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Tensor (multiway array) factorization and decomposition has become an impor-
tant tool for data mining. Fueled by the computational power of modern computer
researchers can now analyze large-scale tensorial structured data that only a few
years ago would have been impossible. Tensor factorizations have several ad-
vantages over two-way matrix factorizations including uniqueness of the optimal
solution and component identification even when most of the data is missing.
Furthermore, multiway decomposition techniques explicitly exploit the multiway
structure that is lost when collapsing some of the modes of the tensor in order
to analyze the data by regular matrix factorization approaches. Multiway decom-
position is being applied to new fields every year and there is no doubt that the
future will bring many exciting new applications. The aim of this overview is to
introduce the basic concepts of tensor decompositions and demonstrate some of
the many benefits and challenges of modeling data multiway for a wide variety of
data and problem domains. C© 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov
2011 1 24–40 DOI: 10.1002/widm.1

INTRODUCTION

T ensors, or multiway arrays, are generalizations
of vectors (first-order tensors) and matrices

(second-order tensors) to arrays of higher orders
(N > 2). Hence, a third-order tensor is an array with
elements xi, j,k. Tensor decompositions are in frequent
use today in a variety of fields ranging from psychol-
ogy, chemometrics, signal processing, bioinformatics,
neuroscience, web mining, and computer vision to
mention but a few.

Factorizing tensors have several advantages over
two-way matrix factorization such as uniqueness of
the optimal solution (without imposing constraints
such as orthogonality and independence) and compo-
nent identification even when only a relatively small
fraction of all the data is observed (i.e., due to missing
values). Furthermore, multiway decomposition tech-
niques can explicitly take into account the multiway
structure of the data that would otherwise be lost
when analyzing the data by matrix factorization ap-
proaches by collapsing some of the modes. Tensor
decompositions are in frequent use in psychometrics
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in order to address questions such as ‘which group of
subjects behave differently on which variables under
which conditions?’1,2 In chemistry, tensor decompo-
sition has been proven for low concentrations to be
the physical model of fluorescence spectroscopy ad-
mitting unique recovery of the chemical compounds
from sampled mixtures.3,4 In neuroimaging, a tradi-
tion has been to average data across trials or groups
of subjects for the extraction of the most reproducible
neural activation. Here, tensor decomposition can ef-
ficiently extract the consistent patterns of activation,
whereas noisy trials/subjects can be downweighted in
the averaging process.5–8 For signal processing, ten-
sor decomposition forms an analysis framework to
solve the blind source separation problem through the
analysis of higher-order statistics,9–11 whereas tensor
decompositions have proven useful for the exploita-
tion of different types of diversity in sensor array
processing.12,13 In computer vision, tensor decompo-
sition enables the extraction of patterns that gener-
alize well across common modes of variation,14–16

whereas in bioinformatics, tensor factorization has
proven useful for the understanding of cellular states
and biological processes.17–19 Lately, tensor factoriza-
tion has become an important tool in web mining for
exploratory analysis and comprehension of a large
variety of data that are inherently multimodal.20–23

As such, tensor decomposition is widely used in data
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mining and its importance is growing spurred by the
computational power and storage capabilities of mod-
ern computers. Tensor decomposition is being applied
to new fields every year and there is no doubt that ten-
sor factorization will be an important framework for
knowledge discovery of many types of modern large-
scale data sets.

Tensor factorization has many challenges and
open problems, particularly because its geometry is
not yet fully understood, the occurrence of degener-
ate solutions, and no guarantee of finding the opti-
mal solution. Furthermore, most tensor decomposi-
tion models impose a very restricted structure on the
data which in turn require that data exhibit a strong
degree of regularity. To overcome these limitations a
variety of extensions and variants of tensor decompo-
sition approaches have been proposed over the years.
Thus, understanding the data generating process is
key for the formulation of adequate tensor decompo-
sition models that can well extract the inherent mul-
timodal structure.

This overview will limit itself to the basic ten-
sor decomposition models such as the Candecomp/
Parafac (CP) and Tucker model, as well as their ap-
plication in data mining. Other great introductory
resources for tensor decomposition and their applica-
tions can be found in the recent review of Ref 24 the
book on multiway analysis for the chemical sciences28

as well as the book on applied multiway analysis of
Ref 2. Furthermore, a good introduction to nonnega-
tive tensors and their decompositions can be found in
Ref 25. In the present paper, model estimation is re-
duced to a minimum considering only the simple and
widely used alternating least squares (ALS) approach.
For a thorough treatment of tensor model estima-
tion approaches, we suggest that the reader consult
Refs 24, 26, 27, and the references therein.

The paper is organized as follows: In ‘Tensor
Nomenclature’, we introduce standard tensor no-
tation and operations, in ‘The Tucker and Cande-
comp/Parafac Models’, we describe the two most
widely used tensor decomposition approaches namely
the Tucker and CP decompositions as well as some
of their extensions. In ‘Tensor Factorization for Data
Mining’, we describe some of the applications of ten-
sor factorization and decomposition in data mining.
Because of space limitation, the aim of this article is
to give an overview, thus, full credit cannot be given
to all the many achievements made over the years of
multiway/tensor analysis.

TENSOR NOMENCLATURE
Tensors and multiway arrays, also referred to as
hypermatrices, are normally written in calligraphed

letters. A general real tensor of order N is writ-
ten X ∈ R

I1×I2×...×IN, we will use the following no-
tation to more compactly denote the size of a tensor
X I1×I2×...×IN, whereas a given element of the tensor
X is denoted by xi1,i2,...,iN. The following section in-
troduces the basic notation and operations that, for
clarity, is given for third-order tensors, whereas they
trivially generalize to tensors of arbitrary order.

Consider the third-order tensor AI×J ×K and
BI×J ×K . Scalar multiplication, addition of two ten-
sors, and the inner product between two tensors are
given by

αB = C, where ci, j,k = αbi, j,k (1)

A + B = C, where ci, j,k = ai + bi (2)

〈A,B〉 =
∑
i, j,k

ai, j,kbi, j,k (3)

As such, the Frobenius norm of a tensor is given by
‖A‖F = √〈A,A〉.

The nth mode matricizing and unmatricizing op-
eration maps a tensor into a matrix and a matrix into
a tensor, respectively, i.e.,

X I1×I2×...×IN
→

matricizing
X In×I1·I2···In−1·In+1···IN

(n) (4)

X In×I1·I2···In−1·In+1···IN
(n)

→
un-matricizing

X I1×I2×...×IN (5)

The matricizing operation for a third-order tensor is
illustrated in Figure 1. The n-mode multiplication of
an order N tensor X I1×I2×...×IN with a matrix M J ×In

is given by

X ×n M = X •n M = Z I1×...×In−1×J ×In+1×...×IN, (6)

zi1,...,in−1, j,in+1,...,iN =
In∑

in=1

xi1,...,in−1,in,in+1,...,iNmj,in . (7)

Using the matricizing operation, this operation cor-
responds to Z(n) = MX (n). As a result, the matrix
products underlying the singular value decomposi-
tion (SVD) can be written as U SV
 = S ×1 U ×2 V =
S ×2 V ×1 U as the order of the multiplication does
not matter. The outer product of the three vectors a,
b, and c is given by

X = a ◦ b ◦ c, such that xi, j,k = aibj ck (8)

The Kronecker product is given by

P I×J ⊗ QK×L = RIK×J L,

such that rk+K(i−1),l+L( j−1) = pi jqkl, (9)
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FIGURE 1 | The matricizing operation on a third-order tensor of size 4 × 4 × 4.

whereas the Khatri–Rao product is defined as a
column-wise Kronecker product

AI×J | ⊗ |B K×J = AI×J  B K×J = CIK×J ,

such that ck+K(i−1), j = ai j bkj . (10)

An important property when calculating the Moore–
Penrose inverse (i.e., A† = (A
 A)−1 A
) of Kronecker
and Khatri–Rao products are

(P ⊗ Q)† = (P† ⊗ Q†) (11)

(A  B)† = [(A
 A)∗(B
 B)]−1(A  B)
 (12)

where ∗ denotes elementwise multiplication.
This reduces the complexity from O(J 3L3)

to O(max{I J 2, K J 2, J 3, L3}) and O(IK J 2) to
O(max{IK J , I J 2, K J 2, J 3}), respectively. For addi-
tional properties of these matrix products see, also
Ref 28. In Table 1, a summary of the operators
described above can be found.

THE TUCKER AND
CANDECOMP/PARAFAC MODELS

The two most widely used tensor decomposition
methods are the Tucker model29 and Canonical De-
composition (CANDECOMP)30 also known as Parallel
Factor Analysis (PARAFAC)31 jointly abbreviated CP.
In the following section, we describe the models for

TABLE 1 Summary of the Utilized Variables and Operations. X , X, x, and x are Used to Denote

Tensors, Matrices, Vectors, and Scalars Respectively.

Operator Name Operation

〈A,B〉 Inner product 〈A,B〉 = ∑
i, j ,k ai, j ,kbi, j ,k

‖A‖F Frobenius norm
√〈A,A〉

X(n) Matricizing X I 1×I 2×...×I N → X I n×I 1·I 2···I n−1·I n+1···I N
(n)

×n or •n n-mode product X ×n M = Z where Z(n) = MX (n)
◦ outer product a ◦ b = Z where zi, j = ai b j
⊗ Kronecker product A ⊗ B = Z where zk+K (i −1),l+L ( j −1) = ai j bkl
 or | ⊗ | Khatri–Rao product A  B = Z, where zk+K (i −1), j = ai j bk j .

kA k-rank Maximal number of columns of A guaranteed to be linearly independent.
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FIGURE 2 | Illustration of the Tucker model of a third-order tensor
X . The model decomposes the tensor into loading matrices with a
mode specific number of components as well as a core array
accounting for all multilinear interactions between the components of
each mode. The Tucker model is particularly useful for compressing
tensors into a reduced representation given by the smaller core array G.

a third-order tensor but they trivially generalize to
general Nth order arrays by introducing additional
mode-specific loadings.

Tucker Model
The Tucker model proposed in Ref 29 reads for a
third-order tensor X I×J ×K

X I×J ×K ≈
∑
lmn

gl,m,naI
l ◦ bJ

m ◦ cK
n , such that

xi, j,k ≈
∑
lmn

gl,m,nai,lbj,mck,n,

where the so-called core array GL×M×N with elements
gl,m,n accounts for all possible linear interactions be-
tween the components of each mode. To indicate how
many vectors pertain to each modality, it is customary
also to denote the model a Tucker(L, M, N) model.
Using the n-mode tensor product ×n,29,32 the model
can be written as

X I×J ×K ≈ GL×M×N ×1 AI×L ×2 B J ×M ×3 CK×N.

Each mode of the array is approximately spanned by
given loading matrices for that mode such that the
vectors of each modality interact with the vectors of
all remaining modalities with strengths given by the
core tensor G, see, also Figure 2.

The Tucker model is not unique. As such, multi-
plying by invertible matrices QL×L, RM×M, and SN×N

gives an equivalent representation, i.e.,

X ≈ (G ×1 Q×2 R ×3 S) ×1 (AQ−1) ×2 (B R−1))

×3(CS−1)) = G̃ ×1 Ã ×2 B̃ ×3 C̃.

As a result, the factors of the unconstrained Tucker
model can be constrained orthogonal or orthonormal
(which is useful for compression) without hamper-
ing the reconstruction error. However, imposing or-
thogonality/orthonormalty does not resolve the lack
of uniqueness as the solution is still ambiguous to

multiplication by orthogonal/orthonormal matrices
Q, R, and S. Using the n-mode matricizing and
Kronecker product operation, the Tucker model can
be written as

X (1) ≈ AG(1)(C ⊗ B)


X (2) ≈ BG(2)(C ⊗ A)


X (3) ≈ CG(3)(B ⊗ A)
.

The above decomposition for a third-order tensor is
also denoted a Tucker3 model, the Tucker2 model
and Tucker1 models are given by

Tucker2: X ≈ G ×1 A ×2 B ×3 I ,

Tucker1: X ≈ G ×1 A ×2 I ×3 I ,

where I is the identity matrix. Thus, the Tucker1
model is equivalent to regular matrix decomposition
based on the representation X (1) = AG(1).

Model Estimation
Traditionally, the Tucker model has been estimated
on the basis of updating the elements of each mode
in turn that for the least squares objective commonly
is denoted ALS. By fitting the model using ALS, the
estimation reduces to a sequence of regular matrix
factorization problems. As a result, for least squares
minimization, the solution of each mode can be solved
by pseudoinverses, i.e.,

A ← X (1)(G(1)(C ⊗ B)
)†

B ← X (2)(G(2)(C ⊗ A)
)†

C ← X (3)(G(3)(B ⊗ A)
)†

G ← X ×1 A† ×2 B† ×3 C†.

The analysis simplifies when orthogonality is
imposed24 such that the estimation of the core can be
omitted. Orthogonality can be imposed by estimating
the loadings of each mode through the SVD forming
the Higher-order Orthogonal Iteration (HOOI),10,24

i.e.,

AS(1)V (1)
 = X (1)(C ⊗ B),

B S(2)V (2)
 = X (2)(C ⊗ A),

CS(3)V (3)
 = X (3)(B ⊗ A).

such that A, B, and C are found as the first L, M, and
N left singular vectors given by solving the right hand
side by SVD. The core array is estimated upon con-
vergence by G ← X ×1 A† ×2 B† ×3 C†. The above
procedures are unfortunately not guaranteed to con-
verge to the global optimum.

A special case of the Tucker model is given by
the HOSVD29,32 where the loadings of each mode is
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TABLE 2 Overview of the Most Common Tensor Decomposition Models, Details of the Models as well

as References to Their Literature can be Found in Refs 24, 28, and 44

Model name Decomposition Unique

CP xi, j ,k ≈ ∑
d ai,d b j ,d ck,d Yes

The minimal D for which approximation is exact is called the rank of a tensor, model in general unique.
Tucker xi, j ,k ≈ ∑

l ,m,n gl ,m,nai,l b j ,mck,n No
The minimal L , M , N for which approximation is exact is called the multilinear rank of a tensor.

Tucker2 xi, j ,k ≈ ∑
l m gl ,m,kai,l b j ,m No

Tucker model with identity loading matrix along one of the modes.
Tucker1 xi, j ,k ≈ ∑

l ,m,n gl , j ,kai,l No
Tucker model with identity loading matrices along two of the modes.
The model is equivalent to regular matrix decomposition.

PARAFAC2 xi, j ,k ≈ ∑D
d ai,d b(k)

j ,d ck,d , s.t.
∑

j b(k)
j ,d b(k)

j ,d ′ = ψd,d ′ Yes
Imposes consistency in the covariance structure of one of the modes. The model is well suited to account for shape changes;

furthermore, the second mode can potentially vary in dimensionality.
INDSCAL xi, j ,k ≈ ∑

d ai,d a j ,d ck,d Yes
Imposing symmetry on two modes of the CP model.

Symmetric CP xi, j ,k ≈ ∑
d ai,d a j ,d ak,d Yes

Imposing symmetry on all modes in the CP model useful in the analysis of higher order statistics.
CANDELINC xi, j ,k ≈ ∑

l mn (
∑

d âl ,d b̂m,d ĉn,d )ai,l b j ,mck,n No
CP with linear constraints can be considered a Tucker decomposition where the Tucker core has CP structure.

DEDICOM xi, j ,k ≈ ∑
d,d ′ ai,d bk,d r d,d ′ bk,d ′ a j ,d ′ Yes

Can capture asymmetric relationships between two modes that index the same type of object.
PARATUCK2 xi, j ,k ≈ ∑

d,e ai,d bk,d r d,esk,et j ,e Yes55

A generalization of DEDICOM that can consider interactions between two possible different sets of objects.
Block Term Decomp. xi, j ,k ≈ ∑

r
∑

l mn g(r )
l mna(r )

i,nb(r )
j ,mc(r )

k,n Yes56

A sum over R Tucker models of varying sizes where the CP and Tucker models are natural special cases.
ShiftCP xi, j ,k ≈ ∑

d ai,d b j −τi,d ,d ck,d Yes6

Can model latency changes across one of the modes.
ConvCP xi, j ,k ≈ ∑T

τ

∑
d ai,d,τ b j −τ,d ck,d Yes

Can model shape and latency changes across one of the modes. When T = J the model can be reduced to regular matrix
factorization; therefore, uniqueness is dependent on T.

determined solely by the SVD of the matricized array,

AS(1)V (1)
 = X (1),

B S(2)V (2)
 = X (2),

CS(3)V (3)
 = X (3).

Although this approach strikingly resembles the
SVD,32 it is not guaranteed to find an optimal com-
pression. In particular, the approach does not take
the (Tucker) structure of the remaining modes into ac-
count when solving for the loadings of a given mode,
see also Ref 10. Therefore, the HOSVD is commonly
used as an initialization method that is refined by
other Tucker estimation approaches. If the matricized
ranks in the three modes are found to be L, M, and
N respectively, then a Tucker(L, M, N) model fits the
data perfect.

CP Model
The CP model independently proposed in Refs 30, 31,
33 can be considered a special case of the Tucker
model where the size of each modality of the core
array G is the same, i.e., L = M = N, whereas in-
teractions are only between columns of same indices
such that the only nonzero elements are found along
the diagonal of the core, i.e., gl,m,n �= 0 if and only if
l = m = n, see also Figure 3. As a result, the CP model
can be written as

X I×J ×K ≈ DD×D×D ×1 AI×D ×2 B J ×D ×3 CK×D,

where D is a diagonal tensor. An important property
of the CP model is that the restriction imposed on the
Tucker core leads to uniqueness of the representa-
tion. When multiplying by invertible matrices QD×D,
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FIGURE 3 | Illustration of the CANDECOMP/PARAFAC (CP) model of a
third-order tensor X . The model decomposes a tensor into a sum of
rank one components and the model is very appealing due to its
uniqueness properties.

RD×D, and SD×D, we find

X ≈ (D ×1 Q×2 R ×3 S) ×1 (AQ−1) ×2 (B R−1)

×3(CS−1) = D̃ ×1 Ã ×2 B̃ ×3 C̃.

As such, the new core D̃ must be nonzero only along
the diagonal for the representation to remain a CP

model. This, in practice, has the consequence that Q,
R, and S can only be scale and permutation matri-
ces with identical permutation. In Refs 34, 35, the
uniqueness properties of the CP model were thor-
oughly investigated and among several results, the
following uniqueness criterion derived

kA + kB + kC ≥ 2D + 2. (13)

Here, the Kruskal rank or k-rank kA of a matrix A is
the maximal number r such that any set of r columns
of the matrix A is linearly independent; therefore,
kA ≤ rank(A) ≤ D where D is the number of compo-
nents.

The notion of k-rank is closely related to the
notion of spark in compressed sensing36 and while
k-rank is NP hard to compute it can be bounded by
measures of coherence.36 In the presence of noise with
continuous probability distribution and when all the
dimensions of the tensor are larger than D, we have
in practice kA = kB = kC = D. As Kruskal wrote in
Ref 34, struck by his own uniqueness criterion,

‘A surprising fact is that the nonrotatability char-
acteristic can hold even when the number of factors
extracted is greater than every dimension of the three-
way array.’

The criterion has been generalized to order N arrays
in Ref 37.

The uniqueness property of the optimal CP so-
lution is perhaps the most appealing aspect of the
CP model. Uniqueness of matrix decomposition has
been a longstanding challenge that has spurred a
great deal of research early on in the psychomet-
rics literature where rotational approaches such as
VARIMAX were proposed (see, also Refs 1, 2, 31,

and references therein) and lately in the signal pro-
cessing literature where methods based on statisti-
cal independence9 (see, also, ‘Signal Processing’) have
been derived in order to disambiguate matrix decom-
positions. Thus, contrary to the regular matrix fac-
torization approaches, the CP model admit a unique
representation of the data.

Unfortunately, uniqueness sometimes comes at
a price as CP degenerate solutions are known to oc-
cur, i.e., solutions in which the component loadings
are highly correlated in all the modes and where the
solution is not physically meaningful but rather a
mathematical artifact caused by the inability of CP

to model that particular tensor with that particular
number of components. This makes the CP estimation
unstable, slow in convergence, and difficult to inter-
pret because the components are dominated by strong
cancelations effects between the various components
in the model.38,39 An example of CP degeneracy is
given in Figure 6.

Model Estimation
As with the Tucker model, the CP decomposition does
not admit any known closed form solution, and in
general, there is no guarantee that the optimal solu-
tion, even if it exists, can be identified. Although a
direct fitting approach based on a generalized eigen-
value problem with fixed computational complex-
ity can be imposed, the optimization criterion is not
strictly well defined in terms of the least squares objec-
tive, whereas the solutions obtained have been found
to be inferior to the following ALS approach.27

Parameter estimation by ALS is widely used be-
cause of its ease of implementation by the use of
the Khatri–Rao product and the matricizing opera-
tions. For a third-order CP model, we can disambiguat
the scaling ambiguity between the diagonal elements
of the core and the loadings by fixing the diagonal
core elements to 1 such that the CP model can be
written as

X I×J ×K ≈
∑

d

aI
d ◦ bJ

d ◦ cK
d , such that

xi, j,k ≈
∑

d

ai,dbj,dck,d.

Using the matricizing and Khatri–Rao product, this is
equivalent to

X (1) ≈ A(C  B)
,

X (2) ≈ B(C  A)
,

X (3) ≈ C(B  A)
.
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For the least squares objective we, thus, find

A ← X (1)(C  B)(C
C ∗ B
 B)−1

B ← X (2)(C  A)(C
C ∗ A
 A)−1

C ← X (3)(B  A)(B
 B ∗ A
 A)−1

However, some calculations are redundant between
the alternating steps. Thus, the following approach
based on premultiplying the largest mode(s) with the
data is more computationally efficient.27 Multiplying
the first mode with the data when updating for the
second and third mode of a third-order array gives

A ← X (1)(C  B)(C
C ∗ B
 B)−1, X̂ (1) = A
X (1)

B ← X̂ (2)(C  I )(C
C ∗ A
 A)−1

C ← X̂ (3)(B  I )(B
 B ∗ A
 A)−1.

We will, without loss of generality, assume I ≥ J ≥
K, hence, the above approach reduces the cost in-
voked for the above updates of B and C from
O(I J K D) to O(max{J D2, D3}) when taking advan-
tage of the sparsity structure of the Khatri–Rao prod-
ucts where D is the number of components in the CP

model. Commonly, the above ALS algorithm is run
multiple times with different initializations to avoid
the identification of a local minima solution.

Although the ALS algorithm for CP and Tucker
estimation are widely used, ALS can suffer from slow
convergence. Although ALS converges at most linearly
in practice, it can be extremely slow particularly in
cases of high collinearity between the factors.27 Al-
ternative estimation approaches such as Levenberg–
Marquardt, conjugate gradient, and enhanced line
search have been shown to improve convergence.26

For further details on CP and Tucker model estima-
tion and alternatives to ALS optimization including
complexity analysis and performance evaluation, see
also Refs 24, 26, 27, and references therein.

Rank and Multilinear Rank of a Tensor
The rank of a tensor is given by its minimal sum of
rank one components R such that

X =
R∑

r=1

ar ◦ br ◦ cr . (14)

Notice, contrary to the matrix case, the rank of a
tensor can be greater than min(I, J , K). Furthermore,
for tensor decomposition over the real field a 2 ×
2 × 2 tensor can both be rank 2 and rank 3 but in
the complex field 2 × 2 × 2 tensors generically have
rank 2.26 The fact that the typical rank of a tensor
can take more than one value is specific to the real
field. One major difference between matrix and tensor

rank is that there is no straightforward algorithm to
determine the rank of a tensor. In practice, the rank of
a tensor is determined numerically by fitting various
CP models for different R.24 Using the Tucker model
representation, a third-order tensor is said to have
multilinear rank-(L, M, N) if its mode-1 rank, mode-
2 rank, and mode-3 rank are equal to L, M, and N,
respectively10,32,39

X =
LMN∑
lmn

gl,m,nal ◦ bm ◦ cn. (15)

Although the Tucker model, due to its orthogonal
representation, is useful for projection onto tensorial
subspaces (i.e., compression), the CP model by defi-
nition is outer product rank revealing and often of
interest because of its unique and easily interpreted
representations.

Missing Values
Missing data can arise in a variety of settings because
of loss of information, errors in the data collection
process, or costly experiments.40 In the case of miss-
ing data, a standard practice is to impute missing data
values, i.e., the missing data element xi, j,k is replaced
by the estimated value ri, j,k of that element from the
decomposition model, i.e., xi, j,k = ri, j,k starting from
an initial guess of these missing values (this is also
referred to as expectation maximization). An alter-
native approach is to use marginalization where the
missing values are ignored (i.e., marginalized) dur-
ing optimization, i.e., for least squares estimation by
considering the objective

∑
i, j,k wi, j,k(xi, j,k − ri, j,k)2,

where wi, j,k = 1 if xi, j,k is present and wi, j,k = 0 if
xi, j,k is missing. Although methods based on impu-
tation often are easier to implement (i.e., alternat-
ing least squares can be directly applied), they are
useful only as long as the amount of missing data
is relatively small as their performance tend to de-
grade for large amounts of missing data as the inter-
mediate models used for imputation have increased
risk of convergence to a wrong solution (see also
Refs 27, 40, and references therein). Factorizing ten-
sors based on the CP model have been shown to
recover the true underlying components from noisy
data with up to 99% data missing for third-order
tensors,40 whereas the corresponding two-way meth-
ods become rather unstable already with 25–40%
of data missing.27,40 This has been attributed to the
fact that there are fewer free parameters p relative
to observations for models accounting for multilinear
dynamics, i.e., the CP model has p = D(I + J + K),
the Tucker model has p = IL + J M + K N (when
considering the core a deterministic function of the
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loadings), whereas the corresponding two-way anal-
ysis requires p = D(I + J K) fitted parameters for a
third-order tensor X I×J ×K .

Model Order Estimation
Determining the number of components for the CP

and Tucker model is challenging. Contrary to the SVD

decomposition, the CP and Tucker models are not in
general nested, hence, the extracted features change
with the number of components extracted. As such,
determining the model order is important to interpret
the CP and Tucker decompositions in a viable way.
Model order estimation is particularly a challenge for
the Tucker model as the number of components is
specified for each mode separately resulting in a large
combinatorial explosion in the number of potential
models, i.e., for CP up to Dmax models have to be
evaluated, whereas for the third-order Tucker model
LmaxMmaxNmax potential models have to be consid-
ered. A commonly used approach is to evaluate the
number of components for all potential models in
terms of their ability to account for the data relative
to the number of parameters used in the model, see
also Ref 41 and references therein.

For the CP model, a widely used heuristic for
evaluating the number of components is based on the
so-called core consistency diagnostic (CORCONDIAG)
proposed in Ref 42

G ← X ×1 A†
CP ×2 B†

CP ×3 C†
CP, (16)

CORCONDIAG = 100 ×
(

1 − ‖I − G‖2
F

‖I‖2
F

)
. (17)

Where I is the (diagonal) CP core array and G the
corresponding Tucker core array obtained from the
loadings ACP, BCP, and CCP extracted from the CP

model. Too many components will result in a strong
degree of cross-talk across the loadings of the modes
and will yield a low value of the CORCONDIAG. Too
few components will not have any cross-talk at all.
Thus, the ‘correct’ number of components is taken
to be just before a major drop-off in the curve of
(d, CORCONDIAG). As explained in Ref 42 ‘As a rule of
thumb, a core consistency above 90% can be inter-
preted as “very trilinear”, whereas a core consistency
in the neighborhood of 50% would mean a prob-
lematic model with signs of both trilinear variation
and variation which is not trilinear’. A core consis-
tency close to zero or even negative implies an in-
valid model, because the space covered by the compo-
nent matrices is then not primarily describing trilinear
variation.’

An alternative procedure for model order esti-
mation uses missing value estimation in conjunction
with crossvalidation, see also Ref 43 and references
therein. Recently, a hierarchical Bayesian approach
based on automatic relevance determination has been
proposed to estimate the model order of the CP and
Tucker model without having to exhaustively evalu-
ate all potential model orders.41 Here, priors on the
model parameters are given hyperparameters that rep-
resent the scale of each component by defining their
range of variation. By optimizing these hyperparam-
eters, components can be removed if their scale goes
below some threshold. This results in an estimate of
the model order when the model is initialized with
‘too many’ components. Furthermore, sparsity im-
posed on the core can be used to interpolate between
a CP and Tucker representation (see, also Ref 41 and
references therein).

Common Constraints
When optimizing the CP and Tucker model on the
basis of alternating least squares, the estimation of
the parameters of each mode form a regular matrix
decomposition problem. Constraints such as orthog-
onality and nonnegativity from matrix decomposition
analysis can be directly imposed on the components to
further improve their identification. A benefit for the
CP decomposition of imposing such constraints is that
degeneracy no longer can occur. A detailed account
of nonnegative tensor factorization can be found in
Ref 25.

Other Tensor Factorization Methods
A multitude of other tensor factorization models be-
yond the CP and Tucker models have been proposed
over the years. Ranging from models exploiting var-
ious kinds of symmetry in the tensors (INDSCAL,
Symmetric CP, and DEDICOM) to generalizations
of the CP model to account for latency and shape
changes (shiftCP, convCP, and PARAFAC2) to decom-
positions that can be considered models interpolat-
ing between or combining the Tucker and CP mod-
els (Block Term Decompositions and CANDELINC).
For an overview of these approaches, see also Table
2 as well as Refs 24, 28, 44.

Some Available Tensor Software
Several software packages are available online for ten-
sor decomposition. The n-way toolbox45 is a great
starting point providing Matlab algorithms for model
estimation of the CP and Tucker model including de-
composition under nonnegativity and orthogonality
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constraints. Fast prototyping and handling of sparse
multiway arrays in Matlab is provided by the
TensorToolbox.46 For additional software, see also
Refs 4, 24.

TENSOR FACTORIZATION FOR DATA
MINING

The first applications of Tensor decomposition was
within the field of Psychology in the 1970s when
the CP model was demonstrated to alleviate the ro-
tational ambiguity in factor analysis, whereas the
framework enabled to address higher order inter-
actions. In 1981 Appellof and Davidson3 pioneered
the use of the CP model in chemistry for the anal-
ysis of fluorescence data, whereas Möcks47 demon-
strated in 1988 how the CP model was useful in the
analysis of multisubject-evoked potentials of electro-
encephalography (EEG) data by reinventing the model
under the name topographic component model. Since
then tensor decompositions have found wide use in
practically all fields of science ranging from signal
processing, computer vision, bioinformatics to web
mining. In many of these studies, it has been proven
that the use of tensor decomposition can explore re-
lations and interactions between the modes of the
data that are lost when resorting to traditional matrix
approaches. In particular, tensor decomposition effi-
ciently extract the consistent patterns of activation
while giving an intuitive account of how the mea-
surements of each mode interact. However, tensor
decomposition has not only proven useful for redun-
dancy reduction (i.e., compression) but also for many
types of data proven to account well for the under-
lying physics/dynamics of the system generating the
data. In the following, some of the key applications
of tensor factorization in data mining is given across
a multitude of scientific fields given more or less in
their historical order. This is in no way an exhaustive
account of the many applications of tensor decom-
position; however, the examples given will hopefully
demonstrate some of the many benefits of multiway
modeling for a variety of data and problem domains.

Psychology
The first applications of CP was within the field of
psychometrics in 1970 pioneered by the work of Car-
roll and Chang30 and Harshman.31 Ref 30 introduced
Canonical Decomposition in the context of analyzing
multiple similarity or dissimilarity matrices from a va-
riety of subjects. They applied the method to one data

FIGURE 4 | Example of a Tucker(2, 3, 2) analysis of the chopin
data X 24 Preludes×20 Scales×38 Subjects described in Ref 49. The overall
mean of the data has been subtracted prior to analysis. Black and
white boxes indicate negative and positive variables, whereas the size
of the boxes their absolute value. The model accounts for 40.42% of
the variation in the data, whereas the model on the same data random
permuted accounts for 2.41 ± 0.09% of the variation. As such, the
data are very structured and compressible by the Tucker model.

set on auditory tones from Bell Labs and to another
data set of comparisons of countries based on the idea
that simply averaging the data removed the different
aspects present in the data,31 introduced PARAFAC be-
cause it eliminated the rotational ambiguity associ-
ated with two-dimensional PCA and thus has better
uniqueness properties motivated by Cattells principle
of parallel proportional profiles.48 PARAFAC was here
applied to vowel-sound data where different individ-
uals spoke different vowels and the formant (i.e., the
pitch) was measured, i.e.,

X Subject×Vowel×Pitch

≈
∑

d

aSubject
d ◦ bVowel

d ◦ cPitch
d . (18)

Since these initial works both the CP as well as Tucker
model also referred to as N-mode PCA2 have had
a widespread application within social and behav-
ioral sciences addressing questions such as ‘Which
group of subjects behave differently on which vari-
ables under which conditions?’2 In Figure 4 is given
a Tucker(2, 3, 2) analysis of 24 chopin preludes
based on 20 types of scoring scales evaluated by 38
judges/subjects,49 i.e.,

X Predude×Scales×Subject

≈
∑
lmn

gl,m,naPrelude
l ◦ bScales

m ◦ cSubject
n . (19)

The analysis extracts loadings that well span the dy-
namics of each mode, whereas the core array accounts
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FIGURE 5 | Example of SVD (bottom left) and CP analysis (bottom middle) of the claus.mat fluorescence data given at the top provided by the
N-way toolbox.45 Both the three component SVD and CP model accounts for more than 99.9% of the variation in the data. However, the CP

decomposition admits a unique account of the data, resulting in the identification of the true underlying chemical compounds and their relative
concentrations (bottom right).

for all linear interactions between the components of
each mode. The decomposition account for 40.42%
of the variation in the data, whereas an equivalent
analysis of the corresponding randomly permuted
data having no correspondence between the entries in
the tensor only accounts for 2.41% of the variation.
Thus, the data are very structured and compressible
by the Tucker model. Great introductions to mul-
tiway modeling within psychology can be found in
Refs 1, 2.

Chemistry
Appellof and Davidson3 pioneered the use of CP in
chemometrics in 1981 for the use in analysis of flu-
orescence spectroscopy. As stated in Beer–Lambert’s
law, there is a linear relation between absorbance of
light and the concentration of a compound. Measur-
ing samples of mixed compounds such that the con-
centration of each compound vary across the samples
admit unique recovery of the spectral profiles of the
compounds according to the CP model

X Exication×Emission×Samples

≈
D�Compounds∑

d=1

aExcitation
d ◦ bEmmision

d ◦ cSamples
d . (20)

One of the most interesting aspects of the
application of the CP model for fluorescence spec-
troscopy is that it enables the so-called second-
order advantage, making it possible to do quan-

titative chemical analytes even in the presence of
un-calibrated interferents.4 This is not possible with
traditional regression-based calibration. Apart from
fluorescence, multiway decomposition is widely used
in chromatography, flow injection analysis, and nu-
clear magnetic resonance (NMR) as well as in the
analysis of environmental data.4 An illustration of CP

analysis of fluorescence data is given in Figure 5. A
good introduction to multiway analysis in chemistry
can be found in Ref 28, whereas an extensive review
is given in Ref 4.

Neuroscience
When Harshman proposed the PARAFAC model in
Ref 31, one of his suggested applications was to
use the model in the analysis of EEG data. How-
ever, it wasn’t until the reinvention of the CP model
by Möcks,47 naming it the topographic components
model that the model was used in the analysis of
event-related EEG data. Since the work of Möcks47

multiway analysis has been used in the analysis
of time-frequency-transformed EEG7,8,25,50,51 data
as well as functional magnetic resonance imaging
(fMRI), see also Refs 5, 6 and references therein.
Neuroscience data are naturally multimodal. In
event-related designs, spatial activation is measured
over time and trials forming a three-way array of
X Space×Time×Trials and often these measurements are
also recorded across multiple subjects and condi-
tions, which naturally form even higher order arrays.
The consistent patterns of activation of a five-way
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FIGURE 6 | Example of CP analysis and shiftCP analysis of Electroencephalography (EEG) data of X 64 Channels×1024 Time points×313 Epochs/Trials

described in Ref 6. Because of violation of trilinearity, a degenerate solution is extracted by the CP model given by the first four highly correlated
components that account for the dynamics of the data through a strong degree of between component cancelation. However, when accounting for
latency changes across the trials in four out of the five components, degeneracy no longer occur, whereas the most consistent spatial and temporal
patterns of activation across the trials are successfully extracted (the amplitude and phase plot account for the trial-specific strength and delay of the
various components). The corresponding two-way analysis here given by ICA in order to resolve the rotational ambiguity of two-way decomposition
based on the fastICA algorithm (http://www.cis.hut.fi/projects/ica/fastica/ using the non-linear function tanh(·)) no longer assume consistency
across the trials. As a result, the matrix decomposition of channel × time − epoch is mainly driven by noisy artifacts, whereas the analysis of the
trial averaged data also denoted the evoked potential (EP) to the bottom right mainly focus on accounting for the dynamics of the P100 − N200 −
P300 complex of the EP. As a result, multilinear modeling enable direct extraction of the most consistent reproducible patterns across the trials.

array of wavelet-transformed EEG data given by
XChannel×Frequency×Time×Subject×Conditions was analyzed in
Ref 8 based on nonnegative tensor factorization,25,51

for an example of such data set, see also Figure 7 that
includes the following three-way CP decomposition of
the tutorial dataset 2 provided in Ref 50.

XChannel×Time−Freq.×Subj.−Cond.

≈
D∑

d=1

aChannel
d ◦ bTime−Freq.

d ◦ cSubj.−Cond.

d . (21)

Multiway decomposition naturally admit the
analysis of the consistent patterns and thereby also

the most reproducible patterns of activation in the
data. A consistency that is not imposed when an-
alyzing the data by regular matrix analysis of the
corresponding matricized array, see also Figures 6
and 7. In neuro-imaging data, there has been a tradi-
tion of averaging over repeats/trials in order to iden-
tify the event-related potential. However, this averag-
ing assumes that the pattern of activation is equally
present over the trials while the spatial correlation of
activation is not taken into account. The benefit of
multilinear modeling of this type of data by the CP

model is that the activation is grouped spatially,
whereas trial-dependent strength admits a weighted
average over the trials such that noisy trials can be
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FIGURE 7 | Left panel: Tutorial dataset two of ERPWAVELAB50 given by X 64 Channels×61 Frequency bins×72 Time points×11Subjects×2Conditions. Right
panel a three component nonnegativity constrained three-way CP decomposition of Channel × Time − Frequency × Subject − Condition and a
three component nonnegative matrix factorization of Channel × Time − Frequency − Subject − Condition. The two models account for 60% and
76% of the variation in the data, respectively. The matrix factorization assume spatial consistency but individual time-frequency patterns of
activation across the subjects and conditions, whereas the three-way CP analysis impose consistency in the time-frequency patterns across the
subjects and conditions. As such, these most consistent patterns of activations are identified by the model.

down-weighted in the extracted estimates of the con-
sistent event-related activations.

XChannel×Time×Trial ≈
D∑

d=1

aChannel
d ◦ bTime

d ◦ cTrial
d (22)

Unfortunately, violation of multilinearity in the
data can cause degeneracy in the CP model, see also
Figure 6. To avoid CP degeneracy, artificial restrictions
in the form of orthogonality have been imposed or al-
ternatively the signals have been analyzed via purely
additive models based on analysis of amplitudes in a
spectral representation, see also Ref 6 and references
therein. In Ref 6, these ad-hoc measures were found
unsatisfactory. Rather than restricting the CP model, a
pseudo-multilinear model using the unambiguous CP

model combined with a time-shift accounting for ex-
plicit delays based on the shiftCP representation was
proposed. In Figure 6, it can be seen that account-
ing for shift can indeed alleviate CP degeneracy while
the consistent pattern of activations are identified, for
details on the shiftCP approach, see also Ref 6 and
references therein.

Signal Processing
Multilinear algebra has recently gained a large interest
within the signal processing community largely due to
its applications in higher-order statistics (HOS).9–11,52

In the original work on independent component anal-
ysis (ICA) by Comon,9 it was demonstrated how the
blind source separation problem

X = AS + E (23)

such that S is statistically independent and E residual
noise can be solved through the CP decomposition of
some higher-order cumulants due to the important
property that cumulants obey multilinearity.9,52 The
first-order cumulant corresponds to the mean and the
second-order cumulant to the variance such that

E(X) = AE(S) + E(E) (24)

Cov(X) = ACov(S)A
 + Cov(E) (25)

Where E(·) denotes expectation and Cov the covari-
ance. For a general Nth-order cumulant, we have

K(N)
X = K(N)

S ×1 A ×2 A × · · · ×N A + K(N)
E (26)

where K(n)
S is a diagonal matrix for independent S.

The ICA problem can potentially be uniquely solved
by identifying A in the symmetric CP decomposition
of any cumulants of order N > 2, which for the third-
or fourth-order cumulant is given by

K(3)
X ≈ D ×1 A ×2 A ×3 A (27)

K(4)
X ≈ D ×1 A ×2 A ×3 A ×4 A, (28)

where D is a diagonal tensor. Generally speaking,
it becomes harder to estimate cumulants from sam-
ple data as the order increases, i.e., longer datasets
are required to obtain the same accuracy. Hence, in
practice, the use of higher-order statistics is usually
restricted to third- and fourth-order cumulants and
because the third-order cumulants for symmetric dis-
tributions are zero, fourth-order cumulants are often
used.10
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The CP model has further proven useful for sen-
sor array processing in wireless communication.12,13

Here, the CP model provides powerful means for the
exploitation of different types of diversity by admit-
ting unique recovery. For the analysis of wireless com-
munication, the following types of tensorial data have
been analyzed

XChip×Symbol×Antenna
DS-DCMA

≈
D�Users∑

d

aChip
d ◦ bSymbol

d ◦ cAntenna
d ,

X Subarray×Element×Snapshot
MI-SAP

≈
D�Sources∑

d

aSubarray
d ◦ bElement

d ◦ cSnapshot
d ,

X FFT bin×Symbol×Antenna
MIMO-OFDM

≈
D�Trans. ante.∑

d

aFFT bin
d ◦ bSymbol

d ◦ cAntenna
d .

In direct-sequence code-division multiple access ap-
plication (DS-DCMA), each user in theory con-
tributes a rank-1 factor,12 in multiple invariance
sensor array processing application (MI-SAP), each
source contributes a rank-1 factor,13 whereas in
multiuser multiple-input–multiple output orthogonal
frequency-division multiplexing (MIMO-OFDM),
each transmitting antenna contributes a rank-1 term.

Bioinformatics
Multiway modeling has recently found use within
bioinformatics. Here, the HOSVD has been shown to
enable the interpretation of cellular states and bio-
logical processes by defining the significance of each
combination of extracted patterns, see also19 and ref-
erences therein. In Ref 19, the microarray data illus-
trated in Figure 8 was analyzed based on the following
Tucker model

XGene×Time×Condition

≈
∑
lmn

gl,m,naGene
l ◦ bTime

m ◦ cCondition
n . (29)

and it was demonstrated that HOSVD compu-
tationally can remove experimental artifacts
from the global mRNA expression. In Ref 18,
Tucker and CP analysis of a three-way array of
X Protein/Gene locus link×Gene ontology category×Osteogenic stimulant

identified two distinct, stimulus-dependent sets of
functionally related genes as they underwent
osteogenic differentiation.

FIGURE 8 | Illustration of the three-way microarray data set used
in the study of Ref 19.

In Ref 17, the Tucker model was applied to
NMR time series data from studies of rats metabolic
response to toxins. Three data sets were analyzed on
the basis of NMR spectra of rat urine samples collected
over several days after administration of a single dose
of a model toxin in different doses, i.e.,

X Sample×Spectra×Time

≈
∑
lmn

gl,m,naSample
l ◦ bSpectra

m ◦ cTime
n . (30)

The Tucker analysis was here demonstrated to have
the advantage of easily interpretable time profiles and
extraction of metabolic perturbations with common
time profiles only. The fields of bioinformatics and
chemometrics heavily overlap. A good starting point
for bioinformatics application of tensor decomposi-
tion is the review given in Ref 4.

Computer Vision
The use of the Tucker decompositions in computer vi-
sion was first proposed in the work on TensorFaces.14

Here, facial image data from multiple subjects where
each subject had multiple pictures taken under
varying conditions was considered based on the
Weizmann face database and recognition using Ten-
sorFaces proven to be significantly more accurate than
standard PCA techniques. The analysis was based on
the following Tucker compression

X Subj.×View×Illum.×Expres.×Pixel

≈
∑
lmn

gl,m,naSubj. ◦ bView ◦ cIllum. ◦ dExpres. ◦ ePixel.

(31)

The data analyzed is illustrated in Figure 9. In Ref 15,
a multilinear discriminant analysis (MDA) was pro-
posed based on the Tucker representation and su-
perior performance attained for a variety of image
recognition tasks. In particular, it was demonstrated
how multiple interrelated subspaces can collaborate
to discriminate different classes and that the MDA algo-
rithm can avoid the curse of dimensionality. A similar
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FIGURE 9 | Illustration of the Weizmann face database used in the analysis of TensorFaces.14

approach was proposed in Ref 53 inspired by features
mimicking complex cells in V1 of the visual cortex. In
Ref 16, the Tucker model has further proven useful
for the identification of handwritten digits.

Web Mining
Chatroom communications arranged as a three-way
array were analyzed in Ref 20 using tensor decom-
position successfully capturing the underlying user
group structure based on the following Tucker de-
composition

XUser×Keyword×Time

≈
∑
lmn

gl,m,naUsers
l ◦ bKeywords

m ◦ cTime
n . (32)

In Ref 21, the Enron e-mail collection was analyzed
using DEDICOM based on e-mails between 184 users
over 44 months, i.e.,

XUser×User×Month

≈
∑
d,d′

rd,d′ aUser
d ◦ aUser

d′ ◦
(

bMonth
d ∗ bMonth

d′

)
, (33)

where ∗ denotes element-wise multiplication. It was
demonstrated that the decomposition had strong cor-
respondence with known job classifications while
revealing the patterns of communication between
these roles while changes in the communication pat-
tern over time, e.g., between top executives and
the legal department became apparent. The Enron
corpus contains messages between users with the
structure (to, from, text, time stamp). The whole
data can be represented as a fourth-order tensor of
XUser×User×Time×Terms and illustrates well how many
data sets obtained from the web are multimodal in
nature.

In Ref 22, multilinear algebra based on the CP

model was used to analyze hyperlink graphs based on
the anchor text of the hyperlinks between webpages,
i.e.,

XWebpage×Webpage×Anchor text

≈
∑

d

aWebpage
d ◦ bWebpage

d ◦ cAnchor text
d . (34)

and the model proven useful to automatically identify
topics in the collection of webpages along with the
associated authoritative web pages.

Furthermore, click through data were analyzed
using the Tucker model in Ref 23 and shown to
outperform the corresponding two-way approaches
based on the decomposition

XUser×Query×Webpage

≈
∑
lmn

gl,m,naUser
l ◦ bQuery

m ◦ cWebpage
n . (35)

In Ref 54, the dynamic tensor analysis and streaming
tensor analysis was proposed based on the Tucker
model representation and it was demonstrated that
the approach was useful for anomaly detection in net-
work traffic as well as for multiway latent semantic
indexing.

Finally, it is worth mentioning that the cele-
brated Netflix collaborative filtering challenge of pre-
dicting users ratings of movies (www.netflixprize.
com) was not won until the data rather than analyzed
solely as a (two-way) matrix XMovie×User of ratings
was analyzed as a multiway array taking into account
the temporal information, i.e., XMovie×User×Time.

The application of tensor factorization for web
mining is rapidly growing and numerous studies have
recently found that tensor decompositions are useful
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for learning the inherent relations between the modes
of many types of web data born multimodal. A good
account of some of the recent advances in tensor
decomposition for web mining applications can be
found in Ref 24.

CONCLUSION

Multiway analysis is rapidly growing in particular due
to the storage capabilities and computational power
of modern computers that admit analysis of large-
scale multimodal data that arise in a multitude of
scientific fields ranging from psychology, chemistry,
neuroscience, signal processing, computer vision, and
bioinformatics to the worldwide web. Although ma-
trix decompositions have become key tools in practi-
cally all fields of science in order to comprehend and
extract prominent features in data, it is our strong
belief that also the described multiway decomposi-
tion methods will become key tools in order to in-
vestigate the many large-scale modern data sets that
are born multimodal. A variety of examples of multi-
way applications have been given in this overview;
however, the list of applications is in no way ex-
haustive and many types of new data applications
are conceivable. In web mining, we saw how mul-
tiway analysis enabled to comprehend and identify
associations in large corpora of data. Here, multiway
analysis is also relevant in order to analyze multiple
types of relations,57 i.e., for author collaboration net-
works authors can co-author a paper, authors can
cite other authors, authors can go to the same con-
ferences, come from the same institution, and so on.
Furthermore, these relations can change over time.
In medicine, it is conceivable that multiway analysis
will turn useful in order to mine patient journals, for
instance, in the analysis of associations between pa-
tients, symptoms, diagnoses, and treatments and in
market basket analysis to identify higher-order asso-
ciation between modes such as users, products, pur-
chasing time, price, and geographic location. For all
these data sets, tools borrowing on multiway analy-
sis admit an analysis framework that explicitly takes
the multimodal structures into account in order to
identify the potential intrinsic relations between the
modes of the data that might otherwise be missed.
Furthermore, many types of data sets can benefit from

designs that admit multiway analysis. As we saw tak-
ing measurements across samples of varying com-
pound concentrations admitted unique recovery for
fluorescence spectroscopy data but many other types
of measurement data can benefit from a similar line
of analysis. Often data contain repeated measures and
rather than averaging measurements multiway anal-
ysis can introduce trial-dependent weights that can
not only improve on the identification of the under-
lying signals by down-weighting noisy measurements
but also potentially admit unique recovery as empha-
sized in the section on neuroscience applications. In
the neuroscience and bioinformatics applications de-
scribed, multiway analysis enabled extraction of the
most consistent patterns of activation encompassing
variability in strength and latency and as illustrated
in the computer vision applications, multiway analy-
sis form a promising framework for the identification
of features that generalize well across various modes
of variation. As a result, multiway/tensor analysis has
many promising properties to offer for the analysis of
large-scale multimodal data in general.

As we saw, tensors are not just matrices with
additional subscripts. Tensors are objects with their
own properties and tensor decomposition techniques
enable the possibility of explicitly exploring structures
formed by interaction between the modes. There is no
doubt that analysis taking advantage of the multiway
structure will help gain new knowledge of these many
types of data and more adequately and effectively
identify relationships between the modes of the data
as well as consistent reproducible structures. How-
ever, care also has to be taken. Just because data have
multiple modes does not necessarily imply that simple
models such as the CP and Tucker models well account
for the underlying dynamics in the data. For data com-
pression and exploratory analysis, the basic models
such as CP and Tucker can potentially facilitate an un-
derstanding of data that would otherwise be difficult
to comprehend, whereas extensions of these basic fac-
torizations has the potential for accommodating more
complex structure and interaction in the data. Mul-
tiway decomposition is being applied to new fields
every year and there is no doubt the future will bring
many exiting applications and interesting extensions
to the existing frameworks for analyzing data of more
modalities than two.
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used for teaching multiway analysis at DTU Informatics at the Technical University of Denmark
and teaching material and Matlab exercises are available from www.mortenmorup.dk.
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