sector $(\pi/2q) \le \theta \le (\pi/2q) + (\pi/q)$ is transformed to the left half plane. Consider the first Riemann surface of $z=s^v$ defined by $\theta=\arg(s)\in(-\pi,\pi]$. This domain is transformed to $\varphi=\arg(z)\in(-\pi\alpha,\pi\alpha]$. However the poles leading to instability must be inside the sector $(-\pi\alpha/2,\pi\alpha/2)$. We have two situations leading to stability:

- there are no poles inside the sector $(-\pi\alpha,\pi\alpha]$ and
- there are poles but they are in the sectors $(-\pi\alpha, -\pi\alpha/2)$ and $(\pi\alpha/2, \pi\alpha)$.

The poles with argument equal to $\pm \pi \alpha/2$ may lead to wide sense stable systems as in the usual systems. These conclusions come from properties of the Mittag–Leffler function [18]. To give a simple example, consider the transfer function $H(s)=1/(s^{\alpha}+1)$, with $0 < \alpha < 2$. It is easy to see that there is no pole in the principal Riemann surface. Hence, it represents a stable system.

3.4. The initial conditions

When looking for the output, y(t), to a given input, x(t), we must consider the initial conditions. This is a problem that created much confusion and difficulties in the past [22,96] motivated by the use of several different derivative definitions and of the one-sided Laplace transform. In [137,147], we proposed a new way of looking at the problem.

As is well known, the solution of Eq. (47) has two terms: the forced (or evoked) and free (or spontaneous). This second term depends only on the state of the system at the reference. This state constitutes, or is related to, the initial conditions. These are the values at t=0 of variables in the system, which are associated with stored energy. It is the structure of the system that imposes the initial conditions, not the eventual way of computing the derivatives. The solution is obtained with the fractional jump formula [147]

$$D^{n\alpha}[y(t)]u(t) = D^{n\alpha}[y(t)u(t)] - \sum_{0}^{n-1} y^{(m\gamma)} \delta^{[(n-m)\gamma-1]}(t)$$

that allows us to transform (47) to

$$\sum_{i=0}^{N} a_{j}[y(t)u(t)]^{(\gamma i)}$$

$$= \sum_{i=0}^{M} b_{i}[x(t)u(t)]^{(\gamma i)} + \sum_{i=1}^{N} a_{i} \sum_{0}^{i-1} y^{(\gamma m)}(0) \delta^{[(n-m)\gamma-1]}(t)$$

$$- \sum_{i=1}^{M} b_{i} x^{(\gamma m)}(0) \delta^{[(n-m)\gamma-1]}(t)$$
(53)

We must note that

- the initial conditions appear directly in the equation, without using any transform and
- Eq. (53) is valid also in the time variant case.

3.5. Discrete-time implementations

It is not a simple task to obtain discrete-time implementation of a fractional differintegrator. There are several algorithms that start from an s to z conversion and design an ARMA model [48,49,64,115,141,143,161, 173,175]. However, they are mere approximations and there is no clear statement on the optimality of any approch. It is an open subject needing additional research efforts. The simplest way of doing such approximation consists in starting from the forward GL derivative, remove the limit operation and truncate the series. This is not needed if we intend to compute the output of the system being approximated for a causal imput. In fact, in this case, the series becomes a finite sum:

$$D_{\theta}^{\alpha}f(t) \approx \frac{\sum_{k=0}^{\lfloor t/h \rfloor} (-1)^k \binom{\alpha}{k} f(t-kh)}{h^{\alpha}}$$
(54)

In ths situation we must consider the so called "short memory principle" [28], also known as "fixed memory principle", which is a useful tool for numerical simulations in large time intervals. Taking into account approximation (54) we can see, that if $t \ge 0$ the final sumation would be too large. From the calculation of binomial coefficients above it follows that the past values of the function f(t) near 0 have only small influence on the new evaluated value of the function. Instead of using "whole memory", only "recent past" of the function is used, e.g. the interval (t-T,t), where *T* is the "memory length":

$$D_{\theta;T}^{\alpha}f(z) \approx \frac{\sum_{k=0}^{\lfloor (t-T)/h \rfloor} (-1)^k \binom{\alpha}{k} f(t-kh)}{h^{\alpha}}$$
(55)

It is worth mentioning, that a similar approach was introduced in Volterra's work under the name "limited after-effect" assumption [28].

This continuous to discrete conversion is essentially the following. Assume that *h* is a sampling interval. Then we can also sample f(t) and $D_{\theta}^{\alpha}f(t)$ with the same interval. This is equivalent to performing the continuous to discrete (Euler) transformation:

$$s = \frac{1 - z^{-1}}{h} \tag{56}$$

and

$$S^{\alpha} = \left(\frac{1 - z^{-1}}{h}\right)^{\alpha} \approx \frac{\sum_{k=0}^{N} (-1)^{k} \binom{\alpha}{k} z^{k}}{h^{\alpha}}$$
(57)

....

where *N* is a "high enough" integer fixed according to the principle stated above. As can be seen we are doing a FIR approximation to the differintegrator—the impulse response is $h(n)=(((-\alpha)_n)/n!)u(n)$ for n=0, 1, ..., N. Using (48) it is possible to obtain ARMA models for the same operator {see [48,49,141,143]}. With these *s* to *z* transformations we arrive at the discrete-time signal processing context and so obtain an easier and more known framework.

Other alternatives to the Euler transformation are the bilinear transformation (Tustin) [62,143,171–176]

$$s = \frac{2}{h} \frac{1 - z^{-1}}{1 + z^{-1}} \tag{58}$$

and the mixed operator (Al-Alaoui) [44,62]

$$s = \frac{8}{h} \frac{1 - z^{-1}}{7 + z^{-1}} \tag{59}$$

As we want to obtain discrete equivalents to the differintegrator, s^{α} , the following considerations have to be mentioned [64]:

- (1) s^{α} , viewed as a causal operator, has a branch cut line along the negative real axis for arguments of *s* in $(-\pi,\pi)$ but is free of poles and zeros.
- (2) A dense interlacing of simple poles and zeros along a line in the *s* plane is, in some way, equivalent to a branch cut (see the deduction of the Cauchy derivative).
- (3) It is well known that, for interpolation or evaluation purposes, rational functions are sometimes superior to polynomials, roughly speaking, because of their ability to model functions with zeros and poles. In other words, for evaluation purposes, ARMA models converge faster than the long MA (FIR).
- (4) Trapezoidal (bilinear) rule maps adequately the stability regions of the *s* plane on the *z* plane, and maps the points s=0 and $s=\infty$ to the points z=1 and z=-1, respectively.

The impulse response of the discrete-time linear system corresponding to the Tustin transformation is given by [143]

$$h_{\text{bil}}(n) = \left(\frac{2}{h}\right)^{\alpha} \frac{(-1)^{n}(\alpha)_{n}}{n!} \sum_{k=0}^{n} \frac{(-\alpha)_{k}(-n)_{k}}{(-\alpha-n+1)_{k}} \frac{(-1)^{k}}{k!}$$
$$= \left(\frac{2}{h}\right)^{\alpha} \frac{(-1)^{n}(\alpha)_{n}}{n!} {}_{2}F_{1}(-\alpha,-n,-\alpha-n+1,-1)u(n)$$
(60)

where ${}_{2}F_{1}(a,b,c,-1)$ is the Gauss hypergeometric function that, for these arguments, does not have a closed form. Similarly, the impulse response corresponding to the Al-Alaoui transformation can be computed following the procedure used in [143] and is given by

$$h_{\text{bil}}(n) = \left(\frac{8}{7h}\right)^{\alpha} \frac{(-7)^{n}(\alpha)_{n}}{n!} \sum_{k=0}^{n} \frac{(-\alpha)_{k}(-n)_{k}}{(-\alpha-n+1)_{k}} \frac{(-7)^{k}}{k!} u(n)$$

= $(-7)^{-n} \left(\frac{8}{7h}\right)^{\alpha} \frac{(-1)^{-n}(\alpha)_{n}}{n!} {}_{2}F_{1}(-\alpha,-n,-\alpha-n+1,-7^{-1})u(n)$
(61)

It is interesting because it decreases quickly. With the above impulse responses, we can obtain ARMA models. There are several methods, like the least-squares method [48,49,141,143] and the continued fraction method [62–64]

Another different way of doing the continuous to discrete conversion is the so called matrix approach. The "matrix approach" to discretization of fractional integrals and derivatives has been developed by Podlubny [154,155]. It is based on the use of triangular strip matrices. This method significantly simplifies many aspects of numerical computations in the fractional calculus, and especially solving fractional differential equations.

According to what we said above, the fractional derivatives of order α can be approximated at all nodes of the uniform grid t=nh, $n \in Z$ at once with the help of the upper triangular strip matrix $B_n^{(\alpha)}$:

$$\begin{bmatrix} \nu_n^{(\alpha)} & \nu_{n-1}^{(\alpha)} & \dots & \nu_1^{(\alpha)} & \nu_0^{(\alpha)} \end{bmatrix}^T = B_n^{(\alpha)} \begin{bmatrix} \nu_n & \nu_{n-1} & \dots & \nu_1 & \nu_0 \end{bmatrix}^T$$
(62)

where

$$v_n^{(\alpha)} = D^{\alpha} v(nh) \tag{63}$$

and

$$B_{n}^{(\alpha)} = \frac{1}{\tau^{\alpha}} \begin{vmatrix} h_{0}^{(\alpha)} & h_{1}^{(\alpha)} & \ddots & \ddots & h_{n-1}^{(\alpha)} & h_{n}^{(\alpha)} \\ 0 & h_{0}^{(\alpha)} & h_{1}^{(\alpha)} & \ddots & \ddots & h_{n-1}^{(\alpha)} \\ 0 & 0 & h_{0}^{(\alpha)} & h_{1}^{(\alpha)} & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & h_{0}^{(\alpha)} & h_{1}^{(\alpha)} \\ 0 & 0 & \dots & 0 & 0 & h_{0}^{(\alpha)} \end{vmatrix}$$
(64)

where $h_n^{(\alpha)}$ represents the impulse response according to the chozen method (Euler, Tustin or Al-Alaoui). From the properties of the derivative those matrices $B_n^{(\alpha)}$ have also the group structure presented in Section 2.4. This method has been presented for the first time in [155] along with several examples of numerical solution of ordinary fractional differential equations with the Riemann-Liouvile and Caputo derivatives. From the viewpoint of simplicity of usage, the matrix approach to numerical solution of fractional differential equations can be compared to the Laplace transform method for solving ordinary differential equations. Indeed, in both cases operators of differentiation are simply replaced with other symbols—in the case of the Laplace transform by powers of the Laplace variable, and in the case of the matrix approach by matrices of a known structure. For example, the famous Bagley-Torvik equation (see [28] and references therein)

$$ay''(t) + b_0 D_t^{(3/2)} y(t) + cy(t) = f(t)$$
(65)

is discretized on a uniform grid with *n* nodes as

$$(aB_n^{(2)} + bB_n^{(3/2)} + cB_n^{(0)})Y_n = F_n$$
(66)

where Y_n is the vector of unknown values of y(t) at the discretization nodes, F_n the vector of values of the input f(t) and $B_n^{(2)}$ the triangular strip matrix representing the discrete analogue of the fractional derivative. Clearly, B_n^0 is equal to the identity matrix E_n . The matrix approach has been implemented in the form of a publicly available Matlab toolbox.

4. Input-output numerical computations in general nonlinear systems

In various applications, e.g. in fluid mechanics, viscoelasticity, biology, physics and engineering [12,22,24, 26–28,50,61,73,97,98,168], considerable attention is given to ordinary and partial differential equations of fractional order, due to their memory and hereditary properties [54-58,104,107,109]. However, most applications have been directed toward modeling existing situations where no outside interference has place. This means that most studies consider the output of fractional systems under non-null initial conditions, but with null input. This will be adopted here. According, for example, to Momani [122-131] most fractional differential equations do not have exact analytic solutions, so approximation and numerical techniques [51,71-78,27] must be used. There are two main classes of methods for solving fractional differential equations: the frequency-domain methods and the time-domain methods. In this review we deal mainly with time-domain methods. Finding accurate and efficient methods for solving fractional-order differential equations (FODEs) is the goal of many research works. Analytical and numerical methods for solving most of the FODEs must be used, as exact solutions cannot be found easily. Some numerical methods for solving FODEs were presented for instance in [52,71-78,106]. We will consider DE with the format

$$y^{(\alpha)}(t) = f[t, y(t)] + ax(t)$$
 (67)

where x(t) is the input, y(t) the output and $t \in R$. Unless expressed we will assume that the derivative operation is one step. This is important because we will need only one initial condition, according to the results in Section 3.4. We can then modify the above equation to make the initial condition appear explicitly in an equation that is valid for $t \ge 0$:

$$\mathbf{y}^{(\alpha)}(t) = \mathbf{y}(0)\delta^{(\alpha-1)}(t) + f[t, y(t)] + ax(t), \quad t \in \mathbb{R}^+$$

or
$$\mathbf{y}^{(\alpha)}(t) = f[t, \mathbf{y}(t)] + ax(t) + \mathbf{y}(0)\frac{t^{-\alpha}}{\Gamma(-\alpha+1)}u(t), \quad t \in \mathbb{R}^+$$
(68)

It is a current practice to use here integral formulations. We will use the Liouville integral seen in Section 2.6.

In the following we will present several approaches for solving Eq. (68), namely Diethelm's method based on quadrature and Lubich's difference methods followed with some information about Adams–Bashforth–Moulton method based on the Volterra integral equation, an effective method for fractional order dynamical systems, Adomian's decomposition method (ADM), variational iteration method (VIM) and homotopy–perturbation method (HPM).

4.1. Diethelm's method based on quadrature

Let us first start from the Liouville derivative specialized for causal signals and proceed as Weilbeer in [32]. Then apply the linear transformation τ =tu to obtain [72]

$$D^{\alpha}f(t) = \frac{t^{-\alpha}}{\Gamma(-\alpha)} \int_0^1 \tau^{-\alpha-1} g(\tau) d\tau \quad \text{for all} \quad t \in (0,T]$$
(69)

where $g(\tau)=f(t-t\tau)$. In the following, *D* means the forward derivative operator. The algorithm now proceeds as follows. Choose a positive integer *N* and divide the working interval [0,*T*] into *N* subintervals of equal length h=T/N with breakpoints (sampling instants) $t_m=mh$,

m=0, 1, 2, …, *N*, which we will use in (71). This yields

$$\frac{t_m^{-\alpha}}{\Gamma(-\alpha)} \int_0^1 \tau^{-\alpha-1} y(t_m - t_m \tau) d\tau = f[t_m, \mathbf{y}(t_m)] + \mathbf{y}(0) \frac{t_m^{-\alpha}}{\Gamma(1-\alpha)} u(t_m)$$
(70)

where we have also taken the input equal to zero. In this relation we replace the integral by the quadrature formula Q_m , and additionaly introduce the quadrature error R_m . Thus, using the abbreviation $g_m(\tau)=y(t_m-t_{m\tau})$ yields

$$\frac{t_m^{-\alpha}}{\Gamma(-\alpha)} \left(\sum_{k=0}^m \omega_{km} g_m(k/m) + R_m[g_m] \right) - \frac{y(0)t_m^{-\alpha}}{\Gamma(1-\alpha)} = f(t_m, y(t_m))$$
(71)

where for ω_{km} we can write

$$\omega_{km} = \frac{\tilde{\omega}_{km} \Gamma(2-\alpha)}{-\alpha(1-\alpha)m^{-\alpha}}$$
(72)

We finally solve the left-hand side for $y_m = y(t_m)$ and get

$$y_m = h^{\alpha} f(t_m, y_m) - \sum_{k=1}^m \tilde{\omega}_{km} y(t_m - kh) - \mathbf{y}(0) \frac{h^{\alpha} t_m^{-\alpha}}{\Gamma(1 - \alpha)} u(t_m)$$
(73)

where the weights $\tilde{\omega}_{\textit{km}}$ are given by the substitution (74) and so

$$\frac{\tilde{\omega}_{km}}{\Gamma(2-\alpha)} = \begin{cases} 1 & \text{for } k = 0\\ -\alpha & \text{for } k = m = 1\\ 2^{1-\alpha} - 2 & \text{for } k = 1 \text{ and } m \ge 2\\ (k-1)^{1-\alpha} + (k+1)^{1-\alpha} - 2k^{1-\alpha} & \text{for } 2 \le k \le m-1\\ (k-1)^{1-\alpha} + (\alpha-1)k^{-\alpha} - k^{1-\alpha} & \text{for } k = m \ge 1 \end{cases}$$
(74)

4.2. Lubich's difference methods

Lubich's fractional difference methods form a subset to fractional linear multistep methods, which were first presented by Lubich [111–113] and numerically implemented by Hairer, Lubich and Schlichte in [88] for a special type of Volterra integral equations. Consider again that the input, x(t), is null. It can be shown that the FODE can be rewritten as the Abel–Volterra integral equation

$$\mathbf{y}(t) = \int_0^t (t-\tau)^{\alpha-1} f[\tau, \mathbf{y}(\tau)] d\tau + \mathbf{y}(0) u(t)$$
(75)

Lubich [112] showed that, if $\alpha > 0$ and given the method order, $p \in \{1,2,3,4,5,6\}$

$$y(m) = y(0) + h^{\alpha} \sum_{j=0}^{m} \omega_{m-j} f(t_j, y(t_j)) + h^{\alpha} \sum_{j=0}^{s} \omega_{m,j} f(t_j, y(t_j))$$
(76)

for m=1, 2, ..., N, where the convolution weights ω_m are given by the generating function

$$\omega^{\alpha}(\zeta) = \left(\sum_{k=1}^{p} \frac{1}{k} (1-\zeta)^{k}\right)^{-\alpha}$$
(77)

and the starting weights $\omega_{m,i}$ can be obtained as:

$$\sum_{j=0}^{s} \omega^{mj} j^{\gamma} = \frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma+\alpha)} m^{\alpha+\gamma} - \sum_{j=1}^{m} \omega_{m-j} j^{\gamma}, \quad \gamma \in A$$
(78)

with

 $A = \{\gamma = k + j\alpha; \quad k, j \in N_0, \quad \gamma \le p-1\}, \quad cardA = s+1 \quad (79)$ Eq. (78) gives an approximation of order $O(h^{p-\varepsilon})$ with a small $\varepsilon \ge 0$ for all fixed mesh points t_m .

4.3. Adams-Bashforth-Moulton method

Adams–Bashforth–Moulton method [165] is also a numerical method to solve FODE, based on the Abel– Volterra integral Eq. (75). Even though it seems to be a suitable tool for fractional order dynamical systems, there are some difficulties mentioned in the literature:

- size of the computational work can be burdensome and
- rounding-off error can cause loss of accuracy.

This method has been introduced by Diethelm and Freed [8] and discussed as well in [9,76]. The following relationships were used in the work of Weilbeer [32]. Numerical solution of Eq. (75) on the interval [0,*T*] in the above used a grid. Let us assume that the approximations $y_j=y(t_j)$ for j=1,2, ..., k have been already evaluated. The task is to find the solution y_{k+1} , obtained by replacing the integral in (75) using the product trapezoidal quadrature formula where the nodes t_j for j=0, 1, ..., k+1 are taken with respect to the weight function $(t_{k+1} - .)^{\alpha-1}$. First we will get the approximation

$$\int_{0}^{t_{k+1}} (t_{k+1}-z)^{\alpha-1} g(z) dz \approx \int_{0}^{t_{k+1}} (t_{k+1}-z)^{\alpha-1} \tilde{g}_{k+1}(z) dz$$
(80)

where \tilde{g}_{k+1} is the piecewise linear interpolant for *g*. The right-hand side can be rewritten as:

$$\int_{0}^{t_{k+1}} (t_{k+1} - z)^{\alpha - 1} \tilde{g}_{k+1}(z) dz = \sum_{j=0}^{k+1} a_{j,k+1} g(t_j)$$
(81)

where

$$a_{j,k+1} = \int_0^{t_{k+1}} (t_{k+1} - z)^{\alpha - 1} \phi_{j,k+1}(z) dz$$
(82)

and

$$\phi_{j,k+1}(z) = \begin{cases} (z - t_{j-1})/(t_j - t_{j-1}) & \text{if } t_{j-1} < z \le t_j \\ (t_{j+1} - z)/(t_{j+1} - t_j) & \text{if } t_j < z < t_{j+1} \\ 0 & \text{else} \end{cases}$$
(83)

For a uniform grid, we have

$$a_{j,k+1} = \begin{cases} \frac{h^{\alpha}}{\alpha(\alpha+1)} (k^{\alpha+1} - (k-\alpha)(k+1)^{\alpha}) & \text{if } j = 0\\ \frac{h^{\alpha}}{\alpha(\alpha+1)} ((k-j+2)^{\alpha+1} + (k-j)^{\alpha+1} - 2(k-j+1)^{\alpha+1}) & \text{if } 1 \le j \le k\\ \frac{h^{\alpha}}{\alpha(\alpha+1)} & \text{if } j = k+1 \end{cases}$$
(84)

So we obtain the corrector formula (fractional variant of the one-step Adams–Moulton method):

$$y_{k+1} = \frac{1}{\Gamma(\alpha)} \left(\sum_{j=0}^{k} a_{j,k+1} f(t_j, y_j) + a_{k+1,k+1} f(t_{k+1}, y_{k+1}^p) \right) + y(0)$$
(85)

where the expression y_{k+1}^p means the predictor formula, which will be calculated using generalized one-step Adams–Bashforth method in the same way it was by determining the corrector formula.

We again replace the integral in (75), but now by the product rectangle rule

$$\int_{0}^{t_{k+1}} (t_{k+1} - z)^{\alpha - 1} g(z) \, dz \approx \sum_{j=0}^{k} b_{j,k+1} g(t_j) \tag{86}$$

where

$$b_{j,k+1} = \int_{t_j}^{t_j+1} (t_{k+1} - z)^{\alpha - 1} dz = \frac{(t_{k+1} - x_j)^{\alpha} - (t_{k+1} - t_{j+1})^{\alpha}}{\alpha}$$
(87)

Now we are not dealing with a piecewise linear approximation, but with piecewise constant approximation; therefore the following holds:

$$\phi_{kj}(t) := \begin{cases} 1 & \text{on} [t_j, t_{j+1}] \\ 0 & \text{every where else on the interval} [0, t_{k+1}] \end{cases}$$
(88)

and again in the case of equispaced distribution, we get

$$b_{j,k+1} = \frac{h^{\alpha}}{\alpha} ((k+1-j)^{\alpha} - (k-j)^{\alpha})$$
(89)

Finally, the predictor y_{k+1}^p is obtained by the fractional Adams–Bashforth method:

$$y_{k+1}^{p} = y(0) + \frac{1}{\Gamma(\alpha)} \sum_{j=0}^{k} b_{j,k+1} f(x_{j}, y_{j})$$
(90)

Eqs. (85) and (90) with the weights $a_{j,k+1}$ and $b_{j,k+1}$ calculated in (82) and (89) form the fractional Adams–Bashforth–Moulton method.

4.4. Adomian's decomposition method (ADM)

The next to mention is the numerical method based on the Adomian decomposition [1]. This method provides the solution of the fractional order system in the form of a power series with easily computed terms. Adomian's decomposition method was firstly used to obtain approximate solutions of linear or nonlinear differential equations [163]. With the increasing popularity of fractional calculus, the application of the method was recently extended for the case of fractional differential equations [47,68,157–159]. This method can be used for finding the solution of the Abel–Volterra integral Eq. (75) as

$$y(t) = \sum_{i=1}^{\infty} y_i(t) = g(t) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} \sum_{i=0}^{\infty} f_i(\tau) d\tau \quad (91)$$

where the ${}_{f}A_{i}(t)$ are the Adomian polynomials and in g(t) we include the input and the initial condition term. The explicit scheme of ADM can be written as

$$y_0(t) = g(t), \quad y_{i+1}(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} A_i(\tau) d\tau, \quad i = 0, 1, 2, \dots$$
(92)

where

$${}_{f}A_{i}(t) = \left[\frac{1}{i!}\frac{d^{i}}{d\lambda^{i}}f\left(t,\sum_{j=0}^{i}\lambda^{j}y_{j}\right)\right]_{\lambda=0}$$
(93)

Even if one cannot use the infinite scheme, it is possible to obtain a finite expansion corresponding to the differentiability properties of f(t,y(t)) [32].

In the work of Momani and Odibat [130], for the solution of linear fractional differential equations the following algorithm for solving linear fractional differential equation was considered. Let us define a linear FODE in the form:

$$\frac{d^{m}y}{dt^{m}} - a\frac{d^{\alpha}y}{dt^{\alpha}} - by = f(t), \quad m-1 < \alpha \le m$$
(94)

subject to the initial conditions

$$y^{(j)}(0) = c_j, \quad j = 1, 0, \dots, m-1$$
 (95)

where $c_j, j=0,1, ..., m-1$ are arbitrary constants and y(t) is a causal function of time. The system represented by (94) can be interpreted as composite fractional relaxation/ oscillation equation for the cases $\{0 < \alpha \le 1, m=1\}$ and $\{1 < \alpha \le 2, m=2\}$, respectively.

Let $J=D^{-1}$, the anti-derivative operator. If we apply the operator J^m to both sides of (94) and we use the initial conditions, we get

$$u(t) = \phi_1(t) + a\phi_2(t) + J^m f(t) + [aJ^{m-\alpha} + bJ^m]u(t)$$
(96)

where

$$\phi_1(t) = \sum_{i=1}^{m-1} c_i \frac{t^i}{i!}, \quad \phi_2(t) = \sum_{i=1}^{m-1} c_i \frac{t^{m-\alpha+i}}{\Gamma(m-\alpha+i+1)}$$
(97)

According to Adomian [1,43] the solution y(t) can be decomposed to an infinite series of components:

$$y(t) = \sum_{n=0}^{\infty} y_n(t)$$
 (98)

After substitution of the decomposition series (101) into both sides of (96) we obtain

$$\sum_{n=0}^{\infty} y_n(t) = \phi_1(t) + a\phi_2(t) + J^m f(t) + [aJ^{m-\alpha} + bJ^m] \sum_{n=0}^{\infty} y_n(t)$$
(99)

The iterates can be obtained from the previous equation by the following recursive way:

$$y_{0} = \phi_{1}(t) + a\phi_{2}(t) + J^{m}f(t),$$

$$y_{1} = (aJ^{m-\alpha} + bJ^{m})y_{0} = (aJ^{m-\alpha} + bJ^{m})[\phi_{1}(t) + a\phi_{2}(t) + J^{m}f(t)],$$

$$y_{2} = (aJ^{m-\alpha} + bJ^{m})y_{1} = (aJ^{m-\alpha} + bJ^{m})^{2}[\phi_{1}(t) + a\phi_{2}(t) + J^{m}f(t)],$$

$$\vdots$$

$$y_{1} = (aJ^{m-\alpha} + bJ^{m})y_{1} = (aJ^{m-\alpha} + bJ^{m})^{k}[\phi_{1}(t) + a\phi_{2}(t) + J^{m}f(t)],$$

 $y_k = (aJ^{m-k} + bJ^{m})y_{k-1} = (aJ^{m-k} + bJ^{m})^n[\phi_1(t) + a\phi_2(t) + J^{m}f(t)].$ The components of y(t) are then defined as

$$y(t) = \sum_{k=0}^{\infty} (aJ^{m-\alpha} + bJ^m)^k [\phi_1(t) + a\phi_2(t) + J^m f(t)]$$
(100)

To obtain the solution of (96) in a series form we expand the operator in (100) using the binomial formula.

Then the solution is

$$y(t) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} {k \choose j} a^{j} b^{k-j} J^{km-jx}[\phi_{1}(t) + a\phi_{2}(t) + J^{m}f(t)]$$
(101)

This algorithm can be generalized to solve nonlinear systems of fractional differential equations [84,100].

Although we obtain an approximate solution, at least because we have to truncate the series, in many cases the exact solution in a closed form may be obtained. Moreover, the decomposition series solutions generally converge very rapidly.

4.5. Homotopy-perturbation method (HPM)

The HPM is a combination of the traditional perturbation method and homotopy in topology. It solves the FODEs by decomposing the complex problem to simple problems, and then the perturbation equation can be easily constructed by a homotopy in topology.

In the works of Momani and Odibat linear and nonlinear partial FODEs were solved [123–131,129,133] using this method. The problem and solution proposed in [40–42] can be written in the form

$$D^{\alpha_1} y_1(t) = f_1(t, y_1, y_2, \dots, y_n)$$

$$D^{\alpha_2} y_2(t) = f_2(t, y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$D^{\alpha_n} y_n(t) = f_1(t, y_1, y_2, \dots, y_n)$$
(102)

subject to the following initial conditions

$$y_k(0) = c_k, \quad k = 1, 2, \dots, n$$
 (103)

where D^{α_i} is the fractional derivative of y_i of order α_i , where $0 < \alpha_i \le 1$ and f_i are arbitrary linear or nonlinear functions. The following homotopy can be constructed in view of the HPM [91,93] as

$$D^{\alpha_i} y_i = pf_i(t, y_1, y_2, \dots, y_n)$$
(104)

where i=1, 2, ..., n and p is an embedding parameter that changes from zero to unity [42]:

- If p=0, we will obtain the linear equation $D^{\alpha_i} y_i = 0$
- If *p*=1, the homotopy (104) turns out to be the original system given in (102).

The solution of system (104) can be expanded using the parameter p

$$y_i(t) = y_{i0} + py_{i1} + p^2 y_{i2} + p^3 y_{i3} + \cdots$$
(105)

Series of linear equations can be obtained after substitution of (105) in (104) and collecting the terms with the same powers of p, in the form [42]

$$p^{0}: D^{\alpha_{i}}y_{i0} = 0$$

$$p^{1}: D^{\alpha_{i}}y_{i1} = f_{i1}(t, y_{10}, y_{20}, \dots, y_{n0})$$

$$p^{2}: D^{\alpha_{i}}y_{i2} = f_{i2}(t, y_{10}, y_{20}, \dots, y_{n0}y_{11}, y_{21}, \dots, y_{n1})$$

$$p^{3}: D^{\alpha_{i}}y_{i3} = f_{i3}(t, y_{10}, y_{20}, \dots, y_{n0}, y_{11}, y_{21}, \dots, y_{n1}, y_{12}, y_{22}, \dots, y_{n2})$$

$$\vdots \qquad (106)$$

362

where the functions f_{i1} , f_{i2} ,..., satisfy the following equation:

$$f_{i}(t,y_{10},py_{11}+p^{2}y_{12}+\dots,\dots,y_{n0}+py_{n1}+p^{2}y_{n2}+\dots)$$

= $f_{i1}(t,y_{10},y_{20},\dots,y_{n0})+pf_{i2}(t,y_{10},y_{20},\dots,y_{n0},y_{11},y_{21},\dots,y_{n1})$
+ $p^{2}f_{i3}(t,y_{10},y_{20},\dots,y_{n0},y_{11},y_{21},\dots,y_{n1},y_{12},y_{22},\dots,y_{n2})+\dots$
(107)

The following conclusions were made in the work of Abdulaziz et al. [42]:

It is obvious that these linear equations can be easily solved by applying the operator J^{α_i} , i.e., the inverse of the fractional operator D^{α_i} . Hence, the components y_{ik} , k=0,1,2, ..., of the HPM solution can be determined. That is, by setting p=1 in (107) we can determine the entire HPM series solutions

$$y_i(t) = \sum_{k=0}^{\infty} y_{ik}(t)$$
 (108)

The HPM series solution (106) can be approximated by the following *N*-term truncated series:

$$\phi_{iN}(t) = \sum_{k=0}^{N-1} y_{ik}(t).$$
(109)

According to the authors using this method, HPM yields rapid convergence of the solution series in most cases, usually only a few iterations, leading to very accurate solutions.

5. Biomedical applications

5.1. Some considerations concerning fractional order models

The first applications of fractional calculus to biomedical problems were in the areas of membrane biophysics and polymer viscoelasticity [15], where the experimentially observed power law dynamics for current-voltage and stress-strain relationships were concisely captured by fractional order differential equations. Subsequently, the work of Mandelbrot in the field of fractals [21] and of others in the emerging fields of chaos and nonlinear systems attracted much attention to biomedical applications of fractional calculus. For example, there is evidence that biological signals (ECG, EMG and EEG) have spectra that do not increase or decrease by multiples of 20 dB [2,4,17,20]. Hence, system models with poles and zeros of fractional order are often proposed for both analytical and emprical reasons. Here, we describe examples of biomedical applications of fractional calculus taken from the fields of bioinstrumentation, mechanobiology and biomedical imaging.

Physiological models based on linear differential equations are highly successful in describing a wide range of complex phenomena (e.g., action potential propagation, blood oxygenation and filtration, and feedback control of insulin secretion). Such models also serve as the basis for understanding normal physiological homeostatis, as well as the changes that arise as a consequence of disease. Physiological models connect events at the molecular level (ion transport, gas diffusion, vesicle formation) to those at the organ level (blood clearance, oxygen uptake/ gram tissue, muscle tension). Much current work in biophysics and physiology is directed toward linking molecular processes with whole organ (brain, heart, and muscle) function by developing muliscale models that span the intermediate levels of structure (e.g., from the centimeter dimensions of gross anatomy down to the submicron resolution of histology).

In building multiscale models one can either try to use as much of the available anatomical and histological knowledge as possible - building a highly complex structures with hundreds of components (organelles, membranes, cells, extracellular matrix, etc.) - or try to deal empirically with the complexity by developing whole system descriptions (e.g., linear, non-linear, deterministic, or stochastic models) with embedded chaotic or fractal measures (fractal dimensions, Lyapunov exponents, non-Gaussian probability distributions) that capture important features of the observed behavior [2,31]. A diagram illustrating some of the relationships between these approaches is shown in Fig. 1. In this figure the models are characterized on the X-axis by their degree of linearity and on the Y-axis with respect to their deterministic nature. Linear time-invariant causal (LTIC) system models cluster in the first quadrant, while stochastic, probabilistic models fall in the fourth quadrant [4]. In this representation the methods of fractional calculus (linear, deterministic, but non-integer order) bundle together in Fig. 1 within the relm of LTIC system models, where they interpolate between the conventional integer order differential operators and extend the dynamics to fractional order [33].

5.2. Fractional dynamics model

A fractional order model is commonly used to describe the behavior of neural systems (senaory and motor). A simple example is the vestibular-oculomotor system modeled by Anastasio [45,46] in the Laplace domain as s^{α} , where $-1 < \alpha < 1$. The occurrence of s^{α} behavior in the transfer functions for the neural components of vestibulooculomotor systems suggests its need to control or monitor the underlying biological, physical or chemical mechanisms. The s^{α} behavior follows directly from observed power law transient and dynamic behavior unique to the anatomical structure or neurological connections of living systems. Thus the subthreshold behavior of axons, which mimic at their most basic level lossy (RC) transmission lines with fractional impedance relationships, could play a role in understanding synapse complexity, dendritic convergence and generator potential initiation.

For example, the encoding of head motion by the inner ear arises via convergence of unmyelinated afferent and efferent nerve fibers in the vestibular neuroepithelium. This has been suggested as an anatomical site where summation of excitatory and inhibitory postsynaptic potentials can occur (Fig. 2). In a paper on distributed relaxation processes in sensory adaptation, John Thorson and Marguerite Biederman-Thorson [167] reviewed earlier interpretations for fractional dynamics (non-linear spring, transmission line and Gaussian distribution of exponential rate constants), which they found, for the most part, to provide an incomplete explanation for the

Fig. 1. Illustration of the relationship between the principal types of models used to describe complex systems. For conventional linear time-invariant causal (LTIC) models the governing differential equations take on only integer order.

Fig. 2. A drawing of the complex, multiscale neural pathways (hair cells, axons, synapses, neurons) in the vestibular apparatus of the inner ear (adapted from [20]).

wide dynamic range of sensory adaptations. These considerations led to the fractinal order model presented in Section 2.8.

5.3. Fractional impedance model

Distributed relaxation processes appear to be common in cells and tissues. Therefore, it should not be surprising to see that fractional calculus can play an important role in describing the input–output behavior of biological systems. Physical foundations for this behavior may be sought in the fractal or porous structure of the system components or in the physical characteristics of its surfaces and interfaces. Much work [15] is ongoing to develop a direct link between fractal models of molecules, surfaces and materials and the fractional kinetics or dynamics of the resulting behavior (polymerization electrochemical reactions, viscoelastic relaxation).

A major attribute of fractional dynamic models is that they interpolate between the known integer order behavior by extending the transfer function models, f(s), from rational algebraic functions of integer powers of s to irrational functions involving fractional powers of s. This is a natural approach that extends the traditional Laplace transform methods of linear systems analysis [20]. Thus, the fractional dynamics hypothesis is accessible to the engineer and scientist through both Laplace and Fourier techniques (for $s=j\omega$, where ω is the angular frequency in radians/second).

Fractional order circuit elements, such as the impedance $Z=Z_0/(s)^{\alpha}$ or $Z=Z_0/(j\omega)^{\alpha}$, where $0 < \alpha < 1$, provide a useful model for describing the transient and the sinusoidal steady state frequency response of dielectrics and biological tissues [11,20]. Such circuit elements can also be used to develop an electrical circuit model of the electrode-cardiac tissue interface of a pacemaker electrode (Fig. 3). A lumped element circuit model for the cardiac tissue/electrode interface developed by Ovadia and Zavitz [152] is shown in Fig. 4. Accurate impedance models are essential for designing cardiac pacemakers. Fractional calculus appears in the model through the fractional order (or constant phase, $Z=Z_0\omega^{-\alpha}$ × $\exp(j \tan^{-1}(\pi \alpha/2))$ circuit element Z_D , which governs diffusion limited electrochemical reactions at the surface of the electrode.

If we assume that C, the dipole layer capacitance, is small enough so that its reactance can be neglected in comparison with Z_D , then the tissue–electrode equivalent circuit reduces to a resistor in series with Z_D , which can be approximated by two constant phase elements in series. Thus, in the Laplace domain, the overall impedance can be written as

$$z(s) = \frac{\nu(s)}{i(s)} = R + \frac{1}{s^{\alpha}C_{\alpha}} + \frac{1}{s^{\beta}C_{\beta}}$$
(110)

The corresponding impedance plane plot for (110) is shown in Fig. 5 for the simple case of α =1/2 and β =1. Such plots match the data measured in experimental studies of Ovadia and Zavitz [152]. The transient voltage response of this circuit to a step in applied current, such as the leading edge of a pacemaker pulse, is described in the timedomain by

$$V(t) = I_0 R + \frac{I_0 t^{\alpha}}{C_{\alpha} \Gamma(\alpha + 1)} + \frac{I_0 t^{\beta}}{C_{\beta} \Gamma(\beta + 1)}$$
(111)

which gives a power law response that corresponds to that observed in heart stimulation experiments by Greatbatch and Chardack [87].

Thus we observe that the basic cardiac tissue-electrode impedance can be represented by a series combination of a resistor and two fractional lumped circuit elements. The overall transfer function for this model corresponds to the following fractional order differential equation:

$$C_{\alpha} \frac{d^{\alpha} V(t)}{dt^{\alpha}} = R C_{\alpha} \frac{d^{\alpha} I(t)}{dt^{\alpha}} + I(t) + \frac{C_{\alpha}}{C_{\beta}} \frac{d^{\alpha-\beta} I(t)}{dt^{\alpha-\beta}}$$
(112)

if we assume $\alpha > \beta$.

We can use the correspondence between RC electric circuits and viscoelastic networks of springs and dashpots

Fig. 3. A drawing of the tissue–electrode interface between cardiac muscle cells and an implanted electrode. (Redrawn from Ovadia and Zavitz [152]).

to construct similar fractional order dynamic models for the biomechanical properties of tissues [19]. For example, Craiem and Armentano [67] have modeled the elastic properties of the aorta, *in vivo* in a Merino sheep, using a fractional order generalization of the relationship between stress $\sigma(t)$ and strain $\varepsilon(t)$. Their generalized Voigt model consists of a spring in parallel with two "springpots" of fractional order α and β . The governing fractional order differential equation is

$$\sigma(t) = E_0 \varepsilon(t) + \eta_1 \frac{d^\beta \varepsilon(t)}{dt^\alpha} + \eta_2 \frac{d^\beta \varepsilon(t)}{dt}$$
(113)

where E_0 is the elastic constant for a spring, and η_1 and η_2 represent the viscosities of two springpots in parallel with the spring. From this equation the complex modulus $E^*(\omega)$ can be defined for sinusoidal signals as the ratio of stress to strain by

$$E^*(\omega) = \frac{\sigma(\omega)}{\varepsilon(\omega)} = E_0 + \eta_1 (j\omega)^{\alpha} + \eta_2 (j\omega)^{\beta}$$
(114)

The real part of $E^*(\omega)$ is defined as the storage modulus and the imaginary part of $E^*(\omega)$ is the loss or dissipation modulus. The storage modulus characterizes the elastic property of the arterial wall while the loss modulus describes the tissue's ability to absorb energy. Both properties change with frequency and govern pulsatile oscillations of the vessel walls in health and disease. This model was found by Craiem and Armentano to give a better fit to *in vivo* data recorded from 2 to 30 Hz than a

Fig. 5. Impedance plane plot for two constant phase element impedances in series with a resistor. In this example, we set $R=C_{\alpha}=C_{\beta}=1$ and $\alpha=1/2$, $\beta=1$.

Fig. 4. Tissue–electrode circuit model. R_B is the bulk tissue resistance, R_{a1} and R_{a2} are electrode access resistances, θ is the charge transfer resistance, C is the dipole layer capacitance and Z_D is the fractional Warburg impedance.

Voigt model (single spring in parallel with a dashpot) or a fractional Voigt (single spring in parallel with single springpot). A vector plot in the complex plane of the complex modulus for this study is shown in Fig. 6.

In particular, the model (114) captures the changes that arise in vessel wall elasticity when a vascular constriction is induced by the local administration of phenylephrine [67]. The authors conclude that the α springpot appears to describe the stretching of the elastic fibers of the aorta (α is close to zero), while the β springpot seems to represent a structural viscous behavior (β closer to 1). As expected the elastic contribution increases— α decreases from 0.20 to 0.11—following administration of phenylephrine while the loss term is relatively unchanged (0.84–0.80). Thus, for a complex multi-scale tissue such as the arterial wall, the fractional order model is able to characterize the important features of its dynamic behavior.

Fractional order models have also been used by Sinkus et al. [164] to fit magnetic resonance elastography (MRE) data from breast tumors. In this technique, MRI is used to image low frequency (50-1500 Hz) shear wave oscillations in the breast. Wavelength and attenuation of the vibrations directly reflect elastic shear modulus and viscosity of the tissue through the complex wave vector $k(\omega) = \beta(\omega) + i\alpha(\omega)$. In MRE these tissue properties are mapped onto an elastogram image through an assumed model of the tissue's mechanical properties-usually a purely elastic spring with zero loss, or a Voigt spring/ dashpot model. In his study, Sinkus assumed a power law increase in attenuation with excitation frequency, $\alpha(\omega) = \alpha_0 \omega^y$ (where 0 < y < 1), and invoked causality via the Hilbert transform to obtain the propagation constant as $\beta(\omega) = \tan(\pi y/2) \alpha_0 \omega^y$. Thus, for

$$k(\omega) = a_0 \omega^y e^{-j\pi/2} \sqrt{1 + (\tan(\pi y/2)^2)}$$
(115)

 $k(\omega)$ is related to the complex shear modulus $G^*(\omega)$ through

$$k(\omega) = \omega \sqrt{\rho/G^*(\omega)}, \quad G^*(\omega) = \left| G^*(\omega) e^{j\theta} \right|$$
(116)

Fig. 6. Vector diagram (complex plane plot) of (114) for *in vivo* modulus data from an aorta under control (CTL) conditions and following application of a vasoconstrictive agent (PHE); redrawn from, Craiem and Armentano [67].

such that the modulus and phase can be written as

$$|G^*(\omega)| = \rho \omega^{\gamma} / \alpha_0^2 (1 + \chi^2), \quad \theta = \tan^{-1}(G_1/G_d) = \pi y \quad (117)$$

where $\gamma = 2 - 2\gamma$. The advantage of this model is that it does not specify a particular Maxwell, Voigt or Kelvin rheological model, but simply assumes an underlying fractional order dynamics, ω^{y} , and then estimates the fractional power law parameters y and α_0 from the MRE data. Sinkus first verifies this model for a tissue mimicking breast phantom at a fixed frequency of 65 Hz and then applies the model to human breast tissue by measuring the dynamic modulus at 65, 75, 85 and 100 Hz. A complex plane plot of G_d and G_l gives a straight line with a y value of approximately 0.13 for normal tissue. Analysis of 39 malignant and 29 benign tumors using this method gives a clear separation of the tumors from the normal (and fibrotic) breast tissue, and furthermore separates the malignant from the benign tumors when individual cases are plotted in a graph (Fig. 7) of y versus α_0 (an increase in specificity of about 20% at 100% sensitivity). In earlier studies this group was not able to classify breast tumors on the basis of G_d and G_1 alone, so this model provides a significant improvement in cancer detection.

In the three examples considered here, fractional order models were found to provide better fits to electrical and mechanical measurements made on living tissue. Such studies need replication, but these findings provide useful examples of cases where an extension of the "standard" integer order dynamic models of circuits and mechanical systems is warranted. Fractional order dynamic models of complex, multiscale systems account for anomalous dynamic behavior through a simple extension of the order of the operations from integer to fractional. In the time-domain this extension is manifest through incorporation to a variable degree of system memory through convolution with a power law kernel exhibiting fading memory of the past. Perhaps, in the future, the development of integrated space and time-domain fractional order models will become a more standard component of linear systems analysis, at least when such

Fig. 7. Plot of benign (+) and malignant (\blacksquare) breast tumor MRE data for 39 patients. These data are replotted from Sinkus et al. [164].

models are applied to living systems. Clearly, when the structure in living systems is fractal, or when the measured signals exhibit anomalous properties, one should suspect that such dynamics might be best expressed by fractional order models. Much remains to be done, and we look to the philosopher Henri Bergson to provide inspiration, for, as Bergson [3] noted in his 1911 work *Creative Evolution*: "the present contains nothing more than the past, and what is found in the effect was already in the cause".

6. Fractional Brownian motion

Fractional Brownian motion was introduced first by Kolmogorov [104]. Later, Mandelbrot and Van Ness [21,120] proposed it as a model for nonstationary signals, with stationary increments, which is useful in understanding phenomena with long range dependence and with a frequency dependence of the form $1/f^{\alpha}$, with α non-integer [102,177–179]. In [144] an approach based on the fractional derivatives was proposed and will be described next.

Assume now that we are computing the fractional derivative of the white noise, w(t), with power equal to σ^2 . We define fractional noise by

$$r_{\alpha}(t) = D^{\alpha} w(t) \tag{118}$$

If w(t) is Gaussian, we will call $r_{\alpha}(t)$ fractional Gaussian noise. As known, the autocorrelation function of the white noise is $\sigma^2 \delta(t)$. With some work, we obtain for the derivative autocorrelation [136]

$$R_r^{\alpha}(t) = \lim_{h \to 0} \frac{\Gamma(2\alpha+1)}{h^{2\alpha}} \sum_{-\infty}^{+\infty} \frac{(-1)k}{\Gamma(\alpha-k+1)\Gamma(\alpha+k+1)} \delta(t-kh)$$
(119)

where $R_r^{\alpha}(t) = E[r_{\alpha}(\tau+t)r_{\alpha}(\tau)]$. The right hand side is a sequence of weighted impulses that becomes close together as h goes to zero. If $\alpha > -1/2$ (119) is a centred derivative [103,142] of $\delta(t)$ and can be expressed by

$$R_r^{\alpha}(t) = \frac{1}{2\Gamma(-2\alpha)\cos(\alpha\pi)} \left| t \right|^{-2\alpha - 1}$$
(120)

it represents an autocorrelation function, having a maximum at the origin, if

$$\begin{cases} 2\alpha + 1 > 0\\ \Gamma(-2\alpha)\cos(\alpha\pi) > 0 \end{cases}$$
(121)

The first condition $(\alpha > -1/2)$ was already assumed. As

$$\frac{1}{2\Gamma(-2\alpha)\cos(\alpha\pi)} = \frac{\Gamma(2\alpha+1)\sin(2\alpha\pi)}{2\pi\cos(\alpha\pi)} = -\frac{\Gamma(2\alpha+1)\sin(\alpha\pi)}{\pi}$$
(122)

it is not hard to see that for $-1/2 < \alpha < 0$ and $\alpha \in (2n, 2n+1)$, $n \in \mathbb{Z}^+$ we obtain valid autocorrelation functions. We conclude that, in the interval $-1/2 < \alpha < 1/2$ we obtain a stationary process in the integration case ($\alpha < 0$) and nonstationary in the derivative case ($\alpha > 0$). This fractional noise will be used next to define

the fractional Brownian motion. Let $r_{\alpha}(t)$ be a fractional noise. Define a process $v_{\alpha}(t)$, $t \ge 0$, by

$$\nu_{\alpha}(t) = \int_{0}^{t} r_{\alpha}(\tau) d\tau$$
(123)

We will call this process *fractional Brownian motion* (or generalized Wiener–Lévy process). It is not difficult to show that it enjoys all the properties normally required for fBm [21,120]:

- 1. $v_{\alpha}(0)=0$ and $E\{v_{\alpha}(t)\}=0$ for every $t \ge 0$. If w(t) is Gaussian, so are $r_{\alpha}(t)$ and $v_{\alpha}(t)$. The proposed definitions do not need Gaussianity.
- 2. The covariance is [142]

$$E[\nu_{a}(t)\nu_{a}(s)] = \frac{\sigma^{2}}{2\Gamma(-2\alpha+2)\cos\alpha\pi} \times [|t|^{-2\alpha+1} + |s|^{-2\alpha+1} - |t-s|^{-2\alpha+1}]$$
(124)

valid for $|\alpha| < 1/2$. Putting $H = -\alpha + 1/2$ wth $H \in (0,1)$, we obtain the usual formulation

$$E[v_a(t)v_a(s)] = \frac{V_H}{2} \left[\left| t \right|^{2H} + \left| s \right|^{2H} - \left| t - s \right|^{2H} \right]$$
(125)

with

$$V_H = \frac{\sigma^2}{\Gamma(2H+1)\sin H\pi}$$
(126)

The variance is readily obtained as

$$E[\nu_{\alpha}(t)^{2}] = V_{H} |t|^{2H}$$
(127)

3. The process has stationary increments. Letting the increments be defined by

$$\Delta \nu_{\alpha}(t,s) = \nu_{\alpha}(t) - \nu_{\alpha}(s) = \int_{s}^{t} r_{\alpha}(\tau) d\tau \qquad (128)$$

its variance is given by [7]

$$\operatorname{Var}\left\{\Delta \nu_{\alpha}(t,s)\right\} = \sigma^{2} \frac{\left|t-s\right|^{-2\alpha+1}}{2\Gamma(-2\alpha+2)\cos\alpha\pi}$$
(129)

4. The process is self-similar. From (125), we have

$$E[\nu_{\alpha}(\alpha t)\nu_{\alpha}(as)] = \frac{V_{H}}{2} |a|^{2H} [|t|^{2H} + |s|^{2H} - |t-s|^{2H}]$$
(130)

5. The incremental process has a $1/f^{\beta}$ spectrum. On defining an incremental process by (128) and choosing s=t-T

$$d_H(t) = v_H(t) - v_H(t - T)$$
(131)

has an autocorrelation function given by

$$R_{d}(\tau) = \frac{V_{H}}{2} \left[\left| t + T \right|^{2H} + \left| \tau - T \right|^{2H} - 2 \left| \tau \right|^{2H} \right]$$
(132)

and as [142]

$$FT\left[\frac{1}{2\Gamma(\beta)\cos(\beta\pi/2)}\left|t\right|^{\beta-1}\right] = \frac{1}{\left|\omega\right|^{\beta}}$$
(133)

we obtain the spectrum of the incremental process

$$S_d(\omega) = \sigma^2 \frac{\sin^2(\omega T/2)}{|\omega|^{2H+1}}$$
(134)

For $|\omega| \gg \pi/T$, the spectrum can be approximated by

$$S_d(\omega) \approx \frac{\sigma^2 T^2}{4|\omega|^{2H-1}} \tag{135}$$

We conclude that the proposed definition agrees with the Mandelbrot and van Ness results.

The result expressed in (135) is interesting [21,120]:

- if 0 < H < 1/2, the spectrum is parabolic and corresponds to an antipersistent fBm; because the increments tend to have opposite signs, this case corresponds to the integration of a stationary fractional noise;
- if 1/2 < H < 1, the spectrum has a hyperbolic character and corresponds to a persistent fBm; because the increments tend to have the same sign, this case corresponds to the integration of a nonstationary fractional noise.

7. Conclusions

Fractional calculus models provide a relatively simple way to describe the physical and electrical properties of complex, heterogeneous and composite biomaterials. There is a multi-scale generalization inherent in the definition of the fractional derivative that accurately represents interactions occurring over a wide range of space or time. Thus, we can avoid excessive segmentation or compartmentalization of tissues into subsystems or subunits-a system reduction that often creates more computational and compositional complexity than can be experimentally evaluated. Finally, fractional calculus models suggest new experiments and measurements that can shed light on the meaning of biological system structure and dynamics. Thus, by applying fractional calculus to model the behavior of cells and tissues, we can begin to unravel the inherent complexity of individual molecules and membranes in a way that leads to an improved understanding of the overall biological function and behavior of living systems.

Acknowledgements

The work of of Richard Magin was supported, in part, by the NIH, NIBIB Grant R 01 EB 007537.

The work of Manuel Ortigueira was supported by "Fundação para a Ciência e Tecnologia" (CTS multiannual funding) through the PIDDAC Program funds. Igor Podlubny is partly supported by Grants APVV-0040-07 and VEGA 1/0390/10, 1/0404/08. The work of Juan Trujillo was supported in part by MICINN of Spain (Grants MTM2007-60246 and MTM2010-16499).

References

 G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994.

- [2] Y. Bar-Yam, Dynamics of Complex Systems, Perseus Books, Reading, MA, 1997.
- [3] H. Bergson, Creative Evolution, Dover, New York, 1998.
- [4] E.N. Bruce, Biomedical Signal Processing and Signal Modeling, John Wiley, New York, 2001.
- [7] M.A. Chaudhry, S.M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall/CRC, 2002.
- [8] K. Diethelm, A.D. Freed, On the Solution of Nonlinear Fractional Differential Equations used in the Modeling of Viscoplasticity, Springer, Heidelberg, 1999.
- [9] K. Diethelm, Fractional Differential Equations, Theory and Numerical Treatment, TU Braunschweig, Braunschweig, 2003.
- [10] S. Dugowson, Les différentielles métaphysiques, Ph.D. Thesis, Université Paris Nord, 1994.
- [11] S. Grimnes, O.G. Martinsen, Bioimpedance and Bioelectricity Basics, Academic Press, San Diego, 2000.
- [12] E. Hairer, S.P. NÅrsett, G. Wanner, 2nd ed, Solving Ordinary Differential Equations I: Nonstiff Problems, vol. 8, Springer-Verlag, Berlin, 1993.
- [14] P. Henrici, Applied and Computational Complex Analysis, vol. 2, John Wiley & Sons, Inc., 1991, pp. 389–391.
- [15] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [17] J. Keener, J. Sneyd, Mathematical Physiology, Springer, New York, 2004.
 [18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of
- Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [19] R.S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton, FL, 1999.[20] R.L. Magin, Fractional Calculus in Bioengineering, Begell House,
- Connecticut, 2006. [21] B.B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1983.
- [22] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
- [23] K. Nishimoto, Fractional Calculus, Descartes Press Co., Koriyama, 1989.
- [24] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, 1974.
- [25] A. Oustaloup, La Dérivation Non Entire, Editions Hermès, 1995.
- [26] I. Podlubny, Fractional-Order Systems and Fractional-Order Controllers, The Academy of Sciences, Institute of Experimental Physics, Kosice, Slovak Republic, 1994.
- [27] I. Podlubny, Numerical Solution of Ordinary Fractional Differential Equations by the Fractional Difference Method, Gordon and Breach, Amsterdam, 1997.
- [28] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Academic Press, San Diego, 1999.
- [29] J.M. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.
- [30] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives—Theory and Applications, Gordon and Breach Science Publishers, 1987.
- [31] M. Shelhamer, Nonlinear Dynamics in Physiology: A State Space Approach, World Scientific, Singapore, 2007.
- [32] M. Weilbeer, Efficient numerical methods for fractional differential equations and their analytical background, Ph.D. Thesis, Von der Carl-Friedrich-Gauß-Fakultät für Mathematik und Informatik der Technischen Universität Braunschweig, 2005.
- [33] B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators, Springer, New York, 2003.
- [34] S. Westerlund, Dead Matter has Memory, Causal Consulting, Kalmar, Sweden, 2002.
- [35] A.H. Zemanian, Distribution Theory and Transform Analysis, Dover Publications, New York, 1987.
- [36] O.P. Agrawal, J.A.T. Machado, J. Sabatier (Eds.), Special issue on fractional derivatives and their applications, Nonlinear Dynamics 38(1-4) (2004) December.
- [37] J.A.T. Machado (Ed.), Special issue on fractional order calculus and its applications, Nonlinear Dynamics 29 (1–4) (2002) July.
- [38] M.D. Ortigueira, J.A.T. Machado (Eds.), Special issue on fractional signal processing and applications, Signal Processing 83 (11) (2003) November.
- [39] M.D. Ortigueira, J.A.T. Machado (Eds.), Special section: fractional calculus applications in signals and systems, Signal Processing 86 (10) (2006) October.
- [40] O. Abdulaziz, I. Hashim, M.S.H. Chowdhury, A.K. Zulkifle, Assessment of decomposition method for linear and nonlinear fractional

differential equations, Far East Journal of Applied Mathematics 28 (1) (2007) 112–950.

- [41] O. Abdulaziz, I. Hashim, E.S. Ismail, Approximate analytical solution to fractional modified kdv equations, Mathematical and Computer Modelling, 49 (1–2) (2009) 136–145.
- [42] O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy–perturbation method, Physics Letters A 372 (2008) 451–459.
- [43] G. Adomian, A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications 135 (1988) 501–544.
- [44] M.A. Al-Alaoui, Novel digital integrator and differentiator, Electronics Letters 29(4) (1993) 376–378.
- [45] T.J. Anastasio, The fractional-order dynamics of brainstem vestibulo-ocular dynamics of brainstem vestibular-oculomotor neurons, Biological Cybernetics 72 (1994) 69–79.
- [46] T.J. Anastasio, Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior, Biological Cybernetics 79 (1998) 377–391.
- [47] H.L. Arora, F.I. Abdelwahid, Solution of non-integer order differential equations via the adomian decomposition method, Applied Mathematics Letters 6 (1) (1993) 21–23.
- [48] R.S. Barbosa, J.A.T. Machado, I.M. Ferreira, Least-squares design of digital fractional-order operators, in: Proceedings of FDA'2004 First IFAC Workshop on Fractional Differentiation and its Applications, 19–21 July 2004, Bordeaux, France.
- [49] R.S. Barbosa, J.A.T. Machado, I.M. Ferreira, Pole-zero approximations of digital fractional-order integrators and differentiators using signal modeling techniques, in: Proceedings of the 16th IFAC World Congress, July 2005, Prague, Czech Republic.
- [50] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, Zeitschrift fur Angewandte Mathematik und Mechanik 75 (1995) 623–635.
- [51] L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287, 1996.
- [52] N. Bildik, A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, International Journal of Nonlinear Science and Numerical Simulations 7 (1) (2006) 65–70.
- [53] G.W. Bohannan, Analog fractional order controller in a temperature control application, in: Proceedings of the Second IFAC Workshop on Fractional Differentiation and its Applications, July 2006, Porto, Portugal.
- [54] B. Bonilla, M. Rivero, J.J. Trujillo, Linear differential equations of fractional order, in: Proceedings of the Second Symposium on Fractional Derivatives and their Applications, FDTAs, SEP, 2005, Long Beach, CA.
- [55] B. Bonilla, M. Rivero, J.J. Trujillo, On systems of linear fractional differential equations with constant coefficients, in: Proceedings of the International Symposium on Analytic Function Theory, Fractional Calculus and their Applications, August 22–27, 2005 University of Victoria, Victoria, Canada.
- [56] B. Bonilla, M. Rivero, J.J. Trujillo, On theory of systems of fractional linear differential equations, in: Proceedings of the Fifth International Conference on Multibody Systems, Nonlinear Dynamics, and Control, September 24–28, 2005, Long Beach CA, USA.
- [57] B. Bonilla, M. Rivero, J.J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Applied Mathematics and Computation 187 (9) (2007) 68–78.
- [58] B. Bonilla, M. Rivero, L. Rodríguez-Germá, J.J. Trujillo, Fractional differential equations as alternative models to the nonlinear fractional differential equations, Applied Mathematics and Computation 187 (9) (2007) 79–88.
- [59] L.M.C. Campos, Fractional calculus of analytic and branched functions, in: R.N. Kalia (Ed.), Recent Advances in Fractional Calculus Global Publishing Company, 1993.
- [60] L.M.C. Campos, On a concept of derivative of complex order with applications to special functions, IMA Journal of Applied Mathematics 33 (1984) 109–133.
- [61] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophysical Journal of the Royal Astronomical Society 13 (1967) 529–539.
- [62] Y.Q. Chen, K.L. Moore, Discretization schemes for fractional order differentiators and integrators, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49 (3) (2002) 363–367.

- [63] Y.Q. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator, Signal Processing 83 (11) (2003) 2359–2365.
- [64] Y.Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review, Nonlinear Dynamics 38 (2004) 155–170.
- [65] T. Clarke, B.N.N. Achar, Hanneken, Mittag-Leffler functions and transmission lines, Journal of Molecular Liquids 114 (1–3) (2004) 159–163.
- [66] J.P. Clerc, A.-M.S. Tremblay, G. Albinet, C.D. Mitescu, a. c. response of fractal networks, Le Journal de Physique-Lettres 45 (19) (1984).
- [67] D. Craiem, R.L. Armentano, A fractional derivative model to describe arterial viscoelasticity, Biorheology 44 (2007) 251–263.
- [68] V. Daftardar-Gejji, H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, Journal of Mathematical Analysis and Applications 301 (2) (2005) 508–518.
- [70] J.B. Diaz, T.J. Osler, Differences of fractional order, Mathematics of Computation 28 (125) (1974).
- [71] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electronic Transactions on Numerical Analysis 5 (1997) 1–6.
- [72] K. Diethelm, Generalized compound quadrature formulae for finite-part integrals, IMA Journal of Numerical Analysis 17 (3) (1997) 479–493.
- [73] K. Diethelm, N. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications 265 (2002) 229–248.
- [74] K. Diethelm, N.J. Ford, Numerical solution of the Bagley–Torvik equation, BIT 42 (3) (2002) 490–507.
- [75] K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics 29 (2002) 3–22.
- [76] K. Diethelm, A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999.
- [77] K. Diethelm, Y. Luchko, Numerical solution of linear multi-term differential equations of fractional order Journal of Computational Analysis and Applications, 2003.
- [78] K. Diethelm, G. Walz, Numerical solution for fractional differential equations by extrapolation, Numerical Algorithms 16 (1997) 231–253.
- [80] N. Engheta, Fractional curl operator in electromagnetics, Microwave and Optical Technology Letters 17 (2) (1998).
- [81] N. Engheta, Fractional paradigm in electromagnetic theory, in: D.H. Werner, R. Mittra (Eds.), Frontiers in Electromagnetics, IEEE Press, 2000 (Chapter 12).
- [82] A. Fenander, Modal synthesis when modeling damping by use of fractional derivatives, American Institute of Aeronautics and Astronautics Journal 34 (5) (1996) 1051–1058.
- [83] L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators, Mechanical Systems and Signal Processing 5 (2) (1991) 81–88.
- [84] A.J. George, A. Chakrabarti, The adomian method applied to some extraordinary differential equations, Applied Mathematics Letters 8 (3) (1995) 91–97.
- [85] R. Gorenflo, F. Mainardi, Fractional diffusion processes: probability distributions and continuous time random walk, in: G. Rangarajan, M. Ding (Eds.), Long Range Dependent Processes: Theory and Applications, Springer-Verlag, 2003.
- [86] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time-fractional diffusion: a discrete random walk approach, Nonlinear Dynamics 29 (1-4) (2002) 129–143.
- [87] W. Greatbatch, W.M. Chardack, Myocardial and endocardial electrodes for chronic implantation, Annals of the New York Academy of Sciences 148 (1968) 235–251.
- [88] E. Hairer, C. Lubich, M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, SIAM Journal on Scientific and Statistical Computing 6 (3) (1985) 532–541.
- [91] J.H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (3-4) (1999) 257–262.
- [93] J.H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics 35 (1) (2000) 37–43.
- [96] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol Acta 37 (2005) 1–7.
- [97] F. Huang, F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing 18 (2) (2005) 339–350.

- [98] F. Huang, F. Liu, The time-fractional diffusion equation and fractional advection-dispersion equation, ANZIAM Journal 46 (2005) 1–14.
- [99] M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviations of capacitive and indutive loops in the electrochemical impedance of a dissolving iron electrode, Analytical Sciences 18 (6) (2002) 641–644.
- [100] H. Jafari, V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, Journal of Computational and Applied Mathematics 196 (2) (2006) 644-651.
- [101] K. Kawaba, W. Nazri, H.K. Aun, M. Iwahashi, N. Kambayashi, A realization of fractional power-law circuit using OTAs, in: Proceedings of the 1998 IEEE Asia-Pacific Conference on Circuits and Systems, APCCAS 1998, pp. 249–252, 24–27 November 1998, Chiangmai, Thailand.
- [102] M.S. Keshner, 1/f noise, in: Proceedings of IEEE, vol. 70, no. 3, March 1982, pp. 212–218.
- [103] A.A. Kilbas, M. Rivero, L. Rodríguez-Germá, J.J. Trujillo, α-analytic solutions of some linear fractional differential equations with variable coefficients, Applied Mathematics and Computation 187 (9) (2007) 239–249.
- [104] N.A. Kolmogorov, Wienersche Spiralen und Einige Andere Interessante Kurven im Hilbertschen Raum, Compte Rendus de l'Académie des Sciences de 1'Union des Républiques Soviétiques Socialistes, vol. 26, no. 2, 1940, pp. 115–118.
- [105] M.S., Krishna, S., Das, K. Biswas, B. Goswami, Characterization of a fractional order element realized by dipping a capacitive type probe in polarizable medium, in: Proceedings of the Symposium on Fractional Signals and Systems, Lisbon'09, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal, November 4–6.
- [106] P. Kumar, O.P. Agrawal., An approximate method for numerical solution of fractional differential equations, Signal Processing 86 (2006) 2602–2610.
- [107] P. Lanusse, J. Sabatier, R. Malti, P. Melchior, X. Moreau, and A. Oustaloup, Past and some recent CRONE Group applications of fractional differentiation, Presentation at the Symposium on Applied Fractional Calculus (SAFC07), Industrial Engineering School (University of Extremadura), 15–17 October 2007, Badajoz, Spain.
- [109] H.M. Liu, Variational approach to nonlinear electrochemical system, International Journal of Nonlinear Science and Numerical Simulations 5 (1) (2004) 95–96.
- [111] C. Lubich, On the stability of linear multistep methods for Volterra convolution equations, IMA Journal of Numerical Analysis 3 (4) (1983) 439–465.
- [112] C. Lubich, Fractional linear multistep methods for Abel–Volterra integral equations of the second kind, Mathematics of Computation 45 (172) (1985) 463–469.
- [113] C. Lubich, Discretized fractional calculus, SIAM Journal on Mathematical Analysis 17 (3) (1986) 704–719.
- [114] J.A.T. Machado, Analysis and design of fractional-order digital control systems, Journal of Systems Analysis, Modelling and Simulation 27 (1997) 107–122.
- [115] J.A.T. Machado, Discrete-time fractional-order controllers, Journal of Fractional Calculus and Applied Analysis 4 (1) (2001) 47–66.
- [116] P.J. Mahon, G.L. Paul, S.M. Kesshishian, A.M. Vassallo, Measurement and modelling of high-power performance of carbon-based supercapacitors, Journal of Power Sources 91 (1) (2000) 68–76.
- [117] F. Mainardi, Linear viscoelasticity, Chapter 4, in: A Guran, A Bostrom, O Leroy, G Maze (Eds.), Acoustic Interactions with Submerged Elastic Structures, Part IV: Nondestructive Testing, Acoustic Wave Propagation and Scattering, World Scientific, Singapore, 2002, pp. 97–126.
- [118] F. Mainardi, The time fractional diffusion-wave equation, Radiophysics and Quantum Electronics 38 (1-2) (1995) 13-24.
- [119] N. Makris, M.C. Constantinou, Fractional-derivative maxwell model for viscous dampers, Journal of Structural Engineering 117 (9) (1991) 2708–2724.
- [120] B.B. Mandelbrot, J.W. Van Ness, The fractional brownian motions, fractional noises and applications, SIAM Review 10 (4) (1968) 422-437.
- [121] V. Marinca, An approximate solution for one-dimensional weakly nonlinear oscillations, International Journal of Nonlinear Science and Numerical Simulations 3 (2) (2002) 107–110.
- [122] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Mathematics and Computers in Simulation 70 (2) (2005) 110–118.

- [123] S. Momani, Numerical simulation of a dynamic system containing fractional derivatives, in: International Symposium on Nonlinear Dynamics, Shanghai, China, 2005.
- [124] S. Momani, A numerical scheme for the solution of multi-order fractional differential equations, Applied Mathematics and Computation 182 (1) (2006) 761–770.
- [125] S. Momani, S. Abuasad, Application of He's variational iteration method to Helmholtz equation, Chaos, Solitons & Fractals 27 (5) (2006) 1119–1123.
- [126] S. Momani, K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Applied Mathematics and Computation 162 (3) (2005) 1351–1365.
- [127] S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Computers and Mathematics with Applications 54 (7–8) (2007) 910–919.
- [128] S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A 365 (5–6) (2007) 345–350.
- [129] S. Momani, Z. Odibat, Numerical approach to differential equations of fractional order, Journal of Computational and Applied Mathematics 207 (2007) 96–110.
- [130] S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos, Solitons & Fractals 31 (2007) 1248–1255.
- [131] S. Momani, R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Computers and Mathematics with Applications 52 (3-4) (2006) 459–470.
- [132] C.A. Monje, B.M. Vinagre, A.J. Calderón, J.I. Suárez, I. Tejado, Some experiences in linear and nonlinear fractional order control, Presentation at the Symposium on Applied Fractional Calculus (SAFC07), Industrial Engineering School (University of Extremadura), 15–17 October 2007, Badajoz, Spain.
- [133] D. Moretti, A. Vivoli, Random walks and fractional diffusion, Interdisciplinary Workshop "From Waves to Diffusion and Beyond," 20 December 2002, Bologna, Italy.
- [135] M.D. Ortigueira, Introduction to fractional signal processing, part 1: continuous-time systems, IEE Proceedings on Vision, Image and Signal Processing 1 (2000) 62–70.
- [136] M.D. Ortigueira, Introduction to fractional signal processing, part
 2: discrete-time systems, IEE Proceedings on Vision, Image and Signal Processing 147 (1) (2000) 71–78.
- [137] M.D. Ortigueira, On the initial conditions in continuous-time fractional linear systems, Signal Processing 83 (11) (2003) 2301–2309.
- [138] M.D. Ortigueira, From differences to differintegrations, Fractional Calculus and Applied Analysis 7 (4) (2004) 459–471.
- [139] M.D. Ortigueira, J.A. Tenreiro-Machado, J. Sá da Costa, Which differintegration?, IEE Proceedings Vision, Image and Signal Processing 152 (6) (2005) 846–850.
- [140] M.D. Ortigueira, A coherent approach to non integer order derivatives, Signal Processing, Special Section: "Fractional Calculus Applications in Signals and Systems 86 (10) (2006) 2505–2515.
- [141] M.D. Ortigueira, A.J. Serralheiro, A new least-squares approach to differintegration modelling, Signal Processing, Special Section: "Fractional Calculus Applications in Signals and Systems 86 (10) (2006) 2582–2591.
- [142] M.D. Ortigueira, Riesz potentials and inverses via centred derivatives, International Journal of Mathematics and Mathematical Sciences (2006) Article ID 48391.
- [143] M.D. Ortigueira, A.J. Serralheiro, Pseudo-fractional ARMA modelling using a double Levinson recursion, IET Control Theory and Applications 1 (1) (2007) 173–178.
- [144] M.D. Ortigueira, A.G. Batista, On the relation between the fractional Brownian motion and the fractional derivatives, Physics Letters A 372 (7) (2008) 958–968.
- [145] M.D. Ortigueira, F.V. Coito, The initial conditions of Riemann-Liouville and Caputo derivatives, in: Proceedings of the Sixth EUROMECH Conference ENOC 2008, June 30–July 4, 2008, Saint Petersburg, Russia.
- [146] M.D. Ortigueira, J.J. Trujillo, Generalized GL fractional derivative and its Laplace and Fourier transform, in: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009, August 30–September 2, 2009, San Diego, CA, USA.
- [147] M.D. Ortigueira, F.J. Coito, System initial conditions vs derivative initial conditions, *Computers and Mathematics with Applications* special issue on Fractional Differentiation and Its Applications 59 (5) (2010) 1782–1789.

- [148] A. Oustaloup, Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation, IEEE Transactions on Circuits and Systems CAS-28 (10) (1981).
- [149] A. Oustaloup, B. Mathieu, P. Lanusse, The CRONE control of resonant plants: application to a flexible transmission, European Journal of Control 1 (2) (1995) 113–121.
- [150] A. Oustaloup, F. Levron, F. Nanot, B. Mathieu, Frequency band complex non integer differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47 (1) (2000) 25–40.
- [151] A. Oustaloup, O. Cois, P. Lanusse, P. Melchior, X. Moreau, J. Sabatier, The CRONE approach: theoretical developments and major applications, in: Proceedings of the Second IFAC Workshop on Fractional Differentiation and its Applications, July 2006, Porto, Portugal.
- [152] M. Ovadia, D.H. Zavitz, The electrode-tissue interface in living heart: equivalent circuit as a function of surface area, Electroanalysis 10 (1998) 262–272.
- [153] I. Podlubny, M. Kacenak, Mittag–Leffler function, <http://www. mathworks.com/matlabcentral/fileexchange/8738>, 17 October 2005 (Updated 25 March 2009).
- [154] I. Podlubny, T. Skovranek, B. Vinagre, Matrix approach to discretization of fractional derivatives and to solution of fractional differential equations and their systems, in IEEE Conference on Emerging Technologies Factory Automation ETFA 2009, September 22–25, Palma de Mallorca, Spain, doi: 10.1109/ ETFA.2009.5347166, 2009.
- [155] I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (4) (2000) 359–386.
- [156] V. Ramachandran, C.S. Cargour, M. Ahmadi, Cascade realization of the irrational immittance S1/2, in: IEE Proceedings, Part G, vol. 132, no. 2, April 1985, pp. 64–67.
- [157] S.S. Ray, R.K. Bera, An approximate solution of a nonlinear fractional differential equation by adomian decomposition method, Applied Mathematics and Computation 167 (1) (2005) 561–571.
- [158] S.S. Ray, R.K. Bera, Solution of an extraordinary differential equation by adomian decomposition method, Journal of Applied Mathematics 4 (2004) 331–338.
- [159] E.A. Rawashdeh, Numerical solution of semidifferential equations by collocation method, Applied Mathematics and Computation 174 (2006) 869–876.
- [160] J. Sabatier, M. Aoun, A. Oustaloup, G. Gregoire, F. Ragot, P. Roy, Fractional system identification for lead acid battery state charge estimation, Signal Processing 86 (10) (2006) 2645–2657.
- [161] G.E. Santamaría, J.V. Valverde, R. Pérez-Aloe, B.M. Vinagre, Microelectronic implementations of fractional-order integrodifferential operators, Journal of Computational and Nonlinear Dynamics 3 (2) (2008) 021301.
- [162] I. Schäfer, K. Krüger, Modelling of coils using fractional derivatives, Journal of Magnetism and Magnetic Materials 307 (1) (2006) 91–98.
- [163] N. Shawagfeh, D. Kaya, Comparing numerical methods for the solutions of systems of ordinary differential equations, Applied Mathematics Letters 17 (2004) 323–328.
- [164] R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, M. Fink, MR Elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography, Magnetic Resonance in Medicine 58 (2007) 1135–1144.
- [165] H. Sun, A. Abdelwahed, B. Onaral, Linear approximation for transfer function with a pole of fractional order, IEEE Transactions on Automatic Control 29 (5) (1984) 441–444.
- [167] J. Thorson, M. Biederman-Thorson, Distributed relaxation processes in sensory adaptation, Science 183 (1974) 161–172.
- [168] P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivatives in the behavior of real materials, Journal of Applied Mechanics (Transaction ASME) 51 (2) (1984) 294–298.
- [169] D. Valério, M.D. Ortigueira, J. Sá da Costa, Identifying a transfer function from a frequency response, ASME Journal of Computational and Nonlinear Dynamics, Special Issue Discontinuous and Fractional Dynamical Systems 3 (2) (2008) 021207.
- [170] P. Varshney, P. Gupta, G.S. Visweswaran, New switched capacitor fractional order integrator, Journal of Active and Passive Electronic Devices 2 (3) (2007) 187–197.
- [171] B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, On realization of fractional-order controllers, in: Proceedings of the Conference Internationale Francophone d'Automatique, Lille, France, 2000.

- [172] B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fractional Calculus and Applied Analysis 3 (3) (2000) 231–248.
- [173] B.M. Vinagre, I. Petras, P. Merchan, L. Dorcak, Two digital realisation of fractional controllers: application to temperature control of a solid, In Proceedings of the European Control Conference (ECC2001), Porto, Portugal, 2001, pp. 1764–1767.
- [174] B. Vinagre, V. Feliu, Modeling and control of dynamic system using fractional calculus: application to electrochemical, in: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 2002, pp. 214–239.
- [175] B.M. Vinagre, Y.Q. Chen, I. Petras, Two direct tustin discretization methods for fractional-order differentiator/integrator, The Journal of Franklin Institute 340 (5) (2003) 349–362.
- [176] B.M. Vinagre, V. Feliu, Optimal fractional controllers for rational order systems: a special case of the Wiener-Hopf spectral factorization method, IEEE Transactions on Automatic Control 52 (12) (2007) 2385–2389.
- [177] R.F. Voss, J. Clarke, 1/f noise in music: music from 1/f noise, Journal of Acoustics Society of America 63 (1) (1978) 258–263.
- [178] R.F. Voss, J. Clarke, 1/f noise in speech and music, Nature 258 (1975) 317–318.
- [179] W. Willinger, M.S. Taqqu, W.E. Leland, V. Wilson, Self-similarity in high-speed packed traffic: analysis and modelling of ethernet traffic measurements, Statistical Science 10 (1) (1995) 67–85.

Further reading

- [5] H. Brunner, P.J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3, North-Holland Publishing Co., Amsterdam, 1986.
- [6] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures No. 378, Springer-Wien, New York, 1997.
- [13] J.H. He, Non-perturbative methods for strongly nonlinear problems, Ph.D. Thesis, Berlin, 2006.
- [16] M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange Multiplier in Non-Linear Mathematical Physics, Pergamon Press, Oxford, 1978.
- [69] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, Journal of Mathematical Analysis and Applications 316 (2006) 753–763.
- [79] G.E. Drăgănescu, Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives, Journal of Mathematical Physics 47 (8) (2006) Art. No. 082902.
- [89] T.H. Hao, Search for variational principles in electrodynamics by Lagrange method, International Journal of Nonlinear Science and Numerical Simulations 6 (2) (2005) 209–210.
- [90] J.H. He, Variational iteration method for delay differential equations, Communications in Nonlinear Science and Numerical Simulations 2 (4) (1997) 235–236.
- [92] J.H. He, Variational iteration method—a kind of non-linear analytical technique: some examples, International Journal of Nonlinear Mechanics 34 (1999) 699–708.
- [94] J.H. He, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation 114 (2000) 115–123.
- [95] J.H. He, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals 19 (4) (2004) 847–851.
- [108] P. Linz, Analytical and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics 7 (1985).
- [110] H.M. Liu, Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method, Chaos, Solitons & Fractals 23 (2) (2005) 573–576.
- [134] Z. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Science and Numerical Simulation 1 (7) (2006) 15–27.
- [166] V.E. Tarasov, Fractional statistical mechanics, Chaos 16 (3) (2006).