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a b s t r a c t

A look into fractional calculus and its applications from the signal processing point of

view is done in this paper. A coherent approach to the fractional derivative is presented,

leading to notions that are not only compatible with the classic but also constitute a

true generalization. This means that the classic are recovered when the fractional

domain is left. This happens in particular with the impulse response and transfer

function. An interesting feature of the systems is the causality that the fractional

derivative imposes. The main properties of the derivatives and their representations are

presented. A brief and general study of the fractional linear systems is done, by showing

how to compute the impulse, step and frequency responses, how to test the stability

and how to insert the initial conditions. The practical realization problem is focussed

and it is shown how to perform the input–ouput computations. Some biomedical

applications are described.

& 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional calculus has been attracting the attention of
scientists and engineers from long time ago. During this
period the main applications involved the use of the so called
fractional integral operators to obtain explicit solutions of
regular models. However, most of the mentioned develop-
ment was done by mathematicians [10,18,22–24,26–28,30].
Since the nineties of the last century fractional calculus has
been rediscovered and applied in an increasing number
of fields, namely in several areas of physics [19,20,25,33,50,
80-83,85,86,116–119,133,162,167,168], control engineering
[25,29,36,37,53,107,114,115,132,148,151,171-176] and signal
processing [38,39,82,83,121,148,160,169]. A complete theory
of the linear systems of fractional differential equation with
constant or variable coefficients can be found in the literature
[18,20,22,28,30]. On the other hand, we must remark that in
80% of the papers that appear in the scientific literature, in
the framework of the fractional calculus and their applica-
tions, the corresponding authors use different fractional
differential operators but at the end they contrast their
model using a numerical approach based in a finite number
of terms of the series that define the known Grünwald–
Letnikov derivative [30]. Then they obtain excellent results.
Therefore we can conclude that a generalization of the linear
systems of differential equation is very useful to be used in
modeling such a process [28,135]. Later they showed that the
same results could be obtained using as starting point the
Grünwald–Letnikov derivative [140]. This theory was up-
dated recently [146]. With this approach a linear system
theory can be formulated in a fashion very similar to the
classic, being effectively a generalization in the sense of
obtaining the classic results when the order becomes integer.
This theory will be revised here, taking into account recent
developments. We will consider the associated problems:
establishment of the initial conditions and the stability of the
systems. A self-contained theory suitable for dealing with
problems like filtering, modeling, and realization is intended
to be present here.

As referred to above the number of applications has
been increasing. One of the areas where this can be
verified is the biomedical [20,45,46,67,87]. Here we
describe some of the recent applications in this field.
The now classic fractional Brownian motion (fBm)
modeling is also considered, as an application of fractional
calculus [21,104,120,144]. We define a fractional noise
that is obtained through a fractional derivative of white
noise. The fBm is an integral of the fractional noise.

The paper is organized as follows. In Section 2, we
present the Grünwald–Letnikov fractional derivative and
its main properties and relations with other fractional
derivatives like the so called Riemann–Liouville derivative
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and the Caputo derivative. Some examples of derivative
computations are shown. Practical implementations and
simulation are also considered. The introduction of the
fractional linear systems is done in Section 3. We define
transfer function and impulse response and show how to
compute it. Stability and establishment of correct initial
conditions are also studied. The continuous to discrete
conversion is considered in Section 3.5 and the general
input/output computations will be studied in section 4. In
Section 5 we describe some applications in biomedical
engineering. To finish, we study the fractional Brownian
motion and present some conclusions.

Remarks: 1—In this paper we deal with a multivalued
expression za. As is well known, to define a function we
have to fix a branch cut line and choose a branch (Riemann
surface). It is a common procedure to choose the negative
real half-axis as branch cut line. Unless stated to the
contrary, in what follows we will assume that we adopt
the principal branch and assume that the obtained
function is continuous above the branch cut line.
With this, we will write (�1)a=ejap. 2—Unless otherwise
stated, we will assume to be in the context of the
generalized functions (distributions). We always assume
that they are either of exponential order or tempered
distributions.

2. Fractional derivative

2.1. Definitions

Similarly to the classic case, the known Grünwald–
Letnikov definition of fractional differential equation is
introduced. We here introduce the following modification
of the mentioned fractional derivative by the limit of the
fractional incremental ratio [146]:

Da
yf ðzÞ ¼ e�jya lim

9h9-0

P1
k ¼ 0 ð�1Þk

a
k

� �
f ðz�khÞ

9h9a
ð1Þ

where
a
k

� �
stands for the binomial coefficients and

h=9h9ejy is a complex number, with yA(�p,p]. The above
definition is valid for any order, real or complex [70]. In
order to understand and give an interpretation to the
above formula, assume that z is time and that h is real,

y=0 or y=p. If y=0, only the present and past values are

being used, while, if y=p, only the present and future
values are used. This means that if we look at (1) as a
linear system, the first case is causal, while the second is
anti-causal1 [140].

In general, if y=0, we call (1) the forward Grünwald–
Letnikov derivative:

Da
f f ðzÞ ¼ lim

h-0þ

P1
k ¼ 0 ð�1Þk

a
k

� �
f ðz�khÞ

ha
ð2Þ
1 We will return to this subject later.
If y=p, we put h=�9h9 to obtain the backward
Grünwald–Letnikov derivative:

Da
bf ðzÞ ¼ lim

h-0þ
e�jpa

P1
k ¼ 0 ð�1Þk

a
k

� �
f ðzþkhÞ

ha
ð3Þ

It is important to enhance an interesting fact—when a
is a positive integer we obtain the classic expressions for
the integer order derivatives.
2.2. Existence

It is not a simple task to formulate the weakest
conditions that ensure the existence of the fractional
derivatives (1)–(3), although we can give some necessary
conditions for their existence. To study the existence
conditions for the fractional derivatives we must care
about the behavior of the function along the half straight
line z7nh with nAZ+. If the function is zero for Re(z)o
aAR (correspondingly Re(z)4a) the forward (backward)
derivative exists at every finite point of f(z). In the general
case, we must have in mind the behavior of the binomial
coefficients. They satisfy

a
k

� �����
����r A

kaþ1

meaning that f(z)(A/ka+1) must decrease, at least as
A/k9a9+ 1 when k goes to infinite. For example considering
the forward case, if a40, it is enough that f(z) be bounded
in the left half plane, but if ao0, f(z) must decrease to
zero to obtain a convergent series. In particular, this
suggests that Re(h)40 and Re(h)o0 should be adopted
for right and left functions,2 respectively in agreement
with Liouville reasoning [10]. In particular, they should be
used for the functions such that f(z)=0 for Re(z)o0 and
f(z)=0 for Re(z)40, respectively.3 This is very interesting,
since we conclude that the existence of the fractional
derivative depends only on what happens in one half
complex plane, left or right. Consider f(z)=zb, with bAR

with a suitable branch cut line. If b4a, we conclude
immediately that Da[zb] defined for every zAC does not
exist, unless a is a positive integer, because the summa-
tion in (1) is divergent.
2.3. Main properties

We are going to present the main properties of the
derivative presented above.
2.3.1. Linearity

The linearity property of the fractional derivative is
evident from the above formulae. In fact, we have

Da
y f ðzÞþgðzÞ
� �

¼Da
yf ðzÞþDa

ygðzÞ ð4Þ
2 We say that f(z) is a right [left] function if f(�N)=0[f(+N)=0].
3 By breach of language we call them causal and anti-causal

functions borrowing the system terminology.
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2.3.2. Causality

The causality property was already referred to above
and can also be obtained easily. We only have to use (2),
or (3). Assume that t=zAR and that f(t)=0, for to0; we
conclude immediately from (2) that Da

f f ðtÞ ¼ 0 for to0.
For the anti-causal case, the situation is similar.

2.3.3. Scale change

Let f(z)=g(az), where a=9a9ejj is a constant. From (1),
we have

Da
ygðazÞ ¼ 9a9ae�jðyÞa lim

9h9-0

P1
k ¼ 0 ð�1Þk

a
k

� �
gðaz�kahÞ

9ah9a

¼ 9a9aDa
ygðtÞ9t ¼ az ð5Þ

2.3.4. Time reversal

If f(z)=g(�z), we obtain from the property we just
deduced that

Da
ygð�zÞ ¼ ð�1Þalim

h-0

P1
k ¼ 0

a
k

� �
gð�zþkahÞ

9�h9a
¼ ð�1ÞaDa

ygðtÞ9t ¼ �z

ð6Þ

in agreement with (2) and (3). This means that the time
reversal converts the forward derivative into the back-
ward and vice versa.

2.3.5. Time shift

The derivative operator is shift invariant:

Da
ygðz�aÞ ¼Da

ygðtÞ9t ¼ z�a ð7Þ

2.3.6. Derivative of a product

We are going to compute the derivative of the product
of two functions: f(t)=j(t)c(t) assumed to be defined for
tAR, for simplicity, although the result we will obtain is
valid for tAC, except over an eventual branch cut line.
Assume that one of them is analytic in a given region. We
obtain the derivative of the product [18,22–28,30]

Da½jðtÞcðtÞ� ¼
X1
n ¼ 0

a
n

� �
jðnÞðtÞcða�nÞ

ðtÞ ð8Þ

which is the generalized Leibniz rule. This rule gives us a
curious result when a is a negative integer and c(t)=1. For
example, if a=�1, we obtain

D�1 jðtÞ
� �

¼
X1
n ¼ 0

ð�1ÞnjðnÞðtÞ tnþ1

ðnþ1Þ!

similar to the McLaurin series and can be useful in
computing the primitive of some functions.

2.4. Group structure of the fractional derivative

2.4.1. Additivity and commutativity of the orders

We are going to apply (1) twice for two orders. We
have [138]

Da
y ½D

b
y f ðtÞ� ¼Db

y ½D
a
y f ðtÞ� ¼Daþb

y f ðtÞ ð9Þ
2.4.2. Associativity

This property comes easily from the above results. In
fact, it is easy to show that

Dg
y½D

aþb
y f ðtÞ� ¼Dgþaþb

y f ðtÞ ¼Daþbþg
y f ðtÞ ¼Da

y ½D
bþg
y f ðtÞ�

ð10Þ

2.4.3. Neutral element

If we put b=�a in (10) we obtain

Da
y ½D
�a
y f ðtÞ� ¼D0

yf ðtÞ ¼ f ðtÞ ð11Þ

or again by (10)

D�ay ½D
a
yf ðtÞ� ¼D0

yf ðtÞ ¼ f ðtÞ ð12Þ

This is very important because it states the existence of
inverse.
2.4.4. Inverse element

From the last result we conclude that there is always
an inverse element: for every a order derivative, there is
always a �a order derivative. This seems to be contra-
dictory with our knowledge from the classic calculus,
where the Nth order derivative has N primitives. To
understand the situation we must see that the inverse is
given by (1) and that it does not have any primitivation
constant. This forces us to be consistent and careful with
the used language. So, when a is positive we will speak of
the operator as a derivative. When a is negative, we will
use the term anti-derivative or primitive (not integral).
This clarifies the situation.
2.5. Simple examples

2.5.1. The exponential

Let us apply the above definitions to the function
f(z)=esz. Convergence of (1) is dependent on s and of h. Let
h40; the series in (2) becomes

esz
X1
k ¼ 1

ð�1Þk
y
k

� �
e�ksh

The binomial series

X1
k ¼ 1

ð�1Þk
y
k

� �
e�ksh

is convergent to the main branch of

FðsÞ ¼ ð1�e�shÞ
a

provided 9e�sh9o1, that is if Re(s)40. This means that
the branch cut line of F(s) must be in the left hand half of
the complex plane. Then

Da
f f ðzÞ ¼ lim

n-0þ

ð1�e�shÞ
a

ha
¼ lim

h-0þ

1�e�sh

h

� �a

esz ¼ 9s9aejyaesz

ð13Þ

iff yA(�p/2,p/2), which corresponds to working with the
principal branch of (.)a and assuming a branch cut line in
the left hand complex half plane.
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Now, consider the series in (3) with f(z)=esz. Proceed-
ing as above, we obtain another binomial series:

X1
k ¼ 1

ð�1Þk
a
k

� �
eksh

that is convergent to the main branch of

FðsÞ ¼ ð1�eshÞ
a

provided Re(s)o0. This means that the branch cut line of
F(s) must be in the right hand half complex plane. We
obtain directly for f(z)=esz

Da
bf ðzÞ ¼ 9s9aejyaesz

with yA(3p/2,p/2), and

Da
bf ðzÞ ¼ 9s9aejyaesz

valid iff yA(p/2,3p/2). These results can be used to
generalize a well known property of the Laplace trans-
form. If we return back to Eq. (2) and apply the bilateral
Laplace transform

FðsÞ ¼

Z þ1
�1

f ðtÞe�st dt ð14Þ

to both sides, we conclude that

L½Da
f f ðtÞ� ¼ saFðsÞ for ReðsÞ40 ð15Þ

where for sa we assume the principal branch and a cut line
in the left half plane. With Eq. (3) we obtain

L½Da
bf ðtÞ� ¼ saFðsÞ for ReðsÞo0 ð16Þ

where now the branch cut line is in the right half plane.
These results have a system interpretation: there are two
systems (differintegrators) with the same expression for
the transfer function H(s)=sa, but different regions of
convergence. One is causal and the other is anti-causal.
Later we will compute the corresponding impulse re-
sponses. The s= jo case will be considered later also.

2.5.2. The constant function

We are going to compute the fractional derivative of
the constant function. Let f(z)=1 for every zAC and
aAR \ Z� . We have

Da
f f ðzÞ ¼ lim

h-0

P1
k ¼ 0 ð�1Þk

a
k

� �
ha

¼ lim
h-0

ð1�1Þa

ha
¼

0, a40

1, ao0

(

ð17Þ

The a order fractional derivative of f(z) is the null
function. If ao0, Eq. (17) leads to infinity. So there is no
fractional ‘‘primitive’’ of a constant.

2.5.3. The step and impulse functions

Let u(t) be the Heaviside unit step function. It can be
shown, with some work, that [22]

Da
f uðtÞ ¼

t�a

Gð�aþ1Þ
uðtÞ ð18Þ

where u(t) is the Heaviside unit step. Relation (18) allows
us to obtain the interesting result

Da
f dðtÞ ¼

tf�ðaÞ�1g

G�a
uðtÞ ð19Þ
valid for non-positive integer orders. In terms of linear
system theory, (15) tells us that the fractional forward
differintegrator (a current terminology) is a linear system
with impulse response equal to the right hand side in (19).
We could use (3) and obtain the impulse response of the
anti-causal differintegrator by starting with u(�t). The
procedure is similar and the result is [135]

Da
bdðtÞ ¼ �

tf�a�1g

G�a uð�tÞ ð20Þ

The impulse responses (19) and (20) of the causal and
anti-causal differintegrators have sa as transfer functions
with regions of convergence Re(s)40 and Re(s)o0,
respectively.

2.5.4. The power function

The general power function does not have fractional
derivative as is easy to observe from (1), because it
increases without bound as t goes to 7N. This does not
happen with the causal (or anti-causal power). The results
obtained in the above closed section allow us to obtain the
derivative of tbu(t). In the sequence of computations in the
following we shall be assuming that the exponents in
the powers are not negative integers. Using (18) again, we
obtain

Da
f tbuðtÞ ¼

Gðbþ1Þ

Gðb�aþ1Þ
tb�auðtÞ ð21Þ

which generalizes the usual formula for bAZ and beN�.
Eq. (21) can be considered valid for b�a=�1 provided
that we write

Da
f

ta�1uðtÞ

GðaÞ
¼ dðtÞ ð22Þ

To see that this is correct, we use (18) to obtain

Da
f

ta�1uðtÞ

GðaÞ ¼Da
f D�aþ1

f uðtÞ ¼D1
f uðtÞ ¼ dðtÞ

2.6. Integral representations

Above we introduced the elemental system base for
fractional system building—the differintegrator. In (19)
and (20) we presented the impulse responses correspond-
ing to the forward and backward cases. This means that
the output of the differintegrator is given by the
convolution of the input with (15) or (19). This leads to
integral representations of fractional derivatives (called
Liouville derivatives [10]):

Da
f f ðtÞ ¼

1

Gð�aÞ

Z 1
0

f ðt�tÞt�a�1 dt ð23Þ

valid for functions with the Laplace Transform converging
in a region that includes the right hand side of the
complex plane. As the convolution is commutative we can
also write:

Da
f f ðtÞ ¼

1

Gð�aÞ

Z t

�1

f ðtÞðt�tÞ�a�1 dt ð24Þ

Similarly, we have an anti-causal (backward) deriva-
tive valid for functions with Laplace Transform converging
in a region that includes the left hand side of the complex
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plane. It is the backward Liouville derivative obtained
from (16) and (20):

Da
bf ðtÞ ¼

ð�1Þ�a

Gð�aÞ

Z 1
0

f ðtþtÞt�a�1 dt ð25Þ

These definitions were introduced both exactly with
this format by Liouville [10]. Unhappily in the common
literature the factor (�1)�a in (25) has been removed
and is called the Weyl derivative [22,30]. Although the
above results were obtained for functions with Laplace
transform their validity can be extended to other func-
tions [18,30].

2.7. Riemann–Liouville and Caputo derivatives

The Riemann–Liouville and Caputo derivatives are
multistep derivatives that use several integer order
derivatives and a fractional integration [18,20,22,
24–28,30]. To present them, we use (19) and (20) to
obtain the following distributions [139]:

dð�nÞ7 ðtÞ ¼ 7
tn�1

GðnÞ
uð7tÞ, 0ono1 ð26Þ

and

dðnÞ7 ðtÞ
7

t�n�1

GðnÞ uð7tÞ for no0

dðnÞðtÞ for nZ0

8><
>: ð27Þ

where nAZ. With them we define two differintegrations
usually classified as left and right sided, respectively:

f ðaÞl ðtÞ ¼ ½f ðtÞuðt�aÞ��dðnÞþ ðtÞ�d
ð�nÞ
þ ðtÞ ð28Þ

f ðaÞr ðtÞ ¼ ½f ðtÞuðb�tÞ��dðnÞþ ð�tÞ�dð�nÞþ ð�tÞ ð29Þ

with aobAR. The orders are given by a=n�n, n being the
least integer greater than a and 0ono1. In particular, if a
is integer then n=0.4 From different orders of commut-
ability and associability in the double convolution we can
obtain distinct formulations. For example, from (28) we
obtain the left Riemann–Liouville and the Caputo deriva-
tives [139]:

f ðbÞRLþ ðtÞ ¼ dðnÞþ ðtÞ� ½f ðtÞuðt�aÞ��dð�nÞþ ðtÞ
n o

ð30Þ

f ðbÞCþ ðtÞ ¼ ½f ðtÞuðt�aÞ��dðnÞþ ðtÞ
n o

�dð�nÞþ ðtÞ ð31Þ

For the right the procedure is similar. We are going to
study more carefully the characteristics of these deriva-
tives. Consider (28). Let jð�nÞðtÞ ¼ f½f ðtÞ uðt�aÞ�dð�nÞþ ðtÞg. We
have

jð�nÞðtÞ ¼
1

GðnÞ

Z t

a
f ðtÞðt�tÞn�1 dt if t4a,

0 if toa

8><
>:

So, in general when doing the second convolution in
(30) we are computing the integer order derivative of a
4 All the above formulae remain valid in the case of integer

integration, provided that we put d(0)(t)=d(t).
function with a jump. This leads to

f ðbÞRLþ ðtÞ ¼
1

Gð�aÞ

Z t

a
f ðtÞðt�tÞ�a�1 dt�

Xn�1

i ¼ 0

f ða�1�iÞðaÞdðiÞðtÞ

ð32Þ

The appearance of the ‘‘initial conditions’’ f (a�1� i)(a+)
provoked some confusions because they were used as
initial conditions of linear systems. This is not correct in
general. They represent what we need to join to the
Riemann–Liouville derivative to obtain the Liouville
derivative (28) [145]. Now let us do a similar analysis to
the Caputo derivative. The expression f½f ðtÞ uðt�aÞ��dðnÞþ ðtÞg
states the integer order derivative of the function
f(t)u(t�a). The so called jump formula gives [35,137,147]

yðnÞðtÞuðt�aÞ ¼ ½yðtÞuðt�aÞ�ðnÞ�
Xn�1

i ¼ 0

yðn�1�iÞðaÞdðiÞðtÞ ð33Þ

which leads to

f ðbÞCþ ðtÞ ¼
1

Gð�aÞ

Z t

a
f ðtÞðt�tÞ�a�1 dt�

Xn�1

i ¼ 0

f ðn�1�iÞðaÞdði�nÞðtÞ

ð34Þ

In this case, we can extract conclusions similar to those
we did in the Riemann–Liouville case. Relation (34) explains
why sometimes the first n terms of the Taylor series of f(t)
are subtracted from it before doing a fractional derivative
computation. It is like a regularization.

2.8. Fourier transform of the fractional derivative and the

frequency response

Now, we are going to see if the above results can be
extended to functions with a Fourier Transform. We note
that the multivalued expression F(s)=sa becomes an analytic
function, as soon as we fix a branch cut line, in all the
complex plane excepting the branch cut line. Computation
of the derivative of functions with Fourier Transform is
dependent on the way used to define (jo)a. If we define it
doing the limit as s-jo from the right we have

ðjoÞa ¼ 9o9a
ejap=2 if o40

e�jap=2 if oo0

(
ð35Þ

This means that the forward derivatives of a cisoid is
given by

Da
f ejot ¼ ejot9o9a

ejap=2 if o40

e�jap=2 if oo0

(
ð36Þ

For x(t)=cos(o0t) we obtain

Da
f cosðo0tÞ ¼ 9o09

a
cosðo0tþap=2Þ ð37Þ

It can be show [146] that these results are not valid in
the backward case.

2.9. Modeling, identification and implementation

As in the usual systems, modeling, identification and
implementation are very interesting tasks. In the frac-
tional case, they are slightly more difficult due to the fact
of having, at least, one extra degree of freedom—the
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fractional order. However, this difficulty increments the
possibilities of obtaining more reliable and robust sys-
tems. This is challenging and people working in the area
have been giving different interesting answers. We can
refer to the following approaches:

2.9.1. Fractional devices

The famous Curie law stating that the current in an
insulator decreases proportionally to a negative power of
time leads to the known ‘‘supercapacitors’’, which have
impedance proportional to 1/sa, with 0oao1 [34,116].
Electrochemists have used the Constant Phase Elements
(CPE) description for over 60 years. The fractors (fractional
capacitors) [53,99,105,170] and coils [162] have been
presented. The new terminology is ‘‘fractance’’ to indicate
an impedance with fractional order response. As these
devices become available commercially, we will be
rewriting many of the rules for design of filters and
controllers [29,36,37,53].

2.9.2. Trans-finite Circuits

Infinite transmission lines are circuits with fractional
behavior [65], but there are other interesting circuits with
similar characteristics like the tree fractance ( a tree of RC
circuits) and chain fractance (a series of parallel RC)
circuits [66,101,156].

2.9.3. Band-limited approximations

It is an engineering approach. There are several ways of
doing the design and implementation. We can refer to (a)
the CRONE, which uses the Bode diagrams [36–39,107,
149–151] and (b) the continued fraction approaches
[171,172]. Both construct pole–zero systems with inter-
laced poles and zeros.

Other similar alternative is approximation by a
weighted summation of exponentials, which as the
number of elements increases toward infinity describes
fractional behavior. This concept has more recently been
used by Anastasio [45] to approximate fractional order
operators in his analysis of the vestibulo-ocular system.
The basic idea developed by Thorson and Biederman-
Thorson [167] is to represent a power law relaxation
decay in time (e.g., t�a, where 0oao1) by a sum of
exponentials weighted in an appropriate manner. Starting
with the integral definition of the gamma function

GðaÞ ¼
Z 1

0
xa�1e�x dx, a40 ð38Þ

if we let x=ta, where t40, we can solve for ta:

t�a ¼
1

GðaÞ

Z 1
0

va�1e�vt dv ð39Þ

This integral can be interpreted as the Laplace trans-
form of the function va�1/G(a). Hence, we see that (39)
provides a representation for the power-law decay as a
weighted integral of exponentials. Thus, between the
values of v and v+dv there exists an exponential e�vtu(v)
with a weight, va�1/G(k). Here v has the units of (s)�1,
and can be viewed as a rate constant. The overall power
law relaxation given by (39) is the summation of all these
contributions for the entire range of possible rate
constants. In order to convert this time-domain repre-
sentation into a model for fractional operations we take
the Laplace transform of both sides of (39). As seen in
Section 2.5

L½t�auðtÞ� ¼Gð1�aÞsa�1 ð40Þ

and assuming that we can interchange the order of
integration for v and t we obtain

sa�1 ¼
1

GðaÞGð1�aÞ

Z 1
0

va�1

sþv
dv¼

sinðapÞ
p

Z 1
0

va�1

sþv
dv

ð41Þ

which is the Stieltjes transform of va�1/G(a)G(1�a).5

Finally, solving for sa and if we let v=1/t where t is the
relaxation time corresponding to a particular value of v

we obtain

sa ¼
sinðapÞ

p

Z 1
0

t�a ts

tsþ1

dt
t ¼

sinðapÞ
p

Z 1
0

t�a ts

tsþ1
dðlogtÞ

ð42Þ

Thus, in this interpretation, we see that the fractional
derivative operator is represented as an integral or
summation of Laplace domain terms that correspond to
high-pass filters, and by a similar derivation the fractional
integral operator is expressed in terms of an integral of
low-pass filters. This is a unifying hypothesis because it
extends in a natural way the usual progression of
modeling linear systems as a series of exponentials, which
typically increases as the degree of the integer order
transfer function grows. With the above formulation, we
see that the poles are logarithmically distributed.

3. Fractional linear systems

3.1. Transfer function and frequency response

The results of the previous section are very important
in applications since they allow us to introduce the useful
concept of transfer function. In fact, we define a linear
system through a fractional differential equation with the
general format

XN

n ¼ 0

anDvn yðtÞ ¼
XM

m ¼ 0

bmDnm xðtÞ ð43Þ

where the differentiation orders, nn, are, in the general
case, complex numbers. As usual, we apply the LT to
Eq. (43) and use the results of Section 2.5, to obtain the
transfer function of the system:

HðsÞ ¼

PM
m ¼ 0 bmsnmPN
n ¼ 0 ansnn

ð44Þ

with region of convergence defined by Re(s)40 (causal
case) or Re(s)o0 (anti-causal case).

We may put the question of what happens with the
frequency response of a given fractional linear system.
From the conclusions we presented in 2.8, we can say
that, having a causal fractional linear system with transfer
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function equal to H(s), the frequency response must be
computed from

HðjoÞ ¼ lim
s-jo

HðsÞ ð45Þ

This is in agreement with other known results. For
example, if the input to the system is white noise, with
unit power, the output spectrum is given by

SðoÞ ¼ lim
s-jo

HðsÞHð�sÞ ð46Þ

3.2. From the transfer function to the impulse response

The general case represented in (43) is not easy to
solve, because it is difficult to find the poles. For this
reason, in the following, we shall be restricting our
attention to the cases in which
�
 the nn are irrational numbers but multiples of a given
n,

�
 the nn are any rational numbers; in this case, write

them in the format pn/qn.

Let n be the greater common divider of the nn. Then
nn=nn. We will assume that no2, for stability reasons.

With this formulation, Eqs. (43) and (44) assume the
general formats

XN

n ¼ 0

anDnnyðtÞ ¼
XM

m ¼ 0

bmDmnxðtÞ ð47Þ

and

HðsÞ ¼

PM
m ¼ 0 bmsmnPN
n ¼ 0 ansnn

ð48Þ

With a Transfer Function as in (48) we can perform the
inversion quite easily, by the following steps:
(1)
 Transform H(s) into H(z), by substitution of sv for z. We
are assuming that H(z) is a proper fraction; otherwise,
we have to decompose it as a sum of a polynomials
(inverted separately) and a proper fraction.
(2)
 The denominator polynomial in H(z) is the indicial
polynomial [59,60] or characteristic pseudo-polyno-
mial [22]. Perform the expansion of H(z) in partial
fractions.
(3)
 Substitute back sv for z, to obtain the partial fractions
in the form

FðsÞ ¼
1

ðsn�aÞk
, k¼ 1,2,. . . ð49Þ

Invert each partial fraction.
(5)

6 An interesting implementation was done by Prof. Podlubny and
(6)
 Add the different partial impulse responses.
can be found at the site of MatLab. It is an implementation of the two

parameter generalized Mittag–Leffler function with precision control—

usage: mlf(alfa, beta, z, p) [153].
7 With reason r=b/x, we obtain

Xq�1

j ¼ 0

rj 1�rq

1�r
)
Xq�1

j ¼ 0

bjx�j ¼
1�bqx�q

1�b=x
or xq�bq ¼ ðx�bÞ

Xq

j ¼ 1

bj�1xq�j

from where

1

x�b
¼

Pq
j ¼ 1 bj�1xq�j

xq�bq
We are going to see how to invert F(s)=1/(sn�a) Using
the properties of the geometric series, it is a simple task to
obtain

FðsÞ ¼ s�n
X1
n ¼ 0

ans�nn ð50Þ

with Re(s)49a91/v defining the region of convergence.
However, all terms of the series are analytic for Re(s)40.
For this reason, we can invert this series term by term, to
obtain

f ðtÞ ¼ tn�1
X1
n ¼ 0

antnn

GðnnþnÞ
uðtÞ ð51Þ

which is a special case of the two parameter Mittag–
Leffler function, which is a generalization of the expo-
nential, to which it reduces when n=1. This function is
well studied {see [18,20,28,65]}.6 Eq. (51) suggests us to
work with the step response instead of the impulse
response to avoid derivatives or working with non-regular
functions near the origin.

When n=1/q, q being a positive integer, we obtain a
different formulation for the inverse of the partial fraction
(49). Using the well known result of the sum of the first q

terms of a geometric sequence we obtain7 [22]:

FðsÞ ¼
1

Sv�a
¼

Pq
j ¼ 1 aj�1s1�jv

s�aq
ð52Þ

We conclude that the inverse LT of a partial fraction as
F(s)=1/(s1/q

�a) is a linear combination of q fractional
derivatives of E0ðt,aqÞ ¼ eaq tuðtÞ.

The k41 case in (45) does not present great difficulties
except some additional work. It can be obtained from the
k=1 case by repeated convolution or by differentiation
[135].

3.3. The stability problem

The study of stability of the fractional linear time
invariant (FLTI) systems we are going to do is based on the
BIBO stability criterion, which implies stability when the
impulse response is absolutely integrable.

The simplest FLTI system is the system with transfer
function H(s)=sn with s belonging to the principal
Riemann surface. If n40, the system is definitely
unstable, since the impulse response is not absolutely
integrable, even in a finite interval. If �1ono0, the
impulse response remains a limited function when t

increases indefinitely and it is absolutely integrable in
every finite interval. Therefore, we will say that the
system is in a wide sense stable. This case is interesting to
the study of fractional stochastic processes. If n=�1, the
normal integrator, the system is in a wide sense stable.
The case no�1 corresponds to an unstable system, since
the impulse response is not a limited function when t goes
to +N.



R. Magin et al. / Signal Processing 91 (2011) 350–371358
Consider the LTI systems with transfer function H(s) a
quotient of two polynomials in sn. The transformation
w=zq transforms the sector 0ryr2p/q {y=arg(z)} to the
entire complex plane. So, the sector (p/2q)ryr(p/2q)+
(p/q) is transformed to the left half plane. Consider the
first Riemann surface of z=sn defined by y=arg(s)A(�p,p].
This domain is transformed to j=arg(z)A(�pa,pa].
However the poles leading to instability must be inside
the sector (�pa/2,pa/2). We have two situations leading
to stability:
�
 there are no poles inside the sector (�pa,pa] and

�
 there are poles but they are in the sectors (�pa,�pa/

2) and (pa/2,pa).

The poles with argument equal to 7pa/2 may lead to
wide sense stable systems as in the usual systems. These
conclusions come from properties of the Mittag–Leffler
function [18]. To give a simple example, consider the
transfer function H(s)=1/(sa+1), with 0oao2. It is easy
to see that there is no pole in the principal Riemann
surface. Hence, it represents a stable system.

3.4. The initial conditions

When looking for the output, y(t), to a given input, x(t),
we must consider the initial conditions. This is a problem
that created much confusion and difficulties in the past
[22,96] motivated by the use of several different deriva-
tive definitions and of the one-sided Laplace transform. In
[137,147], we proposed a new way of looking at the
problem.

As is well known, the solution of Eq. (47) has two
terms: the forced (or evoked) and free (or spontaneous).
This second term depends only on the state of the system
at the reference. This state constitutes, or is related to, the
initial conditions. These are the values at t=0 of variables
in the system, which are associated with stored energy. It

is the structure of the system that imposes the initial

conditions, not the eventual way of computing the deriva-

tives. The solution is obtained with the fractional jump
formula [147]

Dna½yðtÞ�uðtÞ ¼Dna½yðtÞuðtÞ��
Xn�1

0

yðmgÞd½ðn�mÞg�1�
ðtÞ

that allows us to transform (47) to

XN

i ¼ 0

aj½yðtÞuðtÞ�
ðgiÞ

¼
XM
i ¼ 0

bi½xðtÞuðtÞ�
ðgiÞ þ

XN

i ¼ 1

ai

Xi�1

0

yðgmÞð0Þd½ðn�mÞg�1�
ðtÞ

�
XM
i ¼ 1

bix
ðgmÞð0Þd½ðn�mÞg�1�

ðtÞ ð53Þ

We must note that
�
 the initial conditions appear directly in the equation,
without using any transform and

�
 Eq. (53) is valid also in the time variant case.
3.5. Discrete-time implementations
It is not a simple task to obtain discrete-time
implementation of a fractional differintegrator. There are
several algorithms that start from an s to z conversion and
design an ARMA model [48,49,64,115,141,143,161,
173,175]. However, they are mere approximations and
there is no clear statement on the optimality of any
approch. It is an open subject needing additional research
efforts. The simplest way of doing such approximation
consists in starting from the forward GL derivative,
remove the limit operation and truncate the series. This
is not needed if we intend to compute the output of the
system being approximated for a causal imput. In fact, in
this case, the series becomes a finite sum:

Da
yf ðtÞ �

Pbt=hc
k ¼ 0 ð�1Þk

a
k

� �
f ðt�khÞ

ha
ð54Þ

In ths situation we must consider the so called
‘‘short memory principle’’ [28], also known as ‘‘fixed
memory principle’’, which is a useful tool for numerical
simulations in large time intervals. Taking into account
approximation (54) we can see, that if tb0 the final
sumation would be too large. From the calculation of
binomial coefficients above it follows that the past values
of the function f(t) near 0 have only small influence on the
new evaluated value of the function. Instead of using
’’whole memory’’, only ’’recent past’’ of the function is
used, e.g. the interval (t�T,t), where T is the ’’memory
length’’:

Da
y;T f ðzÞ �

Pbðt�TÞ=hc
k ¼ 0 ð�1Þk

a
k

� �
f ðt�khÞ

ha
ð55Þ

It is worth mentioning, that a similar approach was
introduced in Volterra’s work under the name ’’limited
after-effect’’ assumption [28].

This continuous to discrete conversion is essentially
the following. Assume that h is a sampling interval. Then
we can also sample f(t) and Da

yf ðtÞ with the same interval.
This is equivalent to performing the continuous to
discrete (Euler) transformation:

s¼
1�z�1

h
ð56Þ

and

sa ¼
1�z�1

h

� �a

�

PN
k ¼ 0 ð�1Þk

a
k

� �
zk

ha
ð57Þ

where N is a ‘‘high enough’’ integer fixed according to the
principle stated above. As can be seen we are doing a FIR
approximation to the differintegrator—the impulse re-
sponse is h(n)=(((�a)n)/n!)u(n) for n=0, 1, y, N. Using
(48) it is possible to obtain ARMA models for the
same operator {see [48,49,141,143]}. With these s to z

transformations we arrive at the discrete-time signal
processing context and so obtain an easier and more
known framework.
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Other alternatives to the Euler transformation are the
bilinear transformation (Tustin) [62,143,171–176]

s¼
2

h

1�z�1

1þz�1
ð58Þ

and the mixed operator (Al-Alaoui) [44,62]

s¼
8

h

1�z�1

7þz�1
ð59Þ

As we want to obtain discrete equivalents to the
differintegrator, sa, the following considerations have to
be mentioned [64]:
(1)
 sa, viewed as a causal operator, has a branch cut line
along the negative real axis for arguments of s in
(�p,p) but is free of poles and zeros.
(2)
 A dense interlacing of simple poles and zeros along a
line in the s plane is, in some way, equivalent to a
branch cut (see the deduction of the Cauchy derivative).
(3)
 It is well known that, for interpolation or evaluation
purposes, rational functions are sometimes superior
to polynomials, roughly speaking, because of their
ability to model functions with zeros and poles. In
other words, for evaluation purposes, ARMA models
converge faster than the long MA (FIR).
(4)
 Trapezoidal (bilinear) rule maps adequately the
stability regions of the s plane on the z plane, and
maps the points s=0 and s=N to the points z=1 and
z=�1, respectively.
The impulse response of the discrete-time linear
system corresponding to the Tustin transformation is
given by [143]

hbilðnÞ ¼
2

h

� �a
ð�1ÞnðaÞn

n!

Xn

k ¼ 0

ð�aÞkð�nÞk
ð�a�nþ1Þk

ð�1Þk

k!

¼
2

h

� �a
ð�1ÞnðaÞn

n! 2F 1ð�a,�n,�a�nþ1,�1ÞuðnÞ

ð60Þ

where 2F1(a,b,c,�1) is the Gauss hypergeometric function
that, for these arguments, does not have a closed form.
Similarly, the impulse response corresponding to the
Al-Alaoui transformation can be computed following the
procedure used in [143] and is given by

hbilðnÞ ¼
8

7h

� �a
ð�7ÞnðaÞn

n!

Xn

k ¼ 0

ð�aÞkð�nÞk
ð�a�nþ1Þk

ð�7Þk

k!
uðnÞ

¼ ð�7Þ�n 8

7h

� �a
ð�1Þ�n

ðaÞn
n! 2F 1ð�a,�n,�a�nþ1,�7�1

ÞuðnÞ

ð61Þ

It is interesting because it decreases quickly. With the
above impulse responses, we can obtain ARMA models.
There are several methods, like the least-squares method
[48,49,141,143] and the continued fraction method [62–64]

Another different way of doing the continuous to discrete
conversion is the so called matrix approach. The ‘‘matrix
approach’’ to discretization of fractional integrals and
derivatives has been developed by Podlubny [154,155]. It
is based on the use of triangular strip matrices. This method
significantly simplifies many aspects of numerical computa-
tions in the fractional calculus, and especially solving
fractional differential equations.

According to what we said above, the fractional
derivatives of order a can be approximated at all nodes
of the uniform grid t=nh, nAZ at once with the help of the
upper triangular strip matrix BðaÞn :

vðaÞn vðaÞn�1 . . . vðaÞ1 vðaÞ0

h iT
¼ BðaÞn

vn vn�1 . . . v1 v0
� �T

ð62Þ

where

nðaÞn ¼DanðnhÞ ð63Þ

and

BðaÞn ¼
1

ta

hðaÞ0 hðaÞ1 & & hðaÞn�1 hðaÞn

0 hðaÞ0 hðaÞ1 & & hðaÞn�1

0 0 hðaÞ0 hðaÞ1 & &

. . . . . . . . . & & &

0 . . . 0 0 hðaÞ0 hðaÞ1

0 0 . . . 0 0 hðaÞ0

����������������

����������������

ð64Þ

where hðaÞn represents the impulse response according to
the chozen method (Euler, Tustin or Al-Alaoui). From the
properties of the derivative those matrices BðaÞn have also
the group structure presented in Section 2.4. This method
has been presented for the first time in [155] along with
several examples of numerical solution of ordinary
fractional differential equations with the Riemann–
Liouvile and Caputo derivatives. From the viewpoint of
simplicity of usage, the matrix approach to numerical
solution of fractional differential equations can be
compared to the Laplace transform method for solving
ordinary differential equations. Indeed, in both cases
operators of differentiation are simply replaced with
other symbols—in the case of the Laplace transform by
powers of the Laplace variable, and in the case of the
matrix approach by matrices of a known structure. For
example, the famous Bagley–Torvik equation (see [28]
and references therein)

ay00ðtÞþb0Dð3=2Þ
t yðtÞþcyðtÞ ¼ f ðtÞ ð65Þ

is discretized on a uniform grid with n nodes as

ðaBð2Þn þbBð3=2Þ
n þcBð0Þn ÞYn ¼ Fn ð66Þ

where Yn is the vector of unknown values of y(t) at the
discretization nodes, Fn the vector of values of the input
f(t) and BðaÞn the triangular strip matrix representing the
discrete analogue of the fractional derivative. Clearly, B0

n is
equal to the identity matrix En. The matrix approach has
been implemented in the form of a publicly available
Matlab toolbox.

4. Input–output numerical computations in general
nonlinear systems

In various applications, e.g. in fluid mechanics, viscoe-
lasticity, biology, physics and engineering [12,22,24,
26–28,50,61,73,97,98,168], considerable attention is gi-
ven to ordinary and partial differential equations of
fractional order, due to their memory and hereditary
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properties [54–58,104,107,109]. However, most applica-
tions have been directed toward modeling existing
situations where no outside interference has place. This
means that most studies consider the output of fractional
systems under non-null initial conditions, but with null
input. This will be adopted here. According, for example,
to Momani [122–131] most fractional differential equa-
tions do not have exact analytic solutions, so approxima-
tion and numerical techniques [51,71–78,27] must be
used. There are two main classes of methods for solving
fractional differential equations: the frequency-domain
methods and the time-domain methods. In this review we
deal mainly with time-domain methods. Finding accurate
and efficient methods for solving fractional-order differ-
ential equations (FODEs) is the goal of many research
works. Analytical and numerical methods for solving most
of the FODEs must be used, as exact solutions cannot be
found easily. Some numerical methods for solving FODEs
were presented for instance in [52,71–78,106]. We will
consider DE with the format

yðaÞðtÞ ¼ f ½t,yðtÞ�þaxðtÞ ð67Þ

where x(t) is the input, y(t) the output and tAR. Unless
expressed we will assume that the derivative operation is
one step. This is important because we will need only one
initial condition, according to the results in Section 3.4.
We can then modify the above equation to make the
initial condition appear explicitly in an equation that is
valid for tZ0:

yðaÞðtÞ ¼ yð0Þdða�1Þ
ðtÞþ f t,yðtÞ½ �þaxðtÞ, t 2 Rþ

or

yðaÞðtÞ ¼ f t,yðtÞ½ �þaxðtÞþyð0Þ
t�a

Gð�aþ1Þ
uðtÞ, t 2 Rþ ð68Þ

It is a current practice to use here integral formulations.
We will use the Liouville integral seen in Section 2.6.

In the following we will present several approaches for
solving Eq. (68), namely Diethelm’s method based on
quadrature and Lubich’s difference methods followed
with some information about Adams–Bashforth–Moulton
method based on the Volterra integral equation, an
effective method for fractional order dynamical systems,
Adomian’s decomposition method (ADM), variational
iteration method (VIM) and homotopy–perturbation
method (HPM).
4.1. Diethelm’s method based on quadrature

Let us first start from the Liouville derivative specia-
lized for causal signals and proceed as Weilbeer in [32].
Then apply the linear transformation t=tu to obtain [72]

Daf ðtÞ ¼
t�a

Gð�aÞ

Z 1

0
t�a�1gðtÞdt for all t 2 ð0,T� ð69Þ

where g(t)= f(t�tt). In the following, D means the forward
derivative operator. The algorithm now proceeds as
follows. Choose a positive integer N and divide the
working interval [0,T] into N subintervals of equal length
h=T/N with breakpoints (sampling instants) tm=mh,
m=0, 1, 2, y, N, which we will use in (71). This yields

t�am

Gð�aÞ

Z 1

0
t�a�1yðtm�tmtÞdt¼ f tm,yðtmÞ½ �þyð0Þ

t�am

Gð1�aÞuðtmÞ

ð70Þ

where we have also taken the input equal to zero. In this
relation we replace the integral by the quadrature formula
Qm, and additionaly introduce the quadrature error Rm.
Thus, using the abbreviation gm(t)=y(tm�tmt) yields

t�am

Gð�aÞ
Xm

k ¼ 0

okmgmðk=mÞþRm½gm�

 !
�

yð0Þt�am

Gð1�aÞ ¼ f ðtm,yðtmÞÞ

ð71Þ

where for okm we can write

okm ¼
~okmGð2�aÞ
�að1�aÞm�a

ð72Þ

We finally solve the left-hand side for ym=y(tm) and get

ym ¼ haf ðtm,ymÞ�
Xm
k ¼ 1

~okmyðtm�khÞ�yð0Þ
hat�am

Gð1�aÞ
uðtmÞ

ð73Þ

where the weights ~okm are given by the substitution (74)
and so

~okm

Gð2�aÞ ¼

1 for k¼ 0

�a for k¼m¼ 1

21�a
�2 for k¼ 1 and mZ2

ðk�1Þ1�aþðkþ1Þ1�a�2k1�a for 2rkrm�1

ðk�1Þ1�aþða�1Þk�a�k1�a for k¼mZ1

8>>>>>><
>>>>>>:

ð74Þ

4.2. Lubich’s difference methods

Lubich’s fractional difference methods form a subset to
fractional linear multistep methods, which were first
presented by Lubich [111–113] and numerically imple-
mented by Hairer, Lubich and Schlichte in [88] for a
special type of Volterra integral equations. Consider again
that the input, x(t), is null. It can be shown that the FODE
can be rewritten as the Abel–Volterra integral equation

yðtÞ ¼
Z t

0
ðt�tÞa�1f ½t,yðtÞ�dtþyð0ÞuðtÞ ð75Þ

Lubich [112] showed that, if a40 and given the method
order, pA{1,2,3,4,5,6}

yðmÞ ¼ yð0Þþha
Xm
j ¼ 0

om�jf ðtj,yðtjÞÞþha
Xs

j ¼ 0

om,jf ðtj,yðtjÞÞ

ð76Þ

for m=1, 2, y, N, where the convolution weights om are
given by the generating function

oaðzÞ ¼
Xp

k ¼ 1

1

k
ð1�zÞk

 !�a
ð77Þ

and the starting weights om,j can be obtained as:

Xs

j ¼ 0

om,jjg ¼
Gð1þgÞ

Gð1þgþaÞ
maþg�

Xm

j ¼ 1

om�jj
g, g 2 A ð78Þ
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with

A¼ fg¼ kþ ja; k,j 2 N0, grp�1g, cardA¼ sþ1 ð79Þ

Eq. (78) gives an approximation of order O(hp�e) with a
small eZ0 for all fixed mesh points tm.

4.3. Adams–Bashforth–Moulton method

Adams–Bashforth–Moulton method [165] is also a
numerical method to solve FODE, based on the Abel–
Volterra integral Eq. (75). Even though it seems to be a
suitable tool for fractional order dynamical systems, there
are some difficulties mentioned in the literature:
�
 size of the computational work can be burdensome
and

�
 rounding-off error can cause loss of accuracy.

This method has been introduced by Diethelm and Freed
[8] and discussed as well in [9,76]. The following relation-
ships were used in the work of Weilbeer [32]. Numerical
solution of Eq. (75) on the interval [0,T] in the above used a
grid. Let us assume that the approximations yj=y(tj) for j=
1,2, y, k have been already evaluated. The task is to find the
solution yk+1, obtained by replacing the integral in (75) using
the product trapezoidal quadrature formula where the nodes
tj for j=0, 1, y, k+1 are taken with respect to the weight
function (tk+1 - .)a�1. First we will get the approximationZ tkþ 1

0
ðtkþ1�zÞa�1gðzÞdz�

Z tkþ 1

0
ðtkþ1�zÞa�1 ~gkþ1ðzÞdz

ð80Þ

where ~gkþ1 is the piecewise linear interpolant for g. The
right-hand side can be rewritten as:Z tkþ 1

0
ðtkþ1�zÞa�1 ~gkþ1ðzÞdz¼

Xkþ1

j ¼ 0

aj,kþ1gðtjÞ ð81Þ

where

aj,kþ1 ¼

Z tkþ 1

0
ðtkþ1�zÞa�1fj,kþ1ðzÞdz ð82Þ

and

fj,kþ1ðzÞ ¼

ðz�tj�1Þ=ðtj�tj�1Þ if tj�1ozrtj

ðtjþ1�zÞ=ðtjþ1�tjÞ if tjozotjþ1

0 else

8><
>: ð83Þ

For a uniform grid, we have

aj,kþ1 ¼

ha

aðaþ1Þ
ðkaþ1�ðk�aÞðkþ1ÞaÞ if j¼ 0

ha

aðaþ1Þ
ððk�jþ2Þaþ1

þðk�jÞaþ1
�2ðk�jþ1Þaþ1

Þ if 1r jrk

ha

aðaþ1Þ
if j¼ kþ1

8>>>>>>>><
>>>>>>>>:

ð84Þ

So we obtain the corrector formula (fractional variant of the
one-step Adams–Moulton method):

ykþ1 ¼
1

GðaÞ
Xk

j ¼ 0

aj,kþ1f ðtj,yjÞþakþ1,kþ1f ðtkþ1,yp
kþ1Þ

0
@

1
Aþyð0Þ

ð85Þ
where the expression yp
kþ1 means the predictor formula,

which will be calculated using generalized one-step Adams–
Bashforth method in the same way it was by determining the
corrector formula.

We again replace the integral in (75), but now by the
product rectangle rule

Z tkþ 1

0
ðtkþ1�zÞa�1gðzÞdz�

Xk

j ¼ 0

bj,kþ1gðtjÞ ð86Þ

where

bj,kþ1 ¼

Z tjþ1

tj

ðtkþ1�zÞa�1 dz¼
ðtkþ1�xjÞ

a
�ðtkþ1�tjþ1Þ

a

a
ð87Þ

Now we are not dealing with a piecewise linear
approximation, but with piecewise constant approxima-
tion; therefore the following holds:

fkjðtÞ : ¼
1 on ½tj,tjþ1�

0 every where else on the inteval ½0,tkþ1�

(

ð88Þ

and again in the case of equispaced distribution, we get

bj,kþ1 ¼
ha

a ððkþ1�jÞa�ðk�jÞaÞ ð89Þ

Finally, the predictor yp
kþ1 is obtained by the fractional

Adams–Bashforth method:

yp
kþ1 ¼ yð0Þþ

1

GðaÞ
Xk

j ¼ 0

bj,kþ1f ðxj,yjÞ ð90Þ

Eqs. (85) and (90) with the weights aj,kþ1 and bj,kþ1

calculated in (82) and (89) form the fractional Adams–
Bashforth–Moulton method.
4.4. Adomian’s decomposition method (ADM)

The next to mention is the numerical method based
on the Adomian decomposition [1]. This method
provides the solution of the fractional order system in
the form of a power series with easily computed terms.
Adomian’s decomposition method was firstly used to
obtain approximate solutions of linear or nonlinear
differential equations [163]. With the increasing popular-
ity of fractional calculus, the application of the method
was recently extended for the case of fractional differ-
ential equations [47,68,157–159]. This method can be
used for finding the solution of the Abel–Volterra integral
Eq. (75) as

yðtÞ ¼
X1
i ¼ 1

yiðtÞ ¼ gðtÞþ
1

GðaÞ

Z t

0
ðt�tÞa�1

X1
i ¼ 0

f AiðtÞdt ð91Þ

where the f Ai(t) are the Adomian polynomials and in g(t)
we include the input and the initial condition term. The
explicit scheme of ADM can be written as

y0ðtÞ ¼ gðtÞ, yiþ1ðtÞ ¼
1

GðaÞ

Z t

0
ðt�tÞa�1

f AiðtÞdt, i¼ 0,1,2,. . .

ð92Þ



R. Magin et al. / Signal Processing 91 (2011) 350–371362
where

f AiðtÞ ¼
1

i!

di

dli
f t,

Xi

j ¼ 0

ljyj

0
@

1
A

2
4

3
5
l ¼ 0

ð93Þ

Even if one cannot use the infinite scheme, it is possible to
obtain a finite expansion corresponding to the differ-
entiability properties of f(t,y(t)) [32].

In the work of Momani and Odibat [130], for the
solution of linear fractional differential equations the
following algorithm for solving linear fractional differen-
tial equation was considered. Let us define a linear FODE
in the form:

dmy

dtm
�a

day

dta
�by¼ f ðtÞ, m�1oarm ð94Þ

subject to the initial conditions

yðjÞð0Þ ¼ cj, j¼ 1,0,. . .,m�1 ð95Þ

where cj, j=0,1, y, m�1 are arbitrary constants and y(t) is
a causal function of time. The system represented by (94)
can be interpreted as composite fractional relaxation/
oscillation equation for the cases {0oar1, m=1} and
{1oar2, m=2}, respectively.

Let J=D�1, the anti-derivative operator. If we apply the
operator Jm to both sides of (94) and we use the initial
conditions, we get

uðtÞ ¼f1ðtÞþaf2ðtÞþ Jmf ðtÞþ½aJm�aþbJm�uðtÞ ð96Þ

where

f1ðtÞ ¼
Xm�1

i ¼ 1

ci
ti

i!
, f2ðtÞ ¼

Xm�1

i ¼ 1

ci
tm�aþ i

Gðm�aþ iþ1Þ
ð97Þ

According to Adomian [1,43] the solution y(t) can be
decomposed to an infinite series of components:

yðtÞ ¼
X1
n ¼ 0

ynðtÞ ð98Þ

After substitution of the decomposition series (101)
into both sides of (96) we obtain

X1
n ¼ 0

ynðtÞ ¼f1ðtÞþaf2ðtÞþ Jmf ðtÞþ½aJm�aþbJm�
X1
n ¼ 0

ynðtÞ

ð99Þ

The iterates can be obtained from the previous
equation by the following recursive way:

y0 ¼f1ðtÞþaf2ðtÞþ Jmf ðtÞ,

y1 ¼ ðaJm�aþbJmÞy0 ¼ ðaJm�aþbJmÞ½f1ðtÞþaf2ðtÞþ Jmf ðtÞ�,

y2 ¼ ðaJm�aþbJmÞy1 ¼ ðaJm�aþbJmÞ
2
½f1ðtÞþaf2ðtÞþ Jmf ðtÞ�,

^

yk ¼ ðaJm�aþbJmÞyk�1 ¼ ðaJm�aþbJmÞ
k
½f1ðtÞþaf2ðtÞþ Jmf ðtÞ�:

The components of y(t) are then defined as

yðtÞ ¼
X1
k ¼ 0

ðaJm�aþbJmÞ
k
½f1ðtÞþaf2ðtÞþ Jmf ðtÞ� ð100Þ

To obtain the solution of (96) in a series form we
expand the operator in (100) using the binomial formula.
Then the solution is

yðtÞ ¼
X1
k ¼ 0

Xk

j ¼ 0

k

j

 !
ajbk�jJkm�jx½f1ðtÞþaf2ðtÞþ Jmf ðtÞ�

ð101Þ

This algorithm can be generalized to solve nonlinear
systems of fractional differential equations [84,100].

Although we obtain an approximate solution, at least
because we have to truncate the series, in many cases the
exact solution in a closed form may be obtained. More-
over, the decomposition series solutions generally con-
verge very rapidly.

4.5. Homotopy–perturbation method (HPM)

The HPM is a combination of the traditional perturba-
tion method and homotopy in topology. It solves the
FODEs by decomposing the complex problem to simple
problems, and then the perturbation equation can be
easily constructed by a homotopy in topology.

In the works of Momani and Odibat linear and
nonlinear partial FODEs were solved [123–131,129,133]
using this method. The problem and solution proposed in
[40–42] can be written in the form

Da1 y1ðtÞ ¼ f1ðt,y1,y2,. . .,ynÞ

Da2 y2ðtÞ ¼ f2ðt,y1,y2,. . .,ynÞ

^
Dan ynðtÞ ¼ f1ðt,y1,y2,. . .,ynÞ ð102Þ

subject to the following initial conditions

ykð0Þ ¼ ck, k¼ 1,2,. . .,n ð103Þ

where Dai is the fractional derivative of yi of order ai,
where 0oaIr1 and fi are arbitrary linear or nonlinear
functions. The following homotopy can be constructed in
view of the HPM [91,93] as

Dai yi ¼ pfiðt,y1,y2,. . .,ynÞ ð104Þ

where i=1, 2, y, n and p is an embedding parameter that
changes from zero to unity [42]:
�
 If p=0, we will obtain the linear equation

Dai yi ¼ 0

If p=1, the homotopy (104) turns out to be the original
�

system given in (102).

The solution of system (104) can be expanded using
the parameter p

yiðtÞ ¼ yi0þpyi1þp2yi2þp3yi3þ � � � ð105Þ

Series of linear equations can be obtained after
substitution of (105) in (104) and collecting the terms
with the same powers of p, in the form [42]

p0 : Dai yi0 ¼ 0

p1 : Dai yi1 ¼ fi1ðt,y10,y20,. . .,yn0Þ

p2 : Dai yi2 ¼ fi2ðt,y10,y20,. . .,yn0y11,y21,. . .,yn1Þ

p3 : Dai yi3 ¼ fi3ðt,y10,y20,. . .,yn0,y11,y21,. . .,yn1,y12,y22,. . .,yn2Þ

^ ð106Þ
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where the functions fi1, fi2,y, satisfy the following
equation:

fiðt,y10,py11þp2y12þ � � � , � � � ,yn0þpyn1þp2yn2þ � � �Þ

¼ fi1ðt,y10,y20,. . .,yn0Þþpfi2ðt,y10,y20,. . .,yn0,y11,y21,. . .,yn1Þ

þp2fi3ðt,y10,y20,. . .,yn0,y11,y21,. . .,yn1,y12,y22,. . .,yn2Þþ . . .:

ð107Þ

The following conclusions were made in the work of
Abdulaziz et al. [42]:

It is obvious that these linear equations can be easily
solved by applying the operator Jai , i.e., the inverse of the
fractional operator Dai . Hence, the components yik,
k=0,1,2, y, of the HPM solution can be determined. That
is, by setting p=1 in (107) we can determine the entire
HPM series solutions

yiðtÞ ¼
X1
k ¼ 0

yikðtÞ ð108Þ

The HPM series solution (106) can be approximated by
the following N-term truncated series:

fiNðtÞ ¼
XN�1

k ¼ 0

yikðtÞ: ð109Þ

According to the authors using this method, HPM
yields rapid convergence of the solution series in most
cases, usually only a few iterations, leading to very
accurate solutions.

5. Biomedical applications

5.1. Some considerations concerning fractional order models

The first applications of fractional calculus to biome-
dical problems were in the areas of membrane biophysics
and polymer viscoelasticity [15], where the experimen-
tially observed power law dynamics for current–voltage
and stress–strain relationships were concisely captured
by fractional order differential equations. Subsequently,
the work of Mandelbrot in the field of fractals [21] and of
others in the emerging fields of chaos and nonlinear
systems attracted much attention to biomedical applica-
tions of fractional calculus. For example, there is evidence
that biological signals (ECG, EMG and EEG) have spectra
that do not increase or decrease by multiples of 20 dB
[2,4,17,20]. Hence, system models with poles and zeros of
fractional order are often proposed for both analytical and
emprical reasons. Here, we describe examples of biome-
dical applications of fractional calculus taken from the
fields of bioinstrumentation, mechanobiology and biome-
dical imaging.

Physiological models based on linear differential
equations are highly successful in describing a wide range
of complex phenomena (e.g., action potential propagation,
blood oxygenation and filtration, and feedback control of
insulin secretion). Such models also serve as the basis for
understanding normal physiological homeostatis, as well
as the changes that arise as a consequence of disease.
Physiological models connect events at the molecular
level (ion transport, gas diffusion, vesicle formation) to
those at the organ level (blood clearance, oxygen uptake/
gram tissue, muscle tension). Much current work in
biophysics and physiology is directed toward linking
molecular processes with whole organ (brain, heart, and
muscle) function by developing muliscale models that
span the intermediate levels of structure (e.g., from the
centimeter dimensions of gross anatomy down to the
submicron resolution of histology).

In building multiscale models one can either try to use
as much of the available anatomical and histological
knowledge as possible – building a highly complex
structures with hundreds of components (organelles,
membranes, cells, extracellular matrix, etc.) – or try to deal
empirically with the complexity by developing whole
system descriptions (e.g., linear, non-linear, deterministic,
or stochastic models) with embedded chaotic or fractal
measures (fractal dimensions, Lyapunov exponents, non-
Gaussian probability distributions) that capture important
features of the observed behavior [2,31]. A diagram
illustrating some of the relationships between these
approaches is shown in Fig. 1. In this figure the models
are characterized on the X-axis by their degree of linearity
and on the Y-axis with respect to their deterministic nature.
Linear time-invariant causal (LTIC) system models cluster in
the first quadrant, while stochastic, probabilistic models fall
in the fourth quadrant [4]. In this representation the
methods of fractional calculus (linear, deterministic, but
non-integer order) bundle together in Fig. 1 within the relm
of LTIC system models, where they interpolate between the
conventional integer order differential operators and
extend the dynamics to fractional order [33].
5.2. Fractional dynamics model

A fractional order model is commonly used to describe
the behavior of neural systems (senaory and motor). A
simple example is the vestibular-oculomotor system
modeled by Anastasio [45,46] in the Laplace domain as
sa, where �1oao1. The occurrence of sa behavior in the
transfer functions for the neural components of vestibulo-
oculomotor systems suggests its need to control or monitor
the underlying biological, physical or chemical mechan-
isms. The sa behavior follows directly from observed power
law transient and dynamic behavior unique to the
anatomical structure or neurological connections of living
systems. Thus the subthreshold behavior of axons, which
mimic at their most basic level lossy (RC) transmission
lines with fractional impedance relationships, could play a
role in understanding synapse complexity, dendritic con-
vergence and generator potential initiation.

For example, the encoding of head motion by the inner
ear arises via convergence of unmyelinated afferent and
efferent nerve fibers in the vestibular neuroepithelium.
This has been suggested as an anatomical site where
summation of excitatory and inhibitory postsynaptic
potentials can occur (Fig. 2). In a paper on distributed
relaxation processes in sensory adaptation, John Thorson
and Marguerite Biederman-Thorson [167] reviewed ear-
lier interpretations for fractional dynamics (non-linear
spring, transmission line and Gaussian distribution of
exponential rate constants), which they found, for the
most part, to provide an incomplete explanation for the
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Fig. 2. A drawing of the complex, multiscale neural pathways (hair cells,
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(adapted from [20]).
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wide dynamic range of sensory adaptations. These
considerations led to the fractinal order model presented
in Section 2.8.

5.3. Fractional impedance model

Distributed relaxation processes appear to be common
in cells and tissues. Therefore, it should not be surprising
to see that fractional calculus can play an important role
in describing the input–output behavior of biological
systems. Physical foundations for this behavior may be
sought in the fractal or porous structure of the system
components or in the physical characteristics of its
surfaces and interfaces. Much work [15] is ongoing to
develop a direct link between fractal models of molecules,
surfaces and materials and the fractional kinetics or
dynamics of the resulting behavior (polymerization
electrochemical reactions, viscoelastic relaxation).

A major attribute of fractional dynamic models is that
they interpolate between the known integer order
behavior by extending the transfer function models, f(s),
from rational algebraic functions of integer powers of s to
irrational functions involving fractional powers of s. This
is a natural approach that extends the traditional Laplace
transform methods of linear systems analysis [20]. Thus,
the fractional dynamics hypothesis is accessible to the
engineer and scientist through both Laplace and Fourier
techniques (for s= jo, where o is the angular frequency in
radians/second).

Fractional order circuit elements, such as the impe-
dance Z=Z0/(s)a or Z=Z0/(jo)a, where 0oao1, provide a
useful model for describing the transient and the
sinusoidal steady state frequency response of dielectrics
and biological tissues [11,20]. Such circuit elements can
also be used to develop an electrical circuit model of the
electrode–cardiac tissue interface of a pacemaker elec-
trode (Fig. 3). A lumped element circuit model for the
cardiac tissue/electrode interface developed by Ovadia
and Zavitz [152] is shown in Fig. 4. Accurate impedance
models are essential for designing cardiac pacemakers.
Fractional calculus appears in the model through the
fractional order (or constant phase, Z=Z0o�a �
exp(j tan�1(pa/2)) circuit element ZD, which governs
diffusion limited electrochemical reactions at the surface
of the electrode.

If we assume that C, the dipole layer capacitance, is
small enough so that its reactance can be neglected in
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comparison with ZD, then the tissue–electrode equivalent
circuit reduces to a resistor in series with ZD, which can be
approximated by two constant phase elements in series.
Thus, in the Laplace domain, the overall impedance can be
written as

zðsÞ ¼
vðsÞ

iðsÞ
¼ Rþ

1

saCa
þ

1

sbCb
ð110Þ

The corresponding impedance plane plot for (110) is
shown in Fig. 5 for the simple case of a=1/2 and b=1. Such
plots match the data measured in experimental studies of
Ovadia and Zavitz [152]. The transient voltage response of
this circuit to a step in applied current, such as the leading
edge of a pacemaker pulse, is described in the time-
domain by

VðtÞ ¼ I0Rþ
I0ta

CaGðaþ1Þ
þ

I0tb

CbGðbþ1Þ
ð111Þ

which gives a power law response that corresponds
to that observed in heart stimulation experiments by
Greatbatch and Chardack [87].

Thus we observe that the basic cardiac tissue-electrode
impedance can be represented by a series combination of
a resistor and two fractional lumped circuit elements. The
overall transfer function for this model corresponds to the
following fractional order differential equation:

Ca
daVðtÞ

dta
¼ RCa

daIðtÞ

dta
þ IðtÞþ

Ca
Cb

da�bIðtÞ

dta�b
ð112Þ

if we assume a4b.
We can use the correspondence between RC electric

circuits and viscoelastic networks of springs and dashpots
Fig. 3. A drawing of the tissue–electrode interface between cardiac

muscle cells and an implanted electrode. (Redrawn from Ovadia and

Zavitz [152]).

Fig. 4. Tissue–electrode circuit model. RB is the bulk tissue resistance, Ra1 and R

the dipole layer capacitance and ZD is the fractional Warburg impedance.
to construct similar fractional order dynamic models for
the biomechanical properties of tissues [19]. For example,
Craiem and Armentano [67] have modeled the elastic
properties of the aorta, in vivo in a Merino sheep, using a
fractional order generalization of the relationship be-
tween stress s(t) and strain e(t). Their generalized Voigt
model consists of a spring in parallel with two ‘‘spring-
pots’’ of fractional order a and b. The governing fractional
order differential equation is

sðtÞ ¼ E0eðtÞþZ1

dbeðtÞ
dta

þZ2

dbeðtÞ
dt

ð113Þ

where E0 is the elastic constant for a spring, and Z1 and Z2

represent the viscosities of two springpots in parallel with the
spring. From this equation the complex modulus E*(o) can be
defined for sinusoidal signals as the ratio of stress to strain by

E�ðoÞ ¼ sðoÞ
eðoÞ

¼ E0þZ1ðjoÞ
a
þZ2ðjoÞ

b
ð114Þ

The real part of E*(o) is defined as the storage modulus
and the imaginary part of E*(o) is the loss or dissipation
modulus. The storage modulus characterizes the elastic
property of the arterial wall while the loss modulus
describes the tissue’s ability to absorb energy. Both
properties change with frequency and govern pulsatile
oscillations of the vessel walls in health and disease. This
model was found by Craiem and Armentano to give a
better fit to in vivo data recorded from 2 to 30 Hz than a
a2 are electrode access resistances, y is the charge transfer resistance, C is

Fig. 5. Impedance plane plot for two constant phase element impe-

dances in series with a resistor. In this example, we set R=Ca=Cb=1 and

a=1/2, b=1.
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Voigt model (single spring in parallel with a dashpot) or a
fractional Voigt (single spring in parallel with single
springpot). A vector plot in the complex plane of the
complex modulus for this study is shown in Fig. 6.

In particular, the model (114) captures the changes
that arise in vessel wall elasticity when a vascular
constriction is induced by the local administration of
phenylephrine [67]. The authors conclude that the a
springpot appears to describe the stretching of the elastic
fibers of the aorta (a is close to zero), while the b
springpot seems to represent a structural viscous beha-
vior (b closer to 1). As expected the elastic contribution
increases—a decreases from 0.20 to 0.11—following
administration of phenylephrine while the loss term is
relatively unchanged (0.84–0.80). Thus, for a complex
multi-scale tissue such as the arterial wall, the fractional
order model is able to characterize the important features
of its dynamic behavior.

Fractional order models have also been used by Sinkus
et al. [164] to fit magnetic resonance elastography (MRE)
data from breast tumors. In this technique, MRI is used to
image low frequency (50–1500 Hz) shear wave oscilla-
tions in the breast. Wavelength and attenuation of the
vibrations directly reflect elastic shear modulus and
viscosity of the tissue through the complex wave vector
k(o)=b(o)+ ja(o). In MRE these tissue properties are
mapped onto an elastogram image through an assumed
model of the tissue’s mechanical properties—usually a
purely elastic spring with zero loss, or a Voigt spring/
dashpot model. In his study, Sinkus assumed a power law
increase in attenuation with excitation frequency,
a(o)=a0oy (where 0oyo1), and invoked causality via
the Hilbert transform to obtain the propagation constant
as b(o)=tan(py/2)a0oy. Thus, for

kðoÞ ¼ a0oye�jp=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðtanðpy=2Þ2Þ

q
ð115Þ

k(o) is related to the complex shear modulus G*(o)
through

kðoÞ ¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=G�ðoÞ

p
, G�ðoÞ ¼ 9G�ðoÞejy9 ð116Þ
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Fig. 6. Vector diagram (complex plane plot) of (114) for in vivo modulus

data from an aorta under control (CTL) conditions and following
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and Armentano [67].
such that the modulus and phase can be written as

9G�ðoÞ9¼ rog=a2
0ð1þw

2Þ, y¼ tan�1ðG1=GdÞ ¼ py ð117Þ

where g=2�2y. The advantage of this model is that it
does not specify a particular Maxwell, Voigt or Kelvin
rheological model, but simply assumes an underlying
fractional order dynamics, oy, and then estimates the
fractional power law parameters y and a0 from the MRE
data. Sinkus first verifies this model for a tissue mimicking
breast phantom at a fixed frequency of 65 Hz and then
applies the model to human breast tissue by measuring
the dynamic modulus at 65, 75, 85 and 100 Hz. A complex
plane plot of Gd and Gl gives a straight line with a y value
of approximately 0.13 for normal tissue. Analysis of 39
malignant and 29 benign tumors using this method gives
a clear separation of the tumors from the normal (and
fibrotic) breast tissue, and furthermore separates the
malignant from the benign tumors when individual cases
are plotted in a graph (Fig. 7) of y versus a0 (an increase in
specificity of about 20% at 100% sensitivity). In earlier
studies this group was not able to classify breast tumors
on the basis of Gd and Gl alone, so this model provides a
significant improvement in cancer detection.

In the three examples considered here, fractional order
models were found to provide better fits to electrical
and mechanical measurements made on living tissue.
Such studies need replication, but these findings provide
useful examples of cases where an extension of the
‘‘standard’’ integer order dynamic models of circuits and
mechanical systems is warranted. Fractional order dy-
namic models of complex, multiscale systems account for
anomalous dynamic behavior through a simple extension
of the order of the operations from integer to fractional. In
the time-domain this extension is manifest through
incorporation to a variable degree of system memory
through convolution with a power law kernel exhibiting
fading memory of the past. Perhaps, in the future, the
development of integrated space and time-domain frac-
tional order models will become a more standard
component of linear systems analysis, at least when such
Fig. 7. Plot of benign (+) and malignant (’) breast tumor MRE data for

39 patients. These data are replotted from Sinkus et al. [164].
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models are applied to living systems. Clearly, when the
structure in living systems is fractal, or when the
measured signals exhibit anomalous properties, one
should suspect that such dynamics might be best
expressed by fractional order models. Much remains to
be done, and we look to the philosopher Henri Bergson to
provide inspiration, for, as Bergson [3] noted in his 1911
work Creative Evolution: ‘‘the present contains nothing
more than the past, and what is found in the effect was
already in the cause’’.

6. Fractional Brownian motion

Fractional Brownian motion was introduced first by
Kolmogorov [104]. Later, Mandelbrot and Van Ness
[21,120] proposed it as a model for nonstationary signals,
with stationary increments, which is useful in under-
standing phenomena with long range dependence and
with a frequency dependence of the form 1/fa, with a non-
integer [102,177–179]. In [144] an approach based on the
fractional derivatives was proposed and will be described
next.

Assume now that we are computing the fractional
derivative of the white noise, w(t), with power equal to s2.
We define fractional noise by

raðtÞ ¼DawðtÞ ð118Þ

If w(t) is Gaussian, we will call ra(t) fractional Gaussian
noise. As known, the autocorrelation function of the white
noise is s2d(t). With some work, we obtain for the
derivative autocorrelation [136]

Ra
r ðtÞ ¼ lim

h-0

Gð2aþ1Þ

h2a

Xþ1
�1

ð�1Þk

Gða�kþ1ÞGðaþkþ1Þ
dðt�khÞ

ð119Þ

where Ra
r ðtÞ ¼ E½raðtþtÞraðtÞ�. The right hand side is a

sequence of weighted impulses that becomes close
together as h goes to zero. If a4�1/2 (119) is a centred
derivative [103,142] of d(t) and can be expressed by

Ra
r ðtÞ ¼

1

2Gð�2aÞcosðapÞ
9t9�2a�1

ð120Þ

it represents an autocorrelation function, having a max-
imum at the origin, if

2aþ140

Gð�2aÞcosðapÞ40

(
ð121Þ

The first condition (a4�1/2) was already assumed. As

1

2Gð�2aÞcosðapÞ ¼
Gð2aþ1Þsinð2apÞ

2pcosðapÞ ¼�
Gð2aþ1ÞsinðapÞ

p
ð122Þ

it is not hard to see that for �1/2oao0 and
aA(2n,2n+1), nAZ+ we obtain valid autocorrelation
functions. We conclude that, in the interval �1/2
oao1/2 we obtain a stationary process in the integra-
tion case (ao0) and nonstationary in the derivative case
(a40). This fractional noise will be used next to define
the fractional Brownian motion. Let ra(t) be a fractional
noise. Define a process va(t), tZ0, by

vaðtÞ ¼

Z t

0
raðtÞdt ð123Þ

We will call this process fractional Brownian motion (or
generalized Wiener–Lévy process). It is not difficult to
show that it enjoys all the properties normally required
for fBm [21,120]:
1.
 va(0)=0 and E{va(t)}=0 for every tZ0. If w(t) is
Gaussian, so are ra(t) and va(t). The proposed defini-
tions do not need Gaussianity.
2.
 The covariance is [142]

E vaðtÞvaðsÞ½ � ¼
s2

2Gð�2aþ2Þcosap
�½9t9�2aþ1

þ9s9�2aþ1
�9t�s9�2aþ1

�

ð124Þ

valid for 9a9o1/2. Putting H=�a+1/2 wth HA(0,1),
we obtain the usual formulation

E vaðtÞvaðsÞ½ � ¼
VH

2
9t92H

þ9s92H
�9t�s92H

h i
ð125Þ

with

VH ¼
s2

Gð2Hþ1ÞsinHp ð126Þ

The variance is readily obtained as

E½vaðtÞ
2
� ¼ VH9t9

2H
ð127Þ

The process has stationary increments. Letting the
3.

increments be defined by

Dvaðt,sÞ ¼ vaðtÞ�vaðsÞ ¼

Z t

s
raðtÞdt ð128Þ

its variance is given by [7]

Var Dvaðt,sÞ
� 	

¼ s2 9t�s9�2aþ1

2Gð�2aþ2Þcosap ð129Þ

The process is self-similar. From (125), we have
4.
E vaðatÞvaðasÞ½ � ¼
VH

2
9a92H 9t92H

þ9s92H
�9t�s92H

h i
ð130Þ

The incremental process has a 1/fb spectrum. On
5.

defining an incremental process by (128) and choos-
ing s=t�T

dHðtÞ ¼ vHðtÞ�vHðt�TÞ ð131Þ

has an autocorrelation function given by

RdðtÞ ¼
VH

2
9tþT92H

þ9t�T92H
�29t92H

h i
ð132Þ

and as [142]

FT
1

2GðbÞcosðbp=2Þ
9t9b�1


 �
¼

1

9o9b
ð133Þ

we obtain the spectrum of the incremental process

SdðoÞ ¼ s2 sin2
ðoT=2Þ

9o92Hþ1
ð134Þ
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For 9o9bp/T, the spectrum can be approximated by

SdðoÞ �
s2T2

49o92H�1
ð135Þ
We conclude that the proposed definition agrees with
the Mandelbrot and van Ness results.
The result expressed in (135) is interesting [21,120]:
�
 if 0oHo1/2, the spectrum is parabolic and corre-
sponds to an antipersistent fBm; because the incre-
ments tend to have opposite signs, this case
corresponds to the integration of a stationary frac-
tional noise;

�
 if 1/2oHo1, the spectrum has a hyperbolic character

and corresponds to a persistent fBm; because the
increments tend to have the same sign, this case
corresponds to the integration of a nonstationary
fractional noise.

7. Conclusions

Fractional calculus models provide a relatively simple
way to describe the physical and electrical properties of
complex, heterogeneous and composite biomaterials.
There is a multi-scale generalization inherent in the
definition of the fractional derivative that accurately
represents interactions occurring over a wide range of
space or time. Thus, we can avoid excessive segmentation
or compartmentalization of tissues into subsystems or
subunits—a system reduction that often creates more
computational and compositional complexity than can be
experimentally evaluated. Finally, fractional calculus
models suggest new experiments and measurements that
can shed light on the meaning of biological system
structure and dynamics. Thus, by applying fractional
calculus to model the behavior of cells and tissues, we
can begin to unravel the inherent complexity of individual
molecules and membranes in a way that leads to an
improved understanding of the overall biological function
and behavior of living systems.
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experiences in linear and nonlinear fractional order control,
Presentation at the Symposium on Applied Fractional Calculus
(SAFC07), Industrial Engineering School (University of Extrema-
dura), 15–17 October 2007, Badajoz, Spain.

[133] D. Moretti, A. Vivoli, Random walks and fractional diffusion,
Interdisciplinary Workshop ‘‘From Waves to Diffusion and
Beyond,’’ 20 December 2002, Bologna, Italy.

[135] M.D. Ortigueira, Introduction to fractional signal processing, part
1: continuous-time systems, IEE Proceedings on Vision, Image and
Signal Processing 1 (2000) 62–70.

[136] M.D. Ortigueira, Introduction to fractional signal processing, part
2: discrete-time systems, IEE Proceedings on Vision, Image and
Signal Processing 147 (1) (2000) 71–78.

[137] M.D. Ortigueira, On the initial conditions in continuous-time fractional
linear systems, Signal Processing 83 (11) (2003) 2301–2309.

[138] M.D. Ortigueira, From differences to differintegrations, Fractional
Calculus and Applied Analysis 7 (4) (2004) 459–471.

[139] M.D. Ortigueira, J.A. Tenreiro-Machado, J. Sá da Costa, Which
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function from a frequency response, ASME Journal of Computa-
tional and Nonlinear Dynamics, Special Issue Discontinuous and
Fractional Dynamical Systems 3 (2) (2008) 021207.

[170] P. Varshney, P. Gupta, G.S. Visweswaran, New switched capacitor
fractional order integrator, Journal of Active and Passive Electronic
Devices 2 (3) (2007) 187–197.

[171] B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, On realization
of fractional-order controllers, in: Proceedings of the Conference
Internationale Francophone d’Automatique, Lille, France, 2000.
[172] B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approx-
imations of fractional order operators used in control theory and
applications, Fractional Calculus and Applied Analysis 3 (3) (2000)
231–248.

[173] B.M. Vinagre, I. Petras, P. Merchan, L. Dorcak, Two digital
realisation of fractional controllers: application to temperature
control of a solid, In Proceedings of the European Control
Conference (ECC2001), Porto, Portugal, 2001, pp. 1764–1767.

[174] B. Vinagre, V. Feliu, Modeling and control of dynamic system using
fractional calculus: application to electrochemical, in: Proceedings
of the 41st IEEE Conference on Decision and Control, Las Vegas,
NV, 2002, pp. 214–239.

[175] B.M. Vinagre, Y.Q. Chen, I. Petras, Two direct tustin discretization
methods for fractional-order differentiator/integrator, The Journal
of Franklin Institute 340 (5) (2003) 349–362.

[176] B.M. Vinagre, V. Feliu, Optimal fractional controllers for rational
order systems: a special case of the Wiener–Hopf spectral
factorization method, IEEE Transactions on Automatic Control 52
(12) (2007) 2385–2389.

[177] R.F. Voss, J. Clarke, 1/f noise in music: music from 1/f noise,
Journal of Acoustics Society of America 63 (1) (1978) 258–263.

[178] R.F. Voss, J. Clarke, 1/f noise in speech and music, Nature 258
(1975) 317–318.

[179] W. Willinger, M.S. Taqqu, W.E. Leland, V. Wilson, Self-similarity
in high-speed packed traffic: analysis and modelling of ethernet
traffic measurements, Statistical Science 10 (1) (1995) 67–85.
Further reading

[5] H. Brunner, P.J. van der Houwen, The Numerical Solution of
Volterra Equations, vol. 3, North-Holland Publishing Co., Amster-
dam, 1986.

[6] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in
Continuum Mechanics, CISM Courses and Lectures No. 378,
Springer-Wien, New York, 1997.

[13] J.H. He, Non-perturbative methods for strongly nonlinear
problems, Ph.D. Thesis, Berlin, 2006.

[16] M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange
Multiplier in Non-Linear Mathematical Physics, Pergamon Press,
Oxford, 1978.

[69] V. Daftardar-Gejji, H. Jafari, An iterative method for solving
nonlinear functional equations, Journal of Mathematical Analysis
and Applications 316 (2006) 753–763.
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