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N
ature provides splendid examples of real-time learn-
ing and adaptation behavior that emerges from 
highly localized interactions among agents of lim-
ited capabilities. For example, schools of fish are 
remarkably apt at configuring their topologies 

almost instantly in the face of danger [1]: when a predator arrives, 
the entire school opens up to let the predator through and then 
coalesces again into a moving body to continue its schooling 
behavior. Likewise, in bee swarms, only a small fraction of the 
agents (about 5%) are informed, and these informed agents are 
able to guide the entire swarm of bees to their new hive [2]. It is 
an extraordinary property of biological networks that 

sophisticated behavior is able to emerge from simple interactions 
among lower-level agents [3].

This article provides an overview of powerful diffusion strate-
gies for adaptation and learning over networks that mimic some 
of these useful properties. The strategies rely on simple rules 
involving local adaptation and consultation and are able to 
deliver enhanced network performance. The presentation is in 
the context of adaptive networks, which consist of learning 
agents that are linked together through static or dynamic 
topologies. The agents interact with each other through 
in-network processing to solve estimation, inference, or optimi-
zation tasks in a fully distributed manner. The continuous shar-
ing and diffusion of information across the network enables the 
agents to respond in real time to streaming data, to react to 
drifts in the statistical properties of the data, and to adjust the 
network topology when necessary. Such adaptive networks are 

Digital Object Identifier 10.1109/MSP.2012.2231991

Date of publication: 5 April 2013

[Ali H. Sayed, Sheng-yuan Tu, Jianshu Chen, Xiaochuan Zhao, and Zaid J. Towfic]

[An examination of distributed  
strategies and network behavior] 

Diffusion Strategies 
for Adaptation and 

Learning over Networks

©
 is

to
c

k
p

h
o

to
.c

o
m

/j
a

m
ie

 f
a

r
r

a
n

t



 IEEE SIGNAL PROCESSING MAGAZINE [156] MAy 2013

well suited to perform decentralized information processing 
tasks. They are also well suited to model forms of complex 
behavior exhibited by biological and social or economic 
networks [4]–[10]. 

The article explains some of the challenges for adaptation 
and learning over networks, describes strategies that can 
address these challenges, and explains how and when coopera-
tion over networks outperforms noncooperative strategies. 
The article considers applications in distributed sensing 
(Example 1), intrusion detection (Example 4), target localiza-
tion (Example 5), online machine learning (Example 6), fish 
schooling, and distributed optimization. 

Network Model
We focus on connected networks with N  agents, as illustrated 
in Figure 1. Agents that are able to share information with 
each other are connected by edges. For emphasis in the figure, 
the edge between any two neighboring agents is being 
represented by two directed arrows to indicate that information 
flows both ways between the agents. The neighborhood of any 
particular agent, ,k  is denoted by Nk and it consists of all 
agents that are connected to k by edges; we include in this set 
agent k as well. We assume an undirected graph so that if 
agent k is a neighbor of agent ,,  then agent , is also a neighbor 
of agent .k  We assign a pair of nonnegative weights { , }a ak k, ,  to 
the edge connecting agents k and .,  The scalar a k,  is used by 
agent k to scale the data it receives from agent ;,  this scaling 
may be interpreted as a measure of trustworthiness that agent k 
assigns to its interaction with agent .,  Likewise, ak, is used by 
agent , to scale the data it receives from agent .k  The weights 
{ , }a ak k, ,  can be different, and one or both of them can be zero, 
so that the exchange of information over the edge linking k and 
, need not be symmetric. When at least one akk is positive for 
some agent ,k  then we will say that the connected network 
is standard.

We assume the network of N  agents is interested in 
estimating in a distributed manner the parameter vector, ,wo  of 
size ,M 1#  that minimizes a global objective function of the 
following form:

 ( ) (network objective)min J w
w k

k

N

1=

/ , (1)

where a real-valued strongly convex cost ( )J wk  is associated 
with each agent .k  These individual costs can be distinct across 
the agents or they can be identical. Although the algorithms 
described in this article apply to more general scenarios [11], 
[12], [87], we limit our exposition to the important case where 
the costs { ( )}J wk  ( , , , )k N1 2 f=  are minimized at the same .wo  
This is a common situation in practice and is rich enough to 
help convey the main ideas, as illustrated by the various applica-
tions we consider in the context of distributed sensing, intru-
sion detection, machine learning, target localization, fish 
schooling, and distributed optimization. We can also consider 
constrained versions of (1) by incorporating convex constraints 
at each agent .k  In [13], we explain how such constrained prob-
lems can be reduced to unconstrained problems of the form (1) 
by using barrier functions [14].

The objective of decentralized processing is to enable 
the agents to approach the solution of (1) by relying solely 
on local data, local cooperation with neighbors, and local 
in-network (as opposed to centralized) processing. Since 
the agents have a common objective (that of determining wo), 
it may be natural to expect cooperation among them to be 
beneficial in general [we will see that this is not always true—
see the discussion after expression (32)]. One important 
question is how to develop cooperation strategies that can 
lead to better performance than when each agent attempts to 
determine wo on their own. Another important question is how 
to develop strategies that enable networks to adapt in real time 
to the continuous streaming of data. This article explains how 
diffusion strategies achieve these goals.

data Model
We treat initially the case in which the individual costs { ( )}J wk  
in (1) correspond to mean-square-error (MSE) measures and 
are, therefore, quadratic in the unknown .w  This case is of para-
mount importance in the context of estimation, adaptation, and 
learning over networks; it also helps illustrate the main issues 
underlying distributed strategies. Later, in the section “Distrib-
uted Optimization,” we explain how the discussion extends to 
more general cost functions ( ).J wk

EXAMPLE 1 (DISTRIbuTED SENSING AND ESTIMATION)
Consider a situation in which N  agents are interested in 
estimating the taps of some communications channel or the 
parameters of some physical model. Assume the agents are able 
to independently probe the unknown model and observe its 
response to excitations. Each agent k probes the model with an 
input sequence { ( )}u ik  and measures the response sequence, 
{ ( )},d ik  in the presence of additive noise. The system dynamics 
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[Fig1] The neighborhood of agent k consists of a set of agents 
marked by the highlighted area and includes agents { , , , } .k4 7,
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for each agent k is assumed to be described by a moving-average 
model

 ( ) ( ) ( ).vd ui i m ik m k k
m

M

0

1

b= - +
=

-

/  (2)

If we collect the parameters { }mb  into an M 1#  vector wo = 
col , , , ,M0 1 1fb b b -" ,  and the input data into a M1 #  vector 

[ ( ) ( ) ( )],u u u ui i i M1 1,k i k k kg= - - +  then we can rewrite 
(2) as ( ) ( ) .d u vi w i,k k i

o
k= +  Given streaming measurements 

{ ( ), } ( , , , )d ki u N1 2,k k i f=  over time ,i 0$  the agents would 
like to cooperate with each other to estimate wo in a distributed 
manner by solving a problem of the form (1). Algorithms to 
achieve this goal are discussed in the sequel. ■

We start our exposition by assuming that each agent k 
measures realizations of a scalar random process ( )d ik  and a 

M1 #  random process u ,k i over .i 0$  All vectors in our 
presentation are column vectors, with the exception of the 
regression vector, .u ,k i  It is assumed that { ( ), }d ui ,k k i  are related 
via a linear model of the following form:

 ( ) ( ), , , , .d u vi w i k N1 2,k k i
o

k f= + =  (3)

In this model, the vectors { }u ,k i  represent general regression 
vectors that are not necessarily constructed as in Example 1 
from past input data. In this overview article, and to avoid 
excessive technicalities, it is sufficient to assume the following 
conditions on the data.

ASSuMPTIONS A (MODEL CONDITIONS) 
The data { ( ), , ( )}d u vi i,k k i k  are zero-mean jointly wide-sense sta-
tionary random processes satisfying model (3) and the following 
conditions:
(A.1)  The regression data { }u ,k i  are temporally white and 

independent over space with ,uu R 0E ,
*

,k i k i u 2=
D  where 

the symbol * denotes complex conjugation for scalars and 
complex-conjugate transposition for matrices.

(A.2)  The noise process { ( )}v ik  is temporally white and 
independent over space with ( ) ( ) .v vi iE *

,k k v k
2v=

D

(A.3)  The regression and noise processes { , ( )}u v i,j k,  are 
independent of each other for all , , , .k i j,

(A.4)  All agents employ the same step size n in their adaptation 
mechanisms—see, e.g., (5), (14), and (16).

(A.5)  The step size, ,n  is sufficiently small such that terms that 
depend on higher powers of n can be ignored. ■

Observe that we are allowing the noise power, ,,v k
2v  to vary 

with .k  In this way, the quality of the measurements is allowed 
to vary across the network with some agents collecting noisier 
data than other agents. It is possible to extend many of the 
results in this exposition to more general conditions on the 
data than the ones stated above, such as allowing for 
space-dependent regression covariances, say, { }R ,u k  instead of ,Ru  
and space-dependent step sizes, say, { }kn  instead of n [15], [16]. 
However, due to space limitations, it is sufficient to rely on the 
above assumptions; they allow us to quantify the improvement 
in performance that results from cooperation without biasing 

the results by differences in the adaptation mechanisms or in 
the statistical nature of the regression data at the agents.

The temporal whiteness condition (A.1) on the regression 
data { }u ,k i  need not hold in general; for example, it does not hold 
when the regressors have shift structure (as happens 
in Example 1). However, there have been extensive studies in the 
literature in the context of (adaptive) stochastic gradient meth-
ods (e.g., [17] and [18]), showing that MSE results obtained 
under temporal whiteness conditions match well, to first order 
in ,n  with actual performance for sufficiently small step sizes. 
More elaborate analyses are possible under weaker conditions 
[17–[20] but that is beyond the scope of this article.

NoNCooperative adaptive StrategieS
The objective of the agents is to estimate the unknown vector 
wo  of model (3) from the streaming data { ( ), }d ui ,k k i  
( , , , , ) .k N i1 2 0f $=  Let us first examine the case in which 
the agents act independently of each other. If we multiply both 
sides of (3) by u ,

*
k i and take expectations, we readily conclude 

that wo  can be determined from w R ro
u du

1= - , where 
( )u dr iE ,

*
du k i k=
D . It is useful to note that this expression 

for wo is also the unique minimizer for the following MSE 
cost function 

 ( ) | ( ) | .d uJ w i wE ,k k k i
2= -

D  (4)

The main difficulty in having each agent k determine wo in this 
manner is that the statistical moments { , }r Rdu u  are rarely 
known beforehand. Instead, the agents have access to streaming 
data { ( ), }d ui ,k k i  that can be used to approach the minimizer of 
the above ( )J wk  by means of adaptive (or stochastic gradient) 
algorithms [20]–[22]. There are many adaptive algorithms that 
can be used for this purpose. It is sufficient for this overview 
presentation to consider one effective adaptive structure, while 
noting that the discussion can be extended to other more elabo-
rate structures. One of the most elegant adaptive solutions is 
the least-mean-squares (LMS) filter [22]. In this solution, each 
agent k uses its data { ( ), }d ui ,k k i  and computes successive esti-
mators for wo as follows:

 [ ( ) ],w w u d u wi i 0, , ,
*

, ,k i k i k i k k i k i1 1 $n= + -- - , (5)

starting from some initial condition, say, .w 0,k 1 =-  In (5), the 
notation w ,k i denotes the estimator for wo at agent k at time .i  
The term multiplying n on the right-hand side of (5) 
corresponds to an instantaneous approximation for the (nega-
tive of the complex-conjugate) gradient vector of ( )J wk  evalu-
ated at w ,k i 1-  [20]; for later reference, we denote this 
approximation by [ ( )] .wJ ,

*
w k k i 1d- -
%  If desired, the step size n 

can be selected to vary with time; one popular choice is to use 
sequences ( )in  that satisfy the following two conditions simul-
taneously [19], [20]:

 ( ) , ( ) .i i
i i0

2

0
3 31n n=

3 3

= =

/ /  (6)
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Such sequences converge slowly toward zero; one example is 
the choice ( ) /( ).i i 1n n= +  However, since these sequences die 
out as i " 3, then these choices turn off adaptation over time. 
For this reason, we focus mostly on the constant step size case 
throughout this article (with the exception of Example 6 on 
machine learning).

The performance of the LMS filter (5) is well understood. 
For example, it is known that, as time evolves, the weight 
estimators w ,k i approach wo. The size of the weight-error vector, 

,ww w, ,k i
o

k i= -
Du  is measured by the mean-square-deviation 

(MSD), which is defined as the steady-state variance value 

 MSD  ( , , , ) .lim w k N1 2E ,k
i

k i
2 f= =

"3

D u  (7)

It is known that, for sufficiently small-step sizes [20]–[25] (see, 
e.g., [20, p. 362])

 MSD
M
2ncop, ,k v k

2$.
n

v , (8)

where we added the subscript “ncop” to emphasize that this 
result is for the noncooperative mode of operation, where the 
agents run the LMS filter (5) individually. It is further known 
that, for sufficiently small step sizes, the convergence of 

wE ,k i
2u  toward its steady-state value occurs at the rate [20]–

[22] (see, e.g., [20, eq. (24.20)]):

 ( )r R1 2 min u$. n m-  (9)

in terms of the smallest eigenvalue of Ru; the smaller the value 
of ( , ),r 0 1!  the faster the convergence. Averaging (8) over all 
agents, we find that the performance of the noncooperative net-
work is given by

 MSD
M

N2
1

ncop
network

,v k
k

N
2

1
$.

n
v

=

e o/  (10)

in terms of the average noise power. It is seen from (8) that the 
MSD performance across the agents varies in accordance with 
their noise level: agents with larger noise power have worse 
performance. However, since all agents are observing data arising 
from the same underlying model wo according to (3), it is natural 
to expect cooperation among the agents to be beneficial. By coop-
eration we mean that neighboring agents can share information 
(such as data measurements or estimators). In the section 
“Diffusion Strategies,” we describe strategies that enable agents 
to carry out adaptation and learning in a cooperative manner to 
enhance their MSD performance. The strategies will aim at opti-
mizing the following aggregate MSE in a distributed manner, 
whose optimal solution is still given by the same w R ro

u du
1= -

 | ( ) |min d ui wE ,w
k

N

k k i
1

2-
=

/ . (11)

CeNtralized FuSioN-BaSed SolutioN
In preparation for our description of cooperative solutions, we 
consider initially the problem of minimizing (11) in a 

centralized manner by using an (LMS) stochastic-gradient 
algorithm of the form

 [ ( ) ] .w w u d u w
N

i1
,

*
,i i k i k k i i

k

N

1 1
1

n= + -- -

=

e o/  (12)

At each time instant ,i  the central processor receives the data 
{ ( ), }d ui ,k k i  from all agents and applies recursion (12) to 
update its estimator for wo from wi 1-  to .wi  From the results 
in [26, eq. (39)] and [27, eq. (95)], it can be deduced that, 
under Assumptions (A), the MSD of (12) is well approxi-
mated by

 MSD
M

N N2
1 1

cent ,v k
k

N
2

1
$ $.

n
v

=

e o/ . (13)

Comparing with (10), we observe an N-fold improvement in 
the MSD performance of the centralized solution relative to 
the noncooperative solution. Moreover, this improvement in 
performance is obtained without degradation in convergence 
rate; the convergence of wE i

2u  continues to occur at the 
same rate as the noncooperative algorithm (5) [which is the 
reason why the factor /N1  is included in (12)]. One interesting 
property of the diffusion strategies discussed in the next sec-
tion is that they are able to achieve the improved MSD perfor-
mance level (13) of the centralized strategy, again at the same 
convergence rate, by relying solely on localized interactions 
and without the need for a fusion center—see (32) further 
ahead. Moreover, through proper selection of the combination 
weights used in the diffusion implementations, these distrib-
uted strategies can be made to outperform the centralized 
MSD level (13)—see expression (35) and the analysis following 
it. This statement may seem puzzling at first, but it follows 
from the fact that the diffusion implementation that leads to 
this result employs in (34) additional information about the 
noise variances that is not exploited by the centralized algo-
rithm (12). One can of course modify (12) to include noise 
variance information as well, or use more powerful centralized 
solutions at the fusion center than (12) such as least-squares-
based solutions or other more sophisticated estimation proce-
dures. We continue with the standard centralized formulation 
(12) and compare centralized and distributed implementations 
that employ stochastic-gradient iterations from the same 
general family of algorithms.

DiFFusioN sTraTegies
Diffusion strategies enable the solution of (11) in a distributed 
and adaptive manner. Compared to the noncooperative solution 
(5), these strategies introduce a useful aggregation step that 
helps incorporate into the adaptation mechanism information 
collected from the local neighborhoods. One such diffusion 
scheme is the combine-then-adapt (CTA) structure, which is 
described by the following update [28]:

( )
(CTA diffusion) .

w

u d u

a

w i

, ,

, , ,
*

, ,

N

k i k i

k i k i k i k k i k i

1 1

1 1

k

}

} n }

=

= + -

, ,

,!

- -

- -6 @
* /

  (14)
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The scalars { }a k,  are convex combination coefficients that satisfy 
the conditions

, , and   ( , , , ).Na a a k N0 1 0 1 2if
N

k k k k
k

, f"$ = = =, , ,

,!

/
  (15)

The coefficients { }a k,  are free parameters that are chosen by the 
designer; their selection influences the performance of the 
algorithm (see the section “Mean-Square-Error Performance”). If 
we collect them into the N N#  combination matrix [ ],A a k= ,

D  
then condition (15) implies that the entries on each column of A 
add up to one, i.e., ,1 1A =<  where “1” denotes the N 1#  vector 
with all entries equal to one. We say that A is a left-stochastic 
matrix. One useful property of left-stochastic matrices is that their 
spectral radii are equal to one, i.e., ( ) 1At =  (so that the magni-
tude of any of the eigenvalues of A is bounded by one) [29], [30].

At every instant ,i  the CTA strategy (14) involves two opera-
tions (see Figure 2). The first operation is a combination step 
where agent k aggregates the estimators from its neighbors to 
obtain the intermediate estimator .,k i 1} -  All other agents in 
the network are simultaneously performing a similar opera-
tion and aggregating the estimators of their neighbors. The 
second operation in (14) is an adaptation step where agent k 
uses its data { ( ), }d ui ,k k i  to update its intermediate estimator to 

.w ,k i  Again, all other agents in the network are simultaneously 
performing a similar operation. The reason for the qualifica-
tion “diffusion” is that the intermediate state ,k i 1} -  in (14) 
allows information to diffuse through the network by bringing 
into location k the effect of data beyond the neighborhood of .k

An alternative form of the diffusion strategy (14) can be 
obtained by switching the order of the combination and adapta-
tion steps to get the following adapt-then-combine (ATC) diffu-
sion strategy [16]:

 
( )

( )

w u d u w

w

i

a ATC diffusion
, , ,

*
, ,

, ,
N

k i k i k i k k i k i

k i k i

1 1

k

} n

}

= + -

= , ,

,!

- -6 @* / .
  (16)

In this implementation, the first operation is the adaptation 
step (see Figure 3). The structure of the CTA and ATC strategies 
(14) and (16) are fundamentally the same: the difference lies in 
which variable we choose to correspond to the updated weight 
estimator .w ,k i  In ATC, we choose the result of the combination 
step to be ,w ,k i  whereas in CTA we choose the result of the adap-
tation step to be .w ,k i  More general diffusion strategies are pos-
sible by allowing for enlarged exchange of information among 
the agents, such as exchanging neighborhood data { ( ), }d ui ,i, ,  
in addition to the estimators { } .,} $,  These generalizations 
appear in [15], [16], and [31]; in addition to the matrix ,A  they 
employ a second combination matric C that is required to be 
right-stochastic (i.e., it has nonnegative entries and C 11 = ). 
The forms (14) and (16) correspond to the choice .C I=

The CTA diffusion strategy (14) was proposed in [32]–[34] and 
[28], and the ATC diffusion structure (16), with adaptation pre-
ceding combination, was proposed in the work [35] on distrib-
uted least-squares schemes and subsequently in the works 

[36]–[38] and [16] on distributed MSE and state-space estima-
tion methods. The main motivation for the introduction of these 
diffusion strategies was the desire to develop distributed schemes 
that are able to respond in real time to continuous streaming of 
data at the agents by operating over a single time-scale. The CTA 
structure of Figure 2, with the additional requirement that the 
step size n is a time-dependent sequence ( )in  that decays toward 
zero with time as in (6), was later employed by [39]–[41] to solve 
distributed optimization problems that require all agents to 
reach agreement—see the section “Distributed Optimization.” 
The ATC form (16), again with a time-dependent sequence ( )in  
that decays toward zero with time, was also employed by [42] to 
ensure agreement.

We end this section by noting that there is another class of 
distributed strategies that is based on consensus-type imple-
mentations. The traditional consensus solution operates over 
two separate time-scales: one for collecting data and one for 
iterating over the data (e.g., [43]–[47]). Such two time-scale 
implementations hinder adaptation; as mentioned above, diffu-
sion strategies resolve this difficulty by relying on single time-
scale iterations that process the data in real time as they arrive 
at the agents. Motivated by a procedure for distributed optimi-
zation from [48, eq. (7.1)], some works subsequently proposed 
single time-scale implementations for consensus strategies as 
well. The consensus implementation for solving (11) takes the 

*
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[Fig2] The diagram illustrates the CTa strategy (14) for agent k, 
which uses information from its neighbors { , , , }k4 7 ,  in the 
network of Figure 1.
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following form if we set the step size to a constant value to 
enable continuous adaptation and learning; see, e.g., [46] and 
[49]–[51] 

( ) (consensus) .w w u d u wa i, , ,
*

, ,
N

k i k i k i k k i k i1 1
k

n= + -, ,

,!

- -6 @/
  (17)

It can be easily verified that the diffusion strategies (14) and 
(16) have exactly the same computational complexity as the 
above consensus strategy in terms of the number of additions 
and multiplications required per iteration to move from time 
i 1-  to time .i  However, diffusion strategies differ in an impor-
tant and interesting way from the consensus implementation. 
For example, by comparing the diffusion implementations (14) 
and (16) with the consensus implementation (17), we observe 
that diffusion evaluates first an intermediate state variable ,k}  
and then uses it in the subsequent step. The net effect for diffu-
sion are updates of the form 

 ( ) (ATC)w w u d u wa i, , ,
*

, ,
N

k i k i i i i1 1
k

n= + -, , , , , ,

,!

- -^ h6 @/  (18)

( ) (CTA) .w w u d u wa i a  , , ,
*

, ,
N N

k i k i k i k k i k i1 1
k k

n= + -, ,

,

, ,

,! !

- -; E/ /
  (19)

Note, for instance, that in the CTA case, the convex combination 
of the neighborhood weights appears inside the rightmost 
error term in (19). In contrast, the consensus algorithm only 
uses w ,k i 1-  to evaluate the error term in (17). This asymmetry 
in the consensus update is responsible for an anomaly in its 
behavior. As the discussion in the next section reveals (see 
Examples 2 and 3), some care is needed when using the consen-
sus strategy (17) for adaptation; the algorithm can fail even 
when all individual agents are able to solve the inference task on 
their own in a stable manner. This phenomenon does not occur 
for diffusion strategies: stability of the individual agents ensures 
stability of the diffusion network irrespective of the combina-
tion topology. Diffusion strategies lead to enhanced stability 
and provide lower MSD and faster convergence rate than the 
consensus strategy.

MeaN-square-error PerForMaNCe
We now examine under what conditions network cooperation 
leads to improved MSD performance in comparison to noncoop-
eration. It turns out that while the average performance over 
the network is improved relative to noncooperation, the perfor-
mance of each individual agent does not necessarily improve 
unless the combination weights are chosen properly. To reveal 
these properties, we carry out the MSE analysis of the consen-
sus and diffusion strategies in a unified manner. We again intro-
duce the weight error vectors ~ ,w ww, ,k i

o
k i= -

D  and define the 
MSD of each agent as in (7). The network performance is 
defined as the average MSD level

 MSD MSD .
N
1network

k
k

N

1
=
D

=

/  (20)

Network error dyNaMiCS
We collect the weight-error vectors from across all agents into 
the block vector ~ col ~ , ~ , , ~ .w w w w, ,k i N i1 2 f=

D " ,  We further let R 
denote an arbitrary N N#  block Hermitian nonnegative-
definite matrix that we are free to choose, with M M#  block 
entries. Different choices for R enable us to extract different 
types of information about the performance of the agents and 
the network [15], [16]. Subtracting wo from both sides of the 
diffusion recursions (14) and (16), as well as the consensus 
recursion (17) and the noncooperative recursion (5), and using 
model (3), we can establish the following mean and MSE rela-
tions under Assumptions (A) over :i 0$
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(21)

  
(22)

where the notation x 2
R denotes the weighted square quantity 

,x x*R  and the quantities { , }B Y  are given by the following 
expressions for the various algorithms (in terms of the 
Kronecker product operation 7):
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where diag{ , , } .R , ,v v v N1
2 2fv v=

D  Observe that B Batc cta= , so we 
denote this coefficient matrix by Bdiff for the diffusion strategies. 
Furthermore, the MN  eigenvalues of the above matrices B are 
given by the following expressions in terms of the eigenvalues of 
{ , }A Ru  for , , ,k N1 2 f=  and , , , :m M1 2 f=
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(24)

CoNvergeNCe iN the MeaN
Since A is left-stochastic and, therefore, ( )A 1t = , we readily 
conclude from (21) and (24) that the estimators { }w ,k i  result-
ing from the diffusion strategies (14) and (16) will be asymp-
totically unbiased (i.e., ~w 0E ,k i "  as i " 3) if the step size 
parameter n is sufficiently small and satisfies 

 / ( ) (for diffusion strategies)R2 max u1n m  (25)

in terms of the largest eigenvalue of .Ru  Observe the interest-
ing fact that condition (25) for the mean stability of diffusion 
networks does not depend on the combination matrix .A  More-
over, result (25) is the same condition that is required for the 
mean stability of the individual LMS filters (5), as can be easily 
seen from the expression for the eigenvalues of Bncop in (24). 
Therefore, if the individual filters (or agents) are stable in the 
mean, then the diffusion network will also be stable in the 
mean regardless of the choice of A and the corresponding 
topology. This useful conclusion does not hold for consensus 
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networks. As can be seen from the eigenstructure of Bcons in 
(24), even if all individual agents are stable, with n satisfying 
(25), the spectral radius of Bcons can still be larger than one 
depending on A and the network topology [52], [53]. The 
following example illustrates this anomaly.

EXAMPLE 2 (DIffuSION ENHANCES STAbILITy)
Consider a network consisting of two cooperating agents, as 
shown in Figure 4; this case is sufficient to illustrate the afore-
mentioned problem. For simplicity, we assume the weight vec-
tor wo is a scalar and Ru u

2v=  (i.e., ,N M2 1= = ). Assume 
Agent 1 uses combination weights { , }a a1 - , while Agent 2 
uses combination weights { , }b b1 -  with , [ , ] .a b 0 1!  Then, 
using (23), we get
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We assume 2u
2 1nv  so that both individual agents are mean 

stable. Then, by (25), the diffusion network will also be stable in 

the mean for any choice of { , } .a b  However, there are choices for 
{ , }a b  that cause the consensus network to become unstable 
even though the individual agents are stable. Indeed, note that 

( ) ,B a b1consmin u
2nvm = - - -  which becomes smaller than 1-  

(and, hence, unstable) for choices { , }a b  that satisfy 
.a b 2 u

22 nv+ -  More general scenarios are studied in 
[52] and [53]. ■

The above example illustrates that the order and the manner 
by which information is processed over a network (e.g., consen-
sus versus diffusion) is critical. This observation is in line with 
studies in the social sciences in relation to the wisdom of 
groups where, paraphrasing, it is generally remarked that it is 
important to deliver the “right information in the right way at 
the right time and place” to the agents [54].

CoNvergeNCe rate
Assume now that the diffusion and consensus networks are sta-
ble in the mean [i.e., their matrices B in (21) are stable]. Iterat-
ing (22) and taking the limit as i " 3, we conclude that

 /)Tr( .B YBlim w *
i

i

j

j

j2

0
=

"3

3

/
=

E u /  (27)
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[Fig4] Comparison of network MsDs. The consensus strategy is unstable when ( , )a b  lie above the dashed line in region i (see 
example 2). The simulation employs .0 5u

2nv =  and ( , ) ( . , . ) .a b 0 8 0 8=
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The convergence rate of the series is governed by [ ( )] ,B 2t  in 
terms of the spectral radius of B. Using ( ) ,A 1t =  it can be 
verified from comparing the eigenvalue expressions in (24) that 
the convergence rate of diffusion networks is still given by (9), 
while the convergence rate of consensus networks is slower 
since ( ) ( )B Bdiff cons#t t  [52,] [53]. Therefore, diffusion strate-
gies do not only enhance stability, but they also improve the 
convergence rate.

MSd perForMaNCe
By selecting /I NMNR =  or Je Ik M k7 /R =  in (27), where ek 
is the kth basis vector of size N 1#  with its kth entry equal to 
one, we arrive at the following expressions for the MSD perfor-
mance of the network and its individual agents for sufficiently 
small step sizes:

MSD Tr( ), MSD Tr( ).B YB B YBN
1 Jnetwork * *j

j

j
k

j

j

j
k

0 0
. .

3 3

= =

/ /
  (28)

When the combination matrix A is symmetric or close-to-
symmetric (i.e., diagonalizable with left-eigenvectors that are 
practically orthogonal to each other), the above expressions can 
be used to establish that diffusion networks lead to better MSD 
performance (i.e., smaller MSD values) than consensus 
networks. With some effort, the following result can be deduced 
from the above expressions [52], [53].

THEOREM 1 (COMPARING MSD PERfORMANCE) 
Assume A is symmetric or close-to-symmetric. Then, the ATC 
diffusion strategy achieves the lowest network MSD

 

MSD MSD MSD

and MSD MSD .
atc
network

cta
network

ncop
network

atc
network

cons
network

# #

#  (29)

Proof 
See [52] and [53]. The argument involves introducing the 
eigendecompositions of A and Ru into (28) and comparing the 
resulting expressions for the various strategies. ■

EXAMPLE 3 (DIffuSION ENHANCES PERfORMANCE)
We reconsider the two-agent network from Example 2 (with 

,N M2 1= = ) and assume 0 1u
21 1nv  so that both agents are 

stable in the mean. Furthermore, to ensure the mean stability of 
the consensus strategy, the parameters ( , ) [ , ]a b 0 1!  are assumed 
to satisfy .a b 2 u

21 nv+ -  The eigenvalues of A in this case are 
at ( )A 11m =  and ( ) .A a b12m = - -  After some algebra [52], 
[53], expression (28) allows us to partition the [ , ] [ , ]0 1 0 1#  square 
into the three regions shown in Figure 4. The ATC diffusion strat-
egy performs the best in all regions, while the performance of con-
sensus relative to the other strategies is dependent on the region; 
consensus becomes unstable in the area above the dotted line. ■

Given the superior performance of diffusion networks over 
consensus networks, we continue our presentation by focusing 

on diffusion strategies. We can simplify the MSD expressions (28) 
for diffusion strategies into a useful and revealing form for stan-
dard networks. For such networks, the left-stochastic 
combination matrix A will be what is called a primitive 
matrix [15], [29], [30], which in turn implies that A will have a 
unique eigenvalue at one while all other eigenvalues will have 
magnitude strictly less than one. Let p denote the right eigenvec-
tor of A that is associated with the eigenvalue at one and whose 
entries are normalized to add up to one. It follows from the 
Perron-Frobenius theorem [29] that the entries of p are positive 
and smaller than one; we denote them by { , , , , }:p k N1 2k f=

 , , .1Ap p p p1 0 1k1 1= =<  (30)

THEOREM 2 (STANDARD DIffuSION NETwORkS) 
For standard diffusion networks, the performance of each indi-
vidual agent is approximately equal to the network MSD and 
they are both well approximated by 
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(31)

Proof
See [27]. The argument involves introducing the Jordan canoni-
cal decomposition of A and the eigendecomposition of Ru into 
(28), and then exploiting the fact that ( )N 1-  eigenvalues of A 
have magnitude strictly less than one. ■

Comparing (31) with (13) in the centralized case, we observe 
that the effect of diffusion cooperation is to scale the noise 
variances by the factors { }pk

2  instead of / ;N1 2  these factors 
are determined by the combination policy .A  Note further that, 
for sufficiently small step sizes, diffusion strategies equalize 
the MSD performance across the agents (even though 
some agents may have more noise than other agents). This result 
is not inconsistent with the fact that ATC outperforms CTA, as 
revealed by (29). This is because the fine difference in perfor-
mance between these two strategies arises at higher-order terms 
in ,n  which are incorporated into ( )O 2n  in (31) [27].

do all ageNtS BeNeFit FroM CooperatioN?
We now consider the interesting question whether network 
cooperation is beneficial to all agents. We examine two questions: 

1) How much improvement in network MSD is attained 
through cooperation? 
2) Does the MSD performance of each individual agent in the 
diffusion network improve relative to the noncooperative 
case? 

We will see that the answer to inquiry 1) is that the MSD level 
improves by N-fold (i.e., it becomes N  times smaller) for the 
diffusion network compared to noncooperation. We will also see 
that the answer to inquiry 2) is negative in general unless the 
combination policy A is chosen properly!
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Doubly sToChasTiC CoMbiNaTioN MaTriCes
Consider first the case in which A is doubly stochastic for 
a standard diffusion network; a doubly stochastic matrix has non-
negative entries and the entries on each of its rows and columns 
add up to one so that .1 1 1A A= =<  Then, the right-eigenvector 
p defined by (30) is given by /1p N=  and (31) reduces to

 MSD MSD .
M

N N2
1 1

diff, diff
network

,k v k
k

N
2

1
$ $. .

n
v

=

e o/  (32)

Comparing with (10), we conclude that MSD /N1diff
network $=  

MSD ,ncop
network  which confirms that diffusion networks attain the 

MSD level (13) of the centralized solution and they both outper-
form the noncooperative strategy by a factor of .N  But how does 
the performance of the individual agents compare in the diffu-
sion and noncooperative strategies? From (8) we observe that if 
the noise variance is uniform across all agents, i.e., 

( , , , ),k N1 2,v k v
2 2 fv v= =  then the MSD of the individual diffu-

sion agents will also be smaller by the same factor N  than their 
noncooperative performance. However, when the noise profile 
varies across the agents, the performance of the individual diffu-
sion and noncooperative agents cannot be compared directly 
and one can be larger than the other depending on the noise 
profile. For example, from (8) and (32), for the performance of 
agent k to improve over its noncooperative behavior, it must 
hold that / .N N1 , ,k

N
v k v k1
2 21/ v v=  For example, for ,N 2=  

1,v 1
2v =  and ,9,v 2

2v =  Agent 1 will not benefit from cooperation 
while Agent 2 will.

leFT-sToChasTiC CoMbiNaTioN MaTriCes
The next question is whether it is possible to select combination 
matrices A that will ensure that diffusion networks will outper-
form noncooperative strategies both in terms of the overall net-
work performance and the individual agent performance, even 
when the noise variances are different across the agents. It 
turns out that we can construct left-stochastic matrices A that 
achieve this goal by minimizing the network MSD given by (31) 

 subject to (30)arg minA p ,
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/ , (33)

where A denotes the set of all N N#  primitive left-stochastic 
matrices whose entries { }a k,  satisfy conditions (15). Using a con-
struction procedure developed in [55] and [56], it was argued in 
[27] that one choice for Ao is the following left-stochastic 
matrix, which we refer to as the Hastings rule:
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  (34)

where nk denotes the cardinality of Nk (also called the degree of 
agent k and is equal to the number of its neighbors). The 
resulting minimum (optimal) MSD value is

 MSD MSD .
M
2

1
diff,opt
network

diff,opt,
,

k
v kk

N 2
1

$. .
n

v-

=
/  (35)

It can be easily verified that the above expression satisfies 
MSD / MSD ,N1diff,opt

network
ncop
network$#  so that the MSD of the diffusion 

network with the optimal left-stochastic A is at least N-fold 
smaller than the noncooperative scenario. Moreover, and 
importantly, comparing (35) with (8), it is clear that 
MSD MSD ,diff,opt,k ncop,k#  so that the individual agent performance 
in the optimized diffusion network is also improved across all 
agents relative to the noncooperative case.

adaptive CoMBiNatioN weightS
Several other combination policies { }a k,  have been proposed 
in the literature for combining information over graphs, such 
as the averaging rule, Metropolis rule, Laplacian rule, maxi-
mum-degree rule, and relative-degree rule; see, e.g., [15] and 
[16]. However, in all these constructions, the expressions for 
the combination weights are defined solely in terms of the 
degrees of the agents and their neighbors. Such selections can 
be limiting for adaptation over networks because they ignore 
the noise profile across the agents. It is important to design 
combination rules that enable agents to give more or less 
weight to their neighbors depending on how noisy their infor-
mation is.

The Hastings rule (34) is one example of a combination 
policy that takes into account the noise level at the agents. In 
this rule, the interaction between agents k and , is dependent 
on the noise levels at these locations alone. Another construc-
tion is derived in [57], where the interaction between agents k 
and , depends on the noise profile across the entire neighbor-
hood of agent .k  In this construction, neighbors with smaller 
relative noise power are assigned larger weights 

 , (relative variance rule) .Na -
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The noise variances that are needed in (34) or (36) are generally 
unavailable. One way for agent k to estimate the noise variances 
of its neighbors is to use the following filter in an ATC 
implementation—a similar filter can be used for CTA [15], 
[27], [57] 

  ( ) ( ) ( ) ( )Nwi i1 1 , ,k k i k i k
2 2

1
2 , !c o c o }= - - + -, , , - , (37)

where ( , )0 1!o  is a small positive coefficient, e.g., . .0 1o =  It can 
be verified that, as i " 3 and under Assumptions (A), the expected 
value of ( )ik

2c ,  approaches Tr( )R,v u
2 2n v ,  and is therefore propor-

tional to .,v
2v ,  The variables { ( )}ik

2c ,  can then be used by agent k to 
adapt the combination weights in (34) or (36) over time.

EXAMPLE 4 (DETECTING INTRuDERS AND CLuSTERING)
Allowing diffusion networks to adjust their combination 
coefficients in real time enables the agents to assign smaller 
or larger weights to their neighbors depending on how well 
they contribute to the inference task. This capability can be 
exploited by the network to exclude harmful neighbors (such 
as intruders) [58]. For example, the ATC diffusion strategy 
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(16) with adaptive combination weights would take the follow-
ing form:

( ) for all , , , and .
and for every agent :

( ) ( )
( )

( ) ( ) ( ) ,

( )
( )

( )
,

( )

ATC diffusion strategy with adaptive combination weights.
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(38)

Figure 5 illustrates the ability of networks running algo-
rithm (38) to detect intrusion, and also to perform agent clus-
tering. The figure shows a network with .N 20=  One of the 
agents, say, agent ,o,  is an intruder and it feeds its neighbors 
irrelevant data such as sending them wrong estimators .,io} ,  In 
some other applications, agent o,  may not be an intruder but is 
simply subject to measurements { , }d u ,io o, ,  that arise from a dif-
ferent model w* than the model .wo  Figure 5(a) shows the state 
of the combination weights after 300 diffusion iterations: the 
thickness of the edges reflect the size of the combination 
weights assigned to them; thicker edges correspond to larger 
weights. Observe how the edges connecting to the intruder are 
essentially cutoff by the algorithm. Figure 5(b) illustrates the 
ability of diffusion strategies to perform agent clustering (i.e., to 
cluster together agents that are influenced by the same model). 
Agents do not know beforehand which of their neighbors are 
influenced by which model. They also do not know which model 
is influencing their own data. By allowing agents to adapt their 
combination coefficients, it becomes possible for the agents to 
cut their links over time to neighbors that are sensing a differ-
ent model than their own. The net effect is that agents end up 
being clustered in two groups; the blue agents belong to one 
group and the red agents belong to a second group. Cooperation 

between the members of the same group then leads to proper 
estimation of { , } .w wo*  ■

iS More iNForMatioN alwayS 
BeNeFiCial For CooperatioN?
We assumed in our presentation so far that the agents are 
homogeneous in that they all have similar processing capabili-
ties and are able to have continuous access to data measure-
ments. However, it is generally observed in nature that the 
behavior of biological networks is often driven more heavily by 
a small fraction of informed agents as happens, for example, 
with bees and fish [2]. This phenomenon motivates us to exam-
ine in this section diffusion networks where only a fraction of 
the agents are informed, while the remaining agents are unin-
formed. Informed agents collect data { ( ), }d ui ,k k i  continuously 
and perform in-network processing tasks (consultation and 
adaptation), while uninformed agents only participate in the 
consultation tasks (they do not perform adaptation because 
they do not receive data). The results below reveal some inter-
esting facts [59], [60]. When the set of informed agents is 
enlarged, the convergence rate of the network becomes faster 
albeit at the expense of some possible deterioration in mean-
square performance. In other words, the MSD performance of 
the network does not necessarily improve with a larger propor-
tion of informed agents. These results are in line with observa-
tions in the social sciences in relation to how information 
propagates over social networks such as the assertion that “too 
much information and communication can make a network of 
agents less intelligent” [54]. The results are also in line with 
the popular saying that “too many cooks spoil the broth.”

We illustrate these phenomena for standard ATC diffusion 
strategies of the form (16). We model uninformed agents by 
setting their step size to zero, i.e., we now use an agent-
dependent step size and set kn n=  for informed agents and 

0kn =  for uninformed agents. In this way, uninformed agents 
do not perform the adaptation step in (16) but continue to 
perform the aggregation step. To facilitate the presentation, 

we assume, without loss of generality, 
that the informed agents are labeled 

{ , , , },N N1 2I If=  while the remaining 
uninformed agents  are  labe led 
{ , , } .N NI 1 f+  We assume the network 
has at least one informed agent so that 

.N 1I $  We can now repeat the MSE anal-
ysis of the section “Mean-Square-Error 
Performance.” Since we are dealing with 
standard networks, then there always 
exists a path of finite length from an 
informed agent to every other agent in 
the network. As a result, it can be shown 
that, as long as the informed agents 
employ small step sizes n that satisfy (25), 
then the estimators w ,k i will continue to 
be asymptotically unbiased across all 
agents (both informed and uninformed). 
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Moreover, for sufficiently small step sizes, the convergence 
rate and the MSD level are now given by [59] and [60]:
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(39)

  
(40)

in terms of the entries { }pk  of the eigenvector p defined by (30). 
Note that the above MSD expression reduces to (31) when 
N NI =  (i.e., all agents are informed) since, by definition, the 
entries of p add up to one. Note further that since the entries of 
p are positive for primitive left-stochastic matrices A, it is clear 
from (39) that if the set of informed agents is enlarged from 
N ,I 1 to N N, ,I I2 12 , then the convergence rate improves (i.e., 
faster convergence with r becoming smaller). However, 
from (40), the network MSD may decrease, remain unchanged, 
or increase depending on the noise variances { },v k

2v  at the new 
informed agents (see Figure 6); it is further explained in [60] 
how the deterioration of the network MSD can be avoided 
through proper selection of the combination weights.

biologiCal NeTworks
We now illustrate one application of diffusion strategies to the 
modeling of biological networks. Many biological systems 
exhibit sophisticated levels of adaptation and coordination, 
which result in remarkable and observable forms of collective 
motion and self-organization [4]. Examples include fish joining 
together in schools [1], bees swarming toward a new hive [2], 
and birds flying in formation [61]. In all of these cases, global 
patterns of behavior emerge from localized interactions among 
the individual agents.

There have been intensive studies in the literature on 
models for the collective motion of animal groups, most notably 
by using consensus-based models where agents continuously 
average the velocity vectors of their neighbors and move 
along the direction of the average (e.g., [3] and [62]–[64]). 
Recent experiments on the behavioral rules of fish schools chal-
lenge this approach [65], especially since it neglects the fact 
that the most informed agents in an animal group tend to 
modulate their information into their speeds. For example, fish 
move faster when they feel danger. As such, agents need to pay 
more attention to fast-moving neighbors and assign larger 
weights to them. In this section, following [66] and [67], we 
explain how to model mobile agents and how to incorporate the 
speed of agents into the design of the combination weights. We 
start with an example from [15] on target localization.

EXAMPLE 5: (TARGET LOCALIZATION)
Consider a situation in which N  agents are interested in moving 
toward a target (such as a nutrition source); we can also con-
sider situations where the agents want to move away from a tar-
get (such as a predator). In this example, we assume a static 
target and mobile agents. The unknown location of the target in 
the Cartesian plane is represented by the 2 1#  vector .wo  The 

locations of the agents at time i are denoted by the 2 1#  vectors 
{ } ( , , , )z k N1 2,k i f= ; see Figure 7. We assume the agents are 
aware of their location vectors. The distance between agent k and 
the target at time i is denoted by ( ) .i w z ,k

o o
k it = -  The 1 2#  

unit-norm direction vector pointing from agent k toward the tar-
get is given by ( ) / ,u w z w z, , ,k i

o o
k i

o
k i= - -<  so that we can also 

write ( ) ( ) .i u w z, ,k
o

k i
o o

k it = -  In practice, agents have noisy obser-
vations of { ( ), },i u ,k

o
k i
ot  which we denote by { ( ), } .ui ,k k it  Assuming 

sufficiently small perturbations in u ,k i relative to ,u ,k i
o  it can be 

argued that these noisy observations are related to each other via 
the approximate model ( ) ( ) ( )u vi w z i, ,k k i

o
k i k.t - +  [15], [66], 

where ( )v ik  denotes noise. If we now introduce the adjusted signal 
( ) ( ) ,d ui i z, ,k k k i k it= +

D  then we arrive at the same linear 
model (3) for the available measurement variables { ( ), }d ui ,k k i  in 
terms of the target location :wo

 ( ) ( )d u vi w i,k k i
o

k. + . (41)

Uninformed

Informed

MSD

Convergence Rate

Fraction of Informed Nodes

[Fig6] enlarging the set of informed agents improves 
convergence rate but does not necessarily improve the MsD 
performance.
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[Fig7] The distance from agent k to the target at time i is ( )ik
ot  

and the unit-norm direction vector is u .,k i
o
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The variables { ( ), }d ui ,k k i  in (41) do not have zero means. 
Nevertheless, this situation can still be handled by the same 
diffusion mechanisms described before (see [15]). ■

MoBile adaptive NetworkS
We now describe a class of mobile adaptive networks that can be 
used to model different forms of coordinated animal behavior 
such as fish schooling, bee swarming, and bird flight formations 
[66], [68]. We focus on fish schooling due to its rich dynamic 
behavior [66]. Thus, consider a collection of N  agents with 
noisy measurements { ( ), }d ui ,k k i  that are related to some 
unknown target location wo as in (41). We refer to the 
listing (42) and its steps (a)–(g). The agents cooperate, say, via a 
CTA diffusion strategy to estimate .wo  This cooperation is repre-
sented by steps (a)–(b) in (42) with combination weights { },a k

w
,  

and where the neighborhood N ,k i is now allowed to vary with 
time (since the agents are mobile). For example, the neighbor-
hood of a moving agent k may be defined as the set of agents 
that are within a certain radius of agent k at time i.

For each agent , start with { , , , } .
and for each agent

(a)

(b) ( )

(c)

(d)

(e)

(f) ( )
(g)

for
Estimation of target location:

Estimation of velocity of center of mass:

Motion control (velocity vector and positioning):

end

do:

CTA diffusion adaptation for motion control over mobile networks.
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(42)

In the mobile network, it is assumed that every agent k 
updates its position according to step (g) in (42), where tT  repre-
sents the time step and s ,k i 1+  is the velocity vector of the agent. 
Several factors influence the determination of s ,k i 1+  by agent k 
such as the desire to move toward the target ,wo  the desire to 
move in coordination with the other agents, and the desire to 
avoid collisions. These three objectives are represented by the 
three factors that appear on the right-hand side of the expression 
for s ,k i 1+  in step (f); they are combined by means of three nonneg-
ative weights { , , } .a b h  The first factor ( )w zh , ,k i k i-  is meant to 
assist agent k in moving toward the target; this factor returns a 
vector that points toward the estimated target location, say, as fol-
lows (to prevent singularity, we let /x x 0=

D  whenever x 0= ):

 ( )
, if

, otherwisew z
w z w z

w z
w zh

f

f, ,

, , , ,

, ,

, ,k i k i

k i k i k i k i

k i k i

k i k i
$

#

- =

- -

-

-D *  (43)

for some positive scaling factor f  used to bound the speed in 
pursuing the target.

The second factor s ,k i
g  that appears in step (f) refers to the 

estimator at agent k for the average velocity across the network. 
This factor is estimated by means of a second CTA diffusion 
strategy, represented by steps (c)–(d) in (42); this factor helps 
the agents attain uniform velocity and move coherently. The 
third factor ,k id  that appears in step (f) is computed in step (e). 
Its purpose is to induce attraction and repulsion behavior simi-
lar to the procedure suggested in [64] and [69] to help agents 
avoid collisions by maintaining some safe distance 02x  from 
their neighbors. For example, if ,z z, ,i k i 1 x-,  meaning that 
agents , and k are closer to each other than the distance ,x  then 
a factor pointing in the opposite direction of the vector 
( )z z, ,i k i-,  is added to the velocity vector of agent k to help it 
move away from agent .,  The opposite effect occurs when 

.z z, ,i k i 2 x-,  The scalars { }b k,  in the expression for ,k id  are 
nonnegative weights over N ,k i  satisfying b 0kk =  and 

;b 1
\{ }N

kk,k i
=,,!

/  these scalars allow agent k to assign different 
weights to different neighbors (based, for example, on their 
speeds). Figure 8 illustrates the resulting maneuver of a mobile 
network in the plane using ,N 100=  . ,0 5a b= =  ,1h =  and 

. .0 5n o= =  Similar models can be developed to incorporate 
avoidance of predators and to model cooperative hunting by 
predators.

Flow oF iNForMatioN
The choice of the combination weights { , }a bk k, ,  in (42) influ-
ences the speed with which information flows through the net-
work. In earlier works [63], [70], uniform combination rules (or 
averaging strategies) were employed in consensus-based imple-
mentations such as /a n1k k=,  for Nk, !  and / ( )b n1 1k k= -,  
for \ { } .N kk, !  However, these choices do not incorporate infor-
mation about the speed of the neighbors and whether they are 
informed. It was argued in [67] that the weight a k,  (and likewise 
b k, ) can instead be chosen by agent k in proportion to the proba-
bility that its neighbor , is deemed informed from observing its 
speed. This argument led to the following construction for the 
weights { , }:a bk k, ,

 -
a e1k

c c c c s
2

1
n
2

1 0 1 0

? +, v

- + -
,` c jm  (44)

in terms of three parameters { , , }:c c n0 1
2v  c0 represents the speed of 

an agent when it is not informed, c1 represents the faster speed of 
the agent when it becomes informed (or alarmed), and n

2v  is a 
noise variance used to model speed perturbations. The resulting 
combination rule has a sigmoidal shape and places higher weights 
on faster-moving neighbors; see Figure 9.

The combination rule (44) is similar to the decision-making 
process in animal groups. When an agent makes a decision 
(such as the decision to turn around and start moving in the 
opposite direction), the probability of other agents following 
suit increases if the number of neighbors making a similar deci-
sion increases. This phenomenon is called quorum response in 
animal group behavior, and it was used in [71] to suggest 
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another sigmoidal-type construction for the combination 
weights (see [67] for comparisons).

We illustrate the performance of the combination rule (44) 
by considering an experiment performed in [72]: when a few 
agents on the boundary of a perimeter are frightened, these 
agents change their motion rapidly and reverse their 
orientation. The behavior propagates through the network very 
quickly. To examine this effect, we consider the sigmoidal 
rule (44) with ( , , ) ( , , ) .c c 4 1 1n1 0

2v =  The parameters 
( , , , , )n o a b h  are set to ( . , . , . , . , )0 5 0 5 0 5 0 5 1  for the alarmed 
(informed) agents, and ( , . , , , )0 0 5 0 1 1  for the uninformed agents. 
Figure 10 shows simulation results for a network with N 100=  
agents.

DisTribuTeD oPTiMizaTioN
The previous sections illustrated the application of diffusion 
strategies to the solution of distributed MSE estimation prob-
lems of the form (11), where the individual costs are quadratic 
in .w  The same diffusion strategies, and stochastic-gradient 
arguments, can be used to solve distributed optimization 
problems with more general individual costs ( )J wk  that are not 
necessarily quadratic. Thus, refer again to Figure 1 and consider 
the problem of determining, in a collaborative and distributed 
manner, the M 1#  vector wo that minimizes the global objec-
tive (1), where w is now assumed to be real for simplicity. The 

real-valued costs { ( )}J wk  are assumed to be differentiable and 
strongly convex functions of w, so that the aggregate cost in (1) 
is also strongly convex and its minimizer wo is unique. We again 
focus on the important case where the component functions 
{ ( )}J wk  are minimized at the same ;wo  examples abound where 
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[Fig8] Parts (a)–(f) show maneuvers of a mobile network with 100 agents in R2 over time.
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agents need to work cooperatively to attain a common objective 
(such as tracking the same target, locating the same food 
source, or evading the same predator). This scenario is equally 
common in machine learning problems [73]–[76], where data 
samples often arise from the same underlying distribution. The 
case where the { ( )}J wk  may have different minimizers is studied 
in [11], [12], and also [39] and [41]. It is shown in [11] and [12] 
that the same diffusion strategies of this section are still applica-
ble and agents would converge to Pareto-optimal solutions.

We illustrate the optimization procedure using ATC diffu-
sion; a similar description applies to CTA. It is explained in [31] 
that the following recursions are the natural extension of the 
ATC diffusion strategy (16) to the solution of optimization prob-
lems of the form (1)—compare with Figure 3:

 
[ ( ]

(ATC diffusion),
w wJ

a
, , , )

, ,
N

k i k i w k k i

k i k i

1 1

k

d} n

} }

= -

=

<

, ,

,!

- -* /
%

 (45)

where ( )wJ ,w k k i 1d -
%  represents an estimate for the row gradient 

vector of ( )J wk  evaluated at ,w ,k i 1-  and n is a positive step size 
(we can again allow the step size to vary with the agent index or 
with time or both). More general diffusion strategies are possi-
ble where the agents do not only share their estimators { },} $,  

but they also share their gradient approximations { ( )}Jw $d ,
%  by 

using a second right-stochastic combination matrix C [15], [31], 
[11], [12]. We again note that diffusion strategies such as (45) 
differ from the corresponding consensus-based solution for the 
same optimization problem, and which takes the following 
form (e.g., [48] and [49]):

 ( ) ( (consensus)w w wa i J, , ),
N

ik i k k w k k i 11
k

$ dn= -,

,

,

<

!

-- 8 B/ %

  (46)

usually with a time-dependent step size sequence, ( ),ikn  that 
satisfies (6) and with a doubly stochastic matrix A.

We can assess how close the estimators { }w ,k i  generated by 
the diffusion strategy (45) get to the optimal wo that solves (1). 
For this purpose, and to be consistent with the presentation in 
the earlier sections where we assumed that the covariance 
matrix Ru was uniform across all agents, we likewise assume 
for the current set-up that the individual costs { ( )}J wk  have 
the same Hessian matrices at ,w wo=  i.e., we assume 

( )J w Rw k
o2d =
D  for all .k  This situation is common, for example, 

in machine learning applications where all agents are attempt-
ing to cooperatively optimize the same cost function; see 
Example 6 below. For performance results under more general 
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[Fig10] The state of alarm propagates much more rapidly through the diffusion network employing the sigmoidal rule (44) as seen in 
(a). agents moving toward the positive (negative) x-direction are shown in red (blue): (a) sigmoidal combination rule and (b) uniform 
combination rule. 
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conditions, readers are referred to [31], [11], [12]. We further 
let ( )s wk

o
 denote the gradient noise at agent k at location 

,w wo=  i.e., ( ) ( ) ( ) ,[ ]s w J w J wk
o

w k
o

w k
o4 4= - <D %  and denote its 

covariance matrix by ( ) ( ) .s sw w RE ,k
o

k
o

s k=< D  Then, following 
arguments from [12], [31], [27], and [77], and under reason-
able technical conditions on the mean and variance of the gra-
dient noise [31], it can be verified that, for standard diffusion 
networks and for sufficiently small step sizes, the network 
MSD is approximated by an expression similar to (30)–(31), 
specifically,

 MSD MSD Tr( ) .p R R
2diff

network
diff, ,k k s k

k

N
2 1

1
$. .

n -

=

e o/  (47)

EXAMPLE 6: (DISTRIbuTED ONLINE LEARNERS)
Consider a standard network of N  learners, as in Figure 1. 
Each learner k receives vector samples { , }x i 0,k i $  that 
arise from some fixed probability distribution .|  The goal of 
the network is to learn the vector wo that optimizes the 
risk function ( ) ( , ),xJ w Q wE ,k i=

D  defined in terms of 
some loss function ( , ) .Q $ $  To measure the performance 
at each agent over time, we consider the excess-risk 
ER ( ) { ( ) ( )},wi J J wE ,k k i

o
1= -

D
-  where w ,k i 1-  denotes the esti-

mator at agent k at time i 1-  for .wo  One way to estimate wo 
is for each agent k to run a stochastic gradient algorithm 
independently of the other agents, say,

 

( ) ( , ) ,  

[no cooperation]

w w w xi Q i 0, , , ,k i k i w k i k i1 1$ d $n= - <
- -6 @

 (48)

with a possibly iteration-dependent step size sequence ( ),in  
and where ( , )w xQ , ,w k i k i1d -  is used to approximate ( ) .wJ ,w k i 1d -  
It was shown in [78] that for a strongly convex risk function 

( ),J w  the noncooperative scheme (48) achieves a convergence 
rate of the order of ( / )O i1  under some conditions on the gradi-
ent noise and the step size sequence ( ) .in  Another way to esti-
mate wo is for the agents to transmit their data to a central 
processor, which executes the following centralized algorithm:

 

( ) ( , ) ,

[centralized].

w w w xi
N

Q i1 0,i i w i k i
k

N

1 1
1

$ d $n= - <
- -

=

e o6 @/
 (49)

It can be shown that the convergence rate of this implementation 
is ( / )O Ni1  for step sizes of the form ( ) / ( )i i 1n n= +  and for some 
conditions on .n  In other words, the centralized implementation 
(49) provides an N-fold increase in convergence rate relative to the 
noncooperative solution (48). The point we want to illustrate in 
this example is that diffusion strategies provide distributed solu-
tions that enable every agent in the network to converge at the 
same rate as the centralized solution (49) [77]. We illustrate this 
point by considering the ATC diffusion strategy (45) with an itera-
tion-dependent step size 

 
( ) ( , )
.

w w x
w

i Q
a

, , , ,

, ,
N

k i k i w k i k i

k i k i

1 1

k

$ d}

}

n= -

=

<

, ,

,!

- -6 @* /  (50)

Some algebra would show that, for large enough ,i  the 
excess-risk can be expressed as a weighted mean-square 
error, ER ( ) ( / ) ,wi 1 2 E ,k k i R1

2. -u  with the weighting matrix 
( )R J ww

o2d=  [77]. We can extend the analysis from the section 
“Mean-Square-Error Performance” to the case of time-dependent 
step sizes of the form ( ) / ( ),i i 1n n= +  and conclude that for 
standard networks, the excess-risk at agent k and for large enough 
i can be approximated by (now R R,s k s=  for , , ,k N1 2 f= ) [77]:

 ER ( ) Tr( ) , for largei
i
R

p i
4k

s
k

k

N
2

1
$ $.

n

=

e o/ , (51)

where p is the right-eigenvector of A defined by (30). When A 
is doubly stochastic, we have /p N1=  and the above result 
would then imply that every agent in the network will improve 
its excess risk [in comparison to the noncooperative solution 
(48)] by a factor of .N  In addition, each agent will converge at 
the same ( / )O Ni1  rate as the centralized algorithm (49).  ■

CoNClusioNs
There are several other aspects of diffusion strategies for 
adaptation and learning over networks that were not covered in 
this article due to space limitations. For instance, we ignored in 
our presentation the effect of perturbations during the exchange 
of information over edges among neighboring agents. Noise over 
the communication links can be due to various factors including 
thermal noise and imperfect channel information. Studying the 
degradation in mean-square performance that results from these 
noisy exchanges, and developing adaptive combination policies 
that counter the effect of the degradation, can be pursued by 
extending the mean-square analysis of the section “Mean-Square-
Error Performance.” Readers can refer to [57], [15], and [79], and 
the references therein for details. Studies on consensus-based 
solutions with noisy exchanges appear in [80] and [81]. Several 
other extensions and variations of diffusion strategies are possible. 
Among these variations we mention strategies that endow agents 
with temporal processing abilities, in addition to their spatial 
cooperation abilities [15], [82], [83]. For example, in the ATC 
implementation (16), rather than have each agent k rely solely on 
current weight estimators received from its neighbors, 
{ , },N,i k, !} ,  agent k can also be allowed to store and process 
past weight estimators. We can also apply diffusion strategies to 
solve recursive least-squares and state-space estimation problems 
in a distributed manner [84], [36]; consensus-based solutions for 
state-space estimation appear in [85] and [86]. Finally, one inter-
esting conclusion that stands out in our presentation is that the 
performance of diffusion strategies is largely determined by the 
right-eigenvector of the combination policy corresponding to the 
eigenvalue at one. This observation can be used to propose 
useful procedures to control the convergence behavior of 
distributed strategies and to design effective combination 
procedures [27], [77], [12].
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