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The use of optimization methods is ubiquitous in com-
munications and signal processing. In particular, con-
vex optimization techniques have been widely used 
in the design and analysis of single user and mul-
tiuser communication systems and signal process-

ing algorithms (e.g., [1] and [2]). Game theory is a field of 
applied mathematics that describes and analyzes scenarios 
with interactive decisions (e.g., [3] and [4]). Roughly speak-
ing, a game can be represented as a set of coupled optimi-
zation problems. In recent years, there has been a growing 
interest in adopting cooperative and noncooperative game 
theoretic approaches to model many communications and 
networking problems, such as power control and resource 
sharing in wireless/wired and peer-to-peer networks (e.g., 
[5]–[12]), cognitive radio systems (e.g., [13]–[17]), and 
distributed routing, flow, and congestion control in com-
munication networks (e.g., [18] and [19] and references 
therein). Two recent special issues on the subject are [20]
and [21]. A more general framework suitable for investigat-
ing and solving various optimization problems and equilibri-
um models, even when classical game theory may fail, is 
known to be the variation inequality (VI) problem that consti-
tutes a very general class of problems in nonlinear analysis [22].

MOTIVATION
The goal of this article is twofold. The first half aims at presenting in a 
unified fashion the theoretical foundations and main techniques in convex 
optimization, game theory, and VI theory, suitable for the communication and 
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signal processing communities. Special emphasis is placed on 
the generality of the VI framework, showing how several inter-
esting problems in nonlinear analysis, optimization, and equi-
librium programming can be formulated as a VI problem, such 
as nonlinear (convex) optimization problems [22] and (general-
ized) Nash equilibrium problems [23]. The goal of this first part 
is to provide the signal processing and communication commu-
nities with mathematical tools useful to analyze the basic issue 
of an equilibrium problem (e.g., existence and uniqueness of the 
solution) and to devise iterative (possibly) distributed algorithms 
along with their convergence properties. The second half of the 
article illustrates how to apply the theoretical results developed 
in the first part to several equilibrium problems modeling some 
challenging resource allocation problems in wireless ad hoc or 
per-to-peer wired networks [6], [8]–[10], in the emerging field of 
cognitive radio (CR) networks [14], [17], and distributed flow 
and congestion control problems in multihop communication 
networks [18], [19]. These applied contexts provide solid evi-
dence of the wide applicability of the VI methodology in model-
ing and studying further equilibrium problems modeling 
conflict  situations of selfish systems that are relevant to signal 
processing and communication applications. We hope this arti-
cle will stimulate the interest in VI theory and its application in 
the signal processing and communication communities. 

VARIATIONAL INEQUALITIES AND GAME THEORY: 
BASIC DEFINITIONS AND CONCEPTS
In this section, we provide a short introduction to basic con-
cepts and results about VIs aiming at showing their relevance 
in the study of games. We also recall concepts of game theory 
with an emphasis on those that are more relevant to signal 
processing and communication applications. The machinery 
discussed in this section will be instrumental to study the 
resource allocation problems and equilibrium models intro-
duced in the second half of the article. 

PRELIMINARY BACKGROUND ON CONVEXITY
We begin recalling a few fundamental definitions about convexity. 

CONVEX SETS
A set K # Rn is convex if for any two points x,  y [ K, the seg-
ment joining them belongs to K 

 ax1 112a 2y [ K,  4x,  y [ K  and  a [ 30, 1 4. (1)

Examples of convex sets include the unit ball K5 5x [ Rn:7x 7 # 16 (but not the unit sphere K5 5x [ Rn: 7x 7 5 16), ellip-
soids, hypercubes, and polyhedral sets. We recall that the inter-
section of convex sets is a convex set (while the union of convex 
sets is not convex, in general). In the real line R, for example, 
convex set are intervals. 

CONVEX FUNCTIONS
Given a convex set K # Rn and a function f 1x 2 : K S R; f  is 
said to be 

convex !  on K if, 4x, y [ K and a [ 10, 1 2 , 
 f 1a x1 112a 2  y 2 # a f 1x 2 1 112a 2  f 1y 2  (2)

strictly convex !  on K if the inequality in (2) is strict 
strongly convex  ! on K if 4x, y [ K and a [ 10, 1 2 , there 

exists a constant c . 0 such that 

 f 1ax1 112a 2y 2 # af 1x 2 1 112a 2 f 1y 2
 2

c
2
a 112a 2 7x2 y 7 2. (3)

Obviously the following relations hold:
 

but none of the above implications can be reversed in general. 
The geometric meaning of the definitions above is simple. 
Consider the function in Figure 1(a) and the segment S joining 
the points 1x, f 1x 22  and 1y, f 1y 2 2 . Saying that f  is convex means 
that the graph of f  lies not above the segment S. Strict convexi-
ty means that the graph of f  lies below the segment S, see 
Figure 1(b); while strong convexity requires the function f  to lie 
“sufficiently” below the segment S, see Figure 1(c). A linear 
function f 1x 2 5 cTx1 b is an example of convex function that is 
not strictly convex; the exponential f 1x 2 5 ex is a strictly convex 
function that is not strongly convex; the quadratic function 
f 1x 2 5 x2 is an example of strongly convex function. Many 
operations on functions preserve convexity, for example, the 
sum of convex functions, the multiplication of a convex func-
tions by a nonnegative scalar, and the point-wise maximum of 
convex functions all give rise to convex functions. Many other 
composition rules that preserves the convexity can be found, 
e.g., in [24, Ch. 1] and [25, Ch. 3.2]. 

CONVEX OPTIMIZATION PROBLEMS
Consider a generic optimization problem (in the minimiza-
tion form) 

 
minimize

x
 f 1x 2

subject to  x [ K, 
 (4)

where f  is called the objective function (or cost function) 
and K is the constraint set. A (feasible) point xw [ K is 
said to be optimal if f 1xw 2 # f 1x 2  for all x [ K. We assume 
throughout that K is closed and convex and f  is convex 
and continuously differentiable on K; with this assump-
tion the optimization problem above is termed a convex 
optimization problem. 

Convex optimization problems are an important subclass of 
optimization problems. Their importance stems from the fact 
that, on the one hand they arise quite frequently in 
 applications and, on the other hand, powerful analytical and 

 strongly convex 1 strictly convex 1 convex
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algorithmic tools are available for their 
study. We refer, e.g., to [24] and [25] for 
details, but it is safe to say that, to a 
large extent, convex optimization prob-
lems constitute the largest class of trac-
table optimization problems. 

There is a host of important issues 
that should be addressed in connection 
to convex optimization problems (e.g., 
existence of a solution, uniqueness, 
etc.). We will revisit some of these top-
ics in the next subsection, as a particu-
lar case of the study of VIs. Here we 
only discuss one of the characteriza-
tions of optimal solutions that, besides 
being fundamental in its own right, 
will be useful to understand the con-
nection between convex optimization 
problems and VIs to be discussed in the 
next subsection. 

Optimality Conditions
Assume that we have a feasible point xw: our aim is to under-
stand whether this is an optimal solution, not using the defi-
nition, that is hard to verify in practice, but some other 
conditions that may give some useful insight on the problem 
and can lead to more tractable conditions. These kind of con-
ditions are called optimality conditions and constitute the 
foundations for the theoretical study of the problem and its 
numerical solution. The fundamental optimality conditions 
for convex optimization problems is called the minimum 
principle, and we proceed now to its illustration. To under-
stand it properly, recall that the gradient of a (continuously 
differentiable) function f  represents the direction of maximal 
ascent of the function. By using the Taylor expansion of f  
around a point x, it is easy to see that if we move slightly from 
x along a direction d, then the function values increase with 
respect to f 1x 2  if =f 1x 2Td . 0 (i.e., if =f 1x 2  and d form an 
acute angle), decreases if =f 1x 2Td , 0 (i.e., if =f 1x 2  and d 
form an obtuse angle), while the function behavior cannot be 
determined using the gradient only, if =f 1x 2Td5 0 (i.e., if 
=f 1x 2  and d are perpendicular). Therefore the gradient of f  at 
a point x divides the space into three regions, one in which 
the function (at least for points close enough to x) increases, 
one in which the function decreases, and one in which we 
cannot make a sound guess by using only the gradient; see 
Figure 2(a). The minimum principle essentially just states 
that if we consider the convex optimization problem (4) and a 
feasible point x*, then, if x* is optimal, the feasible region 
must not lie in the half space where the function decreases; 
otherwise the point x* could not be an optimal solution by 
definition. It actually turns out that convexity makes this 
condition also sufficient for optimality. The minimum princi-
ple is formally given in (5), while it is illustrated pictorially in 
Figure 2(b) and (c).  

Note that if K5Rn, (5) reduces to the basic necessary (and 
sufficient for convex f ) condition for unconstrained optimality 
of xw: =f 1xw 2 5 0. 

The case in which the set K is defined by inequalities and 
equalities deserves a particular attention. In this case it can be 
shown that, under some additional conditions, the minimum 
principle is in fact equivalent to the famous Karush-Kuhn-Tucker 
(KKT) optimality conditions; we refer, e.g., to [24] and [25] 
for details. 

VARIATIONAL INEQUALITIES PROBLEMS 
VIs constitute a broad class of problems encompassing convex 
optimization and bearing strong  connections to game theory. The 
simplest way to see a VI is as a generalization of the minimum 
principle (5) where the gradient =f  is substituted by a general 
function F. More formally, we have the following. 

MINIMUM PRINCIPLE 
Consider the convex optimization problem (4). A feasible 
point xw [ K is an optimal solution if and only if 

 1y2 xw 2T=f 1xw 2 $ 0  4y [ K. (5)

VARIATIONAL INEQUALITY PROBLEM 
Given a closed and convex set F: K # Rn and a mapping 
F: K S Rn, the VI problem, denoted VI 1K, F 2 , consists in 
finding a vector xw [ K (called a solution of the VI) such 
that [22]: 

 1y2 xw 2TF 1xw 2 $ 0,  4y [ K. (6)
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[FIG1] Some examples of convex and monotone functions: (a) convex function; (b) 
strictly convex function; (c) strongly convex function; (d) monotone function [first 
derivative of the convex function in (a)]; (e) strictly monotone function [first derivative of 
the strictly convex function in (b)]; (f) strongly monotone function [first derivative of the 
strongly convex function in (c)].

Authorized licensed use limited to: University of Illinois. Downloaded on April 17,2010 at 22:42:48 UTC from IEEE Xplore.  Restrictions apply. 

gesualdoscutari
Text Box



IEEE SIGNAL PROCESSING MAGAZINE   [38]   MAY 2010

In the sequel, for the sake of simplicity, we shall always 
assume that F is continuously differentiable on the interior of K 
and K is closed and convex. The geometrical interpretation of 
(6) is illustrated in Figure 3. It is clear that if F5=f  for some 
suitable convex function f, VI 1K, =f 2  coincides with the prob-
lem of finding a point satisfying the minimum principle (5) and 
therefore with the problem of finding an optimal solution of the 
convex optimization problem (4). However, when F cannot be 
expressed as the gradient of some “potential function,” the VI is 
distinct from an optimization problem. It is therefore apparent 
that VI encompasses a wider range of problems than optimiza-
tion problems. In fact, we recall that not all continuous func-
tions F can be expressed as the gradient of a suitable scalar 
function f. It is well known that this happens if and only if the 
Jacobian matrix of F is symmetric for all points in the domain 
of interest. For example, suppose that F5 Ax1 b for some 
 suitable square n 3 n matrix A and n-vector b. If A is 
 symmetric, it is easy to check that F 1x 2 5=f 1x 2 , with 
f 1x 2 5 11/22 1xTAx1 bTx 2 . However, if A is not symmetric it is 
impossible to find a function f  whose gradient yields F.

The distinction between a convex optimization problem and a 
VI then essentially boils down to the difference between a VI with 
an F that has a symmetric Jacobian or not. At first glance it might 
seem that there is little gain in relaxing the symmetry condition on 
the Jacobian of F: this is not so. By allowing functions F in the defi-
nition of VI with a nonsymmetric Jacobian we do get a whole world 
of new problems and this motivates a detailed study of VIs; we refer 
to [22] for a detailed discussion on this topic. In the next subsec-
tion, we will discuss at length how this provides us with the mathe-
matical background to deal with games. Here we illustrated briefly 
some other classical problems that fall into the VI framework. 

K5Rn: !  System of equations. If K5Rn, then VI 1Rn, F 2  is 
equivalent to finding a xw [ Rn such that F 1xw 2 5 0, since 
the only vector F 1xw 2  which forms a nonobtuse angle with all 
vectors in Rn is the zero vector. 
K5R1

n : !  Nonlinear complementarity problem (NCP). 
When the set K is the nonnegative orthant of Rn, the VI 
admits an equivalent form known as a nonlinear complemen-
tarity problem, denoted by NCP 1F 2 , which is to find a vector 
xw such that 

[FIG2] Geometrical interpretation of the minimum principle: (a) Surfaces of equal cost x with the gradient at x (orthogonal 
to one of these surfaces) that divides the space into three regions, one in which f (x) (locally) increases (denoted by “1”), 
one in which f(x) (locally) decreases (denoted by “2”), and one in which we cannot make a sound guess (denoted by “?”). 
(b) A feasible point xw that satisfies the minimum principle, =f(xw) forms a nonobtuse angle with all feasible vectors d 
emanating from xw. (c) A feasible point x that does not satisfy the minimum principle, there are indeed other feasible 
points y2x such that f  (y) * f (x).

y
d = y − x*

·

Feasible Set K

Surface of Equal Cost f (x )

∇f (x*)

x*

d = y − x

·y
x

Feasible Set K

∇f (x )
?

?

+
+−

−

Surface of Equal Cost f (x )

x

∇f (x )

(c)(a) (b)

[FIG3] Geometrical interpretation of some basic concepts of VIs: (a) A feasible point xw that is a solution of the VI (K, F ), F (xw) forms 
an acute angle with all the feasible vectors y2 xw. (b) A feasible point x that is not a solution of the VI (K, F ). (c) xw is a solution of the 
VI (K, F ) if and only if xw5qK

(xw2F ( xw)) [see (15)]. (d) A feasible x that is not a solution of the VI (K, F ) and thus x 2qK
(x2 F ( x)).
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 0 #  xw ' F 1xw 2  $ 0, (7) 

where ' means “orthogonal” (a'b 3 aTb5 0). Note that, 
since xw $ 0 and F 1xw 2 $ 0, the orthogonality condition in 
(7) is equivalent to xi

w Fi 1xw 2 5 0, 4i5 1, cn. The NCP was 
first identified in the 1964 Ph.D. thesis of R.W. Cottle published 
in [26] as a unifying mathematical framework for linear pro-
gramming, quadratic programming, and bimatrix games.
We now focus on the basic issues of existence/uniqueness of a 

solution and its characterization. 

EXISTENCE AND UNIQUENESS OF THE SOLUTION
The most basic results on the existence of a solution of the 
VI 1K, F 2  is what can be considered as the natural extension of 
Weierstrass theorem for optimization problems. 

Given the VI 1K, F 2 , suppose that 
the set i) K is convex and compact (closed and bounded); 
the function ii) F 1x 2  is continuous. 

Then, the set of solutions is nonempty and compact. (8)

  

The boundedness assumption of the set K might be too restric-
tive (e.g., in the NCP the set is unbounded). Existence can still be 
established if we trade the boundedness assumption of the set K 
with certain additional properties of the function F. To this end we 
recall some basic “monotonicity” properties of vector functions 
that are naturally satisfied by the gradient maps of convex func-
tions. Indeed, monotonicity plays in the VI field a role similar to 
that of convexity in optimization. Given a convex set K, a mapping 
F : K # Rn S Rn is said to be 

monotone !  on K if 

 1F 1x 2 2 F 1y 2 2T 1x2 y 2 $ 0,   4x, y [ K (9) 

strictly monotone !  on K if 

 1F 1x22F 1y22T 1x2 y2 . 0,   4x, y[ K  and  x2 y (10) 

strongly monotone !  on K if there exists a constant c . 0 
such that 

 1F 1x 2 2 F 1y 2 2T 1x2 y 2 $  c 0 |x2 y 0 |2,   4x, y [ K. (11)

Figure 1(d)–(f) shows examples of monotone, strictly mono-
tone, and strongly monotone scalar functions. The relations 
among the above monotonicity properties are the following: 
strongly monotone 1  strictly monotone 1  monotone. There 
also exists a connection between the above monotonicity proper-
ties and the positive semidefiniteness of the Jacobian matrix of F; 
we refer to [22, Ch. 2] for the details. For the important class of 
affine functions, F 1x 2 5 A x1 b, where A is an n 3 n (not neces-
sarily symmetric) matrix and b is an n-vector, some stronger 
results are valid. F 1x 2 5 A x1 b is monotone if and only if A is 
positive semidefinite, whereas the strict and strong monotonicity 
are equivalent among themselves and to the positive definiteness 

of A. Finally, observe that if the vector function F is the gradient of 
a scalar function f  (denoted by =f ), the above monotonicity prop-
erties can be related to the convexity properties of the function f  
discussed in the previous subsection.   

i 2  f  convex 3 =f  monotone
ii 2   f  strictly convex 3 =f  strictly monotone
iii 2  f  strongly convex 3 =f  strongly monotone

 (12)

Figure 1 shows an example of the relationship above 
between the convexity properties of a scalar function and the 
monotonicity properties of its derivative. Using the above 
monotonicity properties, we can now state a few results on the 
solutions of the VI 1K, F 2  without requiring the boundedness 
of the (closed and convex) set K (recall that F is assumed to be 
continuous on K).   

If i) F is monotone on K, the solution set of the VI 1K, F 2  
is closed and convex. 

If ii) F is strictly monotone on K, the VI 1K, F 2  admits at 
most one solution.

If iii) F is strongly monotone on K, the VI 1K, F 2  admits a 
unique solution. (13) 

Note that the strict monotonicity of F on K does not guarantee 
the existence of a solution of the VI 1K, F 2 . For example, F 1x 2 5 ex 
is a strictly monotone function but the VI 1R, ex 2  does not have 
solutions. The results above allow us to recover standard results 
on the existence and uniqueness of a solution of convex optimiza-
tion problems. For example, it follows from iii) of (13) that the 
VI 1K, =f 2  admits a unique solution if =f  is strongly monotone 
which, using iii) of (12), is equivalent to state that the convex opti-
mization problem (4) admits a unique solution if f  is strongly con-
vex. It is also possible to give several further conditions for the 
existence of solutions of VIs with unbounded feasible sets; we refer 
the reader to [22, Sec. 2]. 

CHARACTERIZATION OF THE SOLUTION 
Several equivalent formulations of the VI problem and thus char-
acterizations of the solution can be found in the literature in terms 
of systems of equations and/or optimization problems of various 
kinds [22, Sec. 1.5]. Such formulations can be very useful for both 
analytical and computational purposes. Here we focus on the 
reformulation of the VI problem as a classical fixed-point problem, 
which paves the way for the development of a large family of itera-
tive methods, some of them used in the second part of the article. 
The fixed-point based reformulation involves the Euclidean projec-
tion onto a closed convex set, which is defined next. The Euclidean 
projection of a vector x0 onto a closed and convex set K, denoted wK 1x0 2 , is the unique vector in K that is closest to x0 in the 
Euclidean norm. By definition, wK 1x0 2  is the unique solution of 
the following convex minimization problem (note that the 
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 objective function is strongly convex and thus the solution exists 
and is unique), where x0 is considered fixed 

 
minimize

y
0 |y2 x0 0 |2

subject to  y [ K.  (14)

The connection with the VI 1K, F 2  is the following:
 

xw is a solution of the VI 1K, F 2  3  xw5 wK
1xw2 F 1xw 2 2 .

 (15)

The equivalence in (15) can be easily understood geometri-
cally, as shown in Figure 3(c) and (d). 

As for the classical convex optimization problems, there are 
KKT conditions also for the VI 1K, F 2 ; we refer to [22] for details. 

Several solution methods for VIs have been proposed in the 
literature. A treatment on the subject goes beyond the scope of 
this article and we refer the interest reader to the technical lit-
erature on the subject. A good entry point on parallel and dis-
tributed algorithms and their convergence for optimization 
problems and variational inequalities is the book [27]. A com-
prehensive and more advanced treatment can be found in the 
monograph [22]. In the second part of the article, we specialize 
some of these algorithms to solve the proposed equilibrium 
problems in multiuser communication systems. 

NONCOOPERATIVE GAMES
Noncooperative game theory is a branch of game theory for the 
resolution of conflicts among interacting decision makers (called 
players), each behaving selfishly to optimize one’s own well being, 
quantified in general through an objective function. While many 
problems in signal processing and communications have tradi-
tionally been approached by using optimization, game models are 
being increasingly used. They seem to provide meaningful models 
for many applications where the interaction among several agents 
is by no means negligible and centralized approaches are not suit-
able, e.g., in emerging wireless networks, such as sensor networks, 
ad hoc networks, CR systems, and pervasive computing systems. 
Furthermore, the deregulation of telecommunication markets and 
the explosive growth of the Internet pose many new problems that 
can be effectively tackled with game-theoretic tools. 

In this section, we consider two classes of problems. The first is 
the class of Nash equilibrium problems (NEPs) where the interac-
tions among players take place at the level of objective functions 
only. The second is the class of generalized NEPs (GNEPs) where 
in addition we have that the choices available to each player also 
depend by the actions taken by his rivals. The NEP is by far better 
studied and “easier.” The GNEP has a wider range of applicability 
but sparser results are available for its study. 

NASH EQUILIBRIUM PROBLEMS
Assume there are Q players each controlling the variables xi [ Rni. 
We denote by x the overall vector of all variables: x ! 1x1, c, xQ 2 ; 

while we use the notation x2i ! 1x1, c, xi21, x i11, c, xQ 2  to 
denote the vector of all players’ variables except that of player i. The 
aim of player i, given the other players’ strategies x2i, is to choose 
an xi [ Qi that minimizes his payoff function fi 1xi, x2i 2 , i.e., 

 
minimize

xi
fi 1xi, x2i 2

subject to xi [ Qi.  (16)

Roughly speaking, an NEP is a set of coupled optimization prob-
lems. We make the blanket assumption that the objective func-
tions fi are continuously differentiable and, as a function of xi 
alone, convex, while the sets Qi # Rni are all closed and convex. A 
point x is feasible if xi [ Qi for all players i. A (pure strategy) NE, 
or simply a solution of the NEP, is a feasible point xw such that 

 fi 1xi
w, x2i

w 2 # fi 1xi, x2i
w 2 ,   4xi [ Qi (17)

holds for each player i5 1, c, Q. In words, an NE is a feasible 
strategy profile xw with the property that no single player can ben-
efit from a unilateral deviation from xi

w, if all the other players act 
according to it. 

In general, the existence of an NE as defined in (17) is not 
guaranteed; neither are the uniqueness nor the convergence (e.g., 
of best-response-based algorithms) to an equilibrium when one 
exists (or even is unique). To address these key issues, a useful way 
to see an NE is as a fixed point of the best-response mapping for 
each player. Let Bi 1x2i 2  be the set of optimal solutions of the ith 
optimization problem (16) and set B 1x 2 ! B1 1x21 2 3  
B2 1x22 2 3c3 BQ 1x2Q 2 . It is clear that a point xw is an NE if 
and only if it is a fixed point of B 1x 2 , i.e., if and only if 
xw [ B 1xw 2 . This observation is the key to the standard approach 
to the study of NEPs: the so-called fixed-point approach, which is 
based on the use of the well-developed machinery of fixed-point 
theory. This approach is adopted in the analysis of several games 
proposed in the signal processing and communication literature 
to model challenging resource allocation problems in wireless sin-
gle-input, single-output (SISO)/multiple-input, multiple-output 
(MIMO) ad hoc or peer-to-peer wired networks [5], [7]–[12] and in 
the emerging field of CR networks [14]–[16]. Some of these games 
will be analyzed in the section “Nash Equilibrium Problems: Rate 
Maximization Game Over Parallel Gaussian Interference 
Channels.” However, the applicability of the fixed-point based anal-
ysis as used in the aforementioned papers requires the ability to 
compute the best-response mapping B 1x 2  in closed form; this fea-
ture may not be an easy task for a game with arbitrary payoff func-
tions and strategy sets, which certainly strongly limits the 
applicability of this methodology. 

There are at least two other ways to study NEPs. The first is 
based on a reduction of the NEP to a VI. This approach is pursued in 
detail in [28] and, resting on the well-developed theory of VIs, has 
the advantage of permitting an easy derivation of many results 
about existence, uniqueness, and stability of the solutions. But its 
main benefit is probably that of leading quite naturally to the deriva-
tion of implementable solution algorithms along with their conver-
gence properties. It is this approach that will be at the basis of our 
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exposition and will be exemplified in the next subsection. The sec-
ond alternative approach is based on an ad hoc study of classes of 
games having a particular structure that can be exploited to facili-
tate their analysis. For example, this is the case of the so-called 
potential games [29] and supermodular games [30]. These classes 
of games have recently received great attention in the signal pro-
cessing and communication communities as a useful tool to model 
and solve various power control problems in wireless communica-
tions and networking [18], [31], [32]. As an example, in the second 
part of the article, we show how a fairly general class of distributed 
flow and congestion control problems fit naturally in the framework 
of potential games and, building on the structure of the game, we 
propose a distributed algorithm that converges to an NE. 

VI Reformulation of the NEP
At the basis of the VI approach to NEPs there is an easy equiva-
lence between an NEP and a suitably defined VI. In fact, given the 
equivalence between the VI problem and a convex optimization 
problem (cf. the section “Variational Inequalities Problems”), the 
following result follows readily from the minimum principle (5) 
for convex problems. In what follows, we denote by G5 8Q, f9 the 
game defined by the problems (16), with the understanding that 
Q ! wQ

i51 Qi and f ! 1 fi 1x 2 2 i51
Q . 

Given the game G5 8Q, f 9, suppose that for each player i 
the strategy set i) Qi is closed and convex; 
the payoff function ii) fi 1xi, x2i 2  is continuously differen-

tiable in x and convex in xi for every fixed x2i. 
Then, the game G is equivalent to the VI 1Q, F 2 , where 
F 1x 2 ! 1=xi

fi 1x 2 2 i51
Q . 

 (18)

Indeed, each problem (16) is a convex programming problem 
for each i. Therefore, given a feasible xw, each xi

w is an optimal 
solution of (16) if and only if it satisfies the minimum principle 
[see (5)]: 1yi2 xi

w 2T=xi
fi 1xi

w, x2i
w 2 $ 0, for all yi [ Qi. Summing 

these conditions and taking into account the Cartesian product 
structure of Q, leads to the desired equivalence between the NEP 
and the VI problem. 

Existence and Uniqueness of the NE Based on VI
Given the equivalence between the NEP and the VI problem, con-
ditions guaranteeing the existence of an NE follow readily from 
the existence of a solution of the VI: Suppose that, in addition to 
conditions i) and ii) in (18), each player’s strategy set Qi is com-
pact, then the NEP has a convex and nonempty solution set, 
thanks to the existence results (13). Further existence results for 
unbounded feasible sets can also be obtained by using the VI 
approach, we refer to [28] for the details. As far as the uniqueness 
of the NE is concerned, sufficient conditions come from iii) of (13): 
Assuming that the function F 1x 2 ! 1=xi

fi 1x 2 2 i51
Q  is strongly 

monotone on Q, we immediately have that G5 8Q, f9 has a unique 
solution. Sufficient conditions easily to be checked that guarantees 
such a F being strongly monotone on Q are given in [17] and [28]. 

Algorithms for Nash Equilibria
Building on the equivalence between the NEP and the VI prob-
lem, one can borrow solutions methods for the NEP from the 
vast literature on variational inequalities (e.g., [22, Ch. 9–12]). 
For the purposes of this article, we restrict our attention to 
distributed algorithms. Since in a Nash game every player is 
trying to minimize his own objective function, a natural 
approach is to consider an iterative algorithm based, e.g., on 
the Jacobi (simultaneous) or Gauss-Seidel (sequential) 
schemes, where at each iteration every player, given the strate-
gies of the others, updates his own strategy by solving his opti-
mization problem (16). The Gauss-Seidel implementation of 
the best-response-based algorithm is formally described in 
Algorithm 1. Building on the VI framework, one can prove that 
Algorithm 1, as well as its Jacobi version, globally converge to 
the NE of the game, under the same conditions guaranteeing 
the uniqueness of the equilibrium [the strong monotonicity of 
F defined in (18)], as given in [28] and [17]. 

In many practical multiuser communication systems, such as 
wireless ad hoc networks or CR systems, the synchronization 
requirements imposed by the sequential and simultaneous algo-
rithms described above might be not always acceptable. It is possi-
ble to show that under mild conditions a totally asynchronous 
implementation (in the sense of [27]) converges to the unique NE 
of the game (see, e.g., [9], [16], and [33] for details). Some instanc-
es of the above algorithms will be discussed in the second part of 
the article in the context of decentralized power control problems 
in wired/wireless multiuser communication systems. 

Nash Equilibria and Pareto Optimality
An alternative, widely used solution concept for problems with 
multiple decision makers is that of Pareto efficiency. A strategy 
profile x [ Q is Pareto efficient (optimal) if there exists no other 
strategy y [ Q such that fi 1y 2 # fi 1x 2  for all i5 1, c, Q, and 
fj 1y 2 , fj 1x 2  for at least one j; this is a sort of “social-type opti-
mality.” It would obviously be desirable that an NE of the game 
would also be Pareto efficient. Unfortunately, even when the NE is 
unique, it need not be Pareto efficient. This obviously raises the 
question of the suitability of the NE as a conceptual solution in 
many scenarios where the main objective should be that of 

ALGORITHM 1: GAUSS-SEIDEL BEST RESPONSE-BASED 
ALGORITHM
(S.0): Choose any feasible starting point x1025 1xi

102 2 i51
Q , 

and set n5 0. 
(S.1): If x1n2 satisfies a suitable termination criterion:
 STOP 
(S.2): for i5 1, c, Q, compute a solution xi

1n112  of 

 minimize
xi

 fi 1x1
1n112, c, xi21

1n112, xi, xi11
1n2 , c, xQ

1n2 2
subject to  xi [ Qi, (19)
 end

(S.3): Set x1n112 ! 1xi
1n112 2 i51

Q  and n d n1 1; go to (S.1).
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 maximizing some sort of collective welfare, as it is often the case 
for the kind of problems we analyze in this article. The reasons to 
accept the NE as a desirable outcome is that, in general, Pareto 
efficiency can only be achieved by performing some kind of cen-
tralized (often nonconvex) optimization that is simply physically 
not plausible in many practical applications in signal processing 
and communications as, e.g., sensor and ad hoc networks and CR 
systems. The NE solutions, instead, are better suited for distribut-
ed computation without requiring exchange of information among 
the players. There are also some scenarios where a system-wide 
optimization cannot be implemented as the players model hetero-
geneous systems that are not willing to cooperate. A comparison 
of the performance achievable by noncooperative (decentralized) 
and cooperative (centralized) solutions in the context of wireless 
communication networks and CR can be found in [8] and [21]. 

GENERALIZED NASH EQUILIBRIUM PROBLEMS
The GNEP extends the classical NEP described so far by assuming 
that each player’s strategy set can depend on the rival players’ 
strategies x2i, so we will write Qi 1x2i 2  to indicate that we might 
have a different closed convex set Qi for each different x2i. 
Analogously to the NEP case, the aim of each player i, given x2i, is 
to choose a strategy xi [ Qi 1x2i 2  that solves the problem 

 
minimize

xi
fi 1xi, x2i 2

subject to xi [ Qi 1x2i 2 . (20)

A generalized NE (GNE) is a tuple of strategies 
xw5 1xi

w, c, xQ
w 2  such that, for all i5 1, c, Q, 

 fi 1xi
w, x2i

w 2 # fi 1xi, x2i
w 2 ,  4xi [ Qi 1x2i

w 2 . (21)

The requirement that the feasible sets depend on the variables of 
players’ rivals is natural in many applications, for example, think 
of the case in which the players share some common resource, 
such as a bandwidth, the capacity of a communication link, or 
a time slot. In the section “Generalized Nash Equilibrium 
Problems: Power Minimization Game with Quality of Service 
Constraints Over Interference Channels,” we consider a GNEP 

model representing some power control problems in ad-hoc 
wireless networks. A survey on GNEPs, with much historical 
information, is given in [23]. 

Due to the variability of the feasible sets, the GNEP is a much 
harder problem than an ordinary NEP. Indeed in its full generality 
the GNEP problem is almost intractable and also the VI approach 
is of no great help. But if we restrict our attention to particular 
classes of problems meaningful results can still be obtained. In the 
section “Generalized Nash Equilibrium Problems: Power 
Minimization Game with Quality of Service Constraints Over 
Interference Channels,” we deal with a GNEP with a specific struc-
ture that, through a nontrivial transformation can be turned into 
an NEP and thus studied using the VI framework. In the remain-
ing part of this section we consider the important class of so-called 
GNEPs with shared constraints, a class of equilibrium problems 
with many practical applications (see the sections “VI Formulation: 
Design of CR Systems Under Temperature-Interference 
Constraints” and “Potential Games: Flow and Congestion Control 
in Multihop Communication Networks”). 

GNEPs with Shared Constraints
A GNEP is termed a GNEP with shared constraints if the feasible 
sets Qi 1x2i 2  are defined as 

 Qi 1x2i 2 ! 5xi [ Ki : g 1xi, x2i 2 # 06, 
where Ki is the (closed and convex) set of individual constraints of 
player i and g 1xi, x2i 2 # 0 represents the set of shared coupling 
constraints (equal for all the players), with g5 1gj 2 j51

mi  assumed to 
be continuously differentiable and (jointly) convex in x. Note that 
if there are no coupling constraints, the problem reduces to a 
standard NEP. 

We can give a nice geometric interpretation to the conditions 
above. For a GNEP with shared constraints, let us define 

 Q ! 5x : g 1xi, x2i 2 # 0,    xi [ Ki  4i5 1, c, Q6. (22) 

It is easy to check that the closed set Q is convex (thanks to the 
joint convexity) and that (thanks to the fact that the coupling con-
straints are the same for all players) we can write 

 Qi 1x2i 2 5 5xi [ Ki : g 1xi, x2i 2 # 06
 5 5xi : 1xi, x2i 2 [ Q6. (23)

Figure 4 illustrates this construction. GNEPs with shared con-
straints are still very difficult problems, however at least some types 
of solutions can be studied and calculated relatively easily by using a 
VI approach. To this end define as usual the function 
F 1x 2 ! 1=xi

fi 1x 2 2 i51
Q  and consider the VI 1Q, F 2 , with Q defined in 

(22). It can be seen that every solution of this VI is a solution of 
GNEP with shared constraints, but not vice versa [34], [4]; the 
numerical example below illustrates this fact. The solutions of the 
GNEP that are also solutions of the VI 1Q, F 2 are termed “variation-
al solutions” or “normalized solutions.” Since these variational solu-
tions are solutions of a VI, we can proceed as we did in the previous 

Set Q
x2

Q2(x1)

Q1(x2)

x = (x1, x2)

x1

[FIG4] Example of sets Q and Qi (x2i) for a GNEP with shared 
constraints defined in (22) and (23), respectively.
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subsections and easily derive existence and uniqueness results. It is 
also possible to develop centralized algorithms, since we can use 
any method for the solution of the VI 1Q, F 2 . What is more prob-
lematic though is the development of distributed algorithms, since 
in this case the variability of the feasible sets complicates consider-
ably the analysis. We will come back to this in the sections “VI 
Formulation: Design of CR Systems Under Temperature-
Interference Constraints” and “Potential Games: Flow and 
Congestion Control in Multihop Communication Networks.”  

Variational solutions are particularly useful in many applica-
tions since they have an interesting “economic” interpretation. 
Indeed, it can be shown that x is a variational solution if and only if 
x, along with a suitable l satisfies the NEP defined by 

 

minimize
xi

 fi 1xi, x2i 2 1 am

k51
lk gk 1xi, x2i 2

subject to  xi [ Ki,  (25)

4i5 1, c, Q,  and furthermore 

 0 # l ' g 1x 2 # 0. (26)

The NEP (25) may be seen as a penalized version of the original 
GNEP, where we attempt to enforce the shared constraints by 
making the players pay the price l so that l can be interpreted 
as the common prices that players should pay for the resources 
represented by these constraints. In the section “VI Formulation: 
Design of CR Systems Under Temperature-Interference 
Constraints,” we show that this pricing mechanism is the natural 
scheme for modeling concurrent communications among pri-
mary and secondary users in a CR system, where the primary 
users need to control the interference generated by the second-
ary users in a distributed fashion. 

APPLICATION OF VI TO THE ANALYSIS OF 
MULTIUSER COMMUNICATION SYSTEMS
In this section, we show how to apply the VI framework 
 developed so far to solve several recent resource allocation 

 equilibrium problems in peer-to-peer [ad hoc and digital subscriber 
lines (DSLs)] networks, CR systems, and multihop networks. 

NASH EQUILIBRIUM PROBLEMS: RATE 
MAXIMIZATION GAME OVER PARALLEL 
GAUSSIAN INTERFERENCE CHANNELS
We consider a Q-user N-parallel Gaussian interference channel 
(IC). In this model, there are Q transmitter-receiver pairs, 
where each transmitter wants to communicate with its corre-
sponding receiver over a set of N  parallel Gaussian subchan-
nels, that may represent time or frequency bins (here we 
consider transmissions over a frequency-selective IC, without 
loss of generality). We denote by Hij 1k 2  the (cross-) channel 
transfer function over the kth frequency bin between the trans-
mitter j and the receiver i, while the channel transfer function 
of link i is Hii 1k 2 . The transmission strategy of each user (pair) 
i is the power allocation vector pi5 5pi 1k 2 6k51

N  over the N sub-
carriers, subject to the transmit power constraint 

 Pi ! e p [ R1
N  : aN

k51
p 1k 2 # Pi f . (27)

Spectral mask constraints pi
max5 1pi

max 1k 2 2 k51
N  in the form 

0 # p # pmax can also be included in the set Pi (see [6], [8], 
and [9] for more general results). Under basic information the-
oretical assumptions (see, e.g., [5] and [8]), the maximum 
achievable rate on link i for a specific power allocation profile 
p1, c, pQ is 

 ri 1pi, p2i 2 5aN
k51

log°11 |Hii 1k 2 |2pi 1k2
si

2 1k 21a j2 i
|Hij 1k2 |2pj 1k2 ¢ , (28)

where p2i ! 1p1, c, pi21, pi11, c, pQ 2  is the set of all the 
users power allocation vectors, except the ith one, and 
si

2 1k 2 1 a j2 i
|Hij 1k 2 |2pj 1k 2  is the overall power spectral densi-

ty (PSD) of the noise plus multiuser interference (MUI) at each 
subcarrier measured by the receiver i. 

Given the above setup, we consider the following NEP [6], 
[8]–[10], [35] (see, e.g., [8] and [21] for a discussion on the 
 relevance of this game theoretical model in practical multiuser 
systems, such as DSLs, wireless ad hoc networks, peer-to-peer sys-
tems, and multicell orthogonal frequency-division multiplexing/
time division multiple access cellular systems) 

 
maximize

pi
ri 1pi, p2i 2

subject to pi [ Pi,
 (29)

for all i5 1, c, Q, where Pi and ri 1pi, p2i 2  are defined in (27) 
and (29), respectively. We show next how to study the NEP (29) 
using the VI framework described in the first part of the article. 

VI REFORMULATION
The NEP (29) can obviously be rewritten as a VI 1Q, F 2  as shown 
in (18) (cf. the section “VI Reformulation of the NEP”), with 

Example of GNEP with Infinite Solutions and One 
Variational Solution 
Consider the GNEP with two players 

       
minimize

x
1x2 1 2 2 minimize

y
1y2 1

2 2 2
subject to x1 y # 1 subject to x1 y # 1.

 (24)

It can be shown that this game has infinitely many solu-
tions given by 1a,  12a 2  for every a [ 31/2,  1 4. The VI 
assoc ia ted  to  the  GNEP (24)  i s  VI 1Q, F 2 ,  w i th 
Q5 5 1x, y 2 [ R2 : x1 y # 16 and F5 12x2 2,  2y2 1 2T, 
which admits a unique solution given by 13/4, 1/4 2  [note that 
F is strongly monotone, see iii) in (13)]. We see then that while 
the GNEP has infinitely many solutions, the variational solu-
tion is unique.
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Q5P1 3c3 PQ and F 1p 2  !  12=pi
ri 1pi,  p2i 2 2 i51

Q . Note 
however that this VI has a nonlinear F. Interestingly, in the case of 
game (29), it is also possible to give the alternative VI formulation 
with a linear F, which turns out to be very useful in simplifying 
the analysis of the game, especially the study of convergence of 
iterative algorithms. We illustrate this formulation shortly. 

First of all, observe that, for any fixed p2i $ 0, the single-user 
optimization problem in (29) admits a unique solution (indeed, 
the feasible set is convex and compact and ri 1pi, p2i 2  is strictly 
concave in pi [ Pi; see the section “Variational Inequalities 
Problems”)], given by the well-known waterfilling expression 

 pi
w 1k 2 5 3wfi 1p2q 24 k ! £mi2

s i
2 1k 2 1 a j2 i

|Hij 1k 2 |2pj 1k 2
|Hii 1k 2 |2 § 1, 

 (30)

with k5 1, c, N, where 3x 41 ! max 10, x 2  and the water level 
mi is chosen to satisfy the transmit power constraint 

aN
k51

pi
w 1k 2 5 Pi. The Nash equilibria pw of the NEP are thus the 

fixed points of the waterfilling mapping (cf. the section “Nash 
Equilibrium Problems”). 

The existence of a solution of an NE, for any given set of chan-
nels and power budgets of the users, follows readily from results in 
the section “Existence and Uniqueness of the NE Based on VI.” 
The NEP (29) indeed satisfies the existence conditions given in 
(18). The study of uniqueness of the NE as well as convergence of 
algorithms can be addressed using results in the sections 
“Existence and Uniqueness of the NE Based on VI” and “Algorithms 
for Nash Equilibria,” respectively, based on the nonlinear VI refor-
mulation of the game. We leave the reader the easy task of special-
izing these results to the NEP (29). Here, we briefly illustrate the 
alternative formulation of the NEP as a linear VI, mentioned earli-
er. More specifically, in [6] the authors showed that the NEP (29) 
is equivalent to the linear VI 1P, F 2 , where P5P1 3c3 PQ, 
with each Pi defined as Pi in (27) except for the power constraint 
to be satisfied with equality, and F 1p 2 ! 1Fi 1p 2 2 i51

Q , with 

 Fi 1p 2 5si1 aQ
j51

Mijpj,  (31)

where 

 si ! a si
2 1k 2

|Hii 1k 2 |2bk51

N

and Mij ! diag e a |Hij 1k2|2
|Hii 1k2|2bk51

N f .

This reformulation of the NEP (29) has the following impor-
tant implications. First, we can readily obtain conditions guaran-
teeing the uniqueness of the NE invoking result iii) of (13): F 1p 2  
in (31) is strongly monotone on P if and only if M ! 1Mij 2 i, j51

Q  is 
positive definite [see the section “Existence and Uniqueness of the 
Solution”]. Rearranging the diagonal blocks Mij of M, it is not diffi-
cult to see that M is positive definite if so are all the matrices 
M 1k 2 ! 1 0Hij 1k2 0 2/Hii 1k2 0 22 i, j51

Q . These conditions have an inter-
esting physical interpretation: The uniqueness of the NE is 

ensured if the interference among the users is sufficiently small 
(see, e.g., [35], [9], and [8]). 

The second important implication of the linear VI reformula-
tion of the NEP is that it provides a geometric interpretation of the 
waterfilling solution in (30) (also proved independently in [35] and 
[8]) which is the key point to prove global convergence of all the 
iterative algorithms based on the waterfilling best response, widely 
studied in the literature [5], [35], [8], and [6]. More specifically, 
invoking the equivalence between the VI 1P, F 2  and the NEP (29) 
and the characterization of the solution of a VI as given in (15), we 
have that pw [ P is an NE if and only if 

 pi
w5wfi 1p2i

w 2 5 wPi
a2si2a

j2 i
Mijpj

wb (32)

for all i5 1, c, Q,  which establishes the equivalence 
between the waterfilling solution (30) and the Euclidean pro-
jection of the negative of the noise plus MUI vector onto the 
polyhedral set P. 

The interpretation of the waterfilling solution as a projection 
simplifies the analysis of the convergence of iterative waterfilling-
based algorithms. The state-of-the-art algorithm is the totally 
asynchronous iterative waterfilling algorithm (IWFA) proposed in 
[9], where the users can update their power allocation according 
to the waterfilling solution (30) at arbitrary times and possibly 
using an outdated version of the MUI. The convergence of this 
general algorithm is indeed proved via contraction arguments 
using the projection expression of the waterfilling mapping as in 
(32) and the nonexpansive property of the projection. We refer to 
[9] for details. In Figure 5, we show an example of application of 
the sequential and the simultaneous version of Algorithm 1, which 
are the well-known sequential IWFA and simultaneous IWFA [5], 
[6], [8], and [35]. 

The analysis described so far as well as the asynchronous IWFA 
can be generalized to the case of MIMO ICs. We refer to [11] and 
[12] for details. 

GENERALIZED NASH EQUILIBRIUM PROBLEMS: 
POWER MINIMIZATION GAME WITH QUALITY 
OF SERVICE CONSTRAINTS OVER 
INTERFERENCE CHANNELS
We consider the reverse problem of the game in (29) under the 
same system model and assumptions: each player competes 
against the others by choosing the power allocation over the paral-
lel channels that attains the desired information rate, with the 
minimum transmit power [10]. This game theoretical formulation 
is motivated by practical applications, where a prescribed quality of 
service (QoS) in terms of achievable rate ri

w for each user needs to 
be guaranteed. Stated in mathematical terms, we have the follow-
ing optimization problem for each player i [10] 

 
minimize

pi
aN
k51

pi 1k 2
subject to ri 1pi, p2i 2 $ r i

w,
 (33)

where the information rate ri 1pi, p2i 2  is defined in (29). 
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The game in (33) is an example of GNEP in the general form 
(cf. the section “Generalized Nash Equilibrium Problems”). Note 
that the single user optimization problem in (33), given the power 
allocation vectors of the others, admits a unique solution, which is 
the classical waterfilling solution, where the water level is chosen 
to satisfy the rate constraint in (33) with equality [10]. In spite of 
this apparent similarity with the NEP (29), the analysis of the 
GNEP (33) is extremely hard. This is principally due to the nonlin-
ear coupling among the players’ strategies and the unboundedness 
of the users feasible regions. Nevertheless, in [10] the authors pro-
vided a satisfactory answer to the characterization of the GNEP. 
The analysis in [10] is mainly based on a proper nonlinear trans-
formation that turns the GNEP in the power variables into a stan-
dard NEP in some new rate variables, thanks to which one can can 
borrow from the more developed framework of standard VIs for a 
fruitful study of the game. Due to the complexity of the analysis, 
we do not go into details and refer the interested reader to [10]. 
Here, we only point out that, building on the VI framework, the 
authors provided sufficient conditions for the existence and 
uniqueness of a solution of the GNE as well as the convergence 
of the distributed algorithms based on the single user water-
filling solution of (33), namely the sequential and the simulta-
neous IWFA. Note that, even though the rate constraints 
induce a coupling among the feasible strategies of all the 
users, both algorithms are still totally distributed. 

VI FORMULATION: DESIGN OF CR SYSTEMS 
UNDER TEMPERATURE-INTERFERENCE CONSTRAINTS
We consider a hierarchical CR network composed of P primary 
users and Q secondary users, each formed by a single trans-
mitter-receiver pair, coexisting in the same area and sharing 
the same band. We focus on (block) transmissions over SISO 
frequency-selective channels; more general results valid for 
MIMO channels can be found in [15] and [16]. Because of the 
lack of coordination among the CR users, the set of secondary 
users can be naturally modeled as a frequency-selective N-par-
allel Gaussian IC, where N  is the number of available subcarri-
ers, the maximum information rate on link of the secondary 
pair i is given by ri 1pi, p2i 2  in (28), and the power allocation 
vector pi5 5pi 1k 2 6k51

N  is subject to the power constraint 
pi [ Pi, with Pi defined in (27) (spectral mask can also be 
included; see [17]). 

Opportunistic communications in CR systems enable sec-
ondary users to transmit with overlapping spectrum and/or cov-
erage with primary users, provided that the degradation induced 
on the primary users’ performance is null or tolerable [36]. This 
can be handled, e.g., introducing some interference constraints 
that impose a upper bound on the per-carrier and total aggre-
gate interference (the interference temperature limit [36]) that 
can be tolerated by each primary user. For the sake of simplicity, 
here, we focus only on per-carrier interference constraints 
imposed by each primary user p5 1, . . . , P (both per-carrier 
and total interference constraints are considered in [17]) 

 aQ
i51

 0H pi
1P, S2 1k 2 0 2 pi 1k 2 # Pp, k,  4k5 1, . . . , N,  (34)

where Hpi
1P, S2 1k 2  is the channel transfer function between the 

transmitter of the ith secondary user and the receiver of the 
pth primary user and Pp,k is the maximum interference over 
 subcarrier k tolerable by the pth primary user, respectively. 
These limits are chosen by each primary user, according to his 
QoS requirements. 

The aim of each secondary user is to maximize his own rate 
ri 1pq, p2q 2  under the local power constraints in (27) and the addi-
tional global interference constraints in (34). To keep the optimi-
zation as decentralized as possible while imposing global 
interference constraints, we consider the following NEP with pric-
ing (see [17] for the motivations in using this game theoretical 
model): for all i5 1, . . . , Q, 

 
maximize

pi

ri 1pi, p2i 2 2 aP
p51
aN
k51

 lp, k 0H pi
1P, S2 1k 2 0 2 pi 1k 2

subject to pi [ Pi
 (35)

where the prices lp5 5lp, k6k51
N  are chosen such that the follow-

ing complementary conditions are satisfied: 4p5 1, . . . , P and 
4k5 1, . . . , N, 

 0 #  lp, k ' Pp, k2 aQ
i51

 0Hpq
1P, S2 1k 2 0 2 pi 1k 2 $ 0. (36)

These constraints state that the per-carrier constraints must be 
satisfied together with nonnegative pricing; in addition, they imply 
that if one constraint is trivially satisfied with strict inequality then 
the corresponding price should be zero (no punishment is needed 
in that case). 

VI REFORMULATION
Building on results in the section “GNEPs with Shared 
Constraints,” we can now readily cast (35)–(36) in a VI and 

[FIG5] Rates of the users versus iterations achieved using 
Algorithm 1: sequential IWFA (solid line curves) and 
simultaneous IWFA (dashed line curves) for a frequency-selective 
IC composed by Q 5 50 users. To make the figure not excessively 
overcrowded, we report only the curves of three out of 50 links. 
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 successfully use the VI tool 
developed in the first part of 
the article to study the game. 
Indeed, (35)–(36) are instances 
of the NEP with pricing (25)–
(26), is as follows by a direct 
comparison. Then, it follows 
from the equivalence between 
the latter problem and the VI problem as illustrated in the 
section “GNEPs with Shared Constraints,” that the NEP (35) 
is equivalent to the VI 1P̂, F 2 , where 

P̂ !  P d  e p [ RNQ : aQ
i51
0H pi

1P, S2 1k 2 0 2pi 1k 2 # Pp, k,   4 p , k f
 (37)

and F 1p 2 ! 1Fi 1p 2 2 i51
Q , with Fi 1p 2  !  2=pi

ri 1pi,  p2i 2 . Such a 
corres pondence means that if pw is a solution of the VI 1P̂, F 2 , 
then there exists a set of prices lw such that 1pw, lw 2  is an equi-
librium pair of the problems (35)–(36); conversely if 1pw, lw 2  is 
a solution of (35)–(36), then pw is a solution of the VI 1P̂, F 2 . 
According to results in the section “GNEPs with Shared 
Constraints,” the Nash equilibria pw of the NEP (35), the solu-
tions of the VI 1P̂, F 2 , can be interpreted as the variational solu-
tions of the GNEP with shared constraints, having a shared 
constraint set given in (37) [see (22)] and prices lw. 

EXISTENCE AND UNIQUENESS OF THE NE
Given the equivalence between (35)–(36) and the VI 1P̂, F 2 , it fol-
lows readily from the existence results of a solution of the VI [see 
(8)] that the NEP (35) always admits an NE, for any given set of 
channels, power budgets of the users, and interference constraints. 
As far as the uniqueness of the NE is concerned, invoking result 
iii) in (13) we have that the strong monotonicity of F 1p 2  on P̂ is a 
sufficient condition for the uniqueness of the power allocation vec-
tor pw at the NE of the NEP. Sufficient conditions guaranteeing 
the strongly monotonicity of F 1p 2  are given in [17] and [33]. 
These conditions have an intuitive physical interpretation: The 

uniqueness is guaranteed if the 
interference among the second-
ary users is not too high. 

DISTRIBUTED ALGORITHMS
Many alternative algorithms 
have been proposed in [17] to 
solve the VI 1P̂, F 2  and thus 

(35)–(36), that differ in the signaling among primary and second-
ary users, computational effort, and convergence speed. As an 
example, here, we consider the projection algorithm (with con-
stant step size) [22, Alg. 12.1.4], formally described in Algorithm 2. 

The algorithm can be interpreted as follows. In the main loop, 
at the nth iteration, each primary user p measures the received 
interference generated by the secondary users and, locally and 
independently from the other primary users, adjusts his own set of 
prices lp

1n2 accordingly, via a simple projection scheme [see (38)]. 
The primary users broadcast their own prices lp

1n2 ’s to the second-
ary users, who then play the game in (35) keeping fixed the prices 
to the value l1n2. The Nash equilibria of such a game can be 
reached by the secondary users using any  algorithm falling in the 
class of  asynchronous IWFA [9] as, e.g., Algorithm 1, whose con-
vergence is guaranteed under mild conditions given in [17] and  
[9]. Note that, keeping fixed the prices l, the (unique) solution of 
each optimization problem in (35) has a (multilevel) waterfilling-
like expression and thus can be efficiently and locally computed. 
Building on convergence results of the projection algorithm for 
the VI 1P̂, F 2  [22], one can prove that, under the same sufficient 
conditions guaranteeing the strongly monotonicity of F on P̂ (see 
[17]), Algorithm 2 asymptotically converges to a solution of 
VI 1P̂, F 2 , provided that the step size t . 0 is chosen arbitrarily 
but smaller than a prescribed value (given in [17]). 

As a numerical example, in Figure 6 we compare three dif-
ferent approaches, namely the NEP formulation with pricing 
(Algorithm 2), the classical IWFA [5], and the IWFA with indi-
vidual spectral mask constraints [8], [9], in terms of interfer-
ence generated at the primary user receivers and the achievable 
average sum-rate from the secondary users. We refer to these 
algorithms as flexible IWFA, classical IWFA, and conservative 
IWFA, respectively. As an example, we consider a CR system 
composed of six secondary links randomly distributed within an 
hexagonal cell and one primary user (the base station at the 
center of the cell). The primary user imposes a constraint on the 
maximum interference that can tolerate, assumed for simplicity 
constant over the whole spectrum, i.e., Pp,k5 0.01 for all 
k5 1, . . . , N [see (34)]. The spectral mask constraints used in 
the conservative IWFA are chosen so that all the secondary users 
generate the same interference level at the primary receiver and 
the aggregate interference satisfies the imposed interference 
threshold. In Figure 6(a), we plot the PSD of the interference 
generated by the secondary users at the receiver of the primary 
user, obtained using the aforementioned algorithms. We clearly 
see from the picture that while classical IWFA violates the inter-
ference constraints, both conservative and flexible IWFAs satisfy 
them, but the global interference constraints impose less 

ALGORITHM 2: PROJECTION ALGORITHM WITH 
CONSTANT STEP SIZE
(S.0): Choose any l102 $ 0, and the step size t . 0, and 
set n5 0. 
(S.1): If l1n2 satisfies a suitable termination criterion: 
STOP 
(S.2): Given l1n2 compute pw 1l1n2 2  as the NE solution of 
the NEP (35) with fixed prices l5 l1n2; 
(S.3): Update the price vectors: for all p5 1, . . . , P 
and k5 1, c, N, compute

 lp,k
1n1125 clp,k

1n2 2t aPp,k2 aQ
i51

 0Hpi
1P,S2 1k 2 0 2 3pi

w 1l1n2 24kbd 1,  
 

(38)

(S.4): Set n d n1 1; go to (S.1).

A MORE GENERAL FRAMEWORK 
SUITABLE FOR INVESTIGATING 

VARIOUS OPTIMIZATION PROBLEMS 
AND EQUILIBRIUM PROBLEMS IS THE 

VARITATIONAL INEQUALITY PROBLEM. 
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 stringent conditions on the transmit power of the secondary 
users than those imposed by the individual interference con-
straints based on the spectral masks. However, this comes at the 
price of some signaling from the primary to the secondary 
users. Thanks to less stringent constraints on the transmit pow-
ers of the secondary users, the flexible IWFA is expected to 
exhibit a much better performance than the conservative IWFA 
also in terms of rates achievable by the secondary user. Figure 
6(b) confirms this intuition. 

POTENTIAL GAMES: FLOW AND CONGESTION 
CONTROL IN MULTIHOP COMMUNICATION NETWORKS
In this section, we complete the picture of the use of game 
theory and variational inequalities by showing that VI refor-
mulations of a broad class of distributed flow and congestion 
control, pricing, and resource allocation problems in commu-
nication networks with a fairly general topology are possible 
and allow the recovery of easily known results and establishes 
new ones along with suitable solution algorithms. An overview 
of a direct application of game theoretical results to model and 
solve several instances of the aforementioned problems in tele-
communication networks can be found, e.g., in [18] and [19]. 

We consider a general network model based on fluid approxi-
mation. The topology of the network is characterized by a set of 
nodes V5 51, c, V6 and a set of links L5 51, c, L6 con-
necting the nodes (we assume that the network is connected). 
There are Q active users (players); each user i is uniquely associ-
ated to a connection between the source node si and the desti-
nation node di through a path Li (predetermined by a routing 
algorithm), where Li is the subset of links that form the path of 
user i. The information flow routed through the path Li by user 
i is denoted by xi and it holds 0 # xi # xi

max, where xi
max is a 

physical or regulatory positive upper bound. Each link , has a 
capacity constraint c,. If we introduce the L 3 Q routing matrix 
A, defined as A,, i5 1 if , [ Li and 0 otherwise, the capacity 
constraints can be expressed in vector form as Ax #  c,  where 
c5 1c, 2 ,51

L . Finally, we define the set Q of shared constraints as 
Q = 5x [ RQ : Ax # c,  0 #  x #  xmax6. 

We can associate with this setting a GNEP with shared con-
straints (cf. the section “Generalized Nash Equilibrium 
Problems”), where Q is the feasible set and the payoff function 
of each player i is 

 fi 1x 2  5  a
,:,[Li

P, 1x 2 2 Ui 1xi 2 ,  (39)

which is taken as the difference of a pricing function (the sum 
of the costs relative to each link on the path Li ) and a reward Ui 
associated to xi, the flow sent by the player. The first term in the 
payoff function can be interpreted as the price that each user 
pays for using the network resources. We assume that each P, 
depends only on the sum of the flows on that link (the traffic on 
that link): P, 1x 2  5  P, Aa j:,[Lj

xjB, with P, a convex function 
defined on 30, c, 4. The utility function Ui, instead, is assumed to 
be, according to standard economic conditions and elastic traffic 

model, a strictly concave function defined on 30, xi 4. Several 
pricing and reward functions have been proposed in the litera-
ture that satisfy the above assumptions (see, e.g., [19] and refer-
ences therein). Typical examples are 

 P, 5  
b,

e 1 c,2 a
j:,[Lj

xj

,   and  Ui 5  ailog 111 xi 2 , 
where e is a given positive constant. Note that, under our 
assumptions, the objective functions fi 1xi, x2i 2  are strictly con-
vex in xi for every fixed x2i and convex in x. 

VI REFORMULATION
We focus on variational equilibria of the GNEP defined above as, 
in this setup, they are particularly significant. According to 
results in the section “GNEPs with Shared Constraints,” the 
variational equilibria are the solutions of the VI 1Q, F 2 , where Q 
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is defined above and F 1x 2 ! 1=xi fi 1x 2 2 i51
Q . Since the feasible set 

Q is convex and compact, we have that the VI 1Q, F 2  has at least 
one solution [see (8)]. This equilibrium is therefore also a solu-
tion of the GNEP. The interesting point is that in this case the 
function F is the gradient of a scalar function f 1x 2 , i.e., 
F 1x 2 5=f 1x 2 , with 

 f 1x 2  5  a
,[L

P,a a
j:,[Lj

xjb 2 aQ
i51

Ui 1xi 2 . (40)

Hence, the variational solutions are the solutions of the VI 1Q, =f 2  and therefore, by the results in the section “Variational 
Inequalities Problems,” the solutions of the optimization problem 

 
minimize

x
f 1x 2

subject to x [ Q .
 (41)

Equation (41) can be viewed as a centralized “system problem” 
where one tries to minimize the costs over all the links minus 
the total rewards for the players. Since f  is strictly convex, (41) 
has a unique solution and so does the equivalent VI 1Q, =f 2  (cf. 
the section “Variational Inequalities Problems”). Therefore, we 
have shown that the original GNEP has at least a solution, even 
if it can actually have more then one solution, but the same 
game has one and only one variational solution that turns out 
to be also the unique solution of (41). This variational solution, 
being at the same time a solution of the game and a “system” 
optimum, is a desirable outcome of the GNEP. 

DISTRIBUTED ALGORITHMS
In principle, one can use standard decomposition methods 
for the solution of (41) and get convergence to the variation-
al equilibrium, However, such standard methods, for 
 example, the alternating method of multipliers, require a 
considerable coordination and exchange of information 
among the players, which makes them not appealing in non-
cooperative scenarios. We already mentioned in the section 
“Generalized Nash Equilibrium Problems” that the develop-
ment of decentralized algorithms for GNEPs with shared 
constraints is not a trivial task. In our case, due to the fact 
that the game is a “potential game” (i.e., F5=f ), we can 

apply the regularized Gauss-Seidel method proposed in [37]. 
This is a modification of the Gauss-Seidel method considered 
in Algorithm 1 in the section “Algorithms for Nash 
Equilibria” and is formally described in Algorithm 3: the 
players solve in sequence their own minimization problem, 
taking the other players’ variables as given and adding a reg-
ularization term to their objective function. 

The results in [37] show that this decomposition procedure 
generates a sequence contained in Q such that every limit point 
is a NE. The only drawback is that we cannot guarantee conver-
gence to the variational equilibrium. 

CONCLUSIONS
In this article, we have provided a unified view of some basic theo-
retical foundations and main techniques in convex optimization, 
game theory, and VI theory. We put special emphasis on the gen-
erality of the VI framework, showing how it allows to tackle sever-
al interesting problems in nonlinear analysis, classical 
optimization, and equilibrium programming. In particular, we 
showed the relevance of the VI theory in studying Nash and GNE 
problems. The first part of the article was devoted to provide the 
(basic) theoretical tools and methods to analyze some fundamen-
tal issues of an equilibrium problem, such as the existence and 
uniqueness of a solution and the design of iterative distributed 
algorithms along with their convergence properties. The second 
part of the article made these theoretical results practical by 
showing how the VI framework can be successfully applied to 
solve several challenging equilibrium problems in ad hoc wireless 
(peer-to-peer wired) networks, in the emerging field of CR net-
works, and in multihop communication networks. 

We hope that this introductory article would serve as a good 
starting point for readers to apply VI theory and methods in 
their applications, as well as to locate specific references either 
in applications or theory. 

ACKNOWLEDGMENTS
The work of Gesualdo Scutari and Daniel P. Palomar was sup-
ported by the Hong Kong RGC 618709 research grant. The work 
of Francisco Facchinei was supported by the Italian project 
MIUR-PRIN 20079PLLN7 Nonlinear Optimization, Variational 
Inequalities, and Equilibrium Problems. Jong-Shi Pang’s work 
is based on research supported by the United States National 
Science Foundation grant CMI 0802022 and by the Air Force 
Office of Sponsored Research. 

AUTHORS
Gesualdo Scutari (gscutari@uiuc.edu) received the electrical 
engineering and Ph.D. degrees (both with honors) from the 
Sapienza, University of Rome, Italy, in 2001 and 2004, respec-
tively. He has held several research appointments at the 
Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley; the Department of 
Electronic and Computer Engineering at the Hong Kong 
University of Science and Technology; and the INFOCOM 
Department, La Sapienza, University of Rome, Italy. He is 

ALGORITHM 3: REGULARIZED GAUSS-SEIDEL 
ALGORITHM
(S.0): Choose any feasible starting point x1025 1xi

102 2 i51
Q , 

the step-size t . 0, and set n5 0. 
(S.1): If x1n2 satisfies a suitable termination criterion: 
STOP 
(S.2): for i5 1, c, Q,    compute a solution xi

1n112 of  
 
minimize

xi

 fi 1x1
1n112, c, xi21

1n112, xi, xi11
1n2 , c, xQ

1n2 2 1t 7xi2 xi
1n2 72

subject to  A 1x1
1n112, c, xi21

1n112, xi, xi11
1n2 , c, xQ

1n2 2 T #  c
 0 #  xi #  xi

max          (42) 
end

(S.3):  Set x1n112 ! 1xi
1n112 2 i51

Q  and n d n1 1; go to 
(S.1).
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