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a b s t r a c t

A multiobjective optimization problem involves several conflicting objectives and has a set of Pareto
optimal solutions. By evolving a population of solutions, multiobjective evolutionary algorithms (MOEAs)
are able to approximate the Pareto optimal set in a single run. MOEAs have attracted a lot of research
effort during the last 20 years, and they are still one of the hottest research areas in the field of
evolutionary computation. This paper surveys the development of MOEAs primarily during the last
eight years. It covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic
MOEAs, coevolutionary MOEAs, selection and offspring reproduction operators, MOEAs with specific
search methods, MOEAs for multimodal problems, constraint handling and MOEAs, computationally
expensive multiobjective optimization problems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and
discrete MOPs, benchmark problems, performance indicators, and applications. In addition, some future
research issues are also presented.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world optimization problems involve multiple ob-
jectives. Amultiobjective optimization problem (MOP) can be math-
ematically formulated as

minimize F(x) = (f1(x), . . . , fm(x))T

s.t. x ∈ Ω,
(1)

where Ω is the decision space and x ∈ Ω is a decision vector. F(x)
consists ofm objective functions fi : Ω → R, i = 1, . . . ,m, where
Rm is the objective space.

The objectives in (1) often conflict with each other. Improve-
ment of one objective may lead to deterioration of another. Thus,
a single solution, which can optimize all objectives simultane-
ously, does not exist. Instead, the best trade-off solutions, called
the Pareto optimal solutions, are important to a decisionmaker (DM).
The Pareto optimality concept, which was first proposed by Edge-
worth and Pareto [1], is formally defined as follows [2,3].
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Definition 1. A vector u = (u1, . . . , um)T is said to dominate
another vector v = (v1, . . . , vm)T , denoted as u ≺ v, iff ∀i ∈

{1, . . . ,m}, ui ≤ vi and u ≠ v.

Definition 2. A feasible solution x∗
∈ Ω of problem (1) is called

a Pareto optimal solution, iff @y ∈ Ω such that F(y) ≺ F(x∗). The
set of all the Pareto optimal solutions is called the Pareto set (PS),
denoted as

PS = {x ∈ Ω|@y ∈ Ω, F(y) ≺ F(x)}.

The image of the PS in the objective space is called the Pareto front
(PF)

PF = {F(x)|x ∈ PS}.

Due to their population-based nature, evolutionary algorithms
(EAs) are able to approximate the whole PS (PF) of an MOP in
a single run. There has been a growing interest in applying EAs
to deal with MOPs since Schaffer’s seminal work [4], and these
EAs are called multiobjective evolutionary algorithms (MOEAs). By
January 2011, more than 56001 publications have been published

1 The statistical data is based on the paper repository in the EMOO web site,
http://delta.cs.cinvestav.mx/~ccoello/EMOO/, which is maintained by Professor
Coello Coello.
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on evolutionary multiobjective optimization. Among these pa-
pers, 66.8% have been published in the last eight years, 38.4%
are journal papers and 42.2% are conference papers. The research
work on MOEAs has been surveyed from different aspects. Among
these surveys, some are mainly on generic methodologies [5–12];
some are on theoretical developments and applications [13,14];
some work focus on special methods for MOPs, for example sim-
ulated annealing (SA) [15], particle swarm optimization (PSO) [16],
and memetic algorithms [17]; some are on combinational prob-
lems [18,19]; and others are on special applications, such as engi-
neering problems [14,20,21], scheduling problems [22], economic
and finance problems [23], automatic cell planning problems [24],
traveling salesman problems [25], and preferences in MOPs [26].
However, no comprehensive survey has been conducted on MOEA
development in recent years [6].

In this paper, we focus on recent developments on MOEAs. Our
major concern is on continuous MOPs, while the works on com-
binational MOPs are covered in [19]. The remainder of this pa-
per is organized as follows. Section 2 summarizes the advances
in generic MOEA designs. Algorithm frameworks, selection strate-
gies, and offspring reproduction operators are surveyed in this sec-
tion. In Section 3, MOEAs for some complicated problems, such
as constrainedMOPs, multimodal problems, many-objective prob-
lems, expensive MOPs, and dynamic and noisy MOPs, are outlined.
The benchmark problems and algorithm performance measures
are surveyed in Section 4. Section 5 briefly discusses the applica-
tions of MOEAs. Finally, the paper is concluded in Section 6 with
some potential directions for future research.

2. Advances in MOEA design

In this section, recent developments, including algorithm
frameworks, selection and population updating strategies, off-
spring reproduction schemes, and other related issues, are sur-
veyed.

2.1. Algorithm frameworks

The algorithm framework is a key issue to design an MOEA. A
majority of MOEAs in both the research and the application areas
share more or less the same framework as that of non-dominated
sorting genetic algorithm II (NSGA-II) [27]: a selection operator
based on Pareto domination and a reproduction operator are used
iteratively. In this section, we introduce some frameworks which
are different from that of NSGA-II.

2.1.1. An MOEA based on decomposition: MOEA/D
A multiobjective evolutionary algorithm based on decomposition

(MOEA/D) [28] is a recent multiobjective evolutionary algorithmic
framework. It is based on conventional aggregation approaches in
which an MOP is decomposed into a number of scalar objective
optimization problems (SOPs). The objective of each SOP, also called
a subproblem, is a (linearly or nonlinearly) weighted aggregation
of the individual objectives. Neighborhood relations among these
subproblems are defined based on the distances between their
aggregation weight vectors. Subproblem i is a neighbor of
subproblem j if the weight vector of subproblem i is close to that
of subproblem j. Each subproblem is optimized in the MOEA/D by
using information mainly from its neighboring subproblems.

In a simple version of the MOEA/D, each individual subproblem
keeps one solution in its memory, which could be the best
solution found so far for the subproblem. For each subproblem,
the algorithm generates a new solution by performing genetic
operators on several solutions from its neighboring subproblems,
and updates its memory if the new solution is better than old one
for the subproblem. A subproblem also passes its newly generated
solution on to some (or all) of its neighboring subproblems, which
will update their current solutions if the received solution is better.
A major advantage of MOEA/Ds is that a scalar objective local
search can be used in each subproblem in a natural way since its
task is for optimizing a scalar objective subproblem.

Several improvements onMOEA/Ds have beenmade recently. Li
and Zhang [29] suggested using two different neighborhood struc-
tures for balancing exploitation and exploration. Zhang et al. [30]
proposed a scheme for dynamically allocating computational ef-
forts to different subproblems in an MOEA/D in order to reduce
the overall cost and improve the algorithm performance. This im-
plementation of MOEA/D is efficient and effective and has won the
Congress on Evolutionary Computation (CEC) 2009 MOEA competi-
tion [31]. Nebro and Durillo [32] developed a thread-based parallel
version of MOEA/D, which can be executed on multicore comput-
ers. Palmers et al. [33] proposed an implementation of MOEA/D in
which each subproblem records more than one solution. Ishibuchi
et al. [34] proposed using different aggregation functions at dif-
ferent search stages. MOEA/Ds have been successfully applied to a
number of application areas [33,35–42].

2.1.2. MOEAs based on preference
Due to the conflicts among the objectives in MOPs, the total

number of Pareto optimal solutions might be very large or even
infinite. However, the DM may be only interested in preferred
solutions instead of all Pareto optimal solutions. To find the
preferred solutions, the preference information is needed to
guide the search towards the region of the PF of interest to
the DM. Based on the role of the DM in the solution process,
multiobjective optimization methods can be classified into priori
methods, posteriori methods, and interactive methods [2].

In a priori method, preference information is given by the
DM before the solution process. An MOP can be converted into
an SOP. Then, a scalar objective solver is applied to find the
desired Pareto optimal solution. A posteriori method uses the
DM’s preference information after the search process. A well-
distributed approximation of the PF is first obtained. Then, the DM
selects themost preferred solutions based on the preferences. In an
interactive method, the intermediate search results are presented
to the DM to investigate; then the DM can understand the problem
better and provide more preference information for guiding the
search.

The earliest attempts on MOEAs based on the DM’s preference
were made by Fonseca and Fleming [43] and Tanino et al. [44] in
1993. In these algorithms, the rank of themembers of a population
is determined by both the Pareto dominance and the preference
information from the DM. In [45], Greenwood et al. used value
functions to rank the population, and preference information was
also used in the survival criteria.

Sakawa and Kato [46] used a fuzzy approach to represent
preference in the form of reference points. The DM is asked to
specify a new reference point until satisfactory results are reached.
Phelps and Köksalan [47] compared a pair of individuals in terms of
their fitness values based on theDM’s preferences at each iteration.
A single substitute objective defined byweighted sumof objectives
is used for some generations.

In [48], Branke and Deb incorporated the preference informa-
tion into NSGA-II by modifying the definition of dominance and
using a biased crowding distance based on weights. Deb et al. [49]
further considered the use of reference points to determine pref-
erence information. A guided dominance scheme and a biased
crowding scheme are also suggested. In [50], Deb et al. suggested
an interactive MOEA based on reference directions. The DM pro-
vides one ormore reference directions to guide the search towards
the region of preferred solution.
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Deb and Chaudhuri [51] proposed an interactive decision sup-
port system called I-MODE, in which a number of existing multi-
objective optimization and classical decision-making methods can
be appropriately adopted for generating solutions in the regions of
interest in the PS. For example, the weighted sum approach and
weighted Tchebycheff approach may be used to deal with non-
convexity of the PF.

Li and Silva [52] developed an improved version of an MOEA/D
combined with SA. In this version, the weights can be adaptively
changed by the DM according to the location of solutions in the
current population. The fitness functions with modified weights
can guide the search towards different parts of the PF during the
search. It can be viewed as an interactive MOEA.

Sanchis et al. [53] proposed an MOEA integrated with priori
preferences, which were generated by applying the principle
of physical programming. In this algorithm, the preferences are
expressed by partitioning the objective space into several levels.
The preference functions are built to reflect the DM’s interests and
to use meaningful parameters for each objective. The designer’s
expert knowledge can be translated into preferences for design
objectives. A scalar objective is automatically built and no weight
selection is performed.

In [54], Deb et al. proposed a progressively interactive MOEA.
In this method, an approximate value function is progressively
generated after every few generations. Periodically, several non-
dominated points found so far are provided to the DM. Based on
the DM’s preference information, all these points are ranked from
the worst to the best. Then, a suitable polynomial value function is
constructed by solving an SOP.

In [55], Rachmawati and Srinivasan proposed a preference-
based MOEA to find the knee region in the PF, which is visually a
convex bulge in the front. The preference-based focus is achieved
by optimizing a set of linear weighted sums of the original
objectives, and control of the extent of the focus is attained
by careful selection of the weight set based on a user-specified
parameter. The fitness scheme could be easily adopted in any
Pareto-based MOEA with little additional computational cost.

Thiele et al. [56] used the DM’s preferences expressed interac-
tively in the form of reference points. The information is used in an
EA to generate a new population by combining the fitness function
and an achievement scalarization function. The selection based on
the utility functions with the modified parameters is expected to
lead the search to focus on the most interesting parts of the PS. In
multiobjective optimization, achievement scalarization functions
are widely used to project a given reference point on to the PS.

2.1.3. Indicator-based MOEAs
The quality of an approximated PF could be measured by a

scalar indicator such as generational distance and hypervolume.
Indicator-based MOEAs use an indicator to guide the search,
particularly to perform solution selection.

Zitzler and Künzli [57] first suggested a general indicator-based
evolutionary algorithm (IBEA). This approach uses an arbitrary
indicator to compare a pair of candidate solutions. In the IBEA,
any additional diversity preservation mechanism such as fitness
sharing, is no longer required. In comparison to other MOEAs,
the IBEA only compares pairs of individuals instead of entire
approximation sets.

In [58], Basseur and Zitzler proposed an indicator-based model
for handling uncertainty, in which each solution is assigned a
probability in the objective space. In an uncertain environment,
some methods for computing expected indicator values are
discussed, and several variants of their ϵ-indicator-based model
are suggested and empirically investigated.

Brockhoff and Zitzler [59] proposed a general approach to in-
corporate objective reduction techniques into hypervolume-based
algorithms. Different objective reduction strategies are studied for
improving the performance of hypervolume-based MOEAs.

In [60], Bader and Zitzler suggested a fast hypervolume-based
MOEA for many-objective optimization. To reduce the computa-
tional overhead in hypervolume computation, a fast method based
on Monte Carlo simulations is proposed to estimate the hyper-
volume value of an approximation set. Therefore, the proposed
hypervolume-basedMOEAmay be applied to problemswithmany
objectives.

Very recently, Bader and Zitzler [61] further investigated the
robustness of hypervolume-based multiobjective search methods.
Three existing approaches for handling robustness in the area
of evolutionary computing, modifying the objective functions,
additional objectives, and additional robustness constraints, are
integrated into a multiobjective hypervolume-based search. An
extension of the hypervolume indicator is also proposed for robust
multiobjective optimization.

2.1.4. Hybrid MOEAs
In MOEAs, there are many techniques which have different

characteristics and advantages. Hybridizing these techniques is
thus a natural choice to utilize their advantages for dealing with
complicated MOPs. What techniques to use and how to hybridize
them are two major problems to solve when designing a hybrid
MOEA. Some recent work could thus be categorized as follows.

Hybridizing different search methods: A general idea is to com-
bine global search and local search methods, known as the
memetic approach, elaborated in Section 2.1.5. Another widely
used idea is to combine the search operators of different algo-
rithms. PSO and EA are hybridized in [62]. In each generation, the
solutions generated by a PSO (EA) operator are then improved by
an EA (PSO) operator. In [63], quantum operators are applied to
solutions in binary representation and a genetic operator is then
applied to the good solutions in permutation representation.

Hybridizing search and updating methods: This strategy hy-
bridizes different components from different algorithms. For ex-
ample, in [62], the PSO’s operator is inserted into an EA’smain loop.

Hybridizing different methods in different search phases: In the
above two strategies, the hybrid methods are used in each gen-
eration. It is also natural to partition a search process into differ-
ent phases and to use different search strategies in these phases.
For example, in [64], the search is partitioned into three phases to
emphasize dominated solutions, to balance dominated and non-
dominated solutions, and to focus on non-dominated solutions, re-
spectively. NSGA-II and a local incremental search algorithm are
used to achieve the goals.

2.1.5. Memetic MOEAs
As a special case of hybrid MOEAs, MOEAs incorporating

local search methods have also been investigated recently [65–
73]. These algorithms are known as memetic MOEAs. Memetic
algorithms are able to offer not only better speed of convergence
to the evolutionary approach, but also better accuracy for the final
solutions [65]. Ishibuchi and Murata proposed one of the first
memetic MOEAs [66]. The algorithm uses a local search method
after classical variation operators are applied, and a randomly
drawn scalar function to assign fitness is used for parent selection.

In [74], the best solutions found in each generation are
improved by a local search method in the objective space, and the
improved solutions are then mapped back to the decision space
to predict the corresponding decision variables. A local search
operator is used to generate offspring solutions [75]. Similar ideas
are also mentioned in [76,77].

In [78], Knowles and Corne proposed amemetic Pareto archived
evolution strategy to solve MOPs. The algorithm introduces a
Pareto ranking-based selection method and couples it with a
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partition scheme in objective space. It uses two different archives
to save non-dominated solutions.

Jaszkiewicz [79] proposed a multiobjective genetic local search
(MOGLS) algorithm for the multiobjective 0/1 knapsack problem.
At each iteration, a weighted scalarization function is used as the
fitness function during selection. The weights are generated in a
random way. The mating population in the MOGLS consists of a
few individuals selected from the current population in terms of
the current scalarization function. An offspring solution is then
produced by recombining members in the mating population.
A local search procedure is followed to improve the quality of
the offspring solution. The current population and an external
population including only non-dominated solutions are updated
by the improved solutions obtained in the local search.

In [80], Caponio and Neri proposed the cross dominant multi-
objective memetic algorithm, making use of two local search en-
gines to balance the global search and the local search. The choice
of local search engines is decided by using the parameter ofmutual
dominance between non-dominated solutions belonging to con-
secutive generations. A memetic version of coevolutionary mul-
tiobjective differential evolution (DE) is presented in [81]. In this
approach, the population of solutions and promising search direc-
tions are evolved synchronously. A local search method is applied
to a portion of the population after each iteration.

In [68], a memetic algorithm based on differential evolution
(MADE) was proposed by Qian et al. to handle multiobjective no-
wait flow-shop scheduling problems (MNFSSPs). This algorithm
uses several local searchers developed according to the landscape
of an MNFSSP to enhance the local exploitation.

Wanner et al. [72] employed a local search optimizer as an
additional operator inmultiobjective evolutionary techniques. The
local search technique is able to find more precise estimation of
the Pareto optimal surface with a reduced number of function
evaluations. In [73], Ishibuchi et al. studied the use of biased
neighborhood structures for a local search in multiobjective
memetic algorithms. The methods assign higher probabilities to
more promising neighbors in order to improve the search ability of
multiobjective memetic algorithms. More recently, Lara et al. [65]
investigated a new local search strategy called the hill climberwith
sidestep (HCS) for multiobjective memetic algorithms. The new
point-wise local search procedure is able to move both toward
(using hill climber techniques) and along (sidestep) the PS.

MOEA/D [28] also belongs to the class of multiobjective
memetic algorithms. It optimizes multiple subproblems. Each
solution is associated with one weighted scalarization function.
A local search procedure can be called for improving a solution.
Since MOEA/D is a general framework, different heuristic search
methods can serve as the local search component. In [52], SA is
used to improve the current solution of each subproblem. In [82],
each subproblem is optimized by the greedy randomized adaptive
search procedure (GRASP).

2.1.6. MOEAs based on coevolution
Coevolution can be regarded as evolving multiple subpopula-

tions simultaneously to tackle a complicated problem. Algorithms
using an archive strategy, such as [83], thus fall into this category
because they evolve a population and an archive at the same time
to approximate the PF of an MOP.

However, there is another explanation of coevolution by using
the idea of divide and conquer. Following this idea, a coevolution-
ary algorithm breaks down a problem into a set of subproblems in
the level of individual coding and evolvesmultiple subpopulations.
A variety of papers adopt this idea [84–86]. Among them, the sub-
populations are competitive and/or cooperative with each other
and the components from different subpopulations are combined
to form a complete solution.
2.2. Selection and population updating

The selection of solutions for the next generation plays a key
role in an MOEA. The main difference between EAs for SOPs and
MOPs in algorithm components is the selection procedure. An EA
for SOPs can be directly applied to MOPs by replacing the selection
component. In scalar objective optimization, there naturally exists
a complete order to differentiate all feasible solutions, i.e., for any
two feasible solutions x and y, either f (x) ≤ f (y) or f (y) ≤ f (x).
However, inmultiobjective optimization, the Pareto dominance,≺,
only defines a partial order in the objective space, and not all the
feasible solutions can be compared to each other.

Since the Pareto dominance cannot be naturally used to select
solutions, additional strategies need to be considered. The design
of selection operators has been gaining significant attention in
evolutionary multiobjective optimization. The previous major
works on selection follow the idea of defining complete orders over
individuals, and recently some works follow the idea of defining
complete orders over populations.

2.2.1. Complete orders over individuals
Since Pareto domination only defines a partial order, extending

the partial order to a complete order becomes a natural way to
differentiate solutions. To this end, a two-stage strategy is usually
employed. In the first stage, a population is partitioned into several
clusters by Pareto dominance. Each individual x will be assigned
an integer value, called the rank, and denoted as xrnk. Those with
the same rank value are equal to each other, and smaller rank
is preferred. In the second stage, individuals with the same rank
are further differentiated by assigning each individual a real value,
called the density, and denoted as xden. Those with lower density
values are preferred. A complete order, denoted as ≺i, can thus be
defined as follows:
x≺i y, iff (xrnk < yrnk), or (xrnk = yrnk and xden < yden).

Domination rank [87], domination count [43], and domination
strength [88] are usually used to assign rank values. A variety
of density estimation methods have been proposed. The widely
usedmethods include the niching and fitness sharing strategy [43],
crowding distance [27], K -nearest-neighbor method [89], fast
sorting [90], and gridding and ϵ-domination method [91–95].

In recent years, a variety of methods [77,83,96–98] and the
extension of Pareto domination to fuzzy domination [99,100] have
been proposed to improve the algorithmic performance. However,
the basic idea is still the same as presented here.

It should be noted that there are many redundant comparisons
between individuals in the rank assignment procedure if the
definition of Pareto domination is to be followed. Thus, some
new data structures have been proposed to improve the sorting
performance [101,102].

2.2.2. Complete orders over populations
Recall that, in an MOEA, populations are actually updated

from one generation to another. Selection mechanisms based on
performance indicators define a complete order over populations.
Let I(P) be a quality indicator which assigns a real value to a non-
dominated population P . A full order, ≺p is defined as follows:
P ≺p Q iff I(P) < I(Q ),

where a smaller value of indicator I(P) is preferred.
The idea of using performance to guide the selection was first

proposed by Fleischer in [103]. Huband et al. [104] proposed
the first MOEA with a hypervolume guided selection procedure.
Indicator-based selection has since then been widely applied
in MOEAs [105,106]. Zitzler and Künzli generalized the idea
and proposed an indicator-based MOEA [57,58]. These methods
are called indicator-based MOEAs, and they are discussed in
Section 2.1.3. A major disadvantage with this kind of selection is
that it might be time-consuming. More work is needed to improve
the efficiency.
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2.3. Reproduction

Conventional reproduction operators designed for scalar objec-
tive EAs could be directly used in MOEAs. However, the optima
structures of scalar optimization and multiobjective optimization
are quite different, i.e., an isolated point or several points with the
same objective value in scalar optimization and a solution set in
multiobjective optimization. The operators designed for scalar op-
timization might not be suitable for multiobjective optimization.
For example, in [107], it is observed that some widely used re-
production operators did not work well for rotated problems. We
argue that this difference should be emphasized in evolutionary
multiobjective optimization. The characteristics and/or problem-
specific knowledge should be considered in designing reproduc-
tion operators for multiobjective optimization [108–111].

Recent advances in reproduction are summarized as follows.

2.3.1. DE-based approaches
The differential evolution (DE) algorithm [112,113], which was

introducedby Storn andPrice in 1995, usesweighteddifference be-
tween solutions to perturb the population and to create candidate
solutions. The new trial solutions are partly from the candidate so-
lutions and partly from the old population. The DE algorithm was
originally designed for scalar objective optimization. However, it
has since attracted much attention in multiobjective optimization
because of its simplicity to implement and efficiency for solving
problems.

A Pareto-frontier differential evolution (PDE) algorithm was
proposed in [114]. The major modifications are (1) the step length
parameter F is randomly sampled from a Gaussian distribution
N(0, 1), and (2) the parents are from the non-dominated set. To
find a uniformly distributed, near-complete, and near-optimal PF,
a multiobjective DE based on Pareto-adaptive ϵ-dominance and
orthogonal design was proposed in [115]. In this approach, the
DE/rand/1/bin strategy is used to produce new trial solutions. It
also adopts some previous strategies, such as (1) population ini-
tialization based on orthogonal design, (2) archive updating by the
Pareto-adaptive ϵ-dominance and saving extreme solutions, and
(3) alternatively selecting parents by a random scheme and an eli-
tist selection scheme, to improve its performance. Amultiobjective
DE algorithmwith diversity enhancement strategies was proposed
in [116].

The DE algorithm has also been extended to tackle discrete
or mixed continuous and discrete MOPs. A multiobjective DE
algorithm was proposed in [117] for mining numeric association
rules. A solution contains both integer and real values. To solve
this problem, a chromosome is treated as a real vector and a
rounding operator is applied to repair a real component to an
integer component. In [68], a memetic algorithm based on DE was
proposed to deal with MNFSSPs. It is a discrete problem, but the
chromosome is a real vector which enables DE to work on it. A
largest-order-value rule based on random key representation is
used to convert a real vector to a job permutation. A problem-
dependent local search is applied to a job permutation to improve
its quality.

Since the DE algorithm has two control parameters which
are not easy to set properly, self-adaption has also attracted
much attention recently. In [98], the two control parameters are
randomly picked up from predefined ranges. In this approach, a
crowding entropy-based diversity measure is applied to maintain
an elitist archive.

2.3.2. Immune-based approaches
Due to the clonal selection and affinitymaturation by hypermu-

tation, the immune system is able to adapt B-cells to new types of
antigens. By simulating this phenomenon, artificial immune sys-
tems were proposed to deal with optimization problems [118].
Recently, immune systems have been extended from scalar objec-
tive optimization tomultiobjective optimization. Inmultiobjective
immune systems, clonal selections based on Pareto dominance are
usually used to select promising solutionswhile crossover andmu-
tation operators are widely used to generate new trial solutions.

Most of the multiobjective immune systems focus on static
problems. In [119], two mutation operators are used to mutate
antibodies with different qualities. An archive is used to store
elitist solutions to approximate the PF. In [120], a hybrid mul-
tiobjective algorithm based on an immune system and bacterial
optimizationwas proposed to deal with bi-objective no-wait flow-
shop scheduling problems. In this approach, a linear combination
method is applied to generate antibodies which are improved by
using bacterial optimization operations. In [96], a non-dominated
neighbor immune algorithmwas proposed formultiobjective opti-
mization. The selection strategy emphasizes more on less crowded
solutions. In [69], a hybrid immune multiobjective optimization
algorithm based on a clonal selection principle was proposed. In
this approach, Gaussian and polynomial mutations are adaptively
applied to mutate the new trial solutions after crossover. The se-
lection procedure proposed in [96] is used to update the popula-
tion directly. In [121], a multiobjective immune system based on a
multiple-affinity model was proposed.

Some immune algorithms have been applied to dynamic and
uncertain optimization problems. In [122,123], a multiobjective
immune system was proposed to deal with dynamic multiobjec-
tive problems with constraints. In [124], a multiobjective immune
system was presented to find Pareto optimal robust solutions for
bi-objective scheduling problems.

2.3.3. PSO-based approaches
Particle swarmoptimization (PSO) is a population-based stochas-

tic optimization technique developed by Eberhart and Kennedy in
1995 [125,126], inspired by the social behavior of bird flocking or
fish schooling. Moore and Chapman extended this idea to multi-
objective optimization in 1999 [127]. Since PSO cannot be directly
applied to multiobjective optimization, there are two issues to be
considered when extending PSO to multiobjective optimization.
The first one is how to select the global and local best particles
(leaders) to guide the search of a particle. The second is how to
maintain good points found so far. For the latter, a secondary pop-
ulation is usually used to maintain the non-dominated solutions.
Here, we focus on the first issue.

In [128], the particles are clustered into groups, the global
best particle of a particle is from its group and a weighted-
sum of the objectives is used to maintain its local best particle.
In [129], a tournament niche method is introduced to select the
global best particle, and the local best particle is updated by the
Pareto dominance. In [130], the global best particle is selected
from the non-dominated solutions with a roulette wheel selection
in which the density values are used as fitness. The self-adaptive
control parameter is also considered. In [131], a preference order,
a generalization of Pareto dominance, is introduced to rank all the
particles and thus to identify the global best particle.

Three EA–PSO hybrid algorithms were proposed in [62]. The
fitness assignment strategy is based on that of strength Pareto
evolutionary algorithm 2 (SPEA2) [89]. The global best particle is
selected from the external archive by a tournament selection, and
the neighborhood best particle is selected as the one with lowest
strength Pareto fitness.

In [132], a multiobjective PSO was designed to tackle multiob-
jective mixed-model assembly line sequencing problems. To this
end, a coding strategy and a local search are introduced. The global
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best particle is the non-dominated solution in the archive with the
highest crowding distance in the archive.

A multiple swam algorithmwas proposed in [70]. Several com-
ponents, such as cell-based rank density estimation, population
growing and declining strategies, and adaptive local search, are de-
signed to improve the algorithmic performance. A leader selection
was proposed to assign a leader for each group.

In [94], an archive is applied to maintain the non-dominated
solutions found so far, and a mutation operator is used to keep
the population diversity. To choose a global best particle, the non-
dominated ones in sparse areas are emphasized.

In [133], a fuzzy clustering-based PSO was proposed to tackle
electrical power dispatch problems. A fuzzy clustering technique is
applied to maintain the external archive. A self-adaptive mutation
operator is also used to generate new trial solutions. A niching
mechanism is designed to find the global best particle for each
particle and thus to emphasize less explored areas. Finally, a fuzzy
decision rule is used to assist decision making.

In [134], a multiobjective comprehensive learning particle
swarm optimizer (MOCLPSO) was presented. MOCLPSO uses

a learning strategy whereby all other particles’ historical best
information is used to update a particle’s velocity. This strategy
enables the diversity of the swarm to be preserved to discourage
premature convergence.

In [135], a two-local-best (lbest)-based multiobjective PSO
(2LB-MOPSO) technique was proposed. Different from canonical
multiobjective PSO, 2LB-MOPSO uses two local bests instead of
one personal best and one global best to lead each particle. The
two local bests are selected to be close to each other in order to
enhance the local search ability of the algorithm. Compared to the
canonicalmultiobjective PSO, 2LB-MOPSO shows great advantages
in convergence speed and fine-searching ability.

In [136], PSO is used in theMOEA/D framework. Each particle is
responsible for solving one subproblem.

More works on multiobjective PSO are presented in [16].

2.3.4. Probabilistic model-based approaches
Probabilistic model-based EA is a new computing paradigm in

evolutionary computation. The main feature of these algorithms is
that they do not use traditional crossover or mutation operators
to generate new solutions. Instead, they explicitly extract global
statistical information from their previous search and build a
probability distribution model of promising solutions. Based on
the extracted information, new solutions are sampled from the
model thus built. Compared to traditional EA methods, they
emphasize the population distribution information rather than the
individual location information. The key issues in these methods
includemodel selection before executing the algorithm andmodel
building and sampling in the running process. The following
methods share the above basic ideas and they differ from each
other on origins.

Ant colony optimization (ACO) [137] was introduced by Dorigo
in 1992. ACO takes inspiration from the behavior of real ant
colonies and is used to solve optimization problems. Ants deposit
pheromone on the ground in order to mark some favorable paths
followed by other members of the colony with higher probability.
ACO exploits a similar mechanism by constructing a probability
matrix, named the pheromone model, to denote the probability to
choose an edge in a graph and thus sampling new solutions. The
structure of ACO probability model makes it a natural choice for
discrete optimization. In the case of multiobjective optimization,
ACO has been applied to traveling salesman problems [138,139],
vehicle routing problems [140], flow-shop scheduling prob-
lems [141], portfolio selection [142,143] and others.

The cross entropy (CE) method [144] was proposed by Rubin-
stein in 1997. CE originated from the field of rare-event simulation
involving the estimation of parameters for a number of probabil-
ity distributions associated with some rare events. CE methods it-
eratively generate sample points from the probability model and
update the model parameters on the basis of the data. Currently,
however, there are not many reports on applying CE for multiob-
jective optimization. In [145], a CE-based approach was proposed
for MOPs. In the approach, a population is partitioned into several
clusters, and a CEmethodwith a Gaussianmodel is utilized in each
cluster.

The quantum-inspired genetic algorithm (QGA) [146,147] was
first proposed by Han and Kim in 2000. The QGA simulates the
quantum mechanism and uses a Q-bit vector to represent a solu-
tion. The Q-bit vector actually denotes probability distributions of
all Q-bits to be 0 or 1. A quantum gate is used to generate new indi-
viduals. In [148], a multiobjective QGA was proposed to deal with
hardware–software co-synthesis problems in embedded systems.
Another version of the multiobjective QGA was proposed to deal
with flow-shop scheduling problems [63].

The estimation of distribution algorithm (EDA) [149] was first
introduced by Mühlenbein and Paaß in 1996. Most EDAs aim
to discover the variable linkage information from the popula-
tion to benefit offspring generation. To this end, different mod-
els with univariate, bivariate, and/ormultivariate variable linkages
have been widely studied [150]. Depending on the models used,
EDAs are suitable for both combinatorial and continuous optimiza-
tion. In the case of continuous multiobjective optimization, Okabe
et al. [151] proposed a Voronoi model-based method. Bosman and
Thierens [152] proposed an EDA method based on a mixture uni-
variate Gaussian model. Dong and Yao [153] proposed a multi-
variate Gaussian model-based method. Igel et al. [106] extended
the covariance matrix adaptation evolution strategy (CMA-ES) for
dealing with MOPs. In the case of combinatorial multiobjective
optimization, Laumanns and Očenášek [154] proposed a Bayesian
network-basedmethod for knapsack problems. Pelikan et al. [155]
designed a method with hierarchical Bayesian networks to study
building boxes for binary coding problems.

The PF and PS of a continuous MOP are piecewise continuous
(m − 1)-dimensional manifolds under mild conditions [2]. Based
on this regularity property, Zhang et al. [110] proposed a regularity
model-based multiobjective estimation of distribution algorithm
(RM-MEDA) for continuous MOPs with variable linkages. In some
cases, a good approximation to both the PF and the PS is required
by a DM. To this end, the RM-MEDA has been extended in [111]
to tackle a class of MOPs in which the dimensionalities of the
PF and the PS manifolds are different. RM-MEDAs have been
applied to static MOPs [110,111], dynamic [156] MOPs, MOPs
with local PFs [157], MOPs with high search dimensions [158].
Recently, the RM-MEDA has been improved by combing it with
some other techniques [159]. A basic idea behind RM-MEDAs is
to use statistical and machine-learning techniques to guide the
search of EDAs. Dimension-reduction techniques are thus used
in RM-MEDAs. Some other ways to use this regularity property
are referred to in [160,161]. The research work on RM-MEDAs is
among very few efforts to design MOEAs based on mathematical
programming theory.

2.3.5. SA-based approaches
Simulated annealing (SA) is a single-point-based global op-

timization technique which is inspired by annealing in metal-
lurgy [162]. Due to its simplicity, SA has been incorporated into
multiobjective frameworks for dealing with MOPs.

Like some other MOEAs, multiobjective SAs also need to
maintain an archive to store current non-dominated solutions and
to use reproduction operators to generate new solutions. Themain
difference betweenmultiobjective SAs and otherMOEAs is on how
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to update a solutionwhen the offspring individual is dominated by
the parent. The SA updating rule is usually used in such case.

In [163], the SA updating rule is used to choose the next indi-
vidual when an offspring individual is dominated by the parent.
A similar method was proposed in [164], in which a domination-
based energy function is used to calculate the probability to accept
a dominated new trial solution. In [165], the domination relation-
ship between an offspring point and its parent as well as archive
points is systematically studied. A multiobjective SA with a single
point was introduced in [166]. In this approach, each objective is
assigned a different cooling schedule, taking into account the pri-
oritization of that objective. The probability to accept a new solu-
tion which is worse than the parent is controlled by using SA rules.

2.3.6. Other approaches
In addition to the above-mentioned methods, there are also

many other heuristics which are originally designed for scalar ob-
jective optimization. By incorporating with the Pareto domination
and/or population (archive) updating strategies, these heuristics
could also be extended to tackle MOPs. These meta-heuristics in-
clude tabu search [71,167], scatter search [168], and the GRASP ap-
proach [169].

2.4. Other issues

2.4.1. Theoretical studies of MOEAs
Theoretical analysis of algorithms is important both for ex-

plaining the algorithmic performance and for guiding the algo-
rithmic design. Some recent analyses of MOEAs are as follows.
In [170], a rigorous running time analysis of an algorithm on
pseudo-problems was presented. In [171,172], the convergence of
DE-based MOEAs are discussed. In [173], online and offline mea-
surements were introduced to detect convergence. The measure-
ments are based on performance indicators and a convergence
thresholdwhich is predefined offline or detected from the data on-
line. In [174], the convergence property of a PSO-based MOEA was
studied. Two fitness inheritance methods were proposed in [175],
based on a statistical evaluation of the performance of an NSGA-
II-like algorithm. The experimental results shown that the perfor-
mance of the approaches is quite similar to that of those general
MOEAs.

2.4.2. Adaptation
MOEAs usually have several control parameters, and their

performance is highly related to the parameters. Usually, the
parameters are predefined based on algorithmic knowledge or an
empirical study. In real-world applications, this strategy might
not be applicable. Thus, adaptively tuning control parameters has
attracted much attention recently.

In [176], the crossover probability andmutation probability are
varying with both population diversity and progress of the search.
A similar idea was used in [177], where the mutation probability
is adapted along the evolution. In some cases, the upper and lower
boundaries of the parameters are easy to estimate. The approach
in [98] is based on this strategy, and the parameters are randomly
selected from given boundaries. Huang et al. [178] employed an
adaptive DE algorithm capable of learning the crossover rate CR
and suitable mutation strategies in their algorithm.

3. MOEAs for complicated problems

3.1. Constraint handling in MOEAs

Although MOEAs have been more extensively investigated
within the context of unconstrained and bound constrainedMOPs,
various general constraints are involved when solving real-world
problems. Typically, the search space Ω of a constrained MOP can
be formulated as follows:
Ω =

gj(x) = gj(x1, x2, . . . , xn) ≤ 0 j = 1, 2, . . . , J
hk(x) = hk(x1, x2, . . . , xn) = 0 k = 1, 2, . . . , K
xLi ≤ xi ≤ xUi i = 1, 2, . . . , n,

(2)

where gj(x) and hk(x) are inequality and equality constraint func-
tions, respectively. Generally, equality constraints are transformed
into inequality forms, and then combined with inequality con-
straints using

Gj(x) =


max{gj(x), 0} j = 1, 2, . . . , J
max{|hj−J(x)| − δ, 0} j = J + 1, J + 2, . . . , J + K ,

(3)

where δ is a tolerance parameter for the equality constraints.
Due to the presence of the constraints, the search space is

partitioned into feasible and infeasible regions. Many constraint-
handling methods have been proposed to solve constrained
SOPs [179]. According to the characteristics of different constraint-
handling methods, Coello Coello [180] grouped them into five
categories: (1) penalty functions; (2) special representations and
operators; (3) repair algorithms; (4) separate objective and con-
straints; and (5) hybrid methods. Although not all constraint-
handling methods developed for scalar objective optimization are
suitable for constrained multiobjective problems (CMOPs), some of
them have been successfully extended to constrained multiobjec-
tive areas [75,108,122,181–183]. This section introduces some of
the constraint-handling methods used for constrainedmultiobjec-
tive optimization in recent years.

The penalty function is known as the most popular constraint-
handling method. It was first introduced by Courant [184] and
extended to solve CMOPs bymany researchers [181,183]. The basic
idea is to transform a constrained optimization problem into an
unconstrained one by introducing a penalty term into the original
fitness function to penalize constraint violations [182]. There are
several schemes [180] to impose suitable penalties when solving
CMOPs, including the death penalty, static penalty, dynamic
penalty, and adaptive penalty. Woldesenbet [183] introduced
a very promising self-adaptive penalty function recently for
constrainedmultiobjective evolutionary optimization. Themethod
tracks the percentage of the feasible solutions in the current
population to determine the amount of penalty to be added. A
small percentage of feasible individuals results in a larger penalty
while a larger percentage generates a small penalty factor. This
technique is able to balance information extraction from feasible
and infeasible solutions.

In [3], a constrained dominance concept was introduced by Deb
et al. to handle CMOPs. A solution x is said to constrain dominate
a solution y if (1) x is feasible, while y is infeasible; (2) both are
infeasible and x has less constraint violation than y; or (3) both are
feasible and x dominates y. The solutions are ranked using the non-
constrain-dominated method while the superior ones are selected
to evolve. This method is also known as superiority of the feasible.

An immune algorithm is also commonly used to handle con-
straints. In [122], Zhang proposed a constrained nonlinear multi-
objective optimization immune algorithm (CNMOIA) based on the
humoral immune response principle and ideas of T-cell regu-
lation. The algorithm adopted and modified a uniform design
scheme [185] to provide an alternative feasible solution set for
dealing with constraints and infeasible solutions created during
the evolutionary process.

In recent years, emphasis has been increasingly placed on hy-
brid methods. In [186], an ensemble of constraint-handling meth-
ods was introduced to tackle the difficulty of selecting different
constraint-handling methods. Liu [187] integrated fuzzy member-
ship functions into the selection-based constraint-handling strat-
egy and constructed a new constraint-handling method. In [188],
a constraint-handling strategy based on infeasible individual
stochastic binary modification was proposed. The method ran-
domly modifies infeasible individuals into feasible solutions ac-
cording to a predefinedmodification rate (Rm) during evolutionary
optimization.
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3.2. MOEAs as constraint-handling methods

Constraint-handling methods based on multiobjective conce-
pts have been increasingly investigated in the past few years
[182,189,190]. This constraint-handling technique treats the
constraints as additional objectives to be optimized. In [182], Cai
andWang classified themethods based onmultiobjective concepts
into two categories:

1. Methods based on biasing feasible over infeasible solutions;
2. Methods based on multiobjective optimization techniques.

The first category generally treats the constrained SOP as a
bi-objective optimization problem. The original objective and the
constraint violation are considered as two separated objectives
to be optimized synchronously. On the other hand, the second
category modifies the constrained SOP into an MOP with m + 1
objectives, wherem is the number of constraints.

Simplicity is the major merit of an MOEA as a constraint-
handling method, as no fitness modification is required. However,
treating constraint violation as an extra objective increases the
computational complexity of the algorithm, and therebymay slow
down the algorithm.

3.3. MOEAs and multimodal problems

MOEAs can also be used to solve multimodal problems. Multi-
modal optimization algorithms aim to find numerous global/local
optima in one single run.

In [191], Yao et al. described a bi-objective multipopulation ge-
netic algorithm (BMPGA) aiming to solve multimodal optimization
problems on a real-valued differentiable landscape. The algorithm
uses two objectives to enhance the diversity of the population. The
first objective is known as the original fitness function, while the
second objective is the gradient of the function. By using the two
objective functions, Yao et al. showed that the BMPGA is able to
generate stable niching behavior over some benchmark functions.

In [192,193], Deb and Saha converted a scalar objective
multimodal optimization problem into a bi-objective optimization
problem so that all global/local optima became members of the
resulting weak Pareto-optimal set. This approach also treats the
gradient of the function as the second objective. The experimental
results showed the superior performance of the modified NSGA-
II on the tested constrained and unconstrained multimodal
problems.

Compared with other scalar objective multimodal optimization
methods, MOEAs are able to maintain a population with higher di-
versity. However, the extra objective and non-domination sorting
procedure are computationally costly.

There are also multimodal MOPs. In [157], Zhou et al. suggested
using a two-phase search strategy to dealingwithMOPswithmany
local PFs. Some good points near the global PF are found in the first
phase; and thewhole PF is then approximated in the second phase.

3.4. MOEAs for many-objective problems

In many real-world applications, there usually exist problems
with more than three objectives. These many-objective optimiza-
tion problems are challenges to MOEAs, and the most widely used
selection operators do not work well in these cases. To deal with
many-objective problems, new ideas and techniques are required
to improve the performances of current MOEAs.

Much work has been done to address the importance of solv-
ing many-objective optimization problems [94,194,195]. A large
number of objectives introduce extra difficulties with respect to
computation, visualization, and decision making for the conven-
tional MOEAs. The state-of-the-art MOEAs such as NSGA-II are
not effective in solving optimization problems with more than
three objectives. In [196,197], the Pareto dominance relation and
rank definition are modified to increase the selection pressure to-
ward the PF and to solve many objective optimization problems.
In [194], a dynamical MOEA is proposed based on the principle
of thermodynamics. The algorithm defines a new concept known
as L-optimality, which not only takes into account the number of
improved objective values but also considers the values of im-
proved objective functions if all objectives have the same impor-
tance. Based on the new definition, the MOEA uses a new selection
scheme to deal with many-objective optimization problems. The
main advantage is that this method can generate several different
test points simultaneously at each iteration.

3.5. Computationally expensive multiobjective optimization

In some multiobjective engineering optimization problems
[198,199], the process of locating the PF could be extremely com-
putationally or financially expensive. These problems generally de-
mand huge numbers of physical experiments or time-consuming
simulations. In order to solve these problems, a method that can
produce reasonably good solutions within a given (limited) com-
putational cost is desired [200]. In [201], Knowles classified the
computationally expensive MOPs into the following classes.
1. The problem has multiple, possibly incommensurable, objec-

tives.
2. The time taken to perform one evaluation is of the order of

minutes or hours.
3. Only one evaluation can be performed at one time (no paral-

lelism is possible).
4. The total number of evaluations to be performed is limited by

financial, time, or resource constraints.
5. No realistic simulator or othermethod of approximating the full

evaluation is readily available.
6. Noise is low (repeated evaluations yield very similar results).
7. The overall gains in quality (or reductions in cost) that can be

achieved are high.
8. The search landscape is locally smooth but multimodal.
9. The dimensionality of the search space is low to medium.

These computationally expensive MOPs have attracted the at-
tention of many researchers in recent decades [200–207]. The
Gaussian stochastic process model is known to be one of the
most popular and efficient methods for dealing with expensive
SOPs [200]. It also has been extended to the multiobjective case.
In [207], Emmerich et al. generalized the probability of improve-
ment as well as the expected improvement to multiobjective opti-
mization. Themethod selects multiple test points with highmetric
values during the search process. This idea was extended in [194],
where the algorithm optimizes a hypervolume-based metric us-
ing CMA-ES. The advantage of this method is the use of Gaussian
random-field metamodels to predict the objective function values
for new candidate solutions, which is able to speed up the conver-
gence.

Knowles [201] proposed ParEGO, which applies the EGO algo-
rithm to a randomly selected aggregation function to find which
point to evaluate in the next step. Although the results are very
encouraging, the method considers only one aggregation function
at each iteration, which can be a major drawback for MOPs. Note
that ParEGO is able to offer a more effective search on problems
like the instrument setup optimization problem, where only one
function evaluation can be performed at a time.

More recently, Zhang et al. [200] proposed a multiobjective
evolutionary algorithm based on decomposition with the Gaussian
stochastic process model (MOEA/D-EGO) for expensive multiobjec-
tive optimization. In this algorithm, a Gaussian stochastic process
model for each subproblem is built, and the expected improve-
ments for the subproblems are optimized at the same time. It uses
parallel computing as a basic tool for solving an expensive MOP,
which makes the algorithm very efficient and effective.
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3.6. Dynamic multiobjective optimization

In many real-world applications such as investment optimiza-
tion, robot navigation, and control system design, the fitness func-
tion, parameter space, and constraints as well as the location of the
optimal front may change dynamically over time [123,208]. These
kinds of problems are known as the dynamic MOPs. The dynamic
environment generates great challenges for classical MOEAs.

Although dynamic scalar objective optimization has been stud-
ied for decades, the dynamic multiobjective optimization problem
(DMOP) has just started to attract attention among many re-
searchers [123,208–212]. The main challenge in DMOPs is that the
PFs may change over time. To solve a DMOP, diversity and adap-
tive exploring ability are the key issues, as the changed PF has to
be rapidly discovered.

To overcome the difficulties caused by the dynamic environ-
ment, some researchers [208,213–215] transform a DMOP into a
dynamic or fuzzy dynamic SOP. In [212], a direction-basedmethod
is adopted to handle DMOPs. Thismethod is a neighborhood search
algorithm. It constructs an environmental recognition rule using
the difference of environmental evaluations. This method gives
promising performance for problems that have slowly changing
environments and dimensions of the parameter space. In [156],
Zhou et al. proposed to predict the PS when the environment
changes. In [216], Hatzakis et al. used a queuingmultiobjective op-
timizer andmultivariate autoregressive forecastingmodel to solve
DMOPs. This method uses time series analysis to predict the lo-
cation of the new PF. More recently, Goh and Tan [217] proposed
a new coevolutionary paradigm which incorporates the compet-
itive and cooperative mechanisms observed in nature to facili-
tate adaptive problem decomposition in coevolution. During the
process of competition and cooperation between different sub-
populations, the whole population is optimized according to the
requirement of different time instants to handle both static and
dynamic MOPs. The advantage of this algorithm is that it is able
to adapt quickly to a changing environment.

3.7. Noisy multiobjective optimization

In real-world multiobjective optimization, noise is one of the
main issues faced by researchers. When noise is present, the op-
timization process becomes relatively unstable, as the algorithms
have to cope not only with multiple objectives, but also with the
stochastic noise. Various approaches have been proposed to deal
with noise in multiobjective optimization [218–223].

There are a few methods to deal with noise in MOEAs. The
most commonly used methods are known as resampling and the
probabilistic ranking process. With the resampling method, the
noise is reduced by a factor. Although resampling is effective
in solving noisy problem, it is computationally costly. In [224],
Hughes introduced the probabilistic ranking process, which takes
into account the standard deviation in the evaluation of each
solution to deal with the effect of noise.

In [220], Deb and Gupta proposed a technique for finding
robust solutions for MOPs in engineering designs. This method
can be considered as a resampling method in the design space.
The objective values of each solution are the averaged values of
a number of solutions within its neighborhood. This algorithm
proposes a user-friendly procedure which allows a user to find
robust solutions with a user-defined limit to the extent of change
in objective values with respect to local perturbations.

In [222], Goh and Tan proposed an experiential learning
directed perturbation operator that adapts the magnitude and
direction of variation using the past experiences for faster
convergence. The proposal also has a gene adaptation selection
method to help the search process in escaping from local optima
or premature convergence. A possibility archiving model based on
the concept of possibility and necessity measures is used to handle
problems with uncertainties or noise. The experimental results
showed that with the proposed method the algorithm performs
well in terms of proximity, diversity, and distribution for both
noiseless and noisy problems.

Bui et al. [221] used a framework of local models to deal
with noise in multiobjective optimization. The method divides
the search space into a number of non-overlapping hyperspheres.
The average performance of the sphere is used to move solutions
within each sphere and to filter the noise. The algorithm is able
to generate a good performance in terms of both convergence and
diversity. The drawback of thismethod is the extra complexity that
is introduced by dividing the decision space,whichmay slowdown
the speed of the algorithm.

In [223], Syberfeldt et al. proposed a noise-handling method
by using an iterative resampling procedure that reduces the noise
until the likelihood of selecting the correct solution reaches a given
confidence level. This technique is able to prevent the propagation
of inferior solutions in the selection process due to noisy objective
values. Different from other methods, the proposed technique
varies the number of samples used per solution based on the
amount of noise in the local area of the search space. In this
way, the algorithm avoids wasteful samplings when the benefit of
additional samplings is insignificant.

3.8. MOEAs for combinatorial and discrete problems

Combinatorial anddiscrete optimizationproblems such as rout-
ing, task allocation, and scheduling are important optimization ap-
plications in the real world. For conventional methods, the time
required to solve a combinatorial problemmay increase exponen-
tially in the worst case, thereby making them computationally too
costly. Moreover, if the optimization involves multiple objectives,
the process becomes more complex and difficult to solve.

Recently, researchers have shifted their focus from conven-
tional methods to more efficient MOEAs [225–227]. Various
MOEAs have also been proposed to solve multiobjective combi-
natorial problems [228–230]. In [228], Ishibuchi et al. carried out
an empirical study on similarity-based mating strategies for evo-
lutionary multiobjective combinatorial optimization. In this work,
the performance of recombining similar or dissimilar parents is
examined. The effect of biasing selection probabilities toward ex-
treme solutions that are dissimilar from other solutions in each
population is also studied. It concludes that the performance of
MOEAs for combinatorial can be improved by the similarity-based
mating scheme.

In [229], Xing et al. presented a simulation model to solve a
multiobjective flexible job-shop scheduling problem (FJSSP). The
FJSSP is very important in the fields of combinatorial optimization
and production management. Throughout the experiments, Xing
et al. showed that MOEAs are very effective for solving the FJSSP.

In [230], Chang and Chen proposed a new algorithm, called the
subpopulation genetic algorithm II, to solve multiobjective com-
binatorial problems. The algorithm develops a mechanism to ex-
change information among subpopulations. Once a subpopulation
reaches a better non-dominated solution, other subpopulations
will apply them directly in their search space. In this way, all in-
dividuals in the same population will be guided to search toward
the true PF.

4. Benchmark problems and performance measures

4.1. Benchmark problems

Benchmark problems are important for both assessing the
qualities of MOEAs and designing MOEAs. Quite a few test
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problems have been designed in the early stages of MOEA
research. Since they are relatively simple, they are not widely used
nowadays. In recent years, several test suites have been designed,
and some widely used ones are as follows.

In the report of the CEC 2007 Special Session and Competi-
tion [231], 19multiobjectiveminimizationproblems are described,
including bi-objective, tri-objective, and five-objective problems.
The classical benchmark functions may have the same parameter
values for different variables/dimensions at the global optimum
that may be located at center or bounds of the search range. To
overcome these shortcomings, shifting and rotation have been ap-
plied in the parameter space of the CEC 2007 test problems.

Apart from demonstrating adequately the usefulness of MOEAs
in finding multiple Pareto solutions for static MOPs, there is
a growing need for solving DMOPs in a similar manner. The
paper [212] addresses this issue by developing a number of test
problems and by suggesting a baseline algorithm. Since, in a DMOP,
the PS may change with time, a suite of five test problems offering
different patterns of such changes and different difficulties in
tracking the dynamic PF are presented.

Many of the multiobjective test problems employed in the EA
literature have not been rigorously analyzed. Thus it is difficult
to draw accurate conclusions about the strengths and weaknesses
of the algorithms tested on them. In [232], some problems from
the EA literature are systematically reviewed and analyzed, each
belonging to the important class of real-valued, unconstrained,
multiobjective test problems. To support this, a set of test
problem criteria are introduced. The analysis of test problems
highlights a number of areas requiring attention. Not only are
many test problems poorly constructed, but the important class of
non-separable problems, particularly non-separable multimodal
problems, are also poorly represented.Motivated by these findings,
a flexible toolkit is proposed for constructing well-designed test
problems.

Li and Zhang [29] introduced a general class of continuousmul-
tiobjective optimization test instances with arbitrarily prescribed
PS shapes. There problems with complicated PS shapes have taken
challenges to many MOEAs. The decomposition-based MOEAs are
suggested for dealing with complicated PS shapes. Moreover, in
the CEC 2009 Special Session and Competition, unconstrained
and constrained test functions are designed with complicated PS
shapes [31].

4.2. Performance measures

As the outcome MOEAs is usually an approximation of the
PS, the quantitative comparison of the performance of different
algorithms becomes an important issue. There are two goals in
measuring a multiobjective algorithm: (1) convergence to the
true PF, and (2) distribution of approximated solutions. Generally,
methods that assign each approximation set a vector of real
numbers that reflect different aspects of quality are well accepted
among researchers. The elements of the vector to represent the
performance ofMOEAs are called the unary quality indicators. Over
the past few decades, many unary indicators have been introduced
(Table 1).

5. Applications

Due to the rapidly growing popularity of MOEAs as effective
and robustmultiobjective optimizers, researchers from several do-
mains of science and engineering have been applying MOEAs to
solve optimization problems arising in their own fields. The litera-
ture onMOEA applications is huge andmultifaceted. Therefore, we
summarize only the major applications of MOEAs in Table 2.
Table 1
Unary quality indicators.

Indicator Description Reference

IR2 R indicator [233]
I−H Hypervolume indicator [233]
IHC Enclosing hypercube indicator [234]
IO Objective vector indicator [234]
Il Unary ε-indicator [234]
IP Number of Pareto points contained [234]
IW Average best weight combination [235]
ID Distance from reference set [236]
IPF Fraction of PF covered [237]
IER Error ratio [238]
IONVG Overall non-dominated vector generated [238]
IGD Generational distance [238]
IME Maximum PF error [238]
ICD Chi-square-like deviation indicator [87]
IS Spacing [239]
IMS Maximum spread [240]
IMD Minimum distance between two solutions [241]
ICE Coverage error [241]
IDU Deviation from uniform distribution [3]
IOS Pareto spread [242]
IA Accuracy [242]
INDC Number of distinct choices [242]
ICL Cluster [242]

6. Conclusions and future directions

In this paper, research work on MOEAs has been surveyed. The
advances in MOEA designs, MOEAs for complicated MOPs, bench-
mark problems, performance measures, and some applications,
have been covered. Evolutionary multiobjective optimization is
still in its early stage, although there have been a huge number of
publications. The following issues, alongwith others, should define
the future research trends of MOEAs.

• New algorithmic frameworks: The current popular frameworks
are Pareto-dominance based, decomposition based and indica-
tor based. The strengths and weaknesses of these frameworks
should be investigated thoroughly. Some new frameworks or
combinations of these frameworks may emerge in the near fu-
ture. These frameworkswill also raise other new research issues
and opportunities.

• Offspring generators and description of approximation: The
purpose of MOEAs is to approximate a set of Pareto optimal so-
lutions instead of a single one. The distribution of the Pareto op-
timal solutions can exhibit some regularities. How to make use
of these properties and to design efficient offspring generators
would be worth investigating. Although most current MOEAs
use a finite number of solutions to approximate the PF, it would
be interesting to investigate how to use other approaches to de-
scribe an approximate PF. In the case of continuous problems,
one may consider the first-order or higher-order approxima-
tions. However, in the case of combinatorial MOPs, it could be
a very challenging issue to use the first-order or higher-order
approximations.

• Interactive MOEAs: Interaction with the DMs has been identi-
fied as a very important research avenue in MOEAs. It should
call for joint research efforts from evolutionary computation,
decision science, software engineering, and psychology. Such
work will be needed for widening MOEA applications.

• Dynamic and noisy multiobjective optimization: Although
some work has been done on this, some fundamental issues
have not been studied well yet. To develop an efficient algo-
rithm, one may need to study first how to model or classify
noises and dynamic environments. Future works on dynamic
and noisy scalar objective optimization will be definitely useful
for this research agenda.
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Table 2
Summary of applications of MOEA to real world problems.

Areas and details Types of MOEA applied and references

Scheduling heuristics

Planning An ε-constrained method for constraint handling, an NSGA-II, and a multiobjective constrained algorithm (MCA) [243]. An NSGA-II
with the geographical information system (GIS) [244]. A multiobjective particle swarm (MOPS) [132]

Scheduling Two derivatives of bi-objective genetic algorithms (GAs) with adjustable crossover and mutation rates [245]. An ACO with local
search [229]. Planning inspections and other operations within a software development (SD) project with an MOEA [246]. A
multiobjective genetic algorithm (MOGA) [247]. A form of utility theory with specific subsets of the PF by merely ranking a small
set of initial solutions [248]. A hybrid multiobjective algorithm based on the features of a biological immune system (IS) and
bacterial optimization (BO) (HMOIA) [120]. A multiobjective immune algorithm [124]. A Pareto-based multiobjective DE [68]. A
hybrid quantum-inspired genetic algorithm (HQGA) with two trimming techniques for population diversity maintenance [63]. An
MOEA/D [35]

Data mining and rule extraction

Data mining A Pareto-based multiobjective DE algorithm [117]. A Pareto-based multiobjective GA [249]. A multiobjective GA [250]

Rule extraction An MOGA approach for fuzzy association rule mining in terms of three important criteria: strangeness, interestingness, and
comprehensibility [250]. Six different MOEAs [251]. A multiobjective genetic cooperative competitive learning (GCCL) [252]. A
multiobjective genetic programming [253]. An MOEA/D [41]

Assignment and management

Placement A multiobjective variable-length GA based on NSGA-II [254]

Management An MOEA with multiple neighboring regions [255]

Resource allocation Tabu search and multiobjective concepts with combination of a dominance rule and a multicriteria filtering method [167]

Assignment A VEGA and a SPEA [256]. A multiobjective staff-to-job assignment model (MUST) incorporated with PSO [257]

Routing Multiobjective combinatorial optimization [71]. An MOEA with two VRPSD-specific heuristics for local exploitation and a route
simulation method [258]

Packing A multiobjective evolutionary particle swarm optimization algorithm (MOEPSO) [129]. The University of Sheffield’s Genetic
Algorithm Toolbox for Matlab [259]

Circuits and communications

Antenna array design A real coded NSGA-II [260]. A decomposition-based multiobjective evolutionary algorithm with differential evolution
(MOEA/D-DE) [261,262]. A multiobjective DE [36]

Wireless sensor network The normal boundary intersection (NBI) method and an NSGA-II [263]. An MOEA/D [40]

Circuit design A multiobjective evaluation mechanism of fitness with weight-vector adaptation and circuit simulation [176]. An MOEA/D [33]

DS-CDMA design Two multiobjective artificial immune systems based on the clonal selection principle [181]

Bioinformatics

Molecular docking A multiobjective particle swarm optimization (ClustMPSO) [128]

DNA sequence design A constrained controlled elitist NSGA-II [264]

Oligonucleotide probe design An ε-MOEA [265]. Cluster-oriented genetic algorithms (COGAs), a DE, and an NSGA-II [266]. An NSGA-II and a SPEA2 [267]

Gene network Genetic and hybrid approaches for multiobjective optimization with fuzzy dominance [77]

Control systems and robotics

Greenhouse control A novel multiobjective optimization immune algorithm in dynamic environments [123]

Robot motion planning An MOGA, an NSGA-II, and an MODE with normalized weighting objective functions method [268]. An MOGA [269]. An
MOEA/D [39]

Control scheme design A prioritized multiobjective stochastic algorithm based on SA (PMOSA) [166]

Controllers design A multiobjective GA with an H∞ loop-shaping technique [270]. An NSGA-II [271]. A novel two-lbest multiobjective particle swarm
optimizer [272]

Pattern recognition and image processing

Image processing A bi-objective EA [273]. A hybrid algorithm combining evolutionary multiobjective optimization and gradient-based
learning [274]. A bi-objective GA [275]. A multiobjective real coded genetic fuzzy clustering scheme [276]

Pattern classification Multiobjective genetic programming [277]. An elitist multiobjective genetic algorithm (EMOGA) [278]. An MOEA based on a greedy
randomized adaptive search procedure (GRASP) [169]. An NSGA-II, a SPEA2, and a PESA-II [279]. An evolutionary tri-objective
optimization algorithm with the ROC convex hull method [280]. An MOEA for the unsupervised learning and data clustering
problems [281]. A fuzzy clustering-based particle swarm (FCPSO) algorithm involved an external repository, niching mechanism, a
self-adaptive mutation operator and a fuzzy-based feedback mechanism [133]. A novel clustering methodology termed
evolutionary multiobjective conceptual clustering (EMO-CC) [282]. An MOEA approach with majority voting method followed by
k-nearest-neighbor classification [283]

Artificial neural networks (ANNs) and fuzzy systems

Neural network training A GA-based multiobjective optimization technique [218]. A multiobjective hybrid procedures based on the SPEA2 and NSGA-II
using the Baldwinian hybridization strategy [76]. A time-variant multiobjective PSO [284]

Fuzzy An approach based on a multiobjective GA with fuzzy set theory [285]. Several MOEAs incorporating some expert evolutionary
operators [286]. A variant of (2 + 2) PAES with one-point crossover and two appropriately defined mutation operators [287]. An
evolutionary tri-objective optimization algorithm integrated with the ROC convex hull method [280]. A fuzzy clustering-based
particle swarm (FCPSO) algorithm [133]. A multiobjective GA [288]

Manufacturing

Plant design A vector evaluated artificial bee colony [289]

Production engineering A hybrid algorithm including efficient problem-specific algorithms [109]. A fuzzy multicriteria evaluation method [290]
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Table 2 (continued)

Areas and details Types of MOEA applied and references

Composite components design A multiobjective GA combined with fuzzy set theory [285]

Process plant An NSGA and a NSGA-II for the optimal design of complex Williams–Otto model process plant [291,292]

Traffic engineering and transportation

Traffic engineering An MOEA for the problem of engineering the distribution of the interdomain traffic in the internet [293]

Transportation An NSGA-II with a knee identification procedure and a multiobjective decision aid method [294]. A diversity-maintaining
evolutionary multiobjective optimizer [295]

Others

Life sciences An NSGA-II with SBX crossover [296]

Fault diagnosis A multiobjective artificial immune algorithm [297]

Embedded system MOEAs with fuzzy approach [298]

Robust design An inverse multiobjective robust evolutionary (IMORE) [219]

Chaotic system An NSGA-II with SA-based optimization [163]

STCA system A multiobjective (1 + 1) evolution strategy [299]

Chanel coding An MOEA/D for optimizing degree distributions in LT codes [38]

Phylogenetic inference Multiobjective optimization [300]

DC motor drive A three-step design process with a multiobjective GA, a multi-attribute decision-making process and fine tuning [301]

Multicriteria minimum spanning
tree

A non-generational multiobjective GA with an efficient crossover operator by using dislocation a crossover technique and a niche
evolution procedure [302]

Reservoir system operation A self-learning genetic algorithm (SLGA) integrated with a self-organizing map (SOM), and a variable neighborhood search
(VNS) [303]

Temporal process A dynamic predictive-optimization framework that integrates data-mining algorithms and evolutionary strategy algorithms [304]

Algorithm design A competitive and cooperative coevolutionary approach for multiobjective PSO algorithm design [86]. A viable and hybrid
evolutionary-cum-local-search-based algorithm with self-adaptive population sizing and termination criteria [305]

Electric power dispatch An NSGA, a niched Pareto GA, and a SPEA with a quality measure procedure [264]. A multiobjective fuzzy dominance-based
bacterial foraging algorithm [306]

Web-site A multicriteria GA [307]. A multiobjective grammar-based genetic programming algorithm [308]

Financial optimization A Pareto ant colony optimization (P-ACO) [143]. A bi-objective PSO [309]. A multiobjective optimization approach based on
prototype optimization with evolved improvement steps [310]
• Many objectives: The complexity of handling numerous objec-
tives has attracted growing attention. It may not be feasible
to use a finite set of solutions to approximate the whole PF of
a generic many-objective problem due to the curse of dimen-
sionality. One should develop new approaches for dealing with
many objectives. Interaction with the DMs will definitely be an
appropriate way. One may also need to study what problems
are doable in many-objective optimization, which will be cru-
cial for any real progress in this area.
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