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1 Palsson. Chap. 1. Introduction

Assumptions
The systems biology approach in this course has a number of assumptions
(see Fig. 1).

Figure 1: Assumptions of the systems approach.

System dynamics
The stoichiometric matrix is used to model the reaction topology of a net-
work. Let us denote as xi as the concentration of the different species. Then,
in the following example

CP (x1) PC (x2)
C (x3) + P (x4) CP (x1)

CP (x1) + A (x5) AP (x6) + C (x3)

The differential equation defining the time evolution of the concentrations
is given by

dx

dt
= Sv(x)
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where

S =




−1 1 −1 x1

1 0 0 x2

0 −1 1 x3

0 −1 0 x4

0 0 −1 x5

0 0 1 x6

Each column of S represents a reaction and each row is associated to a
given compound. We may also check the validity of S through its elemental
balance. Each row of the matrix E represents the elemental composition (in
our example, P , C, and A) of each one of the compounds involved (sorted
by xi, in our example, x1, x2, ..., x6). In our example it would be

E =

x1 x2 x3 x4 x5 x6( )P 1 1 0 1 0 1
C 1 1 1 0 0 0
A 0 0 0 0 1 1

If E and S are well constructed, it must be

ES = 0

Another interesting calculation is the number of non-zero entries by rows
and columns

S =

2 3 4


−1 1 −1 3
1 0 0 1
0 −1 1 2
0 −1 0 1
0 0 −1 1
0 0 1 1

The number of non-zero entries by columns represents the number of dif-
ferent species participating in a reaction. The number of non-zero entries
by rows represents the number of reactions in which a particular compound
participates (this number is called the connectivity of that compound).
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Note that S is giving the reaction topology, but not the reaction dynam-
ics. The kinetic properties of the reaction are given by v(x). For a general
chemical reaction

dD +mM ↔ pDM

the reaction rate is defined as

v = −1

d

dxD
dt

= − 1

m

dxM
dt

=
1

p

dxDM
dt

and it can be calculated in terms of the concentration of the different species
as

v = kfx
d′

Dx
m′

M − kbx
p′

DM

where kf and kb are “constants” (they are not really constants because they
depend on pressure and temperature) for the forward and backward reactions.
For reactions taking place in a single step, the exponents are equal to the
stoichiometric coefficients (d′ = d,m′ = m, p′ = p). At equilibrium, the
reaction speed is 0 meaning that

kfx
d′
Dx

m′
M − kbx

p′

DM = 0

kfx
d′
Dx

m′
M = kbx

p′

DM

K =
kf
kb

=
xp
′
DM

xd
′
Dx

m′
M

which is the famous equilibrium constant. However, we are not restricted in
the differential equation to work at equilibrium conditions.

In our example, the time evolution of the species concentration would be
given by

dx

dt
= S

 kf1x1 − kb1x2

kf2x3x4 − kb2x1

kf3x1x5 − kb3x6x3


However, this differential equation is non-linear which makes its analysis
more complicated. It may be linearized through the gradient matrix G

G =
dv(x)

dx
=

 ∂v1
∂x1

... ∂v1
∂xN

... ... ...
∂vM
∂x1

... ∂vM
∂xN


In our example

G =

 kf1 −kb1 0 0 0 0
−kb2 0 kf2 kf2 0 0
kf3 0 −kb3 0 kf3 −kb3


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With this matrix G, the differential equation is linearized with the Jaco-
bian J = SG

dx

dt
= SGx

The right null space of the stoichiometric matrix (Sv = 0) provides the
reaction speeds needed for a steady-state solution. In our example

Sv = 0⇒ v = 0⇒


kf1x1 = kb1x2

kf2x3x4 = kb2x1

kf3x1x5 = kb3x6x3

The left null space of the stoichiometric matrix (lTS = 0T ⇒ ST l = 0)
provides time invariants. The reason is that

dx
dt

= Sv
lT dx

dt
= lTSv

d(lTx)
dt

= 0Tv
d(lTx)
dt

= 0
lTx = ct

In our example,

ST l = 0⇒ l = (l3 − l5 + l6, l3 − l5 + l6, l3,−l5 + l6, l5, l6)

A basis of this subspace is given by

{(1, 1, 1, 0, 0, 0), (−1,−1, 0,−1, 1, 0), (1, 1, 0, 1, 0, 1)}

However, having negative coefficients make the interpretation of the time
invariants more complicated. So we look for another basis with non-negative
coefficients

{(1, 1, 1, 0, 0, 0), (1, 1, 1, 0, 1, 1), (1, 1, 0, 1, 0, 1)}

That is the time invariants of this system are given by

x1 + x2 + x3 = ct
x1 + x2 + x3 + x5 + x6 = ct

x1 + x2 + x4 + x6 = ct
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or what is the same

[CP ] + [PC] + [C] = ct
[CP ] + [PC] + [P ] + [A] + [AP ] = ct

[CP ] + [PC] + [P ] + [AP ] = ct

The first equation states the fact that the concentration of all compounds
containing C is constant (C is taking part of CP , PC or alone). Similarly,
the third one states the same for P . The second one states that all the A
and P consumed are used to produce CP , PC and AP compounds in the
rest of the network.

The equation
dx
dt

= Sv
dx
dt

= s1v1 + s2v2 + ...

implies that dx
dt

is in the column space of S, that is, x can only move in the
directions imposed by the columns of S. If instead of the columns of S, we
look at the rows of S we havedx1

dt
dx1
dt

...

 =

rT1
rT2
...

v =

rT1 v
rT2 v
...


Equivalently

dxi
dt

= rTi v = ‖ri‖‖v‖ cos θ

This equation means that the concentration of a given compound does not
change if the system is at equilibrium (‖v‖ = 0) or the velocity vector is
“aligned” with the i-th row of the stoichiometric matrix. The inner product
rTi v is measuring unbalances in the composition of the i-th compound with
respect to its equilibrium concentration.

2 Palsson. Chap. 2. Basic concepts

Time constants
Let us consider the differential equation

dx

dt
= −kx x(0) = x0
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Its solution is given by

x(t) = x(0)e−kt = x(0)e−
t
τ

The constant

τ =
1

k

is called the time constant and it is the time required for the concentration
x(t) to fall to 36.8% (= 1/e) of its initial value. Larger k values are associated
to faster processes (τ is smaller). The half-life time constant (time for the
concentration to reduce to 1/2) is

τ1/2 =
log(2)

k

Let us consider the first three reactions of glycolysis:

G
HK−−→ G6P

PGI←−→ F6P
PFK−−−→ FDP

Glucose (G) is converted by an hexokinase (HK) into glucose-6-phosphate
(G6P), which is converted into fructose-6-phosphate (F6P) by a phosphoglucose-
isomerase (PGI). Then, another kinase (PFK) converts F6P into fructose-1,6-
biphosphate (FDP). The isomerase is much faster than the two kinases. So,
if we are analyzing the system at a long period of time we may consider the

G6P
PGI←−→ F6P part of the system to be at equilibrium and pool both species

together into a single variable (Hexosephosphate pool, HP = G6P + F6P ).
At this time scale, the system would look like

G
HK−−→ HP

PFK−−−→ FDP

Reaction rate

Consider the reaction
S → P

We may have zero-order reaction rates, that is the rate of formation of the
product is independent of the amount of reactant. Zero-order reactions are
typically found when a material that is required for the reaction to proceed,
such as a surface or a catalyst, is saturated by the reactants. In that case,

v = k
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Integrating the concentration of substrate and product over time, we have

xS(t) = xS(0)− kt
xP (t) = kt

The half-life constant is

τ1/2 =
xS(0)

2k
We have first-order reaction rates when the amount of product depends

linearly on the concentration of the reactant. For instance

S → P1 + P2

Then
v =

dxP1
dt

=
dxP2
dt

= −dxS
dt

= kxS
xS(t) = xS(0)e−kt

xP1(t) = xP2(t) = xS(0)(1− e−kt)
The half-life constant is

τ1/2 =
log(2)

k
Second-order reactions are of the kind 2A → P or A + B → P . The

reaction rate is in the first case

v =
dxP
dt

= −1

2

dxA
dt

= kx2
A

and

v =
dxP
dt

= −dxA
dt

= −dxB
dt

= kxAxB

in the second case. The solution of the first case is

1

xA(t)
=

1

xA(0)
+ kt

There is no closed-form solution for xA and xB, but there is an interesting
relationship between the two (when xA(0) 6= xB(0)).

log
xB(t)xA(0)

xB(0)xA(t)
= k(xB(0)− xA(0))t

The half-life constants in the first case is

τ1/2 =
1

kxA(0)
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The half-life constants in the second case are different for A and B and cannot
be easily defined.

A second-order reaction, A+B → P may be considered a pseudo first-
order reaction if one of the reactants is much more abundant than the
other. For instance, let’s assume that B is much more abundant than A.
Then, the reaction rate

v = kxAxB ≈ (kxB(0))xA = k′xA

It behaves as a first-order reaction, with half-life constant τ1/2 = log(2)
k′

=
log(2)
kxB(0)

.
Enzymatic reactions

Let us consider the enzymatic reaction

S + E
kf←→
kb

SE
kcat−−→ P + E

We may write the differential equations associated to these reactions

dxS
dt

= −kfxSxE + kbxSE
dxE
dt

= −kfxSxE + kbxSE + kcatxSE
dxSE
dt

= kfxSxE − kbxSE − kcatxSE
dxP
dt

= kcatxSE

(1)

The enzyme is not consumed at the reaction, so its concentration must remain
constant over time

xE(t) + xSE(t) = xE(0)

Michaelis-Menten assumed that the first reaction was very fast, meaning
that it was at equilibrium for all practical purposes. Then,

kfxSxE = kbxSE

Using the enzyme conservation law

kfxS(xE(0)− xSE) = kbxSE ⇒ xSE =
xE(0)xS
Kd + xS

where Kd = kb
kf

is the dissociation constant of the substrate-enzyme complex.

The velocity of the reaction, the speed at which the product is formed is
given by

v =
dxP
dt

= kcat
xE(0)xS
Kd + xS

=
vmaxxS
Kd + xS
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where vmax = kcatxE(0).
Briggs and Haldane assumed that the concentration of the substrate-

enzyme complex did not change on the time-scale of product formation (this
is called, the quasi-steady-state assumption, QSSA), then

kfxSxE = kbxSE + kcatxSE

Combining this equation with the conservation law of the enzyme, we get
(see Fig. 2)

xSE =
xE(0)xS
Km + xS

where

Km =
kb + kcat

kf

and the velocity of reaction

v =
vmaxxS
Km + xS

where vmax = kcatxE(0).

Figure 2: Velocity of reaction by QSSA approximation. Michaelis-Menten
approximation is similar but using Kd instead of Km.

Pool variables and reaction rates

10



Consider the interconversion between ATP, ADP and AMP (see Fig. 3).
We may write the associated equation system as

dxATP
dt

= −(v1 + v−5) + (v2 + v5)
dxADP
dt

= (v1 + 2v−5)− (v2 + 2v5)
dxAMP

dt
= (v3 + v5)− (v4 + v−5)

Figure 3: ATP, ADP and AMP conversion. v5 and v−5 are fast reactions; v1

and v2 are intermediate; and v3 and v4 are slow reactions.

If we sum all the three equations we have the variation over time of the
adenosine phosphates (mono-, di-, and tri-)

d(xATP + xADP + xAMP )

dt
= v3 − v4

This differential equation is controlled by slow time processes (remind that v3

and v4 are slow). Another pool variable of interest is the sum of high-energy
phosphates (2ATP + ADP )

d(2xATP + xADP )

dt
= −v1 + v2

This aggregate variable depends on intermediately fast reactions. Finally, a
fast changing variable can be constructed as

d(xATP + xADP )

dt
= v−5 − v5

These linear combinations are not coming out of the blue and we may
try to be systematic in their construction. For instance let us look for all
possible pool variables depending on intermediate time responses. We may
write the differential equation as

dx
dt

= Sv
lT dx

dt
= lTSv
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In our case

v =




v1 intermediate
v2 intermediate
v3 slow
v4 slow
v5 fast
v−5 fast

and S =

−1 1 0 0 1 −1
1 −1 0 0 −2 2
0 0 1 −1 1 −1



So, we must find linear combinations l such that

lTS = (·, ·, 0, 0, 0, 0)

That is we have the constraints

lT s3 = lT s4 = lT s5 = lT s6 = 0

where si is the i-th column of S. We may write the corresponding linear
equation system 

sT3
sT4
sT5
sT6

 l = 0

The solution of this equation system are all vectors of the form

l = (2l2, l2, 0)

In particular, (2, 1, 0), that is 2ATP + ADP as analyzed in the example
above is the only linear combination of this kind.

Time scales
Given a linear differential equation system with constant coefficients (this is
always available if we linearize non-linear systems through the Jacobian)

dx

dt
= Jx

its general solution (of the linearized system) is of the form

x =
∑
i

cie
λitvi
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Figure 4: Depending on the module of the real part of the eigenvalues, remind
that eigenvalues may be complex, we have faster (large module) or slower
processes (small module). We expect all real parts to be negative if the
system is stable.

where λi is an eigenvalue of J and vi its corresponding eigenvector. The
constants ci depend on the initial conditions. The eigenvalues of J determine
the different speed processes (the larger its real part in module, the faster
the process is; see Fig. 4).

Constant-volume assumption

Consider the concentration of a given compound in a cell, x, and the
volume of that cell, V . The total amount of that substance in the cell is
given by

M = xV

Its derivative is
dM

dt
=
dx

dt
V + x

dV

dt

If the volume of the cell is constant, then dV
dt

= 0, and

dx

dt
=

1

V

dM

dt

However, there are physiological conditions (e.g., cell division) where the as-
sumption of constant volume is clearly incorrect. Apart from cell division,
the volume in the cell compartments tend to fluctuate over time. However,
not many models include these fluctuations due to the more complex math-
ematical analysis.
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Osmotic balance

Cells normally have semipermeable membranes meaning that water (sol-
vent) and some small molecules can diffuse freely through the membrane but
large molecules (solute) cannot. In a cell, osmotic pressure inside and outside
the cell are normally balanced, Πinside = Πoutside. This puts a constraint on
the concentrations inside and outside the cell, the sum of all concentrations
must be constant:

RT
∑
i

xi,inside = RT
∑
i

xi,outside∑
i

xi,inside =
∑
i

xi,outside

This is particularly important for molecules that split or merge (remind that
the concentration is defined as the number of molecules per unit volume, for
instance molar concentration is x = N

NAV
where N is the number of solute

molecules, NA is Avogadro’s number and V the volume in liters).
Charge balance

Molecules may be neutral, positively or negatively charged (even their
charge depends on the pH of their medium). At a given compartment it
is standard to assume that the net charge is zero, this condition is called
electroneutrality. If the charge of the i-th compound is zi, another constraint
on the concentrations is ∑

i

zixi = 0

3 Palsson. Chap. 3. Dynamic simulation:

the basic procedure

Practical exercise.

4 Palsson. Chap. 4. Chemical reactions

The reversible linear reaction.
Consider the reversible reaction

A
vAB−−⇀↽−−
vBA

B
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The stoichiometric matrix is

S =

(
−1 1
1 −1

)
and the velocity vector

v =

(
kABxA
kBAxB

)
. The only time invariant of this stoichiometric matrix is given by

xA + xB = ct

which simply reflects the fact that A is converted to B and viceversa.
Another interesting variable is defined by the net reaction velocity:

vnt = vAB − vBA = kABxA − kBAxB = kAB

(
xA −

xB
KAB

)
where KAB = kBA

kAB
= xB(equilibrium)

xA(equilibrium)
. The term xA− xB

KAB
measures the distance

from the equilibrium state. So, we may perform a change of variables to

x̃ =

(
1 1
1 − 1

KAB

)
x = Px⇒ x = 1

KAB+1

(
KAB 1

1 −1

)
x̃ =

(KAB x̃1+x̃2
KAB+1
x̃1−x̃2
KAB+1

)
dx̃
dt

= P dx
dt

= PSv =

(
1 1
1 − 1

KAB

)(
−1 1
1 −1

)(
kAB

KAB x̃1+x̃2
KAB+1

kBA
x̃1−x̃2
KAB+1

)
= (KAB + 1)

(
0 0
−1 1

)(
kAB

KAB x̃1+x̃2
KAB+1

kBA
x̃1−x̃2
KAB+1

)
=

(
0 0
−1 1

)(
kAB(KABx̃1 + x̃2)
kBA(x̃1 − x̃2)

)
=

(
0

−(kAB + kBA)x̃2

)
The first equation in this differential equation system states that x̃1 is time
invariant, the second one states that the equilibrium is restored with a time
constant equal to τ2 = 1

kAB+kBA
.

The reversible bilinear reaction.
Consider now the reaction

A+B
v1−−⇀↽−−

v–1

C
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The stoichiometric matrix is given by

S =

−1 1
−1 1
1 −1


and the reaction velocity vector is

v =

(
v1

v−1

)
=

(
k1xAxB
k−1xC

)
The reaction rate is defined as

dxC
dt

= −dxA
dt

= −dxB
dt

= k1xAxB − k−1xC = k1

(
xAxB −

xC
K1

)
where K1 = k−1

k1
. The reaction is at equilibrium when

dxC
dt

= 0⇒ xC = K1xAxB

The left null space of S is formed by all vectors of the form (l3− l2, l2, l3).
A possible basis of this subspace is {(1, 0, 1), (0, 1, 1)}. The corresponding
time invariants are

xA + xC = ct
xB + xC = ct

As we did in the case of the reversible linear reaction, we could define three
new variables, and study the system with these new variables

x̃ =

 xA + xC
xB + xC
xAxB − xC

K1


However, this is not so useful now because the last variable, x̃3 depends
non-linearly on xA and xB.

Instead we may expand the right-hand side of the differential equation as
a multivariate polynomial

dx
dt

=

−k1xAxB + k−1xC
−k1xAxB + k−1xC
k1xAxB − k−1xC

 =

 k−1xC
k−1xC
−k−1xC

+

−k1xAxB
−k1xAxB
k1xAxB


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ODE linearization.
Although, this is not strictly needed because computer simulations can easily
handle non-linearities as we simulate the time evolution of the compound
concentrations, we may want to linearize a ODE system to better understand
its local properties (for instance the structure of its initial conditions and its
equilibrium). Let us assume that we know the initial conditions

xA(0) = 3, xB(0) = 2, xC(0) = 0

and we know k1 = k−1 = K1 = 1. Our equation system is

dx

dt
=

−k1xAxB + k−1xC
−k1xAxB + k−1xC
k1xAxB − k−1xC


For a generic ODE system

dx

dt
= f(x)

we may compute the first derivative of f (the Jacobian)

Jf (x) =
df(x)

dx
=


∂f1
∂xA

∂f1
∂xB

∂f1
∂xC

∂f2
∂xA

∂f2
∂xB

∂f2
∂xC

∂f3
∂xA

∂f3
∂xB

∂f3
∂xC

 (x)

and the ODE can be approximated by

dx

dt
= Jf (x0)x

where x0 is the point about which the linearization is performed.
In our particular case

Jf (x) =

−k1xB −k1xA k−1

−k1xB −k1xA k−1

k1xB k1xA −k−1

⇒ Jf (3, 2, 0) =

−2 −3 1
−2 −3 1
2 3 −1


The eigenvalues of this matrix are −6 and 0 (twice). There is a single degree
of freedom (only 1 eigenvalue is different from 0), and it behaves as a decaying
process whose time constant is τ = 1

6
.
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The equilibrium is achieved for xA,eq, xB,eq, xC,eq such that

3 = xA(0) + xC(0) = xA,eq + xC,eq
2 = xB(0) + xC(0) = xB,eq + xC,eq

xA,eqxB,eq = xC,eq

⇒
xA,eq =

√
3

xB,eq =
√

3− 1

xC,eq = 3−
√

3

The velocity of the reaction at these concentrations is

v(
√

3,
√

3− 1, 3−
√

3) = (0, 0, 0)T

that is, the equilibrium is a critical point. The Jacobian at this point becomes

Jf (
√

3,
√

3− 1, 3−
√

3) =

1−
√

3 −
√

3 1

1−
√

3 −
√

3 1√
3− 1

√
3 −1


whose eigenvalues are −3.4641 and 0 (twice). The process arrives at equilib-
rium following a trajectory with time constant τ = 1

3.4641
. Since the non-zero

eigenvalues are real and negative, the critical point is stable.

5 Palsson. Chap. 5. Enzyme kinetics

Hill kinetics.
Michaelis-Menten model is the simplest enzymatic reaction model (the en-
zyme binds its substrate and then releases the product).

S + E
k−−→ E + P

Hill’s model is a little bit more complicated and the enzyme, E, can be found
in an inactive form, X. This inhibition is performed by an inhibitor, I

E + νI
ki

+

−−⇀↽−−
ki

–
X

ν is normally found to be larger than 1 (even, non-integers), and a more
realistic explanation is given by the symmetry model below. The mass action
equations of the two coupled equations are

dxS
dt

= −v1
dxE
dt

= −v2 + v3
dxP
dt

= v1
dxI
dt

= −ν(v2 − v3)
dxX
dt

= v2 − v3
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with
v1 = kxSxE
v2 = k+

i x
ν
IxE

v3 = k−i xX

The stoichiometric matrix is given by

S =


−1 0 0
0 −1 1
1 0 0
0 −ν ν
0 1 −1


and its left null space provides the following conservation quantities

xS + xP = xS(0)
xE + xX = xE(0)
xI + νxX = xI(0)

The 3 conservation quantities allow reducing the 5 differential equations to
just 2 of them. Let us choose S and E, then the system can be simulated by

dxS
dt

= −kxSxE
dxE
dt

= −k+
i x

ν
IxE + k−i xX

xP = xS(0)− xS
xX = xE(0)− xE
xI = xI(0)− νxX

Simplified Hill kinetics.
If the inhibition of the enzyme is a fast process, then the chemical reaction

E + νI
ki

+

−−⇀↽−−
ki
−

X is at equilibrium (Quasi-Equilibrium Assumption, QEA),

implying

v2 = v3 ⇒

{
k+
i x

ν
IxE = k−i xX ⇒ xX =

(
k+i
k−i

)
xνIxE =

(
xI
Ki

)ν
xE

dxE
dt

= dxI
dt

= dxX
dt

= 0

where Ki =
(
k−i
k+i

) 1
ν

is a “per-site” dissociation constant. We may further

exploit the equilibrium of the enzyme to calculate the concentration of active
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enzyme

xE = xE(0)− xX = xE(0)−
(
xI
Ki

)ν
xE ⇒ xE =

xE(0)

1 +
(
xI
Ki

)ν
The main reaction velocity, v1, can be calculated as

v1 = kxExS =
kxE(0)xS

1 +
(
xI
Ki

)ν =
vmax(xS)

1 +
(
xI
Ki

)ν
where vmax(xS) = kxE(0)xS. The most famous version of Hill’s kinetics is

v =
vmaxx

ν
L

Kν
0.5 + xνL

However, this is the solution to a different problem (a ligand that binds
multiple sites of a substrate). Before blindly applying a known solution we
need to verify if the problem solved and the assumptions are the same to our
problem.

Simmetry model.
Let us consider the inhibition reaction

E + νI
ki

+

−−⇀↽−−
ki

–
X

In reality it is rare that the ν molecules of the inhibitor bind simultaneously
to the enzyme. In practice, this reaction will take place in sequential steps:

E + I
νki

+

−−−⇀↽−−
ki

–
X1

X1 + I
(ν –1) ki

+

−−−−−⇀↽−−−−−
2 ki

–
X2

X2 + I
(ν –2) ki

+

−−−−−⇀↽−−−−−
3 ki

–
X3

...

Xν –1 + I
ki

+

−−⇀↽−−−
νki

–
X
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We may now write the mass action equations

dxS
dt

= −v1 = −kxSxE
dxP
dt

= v1 = kxSxE
dxE
dt

= −v2 + v3 = −νk+
i xIxE + k−i xX1

dxX1

dt
= v2 − v3 − v4 + v5 = νk+

i xIxE − k−i xX1 − (ν − 1)k+
i xIxX1 + 2k−i xX2

dxX2

dt
= v4 − v5 − v6 + v7 = (ν − 1)k+

i xIxX1 − k−i xX2 − (ν − 2)k+
i xIxX2 + 3k−i xX3

...
dxXν−1

dt
= v2(ν−2)+2 − v2(ν−2)+3 − v2(ν−1)+2 + v2(ν−1)+3

= 2k+
i xIxXν−2 − (ν − 1)k−i xXν−1 − k+

i xIxXν−1 + νk−i xX
dxX
dt

= v2(ν−1)+2 − v2(ν−1)+3 = k+
i xIxXν−1 − νk−i xX

dxI
dt

=
ν∑
k=1

(−v2(ν−1)+2 + v2(ν−1)+3)

The time invariants of this system are

xE(0) = xE + xX1 + xX2 + ...+ xν−1 + xX
xI(0) = xI + xX1 + 2xX2 + ...+ (ν − 1)xν−1 + νxX
xS(0) = xS + xP

Nondimensionalization.
Nondimensionalization is a technique that helps to parametrize differential
equations through a process called scaling. This technique stems from Buck-
ingham’s π theorem. This theorem, loosely speaking, states that if an equa-
tion uses n variables and k physical units, then the equation can be written
using only n − k dimensionless parameters. Scaling is normally performed
using 3 steps that we will first illustrate on an exponential decay equation

dx

dt
= −kx

Step 1. List all variables and constants along with their physical units

Variables Units Parameters Units
t s k s−1

x mole · L−1 x0 mole · L−1

Step 2. For each variable define a new dimensionless variable by multi-
plying/dividing that variable by the appropriate parameters.
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Variables Units Parameters Units
t s k s−1

x mole · L−1 x0 mole · L−1

τ = kt -
χ = x

x0
-

Step 3. Rewrite the differential equation using the new variables. For
this we need first to calculate the derivatives

dx
dt

= x0
dχ
dt

= x0
dχ
dτ

dτ
dt

= kx0
dχ
dτ

and then transform the differential equation

kx0
dχ

dτ
= −kx0χ⇒

dχ

dτ
= −χ

Note that none of the terms in this equation has physical units, therefore,
the name nondimensionalization for this procedure. Finally, we solve the
equation and undo the change of variables

dχ

dτ
= −χ⇒ χ(τ) = e−τ ⇒ x(t)

x0

= e−kt ⇒ x(t) = x0e
−kt

Nondimensionalization of Hill kinetics.
Let us repeat this procedure for a more complicated system. Let us take as
an example Hill kinetics which we reproduce here for convenience

dxS
dt

= −kxSxE
dxE
dt

= −k+
i x

ν
IxE + k−i xX

dxP
dt

= kxSxE
dxI
dt

= −ν(k+
i x

ν
IxE − k−i xX)

dxX
dt

= k+
i x

ν
IxE − k−i xX

Step 1.

Variables Units Parameters Units
t s k L ·mole−1 · s−1

xS mole · L−1 s0 mole · L−1

xE mole · L−1 e0 mole · L−1

xP mole · L−1 p0 mole · L−1

xI mole · L−1 i0 mole · L−1

xX mole · L−1 x0 mole · L−1

k+
i Lν ·mole−ν · s−1

k−i s−1
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Step 2.

Variables Units Parameters Units
t s k L ·mole−1 · s−1

xS mole · L−1 s0 mole · L−1

xE mole · L−1 e0 mole · L−1

xP mole · L−1 p0 mole · L−1

xI mole · L−1 i0 mole · L−1

xX mole · L−1 x0 mole · L−1

k+
i Lν ·mole−ν · s−1

k−i s−1

τ = ks0t -
χS = xS

s0
-

χE = xE
e0

-

χP = xP
p0

-

χI = xI
i0

-

χX = xX
x0

-

Step 3. We first calculate the needed derivatives

dxS
dt

= s0
dχS
dt

= s0
dχS
dτ

dτ
dt

= ks2
0
dχS
dτ

dxE
dt

= ks0e0
dχE
dτ

dxP
dt

= ks0p0
dχP
dτ

dxI
dt

= ks0i0
dχI
dτ

dxX
dt

= ks0x0
dχX
dτ

We now rewrite the differential equations in terms of the new variables

ks2
0
dχS
dτ

= −ks0χSe0χE
ks0e0

dχE
dτ

= −k+
i (i0χI)

νe0χE + k−i x0χX
ks0p0

dχP
dτ

= ks0χSe0χE
ks0i0

dχI
dτ

= −ν(k+
i (i0χI)

νe0χE − k−i x0χX)

ks0x0
dχX
dτ

= k+
i (i0χI)

νe0χE − k−i x0χX

23



and rearrange them

dχS
dτ

= − e0
s0
χSχE

dχE
dτ

= −k+i i
ν
0

ks0
χνIχE +

k−i x0
ks0e0

χX
dχP
dτ

= e0
p0
χSχE

dχI
dτ

= −ν k
+
i i
ν−1
0 e0
ks0

χνIχE + ν
k−i x0
ks0i0

χX
dχX
dτ

=
k+i i

ν
0e0

ks0x0
χνIχE −

k−i
ks0
χX

Note that all terms in the differential equation are adimensional as can be
easily verified.

6 Palsson. Chap. 6. Open systems

Reversible reaction in an open environment.
Let us consider the reaction

b1−−→ x1
v1−−⇀↽−−

v–1

x2
b2−−→

where b1 is a constant input flow and b2 = k2x2 is an output flow. We may
write the system as

(
dx1
dt
dx2
dt

)
=

(
1 −1 1 0
0 1 −1 −1

)
b1

k1x1

k−1x2

k2x2


The left null space is {0} meaning that there is no time invariant.

The steady state Svss = 0 is formed by all vectors in the right null space,
which is spanned by the vectors (1, 1, 0, 1) and (0, 1, 1, 0). The former is the
forward path thr ugh the system (b1 → v1 → b2). The latter corresponds
to the reversible reaction (v1 ↔ v−1). All steady states are a non-negative
combination f these two vectors:

vss = (b1, k1x1,ss, k−1x2,ss, k2x2,ss) = a(1, 1, 0, 1) + b(0, 1, 1, 0) a, b ≥ 0

We may also calculate the steady state concentrations. If we analyze the
condition of the steady state, we have:

Svss = 0⇒
(

b1 − k1x1,ss + k−1x2,ss

k1x1,ss − k−1x2,ss − k2x2,ss

)
=

(
0
0

)
⇒
(
x1,ss

x2,ss

)
=
b1

k2

(k2+k−1

k1

1

)
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Substituting x1,ss and x2,ss into vss, we get

vss = b1

(
1, 1 +

k−1

k2

,
k−1

k2

, 1

)
Note that by definition, at the steady state the input flow is equal to the
output flow, b1 = b2. This steady state is achieved for

a = b1 b =
b1k−1

k2

In the absence of external flows (input and output), the system is at equilib-
rium when

x2,eq

x1,eq

=
k1

k−1

We may calculate the ratio between the relationship between x2 and x1 at
equilibrium and at the steady state:

Γ

Keq

=

x2,ss
x1,ss
x2,eq
x1,eq

=

1
k2+k−1
k1

k1
k−1

=
1

1 + k2
k−1

If k2 � k−1 then Γ
Keq
≈ 1, meaning that if the amount of x2 that escapes the

system is much smaller than the amount of x2 that goes back to x1, then the
open system behaves like the closed system.

Michaelis-Menten kinetics in an open environment.
Let us analyze the Michaelis-Menten kinetics of Eq. 1 when the substrate
arrives with an input flow b1 and the product leaves at a flow v3 = k3xP :

b1−→ S + E
kf←→
kb

SE
kcat−−→ E + P

v3−→

We may write the differential equations associated to these reactions

dxS
dt

= b1 − kfxSxE + kbxSE
dxE
dt

= −kfxSxE + kbxSE + kcatxSE
dxSE
dt

= kfxSxE − kbxSE − kcatxSE
dxP
dt

= kcatxSE − k3xP
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Or equivalently
dxS
dt
dxE
dt

dxSE
dt
dxP
dt

 =


1 −1 1 0 0
0 −1 1 1 0
0 1 −1 −1 0
0 0 0 1 −1




b1

kfxExS
kbxSE
kcatxSE
k3xP


There is only one time invariant (left-null space) that is xE + xSE = xE(0).
Let us calculate now the steady state fluxes. The null space of S is spanned
by the vectors (1, 1, 0, 1, 1) and (0, 1, 1, 0, 0) that correspond to a pathway
through the system (v1 → kf → kcat → k3) and the reversible reaction
(vf ↔ vb). In this way,

vss = (b1, kfxE,ssxS,ss, kbxSE,ss, kcatxSE,ss, k3xP,ss) = a(1, 1, 0, 1, 1)+b(0, 1, 1, 0, 0)

If we solve the equation

Svss = 0⇒


xS,ss
xE,ss
xSE,ss
xP,ss

 =


kcat
kf

kb/k−1+1
xE(0)kcat/b1−1

xE(0)− b1
kcat

b1
kcat
b1
k3


The steady state fluxes are then

vss =
(
b1 b1

(
1 + kb

kcat

)
, b1

kb
kcat

, b1, b1

)
That is

b1 = vf − vb = vcat = v3

This steady state is achieved by a = b1 and b = b1
kb
kcat

.

7 Palsson. Chap. 7. Orders of magnitude

To be prepared by students.

8 Palsson. Chap. 8. Stoichiometric struc-

ture

To be prepared by students.
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9 Palsson. Chap. 9. Regulation as elemen-

tary phenomena

Let us consider the simple scheme

v1(x)−−−→ X
v2(x)−−−→

where the concentration of the metabolite X, x, influences the rates of its
own formation, v1(x), and its degradation, v2(x). The dynamic mass balance
is given by

dx

dt
= v1(x)− v2(x)

We may linearize this equation as

dx

dt
=

(
∂v1

∂x
(x0)− ∂v2

∂x
(x0)

)
x = λ(x0)x

where

λ(x0) =
∂v1

∂x
(x0)− ∂v2

∂x
(x0)

is the “net” flux at a concentration x0 of the metabolite.
We may encounter different regulatory situations:

• Unregulation: The metabolite is actually not regulated by itself:

∂v1

∂x
(x0) = 0⇒ λ(x0) < 0

• Feedback inhibition: If the formation of the metabolite is inhibited by
itself, then

∂v1

∂x
(x0) < 0

• Feedback activation: If the formation of the metabolite is activated by
itself, then

∂v1

∂x
(x0) > 0

• Feedforward inhibition: If the degradation of the metabolite is inhib-
ited by itself, then ∂v2

∂x
(x0) is reduced (although it is still positive).

27



• Feedforward activation: If the degradation of the metabolite is acti-
vated by itself, then ∂v2

∂x
(x0) is increased.

Feedback inhibition and feedforward activation stabilize the system, while
feedback activation and feedforward inhibition may create instabilities and
shift the cell to a totally different state.

We may express λ as

λ(x0) = −∂v2

∂x
(x0)

(
1−

∂v1
∂x

(x0)
∂v2
∂x

(x0)

)
= −∂v2

∂x
(x0) (1− a(x0))

If a(x0) < 1, then the system is locally stable (around x0). If a(x0) > 1, then
the system is locally unstable.

Local inhibition with Hill kinetics.
Let us show an example of the application of this theoretical framework to
the case of local inhibition with Hill kinetics at the steady state. Let us
consider

v1(x) = vmax

1+( xK )
2

v2(x) = kx

v1 is Hill-type equation with ν = 2. The steady state is achieved when

v1(xss) = v2(xss)
vmax

1+( xK )
2 = kx(

xss
K

)3
+
(
xss
K

)
− vmax

kK
= 0

This equation is of the form

χ3 + χ− a = 0

with a = vmax
kK

and its solution is

xss = K

(
(9a+

√
3
√

4 + 27a2)1/3

21/332/3
− (2/3)1/3

(9a+
√

3
√

4 + 27a2)1/3

)
The linearization constant λ is

λ = −2K2vmaxxss
(K2 + x2

ss)
2
− k = −k

1 +
2vmax
Kk

xss
K(

1 +
(
xss
K

)2
)2


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Note that λ is always negative, meaning that at the steady state the system
is stable. Depending on the values of vmax, k and K, if xss � K, then
λ ≈ −k meaning that the input is almost unregulated. If xss � K, then
λ ≈ −k meaning that the system is again almost unregulated. The function

x
(1+x2)2

has a maximum at x = 1√
3
, in our case, xss

K
= 1√

3
. The maximum of

this function is 3
√

3
16

so that around the steady state, the maximum achievable
regulation is

λ = −k

(
1 +

2vmax
Kk

3
√

3

16

)
Local activation with Hill kinetics.

Let us consider the creation and degradation flows

v1(x) = vmax
1+α( xK )

ν

1+( xK )
ν

v2(x) = kx

⇒ dx

dt
= vmax

1 + α
(
x
K

)ν
1 +

(
x
K

)ν − kx
Let us nondimensionalize the equation with the change of variables

τ = kt
χ = x

K

}
⇒ dx

dt
=
d(Kχ)

dτ

dτ

dt
= Kk

dχ

dτ

The differential equation becomes

Kk dχ
dτ

= vmax
1+αχν

1+χν
− k(Kχ)

dχ
dτ

= a1+αχν

1+χν
− χ

with a = vmax
Kk

> 0. The steady state of this system is achieved when

a
1 + αχνss
1 + χνss

− χss = 0⇒ χν+1
ss − aαχνss + χss − a = 0

This is a polynomial of degree ν + 1 and has ν + 1 roots. Depending on the
values of α and a many of them may be real, meaning that there are several
steady states, note that only those roots χss = xss

K
> 0 are biologically

plausible. A necessary condition (see Palsson Chap. 9) for the existence of
multiple steady states is

α >

(
1 + ν

1− ν

)2
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The linearization of this nondimensional differential equation gives

λ =
νa(α− 1)χν−1

ss

(1 + χνss)
2
− 1

Depending on the sign of λ at the different steady states, some of them will
be unstable (λ > 0) and some other stable (λ < 0).

Feedback inhibition in pathways.
Consider the biosynthetic pathway represented in Fig. 5.

Figure 5: Biosynthetic pathway example.

A biosynthetic precursor x1 is formed (at constant rate b1) and degraded
(at rate v0 = k0x1)

b1−→ X1
v0−→

If the enzyme X6 is expressed, X1 can be converted to X2

X1 +X6
v1−→ X2 +X6

which is followed by a series of reactions

X2
v2−→ X3

v3−→ X4
v4−→ X5
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The product X5 is exported to another cell compartment at a rate v5

X5
v5−→

The end product X5 binds to the enzyme X6 inhibiting it in an inactive state

X5 + X6
v6−−⇀↽−−

v–6

X7

The differential equations that describe the dynamic behavior of this sys-
tem are

dx1
dt

= b1 − v0 − v1 = b1 − k0x1 − k1x6x1
dx2
dt

= v1 − v2 = k1x6x1 − k2x2
dx3
dt

= v2 − v3 = k2x2 − k3x3
dx4
dt

= v3 − v4 = k3x3 − k4x4
dx5
dt

= v4 − v5 − v6 + v−6 = k4x4 − k5x5 − k6x5x6 + k−6x7
dx6
dt

= −v6 + v−6 = −k6x5x6 + k−6x7
dx7
dt

= v6 − v−6 = k6x5x6 − k−6x7

The sum of the last two equations gives one of the time invariants

dx6

dt
+
dx7

dt
= 0 =

d(x6 + x7)

dt
⇒ x6(t) + x7(t) = eT

where eT is the total amount of the enzyme.
In the synthesis rate of the precursor, b1, increases by a factor 10, thanks

to the negative feedback, the synthesis rate of the metabolic output does not
increase that much (see Fig. 6).

Regulation of protein synthesis.
The end product may also regulate the amount of X6 enzyme present (such
that x6(t) + x7(t) is no longer constant). We may model this by adding two
terms to the dynamics of X6, one corresponding to its formation, controlled
by X5, and another one for its degradation:

dx6
dt

= −v6 + v−6 + v7 − v8 = −k6x5x6 + k−6x7 + k7
1+K7x5

− k8x6

Tight regulation of enzyme activity.
The mechanism above is not too effective in stabilizing the synthesis rate of
the end product (see Palsson, Chap. 9). The reason is that regulated enzymes
normally respond to a more complex model than two (active/inactive) states.
The symmetry model allows this extra control of the enzyme through a series
of binding sites. If the enzyme allows up to 4 X5 molecules, then the extra
reactions to consider are
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Figure 6: Biosynthetic pathway response after 10x increase of precursor syn-
thesis.
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X6 + X5
4 k6−−⇀↽−−
k–6

X7

X7 + X5
3 k6−−−⇀↽−−−
2 k–6

X8

X8 + X5
2 k6−−−⇀↽−−−
3 k–6

X9

X9 + X5
k6−−−⇀↽−−−

4 k–6

X10

The higher the number of binding sites for X5, the more effective is the
negative feedback.
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