10 CHAPTER 1 Linear Equations in Linear Algebra

1.1 EXERCISES

Solve each system in Exercises 1-4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. X + 5X2 = 7
—2.)C1 — 7)C2 =-5

2. 3.X| -+ 6X2 =-3
le + 7X2 =10

3. Find the point (x;, x,) that lies on the line x; 4+ 2x, = 4 and
on the line x; — x, = 1. See the figure.

X2

X1
X +2x,=4

4

4. Find the point of intersection of the lines x; + 2x, = —13
and 3x; —2x, =1

Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

1 -4 =3 0 7
s |01 4 0 6
"o o 1 o0 2
0 0 0 1 —5]
(1 -6 4 0 —17
6 |0 2 -7 0 4
“lo o 1 2 -3
0 0 4 1 2]

In Exercises 7-10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

(17 3 —4

0 1 -1 3
1o 0 o 1
0 0 1 -2
(1 =5 4 0 0]
g [0 1 0 1 0
"o 0o 3 0 o0
0 0 0 2 0]
(1 -1 0 0 =57
o [0 1 2 0 7
“lo o 1 -3 2
L0 0 1 4]

1 3 0 -2 -7
o 1 0 3 6
10. o o 1 0 2

o o0 o0 1 =2
Solve the systems in Exercises 11-14.
11. X2 + 5X3 = —4

X1 + 4x, + 3x3
2x1 + Tx2 + X3

(Il
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12. X — SXZ + 4X3 =-3
2)C1 — 7)C2 + 3X3 =-2
—2)C1 + X2+ 7X3 =-1

13. X1 — 3X3 =
2X1 + 2x, + 9x3 =
X7 —+ 5X3 = -2
14. 2X1 - 6X3 = -8
Xy + 2X3 = 3

3x; + 6x, —2x3 = —4

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.
15. x; — 6x; =5
X, —4x3 4+ x4 =0
—Xx1+ 6x2 + x3+5x,=3
—xy +5x3 +4x, =0

16. 2x, —4xy =—-10
3x, 4+ 3x3 = 0

X3+ 4x, = —1

=3x1 + 2% + 3x3 + x4 = 5

17. Do the three lines 2x; 4+ 3x, = —1, 6x; + 5x, = 0, and
2x; — 5x, = 7 have a common point of intersection? Ex-
plain.

18. Do the three planes 2x| + 4x; + 4x3 = 4, x, — 2x3 = =2,
and 2x; + 3x, = 0 have at least one common point of inter-
section? Explain.

In Exercises 19-22, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 4 1 h =5
o [ ‘] n |y 4 o

1 -2 —4 12 h
Al 2] m] ]

2 -6 -3
In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the
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approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.

23. a.

b. A5 x 6 matrix has six rows.

Every elementary row operation is reversible.

c. The solution set of a linear system involving variables

X1,...,X, isalistof numbers (sy, . .., s,) that makes each
equation in the system a true statement when the values
S1,...,8, are substituted for x1, ..., Xx,, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Two matrices are row equivalent if they have the same

number of rows.
b. Elementary row operations on an augmented matrix never
change the solution set of the associated linear system.
c. Two equivalent linear systems can have different solution
sets.

d. A consistent system of linear equations has one or more
solutions.

25. Find an equation involving g, &, and k that makes
this augmented matrix correspond to a consistent system:

1 4 7 g

0 3 =5 h

-2 5 -9 k

26. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients ¢ and
d? Justify your answer.
2)C1 + 4X2 = f
cx;+dx, = g

27. Suppose a, b, ¢, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, ¢, and
d? Justify your answer.
ax; +bx, = f
cxy+dx, =g

28. Construct three different augmented matrices for linear sys-
tems whose solution setis x; = 3, x, = —2, x3 = —1.
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In Exercises 29-32, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

0o -2 5 3 -1 6

2. |1 3 5|1 3 -5
13 -1 6] ][0 2 5
(13 471 3 —4

3. [0 2 6[,]0 2 6
[0 =5 10] [0 1 -2
1 =2 1 o[t =2 1 o0

3. [0 5 2 8|0 5 —2 8
|4 -1 3 6] |0 7 -1 -6
1 2 -5 0]t 2 -5 o0

32. |10 1 =3 =2{,|0 1 -3 =2
L0 4 —12 7 0O 0 0 15

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let 77, ..., T, denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—to
the left, above, to the right, and below.? For instance,

Ti=(10+20+T +Ty)/4, or 4T, —T>— Ty =30

20° 20°

10° L 2 L

10° P e
30° 30°

33. Write a system of four equations whose solution gives esti-
mates for the temperatures 7, ..., Ty.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

3 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145-149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by
its sum with —1/5 times row 3. (In any case, do not use the x; in equation 2 to
eliminate the 4x; in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)
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(3,4,-2)

Since (3, 4, —2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3,4, —2) does not
satisfy all three equations, it does
not lie on all three planes.

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1/2, and then use the equation to eliminate the x3 terms above
it.)

2. The system corresponding to the augmented matrix is
X1+ 5x3 + 2x3 = —6

4XZ — 7)63 = 2

5X3 = 0

The third equation makes x3 = 0, which is certainly an allowable value for x3. After

eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique

values for x, and x;. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. Itis easy to check if a specific list of numbers is a solution. Set x; = 3, x, = 4, and
x3 = —2, and find that
53) - +2(-2)= 15— 44— 4=7
—23)+6(4) +9(-2)= —-6+24—-18=0
—73) +54) —3(-2)=-214+20+ 6=5
Although the first two equations are satisfied, the third is not, so (3,4, —2) is not a

solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2X]—X2=h
0=k+3h

If k + 3h is nonzero, the system has no solution. The system is consistent for any
values of & and k that make k + 34 = 0.

1.2 | ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.! By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an
arbitrary rectangular matrix and begins by introducing two important classes of matrices
that include the “triangular” matrices of Section 1.1. In the definitions that follow, a
nonzero row or column in a matrix means a row or column that contains at least one
nonzero entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero
row).

'The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination

method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

[0 -« 0 b] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM
1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS

1. Find the general solution of the linear system whose augmented matrix is
1 -3 =5 0
o 1 1 3

2. Find the general solution of the system

X1 —2x, — x3+3x4=0
—2x1 + 4xy + 5x3 — 5x4 =3
3x; —6xp —6x3 + 8x4 =2

1.2 EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

S O = O
S O = O
- o O O
(=R
S O N =
SO OO
S W N =
SN =

[y
(S
1
S O =
—

—_ (e
— O O
| I
c
1
S O =
O = O
p—

— [es]
| I
o
[ e e
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10 1 1] 1 0 0 0
2a [0 1 1 1| b0 2 0 0
0 0 0 0] 0 0 1 1
[0 0 0 0]
ot 2 0 0
“lo o 1 0
0 0 0 1]
01 1 11
g0 0o
"o 0 0o o 1
(0 0 0 0 0

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

1 2 4 8 1 2 4 5
3.2 4 6 8 4. |2 4 5 4
36 9 12 4 5 4 2

5. Describe the possible echelon forms of a nonzero 2 x 2
matrix. Use the symbols ®, %, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 x 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7—-14.

(13 4 7 1 -3 0 -5
13 0 7 6] 15 7 o 9]
[0 1 -2 3 (1 2 -1 4
ol R —6] 015 4 =5 6]
s 0o 15 0
1 [9 -6 12 0 12.
6 4 8 0 0 0 0 1 -7
L 00 0 0 1
(1 -3 0 -1 0 -2
0 1 0 0 —4 1
Blo o 0o 1 9 4
00 0 0 0 o0
(10 =5 0 -8 3]
0 1 4 -1 0 6
Y99 0 0 0o 1 o0
0 0 0 0 0 o0

Exercises 15 and 16 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

] * * *
15. a. 0 u * *
0 0 0 0

0 ] * * *

b. 0 0 ] * *

0o o0 0 ] 0

u * *
16. a 0 L] *
0 0 L]

] * * * *

b. 0 0 u * *

0 0 0 [ ] *

In Exercises 17 and 18, determine the value(s) of /4 such that the
matrix is the augmented matrix of a consistent linear system.

1 -1 4 1 -3 1
1. [_2 ! h] 18, [h : _2}
In Exercises 19 and 20, choose / and k such that the system has (a)

no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

19. x| + hXZ =2 20.
4x1 + 8x, =k

X1 —3X2:1
2X1+hX2:k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.*

21. a. In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different

sequences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

e. If one row in an echelon form of an augmented matrix
is[0 0 0 5 0], then the associated linear system is
inconsistent.

22. a.

b. If every column of an augmented matrix contains a pivot,
then the corresponding system is consistent.

The reduced echelon form of a matrix is unique.

c. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

d. A general solution of a system is an explicit description
of all solutions of the system.

e. Whenever a system has free variables, the solution set
contains many solutions.

23. Suppose the coefficient matrix of a linear system of four
equations in four variables has a pivot in each column. Ex-
plain why the system has a unique solution.

24. Suppose a system of linear equations has a 3 x 5 augmented
matrix whose fifth column is not a pivot column. Is the
system consistent? Why (or why not)?

4 True/false questions of this type will appear in many sections. Methods

for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.



25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose a 3 x 5 coefficient matrix for a system has three
pivot columns. Is the system consistent? Why or why not?

27. Restate the last sentence in Theorem 2 using the concept of
pivot columns: “If a linear system is consistent, then the
solution is unique if and only if ”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system. Can
such a system have a unique solution? Explain.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n x (n + 1) matrix is row reduced to reduced
echelon form. Approximately what fraction of the total
number of operations (flops) is involved in the backward
phase of the reduction when n = 20? when n = 200?

Suppose experimental data are represented by a set of points in the
plane. An interpolating polynomial for the data is a polynomial
whose graph passes through every point. In scientific work,

1.2 Row Reduction and Echelon Forms 23

such a polynomial can be used, for example, to estimate values
between the known data points. Another use is to create curves for
graphical images on a computer screen. One method for finding an
interpolating polynomial is to solve a system of linear equations.

33. Find the interpolating polynomial p(t) = ay + at + a,t*
for the data (1, 6), (2, 15), (3,28). That is, find ay, a;, and
a, such that
ag + ai(1) + ax (1) 6
a4+ a1(2) + a2(2)* = 15
ap + a1(3) + a2(3)> =28

34. [M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 1b) 0 290 14.8 39.6 743 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is traveling
at 750 ft/sec. Use p(t) = ag + at + a>t> + ast>® + at* +
ast®. What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)’

5 Exercises marked with the symbol [M] are designed to be worked with
the aid of a “Matrix program” (a computer program, such as
MATLAB®, Maple™, Mathernatica®, MathCad®, or Derive™, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

SOLUTIONS TO PRACTICE PROBLEMS

1. The reduced echelon form of the augmented matrix and the corresponding system

are

o

The general solution of the
system of equations is the line of
intersection of the two planes.

—2X3=9

X2+ x3=3

-2 9 X1
1 3 :| and

The basic variables are x; and x,, and the general solution is

X1:9+2)C3
XQ=3—X3

X3 is free

Note: It is essential that the general solution describe each variable, with any param-
eters clearly identified. The following statement does not describe the solution:

X1 =94+ 2x3
Xy = 3— X3
x3 = 3 — X, Incorrect solution

This description implies that x, and x3 are both free, which certainly is not the case.
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2. Row reduce the system’s augmented matrix:

1 =2 -1 3 0 1 -2 -1 3 0
-2 4 5 -5 3|~]0 0 3 1 3
3 -6 -6 8 2 (0 0 -3 -1 2|
1 -2 =1 3 0]
~l0o o 3 1 3

(0 0 0 0 5]

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation O = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

S R R

where w; and w, are any real numbers. The set of all vectors with two entries is denoted
by R? (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.!

Two vectors in R? are equal if and only if their corresponding entries are equal.

Thus |:§:| and [Z] are not equal, because vectors in R? are ordered pairs of real

numbers.
Given two vectors u and v in R?, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,

RINHNEH

Given a vector u and a real number ¢, the scalar multiple of u by c is the vector cu
obtained by multiplying each entry in u by c¢. For instance,

. 3 3 15
if u—[_l] and ¢ =5, then cu—5|:_1:|—|:_5:|

IMost of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1-5, and in most of the rest of the text, remain valid if the entries are complex
numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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SOLUTION Does the equation x;a; + xpa, = b have a solution? To answer this, row
reduce the augmented matrix [a; a, b]:

1 5 =3 1 5 =3 1 5 =3

-2 —13 8|~]0 =3 2(~10 =3 2

3 -3 1 0 —18 10 0O 0 -2
The third equation is 0 = —2, which shows that the system has no solution. The vector
equation xja; + x,a, = b has no solution, and so b is not in Span {a;, a,}. |

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per

unit is known:

number| | cost | _ |total

of units | | perunit{ ~ | cost
EXAMPLE 7 A company manufactures two products. For $1.00 worth of product
B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For

$1.00 worth of product C, the company spends $.40 on materials, $.30 on labor, and
$.15 on overhead. Let

45 40
b=| .25 and c¢=1 .30
.15 15

Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x; dollars worth of product B and
X, dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

SOLUTION
a. Compute
45 45
100b = 100| .25 | = | 25
15 15

The vector 100b lists the various costs for producing $100 worth of product
B —namely, $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x; dollars worth of B are given by the vector x;b, and
the costs of manufacturing x, dollars worth of C are given by x,¢. Hence the total
costs for both products are given by the vector x;b + xc. [ ]

PRACTICE PROBLEMS

1. Prove thatu + v = v + u for any u and v in R".
2. For what value(s) of & will y be in Span{vy, v, v3} if
1 5 -3 —4
vi=| -1/, v, = | —4 |, V3 = 1|, and y= 3
-2 -7 0 h
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1.3 EXERCISES

In Exercises 1 and 2, compute u + v and u — 2v.

ves[3e-[3] 2 e[ [ 1]

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, —v, —2v,u + v, u — v, and u — 2v. Notice
that u — v is the vertex of a parallelogram whose other vertices are

u, 0, and —v.

3. uand v as in Exercise 1 4. uand v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent

to the given vector equation.

3 5 2
5. X1 -2 =+ Xx; 0 = -3
8 -9 8

o[ 2] ] o[ 3]-[2]

Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector

in R? a linear combination of u and v?

7. Vectorsa, b, c,and d

8. Vectors w, X, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to

the given system of equations.
9. Xy + 5X3 =0 10.

4x; +6x, — x3=0
—X1 +3X2 —8X3:0

3)C1 — 2)C2 + 4X3 =3
—2)61 — 7)C2 + 5X3 =1
le + 4X2 — 3X3 =2

In Exercises 11 and 12, determine if b is a linear combination of

a;, a,, and as.

1 0 5
11. a = -2 , Ay = 1 , a3 = —6 ,b: —1
| 0 2 ] L 8] | 6|
! 27 6] 117
12. a, = ,ay = 3 ,a3 = 7|,b= -5
L1 =2 | L 5] L 9]

In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13.

14.

15.

16.

1 -4 2 3
A= 0o 3 5|,b=]|-7
| -2 8 —4 | =3 ]
1 0 5 27
A=|-2 1 -6 |,b=]| —1
. 0 2 8] | 6]
1] =57 37
Leta; = 3 1,a,=| —8 |,andb = | =5 |. For what
| —1 | L 2] L N
value(s) of / is b in the plane spanned by a; and a,?
1] 27 [ h]
Letv, = ,Vy = 1 |,andy = | —3 [. For what
-2 7 -5

value(s) of /1 is y in the plane generated by v, and v,?

In Exercises 17 and 18, list five vectors in Span {v,, v,}. For each
vector, show the weights on v; and v, used to generate the vector
and list the three entries of the vector. Do not make a sketch.

17.

18.

19.

20.

21.

22.

3 —4
V| = 1 , Vo = 0
| 2 1
17] -2
vV = 1 , Vo = 3
| —2 ] 0
Give a geometric description of Span {v;, v,} for the vectors
[ 8] 12
v, = 2 [and v, = 3
—6 | -9

Give a geometric description of Span {v|, v,} for the vectors
in Exercise 18.

Let u= 2 and v = 2 . Show that h is in
-1 1 k
Span {u, v} for all & and k.

Constructa 3 x 3 matrix 4, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

a. Another notation for the vector [ _g ] is[—4 3]

b. The points in the plane corresponding to [_§:| and

[ _g ] lie on a line through the origin.

c. An example of a linear combination of vectors v; and v,
is the vector 1v;.



24.

25.

26.

27.

28.

d. The solution set of the linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
set of the equation x;a; + x,a; + x3a; = b.

e. Theset Span {u, v} is always visualized as a plane through
the origin.

a. When u and v are nonzero vectors, Span {u, v} contains
only the line through u and the origin, and the line through
v and the origin.

b. Any list of five real numbers is a vector in R5.

c. Asking whether the linear system corresponding to
an augmented matrix [a; a, a; b] has a solution
amounts to asking whether b is in Span {a;, a,, a3 }.

d. The vector v results when a vector u — v is added to the

vector v.
e. The weights ¢;,...,c, in a linear combination
cvy + -+ + ¢,v, cannot all be zero.
1 0 —4 4
Let A = 0 3 =2 | and b= 1 Denote the
-2 6 3 —4

columns of A4 by aj, a,, a3, and let W = Span{a;, a,, a3}.
a. Isbin{a;,a,, a;}? How many vectors are in {a,, a5, a3}?
b. Isbin W? How many vectors are in W?

c. Show that a, is in W. [Hint: Row operations are unnec-
essary.]

2 0 6 10
Let A=| —1 8 5|, letb= 3 |, and let W be
1 -2 1 7

the set of all linear combinations of the columns of A.
a. Isbin W?

b. Show that the second column of A isin W.

A mining company has two mines. One day’s operation
at mine #1 produces ore that contains 30 metric tons of
copper and 600 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 40 metric tons of
o

and

copper and 380 kilograms of silver. Let v; = |: 6(3)0

\2) 0 :| . Then v, and v, represent the “output per day”

| 4

- |:380

of mine #1 and mine #2, respectively.

a. What physical interpretation can be given to the vector
5V1?

b. Suppose the company operates mine #1 for x; days and

mine #2 for x, days. Write a vector equation whose

solution gives the number of days each mine should

operate in order to produce 240 tons of copper and 2824

kilograms of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For

29.

30.

1.3 Vector Equations 33

each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x; tons of A and x, tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x tons of A and x, tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

Let vy,...,v; be points in R? and suppose that for
Jj =1,...,k an object with mass m is located at point v;.
Physicists call such objects point masses. The total mass of
the system of point masses is

m=my+ -+ myg

The center of gravity (or center of mass) of the system is

1
V= —[mv+--+mv]
m

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

vi=(2,-2,4) 4¢g

v, = (—4,2,3) 2¢g

vy = (4,0,-2) 3¢g

vy = (1,-6,0) 5¢g
X3

\7 \p]
0

X1

Let v be the center of mass of a system of point
masses located at vy,...,v, as in Exercise 29. Is v in
Span{vy,...,v;}? Explain.
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31. A thin triangular plate of uniform density and thickness has solution? Is the solution unique? Use the figure to explain
vertices at vi = (0, 1), v, = (8,1),and v = (2, 4), as in the your answers.
figure below, and the mass of the plate is 3 g. X2
2 V3
Y3
4 [
Metal Plate A4
[ ]
b
V, oV °
1 2
B ——x, 0 "‘
8 oV2
a. Find the (x, y)-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with 33. Use the vectors u = (uy,...,u,), v=(vy,...,v,), and
the center of mass of a system consisting of three 1-gram w = (wy,...,w,) to verify the following algebraic proper-
point masses located at the vertices of the plate. ties of R”.
b. Determine how to distribute an additional mass of 6 g a. (u+v)+w=u+(v+w)

at the three vertices of the plate to move the balance

b. c(u+ v) = cu + cv for each scalar ¢

point of the plate to (2,2). [Hint: Let w;, w,, and w; ) )
denote the masses added at the three vertices, so that 34 Use the vectoru = (u1, ..., u,) to verify the following alge-

w1+w2+w3=6.]

32. Consider the vectors vy, v, v3, and b in R?, shown in the

braic properties of R”.
a ut+(—u)=(—-u)+u=0

figure. Does the equation x;v; + x,v, + Xx3v3 = b have a b. c¢(du) = (cd)u for all scalars ¢ and d

oV h=5
\

Span {vy, v, v3} \\

h=1
—4
The points 3 | lie on a line
h

that intersects the plane when
h=75.

SOLUTIONS TO PRACTICE PROBLEMS

1. Take arbitrary vectorsu = (uy,...,u,)and v = (vy,...,v,) in R”, and compute
u+v=(u +v,...,u, +v,) Definition of vector addition
=W +up,...,v, +uy) Commutativity of addition in R
=v+u Definition of vector addition

2. The vector y belongs to Span {vy, v,, v3} if and only if there exist scalars xy, x2, X3

such that
1 5 -3 —4
xi| =1 [+ x| 4|+ x3 1| = 3
-2 -7 0 h

This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that

1 5 -3 —4 1 5 =3 —4 1 5 -3 —4
-1 -4 1 3|~|0 1 =2 —1 ~10 1 =2 —1
-2 =7 0 h 0 3 -6 h-8 0 0 0 h-5

The system is consistent if and only if there is no pivot in the fourth column. That
is, h — 5 must be 0. So y is in Span {vy, v,, v3} if and only if 1 = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

1.4 | THE MATRIX EQUATION Ax=Db

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.
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If statement (d) is true, then each row of U contains a pivot position and there can be
no pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true.
If (d) is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry.
Then [U d] represents an inconsistent system. Since row operations are reversible,
[U d] can be transformed into the form [ A b]. The new system Ax = b is also
inconsistent, and (a) is false. |

PRACTICE PROBLEMS

1 5 -2 0 _; -7
1. Let A=| -3 1 9 =5]|,p= ,and b = 9 |. It can be shown
0
4 -8 —1 7 4 0

that p is a solution of Ax = b. Use this fact to exhibit b as a specific linear
combination of the columns of A.

2. Let A = |:§ f}, u= [_‘1‘], and v = [_Z ] Verify Theorem 5(a) in this case

by computing A(u + v) and Au + Av.

1.4 EXERCISES

Compute the products in Exercises 1-4 using (a) the definition, as 9. 5x1 4+ x, —3x3=38 10. 4x; — x, =38
in Example 1, and (b) the row—vector rule for computing Ax. If a

I X 2x, +4x3 =0 5x1 +3x, =2
product is undefined, explain why. 3x — xy =
-4 2 3 1 . . . . .
1 | 6 9 2. |3 |: 5 ] Given A and b in Exercises 11 and 12, write the augmented matrix
0 1 7 1 -1 for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.
3 _; ? -2 4 1 3 —4 ; 1 3 —4 -2
. 6 3 132 1 1 11. A= 1 5 2|,b= 4
-3 =7 6 12
In Exercises 5-8, use the definition of Ax to write the matrix | , 1 |
equation as a vector equation, or vice versa. 2. 4=| -3 -4 2|b=
2 5 2 3 -3
5 1 2 =3 1 -1 _ |4
2 31 1= 1 0 3 = , ,
- -1 13. Letu= |4 [and A= | —2 6 |. Is uin the plane in
4 1 1
2 -3 -21 R?* spanned by the columns of A? (See the figure.) Why or
6 3 203 _ 1 why not?
) 8 =5 507 —49 Su?
L2 1 11
4 -5 7 6
-1 3 -8 -8 Plane spanned by
7. xi 7 + X2 _5 + X3 ol~ 0 ":’/_yo.u? the columns of A
—4 1 2 =7 Where is u?
2 -1 —4 0 5
8. Z||:_4]+Zz|: 5]+Z3[ 3]+Z4|:2]=[12] 4 2 5 -1
14. Letu=| —1 [andA=| 0 1 —1 |. Isuinthe subset
In Exercises 9 and 10, write the system first as a vector equation 4 1 2 0

and then as a matrix equation. of R? spanned by the columns of 4? Why or why not?



15. LetA = |: 3 -l :| andb = |:bl :| Show that the equation

-9 3 b,

Ax = b does not have a solution for all possible b, and
describe the set of all b for which AXx = b does have a
solution.

16. Repeat the requests from Exercise 15 with

1 -2 -1 by
A=| -2 2 0|, and b= | b,
4 -1 3 b;

Exercises 17-20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

1 3 0 3 1 4 1 2
1 -1 -1 1 0 1 3 —4
A=1 0 4 2 8| B=l0 2 6 7
2 0 3 —1 2 9 5 —7

17. How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R*?

18. Can every vector in R* be written as a linear combination of
the columns of the matrix B above? Do the columns of B
span R3?

19. Can each vector in R* be written as a linear combination of
the columns of the matrix A above? Do the columns of A
span R*?

20. Do the columns of B span R*? Does the equation Bx =y
have a solution for each y in R*?

1 0 1
0 -1 0
21. Let v; = 1l e= ol V3= 0 Does
L 0| L1 L —1 |
{v1, v, v3} span R*? Why or why not?
M 0] 0] M 47
22. Let v, = Of, vo=1| =3 |, v3=1| -2 Does
-3 L 9 L —6 |

{Vv1, V2, v3} span R*? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a.

b. A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax = b has at least
one solution.

The equation Ax = b is referred to as a vector equation.

c. The equation Ax = b is consistent if the augmented ma-
trix [ A b ] has a pivot position in every row.

d. The first entry in the product Ax is a sum of products.

e. If the columns of an m x n matrix A span R”, then the
equation Ax = b is consistent for each b in R”.

f. If A is an m x n matrix and if the equation Ax = b is
inconsistent for some b in R™, then A cannot have a pivot
position in every row.

24.

25.

26.

27.

28.

29.

30.

31.

1.4 The Matrix Equation Ax =b 44

a. Every matrix equation Ax = b corresponds to a vector
equation with the same solution set.

b. If the equation Ax = b is consistent, then b is in the set
spanned by the columns of 4.

c. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix 4 and vector x.

d. If the coefficient matrix A has a pivot position in every
row, then the equation Ax = b is inconsistent.

e. The solution set of a linear system whose augmented
matrix is [a; a, a; b]isthe same as the solution set
of Ax = b, if A= [al a 33].

f. If A is an m x n matrix whose columns do not span R",
then the equation Ax = b is consistent for every b in R”.

4 -3 1 -3 -7

Note that 5 =2 5 -1 |{=1-3

-6 2 -3 2 10

fact (and no row operations) to find scalars c;, ¢, ¢3 such
-7 4 -3 1
that | =3 | = ¢ 514 2 |+c 5
10 —6 2 -3

Use this

7 3 5
letu=|(2]|, v=|1], and w=| 1

5 3 1
shown that 2u — 3v —w = 0. Use this fact (and no row
operations) to find x; and x, that satisfy the equation

73, 5
2 1 [xl}: 1
5 3 2 1

Rewrite the (numerical) matrix equation below in symbolic

It can be

form as a vector equation, using symbols vy, v, ... for the
vectors and ¢y, ¢, ... for scalars. Define what each symbol
represents, using the data given in the matrix equation.
-3
1
-3 5 -4 9 7 - 11
5 8 1 =2 —4 _1 -1
2

Let q;, q,, q3, and v represent vectors in R3, and let x,, x5,
and x; denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

X1q; + X2q, + X3q3 =V

Construct a 3 x 3 matrix, not in echelon form, whose
columns span R*. Show that the matrix you construct has
the desired property.

Construct a 3 x 3 matrix, not in echelon form, whose
columns do not span R3. Show that the matrix you construct
has the desired property.

Let A be a 3 x 2 matrix. Explain why the equation Ax = b
cannot be consistent for all b in R®. Generalize your ar-
gument to the case of an arbitrary A with more rows than
columns.
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32.

33.

34.

35.

36.

CHAPTER 1 Linear Equations in Linear Algebra

Could a set of three vectors in R* span all of R*? Explain.
What about n vectors in R” when 7 is less than m?

Suppose A is a 4 x 3 matrix and b is a vector in R* with
the property that Ax = b has a unique solution. What can
you say about the reduced echelon form of A? Justify your
answer.

Let A be a 3 x 4 matrix, let v; and v, be vectors in R?, and
let w = v; + v,. Suppose v; = Au; and v, = Au, for some
vectors u; and u, in R*. What fact allows you to conclude
that the system Ax = w is consistent? (Note: u; and u,
denote vectors, not scalar entries in vectors.)

Let A be a 5 x 3 matrix, let y be a vector in R?, and let z be
a vector in R>. Suppose Ay = z. What fact allows you to
conclude that the system Ax = 5z is consistent?

Suppose A is a 4 x 4 matrix and b is a vector in R* with the
property that Ax = b has a unique solution. Explain why the
columns of A must span R*.

[M] In Exercises 37-40, determine if the columns of the matrix
span R*.

E Mastering Linear Algebra Concepts: Span 1-18

37.

39.

40.

41.

42,

7 2 -5 8 4 -5 -1 8
-5 3 4 9| |3 T 42
6 10 =2 7 15 -6 -1 4
-7 9 2 15 9 1 10 7
0 -7 1 4 6
-8 4 -6 —-10 -3
-7 11 =5 -1 -8
| 3 -1 10 12 12
T5 11 -6 -7 12
-7 3 -4 6 -9
15 6 -9 -3
-3 4 -7 2 7

[M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R*.

[M] Find a column of the matrix in Exercise 40 that can be
deleted and yet have the remaining matrix columns still span
R*. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

1
-3
4

is equivalent to the vector equation

1
31 -3
4

-2

5 -2 0 _; -7
19 s o= 9
-8 -1 7] _, 0
5 -2 0 -7
L{+0] 9|—4|-5|=| 9
-8 -1 7 0

which expresses b as a linear combination of the columns of A.

2. u+v=:_411]+:_2
o= [3 AL
Au + Av = :§ ?]:_T

=Ll

=[]
-[553]=15)

J<65 3]

J=[%]
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THEOREM 6 Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form
w = p + v;,, where vj, is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for
the translation. Figure 6 illustrates the case in which there are two free variables. Even
when n > 3, our mental image of the solution set of a consistent system Ax = b (with
b # 0) is either a single nonzero point or a line or plane not passing through the origin.

Ax=hb

—Ax=0

FIGURE 6 Parallel solution sets of
Ax = band Ax = 0.

Warning: Theorem 6 and Fig. 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC
VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

PRACTICE PROBLEMS

1. Each of the following equations determines a plane in R?. Do the two planes
intersect? If so, describe their intersection.

X1+4X2—SX3=0
2x1 — X, +8x3 =9

2. Write the general solution of 10x; — 3x, — 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.
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In Exercises 1-4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.
1. 2X1 — 5X2 + 8X3 =0 2.
—2x1 —Tx, + x3=0
4)C1 + 2X2 + 7X3 =0

X; —2x; 4+ 3x3=0
—2)C1 — 3X2 — 4X3 =0
2)(71 —4X2 + 9X3 =0

3. —3)61 + 4X2 — 8X3 =0 4.
—2X1 4+ 5x, + 4x3 =0

5)61 — 3X2 + 2X3 =0
—3X1 — 4X2 + 2X3 =0
In Exercises 5 and 6, follow the method of Examples 1 and 2
to write the solution set of the given homogeneous system in
parametric vector form.

S. 2X1 + 2X2 + 4X3 =0 6.

—4.X1 — 4X2 — 8X3 =0

—3X2—3X3=0

X1 +2XZ—3X3:0
2)C1 + X — 3X3 =0
—1lx; 4+ x, =0

In Exercises 7-12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

(13 =3 7 1 -3 -8 5
1o 1 -4 5] 8. [o ) —4]
3 -6 6 -1 —4 0 —4
12 4 —2] 10. [ 2 -8 0 8]
1 -4 2 0 3 -5]
0 0 1 0 0 —I
Wlo 0o 0 0 1 -4
L0 0 0 0 0 0]
(1 -2 3 6 5 0]
0 0 0 1 4 -6
2200 0 0 0o o 1
L0 0 0 0 0 0]

13. Suppose the solution set of a certain system of linear equa-
tions can be described as x; = 5 + 4x3, x, = —2 — 7x3, with
x5 free. Use vectors to describe this set as a line in R>.

14. Suppose the solution set of a certain system of linear
equations can be described as x; = 5x4, Xo =3 —2Xxy,
X3 = 2 + 5xy4, with x4 free. Use vectors to describe this set
as a “line” in R*.

15. Describe and compare the solution sets of x; + 5x; —
3.X3 = 0and X1 + 5x, — 3X3 = -2.

16. Describe and compare the solution sets of x; —2x; +
3x3 = 0and x; —2x, + 3x3 = 4.

17. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

2X1 + 2X2 + 4X3 = 8
—4x1 — 4X2 — 8X3 =—16
- 3X2 — 3X3 = 12

18. As in Exercise 17, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

X1 + 2)62 — 3X3 = 5
2)61 + x; — 3)63 =13
—X1 + X3 = -8

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

T3] w2l

In Exercises 21 and 22, find a parametric equation of the line M
through p and q. [Hint: M is parallel to the vector q — p. See the

figure below.]
-3 0
2=l

o[- ]

X2

19. a=|:

X1

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A homogeneous equation is always consistent.

b. The equation Ax = 0 gives an explicit description of its
solution set.

c. The homogeneous equation Ax = 0 has the trivial so-
lution if and only if the equation has at least one free
variable.

d. The equation x = p + tv describes a line through v par-
allel to p.

e. The solution set of Ax = b is the set of all vectors of
the form w = p + v,, where v, is any solution of the
equation Ax = 0.

24.

®

A homogeneous system of equations can be inconsistent.
b. Ifxis anontrivial solution of Ax = 0, then every entry in
X is nonzero.

c. The effect of adding p to a vector is to move the vector in
a direction parallel to p.

d. The equation Ax = b is homogeneous if the zero vector
is a solution.
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e. If Ax = b is consistent, then the solution set of Ax = b
is obtained by translating the solution set of Ax = 0.
25. Prove Theorem 6:
a. Suppose p is a solution of Ax = b, so that Ap = b. Let
v;, be any solution of the homogeneous equation Ax = 0,
and let w = p + v;,. Show that w is a solution of Ax = b.
b. Letw be any solution of AXx = b, and define v, = w — p.
Show that v, is a solution of Ax = 0. This shows that
every solution of AX = b has the form w = p + v;, with
p a particular solution of Ax = b and v, a solution of
Ax = 0.
26. Suppose A is the 3 x 3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax = 0.

27. Suppose Ax = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

In Exercises 28-31, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

28. Ais a3 x 3 matrix with three pivot positions.
29. Ais a4 x 4 matrix with three pivot positions.
30. Aisa?2 x5 matrix with two pivot positions.
31. Ais a3 x 2 matrix with two pivot positions.

32. If b # 0, can the solution set of AX = b be a plane through
the origin? Explain.

33. Constructa 3 x 3 nonzero matrix A such that the vector | 1
1
is a solution of Ax = 0.

34.

35.

36.

37.

38.

39.

Construct a 3 x 3 nonzero matrix A such that the vector
2
—1 | is a solution of Ax = 0.
1

F 1 37
Given A = 7 21 |, find one nontrivial solution of
-2 —6

Ax = 0 by in;pection. [;-Iintz Think of the equation Ax = 0
written as a vector equation. ]

3 27
Given A =| —6 4 |, find one nontrivial solution of
12 -8

Ax = 0 by inspection.
Construct a 2 x 2 matrix A such that the solution set of the
equation Ax = 0 is the line in R? through (4,1) and the
origin. Then, find a vector b in R? such that the solution
set of AXx = b is not a line in R? parallel to the solution set
of Ax = 0. Why does this not contradict Theorem 6?

Let A be an m x n matrix and let w be a vector in R” that
satisfies the equation Ax = 0. Show that for any scalar c,
the vector cw also satisfies Ax = 0. [That is, show that
A(ew) =0.]

Let A be an m x n matrix, and let v and w be vectors in
R" with the property that Av =0 and Aw = 0. Explain
why A(v 4+ w) must be the zero vector. Then explain why
A(cv + dw) = 0 for each pair of scalars ¢ and d.

. Suppose 4 is a 3 x 3 matrix and b is a vector in R3 such that

the equation Ax = b does not have a solution. Does there
exist a vector y in R?® such that the equation Ax =y has a
unique solution? Discuss.

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

1 4 -5 0 1 4 -5 0 1 0 3 4
2 -1 8 9 0 -9 18 9 0o 1 -2 -1
X1 +3x3= 4
Xy — 2)63 =-1
Thus x; = 4 — 3x3, x, = —1 + 2x3, with x3 free. The general solution in paramet-
ric vector form is
X1 4 — 3X3 4 -3
X2 = -1+ 2)(3 = —1 + X3 2
X3 X3 0 1

—
—

The intersection of the two planes is the line through p in the direction of v.
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2. The augmented matrix [ 10 =3 -2 7] is row equivalent to [ 1 -3-2 7 ],
and the general solution is x| = .7 4+ .3x, + .2x3, with x, and x3 free. That is,

X1 T4+ 3x0 + 2x3 i 3 2
X=|Xx | = X7 =1 0| +x] 1]|+4+x3] 0
X3 X3 0 0 1

= p + xu + X3V

The solution set of the nonhomogeneous equation Ax = b is the translated plane
p + Span {u, v}, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

1.6 APPLICATIONS OF LINEAR SYSTEMS

You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input—output” (or “production”) model.! Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

Suppose a nation’s economy is divided into many sectors, such as various manu-
facturing, communication, entertainment, and service industries. Suppose that for each
sector we know its total output for one year and we know exactly how this output is
divided or “exchanged” among the other sectors of the economy. Let the total dollar
value of a sector’s output be called the price of that output. Leontief proved the
following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1 on page 50, where the entries in a column represent the fractional parts of a
sector’s total output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

ISee Wassily W. Leontief, “Input—Output Economics,” Scientific American, October 1951, pp. 15-21.
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Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow
out of the network (300 4 x3 + 600), which simplifies to x3 = 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system
of equations:

X1+ X = 800
Xo — X3 + X4 = 300

X4 + x5 = 500

X1 + x5 = 600
X3 = 400

Row reduction of the associated augmented matrix leads to

X1 + x5 = 600
X2 — X5 = 200

X3 = 400

X4 + x5 = 500

The general flow pattern for the network is described by

x; = 600 — x5
X, = 200 + x5
x3 = 400
X4 = 500 — x5
X5 1s free

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one-way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 < 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2. [ |

PRACTICE PROBLEMS

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x; and x,. [Hint: The example showed that x5 < 500. What does this
imply about x; and x,? Also, use the fact that x5 > 0.]
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1.6 EXERCISES

1.

Suppose an economy has only two sectors: Goods and Ser-
vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

Goods Services

Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese
yen instead of dollars to measure the values of the various
sectors’ outputs. Would this change the problem in any way?
Discuss.

Consider an economy with three sectors: Fuels and Power,
Manufacturing, and Services. Fuels and Power sells 80%
of its output to Manufacturing, 10% to Services, and retains
the rest. Manufacturing sells 10% of its output to Fuels and
Power, 80% to Services, and retains the rest. Services sells
20% to Fuels and Power, 40% to Manufacturing, and retains
the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at
which each sector’s income matches its expenses. Then
write the augmented matrix that can be row reduced to
find these prices.

c. [M] Find a set of equilibrium prices when the price for
the Services output is 100 units.

Suppose an economy has four sectors: Mining, Lumber,
Energy, and Transportation. Mining sells 10% of its output
to Lumber, 60% to Energy, and retains the rest. Lumber
sells 15% of its output to Mining, 50% to Energy, 20% to
Transportation, and retains the rest. Energy sells 20% of its
output to Mining, 15% to Lumber, 20% to Transportation,
and retains the rest. Transportation sells 20% of its output to
Mining, 10% to Lumber, 50% to Energy, and retains the rest.

a. Construct the exchange table for this economy.
b. [M] Find a set of equilibrium prices for the economy.

An economy has four sectors: Agriculture, Manufacturing,
Services, and Transportation. Agriculture sells 20% of its
output to Manufacturing, 30% to Services, 30% to Trans-
portation, and retains the rest. Manufacturing sells 35% of its
output to Agriculture, 35% to Services, 20% to Transporta-
tion, and retains the rest. Services sells 10% of its output to
Agriculture, 20% to Manufacturing, 20% to Transportation,

and retains the rest. Transportation sells 20% of its output
to Agriculture, 30% to Manufacturing, 20% to Services, and
retains the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy if
the value of Transportation is $10.00 per unit.

c. The Services sector launches a successful “eat farm fresh”
campaign, and increases its share of the output from the
Agricultural sector to 40%, whereas the share of Agri-
cultural production going to Manufacturing falls to 10%.
Construct the exchange table for this new economy.

d. [M] Find a set of equilibrium prices for this new economy
if the value of Transportation is still $10.00 per unit.
What effect has the “eat farm fresh” campaign had on the
equilibrium prices for the sectors in this economy?

Balance the chemical equations in Exercises 6—11 using the vector
equation approach discussed in this section.

6.

10.

11.

Aluminum oxide and carbon react to create elemental alu-
minum and carbon dioxide:

A1203 + C— Al + COZ

[For each compound, construct a vector that lists the numbers
of atoms of aluminum, oxygen, and carbon.]

Alka-Seltzer contains sodium bicarbonate (NaHCO;) and
citric acid (H;C¢Hs0O7). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHC03 + H3C6H5O7 — Na3C6H507 + Hzo + C02

Limestone, CaCOs, neutralizes the acid, H;O, in acid rain by
the following unbalanced equation:

H;0 + CaCO3; — H,0 + Ca 4 CO,

Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The
unbalanced equation is

B2S3 + Hzo g H3BO3 + st

[M] If possible, use exact arithmetic or a rational format for
calculations in balancing the following chemical reaction:

PbN6 + CI'Ml'leg — Pb304 + CI'203 + Ml’lOZ + NO

[M] The chemical reaction below can be used in some in-
dustrial processes, such as the production of arsene (AsHj).
Use exact arithmetic or a rational format for calculations to
balance this equation.

MnS + ASQCr]0035 + stO4
—> HMHO4 4+ ASH3 + CrS3012 + Hzo



12. Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the smallest possible value for x,?

B
X2 —> 100

X Y X3

X ee———80
c

13. a. Find the general flow pattern of the network shown in the
figure.

b. Assuming that the flow must be in the directions indi-
cated, find the minimum flows in the branches denoted
by x5, X3, X4, and Xxs.

30 40
VN
Y
A X X C
80 —— 2 5_4—100
B
XYy A Xg
60)—E X3 X4 D—>90
A
A 4
20 40

14. a. Find the general traffic pattern of the freeway network
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shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose
flow is x5 is closed.

¢. When x5 = 0, what is the minimum value of x,?

A X1 B
80 > > < 100
X5y X4 AN
90 < > » 90
D X3 C

15. Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the
general solution of the network flow. Find the smallest
possible value for xg.

A B
60 >—1 ——>70
4\ X6 X2 ‘P
30 €—— —< 100
F C
X5 Xq X3
E D
80 90

SOLUTIONS TO PRACTICE PROBLEMS

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from:

Agriculture Mining Manufacturing Purchased by:
.65 .20 .20 Agriculture
.05 .10 .30 Mining
.30 .70 .50 Manufacturing

2. Since x5 < 500, the equations D and A for x; and x, imply that x; > 100
and x, < 700. The fact that x5 > 0 implies that x; < 600 and x, > 200. So,
100 < x; < 600, and 200 < x, < 700.

1.7 LINEAR INDEPENDENCE

The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax = 0 to the vectors that appear in the vector equations.



60 CHAPTER 1 Linear Equations in Linear Algebra

Mastering: Linear
Independence 1-31

1.7 EXERCISES

In general, you should read a section thoroughly several times to absorb an
important concept such as linear independence. The notes in the Study Guide for
this section will help you learn to form mental images of key ideas in linear algebra.
For instance, the following proof is worth reading carefully because it shows how the
definition of linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some v; in § equals a linear combination of the other vectors, then v; can be
subtracted from both sides of the equation, producing a linear dependence relation
with a nonzero weight (—1) on v;. [For instance, if vi = c2v2 + c3v3, then 0 =
(=1)vi + c2v2 + c3v3 + 0v4 + -+ + 0v,,.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v| is zero, then it is a (trivial)
linear combination of the other vectors in S. Otherwise, v; # 0, and there exist weights
C1,...,Cp, notall zero, such that

cvi+ vy -+ cpv, =0

Let j be the largest subscript for which ¢; # 0. If j = I, then c¢;v; = 0, which is
impossible because v; # 0. So j > 1, and

civy + -+ cjv; +0Vj+1 +"'+0Vp =0

CiV;, = —C1Vp —+++—Cj—1Vj—1

R _G)
v, = Vi+ -+ vj—; N
¢j Cj

PRACTICE PROBLEMS

3 —6 0 3
Letu = 2 (,v= 1 |{,w=| =5 |,andz = 7
—4 7 2 -5

1. Are the sets {u, v}, {u,w},{u,z}, {v,w}, {v,z}, and {w,z} each linearly indepen-
dent? Why or why not?

2. Does the answer to Problem 1 imply that {u, v, w, z} is linearly independent?

3. To determine if {u, v, w,z} is linearly dependent, is it wise to check if, say, w is a
linear combination of u, v, and z?

4. Is {u,v,w,z} linearly dependent?

In Exercises 1-4, determine if the vectors are linearly indepen-

dent. Justify each answer.

0o -3 9 -4 =3 0
2 1 =7 0 -1 5
S -1 4 =5 6. 1 1 =5

5 7 9 0 0 |-l 1 —4 —2 2 1 -10
Llol,| 21| 4 2. 0211 ol ] 3 - -
0 —6 —8 3 -8 1 T 1 4 -3 0 T 1 -2 3 2

s [

3 -9

7.0 -2 -7 5 1 8. |2 4 —6 2
4 [—1] [—3} | -4 -5 7 5 L 0 1 -1 3

In Exercises 9 and 10, (a) for what values of & is v3 in

In Exercises 5-8, determine if the columns of the matrix form a Span {v, v,}, and (b) for what values of % is {vi, v,, v3} linearly

linearly independent set. Justify each answer.

dependent? Justify each answer.



1 -3 5

9. vV = -3 , Vo) = 9 , V3 = —7
| 2] | —6 | L h ]
17 =37 27

10. vV = -3 , Vo) = 9 , V3 = -5
L —5 | L 15 ] L 7]

In Exercises 11-14, find the value(s) of /& for which the vectors
are linearly dependent. Justify each answer.

2 4 -2 3 —6 9

1. | -2 |,| =6 |, 2 12. | —6 |, 41,1 h
L 4] L 71 L ] L 1] L-3] L3]
1] =27 37 17 [-37 [2]

13. 51,1 =9 |, h 14. | -2 |, 71,11
L-3] L 6] L9 L4 [ 6] 7]

Determine by inspection whether the vectors in Exercises 15-20
are linearly independent. Justify each answer.

_ 2 -3
15. f][g][;][_;] 16. | —4 |, 6
L L 8] [ 12
57 To0 -7 -
17. | =3 (,|01,|] 2 18 j][‘é][é]“]
L -1] Lo 4 L
871 [ 2 M1 -2 0
19. | 12],] =3 20. 41,1 51,10
| 4] [ -1 | =7 3 0

In Exercises 21 and 22, mark each statement True or False. Justify
each answer on the basis of a careful reading of the text.

21. a. The columns of a matrix A are linearly independent if the

equation Ax = 0 has the trivial solution.

b. If S isalinearly dependent set, then each vector is a linear
combination of the other vectors in S.

c. The columns of any 4 x 5 matrix are linearly dependent.
d. If x and y are linearly independent, and if {x,y,z} is
linearly dependent, then z is in Span {x, y}.

22, a. If u and v are linearly independent, and if w is in

Span {u, v}, then {u, v, w} is linearly dependent.

b. If three vectors in R? lie in the same plane in R3, then
they are linearly dependent.

c. If aset contains fewer vectors than there are entries in the
vectors, then the set is linearly independent.

d. If asetin R” is linearly dependent, then the set contains
more than n vectors.

In Exercises 23-26, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

23. Ais a2 x 2 matrix with linearly dependent columns.

24. Ais a3 x 3 matrix with linearly independent columns.
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25. Aisa4 x2matrix, 4 = [a,
a.

a], and a, is not a multiple of

26. Ais a4 x3matrix, A =[a; a, a3],such that{a;,a,}is
linearly independent and a; is not in Span {a,, a,}.

27. How many pivot columns must a 6 X 4 matrix have if its
columns are linearly independent? Why?

28. How many pivot columns must a 4 x 6 matrix have if its
columns span R*? Why?

29. Construct 3 x 2 matrices A and B such that Ax = 0 has a
nontrivial solution, but Bx = 0 has only the trivial solution.

30. a. Fill in the blank in the following statement: “If A4 is
an m x n matrix, then the columns of A are linearly

independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row
operations. [Hint: Write Ax = 0 as a vector equation.]

2 3 57
. -5 1 —4 .
31. Given A = 3 1 —al observe that the third column
1 0 1

is the sum of the first two columns. Find a nontrivial solution
of Ax = 0.

4 3 =57
32. GivenA=| -2 -2 4 |, observe that the first column
-2 =3 7

minus three times the second column equals the third column.

Find a nontrivial solution of Ax = 0.

Each statement in Exercises 33-38 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such
an example is called a counterexample to the statement. If a
statement is true, give a justification. (One specific example
cannot explain why a statement is always true. You will have to
do more work here than in Exercises 21 and 22.)

33. Ifv,,...,vgareinR*and v; = 2v| + v, then {v,, v5, v3, v4}
is linearly dependent.

34. If v, and v, are in R* and v, is not a scalar multiple of vy,
then {v;, v,} is linearly independent.

35. If vy,...,vs are in R3 and v3 = 0, then {v|, V2, V3, V4, Vs} is
linearly dependent.

36. If vy, v, v3 are in R? and v; is not a linear combination of
V1, V2, then {v, v,, v3} is linearly independent.

37. If vy,..., vy are in R* and {v,, v,, v3} is linearly dependent,
then {v,, v,, v3, v4} is also linearly dependent.

38. If {v,,...,v4}is alinearly independent set of vectors in R*,
then {v;, vy, v3} is also linearly independent. [Hint: Think
about x;v; + xovs + x3v3 + 0-vy = 0.]

39. Suppose A is an m x n matrix with the property that for all b
in R” the equation Ax = b has at most one solution. Use the
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definition of linear independence to explain why the columns 1210 =6 8 4 -l4

of A must be linearly independent. -7 -6 4 -5 -7 9

. . . 42. A= 9 9 -9 9 9 —18
40. Suppose an m x n matrix A has n pivot columns. Explain 4 -3 —1 0 -8 1

why for each b in R” the equation Ax = b has at most one 8 7 -5 6 1 —11
solution. [Hint: Explain why Ax = b cannot have infinitely

many solutions.
Y ] 43. [M] With A and B as in Exercise 41, select a column v of A

[M] In Exercises 41 and 42, use as many columns of A as possible that was not used in the construction of B and determine if
to construct a matrix B with the property that the equation Bx = 0 v is in the set spanned by the columns of B. (Describe your
has only the trivial solution. Solve Bx = 0 to verify your work. calculations.)

3 -4 10 7 -4

-5 -3 7 —11 15 44. [M] Repeat Exercise 43 with the matrices A and B from

41. A= . . . .

4 3 5 2 1 Exercise 42. Then give an explanation for what you discover,

8 —7 23 4 15 assuming that B was constructed as specified.

SOLUTIONS TO PRACTICE PROBLEMS

Span{u, v, z) 1. Yes. In each case, neither vector is a multiple of the other. Thus each set is linearly
independent.

2. No. The observation in Practice Problem 1, by itself, says nothing about the linear
independence of {u, v, w,z}.

3. No. When testing for linear independence, it is usually a poor idea to check if one
selected vector is a linear combination of the others. It may happen that the selected
vector is not a linear combination of the others and yet the whole set of vectors is
linearly dependent. In this practice problem, w is not a linear combination of u, v,
and z.

4. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation Ax = b and the associated vector equation
xia; + -+ + x,a, = b is merely a matter of notation. However, a matrix equation
Ax = b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.

For instance, the equations

1 1
A HE
1
? v r ?
A X b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Fig. 1.
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2. If x and y are production vectors, then the total cost vector associated with the
combined production x +y is precisely the sum of the cost vectors 7°(x) and

T(y).

PRACTICE PROBLEMS

1. Suppose T : R®> — R?and T (x) = Ax for some matrix A and for each x in R>. How
many rows and columns does A have?

1

2. LetA = |:0 _1

0 . . . .
:|. Give a geometric description of the transformation x > Ax.

3. The line segment from 0 to a vector u is the set of points of the form ru, where
0 <t < 1. Show that a linear transformation 7" maps this segment into the segment

between 0 and 7 (u).

1.8 EXERCISES

1. Letd = [(2) (2):|,anddeﬁneT:]R{2—>]R2byT(x)=Ax.
Find the images under 7" of u = [_;] andv = [Z]
10 0 3 a
2.Llet A= 0 § O|,u=]| 6| andv=]|5h
0 0 % -9 c

Define T : R?® — R3 by T(x) = Ax. Find T'(u) and T'(v).

In Exercises 3-6, with T defined by 7'(x) = Ax, find a vector x
whose image under 7 is b, and determine whether x is unique.

1 0 -3 -2
3.4=1-3 1 6l|,p=]| 3
2 2 -1 -1

1 -2 3 -6

4. A=10 1 =3|,b=|—4
2 -5 6 -5

1 -5 -7 )
sa=| .y 5 e 3]

Tl -3 2 1

3 -8 8 6

6 A=1y 1 2|'P=]| 3

1 0 8 10

7. Let A be a 6 x 5 matrix. What must ¢ and b be in order to
define T : R — R? by T'(x) = Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R? into R by the rule T'(x) = Ax?

For Exercises 9 and 10, find all x in R* that are mapped into the
zero vector by the transformation x > Ax for the given matrix A.

1 -3 5 -5
9. A=|0 1 -3 5
2 —4 4 —4

32 10 -6
1 0 2 -4
10. A= 0 1 ) 3
1 4 10 8
-1
11. Letb = 1 |, and let A be the matrix in Exercise 9. Is b
0
in the range of the linear transformation x > Ax? Why or
why not?
e
12. Letb = _i , and let A be the matrix in Exercise 10. Is
— 4 -
b in the range of the linear transformation x — Ax? Why or
why not?

In Exercises 13—16, use a rectangular coordinate system to plot

u= [ ; ], V= |: _i ], and their images under the given transfor-
mation 7'. (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what 7" does to each vector x

in R2.

13. T(x) = :_(1) _?][2]
14. T(x) = (2) 22
15. T(x) = _(1) (1)2
16. T(x) = :8 32

17. Let T : R?> — R? be a linear transformation that maps u =

3. 4 3. —1
|:4:|1nto|:1:|andmapsv—|:3:|1nt0|: 3:|.Usethefact

that 7" is linear to find the images under 7' of 2u, 3v, and
2u + 3v.



18.

19.

20.

The figure shows vectors u, v, and w, along with the images
T (u) and T'(v) under the action of a linear transformation
T : R? — R2. Copy this figure carefully, and draw the image
T (w) as accurately as possible. [Hint: First, write w as a
linear combination of u and v.]

X

T(v)

° T(u)

Lete, = [é],ez = [?],yl = |:§i|,andy2 = [_é],and

let 7 : R*> — R? be a linear transformation that maps e; into

X2

_ X1 _ -3 _ 7
Let x = |:x2]’ A2 —|: 5], and v, = [_2], and let

T : R? — R? be a linear transformation that maps x into
X1Vy + X»V,. Find a matrix A such that 7'(x) is Ax for each x.

y, and maps e, into y,. Find the images of [ _g ] and[ " ]

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

23.

a. A linear transformation is a special type of function.

b. If Ais a3 x 5 matrix and 7T is a transformation defined
by T(x) = Ax, then the domain of T is R3.

c. If Aisanm x n matrix, then the range of the transforma-
tion X > Ax is R™.

d. Every linear transformation is a matrix transformation.
e. A transformation 7 is linear if and only if
T(c1vi + cava) = 1T (Vi) + ¢2T(v2)

for all v, and v, in the domain of 7" and for all scalars ¢,
and ¢,.

a. The range of the transformation x > AXx is the set of all
linear combinations of the columns of A.

b. Every matrix transformation is a linear transformation.

c. If T:R" — R" is a linear transformation and if ¢ is in
R™, then a uniqueness question is “Is ¢ in the range of
T?”

d. Alinear transformation preserves the operations of vector
addition and scalar multiplication.

e. A linear transformation 7' : R” — R” always maps the
origin of R” to the origin of R".

Define f : R — R by f(x) = mx + b.
a. Show that f is a linear transformation when b = 0.

b. Find a property of a linear transformation that is violated
when b # 0.

c. Why is f called a linear function?

24.

25.

26.

217.

28.

29.

30.

31.

1.8 Introduction to Linear Transformations 69

An affine transformation T : R" — R has the form T'(x) =
Ax + b, with A an m x n matrix and b in R”. Show
that 7 is not a linear transformation when b # 0. (Affine
transformations are important in computer graphics.)

Givenv # 0 and p in R”, the line through p in the direction of
v has the parametric equation X = p + #v. Show that a linear
transformation 7" : R” — R” maps this line onto another line
or onto a single point (a degenerate line).

a. Show that the line through vectors p and q in R” may be
written in the parametric form x = (1 —7)p + tq. (Refer
to the figure with Exercises 21 and 22 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form (1 —#)p + ¢q for 0 < ¢ < 1 (as shown in the figure
below). Show that a linear transformation 7" maps this
line segment onto a line segment or onto a single point.

(r=0)p T(q@)

X
(1-Dp+1q Tx)

T(p)
(t=Dgq

Let u and v be linearly independent vectors in R?, and let P
be the plane through u, v, and 0. The parametric equation
of P is x =su+¢tv (with s,¢ in R). Show that a linear
transformation 7 : R®* — R? maps P onto a plane through 0,
or onto a line through 0, or onto just the origin in R*. What
must be true about 7'(u) and 7'(v) in order for the image of
the plane P to be a plane?

Letu and v be vectors in R”. It can be shown that the set P of
all points in the parallelogram determined by u and v has the
formau + bv,for0 <a <1,0<b <1.LetT :R" - R”
be a linear transformation. Explain why the image of a point
in P under the transformation 7 lies in the parallelogram
determined by 7'(u) and 7'(v).

Let T : R? — R? be the linear transformation that reflects
each point through the x,-axis. Make two sketches similar
to Fig. 6 that illustrate properties (i) and (ii) of a linear
transformation.

Suppose vectors vy, ...,v, span R", and let 7 : R" — R"
be a linear transformation. Suppose T(v;) =0 for i =
1,..., p. Show that T is the zero transformation. That is,
show that if x is any vector in R”, then 7'(x) = 0.

Let 7 :R" — R™ be a linear transformation, and let
{V1, V2, v3} be a linearly dependent set in R”. Explain why
the set {7'(vy), T(v2), T (v3)} is linearly dependent.

In Exercises 32-36, column vectors are written as rows, such as
X = (X1, x2), and T'(x) is written as T (x1, x,).

32.

33.

Show that the transformation 7 defined by T (x|, x,) =
(x1 — 2|x2], x; — 4x7) is not linear.

Show that the transformation 7 defined by T(x,x,) =
(x1 — 2x2, x; — 3,2x; — 5x3) is not linear.
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34. Let T :R?® — R? be the transformation that reflects each

vector X = (X1, X5, x3) through the plane x3; =0 onto 37.

T(x) = (x1, X2, —x3). Show that T is a linear transforma-
tion. [See Example 4 for ideas.]

35. Let T : R3 — R? be the transformation that projects each

vector X = (X1, X2, x3) onto the plane x, =0, so T(x) = 39.

(x1,0, x3). Show that T is a linear transformation.

36. Let T : R" — R™ be a linear transformation. Suppose {u, v}
is a linearly independent set, but {7 (u), 7' (v)} is a linearly
dependent set. Show that 7(x) = 0 has a nontrivial solution.
[Hint: Use the fact that ¢;T(u) + ;T (v) =0 for some 4
weights ¢; and ¢,, not both zero.]

[M] In Exercises 37 and 38, the given matrix determines a linear
transformation 7'. Find all x such that 7'(x) = 0.

2 3 5 =5 3 4 -7 0
-7 7 0 0 5 -8 7 4
-3 4 1 3 38. 6 -8 6 4
-9 3 —6 —4 9 -7 =2 0
e
[M] Letb = ; and let A be the matrix in Exercise 37.
-3

Is b in the range of the transformation x > Ax? If so, find
an X whose image under the transformation is b.

4
—4

. [M] Letb = and let A be the matrix in Exercise 38.

—4
- _7 -

Is b in the range of the transformation x — Ax? If so, find

an X whose image under the transformation is b.

E Mastering: Linear Transformations 1-34

SOLUTIONS TO PRACTICE PROBLEMS

x, 1. A must have five columns for Ax to be defined. A must have two rows for the
Au codomain of T to be R2.
v :.: T 2. Plot some random points (vectors) on graph paper to see what happens. A point such

X

x-axis (or x-axis).

o T
< 1
—_—
=e
= oo

. as (4, 1) maps into (4, —1). The transformation x — Ax reflects points through the

3. Letx = ruforsomet suchthatO0 < ¢ < 1. Since 7 is linear, 7'(tu) = ¢ T (u), which

The transformation X — AX. is a point on the line segment between 0 and 7 (u).

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation 7" arises geometrically or is described in words, we
usually want a “formula” for 7'(x). The discussion that follows shows that every linear
transformation from R” to R” is actually a matrix transformation x — Ax and that
important properties of 7" are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns

of the n x n identity matrix /,,.

T(e) =

EXAMPLE 1 The columns of I, = |:1 (1)1| are e = |:(])i| and e, = |:(1):| Sup-

0

pose T is a linear transformation from R? into R? such that

5 -3
-7 and T(ep) = 8
2 0

]
e, =
: [O With no additional information, find a formula for the image of an arbitrary x in R2.
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The transformation 7" is not
onto R3.
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Let 7 : R” — R"™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R” onto R™ if and only if the columns of A span R";

b. T is one-to-one if and only if the columns of A4 are linearly independent.

PROOF

a. By Theorem 4 in Section 1.4, the columns of 4 span R™ if and only if for each b
in R™ the equation Ax = b is consistent—in other words, if and only if for every b,
the equation 7'(x) = b has at least one solution. This is true if and only if 7 maps
R" onto R™.

b. The equations 7'(x) = 0 and Ax = 0 are the same except for notation. So, by
Theorem 11, 7" is one-to-one if and only if Ax = 0 has only the trivial solution.
This happens if and only if the columns of A are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7. [ |

Statement (a) in Theorem 12 is equivalent to the statement “7 maps R” onto R”
if and only if every vector in R™ is a linear combination of the columns of 4.” See
Theorem 4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as x = (x1, x3), and 7'(x) is written as 7' (x;, x;) instead of the more formal
T((x1,x2)).

EXAMPLE 5 Let T(x1,x2) = (3x; + x3, 5x1 + 7x2, X1 + 3x2). Show that T is a
one-to-one linear transformation. Does 7" map R? onto R3?

SOLUTION When x and 7'(x) are written as column vectors, you can determine the
standard matrix of 7" by inspection, visualizing the row—vector computation of each
entry in AX.

3x1 + X ? ? X 3 1 X
T(x)=|5x+7x | =]2 2 [1]= 5 7 [xl} 4)
X1+3X2 1 3 2

~
EN
~

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. By Theorem
12(b), T is one-to-one. To decide if T is onto R3, examine the span of the columns of
A. Since A is 3 x 2, the columns of A span R? if and only if 4 has 3 pivot positions,
by Theorem 4. This is impossible, since A has only 2 columns. So the columns of 4 do
not span R3, and the associated linear transformation is not onto R3. [ |

PRACTICE PROBLEM

Let T : R? — R? be the transformation that first performs a horizontal shear that maps
e, into e, — .5e; (but leaves e; unchanged) and then reflects the result through the x,-
axis. Assuming that 7T is linear, find its standard matrix. [Hint: Determine the final
location of the images of e; and e;.]



78 CHAPTER 1 Linear Equations in Linear Algebra

1.

9 EXERCISES

In Exercises 1-10, assume that 7 is a linear transformation. Find
the standard matrix of 7.

1.

10.

11.

12.

13.

14.

T :R?>— R%T(e) = (3,1,3,1),and T (e;) = (—5,2,0,0),
where e; = (1,0) and e; = (0, 1).

T:R*—=R2 T(e)=(1,4), T(e)=(-2,9), and
T(e3) = (3,—8), where e;, e,, and e; are the columns of
the 3 x 3 identity matrix.

T : R? — R? is a vertical shear transformation that maps e,
into e; — 3e,, but leaves e, unchanged.

T : R? — R?is a horizontal shear transformation that leaves
e; unchanged and maps e; into e, + 2e;.

T : R? — R? rotates points (about the origin) through /2
radians (counterclockwise).

T : R* — R? rotates points (about the origin) through
—3m/2 radians (clockwise).

T : R?> — R? first rotates points through —3m/4 radians
(clockwise) and then reflects points through the horizontal

xi-axis. [Hint: T(e)) = (—1/v/2,1/+/2).]

T : R* — R? first performs a horizontal shear that trans-
forms e, into e, + 2e; (leaving e; unchanged) and then re-
flects points through the line x, = —x;.

T : R* — R? first reflects points through the horizontal x;-
axis and then rotates points —z /2 radians.

T : R? — R? first reflects points through the horizontal x;-
axis and then reflects points through the line x, = x;.

A linear transformation T : R? — R? first reflects points
through the x;-axis and then reflects points through the x,-
axis. Show that 7" can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

Show that the transformation in Exercise 10 is merely a
rotation about the origin. What is the angle of the rotation?

Let T : R? — R? be the linear transformation such that 7'(e;)
and T'(e,) are the vectors shown in the figure. Using the
figure, sketch the vector 7'(2, 1).

X

T(e,) T(e,)
L]

| K

Let T : R?> — R? be a linear transformation with standard
matrix A = [a; a,], where a; and a, are shown in the
figure at the top of column 2. Using the figure, draw the

image of [ _; i| under the transformation 7'.

X2
0d)

X1
°

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.

16.

? X1 2X1 —4X2
? X2 | = X1 — X3
_{7 X3 —X3 + 3)63
_? ? 3X1 —2X2

X1
? ? |: ] = X1 +4XZ
X2
_? X2

In Exercises 17-20, show that 7" is a linear transformation by
finding a matrix that implements the mapping. Note that x;, x,, ...
are not vectors but are entries in vectors.

17.
18.
19.
20.
21.

22,

T(x1, X2, X3, x4) = (X1 4 2x2,0,2x5 + X4, X2 — X4)
T(x1,x2) = (x1 +4x2,0,x; — 3x2,x1)

T(x1, X2, x3) = (%1 — 5x2 + 4x3, X2 — 6x3)
T(x1, X3, X3, X4) = 3x; + 4x3 — 2x4 (Notice: T : R* — R)

Let T :R?> — R? be a linear transformation such that
T (x1,x3) = (x1 + X2,4x; 4+ 5x;). Find x such that 7'(x) =
(3,8).

Let T:R?>—R?> be a linear transformation with
T (x1,x3) = (2x; — X2, —3x] + X»,2x; — 3x,). Find x such
that 7'(x) = (0, —1,—4).

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

24.

a. A linear transformation 7" : R” — R is completely de-
termined by its effect on the columns of the n x n identity
matrix.

b. If T : R? — R? rotates vectors about the origin through
an angle ¢, then 7 is a linear transformation.

¢. When two linear transformations are performed one after
another, the combined effect may not always be a linear
transformation.

d. A mapping 7 : R” — R"” is onto R™ if every vector X in
R” maps onto some vector in R”.

e. If A is a 3 x 2 matrix, then the transformation x > Ax
cannot be one-to-one.

a. If A is a 4 x 3 matrix, then the transformation x — Ax
maps R? onto R*.



b. Every linear transformation from R” to R" is a matrix
transformation.

c. The columns of the standard matrix for a linear transfor-
mation from R” to R are the images of the columns of
the n x n identity matrix under 7'.

d. A mapping 7 : R" — R™ is one-to-one if each vector in
R" maps onto a unique vector in R”.

e. The standard matrix of a horizontal shear transformation

from R? to R? has the form

are £1.

a 0
0 e where a and d

In Exercises 25-28, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

25. The transformation in Exercise 17

26. The transformation in Exercise 2

27. The transformation in Exercise 19

28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the
standard matrix for a linear transformation 7". Use the notation of
Example 1 in Section 1.2.

29. T :R?®— R*is one-to-one. 30. 7 :R* — R?is onto.

31. Let T :R" — R"™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “7T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look
in the exercises for Section 1.7.]

32. Let T : R" — R™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “7 maps R” onto R” if and only if A has
pivot columns.” Find some theorems that explain why the
statement is true.
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33. Verify the uniqueness of A in Theorem 10. Let 7 : R” — R™
be a linear transformation such that 7'(x) = Bx for some
m X n matrix B. Show that if A is the standard matrix for
T, then A = B. [Hint: Show that A and B have the same
columns. ]

34, Let S :R? - R" and T : R” — R™ be linear transforma-
tions. Show that the mapping x > T'(S(x)) is a linear trans-
formation (from R” to R™). [Hint: Compute 7' (S(cu + dv))
for u,v in R” and scalars ¢ and d. Justify each step of
the computation, and explain why this computation gives the
desired conclusion. ]

35. If a linear transformation 7" : R” — R” maps R” onto R",
can you give a relation between m and n? If T' is one-to-one,
what can you say about m and n?

36. Why is the question “Is the linear transformation 7" onto?”
an existence question?

[M] In Exercises 37-40, let T' be the linear transformation whose
standard matrix is given. In Exercises 37 and 38, decide if 7T is
a one-to-one mapping. In Exercises 39 and 40, decide if 7" maps
R onto R?. Justify your answers.

-5 6 -5 —6 7 5 9 -9

8 3 -3 8 5 6 4 —4

37. 2 9 5 —-12 38. 4 8 0 7
3 2 7 -12 -6 -6 6 5

6 -8 5 12 =8
39. | =7 10 =8 -9 14

4. | -8 -6 12 -5 -9

|13 14 15 3 11|

SOLUTION TO PRACTICE PROBLEM

Follow what happens to e; and e,. See Fig. 5. First, e; is unaffected by the shear and
then is reflected into —e;. So T'(e;) = —e;.

Second, e, goes to e, — .5e; by the shear

o [s F '
\_/

Shear transformation

Reflection through the xz—axis

FIGURE 5 The composition of two transformations.
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transformation. Since reflection through the x,-axis changes e; into —e; and leaves
e, unchanged, the vector e, — .5e; goes to e; + .5e;. So T'(e;) = e, + .5e;. Thus the
standard matrix of T is

[Te) Ten]=[- e+ se]=| " 7]

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND ENGINEERING

The mathematical models in this section are all linear; that is, each describes a problem
by means of a linear equation, usually in vector or matrix form. The first model concerns
nutrition but actually is representative of a general technique in linear programming
problems. The second model comes from electrical engineering. The third model
introduces the concept of a linear difference equation, a powerful mathematical tool for
studying dynamic processes in a wide variety of fields such as engineering, ecology,
economics, telecommunications, and the management sciences. Linear models are
important because natural phenomena are often linear or nearly linear when the variables
involved are held within reasonable bounds. Also, linear models are more easily adapted
for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet

The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this
diet at Cambridge University after more than eight years of clinical work with obese
patients.! The very low-calorie powdered formula diet combines a precise balance
of carbohydrate, high-quality protein, and fat, together with vitamins, minerals, trace
elements, and electrolytes. Millions of persons have used the diet to achieve rapid and
substantial weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk
was a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate. . . .

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.?

EXAMPLE 1 [Ifpossible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in
one day (Table 1).

I'The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2, 321-332.

2Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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The vectors in (6) and (7) account for all of the population in 2001.3 Thus
"l .95 " 031 195 .03 || ro
si| T los | Tl 97| T 05 97| so

x| = Mxy 3)

That is,

where M is the migration matrix determined by the following table:

From:
City Suburbs To:

95 .03 City
05 .97 Suburbs

Equation (8) describes how the population changes from 2000 to 2001. If the migration
percentages remain constant, then the change from 2001 to 2002 is given by

Xy = MX]
and similarly for 2002 to 2003 and subsequent years. In general,
Xpt+1 = Mx; fork =0,1,2,... ©))

The sequence of vectors {Xg, X;, Xz, ...} describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years
2001 and 2002, given that the population in 2000 was 600,000 in the city and 400,000
in the suburbs.

600,000
400,000

N .95 .03 || 600,000 | | 582,000
"7 1.05 .97 || 400,000 | ~ | 418,000

95 .03 || 582,000 | | 565,440
.05 .97 || 418,000 | — | 434,560

SOLUTION The initial population in 2000 is xo = |: ] For 2001,

For 2002,

Xy = M X = |: |

The model for population movement in (9) is linear because the correspondence
X > Xk +1 1s a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices
is found by adding the movement of people from the different areas.

PRACTICE PROBLEM
Find a matrix 4 and vectors x and b such that the problem in Example 1 amounts to

solving the equation Ax = b.

3For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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1.10 EXERCISES

1. The container of a breakfast cereal usually lists the number

classical Mac and Cheese to Annie’s® Whole Wheat

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Setup a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

4.

Shells and White Cheddar. What proportions of servings
of each food should she use to meet the same goals as in
part (a)?

The Cambridge Diet supplies .8 g of calcium per day, in
addition to the nutrients listed in the Table 1 for Example
1. The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g of
protein, O g of carbohydrate, 3.4 g of fat, and .18 g of calcium.

General Mills Quaker® a. Set up a matrix equation whose solution determines the
Nutrient Cheerios 100% Natural Cereal amounts of nonfat milk, soy flour, whey, and isolated
Calorics 110 130 soy protein necessary to supply the precise amounts of
. protein, carbohydrate, fat, and calcium in the Cambridge
Protein (g) 4 3 Diet. State what the variables in the equation represent.
Carbohydrate (g) 20 18 b. [M] Solve the equation in (a) and discuss your answer.
Fat (g) 2 5

. One serving of Shredded Wheat supplies 160 calories, 5 g of

protein, 6 g of fiber, and 1 g of fat. One serving of Crispix®

supplies 110 calories, 2 g of protein, .1 g of fiber, and .4 g of

fat.

a. Setup a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

b. [M] Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

. After taking a nutrition class, a big Annie’s® Mac and Cheese
fan decides to improve the levels of protein and fiber in
her favorite lunch by adding broccoli and canned chicken.
The nutritional information for the foods referred to in this
exercise are given in the table below.

Nutrition Information per Serving

Mac and Cheese Broccoli Chicken Shells
Calories 270 51 70 260
Protein (g) 10 5.4 15 9
Fiber (g) 2 5.2 0 5

Nutrient

a. [M] If she wants to limit her lunch to 400 calories but
get 30 g of protein and 10 g of fiber, what proportions of
servings of Mac and Cheese, broccoli, and chicken should
she use?

b. [M] She found that there was too much broccoli in the
proportions from part (a), so she decided to switch from

In Exercises 5-8, write a matrix equation that determines the loop
currents. [M] If MATLAB or another matrix program is available,
solve the system for the loop currents.

S.

40( I, — 10V

30V =

II
N’N




10.

11.

1.10 Linear Models in Business, Science, and Engineering 87

In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2010, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where X, is the initial population in 2010. Then estimate
the populations in the city and in the suburbs two years
later, in 2012. (Ignore other factors that might influence the
population sizes.)

In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2010, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where X is the initial population in 2010. Then estimate the
populations in the city and in the suburbs two years later, in
2012.

In 1994, the population of California was 31,524,000, and
the population living in the United States but outside Cali-
fornia was 228,680,000. During the year, it is estimated that
516,100 persons moved from California to elsewhere in the
United States, while 381,262 persons moved to California
from elsewhere in the United States.*

a. Set up the migration matrix for this situation, using five
decimal places for the migration rates into and out of
California. Let your work show how you produced the
migration matrix.

b. [M] Compute the projected populations in the year 2000
for California and elsewhere in the United States, assum-
ing that the migration rates did not change during the 6-
year period. (These calculations do not take into account
births, deaths, or the substantial migration of persons into
California and elsewhere in the United States from other
countries.)

4 Migration data supplied by the Demographic Research Unit of the

California State Department of Finance.

12.

13.

14.

[M] Budget® Rent A Car in Wichita, Kansas has a fleet of
about 500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:

Airport East  West  Returned To:
.97 .05 .10 Airport
.00 .90 .05 East
.03 .05 .85 West

[M] Let M and x, be as in Example 3.

a. Compute the population vectors x; for k = 1,...,20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in
the city and 650,000 in the suburbs. What do you find?

[M] Study how changes in boundary temperatures on a steel
plate affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures 7, 7>, T3, Ty at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of T} is approximated
by the average of the temperatures at the four closest
points. See Exercises 33 and 34 in Section 1.1, where
the values (in degrees) turn out to be (20, 27.5, 30, 22.5).
How is this list of values related to your results for the
points in set (a) and set (b)?

b. Without making any computations, guess the interior

temperatures in (a) when the boundary temperatures are
all multipled by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

Plate A Plate B
20°  20° 0 0°
0° ! 2 0° 10° ! 2 40°
0° 4 3 0° 10° 4 3 40°
200 20° 10°  10°
(a) (b)
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SOLUTION TO PRACTICE PROBLEM

36

51

13 X1 33
74 , XxX=|x2 |, b=]|45
1.1 X3 3

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If

true, cite appropriate facts or theorems. If false, explain why

or give a counterexample that shows why the statement is not

true in every case.

a. Every matrix is row equivalent to a unique matrix in
echelon form.

b. Any system of n linear equations in n variables has at
most n solutions.

c. If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

d. Ifasystem of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [A b] is transformed into
[C d] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solu-
tion sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m x n matrix and the equation AX = b is
consistent for some b, then the columns of A span R™.

h. If an augmented matrix [ A b | can be transformed by
elementary row operations into reduced echelon form,
then the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j- The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If Ais an m x n matrix and the equation Ax = b is con-
sistent for every b in R™, then A has m pivot columns.

I.  If an m x n matrix A has a pivot position in every row,
then the equation Ax = b has a unique solution for each
b in R™.

m. If an n X n matrix A has n pivot positions, then the
reduced echelon form of A is the n x n identity matrix.

n. If 3 x 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary
row operations.

o. If A is an m x n matrix, if the equation AXx = b has at
least two different solutions, and if the equation Ax = ¢
is consistent, then the equation Ax = ¢ has many solu-
tions.

p. If A and B are row equivalent m x n matrices and if the
columns of A span R™, then so do the columns of B.

g. If none of the vectors in the set S = {v|,v,, v3} in R? is
a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v, w} is linearly independent, then u, v, and w are
not in R2.

s. Insome cases, it is possible for four vectors to span R>.
t. Ifuandvare in R”, then —u is in Span{u, v}.

u. Ifu, v, and w are nonzero vectors in R?, then w is a linear
combination of u and v.

v. If wis a linear combination of w and v in R”, then u is a
linear combination of v and w.

w. Suppose that vy, v,, and v; are in R>, v, is not a multiple
of vy, and vj is not a linear combination of v; and v,.
Then {vy, v, v3} is linearly independent.

X. A linear transformation is a function.

y. If Ais a6 x 5 matrix, the linear transformation x — Ax
cannot map R onto R°.

z. If A is an m x n matrix with m pivot columns, then the
linear transformation x — AX is a one-to-one mapping.

Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax = b. [Hint: The
number of solutions depends upon a and b.]

The solutions (x, y, z) of a single linear equation
ax +by+cz=d

form a plane in R* when a, b, and ¢ are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have no



88 CHAPTER 1 Linear Equations in Linear Algebra

SOLUTION TO PRACTICE PROBLEM

36

51

13 X1 33
74 , XxX=|x2 |, b=]|45
1.1 X3 3

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If

true, cite appropriate facts or theorems. If false, explain why

or give a counterexample that shows why the statement is not

true in every case.

a. Every matrix is row equivalent to a unique matrix in
echelon form.

b. Any system of n linear equations in n variables has at
most n solutions.

c. If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

d. Ifasystem of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [A b] is transformed into
[C d] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solu-
tion sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m x n matrix and the equation AX = b is
consistent for some b, then the columns of A span R™.

h. If an augmented matrix [ A b | can be transformed by
elementary row operations into reduced echelon form,
then the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j- The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If Ais an m x n matrix and the equation Ax = b is con-
sistent for every b in R™, then A has m pivot columns.

I.  If an m x n matrix A has a pivot position in every row,
then the equation Ax = b has a unique solution for each
b in R™.

m. If an n X n matrix A has n pivot positions, then the
reduced echelon form of A is the n x n identity matrix.

n. If 3 x 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary
row operations.

o. If A is an m x n matrix, if the equation AXx = b has at
least two different solutions, and if the equation Ax = ¢
is consistent, then the equation Ax = ¢ has many solu-
tions.

p. If A and B are row equivalent m x n matrices and if the
columns of A span R™, then so do the columns of B.

g. If none of the vectors in the set S = {v|,v,, v3} in R? is
a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v, w} is linearly independent, then u, v, and w are
not in R2.

s. Insome cases, it is possible for four vectors to span R>.
t. Ifuandvare in R”, then —u is in Span{u, v}.

u. Ifu, v, and w are nonzero vectors in R?, then w is a linear
combination of u and v.

v. If wis a linear combination of w and v in R”, then u is a
linear combination of v and w.

w. Suppose that vy, v,, and v; are in R>, v, is not a multiple
of vy, and vj is not a linear combination of v; and v,.
Then {vy, v, v3} is linearly independent.

X. A linear transformation is a function.

y. If Ais a6 x 5 matrix, the linear transformation x — Ax
cannot map R onto R°.

z. If A is an m x n matrix with m pivot columns, then the
linear transformation x — AX is a one-to-one mapping.

Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax = b. [Hint: The
number of solutions depends upon a and b.]

The solutions (x, y, z) of a single linear equation
ax +by+cz=d

form a plane in R* when a, b, and ¢ are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have no



points in common. Typical graphs are illustrated in the figure.

- 1

A

Three planes intersecting
in a point

(@) (b)

— [‘

Three planes intersecting
in a line

Y

Three planes with no Three planes with no
intersection intersection

© (c)

. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot position in each
column. Explain why the system has a unique solution.

. Determine /& and k such that the solution set of the system

(i) is empty, (ii) contains a unique solution, and (iii) contains

infinitely many solutions.

a. x +3x0n=k b.
4x; + hx, = 8

=2x1 + hx, = 1
6x1 + kxo, = =2
. Consider the problem of determining whether the following
system of equations is consistent:
4X1 — 2X2 + 7)C3 = -5
8x1 — 3x2 + 10x3 = =3
a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of 4.”

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

. Consider the problem of determining whether the following
system of equations is consistent for all by, b,, bs:
2)C1 — 4)(72 — 2)C3 = b1
—5X1 + X2+ Xx3= bz
7X1 — 5)62 — 3X3 = b3
a. Define appropriate vectors, and restate the problem in
terms of Span {v|, v,, v3}. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of 4.”

10.

11.

12.

13.

14.

15.

16.

17.

18.
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c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.
a. Aisa?2 x 3 matrix whose columns span R2.

b. Aisa3 x 3 matrix whose columns span R?.

. 5
Write the vector [ 6i| as the sum of two vectors,

one on the line {(x,y):y =2x} and one on the line
{(x.y) 1y =x/2}.
Leta,, a5, and b be the vectors in R? shown in the figure, and

let A =[a; a,]. Does the equation Ax = b have a solution?
If so, is the solution unique? Explain.

2

as

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a line in R3.

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a plane in R*.

Write the reduced echelon form of a 3 x 3 matrix A such
that the first two columns of A are pivot columns and

3 0
Al 2|1 =10
1 0

. 1 a .
Determine the value(s) of a such that {|:a :| , |:a ) :|} is
linearly independent.

In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers «, ..., f? Justify your
answers. [Hint: Use a theorem for (b).]

p b d a b d

a. 0O1l,]c|,| e b. ! s ¢ R e-
0 0 f 0 1 f

0 0 1

Use Theorem 7 in Section 1.7 to explain why the columns of
the matrix A are linearly independent.

1 0 0 O
2 5 0 0
A= 36 8 0
4 7 9 10

Explain why a set {v|,V,,v3,v4} in R® must be linearly
independent when {v{, v,, v3} is linearly independent and v,
is not in Span {vi, v, v3}.

Suppose {v;, v,} is a linearly independent set in R”. Show
that {v,, v; 4 v,} is also linearly independent.
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19.

20.

21.

22,

23.
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Suppose vy, v,, v3 are distinct points on one line in R3. The
line need not pass through the origin. Show that {v, v,, v3}
is linearly dependent.

Let 7 : R” — R™ be a linear transformation, and suppose
T (u) = v. Show that T(—u) = —v.

Let T :R3>— R? be the linear transformation that re-
flects each vector through the plane x, = 0. That is,
T (x1, X2, x3) = (X1, —X2, x3). Find the standard matrix of 7.

Let A be a 3 x 3 matrix with the property that the linear
transformation x — Ax maps R* onto R3. Explain why the
transformation must be one-to-one.

A Givens rotation is a linear transformation from R” to R”
used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R? has the form

a _b 2 2
|:b a:|’ a+b" =1

Find a and b such that |: g :| is rotated into |: g :|

X

X
' 6.0

A Givens rotation in R2.

24.

25.

The following equation describes a Givens rotation in R3.
Find a and b.

a 0 =b[2 2./5
0 1 0]|3]= 3, a+b*=1
b 0 a 4 0

A large apartment building is to be built using modular
construction techniques. The arrangement of apartments
on any particular floor is to be chosen from one of three
basic floor plans. Plan A has 18 apartments on one floor,
including 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedroom units, 4 two-bedroom units, and 8 one-bedroom
units. Each floor of plan C includes 5 three-bedroom units,
3 two-bedroom units, and 9 one-bedroom units. Suppose the
building contains a total of x; floors of plan A, x, floors of
plan B, and x3 floors of plan C.

3
a. What interpretation can be given to the vector x; | 7 |?

8

b. Write a formal linear combination of vectors that ex-
presses the total numbers of three-, two-, and one-
bedroom apartments contained in the building.

c. [M] Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do
it? Explain your answer.
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— NUMERICAL NOTES

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculate AB by columns, as in our definition
of the product. (A version of LAPACK written in C++ calculates AB by rows.)

2. The definition of AB lends itself well to parallel processing on a computer.
The columns of B are assigned individually or in groups to different proces-
sors, which independently and hence simultaneously compute the correspond-
ing columns of AB.

PRACTICE PROBLEMS

1. Since vectors in R” may be regarded as n x 1 matrices, the properties of transposes
in Theorem 3 apply to vectors, too. Let

o[13)

Compute (Ax)7, x’A7, xx”', and x"x. Is A’x” defined?

2. Let A be a 4 x 4 matrix and let x be a vector in R*. What is the fastest way to
compute A?x? Count the multiplications.

2.1 EXERCISES

In Exercises 1 and 2, compute each matrix sum or product if it is 4 =3 1 4
defined. If an expression is undefined, explain why. Let 6. A=|-3 5| B= [3 _2:|
0 1
4= 2 0 -1 B— 7 =5 1
T4 =5 20 1 =4 =37 7. If a matrix A is 5 x 3 and the product AB is 5 x 7, what is
o the size of B?
il T R R R
-2 1 -1 4 3 8. How many rows does B have if BC is a5 x 4 matrix?

1. —24, B —-2A4, AC, CD

9. LetA:|:
2. A+3B, 2C —3E, DB, EC

3 1 9
1 1 :| and B = |:_3 k :| What value(s)

of k, if any, will make AB = BA?

3 -6 —1 1
. Let A_|:—1 2:|, B—[ 3 4], and C =

-3
I
1 2 3 5 0 0
. LetdA=|2 4 5|landD=|0 3 0
5 -1 3 3 5 6 0 0 2
A=| -4 3 -6
-3 1 2

In the rest of this exercise set and in those to follow, assume that
each matrix expression is defined. That is, the sizes of the matrices 1)
(and vectors) involved “match” appropriately.

2

_f } Verify that AB = AC and yet B # C.
3

3. Letd = [ :ﬂ Compute 31, — A and (31,) A.

4. Compute A — 575 and (51;) A, where
. Com-

pute AD and DA. Explain how the columns or rows of A
change when A is multiplied by D on the right or on the left.

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab, and Ab, are computed separately, and
(b) by the row—column rule for computing AB.

-1 3
5. A=| 2 4 ,B:[_; _ﬂ
5 -3

12.

Find a 3 x 3 matrix B, not the identity matrix or the zero
matrix, such that AB = BA.

3 —
-2 4
AB is the zero matrix. Use two different nonzero columns
for B.

Let A = . Construct a 2 x 2 matrix B such that



13. Let ry,...,r, be vectors in R”, and let Q be an m xn
matrix. Write the matrix [ Or, Or, ] as a product of
two matrices (neither of which is an identity matrix).

14. Let U be the 3 x 2 cost matrix described in Example 6 in
Section 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for product C. (The costs
are categorized as materials, labor, and overhead.) Let q,
be a vector in R? that lists the output (measured in dollars)
of products B and C manufactured during the first quarter
of the year, and let q,, q;, and q, be the analogous vectors
that list the amounts of products B and C manufactured in
the second, third, and fourth quarters, respectively. Give an
economic description of the data in the matrix UQ, where

O0=[q, @& q q]

Exercises 15 and 16 concern arbitrary matrices A, B, and C for
which the indicated sums and products are defined. Mark each
statement True or False. Justify each answer.

15. a. If A and B are 2 x 2 matrices with columns a;, a,, and

by, by, respectively, then AB = [a;b; ab, .

b. Each column of AB is a linear combination of the
columns of B using weights from the corresponding col-
umn of A.

c. AB+ AC = A(B+C)

d AT + BT =4+ B)T

e. The transpose of a product of matrices equals the product
of their transposes in the same order.

16. a. The first row of AB is the first row of A multiplied on the

right by B.
b. If A and B are 3 x 3 matrices and B = [b; b, bs],
then AB = [ Ab, + Ab, + Ab; |.

c. If Aisann x n matrix, then (42)7 = (47)?
d. (ABC)T = CTAT BT

e. The transpose of a sum of matrices equals the sum of their

transposes.
1 -3 -3 —11 .
17. If A = [_3 5] and AB = |: 1 17 ], determine the

first and second columns of B.

18. Suppose the third column of B is all zeros. What can be said
about the third column of AB?

19. Suppose the third column of B is the sum of the first two
columns. What can be said about the third column of AB?
Why?

20. Suppose the first two columns, b; and b,, of B are equal.
What can be said about the columns of AB? Why?

21. Suppose the last column of AB is entirely zeros but B itself
has no column of zeros. What can be said about the columns
of A?

2.1 Matrix Operations 101

22. Show that if the columns of B are linearly dependent, then
so are the columns of AB.

23. Suppose CA = I, (the n x n identity matrix). Show that the
equation Ax = 0 has only the trivial solution. Explain why
A cannot have more columns than rows.

24. Suppose A is a3 x n matrix whose columns span R*. Explain
how to construct an n x 3 matrix D such that AD = I5.

25. Suppose A is an m x n matrix and there exist 7 X m matrices
C and D such that CA =1, and AD = I,,. Prove that
m =n and C = D. [Hint: Think about the product CAD.]

26. Suppose AD = I, (the m x m identity matrix). Show that
for any b in R™, the equation AXx = b has a solution. [Hint:
Think about the equation ADb = b.] Explain why A cannot
have more rows than columns.

In Exercises 27 and 28, view vectors in R” as n x 1 matrices. For
uand v in R”, the matrix product u’visal x 1 matrix, called the
scalar product, or inner product, of u and v. It is usually written
as a single real number without brackets. The matrix product uy’”
is an n x n matrix, called the outer product of u and v. The
products u” v and uv’ will appear later in the text.

-3 a
27. Letu=| 2 |andv=| b |. Compute u’v, v'u, uv’,
=5 c
and vu’ .

28. Ifuand v are in R”, how are u” v and v' u related? How are
uv” and vu’ related?

29. Prove Theorem 2(b) and 2(c). Use the row—column rule. The
(i, j)-entry in A(B + C) can be written as
aj(by +cij) + -+ ain(byj + cuj)

or
n

Z aji (bj + ckj)

k=1

30. Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
(rai)byj + -+ (rai,)by;.]
31. Show that /,,A = A where A is an m X n matrix. Assume

1,,x = x for all x in R™.

32. Show that AI, = A when A is an m x n matrix. [Hint: Use
the (column) definition of A7,.]

33. Prove Theorem 3(d). [Hint: Consider the jthrow of (AB)7.]

34. Give aformula for (ABx)”, where x is a vector and A and B
are matrices of appropriate sizes.

35. [M] Read the documentation for your matrix program, and
write the commands that will produce the following matrices
(without keying in each entry of the matrix).

a. A 4 x 5 matrix of zeros

b. A5 x 3 matrix of ones

c. The 5 x 5 identity matrix

d. A 4 x 4 diagonal matrix, with diagonal entries 3, 4, 2, 5
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A useful way to test new ideas in matrix algebra, or to make
conjectures, is to make calculations with matrices selected at
random. Checking a property for a few matrices does not prove
that the property holds in general, but it makes the property more
believable. Also, if the property is actually false, making a few
calculations may help to discover this.

39.

36. [M] Write the command(s) that will create a 5 x 6 matrix
with random entries. In what range of numbers do the entries
lie? Tell how to create a 4 x 4 matrix with random integer
entries between —9 and 9. [Hint: If x is a random number
such that 0 < x < I, then —9.5 < 19(x —.5) < 9.5.]

37. [M] Construct random 4 x 4 matrices A and B to test
whether AB = BA. The best way to do this is to compute
AB — BA and check whether this difference is the zero
matrix. Then test AB — BA for three more pairs of random
4 x 4 matrices. Report your conclusions.

40.

41.
38. [M] Construct a random 5 x 5 matrix A and test whether

(A+I)(A—1T) = A>—1. The best way to do this is to
compute (A + I)(A—1)— (A*>—1) and verify that this
difference is the zero matrix. Do this for three random
matrices. Then test (A + B)(A — B) = A> — B? the same

SOLUTIONS TO PRACTICE

R HE

way for three pairs of random 4 x 4 matrices. Report your
conclusions.

[M] Use at least three pairs of random 4 x 4 matrices A
and B to test the equalities (4 + B)T = AT + BT and
(AB)T = BTAT  as well as (AB)” = A"BT. (See Exercise
37.) Report your conclusions. [Note: Most matrix programs
use A’ for AT ]

[M] Let
0 1 0 0 0
0 0 1 0 0
s=l0o 0o o 1 o0
0 0 0 0 1
0 0 0 0 0

Compute S¥ fork =2,...,6.

[M] Describe in words what happens when 4°, A'°, A%, and
A3 are computed for

/4 1/2  1/4
A=|12 153  1/6

/4 1/6 7/12

PROBLEMS

—4

2i|. So (Ax)" =[—-4 2]. Also,

XA =[5 3][_§ ‘ﬂ:[_4 2],

The quantities (4x)” and x’47 are equal, by Theorem 3(d). Next,

X X =

A 1 x 1 matrix such as x’x i
not defined, because x” does

HEER B

E 3][2]:[25+9]=34

s usually written without the brackets. Finally, A’x” is
not have two rows to match the two columns of A7,

2. The fastest way to compute A%x is to compute A(Ax). The product Ax requires
16 multiplications, 4 for each entry, and A(Ax) requires 16 more. In contrast, the
product A? requires 64 multiplications, 4 for each of the 16 entries in A2. After that,
A>x takes 16 more multiplications, for a total of 80.

2.2 | THE INVERSE OF A MATRIX

Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This
section investigates the matrix analogue of the reciprocal, or multiplicative inverse, of

a nonzero number.



2.2 The Inverse of a Matrix 109

r— NUMERICAL NOTE

In practical work, 47! is seldom computed, unless the entries of A~! are needed.
Computing both 47! and A~'b takes about three times as many arithmetic

operations as solving Ax = b by row reduction, and row reduction may be more
accurate.

PRACTICE PROBLEMS

1. Use determinants to determine which of the following matrices are invertible.

S i B e B (]

1 -2 —1
2. Find the inverse of the matrix A = | —1 5 6 |,if it exists.
5 —4 5
Find the inverses of the matrices in Exercises 1-4. In Exercises 9 and 10, mark each statement True or False. Justify
8 6 3 ) each answer.
1. 2.
[5 4j| [8 5j| 9. a. In order for a matrix B to be the inverse of A, the

w

equations AB = I and BA = I must both be true.

7 3 4 2 —4 b. If A and B are n x n and invertible, then A~' B~ is the
-6 -3 14 —6 inverse of AB.

c. Ifd= |:a 5 :| and ab — c¢d # 0, then A is invertible.
Use the inverse found in Exercise 1 to solve the system ¢
d. If A is an invertible n x n matrix, then the equation

8xi + 6x, = 2 Ax = b is consistent for each b in R".
Sx1 +4x, = —1 e. Each elementary matrix is invertible.
Use the inverse found in Exercise 3 to solve the system 10. a. If A is invertible, then elementary row operations that
Tx; + 3x, = -9 reduce A to the identity I, also reduce A~ to 1,,.
—6x; —3x, = 4 b. If A is invertible, then the inverse of A~ ! is A itself.
c. A product of invertible n x n matrices is invertible, and
the inverse of the product is the product of their inverses
1 2 -1 1 2 in th .
LetA=|:5 12],b1=[ 3:|,b2=[ 5j|’b3=|:6i|’ in the same order.
- d. If A is an n x n matrix and Ax = e; is consistent for
dbe = 3 every j € {l,2,...,n}, then A is invertible. Note:
and by = 5 e, ...,e, represent the columns of the identity matrix.
a. Find A™!, and use it to solve the four equations e. If A can be row reduced to the identity matrix, then A
Ax=b,. Ax=b,. Ax=b;, Ax=h, must be invertible.

11. Let A be an invertible n x n matrix, and let B be an n x p
matrix. Show that the equation AX = B has a unique solu-
tion A~ B.

b. The four equations in part (a) can be solved by the
same set of row operations, since the coefficient ma-
trix is the same in each case. Solve the four equa-
tions in part (a) by row reducing the augmented matrix 12. Use matrix algebra to show that if A is invertible and D
[A by by by byl satisfies AD = [, then D = A~

13. Suppose AB = AC, where B and C are n x p matrices and
Suppose P is invertible and A = PBP~!. Solve for B in A is invertible. Show that B = C. Is this true, in general,
terms of A4. when A is not invertible?
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14.

15.

16.
17.

18.

19.

20.

21.
22,

23.

24.

Exercises 25 and 26 prove Theorem 4 for A = |:Cc1 b ]

25.

26.

Suppose (B — C)D = 0, where B and C are m x n matrices
and D is invertible. Show that B = C.

Let A be an invertible n x n matrix, and let B be an n x p
matrix. Explain why A~! B can be computed by row reduc-
tion:

If[A B]~---~[I X],thenX = A"'B.

If A is larger than 2 x 2, then row reduction of [A B] is
much faster than computing both A~ and A~'B.

Suppose A and B are n x n matrices, B is invertible, and AB
is invertible. Show that A is invertible. [Hint: Let C = AB,
and solve this equation for A.]

Suppose A, B, and C are invertible n x n matrices. Show
that ABC is also invertible by producing a matrix D such
that (ABC)D = I and D(ABC) = I.

Solve the equation AB = BC for A, assuming that 4, B, and
C are square and B is invertible.

If A, B, and C are n x n invertible matrices, does the equa-
tion C~'(4 + X)B~' = I, have a solution, X? If so, find
it.

Suppose A, B, and X are n x n matrices with A, X, and
A — AX invertible, and suppose

(A-—A4X)"'=Xx"'B (3)

a. Explain why B is invertible.

b. Solve equation (3) for X. If a matrix needs to be inverted,
explain why that matrix is invertible.

Explain why the columns of an n X n matrix A are linearly
independent when A is invertible.

Explain why the columns of an n x n matrix 4 span R” when
A is invertible. [Hint: Review Theorem 4 in Section 1.4.]

Suppose A is n x n and the equation Ax = 0 has only the
trivial solution. Explain why A has n pivot columns and A is
row equivalent to /,,. By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 24 will be cited in
Section 2.3.)

Suppose A is n x n and the equation Ax = b has a solution
for each b in R”. Explain why A must be invertible. [Hint:
Is A row equivalent to 1,?]

d

Show that if ad —bc = 0, then the equation Ax = 0 has
more than one solution. Why does this imply that 4 is not
invertible? [Hint: First, consider « = b = 0. Then, if a and

. —b
b are not both zero, consider the vector x = [ u .

Show that if ad — bc # 0, the formula for A~ works.

Exercises 27 and 28 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A4 is a
3 x 3 matrix and / = I5. (A general proof would require slightly
more notation.)

217.

28.

Let A be a 3 x 3 matrix.

a. Use equation (2) from Section 2.1 to show that
row; (A) = row;(I)-A, fori =1,2,3.

b. Show that if rows 1 and 2 of A4 are interchanged, then the
result may be written as EA, where E is an elementary
matrix formed by interchanging rows 1 and 2 of /.

c. Show that if row 3 of A is multiplied by 5, then the result
may be written as £ A, where E is formed by multiplying
row 3 of I by 5.

Suppose row 2 of A is replaced by row,(A) — 3 - row(A).
Show that the result is EA, where E is formed from / by
replacing row, (1) by row,(1) — 3 - row; (A).

Find the inverses of the matrices in Exercises 29-32, if they exist.
Use the algorithm introduced in this section.

29.

31.

33.

34.

35.

36.

37.

=3 36
= o (3 9]
1 0 =2 1 2 -1
-3 1 4 32, | -4 -7 3
2 -3 4 -2 -6 4

- 0 0 1 0o 0 0
1 0 and ! ! 0 0
| | 1 1 1 0
- 1 1 1 1

Let A be the corresponding n x n matrix, and let B be its
inverse. Guess the form of B, and then show that AB = I.

Repeat the strategy of Exercise 33 to guess the inverse B of

1 0 0 - 0
2 2 0 0
A=|3 3 3 0

Show that AB = I.

-1 -7 =3
Let A = 2 15 6 |. Find the third column of A~!
1 32
without computing the other columns.
—25 -9 =27
[M] Let A = | 536 185 537 |. Find the second and
154 52 143
third columns of A~! without computing the first column.
2
LetA=|1 3 |.Constructa2 x 3 matrix C (by trial and
1 5

error) using only 1, —1, and O as entries, such that CA = I,.
Compute AC and note that AC # I5.



38.

39.

40.

1 -1 1
0 1 -1
D using only 1 and O as entries, such that AD = I,. Is it
possible that CA = [, for some 4 x 2 matrix C? Why or
why not?

Let A = [ (1)] Construct a 4 x 2 matrix

[M] Let
011 .003 .00l
D=1.003 .009 .003
001 .003 .011

be a flexibility matrix, with flexibility measured in inches per
pound. Suppose that forces of 40, 50, and 30 1b are applied at
points 1, 2, and 3, respectively, in Fig. 1 of Example 3. Find
the corresponding deflections.

[M] Compute the stiffness matrix D~ for D in Exercise 39.
List the forces needed to produce a deflection of .04 in. at
point 3, with zero deflections at the other points.

41.

42.
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[M] Let
0130 .0050 .0020 .0010
b _ | 0050 0100 0040 0020
=1 .0020 .0040 .0100 .0050
0010 .0020 .0050 .0130

be a flexibility matrix for an elastic beam such as the one in
Example 3, with four points at which force is applied. Units
are centimeters per newton of force. Measurements at the
four points show deflections of .07, .12, .16, and .12 cm.
Determine the forces at the four points.

[M] With D as in Exercise 41, determine the forces that
produce a deflection of .22 cm at the second point on the
beam, with zero deflections at the other three points. How is
the answer related to the entries in D~'? [Hint: First answer
the question when the deflection is 1 cm at the second point.]

SOLUTIONS TO PRACTICE PROBLEMS

1. a. det

the matrix is invertible.

(4 —9
b. det_o 5:|
6 —9
C. det__4 6
1 =2
2. [A I]~| -1 5
| 5 4
1 =2
~10 3
|0 6
1 =2
~10 3
0 0

—1

-1
5
10

-1
5
0

6
5

-5

-7

; _Zi| =3.6—(—9)-2 = 18 + 18 = 36. The determinant is nonzero, so

=4-5—(=9)-0 = 20 # 0. The matrix is invertible.

] =6-6—(—9)(—4) = 36 — 36 = 0. The matrix is not invertible.

1 0

1
1

)

1
1

- o O = O
—

- o O

-2

So[A [I]isrow equivalent to a matrix of the form [ B D |, where B is square
and has a row of zeros. Further row operations will not transform B into 7, so we
stop. A does not have an inverse.

2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES

This section provides a review of most of the concepts introduced in Chapter 1, in
relation to systems of n linear equations in n unknowns and to square matrices. The
main result is Theorem 8.
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THEOREM 9

Let 7 : R” — R” be a linear transformation and let A be the standard matrix for
T. Then T is invertible if and only if 4 is an invertible matrix. In that case, the
linear transformation S given by S(x) = A~!x is the unique function satisfying
equations (1) and (2).

PROOF Suppose that T is invertible. Then (2) shows that 7" is onto R”, for if b is in
R"” and x = S(b), then T (x) = T(S(b)) = b, so each b is in the range of 7. Thus 4 is
invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S(x) = A~ 'x. Then, S is a linear
transformation, and S obviously satisfies (1) and (2). For instance,

S(T(x)) = S(Ax) = A (4x) =x

Thus T is invertible. The proof that S is unique is outlined in Exercise 38. [ |

EXAMPLE 2 What can you say about a one-to-one linear transformation 7 from
R" into R"?

SOLUTION The columns of the standard matrix A of T are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps R" onto R". Also, T is invertible, by Theorem 9. [ |

— NUMERICAL NOTES

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix—an invertible matrix that can become singular if some of
its entries are changed ever so slightly. In this case, row reduction may produce
fewer than n pivot positions, as a result of roundoff error. Also, roundoff error
can sometimes make a singular matrix appear to be invertible.

Some matrix programs will compute a condition number for a square
matrix. The larger the condition number, the closer the matrix is to being singular.
The condition number of the identity matrix is 1. A singular matrix has an
infinite condition number. In extreme cases, a matrix program may not be able
to distinguish between a singular matrix and an ill-conditioned matrix.

Exercises 41-45 show that matrix computations can produce substantial error
when a condition number is large.

PRACTICE PROBLEMS

2 3 4
1. Determineif A = | 2 3 4 | isinvertible.
2 3 4

2. Suppose that for a certain n x n matrix A, statement (g) of the Invertible Matrix
Theorem is not true. What can you say about equations of the form Ax = b?

3. Suppose that A and B are n x n matrices and the equation ABx = 0 has a nontrivial
solution. What can you say about the matrix AB?



2.3 EXERCISES

2.3 Characterizations of Invertible Matrices 115

Unless otherwise specified, assume that all matrices in these
exercises are n X n. Determine which of the matrices in Exer-
cises 1-10 are invertible. Use as few calculations as possible.
Justify your answers.

F 5 7 [—4 2
- _6} 2 |7 _3}
r 3 0 07 [—5 1 47
3./l -3 -4 o0 4 0 0
| 8 5 -3 | 1 4 9]
r 3 0 =37 r1 -3 —6]
5 2 0 4 6. 0 4 3
-4 0 7] | -3 6 0]
-1 =3 0 1 (3 4 7 4
; 3 5 8 -3 g 0 1 4 6
-2 -6 3 2 0o 0 2 8
L 0 -1 2 1 (0 0 o0 1
r 4 0 -3 -7
-6 9 9 9
9. M] 7 =5 10 19
-1 2 4 -1
s 3 1 7 9
6 4 2 8 -8
10. M] |7 5 3 10 9
9 6 4 -9 -5
18 5 2 11 4

In Exercises 11 and 12, the matrices are all n x n. Each part
of the exercises is an implication of the form “If ( statement 1),
then (statement 2 ).” Mark an implication as True if the truth of
(statement 2) always follows whenever (statement 1) happens
to be true. An implication is False if there is an instance in which
( statement 2 ) is false but ( statement 1 ) is true. Justify each
answer.

11. a. If the equation Ax = 0 has only the trivial solution, then
A is row equivalent to the n x n identity matrix.

b. If the columns of A span R”, then the columns are lin-
early independent.

c. If Ais an n x n matrix, then the equation Ax = b has at
least one solution for each b in R”.

d. If the equation Ax = 0 has a nontrivial solution, then 4
has fewer than n pivot positions.

e. If AT is not invertible, then A is not invertible.
12. a. If there is an n x n matrix D such that AD = I, then
DA =1.

b. If the linear transformation x — Ax maps R” into R”,
then the row reduced echelon form of 4 is /.

c. If the columns of A are linearly independent, then the
columns of A span R".

14.

15.

16.

17.

18.

19.

21.

22.

23.

24,

25.
26.

27.

28.

29.

d. Ifthe equation Ax = b has at least one solution for each b
in R”, then the transformation x — AX is not one-to-one.

e. If there is a b in R” such that the equation Ax = b is
consistent, then the solution is unique.

. An m x n upper triangular matrix is one whose entries

below the main diagonal are 0’s (as in Exercise 8). When
is a square upper triangular matrix invertible? Justify your
answer.

An m x n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When
is a square lower triangular matrix invertible? Justify your
answer.

Is it possible for a 4 x 4 matrix to be invertible when its
columns do not span R*? Why or why not?

If an n x n matrix A is invertible, then the columns of A” are
linearly independent. Explain why.

Can a square matrix with two identical columns be invert-
ible? Why or why not?

Can a square matrix with two identical rows be invertible?
Why or why not?

If the columns of a 7 x 7 matrix D are linearly independent,
what can be said about the solutions of Dx = b? Why?

. If Ais a5 x5 matrix and the equation Ax = b is consistent

for every b in R?, is it possible that for some b, the equation
Ax = b has more than one solution? Why or why not?

If the equation Cu = v has more than one solution for some
v in R”, can the columns of the n x n matrix C span R"?
Why or why not?

If n x n matrices E and F have the property that EF = I,
then E and F commute. Explain why.

Assume that F is an n x n matrix. If the equation F’x =y
is inconsistent for some y in R”, what can you say about the
equation Fx = 0? Why?

If an n x n matrix G cannot be row reduced to /,,, what can
you say about the columns of G? Why?

Verify the boxed statement preceding Example 1.

Explain why the columns of A% span R” whenever the
columns of an n x n matrix A are linearly independent.

Let A and B be n x n matrices. Show that if AB is invertible,
so is A. You cannot use Theorem 6(b), because you cannot
assume that A and B are invertible. [Hint: There is a matrix
W such that ABW = I. Why?]

Let A and B be n x n matrices. Show that if AB is invertible,
sois B.

If A is an n x n matrix and the transformation x — Ax is
one-to-one, what else can you say about this transformation?
Justify your answer.
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30.

31.

32.

If A is an n xn matrix and the equation Ax = b has
more than one solution for some b, then the transformation
X — AX is not one-to-one. What else can you say about this
transformation? Justify your answer.

Suppose A is an n X n matrix with the property that the
equation Ax = b has at least one solution for each b in R”.
Without using Theorems 5 or 8, explain why each equation
Ax = b has in fact exactly one solution.

Suppose A is an n x n matrix with the property that the equa-
tion Ax = 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax = b must have a solution for each b in R”.

In Exercises 33 and 34, T is a linear transformation from R? into
R?. Show that 7 is invertible and find a formula for 7.

33.
34.
35.

36.

37.

38.

39.

40.

T(x1,x2) = (=5x1 + 9x2,4x; — 7x3)
T(x1,x2) = (2x1 — 8x2, —2x1 + 7x3)

Let 7 : R" — R" be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto R”. Use equations
(1) and (2). Then give a second explanation using one or
more theorems.

Suppose a linear transformation 7' : R” — R” has the prop-
erty that 7'(u) = T (v) for some pair of distinct vectors u and
vin R"”. Can 7 map R” onto R"? Why or why not?

Suppose T and U are linear transformations from R” to
R" such that T(U(x)) = x for all x in R”. Is it true that
U(T(x)) = x for all x in R"? Why or why not?

Let 7 : R" — R"” be an invertible linear transformation,
and let S and U be functions from R” into R” such that
S(T(x)) = xand U(T(x)) = x for all x in R”. Show that
U(v) = S(v) for all v in R”. This will show that T has a
unique inverse, as asserted in Theorem 9. [Hint: Given any
v in R”, we can write v = 7' (x) for some x. Why? Compute
S(v) and U(v).]

Let T be a linear transformation that maps R” onto R”. Show
that 7~ exists and maps R” onto R". Is T~ also one-to-
one?

Suppose T and S satisfy the invertibility equations (1) and
(2), where T is a linear transformation. Show directly that
S is a linear transformation. [Hint: Given u,v in R”, let
x = S(u),y = S(v). Then T(x) = u, T(y) = v. Why? Ap-
ply S to both sides of the equation 7 (x) + T(y) = T (x +y).
Also, consider T'(cx) = ¢T(x).]

41.

[M] Suppose an experiment leads to the following system of
equations:

4.5x, + 3.1x, = 19.249

3)
1.6x; + 1.1x, = 6.843

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two
decimal places. In each case, find the exact solution.

4.5x; + 3.1x, = 19.25
1.6x; + 1.1x, = 6.84
b. The entries in system (4) differ from those in system (3)

by less than .05%. Find the percentage error when using
the solution of (4) as an approximation for the solution of

3.
c. Use a matrix program to produce the condition number of
the coefficient matrix in (3).

“

Exercises 42-44 show how to use the condition number of a
matrix A to estimate the accuracy of a computed solution of
Ax = b. If the entries of 4 and b are accurate to about r significant
digits and if the condition number of A is approximately 10* (with
k a positive integer), then the computed solution of Ax = b should
usually be accurate to at least » — k significant digits.

42,

43.
44.

45.

[M] Let A be the matrix in Exercise 9. Find the condition
number of A. Construct a random vector x in R* and compute
b = Ax. Then use a matrix program to compute the solution
x; of Ax = b. To how many digits do x and x, agree? Find
out the number of digits the matrix program stores accurately,
and report how many digits of accuracy are lost when x; is
used in place of the exact solution x.

[M] Repeat Exercise 42 for the matrix in Exercise 10.

[M] Solve an equation Ax = b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix

1 1/2 13 1/4 1)5
12 13 1/4 1/5 1/6
A=|1/3 174 1/5 1/6 1)1
14 1/5 1/6 17 1/8
15 1/6 17 1/8 1/9

How many digits in each entry of x do you expect to be
correct? Explain. [Note: The exact solution is (630, —12600,
56700, —88200, 44100).]

[M] Some matrix programs, such as MATLAB, have a com-
mand to create Hilbert matrices of various sizes. If possible,
use an inverse command to compute the inverse of a twelfth-
order or larger Hilbert matrix, A. Compute AA~!. Report
what you find.

El Mastering: Reviewing and Reflecting 2-13
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SOLUTIONS TO PRACTICE PROBLEMS

1. The columns of A are obviously linearly dependent because columns 2 and 3 are
multiples of column 1. Hence A cannot be invertible, by the Invertible Matrix
Theorem.

2. If statement (g) is not true, then the equation Ax = b is inconsistent for at least one
b in R".

3. Apply the Invertible Matrix Theorem to the matrix AB in place of A. Then statement
(d) becomes: ABx = 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4  PARTITIONED MATRICES

A key feature of our work with matrices has been the ability to regard a matrix A4 as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential structures
in matrix analysis, as in the chapter introductory example on aircraft design. This section
provides an opportunity to review matrix algebra and use the Invertible Matrix Theorem.

EXAMPLE 1 The matrix

30 115 92
A=|-5 2 40 =3 1
8 -6 3|1 7| —4

can also be written as the 2 x 3 partitioned (or block) matrix

A= A A A
Ay Axn A |

whose entries are the blocks (or submatrices)

3 0 -1 5 9] -2
All—[_s 5 4} A12—|:O = A13—|: 1}

Ay =[-8 =6 3], An=[1 7] An=[-4] n

EXAMPLE 2 When a matrix A appears in a mathematical model of a physical
system such as an electrical network, a transportation system, or a large corporation,
it may be natural to regard A as a partitioned matrix. For instance, if a microcomputer
circuit board consists mainly of three VLSI (very large-scale integrated) microchips,
then the matrix for the circuit board might have the general form

Ay | A | A

A= | Ay | Apn | Ax
Azr | Az | Az

The submatrices on the “diagonal” of A—namely, A}, A2», and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips. [ |
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The exercises that follow give practice with matrix algebra and illustrate typical

calculations found in applications.

PRACTICE PROBLEMS

1. Show that [1{1 ?i| is invertible and find its inverse.

2. Compute XX, where X is partitioned as [ X; X, ].

2.4 EXERCISES

In Exercises 1-9, assume that the matrices are partitioned con-
formably for block multiplication. Compute the products shown
in Exercises 1-4.

S k]

3 0 I||A B 4 I offw X

|1 OoflC D “|-E I||Y Z
In Exercises 5-8, find formulas for X, Y, and Z in terms of A4,
B, and C, and justify your calculations. In some cases, you may
need to make assumptions about the size of a matrix in order to

produce a formula. [Hint: Compute the product on the left, and
set it equal to the right side.]

[ 2t 9 4

R

7'X00}gg_[10}
R | 0 1

3 (A BI[X Y Z |7 0 0

1o I1{lo o0 I| |0 O I
9. Suppose By is an invertible matrix. Find matrices A, and
Aj (in terms of the blocks of B) such that the product below
has the form indicated. Also, compute C,, (in terms of the

blocks of B). [Hint: Compute the product on the left, and set
it equal to the right side.]

1 0 0 Bll B12 Cvll C12

Ay I 0 By Bn|=| 0 Cp

Azr 0 I || By By 0 Cyp
10. The inverse of

I 0 0 I 0 0

A I 0 is P I 0

B D I 0O R I

Find P, Q, and R.

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. If A=[A, A,] and B=[B, B,], with A, and
A, the same sizes as B; and B,, respectively, then
A+B=[A+B A+ B].

A Ap B, ..
b. If A = and B = , then the partitions
[A21 Ax B, P

of A and B are conformable for block multiplication.

12. a. If A, A,, By, and B, are n X n matrices, A = [ﬁ' ],and
2

B =[B; B,], then the product BA is defined, but AB
is not.
b. If A = Po , then the transpose of 4 is
R S
PT T
oo o]
B 0

13. LetA = [ 0 C :| where B and C are square. Show that A

is invertible if and only if both B and C are invertible.

14. Show that the block upper triangular matrix 4 in Example 5 is
invertible if and only if both A;; and A,, are invertible. [Hint:
If A, and Ay, are invertible, the formula for 4! givenin Ex-
ample 5 actually works as the inverse of A.] This fact about
A is an important part of several computer algorithms that
estimate eigenvalues of matrices. Eigenvalues are discussed
in Chapter 5.

15. When a deep space probe is launched, corrections may
be necessary to place the probe on a precisely calculated
trajectory. Radio telemetry provides a stream of vectors,
Xy, ..., X, giving information at different times about how
the probe’s position compares with its planned trajectory.
Let X be the matrix [x; --- X¢]. The matrix G, = XkaT is
computed as the radar data are analyzed. When x4, arrives,
anew Gy must be computed. Since the data vectors arrive
at high speed, the computational burden could be severe.
But partitioned matrix multiplication helps tremendously.
Compute the column-row expansions of G and Gy, and
describe what must be computed in order to update Gy to
form Gy 4.
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The probe Galileo was launched October 18,
1989, and arrived near Jupiter in early December
1995.

Ay Ap

a Ax
trix S = Ay — Ay A[' A, is called the Schur comple-
ment of A,;. Likewise, if A,, is invertible, the matrix
Ay — A;pAy' Az is called the Schur complement of As,.
Suppose Ay, is invertible. Find X and Y such that

[A” Alz]:[l OMA“ 0][1 Y} ™

Ay Axn X I 0 S0 1[I

17. Suppose the block matrix A on the left side of (7) is invertible
and A is invertible. Show that the Schur complement S of
Ay is invertible. [Hint: The outside factors on the right side
of (7) are always invertible. Verify this.] When A and A,

are both invertible, (7) leads to a formula for A~', using S™!,
A7, and the other entries in A.

16. Let A = |: ] If Ay, is invertible, then the ma-

18. Let X be an m x n data matrix such that X7 X is invertible,
andlet M = I, — X(XTX)7'XT. Add a column x, to the
data and form

W=[X xo]

Compute WTW. The (1, 1)-entry is X7 X. Show that the
Schur complement (Exercise 16) of X7 X can be written
in the form x] Mxy. It can be shown that the quantity
(xI Mxo)~" is the (2,2)-entry in (WTW)~!. This entry
has a useful statistical interpretation, under appropriate
hypotheses.

In the study of engineering control of physical systems, a standard
set of differential equations is transformed by Laplace transforms
into the following system of linear equations:

i BN ©

where Aisn xn, Bisnxm, C is m x n, and s is a variable.
The vector u in R” is the “input” to the system, y in R” is the
“output,” and x in R” is the “state” vector. (Actually, the vectors
X, u, and y are functions of s, but this does not affect the algebraic
calculations in Exercises 19 and 20.)

19.

20.

21.

22,

23.

24.

Assume A — s/, is invertible and view (8) as a system of two
matrix equations. Solve the top equation for x and substitute
into the bottom equation. The result is an equation of the
form W(s)u =y, where W(s) is a matrix that depends on s.
W(s) is called the transfer function of the system because
it transforms the input u into the output y. Find W(s) and
describe how it is related to the partitioned system matrix on
the left side of (8). See Exercise 16.

Suppose the transfer function W(s) in Exercise 19 is invert-
ible for some s. It can be shown that the inverse transfer
function W(s)™!, which transforms outputs into inputs, is the
Schur complement of A — BC — s1,, for the matrix below.
Find this Schur complement. See Exercise 16.

A—-BC—-sl, B
—C I

a. Verify that A> = I when A = |:; _(1)]

b. Use partitioned matrices to show that M? = I when

1 0 0 O
2 -1 0 0
M = 1 0 -1 0
o 1 -2 1
Generalize the idea of Exercise 21 by constructing a 6 x 6
A 0 O
matrix M = | 0 B 0 | such that M?> = I. Make C a

¢ 0 D
nonzero 2 x 2 matrix. Show that your construction works.

Use partitioned matrices to prove by induction that the prod-
uct of two lower triangular matrices is also lower triangular.
[Hint: A (k + 1) x (k + 1) matrix A; can be written in the
form below, where « is a scalar, vis in R¥, and Aisak x k
lower triangular matrix. See the Study Guide for help with
induction.]

A = a 0" The Principle of

! v A Induction 2-19
Use partitioned matrices to prove by induction that for
n=2,3,..., the n x n matrix A shown below is invertible

and B is its inverse.

L0 0 - 0
11 0 0

A=|1 1 1 0,
111 1

0 0

-1 1 0 0

B - 1 0

L o -1 1




25.

26.

For the induction step, assume A and B are
(k + 1) x (k + 1) matrices, and partition A and B in a form
similar to that displayed in Exercise 23.

Without using row reduction, find the inverse of

1 2 0 0 O
35 0 0 0
A=(0 0 2 0 O
o o0 o 7 8
o 0 0 5 6

[M] For block operations, it may be necessary to access or

enter submatrices of a large matrix. Describe the functions

or commands of a matrix program that accomplish the fol-

lowing tasks. Suppose A is a 20 x 30 matrix.

a. Display the submatrix of A from rows 5 to 10 and
columns 15 to 20.

b. Insert a 5 x 10 matrix B into A, beginning at row 5 and
column 10.

SOLUTIONS TO PRACTI

I 0f. . .
1. If |: 4 I] is invertible,

I 0]
AT
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c. Create a 50 x 50 matrix of the form C = [g /;)T]
[Note: 1t may not be necessary to specify the zero blocks

in C.]

27. [M] Suppose memory or size restrictions prevent a matrix
program from working with matrices having more than 32
rows and 32 columns, and suppose some project involves
50 x 50 matrices A and B. Describe the commands or op-
erations of the matrix program that accomplish the following
tasks.

a. Compute A + B.
b. Compute AB.

c. Solve Ax = b for some vector b in R>°, assuming that
A can be partitioned into a 2 x 2 block matrix [A4;],
with A;; an invertible 20 x 20 matrix, A,, an invertible
30 x 30 matrix, and A, a zero matrix. [Hint: Describe
appropriate smaller systems to solve, without using any
matrix inverses. |

CE PROBLEMS

its inverse has the form |:V[; )Z(j| Verify that

wox] [ w X
Y Z| T |AW+Y AX+Z

SoW,X,Y,Zmustsatisfy W =1, X=0,AW+Y =0,andAX +Z=1.1t

follows that Y = —A4 and

Z = 1. Hence

ki B

o 7]

The product in the reverse order is also the identity, so the block matrix is invert-

ible, and its inverse is |:

Theorem.)
X T X = 1
[ X3

—-A 1

0:|. (You could also appeal to the Invertible Matrix

xr _ xXI'x, xrx, . T
X1 Xh| = . The partitions of X' and X are

xI'x, xI'x,

automatically conformable for block multiplication because the columns of X7 are
the rows of X. This partition of XX is used in several computer algorithms for

matrix computations.

2.5 MATRIX FACTORIZATIONS

A factorization of a matrix A is an equation that expresses A4 as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effects of two or more linear transformations into a single matrix), matrix factorization
is an analysis of data. In the language of computer science, the expression of 4 as a
product amounts to a preprocessing of the data in A, organizing that data into two or
more parts whose structures are more useful in some way, perhaps more accessible for

computation.
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b. To factor the matrix |: :| into the product of transfer matrices, as in equa-

-5 5
tion (6), look for R; and R, in Fig. 4 to satisfy

1 —Ry _ 1 -8
|:—1/R2 1+R1/R2]_|:—.5 5i|

From the (1, 2)-entries, Ry = 8 ohms, and from the (2, 1)-entries, 1/R, = .5 ohm
and R, = 1/.5 = 2 ohms. With these values, the network in Fig. 4 has the desired
transfer matrix. [

A network transfer matrix summarizes the input—output behavior (the design spec-
ifications) of the network without reference to the interior circuits. To physically build
a network with specified properties, an engineer first determines if such a network can
be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the transfer
matrix are usually rational complex-valued functions. (See Exercises 19 and 20 in
Section 2.4 and Example 2 in Section 3.3.) A standard problem is to find a minimal
realization that uses the smallest number of electrical components.

PRACTICE PROBLEM

2 —4 -2 3
6 -9 -5 8
Find an LU factorization of A = 2 =7 =3 9 |. [Note: It will turn out that A
4 -2 -2 -1
-6 3 3 4

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from /s.]

In Exercises 1-6, solve the equation Ax = b by using the LU
factorization given for A. In Exercises 1 and 2, also solve Ax = b

by ordinary row reduction.

3 -7 27
LA=|-3 5 1
L6 4 0

T 10 0]
A=|-1 1 o0
2 =5 1
[ 2 -6 4
2.4=|-4 8 0
L0 4 6
T 10 0
A=|-2 1 o0
L0 11
[ 2 —4 2
3.4=|-4 5 2
6 -9 1

T 1 0 0][2 —4 2
A= - ollo =3
3 -1 1[0 o 1
_7 B
5 1 -1 2 0
2 4. A=|1 -3 1|.b=]|-5
3 7 5 7
-7 =2 -
SR 10 o[l -1 2
=1 WIREEE
3 5 1]lo o0 —6
5 i
—4
6 1 -2 -2 -3 |
3 -9 0 -9 6
_i g 5o A= -1 2 4 7 b= 0
0 -3 —6 26 2 3
1 0 0 O0[1 -2 —2 -3
(6) 4—| 3 1 0 oflo 3 6 0
1 0o 1 ollo o 2 4
6 3 4 =2 1lo 0o o 1
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T 13 20 1
2 3 -4 12 -2
A=13 0 4 36 P70
| -5 -3 -8 49 2
T 1 0 0o Ot 3 2 0
4|2 1t o offo 3 0o 12
33 1 0oflo 0o -2 0
-5 4 -1 1]lo o o 1

Find an LU factorization of the matrices in Exercises 7—16 (with L
unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

7.

11.

13.

15.

17.

18.
19.

20.

21.

[ 2 5 g [ 6 4
|3 4 L2 s
r3 1 2 -5 0 4
-9 0 —4 10. [ 10 2 -5
9 9 14 | 10 10 16
307 2 2 3 2
6 19 4 12. | 4 13 9
|3 2 3 |6 5 4
T 1 3 =5 =37 13 1 5
-1 -5 8 4 5 20 31
4 02 5 7| Ml o4
|2 -4 7 5] -1 7 1 7
2 -3 4
T2 0 5 27 —4 8 -7
—6 3 -13 -3 16. | 6 —5 14
| 4 9 16 17 ] -6 9 -12
8 —6 19

When A is invertible, MATLAB finds A~! by factoring
A = LU (where L may be permuted lower triangular), in-
verting L and U, and then computing U~!L™!. Use this
method to compute the inverse of A in Exercise 2. (Apply
the algorithm in Section 2.2 to L and to U.)

Find A~! as in Exercise 17, using A4 from Exercise 3.

Let A be alower triangular n x n matrix with nonzero entries
on the diagonal. Show that A is invertible and A" is lower
triangular. [Hint: Explain why A can be changed into /
using only row replacements and scaling. (Where are the
pivots?) Also, explain why the row operations that reduce
A to I change [ into a lower triangular matrix.]

Let A = LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

Suppose A = BC, where B is invertible. Show that any
sequence of row operations that reduces B to / also reduces
A to C. The converse is not true, since the zero matrix may
be factored as 0 = B -0.

Exercises 22-26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22.

24.

25.

27.

28.

29.

(Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5 x 3 matrix B and a 3 x 4 matrix C such that
A = BC. Generalize this idea to the case where A is m X n,
A = LU, and U has only three nonzero rows.

. (Rank Factorization) Suppose an m X n matrix A admits a

factorization A = CD where C ism x 4 and D is 4 X n.

a. Show that A is the sum of four outer products. (See

Section 2.4.)

b. Letm = 400 and n = 100. Explain why a computer pro-
grammer might prefer to store the data from A in the form
of two matrices C and D.

(OR Factorization) Suppose A = QR, where Q and R are
n x n, R is invertible and upper triangular, and Q has the
property that QT Q = I. Show that for each b in R", the
equation Ax = b has a unique solution. What computations
with Q and R will produce the solution?

(Singular Value Decomposition) Suppose A = UDVT,
where U and V are n x n matrices with the property that
UTU = I and VTV = I, and where D is a diagonal matrix
with positive numbers o1, . .., 0, on the diagonal. Show that
A is invertible, and find a formula for A™".

. (Spectral Factorization) Suppose a 3 x 3 matrix A admits

a factorization as A = PDP ™!, where P is some invertible
3 x 3 matrix and D is the diagonal matrix

2 0 O
D=0 3 0
0 0 1

Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A2, A%, and A*
(k a positive integer), using P and the entries in D.

Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

Show that if three shunt circuits (with resistances R, R,, R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

a. Compute the transfer matrix of the network in the figure
below.

l] F====== A 12 12 F====== A lg l; F====== A l4
M ——— T M
LR : % : R,
¢! ' Vo R, A I ' V4
b. Let A = 3 —12 Design a ladder network
: Tl o1z 53| OE

whose transfer matrix is A by finding a suitable matrix
factorization of A.



30. Find a different factorization of the transfer matrix A in

31.

Exercise 29, and thereby design a different ladder network
whose transfer matrix is A.

[M] Consider the heat plate in the following figure (refer to
Exercise 33 in Section 1.1).

0 0 0 0

. L3 s 11 1,

s 2 a6 8 |,
10° 10° 10° 10°

The solution to the steady-state heat flow problem for this
plate is approximated by the solution to the equation Ax = b,
where b = (5, 15,0, 10, 0, 10, 20, 30) and

4 -1 -1
-1 4 0 -1
-1 0 4 -1 -1
-1 -1 4 0 -1
A= -1 0 4 -1 -1
-1 -1 4 0 -1
-1 0 4 -1
i -1 -1 4|

The missing entries in A are zeros. The nonzero entries of
A lie within a band along the main diagonal. Such band
matrices occur in a variety of applications and often are
extremely large (with thousands of rows and columns but
relatively narrow bands).

a. Use the method in Example 2 to construct an LU factor-
ization of A, and note that both factors are band matrices
(with two nonzero diagonals below or above the main
diagonal). Compute LU — A to check your work.

32.
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b. Use the LU factorization to solve Ax = b.

c. Obtain A~! and note that A™" is a dense matrix with no
band structure. When A is large, L and U can be stored
in much less space than A™!. This fact is another reason
for preferring the LU factorization of A to A~ itself.

[M] The band matrix A shown below can be used to estimate
the unsteady conduction of heat in a rod when the tempera-
tures at points pi, ..., ps on the rod change with time.?

The constant C in the matrix depends on the physical nature
of the rod, the distance Ax between the points on the rod,
and the length of time Af between successive temperature
measurements. Suppose that fork = 0,1,2,..., a vector t;
in R* lists the temperatures at time kA¢. If the two ends of the
rod are maintained at 0°, then the temperature vectors satisfy
the equation Aty =t (k =0,1,...), where

(1+20) —C
4| —¢ a+200
-C  (14+20) -C
-C  (1+420)

a. Find the LU factorization of 4 when C = 1. A matrix
such as A with three nonzero diagonals is called a tridi-
agonal matrix. The L and U factors are bidiagonal
matrices.

Suppose C =1 and t, = (10, 15,15, 10)7. Use the LU
factorization of A to find the temperature distributions t,,
tz, t3, and t4.

2 See Biswa N. Datta, Numerical Linear Algebra and Applications (Pacific
Grove, CA: Brooks/Cole, 1994), pp. 200-201.

SOLUTION TO PRACTICE PROBLEM

2

—4

-2 3 2 4 -2 3
-5 8 0o 3 1 -1
-3 9| ~|0 =3 -1 6
-2 -1 0 6 2 -7
3 4 0 -9 -3 13
-2 3 2 -4 =2 3
1 -1 0o 3 1 -1
0O 5| ~]10 0 0 5|=U
0 =5 0 0 0 0
0 10 0 0 0 O

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to / correspond to reduction of A to U. Use the last two columns of /5
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to make L unit lower triangular.

[ 2
6 3
2 1] -3 5
4 6| =5

—6 =0 10

2 =5

A
1 I 0 0 0 O
3 31 0 0 O
I -1 1 , L= I -1 1 0 0
2 -1 2 2 -1 1 0

| -3 -3 2 -3 -3 2 0 1

2.6 THE LEONTIEF INPUT-OUTPUT MODEL

Linear algebra played an essential role in the Nobel prize—winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described
in this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in R” that lists the output of each sector for one
year. Also, suppose another part of the economy (called the open sector) does not
produce goods or services but only consumes them, and let d be a final demand vector
(or bill of final demands) that lists the values of the goods and services demanded
from the various sectors by the nonproductive part of the economy. The vector d can
represent consumer demand, government consumption, surplus production, exports, or
other external demands.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that

amount intermediate final
produced ; = { demand } + < demand (D)
X d

The basic assumption of Leontief’s input—output model is that for each sector, there is
a unit consumption vector in R” that lists the inputs needed per unit of output of the
sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services — with unit consumption vectors ¢y, ¢,, and ¢3, as shown
in the table that follows.
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— NUMERICAL NOTE

Continuous movement of graphical 3D objects requires intensive computation
with 4 x 4 matrices, particularly when the surfaces are rendered to appear
realistic, with texture and appropriate lighting. High-end computer graphics
boards have 4 x 4 matrix operations and graphics algorithms embedded in their
microchips and circuitry. Such boards can perform the billions of matrix multipli-
cations per second needed for realistic color animation in 3D gaming programs.?

Further Reading

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002),
Chapters 5 and 6.

PRACTICE PROBLEM

Rotation of a figure about a point p in R? is accomplished by first translating the figure
by —p, rotating about the origin, and then translating back by p. See Fig. 7. Construct
the 3 x 3 matrix that rotates points —30° about the point (—2, 6), using homogeneous
coordinates.

X2 X2 X2 X2

°p °p S5
AR
? ,é 'J U/‘it
| o1 | N N N | n
(a) Original figure. (b) Translated to (c) Rotated about (d) Translated
origin by —p. the origin. back by p.

FIGURE 7 Rotation of figure about point p.

2.7 EXERCISES

1.

What 3 x 3 matrix will have the same effect on homogeneous
coordinates for R? that the shear matrix 4 has in Example 2?

Use matrix multiplication to find the image of the triangle

4 2 5
0 ) 3 :| under the transforma-

tion that reflects points through the y-axis. Sketch both the
original triangle and its image.

with data matrix D =

In Exercises 3-8, find the 3 x 3 matrices that produce the de-
scribed composite 2D transformations, using homogeneous coor-
dinates.

3. Translate by (2, 1), and then rotate 90° about the origin.

4. Translate by (—1, 4), and then scale the x-coordinate by 1/2

and the y-coordinate by 3/2.

. Reflect points through the x-axis, and then rotate 45° about

the origin.

. Rotate points 45° about the origin, then reflect through the

X-axis.

. Rotate points through 60° about the point (6, 8).
. Rotate points through 45° about the point (3, 7).

. A 2 x 100 data matrix D contains the coordinates of 100

points. Compute the number of multiplications required to
transform these points using two arbitrary 2 x 2 matrices A
and B. Consider the two possibilities A(BD) and (AB)D.
Discuss the implications of your results for computer graph-
ics calculations.

2See Jan Ozer, “High-Performance Graphics Boards,” PC Magazine 19, 1 September 2000, pp. 187-200.
Also, “The Ultimate Upgrade Guide: Moving On Up,” PC Magazine 21, 29 January 2002, pp. 82-91.



10.

11.

12.

13.

14.

15.

16.

Consider the following geometric 2D transformations: D, a
dilation (in which x-coordinates and y-coordinates are scaled
by the same factor); R, arotation; and 7', a translation. Does
D commute with R? That is, is D(R(x)) = R(D(x)) for all
x in R2? Does D commute with 7? Does R commute with
T?

A rotation on a computer screen is sometimes implemented
as the product of two shear-and-scale transformations, which
can speed up calculations that determine how a graphic image
actually appears in terms of screen pixels. (The screen con-
sists of rows and columns of small dots, called pixels.) The
first transformation A, shears vertically and then compresses
each column of pixels; the second transformation A4, shears
horizontally and then stretches each row of pixels. Let

1 0 0
A =|sing cose 0],
0 0 1
secy —tang 0
A, = 0 1 01,
0 0 1

and show that the composition of the two transformations is
a rotation in R2.

A rotation in R? usually requires four multiplications. Com-
pute the product below, and show that the matrix for a rota-
tion can be factored into three shear transformations (each of
which requires only one multiplication).

1 —tang/2 0 1 0 0
0 1 0 sin @ 1 0
0 0 1 0 0 1

1 —tang/2 O

0 1 0

0 0 1

The usual transformations on homogeneous coordinates for
2D computer graphics involve 3 x 3 matrices of the form

[(;i ll):| where A is a 2 x 2 matrix and p is in R2. Show

that such a transformation amounts to a linear transformation
on R? followed by a translation. [Hint: Find an appropriate
matrix factorization involving partitioned matrices.]

Show that the transformation in Exercise 7 is equivalent to
a rotation about the origin followed by a translation by p.
Find p.

What vector in R?
11

224 TR/
Are (1,—2,-3,4) and (10, —20, —30, 40) homogeneous co-
ordinates for the same point in R*? Why or why not?

has homogeneous coordinates

17.

18.

20.
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Give the 4 x 4 matrix that rotates points in R about the x-
axis through an angle of 60°. (See the figure.)

Z

‘/ 3

Give the 4 x 4 matrix that rotates points in R about the
z-axis through an angle of —30°, and then translates by
p=(5-21).

. Let S be the triangle with vertices (4.2, 1.2,4), (6,4,2), and

(2,2, 6). Find the image of S under the perspective projection
with center of projection at (0, 0, 10).

Let S be the triangle with vertices (7, 3, —5), (12, 8, 2), and
(1,2, 1). Find the image of S under the perspective projection
with center of projection at (0, 0, 10).

Exercises 21 and 22 concern the way in which color is specified
for display in computer graphics. A color on a computer screen
is encoded by three numbers (R, G, B) that list the amounts of
energy an electron gun must transmit to red, green, and blue
phosphor dots on the computer screen. (A fourth number specifies
the luminance or intensity of the color.)

21.

22.

[M] The actual color a viewer sees on a screen is influenced
by the specific type and amount of phosphors on the screen.
So each computer screen manufacturer must convert between
the (R, G, B) data and an international CIE standard for
color, which uses three primary colors, called X, Y, and Z.
A typical conversion for short-persistence phosphors is

.61 .29 150 R X
35 .59 .063 G|=|Y
.04 12 787 B Z

A computer program will send a stream of color information
to the screen, using standard CIE data (X, Y, Z). Find the
equation that converts these data to the (R, G, B) data needed
for the screen’s electron gun.

[M] The signal broadcast by commercial television describes
each color by a vector (Y, I, Q). If the screen is black and
white, only the Y -coordinate is used. (This gives a better
monochrome picture than using CIE data for colors.) The
correspondence between Y/Q and a “standard” RGB color is
given by

Y 299 587 114 R
I | =1].59 —-.275 -.321 G
0 212 =528 311 B
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(A screen manufacturer would change the matrix entries to the Y7Q data transmitted by the television station to the RGB
work for its RGB screens.) Find the equation that converts data needed for the television screen.

SOLUTION TO PRACTICE PROBLEM

Assemble the matrices right-to-left for the three operations. Using p = (-2, 0),
c0s(—30°) = +/3/2, and sin(—30°) = —.5, we have

Translate Rotate around Translate
back by p the origin by —p
1 0 =27[v3/2 12 o1 o 2
0 1 6| -1/2 V3/2 0[]0 1 —6
0 0 1 0 0 1JL0 0 1

V32 172 J3-5
=| -1/2  3/2 -3J3+5
0 0 1

2.8 SUBSPACES OF R”

This section focuses on important sets of vectors in R” called subspaces. Often sub-
spaces arise in connection with some matrix A, and they provide useful information
about the equation Ax = b. The concepts and terminology in this section will be used
repeatedly throughout the rest of the book.!

A subspace of R” is any set H in R” that has three properties:

x a. The zero vectorisin H.
b. Foreachuand vin H, the sumu + visin H.
c. Foreachuin H and each scalar ¢, the vector cu is in H .

’ In words, a subspace is closed under addition and scalar multiplication. As you will
’ see in the next few examples, most sets of vectors discussed in Chapter 1 are subspaces.
For instance, a plane through the origin is the standard way to visualize the subspace in

l’ Example 1. See Fig. 1.

0
" EXAMPLE 1 1If v, and v, are in R” and H = Span {vy, v,}, then H is a subspace
of R". To verify this statement, note that the zero vector is in H (because Ov; + Ov; is
FIGURE 1 a linear combination of v| and v,). Now take two arbitrary vectors in H, say,
tShpeagr{iglzl.vz} as a plane through U=V + 59, and V=8V +5Ys
Then

u+v=_>sy+1)vi+ (52 +51)v2

which shows that u + v is a linear combination of v, and v, and hence is in H . Also, for
any scalar c, the vector cu is in H, because cu = c(s;v] + $2v2) = (¢s1)vy + (¢s2)Vva.
|

ISections 2.8 and 2.9 are included here to permit readers to postpone the study of most or all of the next two
chapters and to skip directly to Chapter 5, if so desired. Omit these two sections if you plan to work through
Chapter 4 before beginning Chapter 5.
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THEOREM 13

Mastering: Subspace,
Col A, Nul A, Basis 2-37

The matrix B in Example 7 is in reduced echelon form. To handle a general matrix
A, recall that linear dependence relations among the columns of A can be expressed
in the form Ax = 0 for some x. (If some columns are not involved in a particular
dependence relation, then the corresponding entries in x are zero.) When A is row
reduced to echelon form B, the columns are drastically changed, but the equations
Ax = 0 and Bx = 0 have the same set of solutions. That is, the columns of A have
exactly the same linear dependence relationships as the columns of B.

EXAMPLE 8 It can be verified that the matrix

1 3 3 2 -9
2 2 2 -8 2
A=lar & - as]=1 5 5 (5
34 -1 11 -8

is row equivalent to the matrix B in Example 7. Find a basis for Col A.

SOLUTION From Example 7, the pivot columns of A are columns 1, 2, and 5.
Also, b3 = —3b; + 2b, and by = 5b; — b,. Since row operations do not affect linear
dependence relations among the columns of the matrix, we should have

a; = —3a; +2a, and a4 = 5a; —a,

Check that this is true! By the argument in Example 7, a3 and a4 are not needed to
generate the column space of A. Also, {a;, a,, as} must be linearly independent, because
any dependence relation among a;, a,, and a5 would imply the same dependence relation
among by, by, and bs. Since {by, b;, bs} is linearly independent, {a,, a,, as} is also
linearly independent and hence is a basis for Col A. ]

The argument in Example 8 can be adapted to prove the following theorem.

The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of Col A. The
columns of an echelon form B are often not in the column space of A. (For instance,
in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot
generate the columns of A4.)

PRACTICE PROBLEMS

1 -1 5 -7
1. Let A = 2 0 7 andu= 3 |. Isuin Nul A? Is u in Col A? Justify
-3 -5 -3 2
each answer.
0O 1 0
2. Given4A=|[0 O 1 |, find a vector in Nul A and a vector in Col A.
o 0 O

3. Suppose an n x n matrix A is invertible. What can you say about Col A? About
Nul 4?7
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Exercises 1-4 display sets in R2. Assume the sets include the
bounding lines. In each case, give a specific reason why the set
H is not a subspace of R?. (For instance, find two vectors in H
whose sum is not in H , or find a vector in H with a scalar multiple
that is not in H. Draw a picture.)

1.
2.
3.
4.
1 -2 -3
5. Letv, = 3|,v,=| =3 |,and w= | —3 |. Deter-
—4 7 10

mine if w is in the subspace of R* generated by v, and v,.

1 4 5
-3 —4 -3
6. Let v, = s | V2= 5| V= 6 , and u =
3 7 5
-1
:Z . Determine if u is in the subspace of R* generated
2

by {vi, V2, v3}.

7. Let
2 -3 4
vV, = —8 , V= 8 , V3= 6 .
6 -7 -7
6
p=|—10|, and A=[vivavs].

11
a. How many vectors are in {v;, v, v3}?
b. How many vectors are in Col A?

c. Ispin Col A? Why or why not?

8. Let
-2 -2 0
vV, = 0 , V) = 3 , V3 = -5 ,
6 3 5
—6
and p = 1 |. Determine if p is in Col A, where A =

17
[vi va 3]
9. With A and p as in Exercise 7, determine if p is in Nul A.
=5
10. Withu = 5
3

and A as in Exercise 8, determine if u is

in Nul 4.

In Exercises 11 and 12, give integers p and g such that Nul 4 is a
subspace of R” and Col 4 is a subspace of RY.

3 2 1 -5
M A=|-9 —4 1 7
9 2 =5 1
1 2 3
4 5 7
12. A=| -5 -1 0
2 7 11
303 4

13. For A as in Exercise 11, find a nonzero vector in Nul 4 and a
nonzero vector in Col A.

[

4. For A as in Exercise 12, find a nonzero vector in Nul A and
a nonzero vector in Col A.

Determine which sets in Exercises 15-20 are bases for R? or R>.
Justify each answer.

[ 4716 -2 4
s oS e ]
T o0l [s] 6 1 3 5
17. | o, |o].|3 8. | 1| -1].| 1
2] [4] |2 -3 2| | -4
M3 6 1 31 =37 7To
19. | 8[| 2| 20. | -6|.|-6].| 7/ |7
1 -5 -7 7 5119
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In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21. a.

22,

®

A subspace of R” is any set H such that (i) the zero vector
isin H, (ii)u, v,and u + v are in H, and (iii) c is a scalar
and cuisin H.

Ifvi,...,v,arein R", then Span {v,,...,v,} is the same
as the column space of the matrix [v1 e vy, ]

The set of all solutions of a system of 7 homogeneous
equations in n unknowns is a subspace of R”.

The columns of an invertible n X n matrix form a basis
for R".

Row operations do not affect linear dependence relations
among the columns of a matrix.

A subset H of R” is a subspace if the zero vector is in H.

If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col 4.

Given vectors vy, ..., v, in R”, the set of all linear com-
binations of these vectors is a subspace of R”.

Let H be a subspace of R”. If xis in H, and y is in R",
thenx +yisin H.

The column space of a matrix A is the set of solutions of
Ax = b.

Exercises 23-26 display a matrix A and an echelon form of A.
Find a basis for Col 4 and a basis for Nul 4.

24, A=|2 —4

25. A=

4 5 9 2 1 2 6 =57
23. A=]6 5 1 12|(~]0 1 5 —6
|3 4 8 3| |0 0 0 O]
3 —6 9 01 [1 —2 5 47
7 2|~]0 0 3 6
|3 -6 6 -6/ |0 0 0 O]
1 4 8 -3 —7
-1 2 7 3 4
-2 2 9 5 5
. 3 6 9 -5 =2
1 4 8 0 5
0o 2 5 0 -1
0o 0 0 1 4
0O 0 0 0 0

3 -1 -3 -1 8
31 3 0 2
6. 4=10 3 9 1 4
6 3 9 -2 6]
(3 -1 =3 0 6]
0 2 6 0 —4
0o 0 0 -1 2
o 0 0 0 0]

27. Construct a 3 x 3 matrix A and a nonzero vector b such that
b is in Col A4, but b is not the same as any one of the columns
of A.

28. Construct a 3 x 3 matrix A and a vector b such that b is not
in Col A.

29. Construct a nonzero 3 x 3 matrix A and a nonzero vector b
such that b is in Nul A.

30. Suppose the columns of a matrix A = [a; ---a,] are linearly
independent. Explain why {a,,...,a,} is a basis for Col A.

In Exercises 31-36, respond as comprehensively as possible, and
justify your answer.

31. Suppose F isa5 x 5 matrix whose column space is not equal
to R3. What can be said about Nul F?

32. If Bisa7 x 7 matrix and Col B = R”, what can be said about
solutions of equations of the form Bx = b for b in R”?

33. If C is a 6 x 6 matrix and Nul C is the zero subspace, what
can be said about solutions of equations of the form Cx = b
for b in R6?

34. What can be said about the shape of an m x n matrix A when
the columns of A form a basis for R™?

35. If B is a 5 x 5 matrix and Nul B is not the zero subspace,
what can be said about Col B?

36. What can be said about Nul C when C is a 6 x 4 matrix with
linearly independent columns?

[M] In Exercises 37 and 38, construct bases for the column space
and the null space of the given matrix A. Justify your work.

T3 -5 0 —1 37

-7 9 —4 9-11

WA= 5 7 5 5 7
3 -7 3 4 0]

5 3 2 —6 —87]

4 1 3 -8 -7

WA=l 5 1 4 5 19
| -7 -5 2 8 5]

Column Space and Null Space
A Basis for Col A
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SOLUTIONS TO PRACTICE PROBLEMS

1. To determine whether u is in Nul 4, simply compute

1 -1 5 -7 0
Au = 2 0 7 31=160
-3 -5 3 2 0

The result shows that u is in Nul A. Deciding whether u is in Col 4 requires more
work. Reduce the augmented matrix [A u] to echelon form to determine whether
the equation Ax = u is consistent:

1 -1 5 -7 1 -1 5 =7 1 -1 5 =7
2 0 7 3|~({0 2 -3 17|~]0 2 =3 17
-3 =5 =3 2 0 -8 12 —19 0 0 0 49

The equation Ax = u has no solution, so u is not in Col 4.

2. In contrast to Practice Problem 1, finding a vector in Nul A requires more work
than testing whether a specified vector is in Nul A. However, since A is already
in reduced echelon form, the equation Ax = 0 shows that if x = (x1, x2, x3), then
xp =0, x3 =0, and x; is a free variable. Thus, a basis for Nul 4 is v = (1,0, 0).
Finding just one vector in Col A4 is trivial, since each column of A4 is in Col A. In
this particular case, the same vector v is in both Nul 4 and Col A. For most n x n
matrices, the zero vector of R” is the only vector in both Nul 4 and Col A.

3. If A is invertible, then the columns of A span R”, by the Invertible Matrix Theorem.
By definition, the columns of any matrix always span the column space, so in this
case Col A4 is all of R”. In symbols, Col A = R”. Also, since A is invertible, the
equation Ax = 0 has only the trivial solution. This means that Nul 4 is the zero
subspace. In symbols, Nul A = {0}.

2.9 | DIMENSION AND RANK

This section continues the discussion of subspaces and bases for subspaces, beginning
with the concept of a coordinate system. The definition and example below should make
a useful new term, dimension, seem quite natural, at least for subspaces of R3.

Coordinate Systems

The main reason for selecting a basis for a subspace H, instead of merely a spanning
set, is that each vector in H can be written in only one way as a linear combination of
the basis vectors. To see why, suppose B = {by,...,b,} is a basis for H, and suppose
a vector x in H can be generated in two ways, say,

x=cb +---+c¢,b, and x=db;+---+d,b, (1)
Then, subtracting gives
0=x—x=(ci—di)bi+:-+(c, —dp)b, 2)

Since B is linearly independent, the weights in (2) must all be zero. That is, ¢; = d;
for 1 < j < p, which shows that the two representations in (1) are actually the same.
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Also, statement (q) implies that the equation Ax = 0 has only the trivial solution, which

Expanded Table
for the IMT 2-39

is statement (d). Since statements (d) and (g) are already known to be equivalent to the
statement that A is invertible, the proof is complete. [ |

2.9

EXERCISES

— NUMERICAL NOTES

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . |5 7
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5 o ]

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4.

PRACTICE PROBLEMS

1. Determine the dimension of the subspace H of R? spanned by the vectors vy, vs,

and vs. (First, find a basis for H.)

2 3 -1
vV = —8 s Vy = -7 s V3 = 6
6 -1 -7
2. Consider the basis
B— 1 2
201
for R2. If [x], = [3} what is x?
. 5 5| )

3. Could R3 possibly contain a four-dimensional subspace? Explain.

In Exercises 1 and 2, find the vector x determined by the given 3. b, = 2 ],bz _ ! Xx= [0

coordinate vector [x]z and the given basis B. Illustrate your |3 7

answer with a figure, as in the solution of Practice Problem 2. r ) 1
e[ [

o[- ] S

-1 | —3
2 -

2 5= {7 3])we -

In Exercises 3-6, the vector x is in a subspace H with a basis
B = {by, b,}. Find the B-coordinate vector of x.
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7. Let b, = [8]’b2 = [_;], w = [_;:|, X = [T] and

B = {by,b,}. Use the figure to estimate [w]z and [X]z.
Confirm your estimate of [x]s by using it and {b;,b,} to
compute X.

hANARY
YO
SO

i e} o] o3 5+ [

and B = {b;,b,}. Use the figure to estimate

(=]

|1
=125
[x]5, [y]5, and [z] 5. Confirm your estimates of [y]s and [z]5
by using them and {b;, b,} to compute y and z.

VAN

FRR

Exercises 9-12 display a matrix A and an echelon form of 4. Find
bases for Col A4 and Nul A4, and then state the dimensions of these
subspaces.

1 3 2 -6 1 3 3 2
3 9 5 0 0 5 -7
2 A4=15 6_1 9|~ o 0 o0 5
|5 15 0 14 0 0 0 0
1 -2 -1 5 4
2 -1 1 5 6
10.4=1_, o 2 1 -6
| 3 1 4 1 5
M1 -2 -1 2 0
o 1 1 o0 3
0 0 0 1 0
0 0 0 o0 1

2 4 -5 2 -3
3 6 -8 3 -5
ILoA=1"9 069 9 0 o9
| -3 -6 -7 -3 -10

T1 2 =5 1 —47

0 0 5 0 5

0 0 0 0 0

(0 0 0 0 0

1 2 —4 4 6]

5 1 -9 2 10
2.4=14 6 29 12 15
|3 4 -5 8 9
12 8 4 —67]

0 2 3 4 —1

0 0 5 0 -5

(0 0 0 0 0]

In Exercises 13 and 14, find a basis for the subspace spanned by
the given vectors. What is the dimension of the subspace?

177377 27 [-4

-3 91| -1 5

Bl ol 6] 4| -3

=4 12 [ 2] 7]
Tl 21T o1 [-1]T 3
S T 41| =7
Wl opl o] sl |=7]]| s
L3 L 4 2] 7] [-9

15. Suppose a 4 x 6 matrix A has four pivot columns. Is
Col A = R*?Is Nul 4 = R?? Explain your answers.

16. Suppose a 4 x 7 matrix A has three pivot columns. Is
Col A = R3? What is the dimension of Nul 4? Explain your
answers.

In Exercises 17 and 18, mark each statement True or False. Justify
each answer. Here A4 is an m X n matrix.

If B={vi,....v,} is a basis for a subspace H and if
X =c|V| +---+c,V,, then ¢y,...,c, are the coordi-
nates of x relative to the basis B.

17. a.

b. Each line in R” is a one-dimensional subspace of R”.

c. The dimension of Col 4 is the number of pivot columns
in A.

d. The dimensions of Col A and Nul A add up to the number
of columns in A.

e. If a set of p vectors spans a p-dimensional subspace H
of R”, then these vectors form a basis for H .

18. a. If B is a basis for a subspace H, then each vector in H
can be written in only one way as a linear combination of

the vectors in 3.

b. The dimension of Nul A is the number of variables in the
equation Ax = 0.

c. The dimension of the column space of A4 is rank A.



d. If B={vy,...,v,} is a basis for a subspace H of R”,
then the correspondence x > [X];s makes H look and act
the same as R”.

e. If H is a p-dimensional subspace of R”, then a linearly
independent set of p vectors in H is a basis for H.

In Exercises 19-24, justify each answer or construction.

19.

20.

21.

22.

23.

24.

25.

26.

If the subspace of all solutions of Ax = 0 has a basis con-
sisting of three vectors and if 4 is a 5 X 7 matrix, what is the
rank of A?

What is the rank of a 6 x 8 matrix whose null space is three-
dimensional?

If the rank of a 9 x 8 matrix A is 7, what is the dimension of
the solution space of Ax = 0?

Show that a set {v|,...,vs} in R” is linearly dependent if
dim Span{v,,...,vs} = 4.

If possible, construct a 3 x 5 matrix A such thatdimNul 4 =
3 and dim Col 4 = 2.

Construct a 3 x 4 matrix with rank 1.

Let A be an n X p matrix whose column space is p-
dimensional. Explain why the columns of A must be linearly
independent.

Suppose columns 1, 3, 4, 5, and 7 of a matrix A are linearly
independent (but are not necessarily pivot columns) and the
rank of 4 is 5. Explain why the five columns mentioned must
be a basis for the column space of A.

1. Construct A = [v;

A=

X dim H = 2.
3

2. If[X]B = |:2]

weights 3 and 2:

27.

28.

29.

30.

2.9 Dimension and Rank 159

Suppose vectors by,...,b, span a subspace W, and let

{a;,...,a,} be any set in W containing more than p vec-

tors. Fill in the details of the following argument to show

that {a;,...,a,} must be linearly dependent. First, let

B =[b, b,]and A = [a; a, .

a. Explain why for each vector a;, there exists a vector ¢;
in R? such thata; = Bc;.

b. LetC =[¢ ¢, ]. Explain why there is a nonzero
vector u such that Cu = 0.

c. Use B and C to show that Au = 0. This shows that the
columns of A are linearly dependent.

Use Exercise 27 to show that if A and B are bases for a
subspace W of R”, then A cannot contain more vectors than
BB, and, conversely, B cannot contain more vectors than A.

[M] Let H = Span{vy,v,} and B = {v;, v,}. Show that x is
in H, and find the B-coordinate vector of x, when

15 14 16
-5 ~10 0
it=lplp 27 ) *T|n
7 17 -3

[M] Let H = Span{vy, v,,v3} and B = {v;, v,, v3}. Show
that 3 is a basis for H and xis in H , and find the 3-coordinate
vector of x, when

—6 8 -9 11

3 0 4 -2

Vi = 9 , Vo = 7 , V3 = _3 , X = 17
4 -3 3 -8

El Mastering: Dimension and Rank 2-41

SOLUTIONS TO PRACTICE PROBLEMS

v3] so that the subspace spanned by vy, v,, v3 is the column

3

=7
—1

space of A. A basis for this space is provided by the pivot columns of A.

2
-8
6

-1 2 3 -1 2 3 -1
6| ~|0 5 2f(~|0 5 2
=7 0-10 —4 0 0 O

The first two columns of A are pivot columns and form a basis for H. Thus

, then x is formed from a linear combination of the basis vectors using

1 2 3.4
2 c=a = 1] 2] 2]

The basis {b;,b,} determines a coordinate system for R?, illustrated by the grid in

1 the figure. Note how x is 3 units in the b;-direction and 2 units in the b,-direction.
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3. A four-dimensional subspace would contain a basis of four linearly independent
vectors. This is impossible inside R3. Since any linearly independent set in R3 has
no more than three vectors, any subspace of R* has dimension no more than 3. The
space R? itself is the only three-dimensional subspace of R*. Other subspaces of R3
have dimension 2, 1, or O.

CHAPTER 2 SUPPLEMENTARY EXERCISES

. Let A= 1 0 0

1. Assume that the matrices mentioned in the statements below

have appropriate sizes. Mark each statement True or False.
Justify each answer.

a. If A and B are m x n, then both AB” and A”B are
defined.

b. If AB = C and C has 2 columns, then A4 has 2 columns.

c. Left-multiplying a matrix B by a diagonal matrix A, with
nonzero entries on the diagonal, scales the rows of B.

d. If BC = BD,then C = D.
e. If AC =0, theneither A =0o0r C = 0.
f. IfAand Baren x n,then (4 + B)(A — B) = A> — B2.

g. An elementary n xn matrix has either n or n + 1
nonzero entries.

h. The transpose of an elementary matrix is an elementary
matrix.

i. An elementary matrix must be square.
j- Every square matrix is a product of elementary matrices.

k. If A is a 3 x3 matrix with three pivot positions,
there exist elementary matrices Ei,..., E, such that
E, - E/A=1.

1. If AB = I, then A is invertible.

m. If A and B are square and invertible, then AB is invert-
ible, and (AB)™! = A™'B~.

n. If AB = BA and if A is invertible, then A~'B = BA™!.
o. If Aisinvertible and if r # 0, then (rA)™! = rA~".

1
p. If Ais a3 x 3 matrix and the equation Ax = | 0 | has
0
a unique solution, then A is invertible.
. . . . 4 5
. Find the matrix C whose inverse is C ™' = 6 7|

o 0 0

. Show that A* = 0. Use matrix
o 1 0

algebra to compute the product (I — A)(I + A + A?).

. Suppose A" = 0 for some n > 1. Find an inverse for / — 4.

. Suppose an n x n matrix A satisfies the equation A%—
2A + I = 0. Show that A> = 34 — 21 and A* = 44 — 31.

1 0 0 1 oo
. LetA—|:O _1],B—|:1 Oi|’ These are Pauli spin

10.

11.

12.

matrices used in the study of electron spin in quantum
mechanics. Show that A2 =1, B> =1, and AB = —BA.

Matrices such that AB = — BA are said to anticommute.
1 3 8 -3 5
LetA=|2 4 11 |and B = 1 5 |. Compute
1 2 5 3 4

A~!'B without computing A~"'. [Hint: A™'B is the solution
of the equation AX = B.]

Find a matrix A such that the transformation x > Ax maps

[;] and [%] into [i ] and [?], respectively. [Hint:

Write a matrix equation involving A4, and solve for A4.]

> 4]andB=[7 3i|.FindA.

Suppose AB = |:_2 3 o

Suppose A is invertible. Explain why A’A is also invertible.
Then show that A~ = (A7T4)~'A”.

Let xy,...,x, be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as signal
processing, error-correcting codes, and polynomial interpo-
lation.

1 X1 xl2 x’f*'
2 n—1
I x x5 - X5
V= . .
2 n—1
I x, x; - X,
Giveny = (y1,..., ) in R", suppose ¢ = (¢, ..., cy—1) in

R” satisfies V¢ =y, and define the polynomial
p(t) =co+ it + Czl‘2 4+ 4 Cnfll‘n_l

a. Show that p(x;) =y,...,p(x,) =y,. We call
p(t) an interpolating polynomial for the points
(x1,91),s .., (xy, yn) because the graph of p(t) passes
through the points.

b. Suppose xi,...,Xx, are distinct numbers. Show that the
columns of V' are linearly independent. [Hint: How many
zeros can a polynomial of degree n — 1 have?]

c. Prove: “If xy,..., x, are distinct numbers, and y,, ..., ¥,
are arbitrary numbers, then there is an interpolating poly-
nomial of degree < n — 1 for (x1, y1),..., (X4, yu).”

Let A = LU, where L is an invertible lower triangular ma-
trix and U is upper triangular. Explain why the first column
of A is a multiple of the first column of L. How is the second
column of A related to the columns of L?
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p. If Ais a3 x 3 matrix and the equation Ax = | 0 | has
0
a unique solution, then A is invertible.
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. Find the matrix C whose inverse is C ™' = 6 7|

o 0 0

. Show that A* = 0. Use matrix
o 1 0

algebra to compute the product (I — A)(I + A + A?).

. Suppose A" = 0 for some n > 1. Find an inverse for / — 4.

. Suppose an n x n matrix A satisfies the equation A%—
2A + I = 0. Show that A> = 34 — 21 and A* = 44 — 31.

1 0 0 1 oo
. LetA—|:O _1],B—|:1 Oi|’ These are Pauli spin

10.

11.

12.

matrices used in the study of electron spin in quantum
mechanics. Show that A2 =1, B> =1, and AB = —BA.

Matrices such that AB = — BA are said to anticommute.
1 3 8 -3 5
LetA=|2 4 11 |and B = 1 5 |. Compute
1 2 5 3 4

A~!'B without computing A~"'. [Hint: A™'B is the solution
of the equation AX = B.]

Find a matrix A such that the transformation x > Ax maps

[;] and [%] into [i ] and [?], respectively. [Hint:

Write a matrix equation involving A4, and solve for A4.]

> 4]andB=[7 3i|.FindA.

Suppose AB = |:_2 3 o

Suppose A is invertible. Explain why A’A is also invertible.
Then show that A~ = (A7T4)~'A”.

Let xy,...,x, be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as signal
processing, error-correcting codes, and polynomial interpo-
lation.

1 X1 xl2 x’f*'
2 n—1
I x x5 - X5
V= . .
2 n—1
I x, x; - X,
Giveny = (y1,..., ) in R", suppose ¢ = (¢, ..., cy—1) in

R” satisfies V¢ =y, and define the polynomial
p(t) =co+ it + Czl‘2 4+ 4 Cnfll‘n_l

a. Show that p(x;) =y,...,p(x,) =y,. We call
p(t) an interpolating polynomial for the points
(x1,91),s .., (xy, yn) because the graph of p(t) passes
through the points.

b. Suppose xi,...,Xx, are distinct numbers. Show that the
columns of V' are linearly independent. [Hint: How many
zeros can a polynomial of degree n — 1 have?]

c. Prove: “If xy,..., x, are distinct numbers, and y,, ..., ¥,
are arbitrary numbers, then there is an interpolating poly-
nomial of degree < n — 1 for (x1, y1),..., (X4, yu).”

Let A = LU, where L is an invertible lower triangular ma-
trix and U is upper triangular. Explain why the first column
of A is a multiple of the first column of L. How is the second
column of A related to the columns of L?



13.

14.

Givenuin R” withu’u = 1,let P = uu’ (an outer product)
and Q = I — 2P. Justify statements (a), (b), and (c).

a. P2=rp b. PT =P c. 02=1

The transformation x — Px is called a projection, and
X — Ox is called a Householder reflection. Such reflections
are used in computer programs to create multiple zeros in a
vector (usually a column of a matrix).

0 1
Letu=| 0 | and x=| 5 |. Determine P and Q as in
1 3

Exercise 13, and compute Px and Ox. The figure shows that
Ox is the reflection of x through the xx,-plane.

X3

Px

X

1 QX
A Householder reflection through the plane
X3 = 0.

15.

16.

17.

18.

19.

20.
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Suppose C = E;E,E| B, where E|, E;, and Ej are elemen-
tary matrices. Explain why C is row equivalent to B.

Let A be ann x n singular matrix. Describe how to construct
an n X n nonzero matrix B such that AB = 0.

Let A be a6 x 4 matrix and B a 4 x 6 matrix. Show that the
6 x 6 matrix AB cannot be invertible.

Suppose A is a 5 x 3 matrix and there exists a 3 x 5 matrix
C such that CA = I5. Suppose further that for some given b
in R, the equation Ax = b has at least one solution. Show
that this solution is unique.

[M] Certain dynamical systems can be studied by examining
powers of a matrix, such as those below. Determine what
happens to A* and B* as k increases (for example, try
k =2,...,16). Try to identify what is special about A and
B. Investigate large powers of other matrices of this type,
and make a conjecture about such matrices.

4 2 3 0o 2 3
A=|3 6 3|, B=|.1 6 3
3 2 4 9 2 4

[M] Let A, be the n x n matrix with 0’s on the main diagonal
and 1’s elsewhere. Compute An_1 for n = 4,5, and 6, and
make a conjecture about the general form of A;! for larger
values of n.
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Henceforth we will omit the zero terms in the cofactor expansion. Next, expand this
4 x 4 determinant down the first column, in order to take advantage of the zeros there.

We have
1 5 0
detA=3-2-12 4 -1
0 -2 0

This 3 x 3 determinant was computed in Example 1 and found to equal —2. Hence
detA=3-2-(-2) =-12. ]

The matrix in Example 3 was nearly triangular. The method in that example is
easily adapted to prove the following theorem.

THEOREM 2 If A is a triangular matrix, then det A is the product of the entries on the main
diagonal of A.

The strategy in Example 3 of looking for zeros works extremely well when an entire
row or column consists of zeros. In such a case, the cofactor expansion along such a row
or column is a sum of zeros! So the determinant is zero. Unfortunately, most cofactor
expansions are not so quickly evaluated.

— NUMERICAL NOTE

By today’s standards, a 25 x 25 matrix is small. Yet it would be impossible to
calculate a 25 x 25 determinant by cofactor expansion. In general, a cofactor
expansion requires over ! multiplications, and 25! is approximately 1.5 x 10%.

If a computer performs one trillion multiplications per second, it would have
to run for over 500,000 years to compute a 25 x 25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

Exercises 19-38 explore important properties of determinants, mostly for the 2 x 2
case. The results from Exercises 33—36 will be used in the next section to derive the
analogous properties for n x n matrices.

PRACTICE PROBLEM

5 -7 2 2
Compute 300 4 .
-5 -8 0 3
0 5 0 -6
3.1 EXERCISES
Compute the determinants in Exercises 1-8 using a cofactor 2 -4 3 1 35
expansion across the first row. In Exercises 1-4, also compute the 3.3 1 2 4. |2 1 1
determinant by a cofactor expansion down the second column. 4 -1 3 4 2
3 0 4 0o 5 1
L2 3 2 204 3 0 2 3 -4 5 =2 4
0 5 —1 2 4 1 5. |4 5 6. |0 3 =5
5 1 6 2 —4 7
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4 3 0 8 1 6
7. |16 5 2 8. (4 0 3
9 7 3 3 -2 5

Compute the determinants in Exercises 9—14 by cofactor expan-
sions. Ateach step, choose arow or column that involves the least
amount of computation.

6 0 0 5 1 -2 5 2
17 2 =5 0o 0 3 0
. 2 0 0 0 10. 2 -6 =7 5
8 3 1 8 5 0 4 4
3 5 -8 4 4 0 0 O
0o -2 3 -7 7 -1 0 0
1. o o0 1 5 12. 2 6 3 0
o 0 o0 2 5 -8 4 3
4 0 -7 3 =5
o o0 2 0 0
13. |7 3 -6 4 =8
5 0 5 2 -3
o o0 9 -1 2
6 3 2 4 0
9 0 —4 1 0
4. |18 -5 6 7 1
30 0 0 O
4 2 3 2 0

The expansion of a 3 x 3 determinant can be remembered by the
following device. Write a second copy of the first two columns to
the right of the matrix, and compute the determinant by multiply-
ing entries on six diagonals:

a

11

21

31

a4y
Ay dp3

32

a4y

a

e

ayy

a4y
axn

as

Add the downward diagonal products and subtract the upward
products. Use this method to compute the determinants in Ex-
ercises 15-18. Warning: This trick does not generalize in any
reasonable way to 4 x 4 or larger matrices.

30 4 0o 5 1
15. |2 3 2 16. (4 -3 0
0 5 -1 2 4 1
2 -4 3 1 3 5
17. |3 1 2 18. 1 1
I 4 -1 3 4 2

In Exercises 19-24, explore the effect of an elementary row
operation on the determinant of a matrix. In each case, state the
row operation and describe how it affects the determinant.

a b c d a b a b
19. |:c d]’|:a b] 20. |:c d]’|:kc kd]

21 (3 4 3 4
s 6 |5+3k  6+4k
fa b a+ke b+kd
2 | ¢ d ]’ |: c d :|
M1 1 1 k k k
23. -3 8 —4 |, -3 8 —4
2 =3 2 2 =3 2

b
24. | 3 2 21,|a b c
5

Compute the determinants of the elementary matrices given in
Exercises 25-30. (See Section 2.2.)

1
|
1
I

10 0 10 0
5.0 1 0 6. [0 1 0
0 k1] Lk 0 1]
[k 0 0] 10 0]
27. o 1 0 2.0 &k 0
L0 0 1] o 0o 1]
[0 1 0] [0 0 1]
2.1 0 0 3. [o 1 0
[0 0 1] 1 0 0]

Use Exercises 25-28 to answer the questions in Exercises 31 and
32. Give reasons for your answers.

31. What is the determinant of an elementary row replacement
matrix?

32. What is the determinant of an elementary scaling matrix with
k on the diagonal?

In Exercises 33-36, verify that det EA = (det E')(det A), where
b
d

. . a
E is the elementary matrix shown and A = |: B

0 1 1 0
w [01] w ) 0]

1 k 1 0
s [0 4] [}
3 1 .
37. Let A = |:4 2]. Write 5A4. Isdet54 = 5det A?
38. LetA = a 5 and let k be a scalar. Find a formula that

relates detk A to k and det A.

In Exercises 39 and 40, A is an n x n matrix. Mark each statement
True or False. Justify each answer.

39. a. An n xn determinant is defined by determinants of
(n —1) x (n — 1) submatrices.
b. The (i, j)-cofactor of a matrix A is the matrix A;; ob-
tained by deleting from A its i th row and j th column.

40. a. The cofactor expansion of det A down a column is the

negative of the cofactor expansion along a row.



41.

42,

43.

b. The determinant of a triangular matrix is the sum of the
entries on the main diagonal.

Letu = [(3)] and v = [;] Compute the area of the par-

allelogram determined by u, v, u + v, and 0, and compute
the determinant of [u v |. How do they compare? Replace
the first entry of v by an arbitrary number x, and repeat the
problem. Draw a picture and explain what you find.

Letu = [z ] and v = [f)]’ where a, b, ¢ are positive (for

simplicity). Compute the area of the parallelogram deter-
mined by u, v, u + v, and 0, and compute the determinants of
the matrices[u v]and[v wu]. Draw a picture and explain
what you find.

[M] Is it true that det(A + B) = detA + det B? To find
out, generate random 5 x 5 matrices A and B, and compute
det(A + B) —det A — det B. (Refer to Exercise 37 in Sec-

44.

45.

46.

3.2 Properties of Determinants 169

tion 2.1.) Repeat the calculations for three other pairs of
n X n matrices, for various values of n. Report your results.

[M] Is it true that det AB = (det A)(det B)? Experiment
with four pairs of random matrices as in Exercise 43, and
make a conjecture.

[M] Construct a random 4 x 4 matrix A with integer entries
between —9 and 9, and compare det A with det AT, det(—A),
det(2A), and det(10A4). Repeat with two other random 4 x 4
integer matrices, and make conjectures about how these de-
terminants are related. (Refer to Exercise 36 in Section 2.1.)
Then check your conjectures with several random 5 x 5 and
6 x 6 integer matrices. Modify your conjectures, if neces-
sary, and report your results.

[M] How is det A™! related to detA? Experiment with
random n X n integer matrices for n = 4, 5, and 6, and make
a conjecture. Note: In the unlikely event that you encounter
a matrix with a zero determinant, reduce it to echelon form
and discuss what you find.

SOLUTION TO PRACTICE PROBLEM

Take advantage of the zeros. Begin with a cofactor expansion down the third column to
obtain a 3 x 3 matrix, which may be evaluated by an expansion down its first column.

5 =7
0o 3
-5 =8
0 5

2

0
0
0

_i 0 3 —4
3 = (D2 -5 -8 3
e 0 5 -6

The (—1)?>*! in the next-to-last calculation came from the (2, 1)-position of the —5 in

the 3 x 3 determinant.

3.2  PROPERTIES OF DETERMINANTS

The secret of determinants lies in how they change when row operations are performed.
The following theorem generalizes the results of Exercises 19-24 in Section 3.1. The
proof is at the end of this section.

THEOREM 3

Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,

then det B = det A.

b. If two rows of A are interchanged to produce B, then det B = — det A.
c. If one row of A is multiplied by k to produce B, then det B = k - det A.

The following examples show how to use Theorem 3 to find determinants

efficiently.
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If Ais an n x n matrix and E is an n x n elementary matrix, then
detEA = (det E)(det A)

where
1 if E is a row replacement

det E = {—1 if E is an interchange
r if Eisascale by r

PROOF OF THEOREM 3 The proof is by induction on the size of A. The case of a
2 x 2 matrix was verified in Exercises 33—36 of Section 3.1. Suppose the theorem has
been verified for determinants of k x k matrices with k > 2, letn = k + 1, and let A
be n x n. The action of E on A involves either two rows or only one row. So we
can expand det EA across a row that is unchanged by the action of E, say, row i. Let
Aj; (respectively, B;;) be the matrix obtained by deleting row i and column j from A
(respectively, EA). Then the rows of B;; are obtained from the rows of 4;; by the same
type of elementary row operation that E performs on A. Since these submatrices are
only k X k, the induction assumption implies that

det B,‘j =o- detA,'j
where @ = 1, —1, or r, depending on the nature of E. The cofactor expansion across
row i is
det EA = a;1(—1)' "1 det By + -+ + ajn(—1) 7" det B;,,

=aa; (=)t det 4 + -+ + aa;, (1) " det 4;,

=a-detAd
In particular, taking A = I,,, we see that det E = 1, —1, or r, depending on the nature
of E. Thus the theorem is true for n = 2, and the truth of the theorem for one value of

n implies its truth for the next value of n. By the principle of induction, the theorem
must be true for n > 2. The theorem is trivially true forn = 1. |

PROOF OF THEOREM 6 If A is not invertible, then neither is AB, by Exercise 27
in Section 2.3. In this case, det AB = (det A)(det B), because both sides are zero, by
Theorem 4. If A is invertible, then A and the identity matrix [, are row equivalent by
the Invertible Matrix Theorem. So there exist elementary matrices £y, ..., £, such that

A = E[?Ep—l"'El -In = EI)Ep—l"'El

For brevity, write |A| for det A. Then repeated application of Theorem 3, as rephrased
above, shows that

|AB| = |E,---E\B| = |E,||Ep_--- E\B| = ---
=|E,|---|E\||B| = = |E,--- E|| B|
= |A]|B] u

PRACTICE PROBLEMS

I -3 1 =2

1. Compute 2 = == in as few steps as possible.
0 —4 5 1
-3 10 -6 8
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2. Use a determinant to decide if v, v,, v; are linearly independent, when

3.2 EXERCISES

-3 2
3 s V3 = -7
=5 5

Each equation in Exercises 14 illustrates a property of determi-

nants. State the property.

-3
3
-7

a
d

g

15.

17.

19.

20.

b c
e f
h i
b

e
5h

== o

2d +a
g

a+d
d

g

Find the determinants in Exercises 15-20, where

=1.
c a b c
f 16. |3d 3e 3f
5i g h i
¢ g h i
i 18. | a b c
S d e f
b c
2e+b  2f +c
h i
b+e ¢+ f
e S
h i

In Exercises 21-23, use determinants to find out if the matrix is

invertible.
2 3
21. 1 3
|1 2
2 0
1 -7
23. 3 3
L0 7

0 5 0 -1
4 22, |1 =3 =2
1 0 5 3
0 8

-5 0
6 0
5 4

In Exercises 24-26, use determinants to decide if the set of vectors
is linearly independent.

24.

0 5 -2 1 -3 6
1. |1 -3 6|{=—-|0 5 =2
4 -1 8 4 -1 8
2 -6 4 1 -3 2
2. |13 5 2|=2{3 5 =2
1 6 3 1 6 3
1 3 —4 1 3 —4
3. 12 0 3|=|0 -6 5
5 -4 7 5 -4 7
1 2 3 1 2 3
4. |0 5 —4|(=|0 5 —4
3 7 4 0o 1 -5
Find the determinants in Exercises 5-10 by row reduction to
echelon form.
1 5 -6 1 5
5. |—-1 —4 4 6. |3 -3
-2 -7 9 2 13
1 3 0 2 1 3
-2 =5 7 4 0 1
7 35 2 1 8. 2 5
I -1 2 =3 -3 -7
I -1 =3 0
o 1 5 4
o -1 2 8 5
3 -1 -2 3
1 3 -1 0 =2
0 2 —4 -1 —6
10. | -2 -6 2 3 9
3 7 -3 8 -7
35 5 2 7

26.

Combine the methods of row reduction and cofactor expansion to
compute the determinants in Exercises 11-14.

2 5 -3 -1 -1 2
3.0 1 -3 304
Wil o0 -4 o 215 4
4 10 —4 —I 4 2

2 5 4 1 -3 -2

4 7 6 2 13
Blg 2 4 o Wi g
-6 7 7 0 3 4

B~ O W W

W N OO

-6 |’

-77 =37 77 -8 7
0l,|-5 25. | —4|,| s|.] o
2] | 6] -6 7] | -5
27 7—27T o

6| | -1 0
o'l 3| o
7] o] -3

In Exercises 27 and 28, A and B are n X n matrices. Mark each
statement True or False. Justify each answer.

27. a. Arow replacement operation does not affect the determi-
nant of a matrix.

b.

The determinant of A4 is the product of the pivots in any

echelon form U of A, multiplied by (—1)", where r is the
number of row interchanges made during row reduction
from Ato U.
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28.

29.

30.

c. If the columns of A are linearly dependent, then
det4 = 0.

d. det(A 4+ B) = det A + det B.

a. If two row interchanges are made in succession, then the
new determinant equals the old determinant.

b. The determinant of A is the product of the diagonal entries
in A.

c. If det A is zero, then two rows or two columns are the
same, or a row or a column is zero.

d. det AT = (=1)det A.

1 0 1
Compute det B>, where B=| 1 1 2
1 2 1

Use Theorem 3 (but not Theorem 4) to show that if two rows
of a square matrix A are equal, then det A = 0. The same is
true for two columns. Why?

In Exercises 31-36, mention an appropriate theorem in your
explanation.

31.
32.

33.

34.

35.

36.

Show that if A is invertible, then det A~! = ——.
det A

Find a formula for det(r4) when A is an n X n matrix.
Let A and B be square matrices. Show that even though

AB and BA may not be equal, it is always true that
det AB = det BA.

Let A and P be square matrices, with P invertible. Show
that det(PAP ') = det A.

Let U be a square matrix such that UTU = I. Show that
detU = +£1.

Suppose that A is a square matrix such that det A* = 0.
Explain why A cannot be invertible.

Verify that det AB = (det A)(det B) for the matrices in Exercises
37 and 38. (Do not use Theorem 6.)

37.

38.

39.

30 2 0
=a Ve-[E ]
3 6 4 2
=[S
Let A and B be 3 x 3 matrices, with detA =4 and
det B = —3. Use properties of determinants (in the text and

40.

41.

42,

43.

44.

45.

46.

in the exercises above) to compute:
a. detAB b. det54
d. detA™! e. detA’

c. detBT

Let A and B be 4 x4 matrices, with detA = —1 and
det B = 2. Compute:

a. detAB b. det B®
d. detA™4 e. det B7'AB

c. det2A4

Verify that det A = det B + det C, where

P e el

c d
1 0 a b
LetA—|:0 l]andB—[c d].Showthat

det(A + B) = det A + det B ifand only ifa + d = 0.
Verify that det A = det B + det C, where

ap aip up + v
A= ay anxn U + vy |,
asy az; Uzt U3
an apn up an apn vy
B = | axn an uy |, C = | ay ann U2
L 431 asz Uus asy asz U3

Note, however, that A is not the same as B + C.

Right-multiplication by an elementary matrix E affects the
columns of A in the same way that left-multiplication affects
the rows. Use Theorems 5 and 3 and the obvious fact that E”
is another elementary matrix to show that

det AE = (det E)(det A)

Do not use Theorem 6.

[M] Compute det A”4 and det AA” for several random 4 x 5
matrices and several random 5 x 6 matrices. What can you
say about A7A and AAT when A has more columns than
rows?

[M] If det A is close to zero, is the matrix A nearly singu-
lar? Experiment with the nearly singular 4 x 4 matrix A in
Exercise 9 of Section 2.3. Compute the determinants of A,
104, and 0.1A. In contrast, compute the condition numbers
of these matrices. Repeat these calculations when A is the
4 x 4 identity matrix. Discuss your results.

SOLUTIONS TO PRACTICE PROBLEMS

1. Perform row replacements to create zeros in the first column and then create a row

of zeros.
1 -3 1
2 =5 -1
0 —4 5
-3 10 -6

1 -3 1 =2| |1 -3 1 =2

_jo1 =3 20 o1 -3 20

0 -4 5 1|7 |0 -4 5 1|
0 1 -3 2/ |0 0 0 0
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5 =3 2 > 32 Row 1 added

OW al C

2. det[vi v» v3]=|-7 3 -7|=|-2 0 =5 to(r0w2 )
9 -5 5 9 -5 5

_ -2 =5 5 2 Cofactors of
- _(_3)' 9 5 ‘ - (_5)‘ -2 -5 ' column 2
=3.-35+5-(21)=0
By Theorem 4, the matrix [v; VvV, V3] is not invertible. The columns are linearly
dependent, by the Invertible Matrix Theorem.

3.3 CRAMER'S RULE, VOLUME, AND LINEAR TRANSFORMATIONS

THEOREM 7

This section applies the theory of the preceding sections to obtain important theoretical
formulas and a geometric interpretation of the determinant.

Cramer’s Rule

Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be
used to study how the solution of Ax = b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2 x 2 or perhaps
3 x 3 matrices.

For any n x n matrix A and any b in R”, let 4, (b) be the matrix obtained from A
by replacing column i by the vector b.

Aib) =[a; - b -+ ay]
t

coli

Cramer's Rule

Let A be an invertible n x n matrix. For any b in R”, the unique solution x of
Ax = b has entries given by

_ det 4;(b)

= . i=12,... 1
det A ! " M

PROOF Denote the columns of A by ay, ..., a, and the columns of the n x n identity
matrix / by ey, ...,e,. If Ax = b, the definition of matrix multiplication shows that

A-I,-(x)zA[el cee X e en]z[Ael Ax .- Aen]
— [al R an] = A4;(b)
By the multiplicative property of determinants,
(det A)(det I; (x)) = det 4; (b)

The second determinant on the left is simply x;. (Make a cofactor expansion along the
ith row.) Hence (det A) - x; = det A; (b). This proves (1) because A4 is invertible and
det A # 0. ]

EXAMPLE 1 Use Cramer’s rule to solve the system
3X1 — 2)(?2 =6
—5x; +4x, =8
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u

u

1=\

X

5

/1
AN
N

3.3 EXERCISES

a 1

SOLUTION We claim that E is the image of the unit disk D under the linear transfor-

O:|,becauseifu = |:uli|,x = |: i|,
b Uy

and u,; = B
It follows that u is in the unit disk, with u% + u% <1, if and only if x is in E, with
(x1/a)* + (x2/b)? < 1. By the generalization of Theorem 10,

{area of ellipse} = {area of T(D)}
= |det A| - {area of D}
=ab-w(1)* = nab

a
0

. . . X
mation 7" determined by the matrix 4 = |: xl
2
and x = Au, then

X1
u = —
a

PRACTICE PROBLEM

Let S be the parallelogram determined by the vectors b; = [;} and b, = [fj|, and

1 -1

let A = |:0 )

:|. Compute the area of the image of S under the mapping x — Ax.

Use Cramer’s rule to compute
Exercises 1-6.

1. 5)(1 +7X2 =3
2)61 +4X2 =1

3. 3X1 - 2.X2 = 7
—S.Xfl + 6)C2 = -5

5. 2x1+ x = 7
—3)C1 + X3 = —8
X, + 2X3 =-3

In Exercises 7-10, determine the values of the parameter s for
which the system has a unique solution, and describe the solution.

7. 6sx; + 4x, = 5
9x; + 25x, = -2
9. sx; — 25x, = —1
3x; + 6sx, = 4

In Exercises 11-16, compute the adjugate of the given matrix, and
then use Theorem 8 to give the inverse of the matrix.

0 -2 -1
1. | 3 0 0
-1 1 1
3005
1B.|1 0 1
2 1 1

the

8.

10.

12.

14.

solutions of the systems in 300 1 2 4
15. | -1 1 0 16. | 0 =3 1
-2 3 2 0 0 3
. 4X1 + X = 6 . . .
17. Show that if A is 2 x 2, then Theorem 8 gives the same
X+ 20 =7 formula for A™! as that given by Theorem 4 in Section 2.2.
. =5x1+30n= 9 18. Suppose that all the entries in A are integers and det A = 1.
3%, — x, =5 Explain why all the entries in A" are integers.
In Exercises 19-22, find the area of the parallelogram whose
X+t X = vertices are listed.
Tt =2 19. (0,0), (5.2), (6,4), (11,6)
3X1+X2+3X3:—2 ’ T T T ’
20. (0,0), (=1.3),(4,-5),(3.-2)
21. (—1,0),(0,5), (1,—4), (2,1)
22. (0,-2),(6,—1),(=3,1),(3,2)
3sx; — 5x, = 3
9%, 4+ Ssx, =2 23. Find the volume of the parallelepiped with one vertex at
! 2= the origin and adjacent vertices at (1,0, —2), (1,2,4), and
2S)C1 + Xy = 1 (7’ 1’0)
3sx; + 6sxs =2 24. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at (1, 4,0), (—2,—5,2), and
(-1,2,-1).
~ ~ 25. Use the concept of volume to explain why the determinant of
1 1 3 a3 x 3 matrix A4 is zero if and only if A is not invertible. Do
2 =2 1 not appeal to Theorem 4 in Section 3.2. [Hint: Think about
L0 1 0] the columns of A4.]
3 6 77 26. Let T : R — R” be a linear transformation, and let p be a
0o 2 1 vector and S asetin R”. Show that the image of p + S under
2 3 4 T is the translated set 7'(p) + T(S) in R".




27.

28.

29.

30.

31.

Let S be the parallelogram determined by the vectors

-2 -2 6 -2
b1—|: 3]andb2—[ 5],andletA—[_3 2].

Compute the area of the image of S under the mapping
X — Ax.

4 0

) and

Repeat Exercise 27 with b; =

7 2
=7 7]
Find a formula for the area of the triangle whose vertices are

0,v,, and v, in R2.

Let R be the triangle with vertices at (xy, y1), (x2, y2), and
(x3, ¥3). Show that

1 X1 Vi 1
{area of triangle} = 3 det| xo y» 1
X3 V3

[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

Let T : R® — R? be the linear transformation determined

a 0 0
by the matrix A = | 0 b 0 |, where a, b, and ¢ are
0 0 c

positive numbers. Let S be the unit ball, whose bounding
surface has the equation x7 + x3 + x7 = 1.
a. Show that 7'(S) is bounded by the ellipsoid with the
2 2 2
on Ly X My
equation 2 + B + PR
b. Use the fact that the volume of the unit ball is 47/3
to determine the volume of the region bounded by the
ellipsoid in part (a).

32.

33.

34.

35.
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Let S be the tetrahedron in R? with vertices at the vectors 0,
e, €, and e3, and let S’ be the tetrahedron with vertices at
vectors 0, v, vo, and v;. See the figure.

a. Describe a linear transformation that maps S onto S’.

b. Find a formula for the volume of the tetrahedron S’ using
the fact that

{volume of S} = (1/3){area of base} - {height}

[M] Test the inverse formula of Theorem 8 for a random
4 x 4 matrix A. Use your matrix program to compute the
cofactors of the 3 x 3 submatrices, construct the adjugate,
and set B = (adj A)/(det A). Then compute B — inv(A4),
where inv(A) is the inverse of A as computed by the matrix
program. Use floating point arithmetic with the maximum
possible number of decimal places. Report your results.

[M] Test Cramer’s rule for a random 4 x 4 matrix A and a
random 4 x 1 vector b. Compute each entry in the solution of
Ax = b, and compare these entries with the entries in A~ 'b.
Write the command (or keystrokes) for your matrix program
that uses Cramer’s rule to produce the second entry of x.

[M] If your version of MATLAB has the £1lops command,
use it to count the number of floating point operations to com-
pute A~! for arandom 30 x 30 matrix. Compare this number
with the number of flops needed to form (adj A)/(det A).

SOLUTION TO PRACTICE PROBLEM

The area of S is | det

1
3

5
1

= 14, and det A = 2. By Theorem 10, the area of the

image of S under the mapping x > Ax is

|det A| - {areaof S} =214 = 28

CHAPTER 3 SUPPLEMENTARY EXERCISES

1.

Mark each statement True or False. Justify each answer.
Assume that all matrices here are square.

a. If Ais a2 x 2 matrix with a zero determinant, then one
column of A is a multiple of the other.

b. If two rows of a 3 x 3 matrix A are the same, then
det A = 0.

c. If Ais a3 x 3 matrix, then det54 = 5det A.

d. If A and B are n xn matrices, with detA =2 and
det B = 3, then det(4 + B) = 5.

e. If Aisn x n and det A = 2, then det 4° = 6.

If B is produced by interchanging two rows of A, then
det B = det 4.

g. If B is produced by multiplying row 3 of A by 5, then
det B =5 -det A.



27.

28.

29.

30.

31.

Let S be the parallelogram determined by the vectors

-2 -2 6 -2
b1—|: 3]andb2—[ 5],andletA—[_3 2].

Compute the area of the image of S under the mapping
X — Ax.

4 0

) and

Repeat Exercise 27 with b; =

7 2
=7 7]
Find a formula for the area of the triangle whose vertices are

0,v,, and v, in R2.

Let R be the triangle with vertices at (xy, y1), (x2, y2), and
(x3, ¥3). Show that

1 X1 Vi 1
{area of triangle} = 3 det| xo y» 1
X3 V3

[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

Let T : R® — R? be the linear transformation determined

a 0 0
by the matrix A = | 0 b 0 |, where a, b, and ¢ are
0 0 c

positive numbers. Let S be the unit ball, whose bounding
surface has the equation x7 + x3 + x7 = 1.
a. Show that 7'(S) is bounded by the ellipsoid with the
2 2 2
on Ly X My
equation 2 + B + PR
b. Use the fact that the volume of the unit ball is 47/3
to determine the volume of the region bounded by the
ellipsoid in part (a).

32.

33.

34.

35.
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Let S be the tetrahedron in R? with vertices at the vectors 0,
e, €, and e3, and let S’ be the tetrahedron with vertices at
vectors 0, v, vo, and v;. See the figure.

a. Describe a linear transformation that maps S onto S’.

b. Find a formula for the volume of the tetrahedron S’ using
the fact that

{volume of S} = (1/3){area of base} - {height}

[M] Test the inverse formula of Theorem 8 for a random
4 x 4 matrix A. Use your matrix program to compute the
cofactors of the 3 x 3 submatrices, construct the adjugate,
and set B = (adj A)/(det A). Then compute B — inv(A4),
where inv(A) is the inverse of A as computed by the matrix
program. Use floating point arithmetic with the maximum
possible number of decimal places. Report your results.

[M] Test Cramer’s rule for a random 4 x 4 matrix A and a
random 4 x 1 vector b. Compute each entry in the solution of
Ax = b, and compare these entries with the entries in A~ 'b.
Write the command (or keystrokes) for your matrix program
that uses Cramer’s rule to produce the second entry of x.

[M] If your version of MATLAB has the £1lops command,
use it to count the number of floating point operations to com-
pute A~! for arandom 30 x 30 matrix. Compare this number
with the number of flops needed to form (adj A)/(det A).

SOLUTION TO PRACTICE PROBLEM

The area of S is | det

1
3

5
1

= 14, and det A = 2. By Theorem 10, the area of the

image of S under the mapping x > Ax is

|det A| - {areaof S} =214 = 28

CHAPTER 3 SUPPLEMENTARY EXERCISES

1.

Mark each statement True or False. Justify each answer.
Assume that all matrices here are square.

a. If Ais a2 x 2 matrix with a zero determinant, then one
column of A is a multiple of the other.

b. If two rows of a 3 x 3 matrix A are the same, then
det A = 0.

c. If Ais a3 x 3 matrix, then det54 = 5det A.

d. If A and B are n xn matrices, with detA =2 and
det B = 3, then det(4 + B) = 5.

e. If Aisn x n and det A = 2, then det 4° = 6.

If B is produced by interchanging two rows of A, then
det B = det 4.

g. If B is produced by multiplying row 3 of A by 5, then
det B =5 -det A.
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h. If B is formed by adding to one row of A a linear
combination of the other rows, then det B = det A.

i. det AT = —det A.

j. det(—A) = —det A.

k. detA"A > 0.

1. Any system of n linear equations in n variables can be
solved by Cramer’s rule.

m. If u and v are in R? and det[u v] = 10, then the area
of the triangle in the plane with vertices at 0, u, and v is
10.

n. If A> =0, thendet A = 0.
o. If A is invertible, then det A~ = det A.
p. If A is invertible, then (det A)(det A™') = 1.

Use row operations to show that the determinants in Exercises 2—4

are all zero.
12 13 14 1 a b+c
2. |15 16 17 3. |1 b a—+c
18 19 20 1 c a+b
a b c
4. |a+x b+ x c+x
a+y b+y c+y

Compute the determinants in Exercises 5 and 6.

7.

9 1 9 9 9
9 0 9 9 2
4 0 0 5 0
9 0 3 9 0
6 0 0 7 0
4 8 8 8 5
o 1 0 0 O
6 8 8 8 7
o 8 8 3 0
o 8 2 0 0

Show that the equation of the line in R? through distinct
points (x1, y1) and (x,, y,) can be written as

1 X y
det| 1 X1 yi | =0
X2 V2

Find a 3 x 3 determinant equation similar to that in Exercise 7
that describes the equation of the line through (x;, y;) with
slope m.

Exercises 9 and 10 concern determinants of the following Vander-
monde matrices.

5 1 o

1 a a ) 3
I xi xy X

1 b b, V)= 5 N
I x x5 X

1 ¢ 2 5 3
I x5 x5 X3

10.

11.

12.

13.

14.

15.

16.

Use row operations to show that
detT = (b —a)(c —a)(c—b)
Let f(t) = detV, with x;, x,, x5 all distinct. Explain why

£(t) is a cubic polynomial, show that the coefficient of 73 is
nonzero, and find three points on the graph of f.

Determine the area of the parallelogram determined by the
points (1,4), (—1,5), (3,9), and (5,8). How can you tell
that the quadrilateral determined by the points is actually a
parallelogram?

Use the concept of area of a parallelogram to write a state-
ment about a 2 x 2 matrix A that is true if and only if A4 is
invertible.

Show that if A is invertible, then adj A4 is invertible, and

A= —
(adj 4) det A

[Hint: Given matrices B and C, what calculation(s) would
show that C is the inverse of B?]

Let A, B, C, D, and I be n x n matrices. Use the defini-
tion or properties of a determinant to justify the following
formulas. Part (c) is useful in applications of eigenvalues
(Chapter 5).

A 0 1 0

a. det[o I]—detA b. det[c D]—detD
A 0 A B

c. det|:C D:| = (det A)(det D) = det|: 0 D:|

Let A, B, C, and D be n x n matrices with A invertible.

a. Find matrices X and Y to produce the block LU factor-
ization

A B |1 0f] A B
C D| | X 1 0 Y
and then show that

C D
b. Show that if AC = CA, then

det[ 4 B] = (det A) - det(D — CA™'B)

A B
det[c D] = det(AD — CB)

Let J be the n xn matrix of all 1’s,
A= (a—>b)I 4+ bJ;thatis,

and consider

a b b - b
b oa b - b
A_|b b a b
b b b - a

Confirm that det A = (a — b)""'[a + (n — 1)b] as follows:

a. Subtract row 2 from row 1, row 3 from row 2, and so on,
and explain why this does not change the determinant of
the matrix.



b. With the resulting matrix from part (a), add column 1 to
column 2, then add this new column 2 to column 3, and so
on, and explain why this does not change the determinant.

c. Find the determinant of the resulting matrix from (b).

17. Let A be the original matrix given in Exercise 16, and let

fa—b b b -+ b
0 a b -+ b
B — 0 b a - b )
0 b b a
b b b b
b a b b
c=1|b b a b
b b b - a

Notice that A, B, and C are nearly the same except that the
first column of A equals the sum of the first columns of B
and C. A linearity property of the determinant function,
discussed in Section 3.2, says that det A = det B + detC.
Use this fact to prove the formula in Exercise 16 by induction

on the size of matrix A.

18. [M] Apply the result of Exercise 16 to find the determinants
of the following matrices, and confirm your answers using a

matrix program.

o0 0 OO0 W
oo 0 W 0
o0 W O 0
W o0 o 0
W W W W o
W W W oo W
W W o0 W W
W 0 W W W
0 W W W W

19.

20.
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[M] Use a matrix program to compute the determinants of
the following matrices.

- [ U
1;; 12 2 2
L5 3 1 2 3 3
- 1 2 3 4
IR T B
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

Use the results to guess the determinant of the matrix below,
and confirm your guess by using row operations to evaluate
that determinant.

1 1 1 1

1 2 2 2
1 2 3 3
1 2 3 n

[M] Use the method of Exercise 19 to guess the determinant
of

111 1
1 3 3 3
1 3 6 6
1 3 6 3(n—1)

Justify your conjecture. [Hint: Use Exercise 14(c) and the
result of Exercise 19.]
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SOLUTION Write the vectors in H as column vectors. Then an arbitrary vector in H
has the form

a—3b 1 -3
b—a — 1
a - +b 0
b 1

t t

Vi \p)

This calculation shows that H = Span {v, v,}, where v; and v, are the vectors indicated
above. Thus H is a subspace of R* by Theorem 1. |

Example 11 illustrates a useful technique of expressing a subspace H as the set
of linear combinations of some small collection of vectors. If H = Span{vy,...,Vv ,,},
we can think of the vectors vy, ..., v, in the spanning set as “handles” that allow us to
hold on to the subspace H. Calculations with the infinitely many vectors in H are often
reduced to operations with the finite number of vectors in the spanning set.

EXAMPLE 12 For what value(s) of 2 will y be in the subspace of R* spanned by

Vi,V2, V3, if
1 5 -3 —4
vi=| -1, v, =| =4 |, V3 = 1|, and y= 3
-2 —7 0 h

SOLUTION This question is Practice Problem 2 in Section 1.3, written here with the
term subspace rather than Span{vi,v,,v3}. The solution there shows that y is in
Span{v;, v,, v3} if and only if 4~ = 5. That solution is worth reviewing now, along
with Exercises 11-16 and 19-21 in Section 1.3. |

Although many vector spaces in this chapter will be subspaces of R”, it is important
to keep in mind that the abstract theory applies to other vector spaces as well. Vector
spaces of functions arise in many applications, and they will receive more attention later.

PRACTICE PROBLEMS

1. Show that the set H of all points in R? of the form (3s,2 + 5s) is not a vector space,
by showing that it is not closed under scalar multiplication. (Find a specific vector
u in H and a scalar ¢ such that cu is not in H.)

2. Let W = Span{vy,... ,V,,}, where vy, ..., v, are in a vector space V. Show that vj
isin W for 1 <k < p. [Hint: First write an equation that shows that v; is in W.
Then adjust your notation for the general case.]

1. Let V be the first quadrant in the xy-plane; that is, let that cu is not in V. (This is enough to show that V' is not

RHE

a vector space.)

2. Let W be the union of the first and third quadrants in the xy-

. x|
a. Ifuandvarein V,isu+vin V? Why? plane. Thatis, let W = {[y] Pxy 0}'

b. Find a specific vector u in V' and a specific scalar ¢ such a. Ifuisin W and c is any scalar, is cu in W? Why?
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3.

b. Find specific vectors u and v in W such that u + v is
not in W. This is enough to show that W is not a vector
space.

Let H be the set of points inside and on the unit circle in
the xy-plane. That is, let H = %[i} x4+ y2 < 1}. Find

a specific example —two vectors or a vector and a scalar—to
show that H is not a subspace of R2.

Construct a geometric figure that illustrates why a line in R?
not through the origin is not closed under vector addition.

In Exercises 5-8, determine if the given set is a subspace of P, for
an appropriate value of n. Justify your answers.

5.
6.
7.

10.

11.

12.

13.

14.

All polynomials of the form p(¢) = at?, where «a is in R.
All polynomials of the form p(¢) = a + t2, where a is in R.

All polynomials of degree at most 3, with integers as coeffi-
cients.

All polynomials in [P, such that p(0) = 0.

—2t

Let H be the set of all vectors of the form 5t

3t

vector v in R3 such that H = Span {v}. Why does this show
that H is a subspace of R3?

. Find a

3t
Let H be the set of all vectors of the form 0
-7t
is any real number. Show that H is a subspace of R>. (Use
the method of Exercise 9.)

, Where ¢

2b + 3¢
Let W be the set of all vectors of the form —b s
2c
where b and ¢ are arbitrary. Find vectors u and v such that
W = Span {u, v}. Why does this show that W is a subspace
of R3?
25 + 417
2s
2s — 3t
5t |
Show that W is a subspace of R*. (Use the method of
Exercise 11.)

Let W be the set of all vectors of the form

1 2 4 3
Letv, = 0|, vo=1|1],vs=1|2 |,andw= | 1
-1 3 6 2

a. Iswin{vy,v,, v;}? How many vectors are in {v, V5, v3}?
b. How many vectors are in Span {v;, v, v3}?
c. Is win the subspace spanned by {vi, v,, v3}? Why?

1

Let vy, v,, v3 be as in Exercise 13, and let w = 3
14

Isw

in the subspace spanned by {v;, v,, v3}? Why?

In Exercises 15-18, let W be the set of all vectors of the form
shown, where a, b, and ¢ represent arbitrary real numbers. In
each case, either find a set S of vectors that spans W or give an
example to show that W is not a vector space.

15.

17.

19.

20.

[ 2a + 3b 1
-1 16. 3a — 5b
| 2a —5b | 3b+2a
[2a—b 4a + 3b
3b—c 0
3c—a 18. a+3b+c
| 3 | 3b—2c

If a mass m is placed at the end of a spring, and if the mass is
pulled downward and released, the mass—spring system will
begin to oscillate. The displacement y of the mass from its
resting position is given by a function of the form

y(t) = ¢ coswt + ¢ sinwt (5)

where w is a constant that depends on the spring and the mass.
(See the figure below.) Show that the set of all functions
described in (5) (with w fixed and ¢y, ¢, arbitrary) is a vector
space.

The set of all continuous real-valued functions defined on a
closed interval [a, b] in R is denoted by C|a, b]. This set is
a subspace of the vector space of all real-valued functions
defined on [a, b].

a. What facts about continuous functions should be proved
in order to demonstrate that C[a, b] is indeed a subspace
as claimed? (These facts are usually discussed in a
calculus class.)

b. Show that {f in Cl[a,b] : f(a) = f(b)} is a subspace of
Cla,b].

For fixed positive integers m and n, the set M,,x, of all m xn
matrices is a vector space, under the usual operations of addition
of matrices and multiplication by real scalars.

21.

22.

Determine if the set H of all matrices of the form [ ?) 5 ]

is a subspace of M.

Let F be a fixed 3 x 2 matrix, and let H be the set of all
matrices A in M,w, with the property that FA = 0 (the zero
matrix in M3x4). Determine if H is a subspace of Mjxy.



In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

24.

a. Iff is a function in the vector space V' of all real-valued
functions on R and if f(¢) = O for some ¢, then f is the
zero vector in V.

b. A vector is an arrow in three-dimensional space.

c. A subset H of a vector space V is a subspace of V' if the
zero vector is in H.

d. A subspace is also a vector space.

e. Analog signals are used in the major control systems for
the space shuttle, mentioned in the introduction to the
chapter.

&

A vector is any element of a vector space.

b. Ifuisa vectorina vector space V, then (—1)u is the same
as the negative of u.

c. A vector space is also a subspace.
d. RZis a subspace of R3.

e. A subset H of a vector space V is a subspace of V' if the
following conditions are satisfied: (i) the zero vector of
Visin H, (ii) u, v, and u + v are in H, and (iii) ¢ is a
scalar and cuisin H.

Exercises 25-29 show how the axioms for a vector space V' can
be used to prove the elementary properties described after the
definition of a vector space. Fill in the blanks with the appropriate
axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply,
respectively, that 0 + u = uw and —u + u = 0 for all u.

25.

26.

27.

28.

Complete the following proof that the zero vector is
unique.  Suppose that w in V' has the property that
u+w=w+u=uforalluin V. Inparticular, 0 + w = 0.
But0+w=w,by Axiom ___. Hencew =0+ w = 0.

Complete the following proof that —u is the unique vector
in V such that u+ (—u) = 0. Suppose that w satisfies
u + w = 0. Adding —u to both sides, we have

(—u)+u+w=(u+0

[(—u) +u]l+w=(—u)+0 by Axiom (a)
0+w=(—u)+0 by Axiom (b)
w=-u by Axiom (©)

Fill in the missing axiom numbers in the following proof that
Ou = 0 foreveryuin V.

Ou = (0+ 0)u = Ou + Ou by Axiom (a)

Add the negative of Ou to both sides:

Ou + (—Ou) = [Ou + Ou] + (—Ou)

Ou + (—Ou) = Ou + [Ou + (—Ou)] by Axiom ____ (b)
0=0u+0 by Axiom (©)
0 =0u by Axiom ______(d)

Fill in the missing axiom numbers in the following proof that

29.

30.

31.

32.

33.

34.
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c0 = 0 for every scalar c.
c0=c(0+0) by Axiom (a)
=c0+c0 by Axiom ______(b)
Add the negative of c0 to both sides:
c0 + (—c0)=[c0 + c0] + (—c0)
c0 + (—c0)=c0 + [c0 + (—c0)] by Axiom (c)
0=c0+0 by Axiom _____ (d)
0=c0 by Axiom (e)

Prove that (—1)u = —u. [Hint: Show that u + (—1)u = 0.
Use some axioms and the results of Exercises 27 and 26.]

Suppose cu = 0 for some nonzero scalar c. Show thatu = 0.
Mention the axioms or properties you use.

Let u and v be vectors in a vector space V', and let H be any
subspace of V' that contains both u and v. Explain why H
also contains Span {u, v}. This shows that Span {u, v} is the
smallest subspace of ' that contains both u and v.

Let H and K be subspaces of a vector space V. The
intersection of H and K, written as H N K, is the set of
v in V' that belong to both H and K. Show that H N K is
a subspace of V. (See the figure.) Give an example in R?
to show that the union of two subspaces is not, in general, a
subspace.

Given subspaces H and K of a vector space V, the sum of
H and K, written as H + K, is the set of all vectors in V
that can be written as the sum of two vectors, one in H and
the other in K; that is,
H+ K ={w: w=u+ vV forsomeuin H

and some v in K}
a. Show that H + K is a subspace of V.

b. Show that H is a subspace of H + K and K is a subspace
of H + K.

Suppose uy,...,u, and vy,...,V, are vectors in a vector
space V, and let

H = Span{uy,...,u,}and K = Span{vy,...,v,}

Show that H + K = Span{u;,...,u,,vi,...,V4}.
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35.

36.

37.

[M] Show that w is in the subspace of R* spanned by
Vi, Vs, V3, Where

9 8 —4 -7
W = —4 vV = —4 V) = 3 V3 = 6
—4 [ -3 [ -2 |7 -5

7 9 -8 —18

[M] Determine if y is in the subspace of R* spanned by the
columns of A, where

—4 3 -5 -9
-8 8 7 —6
Y=| 6| 4|5 s 3
-5 2 -2 -9

[M] The vector space H = Span{l,cos®t,cos*t,cos®t}
contains at least two interesting functions that will be used

38.

in a later exercise:

f(r) =1 —8cos>t + 8cos*t

g(t) = —1 + 18cos’>t — 48 cos*t + 32cos’ ¢

Study the graph of f for 0 < ¢ < 27, and guess a simple for-
mula for f(¢). Verify your conjecture by graphing the differ-

ence between 1 + f(¢) and your formula for f(¢). (Hopefully,
you will see the constant function 1.) Repeat for g.

[M] Repeat Exercise 37 for the functions
f(t) = 3sint —4sin®¢

g(t) = 1 —8sin*¢ + 8sin's

h(7) = 5sint —20sin® ¢t + 165sin’ ¢

in the vector space Span {1,sinz,sin’z, ..., sin’ }.

SOLUTIONS TO PRACTICE PROBLEMS

1. Take any u in H —say, u = [3

7]—and take any ¢ # 1—say, ¢ =2. Then

cu = |: 12 ] If this is in H, then there is some s such that

s ]= 1]

Thatis, s = 2 and s = 12/5, which is impossible. So 2u is not in H and H is not a

vector space.

2. vi = 1lvy +0V2+'--+0Vp.

This expresses v; as a linear combination of

Vi,...,Vp,s0vyisin W. In general, v is in W because

Vi =0vi 4+ +0ve_y + 1vg + 0vggy + -+ 0V,

4.2  NULL SPACES, COLUMN SPACES, AND LINEAR TRANSFORMATIONS

In applications of linear algebra, subspaces of R” usually arise in one of two ways: (1) as
the set of all solutions to a system of homogeneous linear equations or (2) as the set
of all linear combinations of certain specified vectors. In this section, we compare and
contrast these two descriptions of subspaces, allowing us to practice using the concept of
a subspace. Actually, as you will soon discover, we have been working with subspaces
ever since Section 1.3. The main new feature here is the terminology. The section
concludes with a discussion of the kernel and range of a linear transformation.

The Null Space of a Matrix

Consider the following system of homogeneous equations:

X1 —3X2—2X3=O

ey

—5x;1 +9% + x3=0
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Typically, such a linear transformation is described in terms of one or more derivatives
of a function. To explain this in any detail would take us too far afield at this point. So
we consider only two examples. The first explains why the operation of differentiation
is a linear transformation.

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued func-
tions f defined on an interval [a, b] with the property that they are differentiable and
their derivatives are continuous functions on [, b]. Let W be the vector space C|a, b]
of all continuous functions on [a, b], and let D : V — W be the transformation that
changes f in V into its derivative f”. In calculus, two simple differentiation rules are

D(f +¢)=D(f)+D(g) and D(cf)=cD(f)

That is, D is a linear transformation. It can be shown that the kernel of D is the set of
constant functions on [a, b] and the range of D is the set W of all continuous functions
on [a, b]. ]

EXAMPLE 9 (Calculus required) The differential equation
y// + wa =0 (4)

where w is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum, and the voltage in an
inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y = f(¢) into the function
f"(t) + »* f(t). Finding an explicit description of this vector space is a problem in
differential equations. The solution set turns out to be the space described in Exercise 19
in Section 4.1. [ |

PRACTICE PROBLEMS

a
1. Let W = b|:a—3b—c=0;. Show in two different ways that W is a
¢

subspace of R3. (Use two theorems.)

7 -3 5 2 7
2. letA=| -4 1 =5 |,v= 1 |,andw = 6 |. Suppose you know that
-5 2 —4 -1 =3

the equations Ax = v and Ax = w are both consistent. What can you say about the
equation AX = v + w?

1. Determine if w = |:

|

3
6
-8

-5
-2
4

=3
0
1

1
3

—4

}.

:| is in Nul A, where

1
2. Determine if w = |:—1 :| is in Nul A, where
1

2 6 4
A=|-3 2 5/
-5 —4 1
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In Exercises 3-6, find an explicit description of Nul 4, by listing ~ 21. With A4 as in Exercise 17, find a nonzero vector in Nul 4 and

vectors that span the null space. a nonzero vector in Col A.
3. 0A= 1 2 4 0 } 22. With A as in Exercise 18, find a nonzero vector in Nul A4 and
L0 1 3 -2 a nonzero vector in Col A.
(1 -3 2 0 [—
4. A:_Q 0 3 0} 23, Let A= _% ;:| andw:[f]. Determine if w is in
1 —4 0 2 0 Col A. Is win Nul A?
5. A=]0 0 1 -5 0 10 -8 —2 -2 5
o 0 o0 o0 2
o 2 2 =2 2 .
o 3 —4 _3 : 24, LetA = 1 -1 6 0 andw = ol Determine
6. A=]0 1 -3 1 0 L1 1 0 -2 2
L 0 0 0 0 0 if wis in Col A. Is w in Nul A?

In Exercises 7—14, either use an appropriate theorem to show that
the given set, W, is a vector space, or find a specific example to
the contrary.

_ 25. a. The null space of A4 is the solution set of the equation

In Exercises 25 and 26, A denotes an m X n matrix. Mark each
statement True or False. Justify each answer.

a r Ax = 0.
7 i ratbte=2 8 i PIr—2=3s+i b. The null space of an m x n matrix is in R”.
- c. The column space of A is the range of the mapping
p a X > AX.
q |. . p—3q=4ds bl 3a+b=c . . . o
9 r | 2p =s45r 10. el ashtre=2d d. If the equation Ax = b is consistent, then Col 4 is R".
s d e. The kernel of a linear transformation is a vector space.
- - - f. Col A is the set of all vectors that can be written as Ax for
s —2t 3p—5¢q
34 3s 4q some X.
11. “lis,rrealy 12, . p,q real
35 +1 p 26. a. A null space is a vector space.
2 1
L L 4+ b. The column space of an m x n matrix is in R".
5 ¢ _d6d Jreall 14 -s +23t | Col A is the set of all solutions of Ax = b.
. lc, . -2t | :s,t . .
¢ ¢ area ;S _¢ 5. prea Nul A4 is the kernel of the mapping x — Ax.

The range of a linear transformation is a vector space.

™o e o

In Exercises 15 and 16, find A such that the gi ti 1 A.
fl bxereises oAl - find A such that the given set is Co The set of all solutions of a homogeneous linear differen-

25 +1 tial equation is the kernel of a linear transformation.
1 r—s+2t | |
5. 3r+s ST, s, trea 27. Itcan be shown that a solution of the system below is x; = 3,
2p—5—¢ X, = 2, and x3 = —1. Use this fact and the theory from this
- section to explain why another solution is x; = 30, x, = 20,
b—c and x3 = —10. (Observe how the solutions are related, but
2b+3d . . make no other calculations.)
16. b+3¢—3d . b, c,d real
C+d x1—3x2—3x3=0

. . . . —2x1 +4x, +2x3 =0
For the matrices in Exercises 17-20, (a) find k such that Nul A4 is

a subspace of R¥, and (b) find k such that Col 4 is a subspace of X1+ 5%+ Tx =0
R, 28. Consider the following two systems of equations:
6 —4 5 =2 3 5.X| + X, — 3)(3 =0 le + X, — 3X3 =
-3 2 -1 0 -1
17. A = ) 6 18. A= 0 —2 2 —9X| + 2X2 + 5X3 =1 —9X1 + 2X2 + 5X3 =5
9 —6 _5 7 2 4X| + X — 6X3 =9 4X1 + x; — 6X3 =45
It can be shown that the first system has a solution. Use
4 5 -2 6 0 . . . .
19. A= 1 1 0 1 0 this fact and the theory from this section to explain why the

second system must also have a solution. (Make no row
20 A=[1 -3 2 0 -5] operations.)



29.

30.

31.

32.

33.

34.

4.2 Null Spaces, Column Spaces, and Linear Transformations

Prove Theorem 3 as follows: Given an m X n matrix A, an
element in Col A has the form Ax for some x in R”. Let Ax
and Aw represent any two vectors in Col 4.

a. Explain why the zero vector is in Col A.

b. Show that the vector Ax + Aw is in Col A.

c. Given a scalar ¢, show that c(Ax) is in Col A.

Let T :V — W be a linear transformation from a vector
space V' into a vector space W. Prove that the range of T’
is a subspace of W. [Hint: Typical elements of the range
have the form 7'(x) and 7'(w) for some x, win V.]

Define T : P, — R? by T(p) = [gi(l); :| For instance, if

p(t) = 3 + 5t + 7t%, then T(p) = [ 12]

a. Show that T is a linear transformation. [Hint: For
arbitrary polynomials p, q in P,, compute 7'(p + q) and
T(cp)]

b. Find a polynomial p in P, that spans the kernel of 7', and
describe the range of 7'.

Define a linear transformation 7 :P, — R? by

T(p) = [ggg; i| Find polynomials p, and p, in P, that

span the kernel of 7', and describe the range of 7.

Let M,«, be the vector space of all 2x 2 matrices,
and define T : Myxy — Myx, by T(A) = A+ AT, where
a b

=0 1)

a. Show that T is a linear transformation.

b. Let B be any element of M,x, such that B " = B. Find
an A in M, such that T(A4) = B.

c. Show that the range of T is the set of B in M, with the
property that BT = B.

d. Describe the kernel of T'.

(Calculus required) Define T : C10, 1] — C|0, 1] as follows:
For f in C[0, 1], let T(f) be the antiderivative F of f such
that F(0) = 0. Show that 7T is a linear transformation, and
describe the kernel of 7. (See the notation in Exercise 20 of
Section 4.1.)

35.

36.

37.

38.

39.

40.
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Let V and W be vector spaces,andlet 7" : V' — W be alinear
transformation. Given a subspace U of V, let T(U) denote
the set of all images of the form 7'(x), where x is in U. Show
that 7(U) is a subspace of W.

Given T : V — W as in Exercise 35, and given a subspace
Z of W, let U be the set of all x in V' such that 7(x) is in Z.
Show that U is a subspace of V.

[M] Determine whether w is in the column space of A, the
null space of A, or both, where

1 76 —4 1
1 5 -1 0 —2
Y=l 4= 9 -1 7 =3
-3 19 —9 7 1

[M] Determine whether w is in the column space of A4, the
null space of A4, or both, where

1 -8 5 =2 0
2 -5 2 1 -2
=110 410 8 6 -3
L 0 3 -2 1 0
[M] Let ay,...,as denote the columns of the matrix A,
where
5 1 2 2 0
3 32 -1 —12
A=1g 4 4 -5 12| B=la a a]
2 1 1 0o -2

a. Explain why a3 and as are in the column space of B.
b. Find a set of vectors that spans Nul A.

c. LetT : R® — R*bedefined by T(x) = Ax. Explain why
T is neither one-to-one nor onto.

[M] Let H = Span {v;,v,} and K = Span {v3, v4}, where

5 1 2 0
vV = 3 ,Vp = 3 ,V3 = -1 , V4 = —12
8 4 5 —28

Then H and K are subspaces of R3. In fact, H and
K are planes in R? through the origin, and they intersect
in a line through 0. Find a nonzero vector w that gen-
erates that line. [Hint: w can be written as c;vy 4+ ¢,V
and also as c¢3v3 + c4v4. To build w, solve the equation
C1V1 + €2Vy = ¢3V3 + ¢4V4 for the unknown ¢;’s.]

Mastering: Vector Space, Subspace,
Col A, and Nul A 4-6

SOLUTIONS TO PRACTICE PROBLEMS

1. First method: W is a subspace of R3 by Theorem 2 because W is the set of all solu-
tions to a system of homogeneous linear equations (where the system has only one

equation). Equivalently, W is the null space of the 1 x 3 matrix 4 = [ 1

-3 —1].
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Second method: Solve the equation a — 3b — ¢ = 0 for the leading variable @ in
3b+c
terms of the free variables b and ¢. Any solution has the form b , where b
¢
and c are arbitrary, and

3b+c 3 1
b =b|1|4+c| O
c 0 1

1 1
A4

<

1
This calculation shows that W = Span {v;,v,}. Thus W is a subspace of R? by
Theorem 1. We could also solve the equation @ — 3b — ¢ = 0 for b or ¢ and get
alternative descriptions of W as a set of linear combinations of two vectors.

2. Both v and w are in Col A. Since Col A4 is a vector space, v + w must be in Col A.
That is, the equation AX = v 4 w is consistent.

4.3 | LINEARLY INDEPENDENT SETS; BASES

THEOREM 4

In this section we identify and study the subsets that span a vector space V' or a subspace
H as “efficiently” as possible. The key idea is that of linear independence, defined as
in R”.
An indexed set of vectors {vy,...,v,} in V is said to be linearly independent if
the vector equation
cvi+ vyt cpv, =0 @))

has only the trivial solution, ¢; = 0,...,¢, = 0.!

The set {vi, ..., v,} is said to be linearly dependent if (1) has a nontrivial solution,
that is, if there are some weights, ¢y, ..., ¢,, not all zero, such that (1) holds. In such a
case, (1) is called a linear dependence relation among vy,...,v,.

Justas in R”, a set containing a single vector v is linearly independent if and only if
v # 0. Also, a set of two vectors is linearly dependent if and only if one of the vectors
is a multiple of the other. And any set containing the zero vector is linearly dependent.
The following theorem has the same proof as Theorem 7 in Section 1.7.

An indexed set {vi,...,V,} of two or more vectors, with v; # 0, is linearly
dependent if and only if some v; (with j > 1) is a linear combination of the
preceding vectors, Vi, ...,V;_i.

The main difference between linear dependence in R” and in a general vector space
is that when the vectors are not n-tuples, the homogeneous equation (1) usually cannot
be written as a system of n linear equations. That is, the vectors cannot be made into
the columns of a matrix A4 in order to study the equation Ax = 0. We must rely instead
on the definition of linear dependence and on Theorem 4.

EXAMPLE 1 Let p,(r) =1, p,(t) = ¢, and p5(t) =4 —t. Then {p;,p,,ps} is
linearly dependent in PP because p; = 4p, — p,. |

't is convenient to use ¢y, ..., ¢p in (1) for the scalars instead of x1, ..., x,, as we did in Chapter 1.
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the spanning property.
1 2 1 2 4 1 2 4 7
01,3 0f,]3|,]5 O, 13].15].]8
0 0 0 0 6 0 0 6 9
Linearly independent A basis Spans R? but is
but does not span R3 for R3 linearly dependent [ |
PRACTICE PROBLEMS
[ 1] -2
1. Letvi=| =2 | and v, = 7 Determine if {v;,v,} is a basis for R?. Is
| 3] -9
{v1,v,} a basis for R2?
1] 6 2 —4
2. Letvi = | =3 [, v, = 2 1,v3=| —2 |,and v4 = | —8 |. Find a basis for
| 4] —1 3 9
the subspace W spanned by {vy, v2, V3, v4}.
1 0 s
3. Letvi =0 |,v,=|1|,and H = s | : sin Rp. Then every vector in H
| 0 0 0
is a linear combination of v; and v, because
s 1 0
s|=s[0|+s|1
0 0

El Mastering: Basis 4-9

4.3 EXERCISES

Is {vy, vo} a basis for H?

Determine whether the sets in Exercises 1-8 are bases for R>.
Of the sets that are not bases, determine which ones are linearly
independent and which ones span R3. Justify your answers.

17717 M 17707 o
Lol |1, 2 (1| |o]. |1
Lo Lo] 1 Lo Lo] |1
T 3] -2 M2 27 -8
3 o 1|1 4 |-1||-3]] 5
3] [ 4] [ 1 1 2 4
37 7-37 [0 0 17 [—4
s | =3 (.| 7[.lo].|=3] 6| 2|] 3
L o] [ o] [o 5 —4 6
(27 6] 1 0 2 0
7.1 3|1 8 |2 (.| 3[|-t1[] o
L o] | 5] 3| -1 51 -1

Find bases for the null spaces of the matrices given in Exercises 9
and 10. Refer to the remarks that follow Example 3 in Section 4.2.

1 0 -2 =2 1 1 -2 1 5
9. |0 1 1 4 10. (O 1 0 -1 =2
3 -1 =7 3 0 0 -8 0 16
11. Find a basis for the set of vectors in R in the plane
x —3y + 2z = 0. [Hint: Think of the equation as a “sys-
tem” of homogeneous equations.]
12. Find a basis for the set of vectors in R? on the line y = —3x.

In Exercises 13 and 14, assume that A is row equivalent to B.
Find bases for Nul A and Col A.

-2 4 =2 —4 1 0 6 5
13. A= 2 -6 -3 11,B=|0 2 5 3
-3 8 2 =3 0O 0 0 0
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14.

A=

SO N NP DN

o o0 0 0 0

In Exercises 15-18, find a basis for the space spanned by the given

vectors, Vi, ..., Vs.
1 o1 27T 27T 37
0 1 -2 -1 —1
15. 2 1{21 =811 10| -6
. 3 30 L 0] L 3] L 9]
1 =270 37T 57 27
0 0 -1 -3 -1
16. 01 01 10 30 1
L1 20 -1 [—4] L[ 0]
r 277 47 [-27T 8 -8
0 0 —4 4 4
17. M] | —4 |, 21, 01, 8 |, 0
-6 —4 1 -3 0
L O] | 4] |L—-7] L15 1
=37 37 o ) —6
2 0 2 -2 3
18. [M] 6,1 =91, | —41{,]| —14 |, 0
0 0 0 0 —1
=71 L 6] [—-1] | 13 0
4 1 7
19. Letv,=| -3 |, v, = 9 1,v3=1| 11 [, and also let
7 -2 6

20.

H = Span{v,, v,,v;}. It can be verified that 4v, + 5v, —
3v; = 0. Use this information to find a basis for H. There is
more than one answer.

3 4 2
Letv, = _; ,Vy = ; ,and vz = _2 . It can be
-5 4 —14

verified that 2v; — v, — v3 = 0. Use this information to find
a basis for H = Span {v;, v5, v3}.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

a. A single vector by itself is linearly dependent.

b. If H = Spant{b;,...,b,}, then{b,...
H.

c. The columns of an invertible n x n matrix form a basis
for R".

d. A basis is a spanning set that is as large as possible.

. b, } is a basis for

e. Insome cases, the linear dependence relations among the
columns of a matrix can be affected by certain elementary
row operations on the matrix.

22.

23.

24.

25.

26.

217.

28.

a. A linearly independent set in a subspace H is a basis for
H.

b. If a finite set S of nonzero vectors spans a vector space
V', then some subset of S is a basis for V.

c. A basis is a linearly independent set that is as large as
possible.

d. The standard method for producing a spanning set for
Nul A4, described in Section 4.2, sometimes fails to pro-
duce a basis for Nul A.

e. If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

Suppose R* = Span {vi, ..., v,}. Explain why {v,,..., vy}

is a basis for R*.

Let B ={vy,...,v,} be a linearly independent set in R”.
Explain why B must be a basis for R”.
1 0 0
Letvi=]0]|,v,=|1|,v3=1|1 [, and let H be the
1 1 0

set of vectors in R whose second and third entries are equal.
Then every vector in H has a unique expansion as a linear
combination of vy, v,, v3, because

s 1 0 0
t|=s|0|+@—s)1]|+s|1
t 1 1 0

for any s and ¢. Is {v;, Vv,, v3} a basis for H? Why or why
not?

In the vector space of all real-valued functions, find a basis
for the subspace spanned by {sin¢, sin 2z, sinz cost}.

Let V' be the vector space of functions that describe the
vibration of a mass—spring system. (Refer to Exercise 19 in
Section 4.1.) Find a basis for V.

(RLC circuit) The circuit in the figure consists of a resistor
(R ohms), an inductor (L henrys), a capacitor (C farads), and
an initial voltage source. Let b = R/(2L), and suppose R,
L, and C have been selected so that b also equals 1/+/LC.
(This is done, for instance, when the circuit is used in a
voltmeter.) Let v(z) be the voltage (in volts) at time f,
measured across the capacitor. It can be shown that v is
in the null space H of the linear transformation that maps
v(t) into Lv”(t) + Rv'(t) + (1/C)v(t), and H consists of
all functions of the form v(r) = e~ (¢, + c,t). Find a basis
for H.

A\
R
Voltage L
source @ TC
L
———000000 ————

Exercises 29 and 30 show that every basis for R” must contain
exactly n vectors.



29. LetS = {vy,..., v} beasetof k vectors in R”, with k < n.
Use a theorem from Section 1.4 to explain why S cannot be
a basis for R".

30. LetS = {vy,...,vi}beasetofk vectors in R", with k > n.
Use a theorem from Chapter 1 to explain why S cannot be a
basis for R”.

Exercises 31 and 32 reveal an important connection between lin-
ear independence and linear transformations and provide practice
using the definition of linear dependence. Let V and W be
vector spaces, let 7 : V' — W be a linear transformation, and let

{Vl,..

.,V,} be asubset of V.
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dence relation among p,, p,, and p;. Then find a basis for
Span {p;, p,, ps}-

35. Let V be a vector space that contains a linearly indepen-
dent set {u;,u,, u3,uy}. Describe how to construct a set of
vectors {Vy, V,, V3, v4} in V such that {v,,v3} is a basis for
Span {vy, vy, V3, V4}.

36. [M] Let H = Span{u;,u,,u3} and K = Span{vy, v,, v3},

31. Show that if {v,,...,v,} is linearly dependent in V', then
the set of images, {T(vi),...,T(v,)}, is linearly depen-
dent in W. This fact shows that if a linear transforma-
tion maps a set {v;,...,v,} onto a linearly independent set
{T(v1),...,T(vp)}, then the original set is linearly indepen-
dent, too (because it cannot be linearly dependent).

32. Suppose that T is a one-to-one transformation, so that an
equation 7'(u) = T(v) always implies u = v. Show that if
the set of images {T'(v;),...,T(v,)} is linearly dependent,
then {v;,...,v,} is linearly dependent. This fact shows that
a one-to-one linear transformation maps a linearly indepen-
dent set onto a linearly independent set (because in this case
the set of images cannot be linearly dependent).

33. Consider the polynomials p;(t) = 1 +¢% and p,(t) = 1 —
t2. Is {p,. p,} a linearly independent set in P;? Why or why
not?

34. Consider the polynomials p, () = 1 +¢,p,(t) = 1 —¢, and
p;(¢) = 2 (for all ¢). By inspection, write a linear depen-

where

1] 0 3
2 2 4

u = ol u = N us; = 1
L —1 ] 1 —4
M2 2 -1
V) = =2 Vy = 3 V3 = 4
-1 [ 2 6
3 | -6 )

Find bases for H, K, and H + K. (See Exercises 33 and 34
in Section 4.1.)

37. [M] Show that {¢,sinz, cos2¢,sinf cost} is a linearly inde-
pendent set of functions defined on R. Start by assuming that

ci+t+cy-sint + c¢3-cos2t + ¢y -sintcost =0 5)

Equation (5) must hold for all real 7, so choose several
specific values of # (say, 7 = 0, .1, .2) until you get a system
of enough equations to determine that all the ¢; must be zero.
38. [M] Show that {1,cos?,cos?¢,...,cos® ¢} is a linearly inde-
pendent set of functions defined on R. Use the method of

Exercise 37. (This result will be needed in Exercise 34 in
Section 4.5.)

SOLUTIONS TO PRACTICE PROBLEMS

1. Let A =[vi v2]. Row operations show that

| ) |
A=| =2 71~10 3
3 -9 0 0

Not every row of A contains a pivot position. So the columns of 4 do not span R?,
by Theorem 4 in Section 1.4. Hence {v|,v,} is not a basis for R3. Since v, and
v, are not in R?, they cannot possibly be a basis for R2. However, since v; and v,
are obviously linearly independent, they are a basis for a subspace of R3, namely,
Span{vy, v,}.

2. Set up a matrix A whose column space is the space spanned by {vy, v, v3, v4}, and
then row reduce A to find its pivot columns.

I 6 2 —4 1 6 2 —4 I 6 —4
A=]1-3 2 -2 8|~[0 20 4 -20|~]0 5 1 =5
4 -1 3 9 0 -25 =5 25 0 0 0
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The first two columns of A are the pivot columns and hence form a basis of
Col A = W. Hence {v, v,} is a basis for W. Note that the reduced echelon form of
A is not needed in order to locate the pivot columns.

3. Neither vy nor v, is in H, so {v;, v} cannot be a basis for H. In fact, {v;,v,} is a
basis for the plane of all vectors of the form (cy, ¢;,0), but H is only a line.

4.4 COORDINATE SYSTEMS

An important reason for specifying a basis B for a vector space V is to impose a
“coordinate system” on V. This section will show that if B contains n vectors, then
the coordinate system will make V' act like R”. If V is already R” itself, then B will
determine a coordinate system that gives a new “view” of V.

The existence of coordinate systems rests on the following fundamental result.

THEOREM 7 The Unique Representation Theorem

Let B = {by,...,b,} be abasis for a vector space V. Then for each x in I/, there
exists a unique set of scalars cy, ..., ¢, such that
x = ciby + .-+ ¢,by (1)

PROOF Since B spans V, there exist scalars such that (1) holds. Suppose x also has
the representation

X = d[b] —l—"'—i—d,,bn
for scalars dy, ..., d,. Then, subtracting, we have
0=X—X:(Cl_dl)b1+"‘+(Cn_dn)bn (2)

Since B is linearly independent, the weights in (2) must all be zero. That is, ¢; = d;
forl <j <n. |

Suppose B = {by,...,b,} is a basis for V and x is in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..., ¢,
such that x = ¢;by + --- + ¢,,b,,.

If ¢y, ..., c, are the B-coordinates of x, then the vector in R”

is the coordinate vector of x (relative to /3), or the B-coordinate vector of x. The
mapping X > [ X |, is the coordinate mapping (determined by 5).!

'The concept of a coordinate mapping assumes that the basis B is an indexed set whose vectors are listed in
some fixed preassigned order. This property makes the definition of [ X | 5 unambiguous.
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ThuSC] = 2,C2 = 3’and[x]8 = [g

is shown in Fig. 7. [ ]

]. The coordinate system on H determined by 53

FIGURE 7 A coordinate system on a plane H in
R3.

If a different basis for H were chosen, would the associated coordinate system also
make H isomorphic to R?? Surely, this must be true. We shall prove it in the next
section.

PRACTICE PROBLEMS

1 -3 3 —8
1. Letb; =] 0 |,b, = 4 |,bs=| —6 |,andx = 2
0 0 3 3

a. Show that the set B = {b;, by, b3} is a basis of R>.

b. Find the change-of-coordinates matrix from B to the standard basis.
c. Write the equation that relates x in R? to [x ] 5

d. Find [x], for the x given above.

2. The set B = {1 +t,1+ t2,t + t*} is a basis for IP,. Find the coordinate vector of
p(t) = 6 + 3t — 17 relative to B.

4.4 EXERCISES

In Exercises 1-4, find the vector x determined by the given In Exercises 5-8, find the coordinate vector [x | ; of X relative to
coordinate vector [ x ], and the given basis B. the given basis B = {by,...,b,}.

o e[ ne[ e[ 2]

e L[] o[- L]

it 1 e B B e i
i 11 e R S H S




In Exercises 9 and 10, find the change-of-coordinates matrix from
B to the standard basis in R”.

o ={[ ][5

3 2 1
10. B = 0, 20, =2
6 —4 3

In Exercises 11 and 12, use an inverse matrix to find [ x | 5 for the
given x and B.

won={[ 3} 2= [ 2]
nos={[ ][ 2= ]3]

13. The set B = {1 +2,t + 12,1+ 2t + 2} is a basis for P,.
Find the coordinate vector of p(¢) = 1 + 4¢ + 7¢? relative
to BB.

14. The set B={1 —t>,t —t>,2 —t 4+ t?} is a basis for PP,.
Find the coordinate vector of p(¢) = 1 + 3t — 612 relative
to BB.

In Exercises 15 and 16, mark each statement True or False. Justify
each answer. Unless stated otherwise, 3 is a basis for a vector
space V.

15. a. If xis in V and if B contains n vectors, then the B-

coordinate vector of x is in R”.

b. If Pg is the change-of-coordinates matrix, then [X]z =
Ppx, forxin V.

c. The vector spaces IP; and R3 are isomorphic.

16. a. If B is the standard basis for R”, then the B-coordinate

vector of an x in R” is x itself.

b. The correspondence [ X ] 5 P> X is called the coordinate
mapping.

c. In some cases, a plane in R? can be isomorphic to R?.

2 | -3 )
—8]’V3 = |: 7]spanR

but do not form a basis. Find two different ways to express

17. The vectors v; = [_; ], V) = |:

1 . L
[ a2 linear combination of vy, v,, V3.

18. LetB = {by,...,b,} be abasis for a vector space V. Explain
why the B-coordinate vectors of by, ..., b, are the columns
er,...,e, of the n x n identity matrix.

19. Let S be a finite set in a vector space V' with the property
that every x in V' has a unique representation as a linear
combination of elements of S. Show that S is a basis of V.

20. Suppose {vy,...,V4} is a linearly dependent spanning set
for a vector space V. Show that each w in V can be
expressed in more than one way as a linear combination of
Vi,...,Vq. [Hint: Letw = kyv| + --- + k4v, be an arbitrary
vector in V. Use the linear dependence of {v,,...,v4} to
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produce another representation of w as a linear combination
of vi,...,vy.]

—4 9

determined by B is a linear transformation from R? into R?,
this mapping must be implemented by some 2 x 2 matrix A.
Find it. [Hint: Multiplication by A should transform a vector
X into its coordinate vector [x ] ;.]

21. Let B = H: ! ] [_2]}. Since the coordinate mapping

22. Let B={by,...,b,} be a basis for R”. Produce a descrip-
tion of an n x n matrix A that implements the coordinate
mapping X — [x] . (See Exercise 21.)

Exercises 23-26 concern a vector space V, a basis B =
{bi,....b,}, and the coordinate mapping X — [x] .

23. Show that the coordinate mapping is one-to-one. (Hint:
Suppose [u], =[w], for some u and w in V', and show
thatu = w.)

B

24. Show that the coordinate mapping is onto R". That is, given
any y in R”, with entries yy, ..., y,, produce uin V' such that

[u], =Y.

25. Show that a subset {u;,...,u,} in V is linearly in-
dependent if and only if the set of coordinate vectors
tui]g .-, [wy],} is linearly independent in R”. Hint:
Since the coordinate mapping is one-to-one, the following
equations have the same solutions, ¢i, ..., c,.

The zero vector in V/
The zero vector in R”

cup 4+ +cpu, =0
[C]ll] +'”+Cpup ]B = [O]B
26. Given vectorsuy,...,u,,and win V', show that w is a linear
combination of uy, ..., u, if and only if [w], is a linear

combination of the coordinate vectors [u; ], ..., [u, ] 4.

In Exercises 27-30, use coordinate vectors to test the linear
independence of the sets of polynomials. Explain your work.

27. 14203, 24132, —t + 21> =13
28. 1-202 -1, 1 +26% 141217
29, (1—-0)% t =224+, (1—1)°

30. 2—1)%, B3—1)* 1+6t—5t2+1°

31. Use coordinate vectors to test whether the following sets of
polynomials span [P,. Justify your conclusions.

a. 1 =3t 4+52,-34+5t—=T7t%, —4+5t -6t 112
b. 5t +12, 1 -8t —2t%, =3+ 4t +2t2,2 -3¢

32, Letp,(t) = 1+12,p,(¢) =1 =33, ps(t) = 1 +1 — 32
a. Use coordinate vectors to show that these polynomials
form a basis for P;.
b. Consider the basis B = {p,, p,. p;} for P». Find q in P,,
-1
given that [q]z = 1
2
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In Exercises 33 and 34, determine whether the sets of polynomials
form a basis for IP5. Justify your conclusions.

33, [IM]3+7t,5+¢—283,t—2t% 1+ 161 — 612 + 213
34. [M]5—3t +4t>24+263,94+ 1 +8t2—613,6 —21 + 512,13

35. [M] Let H = Span {v;, v,} and B = {v;, v,}. Show that x is
in H and find the B-coordinate vector of x, for

11 14 19
v, = -5 v, = -8 ‘= -13
10 |” 13 |’ 18
7 10 15

36. [M] Let H = Span{v,,v,,v3} and B = {v;, v,, v3}. Show
that 3 is a basis for H and xisin H , and find the B-coordinate
vector of x, for

—6 8 -9 4

4 -3 5 7

v = 9 , V2 = 7 , V3 = _3 , X = _3
4 -3 3 3

[M] Exercises 37 and 38 concern the crystal lattice for titanium,
which has the hexagonal structure shown on the left in the ac-
2.6 0 0
15,31, O
0 0 4.8
form a basis for the unit cell shown on the right. The numbers
here are Angstrom units (1 A = 108 cm). In alloys of titanium,

companying figure. The vectors in R

some additional atoms may be in the unit cell at the octahedral
and tetrahedral sites (so named because of the geometric objects
formed by atoms at these locations).

~ w
>\/// A=

(1\

i
|
B .

A

¥;

0

uw

"
The hexagonal close-packed lattice and its unit cell.

F1/27]
37. One of the octahedral sites is | 1/4
L 1/6
basis. Determine the coordinates of this site relative to the
standard basis of R>.

/>D

, relative to the lattice

F1/27]
38. One of the tetrahedral sites is | 1/2
L1/3
dinates of this site relative to the standard basis of R3.

. Determine the coor-

SOLUTIONS TO PRACTICE PROBLEMS

1. a. Itisevident that the matrix Pz = [b; b

bs ] is row-equivalent to the identity

matrix. By the Invertible Matrix Theorem, P is invertible and its columns form

a basis for R3.

1 -3 3
b. From part (a), the change-of-coordinates matrixis Pg = | 0 4 —6
0 0 3

c. x= Pg[x],

d. To solve the equation in (c), it is probably easier to row reduce an augmented
matrix than to compute Pg I

Hence

-3 3 -8 I 0 0 =5
4 6 2|~)0 1 0 2
0o 3 3 o 0 1 1

PB X ! [ X ]K
-5
[xs]=| 2
1

2. The coordinates of p(¢) = 6 + 3t — t? with respect to B satisfy

ci(1+1) + (1 +13) +ces(t +1%) = 6+ 3t —t?
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Equating coefficients of like powers of #, we have

L+ =
C1 +c3 =
0 +e=-1
Solving, we find that¢; = 5,¢; = 1,¢3 = —2,and [p]; = 1

4.5 THE DIMENSION OF A VECTOR SPACE

THEOREM 9

Theorem 8 in Section 4.4 implies that a vector space V' with a basis B containing n
vectors is isomorphic to R”. This section shows that this number n is an intrinsic
property (called the dimension) of the space V' that does not depend on the particular
choice of basis. The discussion of dimension will give additional insight into properties
of bases.

The first theorem generalizes a well-known result about the vector space R”.

If a vector space V has a basis B = {by,...,b,}, then any set in V' containing
more than n vectors must be linearly dependent.

PROOF Let{uy,...,u,}beasetin V with more than n vectors. The coordinate vectors
[ui ]z ..., [up ]y form alinearly dependent set in R”, because there are more vectors
(p) than entries (1) in each vector. So there exist scalars ¢y, ..., ¢p, not all zero, such
that

0

cifug ]B +-+cplu, ]B =1 : The zero vector in R”
0
Since the coordinate mapping is a linear transformation,
0
e+ cpup ] = |
0

The zero vector on the right displays the n weights needed to build the vector
ciuy + -+ +cpu, from the basis vectors in B. That is, cjuy +---+cpu, =

0-by+:--4+0-b, =0. Since the ¢; are not all zero, {uy,...,u,} is linearly
dependent.! [ |
Theorem 9 implies that if a vector space V' has a basis B = {by, ..., b,}, then each

linearly independent set in V' has no more than n vectors.

!'Theorem 9 also applies to infinite sets in V. An infinite set is said to be linearly dependent if some finite
subset is linearly dependent; otherwise, the set is linearly independent. If S is an infinite set in V, take any
subset {uy, ..., u,} of S, with p > n. The proof above shows that this subset is linearly dependent, and
hence so is S.
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PROOF By Theorem 11, a linearly independent set S of p elements can be extended to
a basis for V. But that basis must contain exactly p elements, since dimV = p. So §
must already be a basis for V. Now suppose that S has p elements and spans V. Since
V' is nonzero, the Spanning Set Theorem implies that a subset S’ of S is a basis of V.
Since dim V' = p, S’ must contain p vectors. Hence S = §’. ]

The Dimensions of Nul 4 and Col 4

Since the pivot columns of a matrix A form a basis for Col A, we know the dimension
of Col A as soon as we know the pivot columns. The dimension of Nul A might seem to
require more work, since finding a basis for Nul 4 usually takes more time than a basis
for Col A. But there is a shortcut!

Let A be an m x n matrix, and suppose the equation Ax = 0 has k free variables.
From Section 4.2, we know that the standard method of finding a spanning set for Nul 4
will produce exactly k linearly independent vectors—say, uy, ..., u;—one for each
free variable. So {uy,...,u;} is a basis for Nul A, and the number of free variables
determines the size of the basis. Let us summarize these facts for future reference.

The dimension of Nul A is the number of free variables in the equation Ax = 0,
and the dimension of Col 4 is the number of pivot columns in A.

EXAMPLE 5 Find the dimensions of the null space and the column space of

-3 6 -1 1 -7
A=| 1 =2 2 3 -1
2 -4 5 8 —4

SOLUTION Row reduce the augmented matrix [ A 0] to echelon form:

1 -2 2 3 -1 0
o o 1 2 -2 0
0o 0o 0 O 0 O

There are three free variables— x», x4, and x5. Hence the dimension of Nul 4 is 3. Also,
dim Col A = 2 because A has two pivot columns. [ |

PRACTICE PROBLEMS

Decide whether each statement is True or False, and give a reason for each answer. Here
V' is a nonzero finite-dimensional vector space.

1. If dimV = p and if S is a linearly dependent subset of V', then S contains more
than p vectors.

If S spans V and if T is a subset of V' that contains more vectors than S, then 7T is
linearly dependent.
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For each subspace in Exercises 1-8, (a) find a basis for the
subspace, and (b) state the dimension.

s —2t M 2a
1. s+t |:s,tinR 2. —4b | :a,bin R
3¢ | —2a
M 2c [p+2q
a—>b | . -P . :
3. b—3c ca,b,cinR; 4. 3p—gq i p,qinR
La+2b L pt+4qg
[ p—2q
2p +5r | .
5. 2 +2r :p,q,rinR
| —3p +6r
3a—c
—b — 3¢ .
6. a4 6b + 5¢ ta,b,cinR
—3a+c¢

7. {(a,b,c):a—3b+c=0,b—2c=0,2b—c =0}
8. {(a,b,c,d):a—3b+c=0}

9. Find the dimension of the subspace of all vectors in R* whose
first and third entries are equal.

10. Find the dimension of the subspace H of R? spanned by
1 -2 -3
=SSPl 1op| 15y
In Exercises 11 and 12, find the dimension of the subspace
spanned by the given vectors.

17737 2775
mo|o|, |1, |-1][2

2] [t 1] |2

[ 113727 [-3
R | 26| 3| 5

L0 0 5 5

Determine the dimensions of Nul A and Col A for the matrices
shown in Exercises 13—18.

1 -6 9 0 -2
0 1 2 -4 5
BoA=1o 0o 0o 5 1
(0 0 0 0 0
1 2 —4 3 2 6 0
0 0 0 1 0 -3 7
MoA=10 0 0 0 1 4 —2
(0 0 0 0 0 0 1
12 3 0 0 3
5. A=l0 0 1 0 1 16.A:[_6 5]
(0 0 0 1 0

1 -1 0 1 1 -1
17. A={0 1 3 18. A=({0 2 0
0o 0 1 0O 0 O

In Exercises 19 and 20, V' is a vector space. Mark each statement
True or False. Justify each answer.

19. a. The number of pivot columns of a matrix equals the

dimension of its column space.
b. A plane in R? is a two-dimensional subspace of R>.
c. The dimension of the vector space P; is 4.

d. If dimV =n and S is a linearly independent set in V,
then S is a basis for V.

e. If a set {vi,...,v,} spans a finite-dimensional vector
space V and if T is a set of more than p vectors in V,
then 7 is linearly dependent.

20. a. R?is atwo-dimensional subspace of R>.

b. The number of variables in the equation Ax = 0 equals
the dimension of Nul A.

c. A vector space is infinite-dimensional if it is spanned by
an infinite set.

d. Ifdim V = n and if S spans V, then S is a basis of V.

e. The only three-dimensional subspace of R3 is R itself.

21. The first four Hermite polynomials are 1, 27, —2 + 4¢%, and
—12¢ + 8t3. These polynomials arise naturally in the study
of certain important differential equations in mathematical
physics.> Show that the first four Hermite polynomials form
a basis of P5.

22. The first four Laguerre polynomials are 1, 1 — 7,2 — 4t + ¢2,
and 6 — 18¢ + 9¢> — 3. Show that these polynomials form a
basis of P;.

23. Let I3 be the basis of IP; consisting of the Hermite polynomi-
als in Exercise 21, and let p(t) = —1 + 872 + 8¢3. Find the
coordinate vector of p relative to B.

24, Let B be the basis of P, consisting of the first three
Laguerre polynomials listed in Exercise 22, and let
p(t) = 5 + 5t — 2¢. Find the coordinate vector of p relative
to B.

25. Let S be a subset of an n-dimensional vector space V', and
suppose S contains fewer than n vectors. Explain why S
cannot span V.

26. Let H be an n-dimensional subspace of an n-dimensional
vector space V. Show that H = V.

27. Explain why the space PP of all polynomials is an infinite-
dimensional space.

2 See Introduction to Functional Analysis, 2d ed., by A. E. Taylor and
David C. Lay (New York: John Wiley & Sons, 1980), pp. 92-93. Other
sets of polynomials are discussed there, too.
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28.

Show that the space C(R) of all continuous functions defined
on the real line is an infinite-dimensional space.

In Exercises 29 and 30, V is a nonzero finite-dimensional vector
space, and the vectors listed belong to V. Mark each statement
True or False. Justify each answer. (These questions are more
difficult than those in Exercises 19 and 20.)

29.

30.

a. If there exists a set {vy,..
dimV < p.

.,Vp} that spans V, then

b. If there exists a linearly independent set {vi, ..
V,then dim V > p.

c. If dimV = p, then there exists a spanning set of p + 1
vectors in V.

., Vp}in

a. If there exists a linearly dependent set {v, ..
thendim V < p.

L VppinV,

b. If every set of p elements in V' fails to span V/, then
dimV > p.

c. If p>2anddimV = p,thenevery set of p — 1 nonzero
vectors is linearly independent.

Exercises 31 and 32 concern finite-dimensional vector spaces V'
and W and a linear transformation 7 : V. — W.

31.

32.

Let H be a nonzero subspace of V', and let T'( H ) be the set of
images of vectors in H. Then T'(H) is a subspace of W, by
Exercise 35 in Section 4.2. Prove that dim 7 (H) < dim H.

Let H be a nonzero subspace of V, and suppose T is
a one-to-one (linear) mapping of V' into W. Prove that
dim7(H) = dim H. If T happens to be a one-to-one map-
ping of V onto W, then dim V' = dim W. Isomorphic finite-
dimensional vector spaces have the same dimension.

33.

34.

[M] According to Theorem 11, a linearly independent set
{Vi,..., vk} in R” can be expanded to a basis for R”. One
waytodothisistocreate A = [v; -+ vi € e, ],
with ey, ..., e, the columns of the identity matrix; the pivot
columns of A form a basis for R”.

a. Use the method described to extend the following vectors
to a basis for R*:

-9 9 6

=7 4 7

V| = 8 1, V) = 1 V3 = —8
-5 6 5

7 =7 =7

b. Explain why the method works in general: Why are the
original vectors vy, ..., v included in the basis found for
Col A? Why is Col 4 = R"?

[M] Let B = {1,cost,cos’t,...,cos®t} and C = {1, cos?,

cos2t,...,cos6t}. Assume the following trigonometric

identities (see Exercise 37 in Section 4.1).

cos2t = —1 + 2cos?¢

cos3t = —3cost + 4cos’t

cosd4t =1 —8cos’t + 8cos*t

cos 5t = 5cost —20cos*t + 16cos’ t

cos6f = —1 + 18cos?t — 48 cos*t 4 32 cos® ¢

Let H be the subspace of functions spanned by the functions
in B. Then B is a basis for H, by Exercise 38 in Section 4.3.

a. Write the B-coordinate vectors of the vectors in C, and
use them to show that C is a linearly independent set in
H.

b. Explain why C is a basis for H.

SOLUTIONS TO PRACTICE PROBLEMS

1. False. Consider the set {0}.

2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis S’.
Then T will contain more vectors than S’. By Theorem 9, T is linearly dependent.

4.6 RANK

With the aid of vector space concepts, this section takes a look inside a matrix and
reveals several interesting and useful relationships hidden in its rows and columns.
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and
then determining both the maximum number of linearly independent columns in 4 and
the maximum number of linearly independent columns in A7 (rows in A). Remarkably,
the two numbers are the same. As we’ll soon see, their common value is the rank of the
matrix. To explain why, we need to examine the subspace spanned by the rows of A.
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4.6

WEB

— NUMERICAL NOTE

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . |5 7
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5 i ]

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A4 is often determined
from the singular value decomposition of A, to be discussed in Section 7.4. This
decomposition is also a reliable source of bases for Col A, Row A4, Nul A4, and
Nul AT,

EXERCISES

PRACTICE PROBLEMS

The matrices below are row equivalent.

= W N -

2 -1 1 -6 8 1 -2 —4 3 -2

4= 1 2 —4 3 -2 B— 0o 3 9 —-12 12
-7 8 10 3 —10 |’ 0 0 O 0 0

4 =5 -7 0 4 0 0 O 0 0

Find rank A and dim Nul 4.
Find bases for Col 4 and Row A.
What is the next step to perform to find a basis for Nul A?

How many pivot columns are in a row echelon form of A7?

In Exercises 1-4, assume that the matrix A is row equivalent to B. 2 6
Without calculations, list rank 4 and dim Nul A. Then find bases 3,

for Col 4, Row A, and Nul A.

1

1. A= -1
)

1
B=1]0
L 0

1

2

2. A= 3
|3

1

0

B= 0
L0

—4

O OO W OOV W

S W

OO = ph O W B

9 —7
—4 1,
10 7

-1 2
0 -3
6 3
9 0|

1 27

11
0 -5
0 0

-6 6 3 6
4|23 6 -3 0 —6
4 9 —-12 9 3 12|
2 3 6 3 3 -6
(2 6 6 6 3 6]
p_l0 3 0 3 3 0
0 0 0 0 3 0
L0 0 0 0 0 0
(11 -2 0 1 —27
1 2 -3 0 -2 -3
4. 4={1 -1 0 0 1 6|,
1 =2 2 1 =3 0
(12 1 0 2 -1
11 =2 0 1 -2
0 1 -1 0 -3 -1
B=|0 0 1 1 —-13 -1
0o 0 0 0 1 -1
(00 0 0 0 1




10.

11.

12.

13.

14.

15.

16.

In Exercises 17 and 18, A is an m X n matrix.

If a 4 x 7 matrix A has rank 3, find dim Nul 4, dim Row A,
and rank AT .

If a 7 x 5 matrix A has rank 2, find dim Nul 4, dim Row A4,
and rank A7 .

Suppose a 4 x 7 matrix A has four pivot columns. Is
Col A = R*? Is Nul A = R3? Explain your answers.

Suppose a 6 x 8 matrix A has four pivot columns. What is
dim Nul 4? Is Col A = R*? Why or why not?

If the null space of a 4 x 6 matrix A4 is 3-dimensional, what
is the dimension of the column space of A? Is Col A = R3?
Why or why not?

If the null space of an 8 x 7 matrix A4 is 5-dimensional, what
is the dimension of the column space of A?

If the null space of an 8 x 5 matrix A is 3-dimensional, what
is the dimension of the row space of 4?

If the null space of a 5 x 4 matrix A is 2-dimensional, what
is the dimension of the row space of 4?

If Ais a7 x 5 matrix, what is the largest possible rank of A?
If Ais a5 x 7 matrix, what is the largest possible rank of A?
Explain your answers.

If A is a5 x 4 matrix, what is the largest possible dimension
of the row space of A? If A is a 4 x 5 matrix, what is the
largest possible dimension of the row space of A? Explain.

If Ais a3 x 7 matrix, what is the smallest possible dimension
of Nul A?

If Aisa7 x 5 matrix, what is the smallest possible dimension
of Nul A?

Mark each

statement True or False. Justify each answer.

17.

18.

a. The row space of A is the same as the column space of
AT.
b. If B is any echelon form of 4, and if B has three nonzero

rows, then the first three rows of A form a basis for
Row A.

c. The dimensions of the row space and the column space
of A are the same, even if A4 is not square.

d. The sum of the dimensions of the row space and the null
space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent
rank of a matrix.

a. If B is any echelon form of A, then the pivot columns of
B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations
among the rows of A.

c. The dimension of the null space of A4 is the number of
columns of A that are not pivot columns.

d. The row space of A” is the same as the column space of
A.

19.

20.

21.

22,

23.

24.

25.

26.
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e. If A and B are row equivalent, then their row spaces are
the same.

Suppose the solutions of a homogeneous system of five linear
equations in six unknowns are all multiples of one nonzero
solution. Will the system necessarily have a solution for
every possible choice of constants on the right sides of the
equations? Explain.

Suppose a nonhomogeneous system of six linear equations
in eight unknowns has a solution, with two free variables. Is
it possible to change some constants on the equations’ right
sides to make the new system inconsistent? Explain.

Suppose a nonhomogeneous system of nine linear equations
in ten unknowns has a solution for all possible constants on
the right sides of the equations. Is it possible to find two
nonzero solutions of the associated homogeneous system that
are not multiples of each other? Discuss.

Is is possible that all solutions of a homogeneous system of
ten linear equations in twelve variables are multiples of one
fixed nonzero solution? Discuss.

A homogeneous system of twelve linear equations in eight
unknowns has two fixed solutions that are not multiples of
each other, and all other solutions are linear combinations of
these two solutions. Can the set of all solutions be described
with fewer than twelve homogeneous linear equations? If so,
how many? Discuss.

Is it possible for a nonhomogeneous system of seven equa-
tions in six unknowns to have a unique solution for some
right-hand side of constants? Is it possible for such a system
to have a unique solution for every right-hand side? Explain.

A scientist solves a nonhomogeneous system of ten linear
equations in twelve unknowns and finds that three of the
unknowns are free variables. Can the scientist be certain
that, if the right sides of the equations are changed, the new
nonhomogeneous system will have a solution? Discuss.

In statistical theory, a common requirement is that a matrix
be of full rank. That is, the rank should be as large as
possible. Explain why an m x n matrix with more rows than
columns has full rank if and only if its columns are linearly
independent.

Exercises 27-29 concern an m x n matrix A and what are often
called the fundamental subspaces determined by A.

217.

28.

29.

Which of the subspaces Row A, Col A, Nul A, Row AT,
Col AT, and Nul AT are in R and which are in R”? How
many distinct subspaces are in this list?

Justify the following equalities:

a. dimRow A + dimNul A = n Number of columns of A
b. dimCol A + dimNul A” = m Number of rows of 4
Use Exercise 28 to explain why the equation Ax = b has a

solution for all b in R if and only if the equation A”x = 0
has only the trivial solution.
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30. Suppose A is m xn and b is in R™. What has to be true
about the two numbers rank [ A b ] and rank A in order for
the equation Ax = b to be consistent?

Rank 1 matrices are important in some computer algorithms and
several theoretical contexts, including the singular value decom-
position in Chapter 7. It can be shown that an m x n matrix A
has rank 1 if and only if it is an outer product; that is, A = uv’
for some u in R” and v in R". Exercises 31-33 suggest why this
property is true.

2 a
31. Verify that rankuv” < 1lifu=| -3 [andv= | b
5 c

N 1B 0 1 -3 4]

32. Letu = [2].Flndv1nR suchthat|:2 _6 8] =uv’.

33. Let A be any 2 x 3 matrix such that rank A = 1, let u be the
first column of A, and suppose u # 0. Explain why there
is a vector v in R? such that 4 = uv’. How could this
construction be modified if the first column of A were zero?

34. Let Abe anm x n matrix of rank r > 0 and let U be an eche-
lon form of A. Explain why there exists an invertible matrix
E such that A = EU, and use this factorization to write A
as the sum of r rank 1 matrices. [Hint: See Theorem 10 in
Section 2.4.]

7 -9 -4 5 3
-4 6 7 -2 -6 -5
35. [M] Let A = 5 -7 -6 5 —6 2
-3 5 8§ -1 -7 —4
6 -8 —5 4 4 9
a. Construct matrices C and N whose columns are bases for
Col A and Nul A, respectively, and construct a matrix R
whose rows form a basis for Row A.

W oo 0 W

b. Construct a matrix M whose columns form a ba-
sis for Nul A”, form the matrices S = [ RT N ] and
T=[C M], and explain why S and T should be
square. Verify that both S and T are invertible.

36. [M] Repeat Exercise 35 for a random integer-valued 6 x 7
matrix A whose rank is at most 4. One way to make A
is to create a random integer-valued 6 x 4 matrix J and a
random integer-valued 4 x 7 matrix K, and set 4 = JK.
(See Supplementary Exercise 12 at the end of the chapter;
and see the Study Guide for matrix-generating programs.)

37. [M] Let A be the matrix in Exercise 35. Construct a matrix
C whose columns are the pivot columns of A, and construct
a matrix R whose rows are the nonzero rows of the reduced
echelon form of A. Compute CR, and discuss what you see.

38. [M] Repeat Exercise 37 for three random integer-valued
5 x 7 matrices A whose ranks are 5, 4, and 3. Make a
conjecture about how CR is related to A for any matrix A.
Prove your conjecture.

SOLUTIONS TO PRACTICE PROBLEMS

1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether,

dimNulA =5-2=3.

2. The pivot columns of A are the first two columns. So a basis for Col 4 is

-1

-2
{aj,ay} =

=5

The nonzero rows of B form a basis for Row A4, namely, {(1,—-2,—4,3,-2),
(0,3,9,—12,12)}. In this particular example, it happens that any two rows of A
form a basis for the row space, because the row space is two-dimensional and none
of the rows of A is a multiple of another row. In general, the nonzero rows of an
echelon form of A should be used as a basis for Row A, not the rows of A itself.

3. For Nul A4, the next step is to perform row operations on B to obtain the reduced

echelon form of A.

Major Review of Key

Concepts 4-22 two pivot positions.

4. Rank A7 = rank A, by the Rank Theorem, because Col A7 = Row A. So AT has
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4.7 EXERCISES

1 -2 —7 =5
EXAMPLE 3 Letb1=|:_3i|,b2=|: 4],c1=|: 9:|,cz=|: 7i|,andcon-
sider the bases for R? given by B = {b;,b,} and C = {c;, ¢>}.

a. Find the change-of-coordinates matrix from C to 5.
b. Find the change-of-coordinates matrix from 5 to C.

SOLUTION

a. Notice that 4z £c is needed rather than £ 5> and compute

‘ 1 —21-7 5] [1 0:i5 3
[br b2 e CZJZ[—3 419 7}~[0 116 4]

So

b. By part (a) and property (6) above (with B and C interchanged),
P (P :l 4 -3 _ 2 =3/2 -
C<B B<C 2 -6 5 -3 5/2

Another description of the change-of-coordinates matrix . (I_J 5 uses the change-of-
coordinate matrices Pg and P that convert B-coordinates and C-coordinates, respec-
tively, into standard coordinates. Recall that for each x in R”,

Pg[x]p =x, Pe[xle =x, and [X]¢c = Pc_lx
Thus
Xe = Pe'x = P¢' Pslxls

In R”, the change-of-coordinates matrix . £B may be computed as Pz ! Pg. Actually,
for matrices larger than 2 x 2, an algorithm analogous to the one in Example 3 is faster
than computing Pz and then P; ' Pg. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Let F = {f;.f,} and G = {g,.,g,} be bases for a vector space V, and let P be a
matrix whose columns are [ f] ] g and [£2] g- Which of the following equations is
satisfied by P forall vin V'?

M [vly = Plv], (i) [Vl = Pv],

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

1. LetB = {b;,b,} and C = {c;, c,} be bases for a vector space 2. Let B = {b;,b,} and C = {c,, ¢,} be bases for a vector space
V', and suppose b; = 6¢; — 2¢; and b, = 9¢; — 4c,. V', and suppose b; = —2¢; + 4¢; and b, = 3¢; — 6¢,.

a. Find the change-of-coordinates matrix from B to C. a. Find the change-of-coordinates matrix from B to C.
b. Find [X]C for x = —3b; + 2b,. Use part (a). b. Find [X]C for x = 2b; + 3b..



LetU = {u;,u,} and W = {w;, w,} be bases for 1, and let
P be amatrix whose columns are [u; ],,, and [w,]yy. Which
of the following equations is satisfied by P for all xin V'?

@ [x],=rP[x], G [x], =P[x],

Let A = {a;,a,,a;} and D = {d;,d,,d;} be bases for V,
andlet P =[[di]a [d2]a [d3].a ] Which of the follow-
ing equations is satisfied by P for all x in V'?

M [x],=Plx], G [x],=P[x],

Let A= {a;,a,a;} and B ={b;,by,b;} be bases
for a vector space V, and suppose a, = 4b; —b,,
a = —b1 + b2 + b3, and az = bz — 2b3

a. Find the change-of-coordinates matrix from A to 5.

b. Find [X]B for x = 3a; + 4a, + a;.

Let D ={d,,d,,d3} and F = {f|,f,,f3} be bases for
a vector space V, and suppose f; =2d;—d, +ds,
fz = 3(12 + d3, and f3 = —3(11 + 2d3

a. Find the change-of-coordinates matrix from F to D.

b. Find [X]D for x = £, — 2f, + 2f;.

In Exercises 7-10, let B = {by,b,} and C = {c, ¢,} be bases for
R2. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to 5.

7.

10.

7 [—3 1 -2
b, = _5_,b2= __1],01 = [_5],C2=|: 2i|

[—1 1 1 1
b, = I 8]’b2: [_7],01 = [2],Cz= [1]

(47 8 2 -2
b1=_4_,b2=_4i|7cl=|:2i|,02=|: 2]

S H NN

In Exercises 11 and 12, B and C are bases for a vector space V.
Mark each statement True or False. Justify each answer.

11.

12.

13.

14.

a. The columns of the change-of-coordinates matrix . £ B
are B-coordinate vectors of the vectors in C.

b. If V =R" and C is the standard basis for V', then . £B
is the same as the change-of-coordinates matrix P intro-
duced in Section 4.4.

a. The columns of , £ 5 are linearly independent.

b. If V=R?, B ={b;,b,}, and C = {c¢;,¢,}, then row
reduction of [¢; ¢, by by]to[I P ] produces a
matrix P that satisfies [x ], = P[x], forallxin V.

In IP,, find the change-of-coordinates matrix from the basis
B={1—-2t+123—5t+ 4122t + 3t*} to the standard
basis C = {1,7,1%}. Then find the B-coordinate vector for
—1421.

In P, find the change-of-coordinates matrix from the ba-
sis B= {1 —3t%,2 4+t —5¢2,1 + 2t} to the standard basis.
Then write 2 as a linear combination of the polynomials in

B.
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Exercises 15 and 16 provide a proof of Theorem 15. Fill in a
justification for each step.

15. Given vin V, there exist scalars xy, ..., x,, such that
V= xlbl + Xzbz + -+ xnbn

because (a) . Apply the coordinate mapping deter-
mined by the basis C, and obtain

[Vle = x1[bile + x2[bs]e + -+ + x4 [b,]c

because (b) . This equation may be written in the form
X1

[V]Cz[[bl]c [bz]c [bll]c] (8)
Xn

by the definition of (c) . This shows that the matrix

c£3 shown in (5) satisfies [v]c = C£B [v]g foreachvin V,
because the vector on the right side of (8) is (d) .

16. Suppose Q is any matrix such that

[Vl = Qlv]lz foreachvinV )
Set v=Db; in (9). Then (9) shows that [b;]c is the first
column of Q because (a) . Similarly, fork = 2,...,n,
the kth column of Q is (b) because (¢) . This

shows that the matrix . r g defined by (5) in Theorem 15 is
the only matrix that satisfies condition (4).

17. [M] Let B = {X¢,...,X¢yand C = {y,, ..., ¥q}, where x; is
the function cos* ¢ and y, is the function cos k¢. Exercise 34
in Section 4.5 showed that both 53 and C are bases for the
vector space H = Span {xo, ..., Xs}.

a. SetP =[[yyl;, -+ [¥lz] andcalculate P~

b. Explain why the columns of P! are the C-coordinate
vectors of X, ..., Xs. Then use these coordinate vectors
to write trigonometric identities that express powers of
cos? in terms of the functions in C.

See the Study Guide.

18. [M] (Calculus required)’® Recall from calculus that integrals
such as
/(500s3t —6cos*t +5cos’t — 12cos®t) dt (10)

are tedious to compute. (The usual method is to apply inte-
gration by parts repeatedly and use the half-angle formula.)
Use the matrix P or P! from Exercise 17 to transform (10);
then compute the integral.

3 The idea for Exercises 17 and 18 and five related exercises in earlier
sections came from a paper by Jack W. Rogers, Jr., of Auburn University,
presented at a meeting of the International Linear Algebra Society,
August 1995. See “Applications of Linear Algebra in Calculus,”
American Mathematical Monthly 104 (1), 1997.
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19. [M] Let b. Find abasis {w;, w,, w3} for R® such that P is the change-
1 2 1 of-coordinates matrix from {vi, v,, v3} to {w;, w,, w3 }.
P=]-3 -5 , 20. Let B = {by,b,}, C = {c1,¢,}, and D = {d,,d,} be bases
4 6 1 for a two-dimensional vector space.
—2 -8 =7 a. Write an equation that relates the matrices . £B, D <}—)c’
Vi= g - V2 = ; - V3= é and D£B. Justify your result.

i ' R ] b. [M] Use a matrix program either to help you find the
a. Find a basis {uj,u,u3} for R* such that P is the equation or to check the equation you write. Work with
change-of-coordinates matrix from {u;,u,,u;} to the three bases for R2. (See Exercises 7-10.)

basis {Vi, V5, v3}. [Hint: What do the columns of C£B
represent?]

SOLUTIONS TO PRACTICE PROBLEMS

1. Since the columns of P are G-coordinate vectors, a vector of the form Px must be
a G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

Lo=lle k=] 7]

PPyt L[ 1 6] 1 6
B—C = C=B/ T 9|l -1 4| | -1 4

Hence

4.8 | APPLICATIONS TO DIFFERENCE EQUATIONS

Now that powerful computers are widely available, more and more scientific and
engineering problems are being treated in a way that uses discrete, or digital, data rather
than continuous data. Difference equations are often the appropriate tool to analyze
such data. Even when a differential equation is used to model a continuous process, a
numerical solution is often produced from a related difference equation.

This section highlights some fundamental properties of linear difference equations
that are best explained using linear algebra.

Discrete-Time Signals

The vector space S of discrete-time signals was introduced in Section 4.1. A signal in
S is a function defined only on the integers and is visualized as a sequence of numbers,
say, {yx}. Figure 1 shows three typical signals whose general terms are (.7), 1%, and
(=1)¥, respectively.

i, LIILLIL L L]

FIGURE 1 Three signals in S.
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Further Reading

Hamming, R. W., Digital Filters, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1989),
pp. 1-37.

Kelly, W. G., and A. C. Peterson, Difference Equations, 2nd ed. (San Diego: Harcourt-
Academic Press, 2001).

Mickens, R. E., Difference Equations, 2nd ed. (New York: Van Nostrand Reinhold,
1990), pp. 88-141.

Oppenheim, A. V., and A. S. Willsky, Signals and Systems, 2nd ed. (Upper Saddle River,
NJ: Prentice-Hall, 1997), pp. 1-14, 21-30, 38—43.

PRACTICE PROBLEM

It can be shown that the signals 2k 3k gin %”, and 3* cos "7” are solutions of

Vi3 = 2Vk+2 + Oyi+1 — 18y, =0

Show that these signals form a basis for the set of all solutions of the difference equation.

4.8 EXERCISES

Verify that the signals in Exercises 1 and 2 are solutions of the
accompanying difference equation.

L 25 (=% yigo + 2041 — 8y =0

2. 5. (5% yrt2— 250 =0
Show that the signals in Exercises 3—6 form a basis for the solution
set of the accompanying difference equation.

3. The signals and equation in Exercise 1

4. The signals and equation in Exercise 2

5. (=2, k(=2)"; yisa + 4y + 4y =0

6. 4% cos (*2), 4% sin (42); yyqo + 16y, = 0
In Exercises 7-12, assume the signals listed are solutions of
the given difference equation. Do the signals form a basis for

the solution space of the equation? Justify your answers using
appropriate theorems.

7. 15,25 (=2)F; yiqs — yuq2 — 4y 4y =0
8. (=1)%, 25,35 yiys — 4yita + Lykr + 6y, =0
9. 2%, 5 cos (&), 5 sin (X2);
Yie+3 — 2Vk+2 + 25yk+1 — S0y = 0
10. (=2)%, k(=2)%, 3%; yis + yiqa — 8y — 12y, =0
1. (=%, 2% yigs = 3yqa + 4y =0
12. 35, (=2); yras — 13y542 + 36y, =0

In Exercises 13-16, find a basis for the solution space of the
difference equation. Prove that the solutions you find span the
solution set.

13, yigo— i1+ 3 =0 14 yiqo—Syq1 + 6y =0
15. 6yit2 + Vi1 — 2y =0 16, yrqr — 25y, =0

Exercises 17 and 18 concern a simple model of the national
economy described by the difference equation

Yitr —a(l 4+ b)Yiyi +abY, =1 (14)

Here Y} is the total national income during year k, a is a constant
less than 1, called the marginal propensity to consume, and b is
a positive constant of adjustment that describes how changes in
consumer spending affect the annual rate of private investment.!

17. Find the general solution of equation (14) when ¢ = .9 and
b= %. What happens to Yy as k increases? [Hint: First find a
particular solution of the form Y, = T, where T is a constant,
called the equilibrium level of national income.]

18. Find the general solution of equation (14) when a = .9 and
b =.5.

! For example, see Discrete Dynamical Systems, by James T. Sandefur
(Oxford: Clarendon Press, 1990), pp. 267-276. The original
accelerator-multiplier model is attributed to the economist P. A.
Samuelson.
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A lightweight cantilevered beam is supported at N points spaced
10 ft apart, and a weight of 500 Ib is placed at the end of the
beam, 10 ft from the first support, as in the figure. Let y; be
the bending moment at the kth support. Then y; = 5000 ft-1b.
Suppose the beam is rigidly attached at the Nth support and the
bending moment there is zero. In between, the moments satisfy
the three-moment equation

Vigr + 41+ =0 fork=1,2,...,N =2 (15)

Bending moments on a cantilevered beam.

19. Find the general solution of difference equation (15). Justify
your answer.

20. Find the particular solution of (15) that satisfies the boundary
conditions y; = 5000 and yy = 0. (The answer involves
N.)

21. When a signal is produced from a sequence of measurements
made on a process (a chemical reaction, a flow of heat
through a tube, a moving robot arm, etc.), the signal usually
contains random noise produced by measurement errors. A
standard method of preprocessing the data to reduce the noise
is to smooth or filter the data. One simple filter is a moving
average that replaces each y; by its average with the two
adjacent values:

i1+ 3+ i =z fork=1,2,...
Suppose a signal y, fork =0, ..., 14, s
9,57, 3,2,4,6,5 17,6,8,10,9, 5,7

Use the filter to compute z;,...,Zz;3. Make a broken-line
graph that superimposes the original signal and the smoothed
signal.

22. Let {y;} be the sequence produced by sampling the continu-
ous signal 2 cos ”7’ + cos 3%’ atr =0,1,2,..., as shown in
the figure. The values of yy, beginning with k = 0, are

3,.7,0, -7, -3, -7,0, .7 3,70, ...

where .7 is an abbreviation for v/2 /2.
a. Compute the output signal {z;} when {y;} is fed into the
filter in Example 3.

b. Explain how and why the output in part (a) is related to
the calculations in Example 3.

- o 3nt
y—2€03(4j+c0s( ) )

31
ot

Sampled data from 2 cos Z' + cos

Exercises 23 and 24 refer to a difference equation of the form
Yk+1 — ayx = b, for suitable constants @ and b.

23. Aloan of $10,000 has an interest rate of 1% per month and a
monthly payment of $450. The loan is made at month k = 0,
and the first payment is made one month later, at k = 1. For
k=0,1,2,...,let y; be the unpaid balance of the loan just
after the kth monthly payment. Thus

»yi = 10,000 + (.01)10,000 — 450
New Balance Interest Payment
balance due added

a. Write a difference equation satisfied by {yy }.

b. [M] Create a table showing k and the balance y; at month
k. List the program or the keystrokes you used to create
the table.

c. [M] What will k be when the last payment is made? How
much will the last payment be? How much money did the
borrower pay in total?

24. Attime k = 0, an initial investment of $1000 is made into a
savings account that pays 6% interest per year compounded
monthly. (The interest rate per month is .005.) Each month
after the initial investment, an additional $200 is added to
the account. For k =0, 1,2, ..., let y; be the amount in the
account at time k, just after a deposit has been made.

a. Write a difference equation satisfied by {yy }.

b. [M] Create a table showing k and the total amount in the
savings account at month k, for k = 0 through 60. List
your program or the keystrokes you used to create the
table.

c. [M] How much will be in the account after two years (that
is, 24 months), four years, and five years? How much of
the five-year total is interest?

In Exercises 25-28, show that the given signal is a solution of
the difference equation. Then find the general solution of that
difference equation.

25,y = k% yipa + 3yipr — 4y = 7+ 10k
26. yp=14k; ypgo—6yi41 + 5y = —4
27. yr =k —=2; yp42— 4y =8 -3k

28. yp = 14 2k; yiqo — 25y = —48k — 20



Write the difference equations in Exercises 29 and 30 as first-order
systems, Xy 41 = Axy, for all k.

29. Vit + 3Vits — 8Yit+2 + 6yk4+1 — 2y =0

30. yi+3—S5yk4+2+ 8y =0

31. Is the following difference equation of order 3? Explain.
Y3 + SYk42 + 641 =0

32. What is the order of the following difference equation? Ex-
plain your answer.
Vi43 T a1Yido + @Y1 + azye =0

33. Let y, = k2 and z;, = 2k|k|. Are the signals {y;} and
{zi} linearly independent? Evaluate the associated Casorati
matrix C(k) for k =0, k = —1, and k = —2, and discuss
your results.

34. Let f, g, and /& be linearly independent functions defined for
all real numbers, and construct three signals by sampling the
values of the functions at the integers:

we = fk),  w=gk),  we=nhk)

35.

36.

37.
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Must the signals be linearly independent in S? Discuss.

Let a and b be nonzero numbers. Show that the mapping T
defined by T{y;} = {wy}, where

Wy = Y42 + aye+1 + by

is a linear transformation from S into S.

Let V be a vector space, and let 7 : V' — V be a linear
transformation. Given z in V, suppose x, in V' satisfies
T(x,) =z, and let u be any vector in the kernel of 7.
Show that u + x, satisfies the nonhomogeneous equation
T(x) =1z

Let Sy be the vector space of all sequences of the form
(Y0, Y1, Y25 - . .), and define linear transformations 7 and D
from S into Sy by

T(yo,y1,y2,...) = (Y1, ¥2.¥3,..)

D(yo. y1,y2,.-) = (0,90, y1, y2,.. . )

Show that 7D = [ (the identity transformation on Sy) and
yet DT # 1.

4.9

SOLUTION TO PRACTICE PROBLEM

Examine the Casorati matrix:

2k 3 sin &2
C(k) = | 2k+1 3k+1gin (k+21)n

k+2 k42 ooy k+2)m
2 3 sin =

3% cos ’%

k+1 (k+Dm
3 COs ——

k+2 (k+2)m
3 COS 5

Set k = 0 and row reduce the matrix to verify that it has three pivot positions and hence

is invertible:

1 0 1
cOoy=|2 3 0]~
4 0 -9

0 1
3 =2
0 —13

The Casorati matrix is invertible at k = 0, so the signals are linearly independent.
Since there are three signals, and the solution space H of the difference equation has
dimension 3 (Theorem 17), the signals form a basis for H, by the Basis Theorem.

APPLICATIONS TO MARKOV CHAINS

The Markov chains described in this section are used as mathematical models of a
wide variety of situations in biology, business, chemistry, engineering, physics, and
elsewhere. In each case, the model is used to describe an experiment or measurement
that is performed many times in the same way, where the outcome of each trial of the
experiment will be one of several specified possible outcomes, and where the outcome
of one trial depends only on the immediately preceding trial.

For example, if the population of a city and its suburbs were measured each year,

then a vector such as

60
Xo=1 40

ey
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21. [M] Examine powers of a regular stochastic matrix.

Q. Conjecture what might be true for any regular stochas-

a. Compute P¥ fork =2,3,4,5, when tic matrix.
c. Use Theorem 18 to explain what you found in parts (a)
3355 3682 .3067  .0389 and (b).
2663 2723 3277 5451
P = 1935 1502  .1589 2395 22. [M] Compare two methods for finding the steady-state vector
2047 2093 2067 .1765 q of a regular stochastic matrix P: (1) computing q as in
Example 5, or (2) computing P¥ for some large value of k
Display calculations to four decimal places. What hap- and using one of the columns of P¥ as an approximation for
pens to the columns of P* as k increases? Compute the q. [The Study Guide describes a program nulbasis that almost

steady-state vector for P.
b. Compute QF for k = 10,20,. .., 80, when

automates method (1).]
Experiment with the largest random stochastic matrices
your matrix program will allow, and use k& = 100 or some

97 .05 .10 other large value. For each method, describe the time you

0= 0 .90 .05 need to enter the keystrokes and run your program. (Some

03 05 .85 versions of MATLAB have commands flops and tic

...toc that record the number of floating point operations

(Stability for Q¥ to four decimal places may require and the total elapsed time MATLAB uses.) Contrast the
k = 116 or more.) Compute the steady-state vector for advantages of each method, and state which you prefer.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. Since 5% of the city residents will move to the suburbs within one year, there is

a 5% chance of choosing such a person. Without further knowledge about the
person, we say that there is a 5% chance the person will move to the suburbs.
This fact is contained in the second entry of the state vector x;, where

95 0371 95
X1 = Mxo = [.05 .97}[0} - [.os}

. The likelihood that the person will be living in the suburbs after two years is

9.6%, because

o= Mxi = |95 03[ 957 _ [ 904
2R 05 970 .05 T | .09

2. The steady-state vector satisfies Px = x. Since

ra=[5 3|[3]-] ] 7

we conclude that q is not the steady-state vector for P.

3. M in Example 1 is a regular stochastic matrix because its entries are all strictly

positive. So we may use Theorem 18. We already know the steady-state vector
from Example 4. Thus the population distribution vectors x; converge to

_[375
4= 625

Eventually 62.5% of the population will live in the suburbs.

CHAPTER 4 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. vectors in a nonzero finite-dimensional vector space V', and
(If true, cite appropriate facts or theorems. If false, explain S ={vi,...,V,}.
why or give a counterexample that shows why the statement a. Thesetof all linear combinations of vy, . .., v, is a vector

is not true in every case.) In parts (a)—(f), vi,...,v, are space.



b. If{vi,...,V,—} spans I, then S spans V.
c. If{vi,...,v,_}islinearly independent, then so is S.
d. If S is linearly independent, then S is a basis for V.

e. IfSpanS = V, then some subset of S is a basis for V.

=

IfdimV = pandSpan S = V,then S cannot be linearly
dependent.

g. A plane in R? is a two-dimensional subspace.

h. The nonpivot columns of a matrix are always linearly
dependent.

i. Row operations on a matrix A can change the linear
dependence relations among the rows of A.

j- Row operations on a matrix can change the null space.
k. The rank of a matrix equals the number of nonzero rows.

1. Ifanm x n matrix A is row equivalent to an echelon ma-
trix U and if U has k nonzero rows, then the dimension
of the solution space of Ax = 0ism — k.

m. If B is obtained from a matrix A by several elementary
row operations, then rank B = rank A.

n. The nonzero rows of a matrix A form a basis for Row A.

o. Ifmatrices A and B have the same reduced echelon form,
then Row A = Row B.

p. If H is a subspace of R?, then there is a 3 x 3 matrix A4
such that H = Col A.

q. If Ais m xn and rank A = m, then the linear transfor-
mation X — AX is one-to-one.

r. If Ais m x n and the linear transformation X > AX is
onto, then rank A = m.

s. A change-of-coordinates matrix is always invertible.

t. IfB=1{by,...,b,}andC = {cy,...,¢,} are bases for a
vector space V/, then the jth column of the change-of-

coordinates matrix 2, is the coordinate vector [c;]z.

. Find a basis for the set of all vectors of the form

a—2b+5¢
2a + 5b — 8¢
—a—4b+7¢ (Be careful.)
3a+b+c
) 1 b
Llet uy=| 4|, wm=| 2|, b=|b |, and
_6 _5 b3

W = Span {u;, u,}. Find an implicit description of W, that
is, find a set of one or more homogeneous equations that
characterize the points of W. [Hint: When is b in W?]

. Explain what is wrong with the following discussion: Let
f(t) = 3+ and g(t) = 3t + ¢, and note that g(¢) = tf(¢).
Then {f, g} is linearly dependent because g is a multiple of f.

. Consider the polynomials p,(t) =141, p,(t) =1—t¢,
p;(t) =4, p,(t) =1+ 1%, and ps(t) =1+ 2t + 2, and
let H be the subspace of Ps spanned by the set
S = {p;, P2, P53, P4 Ps}. Use the method described in the
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proof of the Spanning Set Theorem (Section 4.3) to produce
a basis for H. (Explain how to select appropriate members
of S.)

6. Suppose p;, p,, P3, P, are specific polynomials that span a
two-dimensional subspace H of P5. Describe how one can
find a basis for H by examining the four polynomials and
making almost no computations.

7. What would you have to know about the solution set of a
homogeneous system of 18 linear equations in 20 variables
in order to know that every associated nonhomogeneous
equation has a solution? Discuss.

8. Let H be an n-dimensional subspace of an n-dimensional
vector space V. Explain why H = V.

9. Let T : R" — R” be a linear transformation.
a. What is the dimension of the range of 7 if T is a one-to-
one mapping? Explain.
b. What is the dimension of the kernel of 7" (see Section 4.2)
if 7 maps R” onto R"”? Explain.

10. Let S be a maximal linearly independent subset of a vector
space V. That is, S has the property that if a vector not in S
is adjoined to S, then the new set will no longer be linearly
independent. Prove that S must be a basis for V. [Hint: What
if S were linearly independent but not a basis of V'?]

11. Let S be a finite minimal spanning set of a vector space V.
That is, S has the property that if a vector is removed from
S, then the new set will no longer span V. Prove that § must
be a basis for V.

Exercises 12—17 develop properties of rank that are sometimes
needed in applications. Assume the matrix A is m X n.

12. Show from parts (a) and (b) that rank AB cannot exceed the
rank of A or the rank of B. (In general, the rank of a
product of matrices cannot exceed the rank of any factor in
the product.)

a. Show that if B is n x p, then rank AB < rank A. [Hint:
Explain why every vector in the column space of AB is in
the column space of A.]

b. Show that if B is n x p, then rank AB < rank B. [Hint:
Use part (a) to study rank(AB)T ]

13. Show that if P is an invertible m X m matrix, then
rank PA = rank A. [Hint: Apply Exercise 12 to PA and
P~1(PA).]

14. Show that if Q is invertible, then rank AQ = rank A. [Hint:
Use Exercise 13 to study rank(4Q)7.]

15. Let A be an m x n matrix, and let B be an n X p matrix
such that AB = 0. Show that rank A 4 rank B < n. [Hint:
One of the four subspaces Nul A, Col A, Nul B, and Col B is
contained in one of the other three subspaces.]

16. If A is an m x n matrix of rank r, then a rank factorization
of A is an equation of the form A = CR, where C is an
m x r matrix of rank r and R is an r X n matrix of rank r.
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Such a factorization always exists (Exercise 38 in Section
4.6). Given any two m X n matrices A and B, use rank
factorizations of A and B to prove that

rank(A + B) < rank A 4 rank B

[Hint: Write A 4+ B as the product of two partitioned matri-
ces.]

17. A submatrix of a matrix A is any matrix that results from
deleting some (or no) rows and/or columns of A. It can be
shown that A has rank r if and only if 4 contains an invertible
r X r submatrix and no larger square submatrix is invertible.
Demonstrate part of this statement by explaining (a) why
an m x n matrix A of rank r has an m X r submatrix A; of
rank r, and (b) why A; has an invertible r x r submatrix A,.

The concept of rank plays an important role in the design of
engineering control systems, such as the space shuttle system
mentioned in this chapter’s introductory example. A state-space
model of a control system includes a difference equation of the
form

Xp4+1 = AXg + Bu, fork =0,1,... (1)

where Aisn x n, Bisn x m, {X;} is a sequence of “state vectors”
in R” that describe the state of the system at discrete times, and
{uy} is a control, or input, sequence. The pair (A4, B) is said to be
controllable if

rank[ B AB A’B A""'B]=n 2)

The matrix that appears in (2) is called the controllability matrix
for the system. If (A4, B) is controllable, then the system can be
controlled, or driven from the state 0 to any specified state v (in
R") in at most n steps, simply by choosing an appropriate control
sequence in R”. This fact is illustrated in Exercise 18 for n = 4

and m = 2. For a further discussion of controllability, see this
text’s web site (Case Study for Chapter 4).

18. Suppose A is a 4 x 4 matrix and B is a 4 x 2 matrix, and let
uy, . .., U3 represent a sequence of input vectors in R2.
a. Set xo = 0, compute xy,...,Xs from equation (1), and
write a formula for x, involving the controllability matrix
M appearing in equation (2). (Note: The matrix M is
constructed as a partitioned matrix. Its overall size here
is4x8.)

b. Suppose (4, B) is controllable and v is any vector in R*.
Explain why there exists a control sequence uy, . .., us in
R? such that x;, = v.

Determine if the matrix pairs in Exercises 19-22 are controllable.

9 1 0 0
9. 4= 0 -9 0/|,B=]1
0 0 5] 1]
[8 -3 0] (1]
20. 4=|2 5 1|,B=|1
0 0 -5 0 |
0 1 0 0 1
o 0 1 0 0
2. MIA=| o o o 1 I'B=]
| 2 —42 —48 -36 -1
01 0 0 1
0 0 1 0 0
22. [M] A= o o S
-1 —13 —122 —15 -1
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Eigenvectors and Difference Equations

This section concludes by showing how to construct solutions of the first-order differ-
ence equation discussed in the chapter introductory example:

Xei1 = Axg (K =0,1,2,..)) (8)

If A is an n x n matrix, then (8) is a recursive description of a sequence {x;} in R”".
A solution of (8) is an explicit description of {x;} whose formula for each x; does not
depend directly on A or on the preceding terms in the sequence other than the initial
term X.

The simplest way to build a solution of (8) is to take an eigenvector Xy and its
corresponding eigenvalue A and let

xk = Mxo (k=1,2,..) )
This sequence is a solution because
Axi = AV x9) = A*(Axo) = A (Axg) = A*F'xp = x4y

Linear combinations of solutions in the form of equation (9) are solutions, too! See
Exercise 33.

PRACTICE PROBLEMS

6 -3 1
1. Is5Saneigenvalueof A=|3 0 5|7
2 2 6

2. If x is an eigenvector of A corresponding to A, what is 4°x?

3. Suppose that b; and b, are eigenvectors corresponding to distinct eigenvalues A and
A, respectively, and suppose that b and by are linearly independent eigenvectors
corresponding to a third distinct eigenvalue A3. Does it necessarily follow that
{by, by, b3, by} is a linearly independent set? [Hint: Consider the equation c¢1b; +
by + (e3b3 + c4by) = 0.]

5.1 EXERCISES

32 1 36 7
= 1 9 9
L. Is A = 2 an eigenvalue of [ 3 8 :| ? Why or why not’ 6. Is | —2 | aneigenvector of | 3 2 7 |? If so, find the
2 5 6 4
2. Is A = —3 an eigenvalue of -1 4 ? Why or why not? cigenvalue.
6 9 — -
30 -1
: . . 7. Is A = 4 an eigenvalue of 2 3 1 [? If so, find one
3. Is [3] an eigenvector of [6 _4 :|? If so, find the eigen- -3 4 5]
- corresponding eigenvector.
value. B _
4 =2 3
— = i — ?
4 Ts 1 an eigenvector of 5 2 9 If so, find the 8. Is A = 1 aneigenvalue of 0 -1 3 |? If so, find one
1 3 6 | -1 2 2]
eigenvalue. corresponding eigenvector.
3 4 3 3 In Exercises 9-16, find a basis for the eigenspace corresponding

5. Is | =2 | an eigenvector of 2 =3 =2 |? If so, find to each listed eigenvalue.

1 -1 0 -2 30
the eigenvalue. 9. A= > A=1,3
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10.

11.

12.

13.

14.

15.

16.

)
T P
1 -3
A=, 5],1__1,7
f4 1
A__3 6],1_3,7
T4 0 1
A=]-2 1 ol,A=123
2 0 1
4 0 —1
A=|3 0 3|, A=3
2 2 5
f—4 1 1
A=| 2 =3 2|,A=-5
3 3 =2
5 0 -1 0
1 3 0 0
A=, 1 3 o[ *=*
4 2 2 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.

19.

20.

0o 0 0 5 0 0
0o 3 4 18. 0o 0 0
0o 0 -2 —1 0o 3
1 2 3
ForA=1|1 2 3 |, find one eigenvalue, with no cal-
1 2 3

culation. Justify your answer.

Without calculation, find one eigenvalue and two linearly

2 2 2
independent eigenvectors of A = 2 2 2 [. Justify
2 2 2

your anSwer.

In Exercises 21 and 22, A is an n X n matrix. Mark each statement
True or False. Justify each answer

21.

22.

a. If Ax = Ax for some vector x, then A is an eigenvalue of
A.

b. A matrix A is not invertible if and only if O is an eigen-
value of A4.

c. A number c¢ is an eigenvalue of A if and only if the
equation (4 — c/)x = 0 has a nontrivial solution.

d. Finding an eigenvector of A may be difficult, but check-
ing whether a given vector is in fact an eigenvector is
easy.

e. To find the eigenvalues of A4, reduce A to echelon form.

a. If Ax = Ax for some scalar A, then x is an eigenvector of
A.

b. If v; and v, are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

c. A steady-state vector for a stochastic matrix is actually an
eigenvector.

d. The eigenvalues of a matrix are on its main diagonal.
e. Aneigenspace of A4 is a null space of a certain matrix.

23. Explain why a 2 x 2 matrix can have at most two distinct
eigenvalues. Explain why an n x n matrix can have at most
n distinct eigenvalues.

24. Construct an example of a 2 x 2 matrix with only one distinct
eigenvalue.

25. Let A be an eigenvalue of an invertible matrix A. Show that
A~ ! is an eigenvalue of A™'. [Hint: Suppose a nonzero x
satisfies Ax = Ax.]

26. Show that if A? is the zero matrix, then the only eigenvalue
of Ais0.

27. Show that A is an eigenvalue of A if and only if A is an
eigenvalue of AT. [Hint: Find outhow A — Al and AT — A1
are related. |

28. Use Exercise 27 to complete the proof of Theorem 1 for the
case in which A is lower triangular.

29. Consider an n x n matrix A with the property that the row
sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Find an eigenvector.]

30. Considerann x n matrix A with the property that the column
sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear trans-
formation 7. Without writing A, find an eigenvalue of A and
describe the eigenspace.

31. T is the transformation on R? that reflects points across some
line through the origin.

32. T is the transformation on R that rotates points about some
line through the origin.

33. Letuand v beeigenvectors of a matrix A, with corresponding
eigenvalues A and p, and let ¢, and ¢, be scalars. Define

x; = ciAfutopfv (k=0,1,2,..)

a. What is X4, by definition?

b. Compute Ax; from the formula for x;, and show that
AX; = X;41. This calculation will prove that the se-
quence {x;} defined above satisfies the difference equa-
tion x4+ = Axx (k =0,1,2,...).

34. Describe how you might try to build a solution of a difference
equation x| = Ax; (k =0,1,2,...)if you were given the
initial xo and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x, to eigenvectors of A?]

35. Letu and v be the vectors shown in the figure, and suppose
u and v are eigenvectors of a 2 x 2 matrix 4 that correspond
to eigenvalues 2 and 3, respectively. Let T : R> — R? be
the linear transformation given by 7'(x) = Ax for each x in
R2, and let w = u + v. Make a copy of the figure, and on
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the same coordinate system, carefully plot the vectors 7'(u), 12 1 4 5 -2 2
T(v), and T(w) 7 -4 2 —4
V), an w). 37. 2 11 4 38.
4 =4 2 0
% L1 7 3 -1 1 -3
v (12 —-90 30 30 30

&8 —49 15 15 15
39. [ 16 =52 12 0 20
! 0 =30 10 22 10

8 —41 15 15 7
36. Repeat Exercise 35, assuming u and v are eigenvectors of A

that correspond to eigenvalues —1 and 3, respectively. —23 37 -9 -5 =59
—10 12 —10 2 =22

[M] In Exercises 37-40, use a matrix program to find the eigen- 40. 11 5 -3 —-19 —15
values of the matrix. Then use the method of Example 4 with a -27 31 —27 25 37
row reduction routine to produce a basis for each eigenspace. -5 15 -5 1 31

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation (A — 57)x = 0 has a
nontrivial solution. Form

6 =3 1 5 0 0 1 =3 1
A-5I=|3 0 5|—-]0 5 0f=(3 -5 5
2 2 6 0o 0 5 2 2 1
and row reduce the augmented matrix:
1 -3 1 0 1 -3 1 0 1 -3 1 0
3 -5 5 0f~(0 4 2 O0Of~|0 4 2 O
2 2 1 0 0 8 -1 0 0O 0 -5 0

At this point, it is clear that the homogeneous system has no free variables. Thus
A — 51 is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to A, then Ax = Ax and so
A’x = A(AX) = AAx = A%x
Again, A’x = A(A’x) = A(A’x) = A2Ax = A’x. The general pattern, A*x = A¥x,
is proved by induction.

3. Yes. Suppose c1b; + c;2by + c3b; 4+ ¢4by = 0. Since any linear combination of
eigenvectors from the same eigenvalue is again an eigenvector for that eigenvalue,
c3b3 + ¢4by is an eigenvector for A3. By Theorem 2, the vectors by, b,, and ¢3bs +
c4by are linearly independent, so

ciby + by + (c3bs + ¢c4by) =0

implies ¢; = ¢; = 0. But then, ¢3 and ¢4 must also be zero since bs and by are
linearly independent. Hence all the coefficients in the original equation must be
zero, and the vectors by, b,, bz, and by are linearly independent.

5.2 THE CHARACTERISTIC EQUATION

Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.
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This explicit formula for x; gives the solution of the difference equation x;4; = Axy.

'375:| = .125v;. [ |

As k — 00, (.92)F tends to zero and x; tends to [ 625

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 4.9. Those who read that section may recognize that matrix 4
in Example 5 above is the same as the migration matrix M in Section 4.9, X, is the
initial population distribution between city and suburbs, and x; represents the population
distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence x;, tends
to a steady-state vector. Now we know why the x; behave this way, at least for the
migration matrix. The steady-state vector is .125v;, a multiple of the eigenvector vy,
and formula (5) for x; shows precisely why x; — .125v;.

— NUMERICAL NOTES

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n x n matrix forn > 5.

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues Aj,...,A, of A and then
expanding the product (A — A1)(A — A,) --- (A — A,).

3. Several common algorithms for estimating the eigenvalues of a matrix A
are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A = AT
and computes a sequence of matrices of the form

Ai=A and Agp =P APy (k=1,2,..)

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of Ay tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of 4 = |:i _; :|

5.2 EXERCISES

Find the characteristic polynomial and the real eigenvalues of the s, |: 8 4 ] 6. |: 9 -2 ]
matrices in Exercises 1-8. 4 8 2 5

S dR [ [

Exercises 9-14 require techniques from Section 3.1. Find the
—4 2 8 2 L . . . .
3 4 characteristic polynomial of each matrix, using either a cofactor
6 7 3 3 . . - .
expansion or the special formula for 3 x 3 determinants described
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prior to Exercises 15-18 in Section 3.1. [Note: Finding the
characteristic polynomial of a 3 x 3 matrix is not easy to do with
just row operations, because the variable A is involved.]

4 0 -1 3001 1

9. [0 4 -1 1. 0 5 0
1 0 2 |2 0 7]
(3 0 0 (-1 0 27

1m (2 1 4 2./ 3 1 0
1 0 4 Lo 1 2]
6 —2 0 [ 4 0 —17

1B3.|-2 9 0 4. | -1 0 4
| 5 8 3 L 0 2 3

For the matrices in Exercises 15-17, list the real eigenvalues,
repeated according to their multiplicities.

5.5 0 2 30 0 0
0 2 -3 6 6 2 0 0
Bto 0 3 2 1619 3 6 o
0 0 0 5 |2 3 3 -5
T3 0 0 0 0
-5 1 0 0 0
7.1 3 8 0 0 0
0 -7 2 1 0

—4 1 9 =2 3

18. It can be shown that the algebraic multiplicity of an eigen-
value A is always greater than or equal to the dimension of the
eigenspace corresponding to A. Find % in the matrix A below
such that the eigenspace for A = 4 is two-dimensional:

4 2 3 3
0 2 h 3
A= 0O 0 4 14
o 0 O 2

19. Let A be an n x n matrix, and suppose A has n real eigenval-
ues, A, ..., A,, repeated according to multiplicities, so that

det (A —Al) = (A1 =) (A2 —A)--- (4 = A)

Explain why det A is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that A and A” have
the same characteristic polynomial.

In Exercises 21 and 22, A and B are n X n matrices. Mark each
statement True or False. Justify each answer.

21. a. The determinant of A is the product of the diagonal entries

in A.

b. An elementary row operation on A does not change the
determinant.

c. (detA)(det B) = detAB

d. If A + 5 is a factor of the characteristic polynomial of A4,
then 5 is an eigenvalue of A.

22. a. If Ais 3 x 3, with columns a;, a,, a3, then det A equals

the volume of the parallelepiped determined by a,, a,, as.
b. det A" = (—1)det A.

c. The multiplicity of a root r of the characteristic equation
of A is called the algebraic multiplicity of r as an eigen-
value of A.

d. A row replacement operation on A does not change the
eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A4, that be-
come almost upper triangular, with diagonal entries that approach
the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A = Q,R;, where QT = Q!
and R, is upper triangular. The factors are interchanged to form
Ay = R, Q,, which is again factored as A; = Q, R,; then to form
As = R, 05, and so on. The similarity of 4, Ay, ... follows from
the more general result in Exercise 23.

23. Show that if A = QR with Q invertible, then A is similar to
Al - RQ

24. Show that if A and B are similar, then det A = det B.

|6 3 | 3/7 15 )
25. LetA—|:’4 '7:|,v1—|:4/7:|,andx0—|:'5:|. [Note:

A is the stochastic matrix studied in Example 5 in Sec-
tion 4.9.]

a. Find a basis for R? consisting of v; and another eigenvec-
tor v, of A.

b. Verify that xo may be written in the form xo = v; + cv,.

c. Fork =1,2,...,definex; = A*x,. Compute x; and x,,
and write a formula for x;. Then show that x, — v; as k
increases.

a b
26. LetA—[C d

(given before Example 2) to show that det A = ad — bc.
Consider two cases: a # 0 and a = 0.

Use formula (1) for a determinant

S5 02 3 3 1
27. Let A=(3 8 3|, vi=|.6]|, vo=| =31,
2 0 4 1 2
-1 1
V3 = 0O [,andw= |1
1 1

a. Show that vy, v,, v; are eigenvectors of A. [Note: A is the
stochastic matrix studied in Example 3 of Section 4.9.]

b. Letx, be any vector in R* with nonnegative entries whose
sum is 1. (In Section 4.9, x, was called a probability
vector.) Explain why there are constants ¢, ¢,, ¢3 such
that Xy = ¢;v; + ¢2v, + ¢3v3. Compute w’ Xy, and de-
duce that ¢; = 1.

c. Fork =1,2,..., define x;, = A*x,, with X, as in part
(b). Show that x;, — v, as k increases.
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28. [M] Construct a random integer-valued 4 x 4 matrix A, and c. List the matrix A, and, to four decimal places, list the
verify that A and A7 have the same characteristic polynomial pivotsin U and the eigenvalues of A. Compute det A with
(the same eigenvalues with the same multiplicities). Do A your matrix program, and compare it with the products
and A” have the same eigenvectors? Make the same analysis you found in (a) and (b).
of a 5 x 5 matrix. Report the matrices and your conclusions. 6 28 21
30. [M] Let A = 4 —15 —12 |. For each value of a in
29. [M] Construct a random integer-valued 4 x 4 matrix A. -8 a 25
a. Reduce A to echelon form U with no row scaling, and use the set {32,31.9,31.8,32.1,32.2}, compute the characteris-
U informula (1) (before Example 2) to compute det 4. (If tic polynomial of A and the eigenvalues. In each case, create
A ha.ppens to be singular, start over with a new random a graph of the characteristic polynomial p(r) = det (A — 1)
matrix.) for 0 <t < 3. If possible, construct all graphs on one coor-
b. Compute the eigenvalues of A and the product of these dinate system. Describe how the graphs reveal the changes
eigenvalues (as accurately as possible). in the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM

The characteristic equation is

2—A
=(1-1)Q2-1)—(—4)4) =A1>—-31+18
From the quadratic formula,
3+ /(=32—4(18) 3+/-63
2 )
It is clear that the characteristic equation has no real solutions, so A has no real

eigenvalues. The matrix A is acting on the real vector space R?, and there is no nonzero
vector v in R? such that Av = Av for some scalar A.

o:det(A—M)zdet[l;A —4 }

A=

5.3 DIAGONALIZATION

In many cases, the eigenvalue—eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A = PDP~! where D is a diagonal
matrix. In this section, the factorization enables us to compute AF quickly for large
values of k, a fundamental idea in several applications of linear algebra. Later, in
Sections 5.6 and 5.7, the factorization will be used to analyze (and decouple) dynamical

systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

|5 0 , _[5 0[5 o] _[5? 0
EXAMPLE 1 IfD_|:0 3], then D _|:O 3“:0 3}_[0 32]
and X X
5 0]]5 0 5 0
3 _ 2 _ —
R PR F
In general,
s 0
Dk=|:0 3k] fork > 1 n

If A= PDP~! for some invertible P and diagonal D, then A* is also easy to
compute, as the next example shows.
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SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and —3, each with
multiplicity 2. Using the method in Section 5.1, we find a basis for each eigenspace.

-8 —16
Basisfor A = 5: v = th and v, = g
0 1
:O 0
Basis for A = —3: v3 = (1) and vy = 8
| 0 1
The set {v|,...,v4} is linearly independent, by Theorem 7. So the matrix P =
[vi .-+ wvg]isinvertible, and A = PDP~!, where
-8 —-16 0 O 5 0 0 0
P=lY o 4 o M Do o of o®
0 0 1 0 0 0 =3

PRACTICE PROBLEMS

1. Compute A8, where A = |:; :i’ i|

-3 12

2. LetA=|:_2 7

:|, vy = [ ? i|, and v, = |: %:| Suppose you are told that v; and

v, are eigenvectors of A. Use this information to diagonalize A.

3. Let A be a 4 x 4 matrix with eigenvalues 5, 3, and —2, and suppose you know that

5.3 EXERCISES

the eigenspace for A = 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?

In Exercises 1 and 2, let A = PDP ™' and compute A*.

5 7 2 0
ve=[3 1e=[3 Y]

1 2 1 0
r=[t 2o=])

In Exercises 3 and 4, use the factorization A = PDP ™! to com-
pute A¥, where k represents an arbitrary positive integer.

8 EA ) S Y (R
<[ 2= 30 22 g

In Exercises 5 and 6, the matrix A is factored in the form PDP™".

Use the Diagonalization Theorem to find the eigenvalues of A and
a basis for each eigenspace.

2 -1 -1

5.4=| 1 4 1

-1 -1 2
1 -1 0[3 o o[ 0 -1 -1
=|-1 1 —-1flo 2 of]-1 -1 -1
L0 -1 1o o 3][-1 -1 o0

3 0 0]

6. A=|-3 4 9

L0 0 3
(3 0 173 o0 o[ 0o o 1
=|l0o 1 =3[||0 4 ofl-3 1 9
(1 0 o]0 0 3] -1 0 3

Diagonalize the matrices in Exercises 7-20, if possible. The real
eigenvalues for Exercises 11-16 and 18 are included below the
matrix.

7. [é _?]



11.

13.

15.

17.

19.

2 -1 13
1 4} 10 [4 2}

[0 11 (31 1]
2 1 2 13
3 3 2 217 1 3
A=-1,5 r=2.5
C 2 2 -1 2 0 —27]

T 132
-1 2 2 W10 o 3]
A=15 r=23
0 -1 -1 12 -3
121 2 5 -2
1 -1 0 16 11 3 1]

=01 r=0

2 2 -2
2 00 3 -3 2
2 2 0 8. |, 5,
2 2 2 L

A=-2,-1,0
5 -3 0 9 30 0 0
0 3 1 -2 o |0 2 0 0
0 0 2 0 “lo 0 2 o
0 0 0 2 1 0 0 3

In Exercises 21 and 22, A, B, P, and D are n X n matrices.
Mark each statement True or False. Justify each answer. (Study
Theorems 5 and 6 and the examples in this section carefully before
you try these exercises.)

21.

22.

23.

24.

a.

d.

A
is

A is diagonalizable if A = PDP™! for some matrix D and
some invertible matrix P.

If R” has a basis of eigenvectors of A4, then A is diago-
nalizable.

A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

If A is diagonalizable, then A is invertible.
A is diagonalizable if 4 has n eigenvectors.
If A is diagonalizable, then A has n distinct eigenvalues.

If AP = PD, with D diagonal, then the nonzero columns
of P must be eigenvectors of A.

If A is invertible, then A is diagonalizable.

is a 5 x 5 matrix with two eigenvalues. One eigenspace
three-dimensional, and the other eigenspace is two-

dimensional. Is A diagonalizable? Why?

A
is

is a 3 x 3 matrix with two eigenvalues. Each eigenspace
one-dimensional. Is A diagonalizable? Why?

25.

26.

217.

28.

29.
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A is a 4 x 4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

Ais a7 x 7matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

Show that if A is both diagonalizable and invertible, then so
is A7L.

Show that if 4 has n linearly independent eigenvectors, then
so does AT. [Hint: Use the Diagonalization Theorem.]

A factorization A = PDP ™! is not unique. Demonstrate this

for the matrix A in Example 2. With D, = [(3) (5)], use

the information in Example 2 to find a matrix P; such that
A = P1D1P1_1‘

. With A and D as in Example 2, find an invertible P, unequal

to the P in Example 2, such that A = P,DP, I

. Construct a nonzero 2 x 2 matrix that is invertible but not

diagonalizable.

. Construct a nondiagonal 2 x 2 matrix that is diagonalizable

but not invertible.

[M] Diagonalize the matrices in Exercises 33-36. Use your
matrix program’s eigenvalue command to find the eigenvalues,
and then compute bases for the eigenspaces as in Section 5.1.

33.

34.

35.

36.

9 —4 -2 —4
56 32 —28 44
—~14 —14 6 —14

42 -33 21 —45

4 -9 -7 8 2
-7 =9 0 7 14
5 100 5 =5 -10
-2 37 0 4
-3 —-13 -7 10 11

13 —-12 9 —15 9]
6 -5 9 —15 9
6 -12 -5 6 9
6 -12 9 -8 9
|6 12 12 —6 2]
[24 -6 2 6 27
72 51 9 —99 9
0 —63 15 63 63
72 15 9 —63 9
L 0 63 21 —63 —27
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SOLUTIONS TO PRACTICE PROBLEMS

1. det(A—Al) =A% =31 +2= (A —2)(A—1). The eigenvalues are 2 and 1, and

3i| and v, = [ ” Next, form

the corresponding eigenvectors are vi = )

3 1 2 o o[ 1=
P‘[z 1}’ D‘[o 1]’ and P _[—2 3}
Since A = PDP™",
8§ prep—1 |3 L][2% 0 1 -1
AT =PDP |12 t]lo 1|2 3
3 17256 o] 1 -1
12 1 0 1|[-2 3
_[766 —765
~ 510 —509

2. Compute Av; = [:; lg][i} = [i} =1-vy,and

w2 - [

So, v, and v, are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

_ _ 13 2 |1 0
A = PDP~ ', where P—|:] ) and D = 0 3

3. Yes, A is diagonalizable. There is a basis {v;, v,} for the eigenspace corresponding
to A = 3. In addition, there will be at least one eigenvector for A = 5 and one
for A = —2. Call them v3 and v4. Then {vj, vy, V3, v4} is linearly independent
by Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional
eigenvectors that are linearly independent from vy, v,, v3, v4, because the vectors are

Mastering: Eigenvalue all in R*. Hence the eigenspaces for A = 5 and A = —2 are both one-dimensional.
and Eigenspace 5-14 It follows that A is diagonalizable by Theorem 7(b).

5.4 EIGENVECTORS AND LINEAR TRANSFORMATIONS

The goal of this section is to understand the matrix factorization A = PDP~! as a
statement about linear transformations. We shall see that the transformation x — Ax
is essentially the same as the very simple mapping u + Du, when viewed from the
proper perspective. A similar interpretation will apply to A and D even when D is not
a diagonal matrix.

Recall from Section 1.9 that any linear transformation 7 from R” to R™ can be
implemented via left-multiplication by a matrix A, called the standard matrix of T.
Now we need the same sort of representation for any linear transformation between two
finite-dimensional vector spaces.



r— NUMERICAL NOTE

An efficient way to compute a B-matrix P ~'AP is to compute AP and then to row
reduce the augmented matrix [ P AP ]to[I P ~'AP]. A separate computation
of P~!is unnecessary. See Exercise 15 in Section 2.2.
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PRACTICE PROBLEMS

1. Find T(ag + at + a»t?), if T is the linear transformation from P, to P, whose
matrix relative to B = {1, 1,12} is

34 0
[T],=[0 5 -1
1 -2 7

2. Let A, B, and C be n x n matrices. The text has shown that if 4 is similar to B,
then B is similar to A. This property, together with the statements below, shows that
“similar to” is an equivalence relation. (Row equivalence is another example of an
equivalence relation.) Verify parts (a) and (b).

a. A is similar to A.

b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1.

Let B = {b;,b,,b3} and D = {d,, d,} be bases for vector
spaces V and W, respectively. Let T : V. — W be a linear
transformation with the property that

T(b)) =3d; —5d,, T(by) =—d; +6d;, T(b3)=4d,
Find the matrix for T relative to 13 and D.

LetD = {d,,d,} and B = {by, b,} be bases for vector spaces
V and W, respectively. Let T : V' — W be a linear transfor-
mation with the property that

T(dl) = 3b1 - 3')2, T(dz) = —2b1 + 5b2

Find the matrix for 7 relative to D and B.

Let £ = {e;,e,,e;} be the standard basis for R3, let
B = {b;,b,,b3} be a basis for a vector space V, and let
T : R?® — V be alinear transformation with the property that
T(x1, X2, x3) = (2x3 — x2)b; — (2x2)bs + (x1 + 3x3)b3

a. Compute T'(e;), T(ey), and T (e3).

b. Compute [T ()]s, [T (e:)]s, and [T (e3)]5-

c. Find the matrix for T relative to £ and B.

Let B = {by, by, b3} be a basis for a vector space V" and let
T : V — R?be alinear transformation with the property that

_ 2.X1 — 3X2 + X3
T(lel + x2b2 + X3b3) = |: _2X1 + 5)63
Find the matrix for 7 relative to 3 and the standard basis for
R2,

. Let T : P, — IP; be the transformation that maps a polyno-

mial p(¢) into the polynomial (¢ + 3)p(¢).
a. Find the image of p(¢) = 3 — 2 + 2.
b. Show that 7 is a linear transformation.

c. Find the matrix for T relative to the bases {1, ¢, 7>} and
{1,1,1%,13}.

. Let T : P, — P4 be the transformation that maps a polyno-

mial p(¢) into the polynomial p(r) + 2%p(z).
a. Find the image of p(t) = 3 —2¢ + 2.
b. Show that 7 is a linear transformation.

c. Find the matrix for T relative to the bases {1,7,7?} and
{1,182, 63,14},

. Assume the mapping T : P, — P, defined by

T(ao +at + aztz) = 3610 + (5&0 — 2a1)t + (4a1 + az)lz

is linear. Find the matrix representation of 7" relative to the
basis B = {1,1,1%}.

. Let B = {b;,b,, b3} be a basis for a vector space V. Find

T (4b; — 3b,) when T is a linear transformation from V' to
V' whose matrix relative to 5 is

0 0 1
[Tl,=|2 1 -2
1 3 1
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p(=1)
9. Define T : P, — R*by T(p) = | p(0)
p(1)
a. Find the image under T of p(¢) = 5 + 3¢.
b. Show that 7 is a linear transformation.

c. Find the matrix for T relative to the basis {1, ¢, 1>} for P,
and the standard basis for R>.
p(=2)
p(3)
p(1)
p(0)
a. Show that T is a linear transformation.

10. Define T : Py — R* by T'(p) =

b. Find the matrix for T relative to the basis {1,7, 2,3} for
P; and the standard basis for R*.

In Exercises 11 and 12, find the B-matrix for the transformation
X > Ax, where B = {b;, b,}.

noa=[ ¢ =[]
a4 2w [ m=] ]

In Exercises 13-16, define T : R> — R? by T'(x) = Ax. Find a
basis 13 for R? with the property that [T]5 is diagonal.

0 1 2 3
Boa= 3] oa=[3 ]

12 4 -2
15. A=[3 _4] 16. A:[_l 5]

17. LetA=|:_‘ll ;] and B={b1,b2}, for b1=|:_}i|,

b, = [_;] Define 7 : R? — R2 by T(x) = Ax.

a. Verify that b, is an eigenvector of A but that 4 is not
diagonalizable.

b. Find the B-matrix for 7.

18. Define 7 : R? — R? by T(x) = Ax, where A is a 3 x 3
matrix with eigenvalues 5, 5, and —2. Does there exist a basis
B for R? such that the B-matrix for 7T is a diagonal matrix?
Discuss.

Verify the statements in Exercises 19-24. The matrices are square.

19. If A is invertible and similar to B, then B is invertible
and A~! is similar to B~'. [Hint: P~'AP = B for some
invertible P. Explain why B is invertible. Then find an
invertible Q such that 07'A™'Q = B! ]

20. If A is similar to B, then A2 is similar to B2.

21. If B is similar to A and C is similar to A, then B is similar
to C.

22, If A is diagonalizable and B is similar to A, then B is also
diagonalizable.

23. If B = P7'AP and x is an eigenvector of A4 corresponding
to an eigenvalue A, then P~'x is an eigenvector of B corre-
sponding also to A.

24, If A and B are similar, then they have the same rank. [Hint:
Refer to Supplementary Exercises 13 and 14 in Chapter 4.]

25. The trace of a square matrix A is the sum of the diagonal
entries in A and is denoted by tr A. It can be verified that
tr(FG) = tr(GF) for any two n x n matrices F and G.
Show that if A and B are similar, then tr A = tr B.

26. It can be shown that the trace of a matrix A equals the sum of
the eigenvalues of A. Verify this statement for the case when
A is diagonalizable.

27. Let V be R” with a basis B = {by,...,b,}; let W be R”"
with the standard basis, denoted here by £; and consider the
identity transformation / : R” — R”, where /(x) = x. Find
the matrix for / relative to 3 and £. What was this matrix
called in Section 4.4?

28. Let V be a vector space with abasis B = {by,...,b,},let W
be the same space V' with a basis C = {cy,...,¢,}, and let /
be the identity transformation / : V' — W. Find the matrix
for I relative to 3 and C. What was this matrix called in
Section 4.7?

29. Let V be a vector space with a basis B = {by,...,b,}. Find
the B-matrix for the identity transformation [ : V — V.

[M] In Exercises 30 and 31, find the B-matrix for the transforma-
tion x > Ax where B = {by, b,, bs}.

6 —2 -2
3. A={3 1 -2/,
2 2 2
1 2 ~1
bi=|1[b=|1]|bs=]-1
1 3 0
—7 —48 —16
3. A= 1 14 6|,
—3 —45 —19
-3 -2 3
bi=| 1[bh=| 1[,by=]-1
-3 -3 0

32. [M] Let T be the transformation whose standard matrix is
given below. Find a basis for R* with the property that [ T | 5
is diagonal.

6 4 0 9
3 0 1 6
A=1_1 5 1 o
-4 4 0 7
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SOLUTIONS TO PRACTICE PROBLEMS

1. Let p(t) = ap + at + ayt? and compute

3 4 0[] ao 3ay + 4a,
[T(p)]BZ[T]B[p]BZ 0 5 —1 a | = Say —a
1 -2 7 ar ap—2ay + 7a;

So T(p) = (Bag + 4a1) + (a1 — ax)t + (ag — 2a, + Ta»)t>.
2. a. A= (I)""Al,so Ais similar to A.

b. By hypothesis, there exist invertible matrices P and Q with the property that
B = P7'AP and C = Q~'BQ. Substitute the formula for B into the formula
for C, and use a fact about the inverse of a product:

C=07'BQ =0 '(PT'AP)Q = (PQ)"' A(PQ)

This equation has the proper form to show that A is similar to C.

5.5 COMPLEX EIGENVALUES

Since the characteristic equation of an n x n matrix involves a polynomial of degree 7,
the equation always has exactly n roots, counting multiplicities, provided that possibly
complex roots are included. This section shows that if the characteristic equation of
a real matrix A has some complex roots, then these roots provide critical information
about A. The key is to let A act on the space C” of n-tuples of complex numbers.!

Our interest in C" does not arise from a desire to “generalize” the results of the
earlier chapters, although that would in fact open up significant new applications of
linear algebra.? Rather, this study of complex eigenvalues is essential in order to uncover
“hidden” information about certain matrices with real entries that arise in a variety of
real-life problems. Such problems include many real dynamical systems that involve
periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue—eigenvector theory already developed for R” applies
equally well to C". So a complex scalar A satisfies det(4 — Al) = 0 if and only if
there is a nonzero vector x in C” such that Ax = Ax. We call A a (complex) eigenvalue
and x a (complex) eigenvector corresponding to A.

0 -1
EXAMPLE 1 If A= [1 0
rotates the plane counterclockwise through a quarter-turn. The action of A4 is periodic,
since after four quarter-turns, a vector is back where it started. Obviously, no nonzero
vector is mapped into a multiple of itself, so A has no eigenvectors in R? and hence no
real eigenvalues. In fact, the characteristic equation of A4 is

j|, then the linear transformation x — Ax on R2

A+1=0

Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about
real vector spaces carry over to the case with complex entries and scalars. In particular, A(cx 4+ dy) =
cAx + d Ay, for A an m X n matrix with complex entries, x, y in C", and ¢, d in C.

2 A second course in linear algebra often discusses such topics. They are of particular importance in
electrical engineering.
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The phenomenon displayed in Example 7 persists in higher dimensions. For
instance, if A is a 3 x 3 matrix with a complex eigenvalue, then there is a plane in
R3 on which A acts as a rotation (possibly combined with scaling). Every vector in that
plane is rotated into another point on the same plane. We say that the plane is invariant
under A.

8 -6 0
EXAMPLE 8 The matrix A= | .6 .8 0 | has eigenvalues .8 £ .6/ and
0 0 1.07

1.07. Any vector wy in the x|x,-plane (with third coordinate 0) is rotated by A into
another point in the plane. Any vector X not in the plane has its x3-coordinate multiplied
by 1.07. The iterates of the points wy = (2,0, 0) and Xy = (2, 0, 1) under multiplication

FIGURE 5

Iterates of two points under the
action of a 3 x 3 matrix with a
complex eigenvalue.

by A are shown in Fig. 5.

PRACTICE PROBLEM

Show that if a and b are real, then the eigenvalues of A = |:Z

_zi| are a + bi, with

. . 1 1
corresponding eigenvectors _i and |

5.5 EXERCISES

Let each matrix in Exercises 1-6 act on C2. Find the eigenvalues
and a basis for each eigenspace in C2.

[ 2 [17]

3. __g }] 4. } _§

s[5 s o [ 73]

In Exercises 7-12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x — Ax is the composition of a
rotation and a scaling. Give the angle ¢ of the rotation, where
—n < ¢ < m, and give the scale factor r.

; (V3 -1 g 3 33
L1 V3 " -3V3 3
o0 2 [0 5
% | —2 0] 10. | =5 O]
[—3 1 [ 3 -3
11. 12.
-1 -3 } | V3 3}
In Exercises 13-20, find an invertible matrix P and a matrix C
of the form Z such that the given matrix has the form
A= PCP.

1 -2 3 -3
w2 w [ ]

o 5 (4 —2
15. = 2} 16. L 6]

[—11 —4 [3 —5
17. | 20 5] 18. P 5]

[1.52 —.7 [—3 -8
19. | .56 .4] 20. | 4 5}

21. In Example 2, solve the first equation in (2) for x;, in terms of
X1, and from that produce the eigenvector y = [ 1 i_ o ]

for the matrix A. Show that this y is a (complex) multiple of
the vector v, used in Example 2.

22. Let A be a complex (or real) n x n matrix, and let x in C” be
an eigenvector corresponding to an eigenvalue A in C. Show
that for each nonzero complex scalar j, the vector ux is an
eigenvector of A.

Chapter 7 will focus on matrices 4 with the property that A7 = A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.

23. Let A be ann x n real matrix with the property that A7 = A4,
let x be any vector in C”, and let ¢ = X’Ax. The equalities
below show that ¢ is a real number by verifying that ¢ = gq.
Give a reason for each step.

=X Ax=x"TAx =x"4x = X" AX)"=xATx =¢

() (b) (©) (@ (e)



24.

25.

26.

5.6 Discrete Dynamical Systems 301

Let A be an n x n real matrix with the property that A7 = A. [M] In Exercises 27 and 28, find a factorization of the given

Show that if Ax = Ax for some nonzero vector x in C”, then, matrix A in the form A = PCP ™!, where C is a block-diagonal
in fact, A is real and the real part of X is an eigenvector of A. matrix with 2 x 2 blocks of the form shown in Example 6. (For
[Hint: Compute X'Ax, and use Exercise 23. Also, examine each conjugate pair of eigenvalues, use the real and imaginary
the real and imaginary parts of Ax.] parts of one eigenvector in C* to create two columns of P.)

Let A be a real n x n matrix, and let x be a vector in C”. 26 33 23 2077

Show that Re(Ax) = A(Rex) and Im(A4x) = A(Imx). i —6 _8 -1 —13

Let A be a real 2 x 2 matrix with a complex eigenvalue T -4 —19 16 3

A = a — bi (b # 0) and an associated eigenvector v in C2. [ —20 20 =20 14 ]

a. Show that A(Rev) =aRev+bImv and A(Imv) =
—b Rev + almv. [Hint: Write v =Rev + i Imv, and -

compute Av.]

b. Verify that if P and C are given as in Theorem 9, then 0 -5  —-10 -—10

AP = PC.

7 11 20 177]

28, A — 20 —-40 86 74

10 28 60 53

SOLUTION TO PRACTICE PROBLEM

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

o i B R R

Thus [ i i| is an eigenvector corresponding to A = a + bi. From the discussion in this

. 1 . . - .
section, ; must be an eigenvector corresponding to A = a — bi.

5.6 DISCRETE DYNAMICAL SYSTEMS

Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation X4+ = AXy.
Such an equation was used to model population movement in Section 1.10, various
Markov chains in Section 4.9, and the spotted owl population in the introductory
example for this chapter. The vectors x; give information about the system as time
(denoted by k) passes. In the spotted owl example, for instance, x; listed the numbers
of owls in three age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.! The steady-state
response of a control system is the engineering equivalent of what we call here the
“long-term behavior” of the dynamical system Xz = AX.

ISee G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 5th ed.
(Upper Saddle River, NJ: Prentice-Hall, 2006). This undergraduate text has a nice introduction to dynamic
models (Chapter 2). State-space design is covered in Chapters 7 and 8.
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(11) becomes
xr = ¢1 (1.0 v, 4 ¢2(—.03 4 .260) v, + ¢3(—.03 — 261 )" v3

As k — o0, the second two vectors tend to zero. So x; becomes more and more like
the (real) vector ¢;(1.01)*v,. The approximations in equations (6) and (7), following
Example 1, apply here. Also, it can be shown that the constant ¢; in the initial
decomposition of x is positive when the entries in X, are nonnegative. Thus the owl
population will grow slowly, with a long-term growth rate of 1.01. The eigenvector v,
describes the eventual distribution of the owls by life stages: for every 31 adults, there
will be about 10 juveniles and 3 subadults. [ |

Further Reading

Franklin, G. F.,, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems,
3rd ed. Reading, MA: Addison-Wesley, 1998.

Sandefur, James T. Discrete Dynamical Systems—Theory and Applications. Oxford:
Oxford University Press, 1990.

Tuchinsky, Philip. Management of a Buffalo Herd, UMAP Module 207. Lexington,
MA: COMAP, 1980.

PRACTICE PROBLEMS

2

1. The matrix A below has eigenvalues 1, 5

Vi, V2, and vj3:

and %, with corresponding eigenvectors

1 7 -2 0 -2 1
A=—-| =2 6 2, vV = 2, Vy) = 1 s V3 = 2
Lo 2 5 1 -2
1
Find the general solution of the equation x4+ = Ax¢ if xo = | 11
-2

2. What happens to the sequence {x; } in Practice Problem 1 as k — oco?

1. Let A be a 2 x 2 matrix with eigenvalues 3 and 1/3 and 2. Suppose the eigenvalues of a 3 x 3 matrix A4 are 3, 4/5, and

. . 1 -1
corresponding eigenvectors v; = [ | ] andv, = |: | ] Let
{x¢} be a solution of the difference equation x4, = Axy,

w[1]

a. Compute x; = AX,. [Hint: You do not need to know A
itself.]

b. Find a formula for x; involving k and the eigenvectors v,
and v,.

1 2
3/5, with corresponding eigenvectors |: 0 :| , |: 1 :| , and
-3 =5

-3 -2
|: -3 i| . Letxy = |: -5 :| . Find the solution of the equation
7 3

X;+1 = Ax; for the specified x¢, and describe what happens
as k — oo.
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In Exercises 3—6, assume that any initial vector x, has an eigen-
vector decomposition such that the coefficient ¢; in equation (1)
of this section is positive.?

3.

Determine the evolution of the dynamical system in Exam-
ple 1 when the predation parameter p is .2 in equation (3).
(Give a formula for x;.) Does the owl population grow or
decline? What about the wood rat population?

Determine the evolution of the dynamical system in Example
1 when the predation parameter p is .125. (Give a formula
for x;.) As time passes, what happens to the sizes of the owl
and wood rat populations? The system tends toward what is
sometimes called an unstable equilibrium. What do you think
might happen to the system if some aspect of the model (such
as birth rates or the predation rate) were to change slightly?

In old-growth forests of Douglas fir, the spotted owl dines
mainly on flying squirrels. Suppose the predator—prey matrix
_'; 1; . Show that if
the predation parameter p is .325, both populations grow.
Estimate the long-term growth rate and the eventual ratio of
owls to flying squirrels.

for these two populations is A =

Show that if the predation parameter p in Exercise 5 is .5,
both the owls and the squirrels will eventually perish. Find a
value of p for which populations of both owls and squirrels
tend toward constant levels. What are the relative population
sizes in this case?

Let A have the properties described in Exercise 1.

a. Is the origin an attractor, a repeller, or a saddle point of
the dynamical system X;4; = Ax;?

b. Find the directions of greatest attraction and/or repulsion
for this dynamical system.

c. Make a graphical description of the system, showing the
directions of greatest attraction or repulsion. Include
a rough sketch of several typical trajectories (without
computing specific points).

Determine the nature of the origin (attractor, repeller, or
saddle point) for the dynamical system x;4; = Ax; if 4 has
the properties described in Exercise 2. Find the directions of
greatest attraction or repulsion.

In Exercises 9-14, classify the origin as an attractor, repeller,
or saddle point of the dynamical system x;4; = Ax;. Find the
directions of greatest attraction and/or repulsion.

9.

1.7 =3 3 4
=l 7R was[5 ]

3 One of the limitations of the model in Example 1 is that there always

exist initial population vectors Xo with positive entries such that the
coefficient ¢; is negative. The approximation (7) is still valid, but the
entries in X, eventually become negative.

11.

13.

15.

16.

17.

18.

5 6
IZ‘A_[—.3 1.4]

14, A=[1.7 .6]

-4 7
4 0 2 .1
Let A= .3 8 .3 |. The vector vi = | .6 | is an
3 2 5 3

eigenvector for 4, and two eigenvalues are .5 and .2. Con-
struct the solution of the dynamical system X, = AX; that
satisfies xo = (0, .3, .7). What happens to x; as k — co0?

[M] Produce the general solution of the dynamical system
Xi+1 = AX; when A is the stochastic matrix for the Hertz
Rent A Car model in Exercise 16 of Section 4.9.

Construct a stage-matrix model for an animal species that has
two life stages: juvenile (up to 1 year old) and adult. Suppose
the female adults give birth each year to an average of 1.6
female juveniles. Each year, 30% of the juveniles survive
to become adults and 80% of the adults survive. For k > 0,
let x, = (Jjx,ax), where the entries in x; are the numbers of
female juveniles and female adults in year k.

a. Construct the stage-matrix A such that x;; = Ax; for
k> 0.

b. Show that the population is growing, compute the even-
tual growth rate of the population, and give the eventual
ratio of juveniles to adults.

c. [M] Suppose that initially there are 15 juveniles and 10
adults in the population. Produce four graphs that show
how the population changes over eight years: (a) the
number of juveniles, (b) the number of adults, (c) the
total population, and (d) the ratio of juveniles to adults
(each year). When does the ratio in (d) seem to stabilize?
Include a listing of the program or keystrokes used to
produce the graphs for (c) and (d).

A herd of American buffalo (bison) can be modeled by a stage

matrix similar to that for the spotted owls. The females can be

divided into calves (up to 1 year old), yearlings (1 to 2 years),
and adults. Suppose an average of 42 female calves are
born each year per 100 adult females. (Only adults produce

offspring.) Each year, about 60% of the calves survive, 75%

of the yearlings survive, and 95% of the adults survive. For

k >0, let x; = (ck, Yk, dax), where the entries in x; are the

numbers of females in each life stage at year k.

a. Construct the stage-matrix A for the buffalo herd, such
that x; 4 = Ax; for k > 0.

b. [M] Show that the buffalo herd is growing, determine
the expected growth rate after many years, and give the
expected numbers of calves and yearlings present per 100
adults.
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SOLUTIONS TO PRACTICE PROBLEMS

1. The first step is to write X( as a linear combination of vy, v,, and v3. Row reduction
of [vi V2 v3 Xg]produces the weights ¢c; =2, ¢, = 1, and ¢3 = 3, so that

Xp = 2V1 + 1V2 + 3V3

2
’ 3

2\* 1\*
Xk=2~1kV1+1'(§) V2+3(§) V3
-2 2\ k 2 1\* 1
=2 2 +(—) 1 +3-(—) 2 (12)
1 312 3 22

2. As k — o0, the second and third terms in (12) tend to the zero vector, and

Since the eigenvalues are 1, £, and %, the general solution is

4

2\* 1\ -
Xy = 2vy + (g) V2+3(§) V3 — 2vy = 4
2

5.7 APPLICATIONS TO DIFFERENTIAL EQUATIONS

This section describes continuous analogues of the difference equations studied in
Section 5.6. In many applied problems, several quantities are varying continuously
in time, and they are related by a system of differential equations:

’
X; =anXxy + -+ apXy

!/
Xy = a1X1 + -+ + dopXy

/
X, = an1 Xy + o+ apn Xy

Here x;, ..., x, are differentiable functions of 7, with derivatives x{, e, x,’, , and the a;;
are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

X' (1) = Ax(1) (1)
where
x1 (1) x1 (1) ap ot A
x(1) = : , X)) = : , and A= :
Xn (t) x’/l (t) Anl e [

A solution of equation (1) is a vector-valued function that satisfies (1) for all # in some
interval of real numbers, such as r > 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of X' = Ax,
then cu + dv is also a solution, because

(cu+dv) =cu +dv
=cAu+ dAv = A(cu + dv)
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CHAPTER 5 SUPPLEMENTARY EXERCISES

Throughout these supplementary exercises, A and B represent
square matrices of appropriate sizes.

1. Mark each statement as True or False. Justify each answer.

a.

If A is invertible and 1 is an eigenvalue for A, then 1 is
also an eigenvalue of A™".

If A is row equivalent to the identity matrix /, then A is
diagonalizable.

If A contains a row or column of zeros, then O is an
eigenvalue of 4.

Each eigenvalue of A is also an eigenvalue of A%,
Each eigenvector of 4 is also an eigenvector of 4.

Each eigenvector of an invertible matrix A is also an
eigenvector of A7,

Eigenvalues must be nonzero scalars.
Eigenvectors must be nonzero vectors.

Two eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

Similar matrices always have exactly the same eigen-
values.

Similar matrices always have exactly the same eigen-
vectors.

The sum of two eigenvectors of a matrix A is also an
eigenvector of A.

The eigenvalues of an upper triangular matrix A are
exactly the nonzero entries on the diagonal of A.

The matrices A and A7 have the same eigenvalues,
counting multiplicities.

If a5 x 5 matrix A4 has fewer than 5 distinct eigenvalues,
then A is not diagonalizable.

There exists a 2 x 2 matrix that has no eigenvectors in
R2.

If A is diagonalizable, then the columns of A are linearly
independent.

A nonzero vector cannot correspond to two different
eigenvalues of A.

A (square) matrix A is invertible if and only if there is a
coordinate system in which the transformation x > Ax
is represented by a diagonal matrix.

If each vector e; in the standard basis for R" is an
eigenvector of A, then A is a diagonal matrix.

If A is similar to a diagonalizable matrix B, then 4 is
also diagonalizable.

If A and B are invertible n x n matrices, then AB is
similar to BA.

An n x n matrix with n linearly independent eigenvec-
tors is invertible.

10.

11.

x. If Ais an n x n diagonalizable matrix, then each vector
in R” can be written as a linear combination of eigenvec-
tors of A.

Show that if x is an eigenvector of the matrix product AB and
Bx # 0, then Bx is an eigenvector of BA.

Suppose X is an eigenvector of A corresponding to an eigen-

value A.

a. Show that x is an eigenvector of 5/ — A. What is the
corresponding eigenvalue?

b. Show that x is an eigenvector of 5/ — 34 + A?. What is
the corresponding eigenvalue?

Use mathematical induction to show that if A is an eigenvalue
of an n x n matrix A, with x a corresponding eigenvector,
then, for each positive integer m, A" is an eigenvalue of A™,
with x a corresponding eigenvector.

If p(t) =co+ i1t + cot? + -+ ¢, 1", define p(A) to be
the matrix formed by replacing each power of ¢ in p(t) by
the corresponding power of A (with A° = I). That s,

p(A):COI+C1A+C2A2+"'+CnA”

Show that if A is an eigenvalue of A, then one eigenvalue of
p(A)is p(A).

Suppose A = PDP™!, where P is2 x 2and D = [(2) 2]

a. Let B =51 —3A4 + A% Show that B is diagonalizable
by finding a suitable factorization of B.

b. Given p(t) and p(A) as in Exercise 5, show that p(A) is
diagonalizable.

Suppose A is diagonalizable and p(t) is the characteristic
polynomial of A. Define p(A) as in Exercise 5, and show
that p(A) is the zero matrix. This fact, which is also true for
any square matrix, is called the Cayley—Hamilton theorem.

a. Let A be a diagonalizable n x n matrix. Show that if the
multiplicity of an eigenvalue A is n, then A = A[.

b. Use part (a) to show that the matrix A = [ (:; ; :| is not
diagonalizable.

Show that / — A is invertible when all the eigenvalues of A
are less than 1 in magnitude. [Hint: What would be true if
I — A were not invertible?]

Show that if A is diagonalizable, with all eigenvalues less
than 1 in magnitude, then A¥ tends to the zero matrix as
k — oo. [Hint: Consider A¥x where x represents any one
of the columns of /.]

Let u be an eigenvector of A corresponding to an eigenvalue
A, and let H be the line in R” through u and the origin.

a. Explain why H is invariant under A in the sense that Ax
isin H whenever xisin H.



b. Let K be a one-dimensional subspace of R” that is invari-
ant under A. Explain why K contains an eigenvector of
A.

12. Let G = [g ); :| Use formula (1) for the determinant

in Section 5.2 to explain why det G = (det A)(det B). From
this, deduce that the characteristic polynomial of G is the
product of the characteristic polynomials of A and B.

Use Exercise 12 to find the eigenvalues of the matrices in Exer-
cises 13 and 14.

3 2 8
13. A=|0 5 -2
0 —4 3
15 —6 -7
2 4 5 2
WA=\ o 5
0 0 3 1

15. Let J be the n xn matrix of all 1’s,
A= (a—>b)] +bJ;thatis,

and consider

fa b b - b
b a b b
A=|b b a b
b b b - a

Use the results of Exercise 16 in the Supplementary Exercises
for Chapter 3 to show that the eigenvalues of A4 are a — b and
a + (n — 1)b. What are the multiplicities of these eigenval-
ues?

16. Apply the result of Exercise 15 to find the eigenvalues of the

7 3 3 3 3
1 2 2 3 7 3 3 3
matrices | 2 1 2 and | 3 3 7 3 3
2 2 1 3 3 3 7 3
3 3 3 3 7
17. Let A = au a1 ] Recall from Exercise 25 in Section
as an

5.4 that tr A (the trace of A) is the sum of the diagonal entries
in A. Show that the characteristic polynomial of A is

A2 — (tr A)A + det 4
Then show that the eigenvalues of a 2 x 2 matrix A are both

A\’
real if and only if det 4 < (%) .

18. Let A = |:: _1; . Explain why A* approaches
- = as k — oo
1.0 1.50 ’

Exercises 19-23 concern the polynomial

pt) =ap+ayt + -+ a,_ "L+ 1"
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and an n x n matrix C, called the companion matrix of p:

0 1 0 0
0 0 1 0
C,=1 :
0 0 0 1
—dy —a —d —dp—1

19. Write the companion matrix C,, for p(¢) = 6 — 5¢ + ¢2, and
then find the characteristic polynomial of C,.

20. Let p(t) = (t —2)(t —3)(t —4) = —24 + 261 — 91> + 13
Write the companion matrix for p(t), and use techniques
from Chapter 3 to find its characteristic polynomial.

21. Use mathematical induction to prove that forn > 2,
det(C, — A1) = (=1)"(ag + aiA + -+ + ay— A"+ A7)

=(=D"p()
[Hint: Expanding by cofactors down the first column, show
that det (C, — A7) has the form (—A) B + (—1)"a,, where B
is a certain polynomial (by the induction assumption).]

22. Let p(t) = ap + at + at*> + t3, and let A be a zero of p.
a. Write the companion matrix for p.

b. Explain why A* = —ay —a;A —a,A%, and show that
(1,1, 2?) is an eigenvector of the companion matrix for
p.

23. Let p be the polynomial in Exercise 22, and suppose the
equation p(¢) = 0 has distinct roots Ay, A5, A;. Let V be
the Vandermonde matrix

1 1 1
V=|A A A

ALA 4
(The transpose of V' was considered in Supplementary Exer-
cise 11 in Chapter 2.) Use Exercise 22 and a theorem from

this chapter to deduce that V' is invertible (but do not compute
V~1). Then explain why V~'C,V is a diagonal matrix.

24, [M] The MATLAB command roots(p) computes the
roots of the polynomial equation p(z) = 0. Read a MATLAB
manual, and then describe the basic idea behind the algorithm
for the roots command.

25. [M] Use a matrix program to diagonalize

-3 =2 0
A=| 14 7 -1
-6 -3 1

if possible. Use the eigenvalue command to create the diag-
onal matrix D. If the program has a command that produces
eigenvectors, use it to create an invertible matrix P. Then
compute AP — PD and PDP™'. Discuss your results.

-8 5 -2 0

. -5 2 1 -2

26. [M] Repeat Exercise 25 for A = 10 -8 6 3
3 =2 1 0
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which can be rearranged to produce

[l f[v]l cos &

1
3 [lull + 1vI* = flu =]

1
3 [u% + u% + vlz + U% —(uy — Ul)2 — (uy — Uz)z]

= U V] + Uy
=u-v

The verification for R? is similar. When n > 3, formula (2) may be used to define the
angle between two vectors in R”. In statistics, for instance, the value of cos ¢ defined
by (2) for suitable vectors u and v is what statisticians call a correlation coefficient.

PRACTICE PROBLEMS

Lea=[2]n=[

p—

a-b
. Compute — and (
a-a

4/3 5
],c: —1 |,andd = 6
2/3 -1

)

. Find a unit vector u in the direction of c.

2
3. Show that d is orthogonal to c.
4

. Use the results of Practice Problems 2 and 3 to explain why d must be orthogonal to

the unit vector u.

6.1 EXERCISES

Compute the quantities in Exercises 1-8 using the vectors

_1 4 3 6
u= > | V= 6| w=|-1], x=|-2
-5 3
1. u-u,v-u, .amdE 2. W-W,X-W, zmdﬂ
u Wew
1 1
3. —w 4, —u
W-W u-u
u-v X W
5. W)V 6. ;)X
7. [lwll 8. x|l

In Exercises 9—12, find a unit vector in the direction of the given
vector.

—6]
-30
9. |: ] 10. 4
40 3]
7/4 -
11. | 1/2 12. |:8/3
2
1 i
. . 10 ] —1
13. Find the distance between x = [ _3 andy = |: _s ]

0 —4
14. Find the distance betweenu = | —5 [andz = | —1
2 8

Determine which pairs of vectors in Exercises 15-18 are orthog-
onal.

12 2
15. a:[_i],b:[:ﬂ 16. u=| 3 [, v=|-3
| -5 3

3 —4 (=37 1

2 1 7 —8

17. u = _s L,V = 5 18. y = 4 VI = 15
0 6 L 0 ~7

In Exercises 19 and 20, all vectors are in R”. Mark each statement
True or False. Justify each answer.

19. a.

b. For any scalar ¢, u- (cv) = c(u-v).

vev = |v|]%

c. If the distance from u to v equals the distance from u to
—v, then u and v are orthogonal.

d. For a square matrix A, vectors in Col 4 are orthogonal to
vectors in Nul A.

e. If vectors vi,...,v, span a subspace W and if x is
orthogonal to each v, for j = 1,..., p, thenxisin W,



20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

u-v—v-u=0.

®

b. For any scalar ¢, |[cv| = c||v]|.

c. Ifxis orthogonal to every vector in a subspace W, then x
isin W+,

d. If [lul|* + ||v]®> = ||u + v]|]?, then u and v are orthogonal.

e. Foranm x n matrix A, vectors in the null space of A are
orthogonal to vectors in the row space of A.

Use the transpose definition of the inner product to verify
parts (b) and (c) of Theorem 1. Mention the appropriate facts
from Chapter 2.

Let uw = (uy,up,u3). Explain why u-u>0. When is
u-u=0?
2 -7
Letu=| =5 | and v=| —4 |. Compute and compare
-1 6

u-v, |lul?, ||v||?, and |ju + v||>. Do not use the Pythagorean
Theorem.

Verify the parallelogram law for vectors u and v in R":

o+ VI + flu = vi* = 2]u® + 2[|v]]®

Letv = |:Z :| Describe the set H of vectors |:; :| that are
orthogonal to v. [Hint: Consider v = 0and v # 0.]
5
Letu = | —6 |, andlet W be the set of all x in R? such that
7

u-x = 0. What theorem in Chapter 4 can be used to show that
W is a subspace of R*? Describe W in geometric language.

Suppose a vector y is orthogonal to vectors u and v. Show
that y is orthogonal to the vector u + v.

Suppose y is orthogonal to u and v. Show that y is or-
thogonal to every w in Span {u, v}. [Hint: An arbitrary w
in Span {u, v} has the form w = c;u + ¢,v. Show that y is
orthogonal to such a vector w.]

50" !

Let W = Span {v,,...,v,}. Show that if x is orthogonal to
eachv;, for 1 < j < p, then x is orthogonal to every vector
in W.

30.

31.
32.

33.

34.
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Let W be a subspace of R”, and let W be the set of all
vectors orthogonal to W. Show that W is a subspace of R”
using the following steps.

a. Take z in W, and let u represent any element of W.
Then z-u = 0. Take any scalar ¢ and show that cz is
orthogonal to u. (Since u was an arbitrary element of W,
this will show that cz is in W)

b. Take z, and z, in W, and let u be any element of W.
Show that z; 4 z, is orthogonal to u. What can you
conclude about z; + z,? Why?

c. Finish the proof that W is a subspace of R".
Show that if x is in both W and W=, then x = 0.

[M] Construct a pair u, v of random vectors in R*, and let

S5 5 5 5
S5 5 =5 -5
A= S5 =5 5 =5
S5 =-5-5 5

a. Denote the columns of A by aj,...,as Com-
pute the length of each column, and compute a,-a,,
a;-a3,a;-a4,2,-23,2,-2y, and az-a,.

b. Compute and compare the lengths of u, Au, v, and Av.

c. Use equation (2) in this section to compute the cosine of
the angle between u and v. Compare this with the cosine
of the angle between Au and Av.

d. Repeat parts (b) and (c) for two other pairs of random
vectors. What do you conjecture about the effect of A on
vectors?

[M] Generate random vectors x, y, and v in R* with integer
entries (and v # 0), and compute the quantities

XV y-v
G (G5
VeV VeV
Repeat the computations with new random vectors x and
y. What do you conjecture about the mapping x — T (x) =

x+y-v (10x)-v
v, v

v-v \AA

XV
(—) v (for v # 0)? Verify your conjecture algebraically.
VeV

—6 3 -27 -33 -13
6 -5 25 28 14
[M] Let A = 8§ —6 34 38 18 |. Construct

12 —-10 50 41 23

14 =21 49 29 33
a matrix N whose columns form a basis for Nul A, and
construct a matrix R whose rows form a basis for Row A (see
Section 4.6 for details). Perform a matrix computation with
N and R that illustrates a fact from Theorem 3.
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SOLUTIONS TO PRACTICE PROBLEMS

‘b 7 ‘b 7 —
1. a-b = 7,a-a = 5. Hence :_a = —, and (a—)a = —-a= |: 14/5:|.

6.2 ORTHOGONAL SETS

FIGURE 1

THEOREM 4

5 a-a 5 7/5
4
2. Scale ¢, multiplying by 3to gety = | —3 |. Compute ||y||> = 29 and ||y|| = +/29.
2
4/+/29
The unit vector in the direction of bothcandyisu = —y = | —3/4/29 |.
Iyl 2/+/29
3. dis orthogonal to ¢, because
5 4/3
20 2
d-c = 6[-| -1 |=—-6-=-=0
1 | 2/3 3 3
4. d is orthogonal to u because u has the form k¢ for some k, and
d-u=d: (kc) = k(d-c) =k(0) =0
A setof vectors {uy, ..., u,}in R" is said to be an orthogonal set if each pair of distinct

vectors from the set is orthogonal, that is, if u;-u; = 0 wheneveri # j.

EXAMPLE 1 Show that {u;, uy, u3} is an orthogonal set, where

3 -1 —-1/2
u = 1 s u = 2 , U3 = -2
1 1 7/2

SOLUTION Consider the three possible pairs of distinct vectors, namely, {u;,u;},
{ur, u3}, and {u,, u3}.

uewp =3(-1)+12)+1(1) =0
uews=3(-1)+1-2)+1()=0
up-us = -1 (—%) + 2(—2) + 1 (%) =0

Each pair of distinct vectors is orthogonal, and so {u;, u,, u3} is an orthogonal set. See
Fig. 1; the three line segments there are mutually perpendicular. [ |

If §$ ={uy....,u,} is an orthogonal set of nonzero vectors in R”, then S is
linearly independent and hence is a basis for the subspace spanned by S.

PROOF If 0 = cyu; + --- + c,u, for some scalars ¢y, ..., cp, then
0=0-u; = (ciu; + couy + -+ +cpu,)-uy
= (ciuy)-uy + (coup)-uy +--- + (cpup) -y
cr(ui-uy) + ca(up-wy) + -+ 4 cp(uy-uy)

=ci(u;-uy)

because u; is orthogonal to u, ..., u,. Since u; is nonzero, u;-u; is not zero and so
¢y = 0. Similarly, ¢5, ..., c, must be zero. Thus S is linearly independent. |
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SOLUTION
1/v2  2/3 3
Ux=|1/v2 -2/3 [“@}: -1
0 1/3
Ux| = vVoO+T1+1=+11
x| = V249 =11 n

Theorems 6 and 7 are particularly useful when applied to square matrices. An
orthogonal matrix is a square invertible matrix U suchthat U ~' = U”. By Theorem 6,
such a matrix has orthonormal columns.! It is easy to see that any square matrix with
orthonormal columns is an orthogonal matrix. Surprisingly, such a matrix must have
orthonormal rows, too. See Exercises 27 and 28. Orthogonal matrices will appear
frequently in Chapter 7.

EXAMPLE 7 The matrix
3/J/11 —1/4/6 —1//66

U=|1/vy11 2//6 —4/J66
1/V/11 1/v6  7//66

is an orthogonal matrix because it is square and because its columns are orthonormal,
by Example 5. Verify that the rows are orthonormal, too! |

PRACTICE PROBLEMS

= [_Zﬁ} and u,

1. Let uy

= [?; ﬁ] Show that {u;,u,} is an orthonormal

basis for R2.
2. Lety and L be as in Example 3 and Fig. 3. Compute the orthogonal projection y of

y onto L usingu = [2} instead of the u in Example 3.

1

3. Let U and x be as in Example 6, and lety = [ _36ﬁ]' Verify that Ux-Uy = x-y.
In Exercises 1-6, determine which sets of vectors are orthogonal. 3 -1 3 5 —4 3
-4 - L L 5 -2 3 8 6 —4 1 3
—1 5 3 1 O —5 * 1 ’ _3 ’ 7 . 0 s _3 s 5
1. 4 20, | —4 2. | 2| L] 2 3 4 0 3 8 -1
-3 |1 -7 L 1] 2] [ 1]
In Exercises 7-10, show that {u;,u,} or {u;, u,, us} is an orthog-
onal basis for R? or R?, respectively. Then express x as a linear
r 27 =6 3 T 27 To1 [ 47 combination of the u’s.
3. | =7 -3, 1 4. | 51,10, -2 7 ] 2 |6 dx — 9
L —1] [ 9] [ -1 | 3] o] | 6] i I B L IO e

I A better name might be orthonormal matrix, and this term is found in some statistics texts. However,
orthogonal matrix is the standard term in linear algebra.



10.

11.

12.

13.

14.

15.

16.

u = 3 u = -2 and x = 6
1 — _1 , U2 — 6 5 - 3
1 -1 2] 8]
uy=|01|u= 4 |,u3 = 1 |,andx = | —4
L1 1 -2 | | =3 ]
3 2 7 5]
uy=|-3\[,m= 2 (,u3=|1|,andx=| =3
| 0 -1 | L 1]
Compute the orthogonal projection of [;] onto the line

—4
2

through and the origin.

Compute the orthogonal projection of [_1

) :| onto the line

through | ; and the origin.
[2] 4 .
Lety = 3 and u = 7| Write y as the sum of two

orthogonél vectors, one in Span {u} and one orthogonal to u.

Lety = 6 1

2] .
andu = 7 ] Write y as the sum of a vector
in Span {u} and a vector orthogonal to u.

Lety = 1 6

to the line through u and the origin.

3 and u = 8 i| Compute the distance from y

Lety =

_g ] andu = [ ; ] Compute the distance from y

to the line through u and the origin.

In Exercises 17-22, determine which sets of vectors are orthonor-
mal. If a set is only orthogonal, normalize the vectors to produce
an orthonormal set.

17.

19.

21.

22.

r1/3 —1/2 0 0
1/3 |, 0 18. | 1|, =1

| 1/3 1/2 L0 0

_ ; [—2/3 1/3
_'6],['8 20. 1/3 |, 1 2/3
| 8] |6 23 0
[1/4/107 3/4/10 0

3/3/20 |, | —1/20 |, | —1/3/2

| 3/4/20 | | —1/420 1/v2

[ 1/+/187] 1/32 —2/3

4//18 |, 0o |, 1/3

L 1//18 ] [ —1/+/2 -2/3

In Exercises 23 and 24, all vectors are in R”. Mark each statement
True or False. Justify each answer.

23. a. Notevery linearly independent set in R” is an orthogonal

set.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
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b. Ify is a linear combination of nonzero vectors from an
orthogonal set, then the weights in the linear combination
can be computed without row operations on a matrix.

c. If the vectors in an orthogonal set of nonzero vectors are
normalized, then some of the new vectors may not be
orthogonal.

d. A matrix with orthonormal columns is an orthogonal
matrix.

e. If Lisaline through 0 and if ¥ is the orthogonal projection
of y onto L, then ||y|| gives the distance from y to L.

®

Not every orthogonal set in R” is linearly independent.

b. IfasetS = {u,...,u,} hasthe property thatu;-u; =0
whenever i # j, then S is an orthonormal set.

c. Ifthe columns of anm x n matrix A are orthonormal, then
the linear mapping x — AX preserves lengths.

d. The orthogonal projection of y onto v is the same as the
orthogonal projection of y onto ¢v whenever ¢ # 0.

e. An orthogonal matrix is invertible.

Prove Theorem 7. [Hint: For (a), compute || Ux||?, or prove
(b) first.]

Suppose W is a subspace of R” spanned by n nonzero
orthogonal vectors. Explain why W = R”".

Let U be a square matrix with orthonormal columns. Explain
why U is invertible. (Mention the theorems you use.)

Let U be an n x n orthogonal matrix. Show that the rows of
U form an orthonormal basis of R".

Let U and V be n x n orthogonal matrices. Explain why
UV is an orthogonal matrix. [That is, explain why UV is
invertible and its inverse is (UV)7 ]

Let U be an orthogonal matrix, and construct V' by inter-
changing some of the columns of U. Explain why V' is an
orthogonal matrix.

Show that the orthogonal projection of a vector y onto a line
L through the origin in R? does not depend on the choice
of the nonzero u in L used in the formula for y. To do
this, suppose y and u are given and y has been computed by
formula (2) in this section. Replace u in that formula by cu,
where ¢ is an unspecified nonzero scalar. Show that the new
formula gives the same §.

Let {v;, v,} be an orthogonal set of nonzero vectors, and let
¢1, ¢; be any nonzero scalars. Show that {c,vy, ¢,v,} is also
an orthogonal set. Since orthogonality of a set is defined in
terms of pairs of vectors, this shows that if the vectors in
an orthogonal set are normalized, the new set will still be
orthogonal.

Given u # 0 in R”, let L = Span {u}. Show that the map-
ping X — proj, X is a linear transformation.

Given u # 0 in R”, let L = Span{u}. For y in R”, the
reflection of y in L is the point refl, y defined by
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refl, y = 2- proj, y —y -6 -3 6 1
-1 2 1 -6
See the figure, which shows that refl, y is the sum of 3 6 3 -2
y = proj, y and § —y. Show that the mapping y > refl, y 6 -3 6 —1
is a linear transformation. A= B
2 -1 2 3
-3 6 3 2
-2 -1 2 =3
I 2 1 6]

36. [M] In parts (a)—(d), let U be the matrix formed by normal-
izing each column of the matrix A4 in Exercise 35.

a. Compute UTU and UUT. How do they differ?

b. Generate a random vector y in R®, and compute
p=UU"y and z =y — p. Explain why p is in Col A.

y-y Verify that z is orthogonal to p.
The reflection of y in a line through the origin. c. Verify that z is orthogonal to each column of U.
35. [M] Show that the columns of the matrix A are orthogonal d. Notice that y = p + 2, with p in Col 4. Explain why z is
by making an appropriate matrix calculation. State the cal- in (Col A)~-. (The significance of this decomposition of
culation you use. y will be explained in the next section.)

SOLUTIONS TO PRACTICE PROBLEMS
1. The vectors are orthogonal because
u e =-2/54+2/5=0
They are unit vectors because
| = (=1/v/5)? + 2/V5)P = 1/5+ 4/5 =1
luall? = @/V5)? + (1/V5) =4/5+1/5=1

In particular, the set {u;, u,} is linearly independent, and hence is a basis for R? since
there are two vectors in the set.

2. Wheny = |:Z:| andu = |:%:|,

L yu 2012 _al2] 2|8
y_u.uu_s 1| 1| |4

This is the same y found in Example 3. The orthogonal projection does not seem to
depend on the u chosen on the line. See Exercise 31.

1/v2  2/3 [_3ﬁ}: 1

3. Uy=|1/4/2 -2/3 p —7
0 1/3 2
3
Also, from Example 6, x = |: \f:| and Ux = | —1 |. Hence
1

Mastering: Orthogonal
Basis 6-4 Ux-Uy=34+7+2=12, and xy=-6+18=12
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PRACTICE PROBLEM

-7 -1 -9
Letu; = 1|,u= 1|, y= 1 |, and W = Span{u;,u,}. Use the fact
4 -2 6

that u; and u; are orthogonal to compute projy, y.

6.3 EXERCISES

In Exercises 1 and 2, you may assume that {u;,...,us} is an -1 1 -1
orthogonal basis for R*. . y=| 4lu=|1|wm=]| 3
3 1 -2
0 3 1 5 — _ —
L 1 5 0 -3 4 1 —1 —1
Lup = , Uy = , U3 = , Wy = s 3 1 3 0
—4 1 1 -1 - - - —
_1 | 4 | R Al S e el I el N Rl
10 = |1 | =2 | 1
X = _2 . Write x as the sum of two vectors, one in i } (1) (1)
0 10. y = s |wm= o= BT 1
Span {u;, up, u3} and the other in Span {u,}. | 6 -1 | | 1 -1
1 2 1 -1 In Exercises 11 and 12, find the closest point to y in the subspace
5 2 1 1 1 W spanned by v; and v,.
- U= , W = , U3 = , Wy = s _
i R o : : : 1
- - 1 1 -1
4 1. y= s PVi= PV = 1
5 . . 1 1 -1
V= 3| Write v as the sum of two vectors, one in =
3 37 1] [ —47]
. —1 -2 1
Span {u; } and the other in Span {u,, u3, uy}. 12. y= T EA Ll T P C 0
In Exercises 3-6, verify that {u;, u,} is an orthogonal set, and then L 13 ] L 2] L 3
find the orthogonal projection of y onto Span {u;, u,}. In Exercises 13 and 14, find the best approximation to z by vectors
1 Bl 1 of the form c¢;v| + ¢,v,.
3. y= 4 1oy =1|1|wm= 1 M 37 27 M 17
3 0 0 — _
- - - - - - 13. z = ; L,V = _:1,) ,Vy) = (1)
[ 6] 3] [—47] 3 1 -1
4. y=| 3|luy=|4|mm=| 3 — _ _
y 5 1 0 2 0 ) ) 5
- T - 4 0 -2
e _ | 14. z= olPVi=| |2 = 4
5. y= 21,y =| -1 |,up=1| —1 -1 | —3 ] L 2]
L 6. L -2 5 -3 =
6 _a 0 15. Lety=| -9 |, yy=| 5|, uu = 2 |. Find the
1 1
6. y=|4|,uu=|—-1|,up=|1 > -
1 1 1 distance from y to the plane in R? spanned by u,; and u,.

16. Lety, vy, and v, be as in Exercise 12. Find the distance from

In Exercises 7-10, let W be the subspace spanned by the u’s, and ¥ to the subspace of R* spanned by v; and v;.

write y as the sum of a vector in W and a vector orthogonal to V.

4 2/3 ~2/3
1 1 5 17. Let y=|8|, w=|1/3]|, w=]| 2/3|, and
7.y=1|3 |,u = 3fbup=|1 1 2/3 1/3
5 -2 4

W = Span {u;, u,}.



18.

19.

20.

a. LetU =[u; wu,]. Compute UTU and UUT.
b. Compute proj, y and (UUT)y.
7 1/+/10
Lety = [9],u1 = |:_3§mi|,and W = Span {u,}.

a. Let U be the 2 x 1 matrix whose only column is u.
Compute UTU and UUT .

b. Compute proj, y and (UUT)y.

5 0
Letu, = 1 |,u,=1| =1 |,anduy; = | 0 |. Note that
-2 2 1

u; and u, are orthogonal but that uj; is not orthogonal to u; or
u,. It can be shown that u; is not in the subspace W spanned
by u; and u,. Use this fact to construct a nonzero vector v in
R3 that is orthogonal to u; and u,.

0
Letu; and u, be as in Exercise 19, and letuy, = | 1

0
be shown that uy is not in the subspace W spanned by u, and
u,. Use this fact to construct a nonzero vector v in R3 that is
orthogonal to u; and u,.

. Itcan

In Exercises 21 and 22, all vectors and subspaces are in R”. Mark
each statement True or False. Justify each answer.

21.

a. If z is orthogonal to u; and to u, and if W =
Span {u;, u,}, then z must be in W,

b. For each y and each subspace W, the vector y — projy, y
is orthogonal to W.

c. The orthogonal projection y of y onto a subspace W can
sometimes depend on the orthogonal basis for W used to
compute y.

d. Ifyisinasubspace W, then the orthogonal projection of
y onto W is y itself.

22.

23.

24.

25.

26.
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e. Ifthe columnsofann x p matrix U are orthonormal, then
UUTy is the orthogonal projection of y onto the column
space of U.

a. If W is a subspace of R” and if v is in both W and W,
then v must be the zero vector.

b. In the Orthogonal Decomposition Theorem, each term in
formula (2) for ¥ is itself an orthogonal projection of y
onto a subspace of W.

c. Ify =1z, + z,, where z, is in a subspace W and z, is in
WL, then z; must be the orthogonal projection of y onto
w.

d. The best approximation to y by elements of a subspace
W is given by the vector y — projy, y.

e. If an n x p matrix U has orthonormal columns, then
UU'x = x for all x in R".

Let A be an m x n matrix. Prove that every vector x in R”
can be written in the form x = p + u, where p is in Row 4
and u is in Nul A. Also, show that if the equation Ax = b
is consistent, then there is a unique p in Row 4 such that
Ap =b.

Let W be a subspace of R" with an orthogonal basis

{wi,...,w,},and let {v,,...,v,} be an orthogonal basis for

wt.

a. Explain why {w;,...,w,,v|,...,v,} is an orthogonal
set.

b. Explain why the set in part (a) spans R".
c. Show thatdim W +dim W+ = n.

[M] Let U be the 8 x 4 matrix in Exercise 36 in Section 6.2.
Find the closest point toy = (1,1,1,1,1,1,1,1) in Col U.
Write the keystrokes or commands you use to solve this
problem.

[M] Let U be the matrix in Exercise 25. Find the distance
fromb = (1,1,1,1,—1,—1,—1,—1) to Col U.

SOLUTION TO PRACTICE PROBLEM

Compute

projy, y

y-u; yeup 88 " -2

u U =—u +—u
u-u ! LI R 1 ) : 66 ! 6 2
4 =7 1 —1 -9
- 1|-= 1| = 1| =y
34| 3 2 6

In this case, y happens to be a linear combination of u; and u,, soy is in W. The closest

pointin W toy is y itself.
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By construction, the first k columns of Q are an orthonormal basis of Span {xy, ..., X, }.
From the proof of Theorem 12, A = QR for some R. To find R, observe that QTQ =1,
because the columns of Q are orthonormal. Hence

QA= Q"(QR) = IR =R

and
C1/2 1/2 1/2 1/2 Croe
R=|-yvE vm Ve vl
o -2/v6 1o o 1Ne [l |
2 3/2 1
—|o 3yvi2 2/v12 "
0 0 2//6

— NUMERICAL NOTES

1. When the Gram—Schmidt process is run on a computer, roundoff error can
build up as the vectors uy are calculated, one by one. For j and k large but
unequal, the inner products uJT-uk may not be sufficiently close to zero. This
loss of orthogonality can be reduced substantially by rearranging the order
of the calculations.! However, a different computer-based QR factorization is
usually preferred to this modified Gram—Schmidt method because it yields a
more accurate orthonormal basis, even though the factorization requires about
twice as much arithmetic.

2. To produce a QR factorization of a matrix A, a computer program usually
left-multiplies A by a sequence of orthogonal matrices until A4 is transformed
into an upper triangular matrix. This construction is analogous to the left-
multiplication by elementary matrices that produces an LU factorization of A.

PRACTICE PROBLEM

1 1/3
Let W = Span {xy,X,}, wherex; = | 1 [andx, = 1/3 |. Construct an orthonor-
1 -2/3
mal basis for .
In Exercises 1-6, the given set is a basis for a subspace W. Use 2] [ 4] 3] [-3]
the Gram—Schmidt process to produce an orthogonal basis for . o S|l 4. | 4. 14
1 2 5 -7
[ 8 07 3 C L S
1. 01, 5 2. | 4], 6 1 7 3 =5
-1 -6 2 -7 —4 -7 -1 9
S 0| —4 6. 217 -9
L 1] [ 1] -1 ] | 3]

!See Fundamentals of Matrix Computations, by David S. Watkins (New York: John Wiley & Sons, 1991),
pp. 167-180.



7. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 3.

8. Find an orthonormal basis of the subspace spanned by the
vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in
Exercises 9—-12.

11.

3 5 1 -1 6 6
o1 -8 3
-1 5 =2 017 5 %
3 -7 8 | 1 -4 -3

2 57 T 1 3 57
-1 1 —4 -1 =3 1
-1 4 =3 22/ 0 2 3

—4 15 2
12 1 | 1 5 8]

In Exercises 13 and 14, the columns of Q were obtained by
applying the Gram—Schmidt process to the columns of 4. Find an
upper triangular matrix R such that A = QR. Check your work.

13. 4

14. A

T 5 97 5/6 —1/67]
7 | 176 56
=13 527 30 176

1 5] | 1/6 3/6 |

(-2 37 [ —2/7  5/77
s 7 | o571 27
=1 2 227 27 —a7

4 6| 4/7  2/7 |

15. Find a QR factorization of the matrix in Exercise 11.

16. Find a QR factorization of the matrix in Exercise 12.

In Exercises 17 and 18, all vectors and subspaces are in R”. Mark
each statement True or False. Justify each answer.

17. a.

18. a.

If {v|,v,,v;3} is an orthogonal basis for W, then mul-
tiplying v; by a scalar ¢ gives a new orthogonal basis
{vi.va, cvs

The Gram—Schmidt process produces from a linearly in-

dependent set {X;, ...,X,} an orthogonal set {v;,...,Vv,}
with the property that for each k, the vectors vy, ..., Vi
span the same subspace as that spanned by x;, ..., X;.

If A= QR, where Q has orthonormal columns, then
R = Q"4

If W = Span {xi, X, X3} with {x;,X,, X3} linearly inde-
pendent, and if {v|, v,, v3} is an orthogonal set in W, then
{V1, V2, v3} is a basis for W.

If x is not in a subspace W, then X — projy, X is not zero.

In a QR factorization, say A = QR (when A has lin-
early independent columns), the columns of Q form an
orthonormal basis for the column space of A.

19.

20.

21.

22,

23.

24.

25.

26.
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Suppose A = QR, where Q ism x n and R is n x n. Show
that if the columns of A are linearly independent, then R must
be invertible. [Hint: Study the equation Rx = 0 and use the
fact that A = QR.]

Suppose A = QR, where R is an invertible matrix. Show
that A and Q have the same column space. [Hint: Giveny in
Col A, show thaty = Qx for some x. Also, giveny in Col Q,
show that y = Ax for some x.]

Given A = QR as in Theorem 12, describe how to find an
orthogonal m x m (square) matrix Q0 and an invertible n x n
upper triangular matrix R such that

o]

The MATLAB gr command supplies this “full” QR factor-
ization when rank A = n.

Let uy,...,u, be an orthogonal basis for a subspace W of
R", and let T : R" — R" be defined by 7'(x) = proj, X.
Show that 7 is a linear transformation.

Suppose A = QR is a QR factorization of an m x n ma-
trix A (with linearly independent columns). Partition A4 as
[A;  A;], where A has p columns. Show how to obtain a
QR factorization of A4,, and explain why your factorization
has the appropriate properties.

[M] Use the Gram—Schmidt process as in Example 2 to
produce an orthogonal basis for the column space of

-10 13 7 —11

2 I =5 3

A= —6 3 13 -3
16 —-16 -2 5

2 1 -5 -7

[M] Use the method in this section to produce a QR factor-
ization of the matrix in Exercise 24.

[M] For a matrix program, the Gram—Schmidt process works
better with orthonormal vectors. Starting with x;,...,x, as
in Theorem 11, let A =[x, Xp]. Suppose Q is an
n x k matrix whose columns form an orthonormal basis for
the subspace W, spanned by the first k columns of A. Then
for x in R”, QQTx is the orthogonal projection of x onto W,
(Theorem 10 in Section 6.3). If x4 4, is the next column of
A, then equation (2) in the proof of Theorem 11 becomes

Vit1 = X1 — Q07 Xi41)

(The parentheses above reduce the number of arithmetic
operations.) Let ug41 = Vi41/||Vi1]l. The new Q for the
next stepis [ O ug4; |. Use this procedure to compute the
QR factorization of the matrix in Exercise 24. Write the
keystrokes or commands you use.
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SOLUTION TO PRACTICE PROBLEM

1
X7+ V) .
Letvi=x;= |1 |andv, =x, — vi =X, — 0V = X5. So {Xx1,X,} is already
ViV
1

orthogonal. All that is needed is to normalize the vectors. Let

, R 1/3/3
= —_— = — 1 =
ST ] B el

Instead of normalizing v, directly, normalize v, = 3v, instead:

1 1 ! 1/V6
ANV e ey Bl MEALC
2 TP+ (2?2 2 —2/J6

Then {u;, u,} is an orthonormal basis for W.

u; =

6.5 | LEAST-SQUARES PROBLEMS

The chapter’s introductory example described a massive problem Ax = b that had no
solution. Inconsistent systems arise often in applications, though usually not with such
an enormous coefficient matrix. When a solution is demanded and none exists, the best
one can do is to find an x that makes Ax as close as possible to b.

Think of Ax as an approximation to b. The smaller the distance between b and Ax,
given by ||b — Ax||, the better the approximation. The general least-squares problem
is to find an x that makes ||b — Ax|| as small as possible. The adjective “least-squares”
arises from the fact that |b — Ax|| is the square root of a sum of squares.

If Ais m xn and b is in R”, a least-squares solution of Ax = b is an X in R”
such that
b — AR|| < b — Ax|

for all x in R”.

The most important aspect of the least-squares problem is that no matter what x we
select, the vector Ax will necessarily be in the column space, Col A. So we seek an x
that makes Ax the closest point in Col A to b. See Fig. 1. (Of course, if b happens to be
in Col A4, then b is Ax for some X, and such an x is a “least-squares solution.”)

Col A ¢ Ax

FIGURE 1 The vector b is closer to AX than
to Ax for other x.
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PRACTICE PROBLEMS

1 -3 =3
1. LetA=|1 5 1
17 2

5
-3
-5

andb = . Find a least-squares solution of Ax = b,

and compute the associated least-squares error.

2. What can you say about the least-squares solution of Ax = b when b is orthogonal

to the columns of A?

6.5 EXERCISES

In Exercises 1-4, find a least-squares solution of Ax = b by
(a) constructing the normal equations for X and (b) solving for

-1 2 4
1. A=| 2 =3[,b=1|1
-1 3 2
T2 1] M —57
2.4=|-2 ol,b=] 8
2 3] L1
1 =27 m 37
-1 2 1
4=, 3|b=]|_,
2 5 2]
B 3 5
4. A= -1 |,b=|1
i 0

In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax = b.

1 1 0] 17
1 1 0 3
5. A= 1 0 1 ,b= 8
L1 0 1| | 2 ]
B! I 07 77
1 1 0 2
1 1 0 3
6. A= 1 0 1 ,b= 6
1 0 1 5
L1 0 1] | 4 ]

7. Compute the least-squares error associated with the least-
squares solution found in Exercise 3.

8. Compute the least-squares error associated with the least-
squares solution found in Exercise 4.

In Exercises 9-12, find (a) the orthogonal projection of b onto
Col A and (b) a least-squares solution of Ax = b.

I 2 3
10. A= — 4 1,b=| —1
L 2 5
4 0 1 9
I =5 1 0
11. A= 6 1 o0 ,b= 0
|1 -1 =5 0
1 1 0 2
1 0 -1 5
12. A= 0 1 | ,b= 6
B! 1 -1 6
3 4 11 5
13. Let A=| -2 1|,b=| -9 ,u:[_l],andv:
3 4 5
[_;] Compute Au and Av, and compare them with b.
Could u possibly be a least-squares solution of Ax = b?
(Answer this without computing a least-squares solution.)
2 1 5 4
14. let A=| -3 —4 |, b=]|4 ,u=|:_5], and v =
32 4

[_g ] Compute Au and Av, and compare them with b. Is

it possible that at least one of u or v could be a least-squares
solution of Ax = b? (Answer this without computing a least-
squares solution.)

In Exercises 15 and 16, use the factorization A = QR to find the
least-squares solution of Ax = b.

[2 37 [2/3 —1/3] 7

15. A=|2 4|=]|2/3 2/3 ],b: 3
11 13 —2/3 ] 1

f1 -1 [1/2 —1/27 —1
oA 2 o2 | 6

16 4= 4= 12 —1)p2 }’b_ 5
14 12 12 7

In Exercises 17 and 18, A is an m x n matrix and b is in R™. Mark

4
-2
-3

each statement True or False. Justify each answer.

17. a. The general least-squares problem is to find an x that
makes Ax as close as possible to b.



18.

19.

20.

21.

22,

23.

b. A least-squares solution of Ax =b is a vector X that
satisfies AX = b, where b is the orthogonal projection of
b onto Col A4.

c. A least-squares solution of Ax = b is a vector X such that
IIb — Ax|| < ||b — Ax|| for all x in R".

d. Any solution of A7Ax = ATb is a least-squares solution
of Ax = b.

e. If the columns of A are linearly independent, then the
equation Ax = b has exactly one least-squares solution.

a. If b is in the column space of A4, then every solution of
Ax = b is a least-squares solution.

b. The least-squares solution of Ax = b is the point in the
column space of A closest to b.

c. A least-squares solution of Ax = b is a list of weights
that, when applied to the columns of A, produces the
orthogonal projection of b onto Col A.

d. If X is a least-squares solution of Ax =b, then
X = (ATA)"1ATD.

e. The normal equations always provide a reliable method
for computing least-squares solutions.

f. If A has a QR factorization, say A = QR, then the best
way to find the least-squares solution of Ax = b is to
compute X = R~'Q7b.

Let A be an m x n matrix. Use the steps below to show that a

vector x in R” satisfies Ax = 0 if and only if A7Ax = 0. This

will show that Nul A = Nul A7A.

a. Show that if Ax = 0, then A74Ax = 0.

b. Suppose A7Ax = 0. Explain why x’A7Ax = 0, and use
this to show that Ax = 0.

Let A be an m x n matrix such that A7 is invertible. Show

that the columns of A are linearly independent. [Careful:

You may not assume that A is invertible; it may not even

be square.]

Let A be an m x n matrix whose columns are linearly inde-
pendent. [Careful: A need not be square.]
a. Use Exercise 19 to show that A4 is an invertible matrix.

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

Use Exercise 19 to show that rank A”4 = rank A. [Hint:
How many columns does A74 have? How is this connected
with the rank of A74?]

Suppose A is m x n with linearly independent columns and
b is in R™. Use the normal equations to produce a formula
for b, the projection of b onto Col A. [Hint: Find X first. The
formula does not require an orthogonal basis for Col A4.]

24.

25.

26.
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Find a formula for the least-squares solution of Ax = b when
the columns of A4 are orthonormal.

Describe all least-squares solutions of the system

x+y=2
x+y=4

[M] Example 3 in Section 4.8 displayed a low-pass linear
filter that changed a signal {y;} into {y;+} and changed a
higher-frequency signal {wy} into the zero signal, where
Vi = cos(rk /4) and wy = cos(3rwk/4). The following cal-
culations will design a filter with approximately those prop-
erties. The filter equation is

Ao Yk+2 + A1Yk+1 + A2 Yk = 2k for all k (8)

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k = 0,...,7. The action on the
two signals described above translates into two sets of eight
equations, shown below:

Yi+2  YVi+1 Yk Yik+1
k=0T 0 7 17 T 7
k=1 |-7 0 i 0
: 1 -7 0 _7
R A
0 -7 1|7 =7
7 0o -7 |L% 0
1 i 0 i
k=7 7 1 7 1]
Wi+2 Wi41 Wy
k=0T 0 -7 17 707
k=1 7 0 -7 0
: ~1 i 0 0
7= T o
0 7 -1 1710
-7 0 7 |L® 0
- 0 0
k=7 | -7 (- L0 |

Write an equation Ax = b, where A is a 16 x 3 matrix
formed from the two coefficient matrices above and where b
in R'® is formed from the two right sides of the equations.
Find ag, a;, and a, given by the least-squares solution of
Ax = b. (The .7 in the data above was used as an approx-
imation for /2/2, to illustrate how a typical computation
in an applied problem might proceed. If .707 were used
instead, the resulting filter coefficients would agree to at least
seven decimal places with +/2/4,1/2, and +/2/4, the values
produced by exact arithmetic calculations.)
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SOLUTIONS TO PRACTICE PROBLEMS

1. First, compute

1 1 1 1 -3 -3 3 9 0
AA=|-3 5 7|1 5 1|=|9 8 28
| -3 L 21 7 2 0 28 14
1 1 1] 5 -3
ATb=|-3 5 7||-3|=]|-65
| -3 1 2[5 —28
Next, row reduce the augmented matrix for the normal equations, ATAx = ATh:
3 9 0 -3 1 3 0 -1 1 0 =3/2 2
9 83 28 —65|~|0 56 28 -56|~---~|0 1 1/2 —1
0 28 14 -28 0 28 14 -28 0O o 0 0
The general least-squares solution is x| = 2 + %x3, X, =—1— %x;;, with x5 free.
For one specific solution, take x3 = 0 (for example), and get
2
x=|—1
0
To find the least-squares error, compute
. 1 -3 -3 2 5
b=A4x=|1 5 1 -1 |{=1]-3
1 7 2 0 -5

It turns out that b = b, so Ib — f)|| = 0. The least-squares error is zero because b
happens to be in Col A4.

2. Ifbisorthogonal to the columns of A4, then the projection of b onto the column space
of A is 0. In this case, a least-squares solution X of Ax = b satisfies Ax = 0.

6.6 | APPLICATIONS TO LINEAR MODELS

A common task in science and engineering is to analyze and understand relationships
among several quantities that vary. This section describes a variety of situations in
which data are used to build or verify a formula that predicts the value of one variable
as a function of other variables. In each case, the problem will amount to solving a
least-squares problem.

For easy application of the discussion to real problems that you may encounter later
in your career, we choose notation that is commonly used in the statistical analysis of
scientific and engineering data. Instead of Ax = b, we write X 8 = y and refer to X as
the design matrix, 8 as the parameter vector, and y as the observation vector.

Least-Squares Lines

The simplest relation between two variables x and y is the linear equation
y = Bo + Pi1x.! Experimental data often produce points (x1, y1), ..., (x,, y,) that,

'This notation is commonly used for least-squares lines instead of y = mx + b.
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FIGURE 6 A least-squares plane.

SOLUTION We expect the data to satisfy the following equations:

yi = Bo+ Brur + Bovy + €
y2 = Bo+ Piuz+ Povs + &

Yn = Bo + Brun + Pavy + €
This system has the matrix formy = X f8 + €, where

Observation Design Parameter Residual
vector matrix vector vector
J| L u o €
Y2 I uy v Po €
y=| . |. X=|. . s B= B | €=
. . . . ﬂz
Vn Lu, vy €n

Example 4 shows that the linear model for multiple regression has the same abstract
form as the model for the simple regression in the earlier examples. Linear algebra gives
us the power to understand the general principle behind all the linear models. Once X
is defined properly, the normal equations for § have the same matrix form, no matter
how many variables are involved. Thus, for any linear model where X X is invertible,
the least-squares B is given by (X7X)~! X Ty.

Further Reading
Ferguson, J., Introduction to Linear Algebra in Geology (New York: Chapman & Hall,
1994).

Krumbein, W. C., and F. A. Graybill, An Introduction to Statistical Models in Geology
(New York: McGraw-Hill, 1965).

Legendre, P., and L. Legendre, Numerical Ecology (Amsterdam: Elsevier, 1998).

Unwin, David J., An Introduction to Trend Surface Analysis, Concepts and Techniques
in Modern Geography, No. 5 (Norwich, England: Geo Books, 1975).

PRACTICE PROBLEM

When the monthly sales of a product are subject to seasonal fluctuations, a curve that
approximates the sales data might have the form

Yy = Bo + Bix + Brsin 2mx/12)
where x is the time in months. The term Sy + B;x gives the basic sales trend, and
the sine term reflects the seasonal changes in sales. Give the design matrix and the

parameter vector for the linear model that leads to a least-squares fit of the equation
above. Assume the data are (xy, y1),..., (X4, Yn)-
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6.6 EXERCISES

In Exercises 1-4, find the equation y = By + Bx of the least-
squares line that best fits the given data points.

1

AN I A

10.

0,1),(1,1),(2,2), (3,2)
(1,0), (2, 1), (4,2), (5,3)
(—1,0), (0, 1), (1,2), (2,4)
(2,3),(3,2), (5,1), (6,0)

Let X be the design matrix used to find the least-squares line
to fitdata (x1, y1), ..., (x4, ¥,). Use a theorem in Section 6.5
to show that the normal equations have a unique solution
if and only if the data include at least two data points with
different x-coordinates.

Let X be the design matrix in Example 2 corresponding to
a least-squares fit of a parabola to data (xi, y1), ..., (X, yu)-
Suppose X1, X, and x; are distinct. Explain why there is only
one parabola that fits the data best, in a least-squares sense.
(See Exercise 5.)

A certain experiment produces the data (1,1.8), (2,2.7),
(3,3.4), (4,3.8), (5,3.9). Describe the model that produces
a least-squares fit of these points by a function of the form

y=pix + pox?

Such a function might arise, for example, as the revenue from

the sale of x units of a product, when the amount offered for

sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the
unknown parameter vector.

b. [M] Find the associated least-squares curve for the data.

A simple curve that often makes a good model for the vari-

able costs of a company, as a function of the sales level x,

has the form y = B;x + B2x? + B3x>. There is no constant

term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the
linear model that leads to a least-squares fit of the equa-
tion above, with data (x;, y1), ..., (X,, Y»).

b. [M] Find the least-squares curve of the form above to fit
the data (4, 1.58), (6,2.08), (8,2.5), (10,2.8), (12,3.1),
(14,3.4), (16,3.8), and (18, 4.32), with values in thou-
sands. If possible, produce a graph that shows the data
points and the graph of the cubic approximation.

A certain experiment produces the data (1, 7.9), (2, 5.4), and
(3, —.9). Describe the model that produces a least-squares fit
of these points by a function of the form

y = Acosx + Bsinx

Suppose radioactive substances A and B have decay con-
stants of .02 and .07, respectively. If a mixture of these two
substances at time t = 0 contains M, grams of A and Mp
grams of B, then a model for the total amount y of the mixture
present at time 7 is

y = MAe—AOZt + MBe—AO7t (6)

11.

12.

Suppose the initial amounts M, and Mg are unknown,

but a scientist is able to measure the total amounts

present at several times and records the following points

(t;,y;): (10,21.34), (11,20.68), (12,20.05), (14,18.87),

and (15, 18.30).

a. Describe a linear model that can be used to estimate My
and Msg.

b. [M] Find the least-squares curve based on (6).

Halley’s Comet last appeared in 1986 and will reappear in
2061.

[M] According to Kepler’s first law, a comet should have
an elliptic, parabolic, or hyperbolic orbit (with gravitational
attractions from the planets ignored). In suitable polar coor-
dinates, the position (7, ¢) of a comet satisfies an equation of
the form

r=p+e(r-cos?)

where f is a constant and e is the eccentricity of the orbit,
with0 < e < 1foranellipse, e = 1 foraparabola, ande > 1
for a hyperbola. Suppose observations of a newly discovered
comet provide the data below. Determine the type of orbit,
and predict where the comet will be when ¢ = 4.6 (radians).?

z‘}\ 88 110 142 177 214
r] 300 230 165 125 101

[M] A healthy child’s systolic blood pressure p (in millime-
ters of mercury) and weight w (in pounds) are approximately
related by the equation

Bo+ Bilnw = p

Use the following experimental data to estimate the systolic
blood pressure of a healthy child weighing 100 pounds.

3 The basic idea of least-squares fitting of data is due to K. F. Gauss

(and, independently, to A. Legendre), whose initial rise to fame occurred
in 1801 when he used the method to determine the path of the asteroid
Ceres. Forty days after the asteroid was discovered, it disappeared behind
the sun. Gauss predicted it would appear ten months later and gave its
location. The accuracy of the prediction astonished the European scientific
community.



w 44 61 81 113 131
Inw | 3.78 4.11 439 473 488
)4 91 98 103 110 112

13. [M] To measure the takeoff performance of an airplane, the
horizontal position of the plane was measured every second,
from ¢t = 0 to = 12. The positions (in feet) were: 0, 8.8,
29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7,
686.8, and 809.2.

a. Find the least-squares cubic curve y = B+ Bt +
Bat? + Bt for these data.

b. Use the result of part (a) to estimate the velocity of the
plane when ¢ = 4.5 seconds.

14. Let x = %(xl +---4+x,) and y = %(yl 4+ 4 ).
Show that the least-squares line for the data
(x1,y1), ..., (xy, y,) must pass through (x,y). Thatis, show
that X and y satisfy the linear equation’y = /f?o + BIY. [Hint:
Derive this equation from the vector equation y = X }.?I + €.
Denote the first column of X by 1. Use the fact that the
residual vector € is orthogonal to the column space of X and
hence is orthogonal to 1.]

Given data for a least-squares problem, (xi, 1), ..., (x,, yu), the
following abbreviations are helpful:

Yox= Z?zl'xi’ Yoxt= Z?:leza
Y= Ve XY = i Xy

The normal equations for a least-squares line y = Bo + ,3 1 X may
be written in the form

nBo+/§12x =3y
BOZX+/§IZX2 =) xy

15. Derive the normal equations (7) from the matrix form given
in this section.

™)

16. Use a matrix inverse to solve the system of equations in (7)
and thereby obtain formulas for 8 and f, that appear in many
statistics texts.
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17. a. Rewrite the data in Example 1 with new x-coordinates
in mean deviation form. Let X be the associated design

matrix. Why are the columns of X orthogonal?

b. Write the normal equations for the data in part (a), and
solve them to find the least-squares line, y = By + B1x™*,
where x* = x —5.5.

18. Suppose the x-coordinates of the data (xi, y1), ..., (Xu, Yu)
are in mean deviation form, so that y_ x; = 0. Show that if
X is the design matrix for the least-squares line in this case,
then X 7X is a diagonal matrix.

Exercises 19 and 20 involve a design matrix X with two or more
columns and a least-squares solution 8 of y = X 8. Consider the
following numbers.

(i) | XB|*—the sum of the squares of the “regression term.”
Denote this number by SS(R).

) fly—X fS ||>—the sum of the squares for error term. Denote
this number by SS(E).

(iii) ||y||*—the “total” sum of the squares of the y-values. Denote
this number by SS(T).

Every statistics text that discusses regression and the linear model
y = X B + € introduces these numbers, though terminology and
notation vary somewhat. To simplify matters, assume that the
mean of the y-values is zero. In this case, SS(T) is proportional
to what is called the variance of the set of y-values.

19. Justify the equation SS(T) = SS(R) + SS(E). [Hint: Use a
theorem, and explain why the hypotheses of the theorem are
satisfied.] This equation is extremely important in statistics,
both in regression theory and in the analysis of variance.

20. Show that | XB|>= BT XTy. [Hint: Rewrite the left side
and use the fact that ﬁ satisfies the normal equations.] This
formula for SS(R) is used in statistics. From this and from
Exercise 19, obtain the standard formula for SS(E):

AT
SSEB)=y'y—-B X'y

SOLUTION TO PRACTICE PROBLEM

It should be clear that

Sales trend with seasonal
fluctuations.

X =

Construct X and § so that the kth row of X is the predicted y-value that corresponds
to the data point (xx, yi), namely,

Bo + Bixk + B2sin(2wxy /12)

x;  sin(2wx;/12) Bo

: : . B=| b
X, sin(2mwx,/12) B2
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6.

So p, is already orthogonal to g;, and we can take g, = p,. For the projection of p;
onto W, = Span{q, ¢»}, compute

1
(p3,q1)=/ 12¢2-1dt = 413
0

1
<q1,q1>=/ 1 1di =1
0

(P3, q2) =

1
(a2ae) = [ @1=1%dr = gr =1

Then

(p3. q1)

1
=4
0

1
=1
0

1 1
/ 12022t — 1) dt = | (241> —12t*)dt =2
0 0

1

0

projy, p3 =

and

(q1.491)

<p3’ q2) I 2
(42,92) ? 1 ] 1/3 ? : ?

43 = p3 — projy, p3 = p3 —4q1 — 6¢

As a function, g3(¢t) = 12¢> — 4 — 6(2t — 1) = 12¢*> — 12t + 2. The orthogonal basis
for the subspace W is {q1, g2, 43} ]

PRACTICE PROBLEMS

Use the inner product axioms to verify the following statements.

1. (v,0) =(0,v) =0.

2. (u,v+w) = (u,v)+ (u,w).

7 EXERCISES

1.

Let R? have the inner product of Example 1, and let
x=(1,1)andy = (5,-1).
a. Find [|x], |y, and [(x. y)*.

b. Describe all vectors (z;, z,) that are orthogonal to y.

Let R? have the inner product of Example 1. Show that
the Cauchy—Schwarz inequality holds for x = (3, —2) and
y = (=2, 1). [Suggestion: Study |(x,y)|*.]

Exercises 3-8 refer to P, with the inner product given by evalua-
tion at —1, 0, and 1. (See Example 2.)

3.

Compute (p, q), where p(t) =4 +1t,q(t) = 5— 41>

4. Compute (p,q), where p(t) = 3t — 2, q(t) = 3 + 2¢2.
5.
6
7

Compute || p|| and ||¢||, for p and ¢ in Exercise 3.

. Compute || p|| and ||¢||, for p and ¢ in Exercise 4.

. Compute the orthogonal projection of g onto the subspace

spanned by p, for p and ¢ in Exercise 3.

Compute the orthogonal projection of g onto the subspace
spanned by p, for p and ¢ in Exercise 4.

10.

11.

12.

Let P; have the inner product given by evaluation at —3, —1,

1,and 3. Let po(1) = 1, py(t) = t, and p,(t) = °.

a. Compute the orthogonal projection of p, onto the sub-
space spanned by po and p;.

b. Find a polynomial ¢ that is orthogonal to p, and
p1, such that {po, p1,q} is an orthogonal basis for
Span {po, p1, p}. Scale the polynomial ¢ so that its
vector of values at (—3,—1,1,3) is (1, —1,—1, 1).

Let P; have the inner product as in Exercise 9, with po, pi,
and ¢ the polynomials described there. Find the best approx-
imation to p(z) = ¢* by polynomials in Span { py, p1, q}.

Let po, p1, and p, be the orthogonal polynomials described
in Example 5, where the inner product on P, is given by
evaluation at —2, —1, 0, 1, and 2. Find the orthogonal
projection of ¢* onto Span { po, pi. p2}-

Find a polynomial p; such that {p, pi, p2, p3} (see Ex-
ercise 11) is an orthogonal basis for the subspace P; of
P,. Scale the polynomial p; so that its vector of values is
(-1,2,0,-2,1).



13.

14.

Let A be any invertible n x n matrix. Show that for u, v in
R", the formula (u,v) = (Au)- (Av) = (Au)” (Av) defines
an inner product on R”.

Let 7' be a one-to-one linear transformation from a vector
space V into R”. Show that for u, v in V, the formula
(u,v) = T(u)-T(v) defines an inner product on V.

Use the inner product axioms and other results of this section to
verify the statements in Exercises 15-18.

15.
16.
17.
18.

19.

20.

(u, cv) = c(u, v) for all scalars c.
If {u, v} is an orthonormal set in V, then ||lu — v|| = V2.
(w,v) = jlu4v[> = jllu—v|*

lu+vI? + flu=vI? = 2[ul* + 2] v

Givena >0and b >0, let u = [g] and v = [ﬁ]
Use the Cauchy—Schwarz inequality to compare the geomet-
ric mean v/ ab with the arithmetic mean (a + b)/2.

Let u = [Z] and v = [ i] Use the Cauchy—Schwarz

inequality to show that

a+b\* a*+b?
<
2 - 2
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Exercises 21-24 refer to V = C|[0, 1], with the inner product
given by an integral, as in Example 7.

21.
22,
23.
24.
25.

26.

27.

28.

Compute (£, g), where f(t) =1—3t>and g(t) =1 —¢>.
Compute (£, g), where f(t) = 5t —3and g(¢t) = 3 — 2.
Compute || || for f in Exercise 21.

Compute || g|| for g in Exercise 22.

Let V be the space C[—1, 1] with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, ¢, and ¢2. The polynomials in this basis
are called Legendre polynomials.

Let V be the space C[—2, 2] with the inner product of Exam-
ple 7. Find an orthogonal basis for the subspace spanned by
the polynomials 1, 7, and 2.

[M] Let P, have the inner product as in Example 5, and let
Po, P1, p» be the orthogonal polynomials from that exam-
ple. Using your matrix program, apply the Gram—Schmidt
process to the set { po, pi, pa2, 3, 1%} to create an orthogonal
basis for P;.

[M] Let V be the space C[0,2x] with the inner prod-
uct of Example 7. Use the Gram—Schmidt process to
create an orthogonal basis for the subspace spanned by
{1,cost,cos’t,cos’ t}. Use a matrix program or computa-
tional program to compute the appropriate definite integrals.

SOLUTIONS TO PRACTICE PROBLEMS

1. By Axiom 1, (v,0) = (0,v).

(0,v) =0.

Then (0,v) = (Ov,v) = 0(v,v), by Axiom 3, so

2. By Axioms 1, 2, and then 1 again, (u,v+ w) = (v+ w,u) = (v,u) + (w,u) =

(u,v) + (u,w).

6.8 APPLICATIONS OF INNER PRODUCT SPACES

The examples in this section suggest how the inner product spaces defined in Section 6.7
arise in practical problems. The first example is connected with the massive least-
squares problem of updating the North American Datum, described in the chapter’s

introductory example.

Weighted Least-Squares

Lety be a vector of n observations, yy, . ..

, Yn, and suppose we wish to approximate y by

a vector y that belongs to some specified subspace of R”. (In Section 6.5, § was written

as Ax so that § was in the column space of 4.) Denote the entries in § by J1,..., J,.
Then the sum of the squares for error, or SS(E), in approximating y by y is
SS(E) = (y1 = F1)* + - + (v — $)? )

This is simply |ly — ¥||>, using the standard length in R”.
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EXAMPLE 4 Find the nth-order Fourier approximation to the function f(t) = ¢ on
the interval [0, 27].

SOLUTION Compute
ag 11 [ 1 [1 ,

2_5.; 0 2

and for k > 0, using integration by parts,

1 [ 171 N
ay = — tcosktdt = — | —coskt + —sinkt =0
7 Jo 7 | k? k 0
1 [ 171 t S
by = — tsinktdt = — | — sinkt — — coskt =——
S /0 e [kZ k L k
Thus the nth-order Fourier approximation of f(¢) =t is
. . 2 2 .
m—2sint —sin2¢t — —sin3t —--- — —sinnt
3 n
Figure 3 shows the third- and fourth-order Fourier approximations of f. |
y y
27+ V=1 27+ V=1
T -
} } 4 } } t
T 21 ™ 21
(a) Third order (b) Fourth order

FIGURE 3 Fourier approximations of the function f () = 1.

The norm of the difference between f and a Fourier approximation is called the
mean square error in the approximation. (The term mean refers to the fact that
the norm is determined by an integral.) It can be shown that the mean square error
approaches zero as the order of the Fourier approximation increases. For this reason, it
is common to write

oo
a
f@) = ?0 + ’;(am cosmt + by, sinmt)
This expression for f(¢) is called the Fourier series for f on [0,27]. The term
an, cosmt, for example, is the projection of f onto the one-dimensional subspace
spanned by cosm?.

PRACTICE PROBLEMS

1. Letq;(t) = 1, g2(t) = t, and g3(¢t) = 3t> — 4. Verify that {g;,g>. g3} is an orthog-
onal set in C[—2, 2] with the inner product of Example 7 in Section 6.7 (integration
from —2 to 2).

2. Find the first-order and third-order Fourier approximations to
f(t) =3 —2sint + 5sin2¢ — 6 .cos 2¢
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6.8 EXERCISES

1. Find the least-squares line y = By + B x that best fits the 9.

Find the third-order Fourier approximation to f(z) =

data (—2,0), (—1,0), (0,2), (1,4), and (2, 4), assuming that
the first and last data points are less reliable. Weight them
half as much as the three interior points.

. Suppose 5 out of 25 data points in a weighted least-squares
problem have a y-measurement that is less reliable than the

10.

2w —t.

Find the third-order Fourier approximation to the square
wave function, f(t) =1for 0 <t < and f(t) = —1 for
T <t<2m.

11. Find the third-order Fouri imation to sin® ¢, without
others, and they are to be weighted half as much as the other et the third-order Toutier approximation to st £, withou
. . . . performing any integration calculations.
20 points. One method is to weight the 20 points by a factor
of 1 and the other 5 by a factor of % A second method is 12. Find the third-order Fourier approximation to cos? ¢, without
to weight the 20 points by a factor of 2 and the other 5 by a performing any integration calculations.
factor .Of 1. Do the two methods produce different results? 13, Explain why a Fourier coefficient of the sum of two functions
Explain. is the sum of the corresponding Fourier coefficients of the
. Fit a cubic trend function to the data in Example 2. The two functions.
: . _ 53 _ 17
orthogonal cubic polynomial is p3(t) = g1° — 1. 14. Suppose the first few Fourier coefficients of some function
. To make a trend analysis of six evenly spaced data points, one f in C[0,2n] are ay, a;, a,, and by, by, b;. Which of the
can use orthogonal polynomials with respect to evaluation at following trigonometric polynomials is closer to f? Defend
the points # = —5,-3,—1,1,3,and 5. your answer.
. Show that the first th rth 1 pol ial a .
a ow that the first three orthogonal polynomials are (1) = 70 b cost 4y c0s 2t 4+ by sint
p@) =1, pi)=1, and py(1) =3>- 2 .
0 . .
(The polynomial p, has been scaled so that its values at h(t) = > + a1 cost 4 aycos 2t + by sint + by sin 21
the evaluation points are small integers.) 15. [M] Refer to the data in Exercise 13 in Section 6.6, con-

b. Fit a quadratic trend function to the data

(=5,1),(=3,1),(-1,4),(1,4),(3,6),(5,8)

cerning the takeoff performance of an airplane. Suppose the
possible measurement errors become greater as the speed of
the airplane increases, and let W be the diagonal weighting

In Exercises 5-14, the space is C|[0, 2] with the inner product

(6).

5. Show that sinm¢ and sinnt are orthogonal when m # n.

matrix whose diagonal entries are 1, 1, 1, .9, .9, .8, .7, .6, .5,
4, .3, .2, and .1. Find the cubic curve that fits the data with
minimum weighted least-squares error, and use it to estimate
the velocity of the plane when ¢ = 4.5 seconds.

16. [M] Let f; and f5 be the fourth-order and fifth-order Fourier
approximations in C|[0,2x] to the square wave function in
Exercise 10. Produce separate graphs of f; and f5 on the
interval [0, 2], and produce a graph of f5 on [—2m, 27].

6. Show that sinmt and cosn? are orthogonal for all positive
integers m and n.

7. Show that | coskt||*> = 7 and || sink¢||> = 7 for k > 0.

8. Find the third-order Fourier approximation to f(t) =1t — 1.

El The Linearity of an Orthogonal Projection 6-25

SOLUTIONS TO PRACTICE PROBLEMS

1. Compute
2

=0
-2

2 1
(q1.q2) = / l-tdt = =12
5 2

2
=0
-2

3
(—t4 — 2[2)
4

2
(q1.93) = /21-(3t2—4)dt = (> —41)

2
=0
-2

2
(92.93) = /2t° (31> —4)dt =
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2. The third-order Fourier approximation to f is the best approximation in C [0, 2]

y=3-2sint

approximation:

to f by functions (vectors) in the subspace spanned by 1, cos?, cos2t, cos3t,
sint, sin2¢, and sin 3¢. But f is obviously in this subspace, so f is its own best

f(t) =3—2sint + 5sin2t — 6.¢cos 2t

t For the first-order approximation, the closest function to f in the subspace W =
Span{l1,cost,sint} is 3 —2sint. The other two terms in the formula for f(¢) are
orthogonal to the functions in W, so they contribute nothing to the integrals that

give the Fourier coefficients for a first-order approximation.

First- and third-order
approximations to f(z).

CHAPTER 6 SUPPLEMENTARY EXERCISES

1. The following statements refer to vectors in R” (or R”") with
the standard inner product. Mark each statement True or
False. Justify each answer.

a.
b.

The length of every vector is a positive number.

A vector v and its negative —v have equal lengths.
The distance between u and v is ||lu — v||.

If r is any scalar, then ||rv| = r|v||.

If two vectors are orthogonal, they are linearly indepen-
dent.

If x is orthogonal to both u and v, then x must be
orthogonal tou — v.

If ||u + v||> = ||u||> + ||v||?, then u and v are orthogonal.
If |[u — v||?> = [Ju||®> + ||v||*, then u and v are orthogonal.

The orthogonal projection of y onto u is a scalar multiple
of y.

If a vector y coincides with its orthogonal projection onto
a subspace W, theny isin W.

The set of all vectors in R” orthogonal to one fixed vector
is a subspace of R”.

If W is a subspace of R”, then W and WL have no
vectors in common.

If {v|, v2, v3} is an orthogonal set and if ¢y, ¢,, and ¢; are
scalars, then {c| vy, c,v», c3V3} is an orthogonal set.

If a matrix U has orthonormal columns, then UUT = 1.

A square matrix with orthogonal columns is an orthogo-
nal matrix.

If a square matrix has orthonormal columns, then it also
has orthonormal rows.

If W is a subspace, then || projy, v||> + ||v — projy, v|> =
vl

. Let{vy,..

. Let {vi,..

. Let U be an n xn orthogonal matrix.

r. A least-squares solution of Ax = b is the vector AX in
Col A closest to b, so that |[b— AX || < ||b — Ax|| for
all x.

s. The normal equations for a least-squares solution of
Ax = b are given by X = (A74)"'ATb.

., V,} be an orthonormal set. Verify the following
equality by induction, beginning with p = 2. If x = ¢;v;+
<+« +cpVp, then

Ix? = lei> + -+ e, I

.,Vp} be an orthonormal set in R”. Verify the
following inequality, called Bessel’s inequality, which is true
for each x in R":

X[ = [xevi? + [xe Vol + -+ [xev, |2

Show that if

{Vi,...,V,} is an orthonormal basis for R”, then so is
{Uvy,...,Uv,}.

. Show that if an n x n matrix U satisfies (Ux)- (Uy) = x-y

for all x and y in R”, then U is an orthogonal matrix.

. Show that if U is an orthogonal matrix, then any real eigen-

value of U must be +1.

. A Householder matrix, or an elementary reflector, has the

form Q = I —2uu’ where u is a unit vector. (See Exer-
cise 13 in the Supplementary Exercises for Chapter 2.) Show
that Q is an orthogonal matrix. (Elementary reflectors are of-
ten used in computer programs to produce a QR factorization
of a matrix A. If A has linearly independent columns, then
left-multiplication by a sequence of elementary reflectors can
produce an upper triangular matrix.)
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2. The third-order Fourier approximation to f is the best approximation in C [0, 2]

y=3-2sint

approximation:

to f by functions (vectors) in the subspace spanned by 1, cos?, cos2t, cos3t,
sint, sin2¢, and sin 3¢. But f is obviously in this subspace, so f is its own best

f(t) =3—2sint + 5sin2t — 6.¢cos 2t

t For the first-order approximation, the closest function to f in the subspace W =
Span{l1,cost,sint} is 3 —2sint. The other two terms in the formula for f(¢) are
orthogonal to the functions in W, so they contribute nothing to the integrals that

give the Fourier coefficients for a first-order approximation.

First- and third-order
approximations to f(z).
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1. The following statements refer to vectors in R” (or R”") with
the standard inner product. Mark each statement True or
False. Justify each answer.

a.
b.

The length of every vector is a positive number.

A vector v and its negative —v have equal lengths.
The distance between u and v is ||lu — v||.

If r is any scalar, then ||rv| = r|v||.

If two vectors are orthogonal, they are linearly indepen-
dent.

If x is orthogonal to both u and v, then x must be
orthogonal tou — v.

If ||u + v||> = ||u||> + ||v||?, then u and v are orthogonal.
If |[u — v||?> = [Ju||®> + ||v||*, then u and v are orthogonal.

The orthogonal projection of y onto u is a scalar multiple
of y.

If a vector y coincides with its orthogonal projection onto
a subspace W, theny isin W.

The set of all vectors in R” orthogonal to one fixed vector
is a subspace of R”.

If W is a subspace of R”, then W and WL have no
vectors in common.

If {v|, v2, v3} is an orthogonal set and if ¢y, ¢,, and ¢; are
scalars, then {c| vy, c,v», c3V3} is an orthogonal set.

If a matrix U has orthonormal columns, then UUT = 1.

A square matrix with orthogonal columns is an orthogo-
nal matrix.

If a square matrix has orthonormal columns, then it also
has orthonormal rows.

If W is a subspace, then || projy, v||> + ||v — projy, v|> =
vl

. Let{vy,..

. Let {vi,..

. Let U be an n xn orthogonal matrix.

r. A least-squares solution of Ax = b is the vector AX in
Col A closest to b, so that |[b— AX || < ||b — Ax|| for
all x.

s. The normal equations for a least-squares solution of
Ax = b are given by X = (A74)"'ATb.

., V,} be an orthonormal set. Verify the following
equality by induction, beginning with p = 2. If x = ¢;v;+
<+« +cpVp, then

Ix? = lei> + -+ e, I

.,Vp} be an orthonormal set in R”. Verify the
following inequality, called Bessel’s inequality, which is true
for each x in R":

X[ = [xevi? + [xe Vol + -+ [xev, |2

Show that if

{Vi,...,V,} is an orthonormal basis for R”, then so is
{Uvy,...,Uv,}.

. Show that if an n x n matrix U satisfies (Ux)- (Uy) = x-y

for all x and y in R”, then U is an orthogonal matrix.

. Show that if U is an orthogonal matrix, then any real eigen-

value of U must be +1.

. A Householder matrix, or an elementary reflector, has the

form Q = I —2uu’ where u is a unit vector. (See Exer-
cise 13 in the Supplementary Exercises for Chapter 2.) Show
that Q is an orthogonal matrix. (Elementary reflectors are of-
ten used in computer programs to produce a QR factorization
of a matrix A. If A has linearly independent columns, then
left-multiplication by a sequence of elementary reflectors can
produce an upper triangular matrix.)



10.

11.

12.

13.

14.

Let T : R" — R” be a linear transformation that preserves

lengths; that is, || 7(x)|| = ||x|| for all x in R”".

a. Show that 7 also preserves orthogonality; that is,
T(x):T(y) = 0 whenever x-y = 0.

b. Show that the standard matrix of 7" is an orthogonal
matrix.

Let u and v be linearly independent vectors in R” that are
not orthogonal. Describe how to find the best approximation
to z in R” by vectors of the form x;u + x,v without first
constructing an orthogonal basis for Span {u, v}.

Suppose the columns of A are linearly independent. Deter-
mine what happens to the least-squares solution X of Ax = b
when b is replaced by cb for some nonzero scalar c.

If a, b, and ¢ are distinct numbers, then the following
system is inconsistent because the graphs of the equations
are parallel planes. Show that the set of all least-squares
solutions of the system is precisely the plane whose equation
isx—=2y+5z=(@+b+c)/3.

xX—2y+52=a
x—=2y+4+5z=5»b
x—=2y+5=c

Consider the problem of finding an eigenvalue of an n x n
matrix A when an approximate eigenvector v is known.
Since v is not exactly correct, the equation

Av =y (1)

will probably not have a solution. However, A can be
estimated by a least-squares solution when (1) is viewed
properly. Think of v as an n x 1 matrix V/, think of A as
a vector in R!, and denote the vector Av by the symbol b.
Then (1) becomes b = AV, which may also be written as
VA = b. Find the least-squares solution of this system of n
equations in the one unknown A, and write this solution using
the original symbols. The resulting estimate for A is called a
Rayleigh quotient. See Exercises 11 and 12 in Section 5.8.

Use the steps below to prove the following relations among
the four fundamental subspaces determined by an m X n
matrix A.

RowA = (Nul A)-, ColA = (Nul A7)+

a. Show that Row A4 is contained in (Nul A)". (Show that if
x is in Row A, then x is orthogonal to every u in Nul A.)

b. Suppose rank A = r. Find dim Nul A and dim (Nul A)=,
and then deduce from part (a) that Row A = (Nul A)=.
[Hint: Study the exercises for Section 6.3.]

c. Explain why Col A = (Nul A7)~

Explain why an equation Ax = b has a solution if and only
if b is orthogonal to all solutions of the equation A™x = 0.
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Exercises 15 and 16 concern the (real) Schur factorization of an
n x n matrix A inthe form A = URUT, where U is an orthogonal
matrix and R is an n X n upper triangular matrix.'

15. Show that if A admits a (real) Schur factorization, A =
URUT, then A has n real eigenvalues, counting multiplic-
ities.

16. Let A be an n x n matrix with n real eigenvalues, counting
multiplicities, denoted by Ay, ..., 4,. It can be shown that
A admits a (real) Schur factorization. Parts (a) and (b) show
the key ideas in the proof. The rest of the proof amounts to
repeating (a) and (b) for successively smaller matrices, and
then piecing together the results.

a. Let u; be a unit eigenvector corresponding to A;, let
u,,...,u, be any other vectors such that {u;,...,u,}
is an orthonormal basis for R”, and then let U =
[y uw, u, |. Show that the first column of
UT AU is A,e,, where e, is the first column of the n x n
identity matrix.

b. Part (a) implies that UTAU has the form shown below.
Explain why the eigenvalues of A; are A,, ..., A,. [Hint:
See the Supplementary Exercises for Chapter 5.]

AL * x %
0
UTAU =
Ay
0

[M] When the right side of an equation Ax =b is changed
slightly —say, to Ax = b + Ab for some vector Ab—the solution
changes from x to x + Ax, where Ax satisfies A(Ax) = Ab.
The quotient ||Ab||/||b] is called the relative change in b (or
the relative error in b when Ab represents possible error in the
entries of b). The relative change in the solution is ||Ax|/||x]-
When A is invertible, the condition number of A, written as
cond(A), produces a bound on how large the relative change in
X can be:

A Ab
181 _ . J4Pl o
I b

In Exercises 17-20, solve Ax = b and A(Ax) = Ab, and show
that the inequality (2) holds in each case. (See the discussion of
ill-conditioned matrices in Exercises 41-43 in Section 2.3.)

45 3.1 19.249 001
17. A_[1.6 1.1]"’_[ 6.843]’Ab_[—.003]

45 3.1 500 001
18. A_[ ]’b_[—1.4o7]’Ab_[—.003]

1.6 1.1
L1f complex numbers are allowed, every n X n matrix A admits a
(complex) Schur factorization, A = URU ~!, where R is upper triangular
and U™ is the conjugate transpose of U. This very useful fact is
discussed in Matrix Analysis, by Roger A. Horn and Charles R. Johnson
(Cambridge: Cambridge University Press, 1985), pp. 79-100.
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7 —6 —4 1 .100 7 —6 —4 1 4.230
S R T ) N b S O
19 9 7 1 1.462 19 9 7 1 69.536

.49 27

o L2 o] 7

8.04 3.93



7.1 EXERCISES

— NUMERICAL NOTE

When 4 is symmetric and not too large, modern high-performance computer al-
gorithms calculate eigenvalues and eigenvectors with great precision. They apply
a sequence of similarity transformations to A involving orthogonal matrices. The
diagonal entries of the transformed matrices converge rapidly to the eigenvalues
of A. (See the Numerical Notes in Section 5.2.) Using orthogonal matrices
generally prevents numerical errors from accumulating during the process. When
A is symmetric, the sequence of orthogonal matrices combines to form an
orthogonal matrix whose columns are eigenvectors of A.

A nonsymmetric matrix cannot have a full set of orthogonal eigenvectors, but
the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal
techniques are needed to calculate eigenvectors.

71
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PRACTICE PROBLEMS

1. Show that if A is a symmetric matrix, then A? is symmetric.

2. Show that if A is orthogonally diagonalizable, then so is A2.

Determine which of the matrices in Exercises 1-6 are symmetric.

5
3

3

1. s

[2

3. 4
-6
S. 0
0

Determine which of the matrices in Exercises 7-12 are orthogo-

H
]

2

—6
0

0
2
—6

2.

nal. If orthogonal, find the inverse.

s.[

-3

=5

0 8
8 0
3 -2
1

2

o - O

1

/N2 —1/4/2

1/32

6 .8
7 .8 —,6]
[—5 2
? 2 5}
r2/3 2/3
11. 0 1/3/5
| V/53/3 —4//45
r 5 5-5-5
-5 5-5 5
12. 5 5 5 5
-5 5 5 -5

Orthogonally diagonalize the matrices in Exercises 13-22, giving
an orthogonal matrix P and a diagonal matrix D. To save you

-1
10. 2
2

1/3
_z/ﬁ
—2//45

2

-1

2

1/v2

2
2
-1

N =N

|

time, the eigenvalues in Exercises 17-22 are: (17) 5, 2, —2; (18)
25,3, -50;(19) 7, —2;(20) 13,7, 1;(21) 9, 5, 1; (22) 2, 0.

13.

15.

19.

21.

23.

24.

(3 1 (1 5
|1 3 ] 14. 15 1 ]
16 —4 [—7 24
| —4 1 i| 16. | 24 7 ]
1 1 3 -2 =36 0
1 3 1 18 =36 -23 0
301 1 . 0 0 3
3 -2 4 7 —4 4
-2 6 2 20 | 4 5 0
. 4 2 3 . 4 0 9
4 1 3 1 (2 0 0 o0
1 4 1 3 0o 1 0 1
31 4 1 22. 0o o0 2 0
L1 3 1 4 L0 1 0 1
3 1 1 1
LetA=|1 3 1 |andv= |1 [. Verifythat2isan
| 1 1 3 1
eigenvalue of A and v is an eigenvector. Then orthogonally

diagonalize A.

Let A =

5 —4 =2 -2 1
—4 5 2 (,vi= 2 [,andv, = | 1
-2 2 2 1 0

Verify that v, and v, are eigenvectors of A. Then orthogo-
nally diagonalize A4.
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In Exercises 25 and 26, mark each statement True or False. Justify
each answer.

. Given any x in R”, compute Bx and show that Bx is the

orthogonal projection of x onto u, as described in Section
6.2.

25. a. Ann X n matrix that is orthogonally diagonalizable must

be symmetric. . Show that B is a symmetric matrix and B> = B.

b. If AT = A and if vectors u and v satisfy Au = 3u and . Show that u is an eigenvector of B. What is the corre-
Av = 4v. thenu-v = 0. sponding eigenvalue?

c. Ann x n symmetric matrix has n distinct real eigenval- 36. Let B be an n x n symmetric matrix such that B%*=B. Any
ues. such matrix is called a projection matrix (or an orthogonal

d. For a nonzero v in R”, the matrix vv is called a projec- projection matrix). Given any y in R", let y = By and
tion matrix. Z=Yy—Yy.

26. a. Every symmetric matrix is orthogonally diagonalizable. a. Show that z is orthogonal to y.

b. If B = PDPT, where PT = P~' and D is a diagonal
matrix, then B is a symmetric matrix.

b. Let W be the column space of B. Show that y is the sum

of avector in W and a vector in W--. Why does this prove
O . . that By is the orthogonal projection of y onto the column
c. An orthogonal matrix is orthogonally diagonalizable. space of B?
d. The dimension of an eigenspace of a symmetric matrix

equals the multiplicity of the corresponding eigenvalue. [M] Orthogonally diagonalize the matrices in Exercises 37—40.

To practice the methods of this section, do not use an eigenvector
routine from your matrix program. Instead, use the program to
find the eigenvalues, and, for each eigenvalue A, find an orthonor-
mal basis for Nul(4 — A7), as in Examples 2 and 3.

27. Suppose A is a symmetric n X n matrix and B is any n X m
matrix. Show that BTAB, B'B, and BB” are symmetric
matrices.

28. Show that if A is an n X n symmetric matrix, then (4x).y =

x-(Ay) for all x,y in R”". 2 z _2 _g
29. Suppose A is invertible and orthogonally diagonalizable. 37. 9 6 5 2
Explain why A~ is also orthogonally diagonalizable. -6 9 2 5

30. Suppose A and B are both orthogonally diagonalizable and —

AB = BA. Explain why AB is also orthogonally diagonal- 38 —18 =06 —04

w |
31. Let A = PDP~', where P is orthogonal and D is diagonal, —04 12 —12 .41

and let A be an eigenvalue of A of multiplicity k. Then -

A appears k times on the diagonal of D. Explain why the 31 58 .08 .44

dimension of the eigenspace for A is k. 39 58 —.56 .44 —.58
32. Suppose A = PRP ™!, where P is orthogonal and R is upper ?Li _gg _(l)g _(3)?

triangular. Show that if A is symmetric, then R is symmetric o ’ ’ ’

and hence is actually a diagonal matrix. 10 ) 2 —6

9
33. Construct a spectral decomposition of A from Example 2. 2 10 2 -6 9
40. 2 2 10 -6 9

-6 -6 —6 26 9

35. Letu be a unit vector in R”, and let B = uu’. 9 9 9 9 —19

34. Construct a spectral decomposition of 4 from Example 3.

SOLUTIONS TO PRACTICE PROBLEMS

1. (4%)T = (AA)T = ATAT, by a property of transposes. By hypothesis, A7 = A. So
(A%)T = AA = A?, which shows that 42 is symmetric.

2. If Ais orthogonally diagonalizable, then A is symmetric, by Theorem 2. By Practice
Problem 1, A2 is symmetric and hence is orthogonally diagonalizable (Theorem 2).
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PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable
X = Py such that

O(x) = x"Ax = y' Dy = Ay} + Aay3 + -+ A2 O]

where Ay,..., A, are the eigenvalues of A. Since P is invertible, there is a one-to-
one correspondence between all nonzero x and all nonzero y. Thus the values of Q(x)
for x # 0 coincide with the values of the expression on the right side of (4), which
is obviously controlled by the signs of the eigenvalues Ai,..., A,, in the three ways
described in the theorem. [ |

EXAMPLE 6 Is O(x) = 3x7 + 2x7 + x3 + 4x;x3 + 4x2x3 positive definite?

SOLUTION Because of all the plus signs, this form “looks” positive definite. But the
matrix of the form is

32 0
A=1(2 2 2
0o 2 1

and the eigenvalues of A turn out to be 5, 2, and —1. So Q is an indefinite quadratic
form, not positive definite. |

Indefinite

The classification of a quadratic form is often carried over to the matrix of the form.

Thus a positive definite matrix A is a symmetric matrix for which the quadratic form

xAx is positive definite. Other terms, such as positive semidefinite matrix, are defined
analogously.

— NUMERICAL NOTE

A fast way to determine whether a symmetric matrix A is positive definite is
to attempt to factor A in the form 4 = RTR, where R is upper triangular with
positive diagonal entries. (A slightly modified algorithm for an LU factorization
is one approach.) Such a Cholesky factorization is possible if and only if A4 is
positive definite. See Supplementary Exercise 7 at the end of Chapter 7.

PRACTICE PROBLEM

Describe a positive semidefinite matrix A in terms of its eigenvalues.

7.2 EXERCISES

1. Compute the quadratic form x”Ax, when A = [ > 1 3] X1 2 1/4/3
1/3 1 a x=| x b. x=| —1 C. X= 1/«/5
and X3 5 1/ \/5
X1 6 1
a x= b. x= | c. X = 3
X2 3. Find the matrix of the quadratic form. Assume X is in R2.
4 3 0 a. 10x7 — 6x;x, — 3x2 b. 5x} +3xx;
2. Compute the quadratic form x’4Ax, for4A = | 3 2 1
o 1 1 4. Find the matrix of the quadratic form. Assume x is in R2.

and a. 20x7 + 15x;x; — 10x3 b. x1x2



5. Find the matrix of the quadratic form. Assume x is in R>.
a. 8x7 4+ 7x3 —3x2 — 6x1x2 + 4x1x3 — 2X2X3
b. 4X1X2 + 6X1X3 — 8X2X3
6. Find the matrix of the quadratic form. Assume X is in R>.
a. 5x}—x3 4+ 7x7 + 5x1x0 — 3x1x3
b. x3—4xix; + 4x2x;
7. Make a change of variable, x = Py, that transforms the

quadratic form x? + 10x;x, + X3 into a quadratic form with
no cross-product term. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form
9x? + 7x3 + 11x? — 8xyx2 + 8xx3

It can be shown that the eigenvalues of A are 3, 9, and 15.
Find an orthogonal matrix P such that the change of variable
x = Py transforms x”Ax into a quadratic form with no cross-
product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9—18. Then make a
change of variable, x = Py, that transforms the quadratic form
into one with no cross-product term. Write the new quadratic
form. Construct P using the methods of Section 7.1.

9. 3x? —4x;x; + 6x3 10. 9x? — 8x1x, + 3x2
11. 2x7 + 10x,x; + 2x3 12. —5x7 + 4xix; — 2x3
13. xl2 — 6x1X7 + 9x§ 14. 8)(12 + 6x1X>

15. [M] —2x7 — 6x3 — 9x3 — 9xF + 4x1x2 + 4xyx3 + dx1xg +
6.X3X4

16. [M] 4x7 + 4x3 + 4x3 + 4x7 + 3x1x2 + 3x3x4 — dxyx4 +
4X2X3

17. [M] x7 + x5 + x3 + x2 4 9x1x2 — 12x1x4 + 12x3x3 4+ 9x3x4

18. [M] 11)(12 — _X% — 12X1X2 — 12X1X3 — 12X1X4 — 2X3X4

19. What is the largest possible value of the quadratic
form 5x7 + 8x3 if x = (x1,x;) and x’x = 1, that is, if
x? + x? = 1? (Try some examples of x.)

20. What is the largest value of the quadratic form 5x7 — 3x3 if
xIx =17

In Exercises 21 and 22, matrices are n x n and vectors are in R”.
Mark each statement True or False. Justify each answer.

21. a.

b. A quadratic form has no cross-product terms if and only
if the matrix of the quadratic form is a diagonal matrix.

The matrix of a quadratic form is a symmetric matrix.

c. The principal axes of a quadratic form x”Ax are eigenvec-
tors of A.

d. A positive definite quadratic form Q satisfies Q(x) > 0
for all x in R".
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e. If the eigenvalues of a symmetric matrix A are all posi-
tive, then the quadratic form x”Ax is positive definite.

f. A Cholesky factorization of a symmetric matrix A has
the form A = RTR, for an upper triangular matrix R with
positive diagonal entries.

22. The expression ||x||? is a quadratic form.

I

b. If A is symmetric and P is an orthogonal matrix, then
the change of variable x = Py transforms x’Ax into a
quadratic form with no cross-product term.

c. If A is a2 x 2 symmetric matrix, then the set of x such
that x”Ax = ¢ (for a constant ¢) corresponds to either a
circle, an ellipse, or a hyperbola.

d. An indefinite quadratic form is either positive semidefi-
nite or negative semidefinite.
e. If A is symmetric and the quadratic form x’Ax has only

negative values for x # 0, then the eigenvalues of A are
all negative.

Exercises 23 and 24 show how to classify a quadratic form

0(x) = x"Ax, when A = [Z S]and det A # 0, without find-

ing the eigenvalues of A.

23. If Ay and A, are the eigenvalues of A, then the characteristic
polynomial of A can be written in two ways: det(4 — AI)
and (A — A1)(A — A;). Use this fact to show that A; + A, =
a + d (the diagonal entries of A) and A1, = det A.

24. Verify the following statements.
a. @ is positive definite if det A > 0 and a > 0.
b. O is negative definite if det A > O and @ < 0.
c. Q isindefinite if det A < 0.

25. Show that if B is m x n, then BTB is positive semidefinite;
and if B is n x n and invertible, then B”B is positive definite.

26. Show thatif an n x n matrix A is positive definite, then there
exists a positive definite matrix B suchthat A = BTB. [Hint:
Write A = PDPT, with PT = P~!. Produce a diagonal
matrix C such that D = C’C, and let B = PCPT. Show
that B works.]

27. Let A and B be symmetric n X n matrices whose eigenvalues
are all positive. Show that the eigenvalues of A + B are all
positive. [Hint: Consider quadratic forms.]

28. Let A be an n x n invertible symmetric matrix. Show that
if the quadratic form x”4x is positive definite, then so is the
quadratic form x’A~'x. [Hint: Consider eigenvalues.]

El Mastering: Diagonalization and Quadratic Forms 7-7
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JI
\/

Positive semidefinite

SOLUTION TO PRACTICE PROBLEM

Make an orthogonal change of variable x = Py, and write
x'Ax =y Dy = hiy + Aoyd + oo+ Ay

as in equation (4). If an eigenvalue—say, A; —were negative, then x’Ax would be
negative for the x corresponding to y = e; (the ith column of 7). So the eigenvalues
of a positive semidefinite quadratic form must all be nonnegative. Conversely, if the
eigenvalues are nonnegative, the expansion above shows that x’Ax must be positive
semidefinite.

7.3 CONSTRAINED OPTIMIZATION

Engineers, economists, scientists, and mathematicians often need to find the maximum
or minimum value of a quadratic form Q(x) for x in some specified set. Typically, the
problem can be arranged so that x varies over the set of unit vectors. This constrained
optimization problem has an interesting and elegant solution. Example 6 below and the
discussion in Section 7.5 will illustrate how such problems arise in practice.

The requirement that a vector x in R” be a unit vector can be stated in several
equivalent ways:

Ixl=1  IxIP=1 x'x=1

and
P+ xi 4 +xt=1 (D

The expanded version (1) of x’x = 1 is commonly used in applications.
When a quadratic form Q has no cross-product terms, it is easy to find the maximum
and minimum of Q(x) for x’x = 1.

EXAMPLE 1 Find the maximum and minimum values of Q(x) = 9x7 + 4x3 + 3x3
subject to the constraint x'x = 1.

SOLUTION Since x5 and x3 are nonnegative, note that

4x3 < 9x3 and 3x3 < 9x3
and hence
Ox? + 4x7 + 3x7
< 9x7 +9x3 + 9x3
9(x? + x5 + x3)
=9

(%)

whenever x7 + x7 + x7 = 1. So the maximum value of Q(x) cannot exceed 9 when
X is a unit vector. Furthermore, Q(x) = 9 when x = (1,0, 0). Thus 9 is the maximum
value of Q(x) for x'x = 1.

To find the minimum value of Q(x), observe that

2 2 2 2
9x7 > 3x7y, 4x5 > 3x;

and hence
O(x) > 3x7 +3x7 +3x3 =3(x} +x3 +x3) =3

whenever x7 + x3 + x3 = 1. Also, Q(x) = 3 whenx; =0, x, = 0,and x; = 1. S0 3
is the minimum value of Q(x) when xx = 1. [ ]
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4x% +9y2=36
(indifference curves)

1.4 qx,y)=4
q(x,y)=3
T X
| 2.1 qx,y)=2

Road and bridge repair

FIGURE 4 The optimum public works schedule

is (2.1, 1.4).

and define
X y .
X = g, Xy = 5 thatis, x =3x; and y =2x;

Then the constraint equation becomes

2 2 _
xXp+x; =1

and the utility function becomes ¢(3x1,2x2) = (3x1)(2x2) = 6x1x;. Let x = [il i|
2

Then the problem is to maximize Q(x) = 6x;x; subject to x'x = 1. Note that Q(x) =

xTAx, where

=[50l

The eigenvalues of A are &3, with eigenvectors |: 1/ ﬁ:| forA = 3and |: -l ﬁ:| for

1/7/2 1//2

A = —3. Thus the maximum value of Q (x) = ¢(x;., x») is 3, attained when x; = 1//2

and x, = 1/«/5.

In terms of the original variables, the optimum public works scheduleis x = 3x; =
3/+/2 ~ 2.1 hundred miles of roads and bridges and y = 2x, = +/2 & 1.4 hundred
acres of parks and recreational areas. The optimum public works schedule is the point
where the constraint curve and the indifference curve g(x, y) = 3 just meet. Points
(x, y) with a higher utility lie on indifference curves that do not touch the constraint

curve. See Fig. 4.

PRACTICE PROBLEMS

1. Let Q(x) = 3x? + 3x3 + 2x;x,. Find a change of variable that transforms Q into
a quadratic form with no cross-product term, and give the new quadratic form.

2. With Q as in Problem 1, find the maximum value of Q(x) subject to the constraint
x’x = 1, and find a unit vector at which the maximum is attained.

7.3 EXERCISES

In Exercises 1 and 2, find the change of variable x = Py that
transforms the quadratic form x’Ax into y” Dy as shown.

1. 5x7 + 6x3 + 7x3 + 4x1x, — 4x3x3 = 9y? + 6y3 + 3y3

20 3x7 4+ 202 4 2x3 + 21X + 2x1x3 + 4xox3 = 5y7 + 23
[Hint: x and y must have the same number of coordinates,
so the quadratic form shown here must have a coefficient of
zero for y3.]

In Exercises 3-6, find (a) the maximum value of Q(x) subject to
the constraint x’x = 1, (b) a unit vector u where this maximum is
attained, and (c) the maximum of Q(x) subject to the constraints

x'x = 1 and xu = 0.

3. O(x) = 5x7 4 6x3 + 7x2 + 4x1x; — 4xpx3
(See Exercise 1.)
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O(x) = 3x7 + 2x7 + 2x7 + 2x1x2 + 2x1x3 + 4x2x3  (See
Exercise 2.)

5. O(x) = 5x7 + 5x3 —4xix,
6. O(x) = 7x} +3x3 4 3x1x2

7. Let Q(x) = —2x7 — x3 + 4x, X, + 4x,x;. Find a unit vector

x in R? at which Q(x) is maximized, subject to x'x = 1.
[Hint: The eigenvalues of the matrix of the quadratic form
Q are 2, —1, and —4.]

12.

13.

Let A be any eigenvalue of a symmetric matrix A. Justify
the statement made in this section that m < A < M, where
m and M are defined as in (2). [Hint: Find an x such that
A = x"4x]

Let A be an n x n symmetric matrix, let M and m denote
the maximum and minimum values of the quadratic form
x’Ax, and denote corresponding unit eigenvectors by u; and
u,. The following calculations show that given any number ¢
between M and m, there is a unit vector x such that = x’4x.

8. Let O(x) = 7x7 + x3 + 7x3 — 8xyx2 — 4x1 X3 — 8x2%3. Verify that# = (1 — a)m + aM for some number o between
Find a unit vector x in R? at which Q(x) is maximized, 0 and 1. Then let x = /1 — au, + /ou;, and show that
subject to x'x = 1. [Hint: The eigenvalues of the matrix of x'x = 1 and x"Ax = 1.
the quadratic form Q are 9 and —3.]

9. Find the maximum value of Q(x) = 7x? + 3x3 — 2xx,, [M] In Exercises 14-17, follow the instructions given for Exer-
subject to the constraint x> + x = 1. (Do not go on to find  cises 3-0.

a vector where the maximum is attained.) 14. X1 + 3x153 + 30x1X4 + 3002X3 4 30X + X34
10. Find the maximum value of Q(x) = —3x7 + 5x3 — 2x X2,
15.
subject to the constraint x> + x7 = 1. (Do not go on to find 3x1Xp 4 5x1X3 4+ Ty x4 + Txox3 + 5x5%4 + 3x3%4
a vector where the maximum is attained.) 16. 4X12 — 6x1x3 — 10x;x3 — 10x1 x4 — 6x2X3 — 6X2X4 — 2X3X4
11. Suppose x is a unit eigenvector of a matrix A corresponding ~ 17. —6x7 — 10x3 — 13x7 — 13x7 — 4xx, — 4xyx3 — dx x4 +
to an eigenvalue 3. What is the value of x’Ax? 6x3x4
SOLUTIONS TO PRACTICE PROBLEMS
. . . 3 1 . .
z f 1. The matrix of the quadratic formis A = 1 3l Itis easy to find the eigenvalues,
. . 1/4/2 —1/4/2
4 and 2, and corresponding unit eigenvectors, /N2 and /2 . So the
1/v2 1/v2
4
=57 1/V2 —1/42
Eﬂ;"/:/ desired change of variable is x = Py, where P = /N2 /N2 . (A common
— 27 % 1/V2  1/32
g . . . . .
7 error here is to forget to normalize the eigenvectors.) The new quadratic form is

y'Dy = 4y + 2.

The maximum value of Q(x)
subject to x”x = 11is 4.

The maximum of Q(x) for x a unit vector is 4, and the maximum is attained at

1/3/2

the unit eigenvector [A common incorrect answer is ! This vector
& 1/v2 | 0]

maximizes the quadratic form y’Dy instead of Q(x).]

7.4 THE SINGULAR VALUE DECOMPOSITION

The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting ap-

plications. Unfortunately, as we know, not all matrices can be factored as A = PDP!

with D diagonal. However, a factorization 4 = QDP~! is possible for any m x n
matrix A! A special factorization of this type, called the singular value decomposition,
is one of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary

diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks
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Moler, C. B., and D. Morrison, “Singular Value Analysis of Cryptograms.” Amer. Math.
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pp- 390-398, 409-421.

PRACTICE PROBLEM

Given a singular value decomposition, A = UV, find an SVD of A”. How are the
singular values of 4 and A7 related?

7.4 EXERCISES

Find the singular values of the matrices in Exercises 1-4. 40 —78 .47 7.10 0 0
A= 37 —-33 -.87 0 310 0
L|ro 2 | 0 —84 —52 —.16 0 0 0
0 -3 0 0
30 —.51 —.81
NG 1 V3 2 x| .76 .64 —.12
3. 4. .58 —.58 .58
0 Ve 0 3
a. What is the rank of A?
Find an SVD of each matrix in Exercises 5-12. [Hint: In b. Use this decomposition of A, with no calculations, to
-1/3 2/3 2/3 write a basis for Col A and a basis for Nul A. [Hint: First
Exercise 11, one choice for U is 2/3 —=1/3 2/3|. In write the columns of V']
2/3  2/3 -1/3 16. Repeat Exercise 15 for the following SVD of a 3 x 4 matrix
Exercise 12, one column of U can be —2/\/6 N —.86 —.11 —.50 12.48 0 0 0
1/6 A= 31 .68 —.67 0 634 0 O
41 =73 =55 0 0 0 0
(-3 0 [—2 0 .66 —03 —35 .66
5. 0O 0 6. 0 —1 « —.13 -90 -39 —-.13
B B .65 .08 —.16 —.73
; M2 _1:| g M2 3:| —34 42 -84 —.08
L2 2 Lo 2 In Exercises 17-24, A is an m X n matrix with a singular value
_ _ decomposition A = UXVT, where U is an m x m orthogonal
7 1 4 =2 matrix, X is an m x n “diagonal” matrix with r positive entries
9 0 0 10. |2 ~1I and no negative entries, and V' is an n x n orthogonal matrix.
LS 3 L0 O Justify each answer.
r—3 1 ! 1 17. Suppose A is square and invertible. Find a singular value
11. 6 -2 12. 1 decomposition of A~
L 6 2 | —1 1 18. Show that if A is square, then | det A| is the product of the

singular values of A.
3 2

13. Findthe SVDof 4 = |:2 3 _

§:| [Hint: Work with AT ] 19. Show that the columns of V are eigenvectors of A”A, the

columns of U are eigenvectors of AAT, and the diagonal

14. In Exercise 7, find a unit vector x at which Ax has maximum entries of 3 are th‘; singular ;/alues of A. [Hint: Use the
length. SVD to compute A°A and AA".]

20. Show that if A is an n X n positive definite matrix, then an
15. Suppose the factorization below is an SVD of a matrix A, orthogonal diagonalization 4 = PDPT is a singular value
with the entries in U and V rounded to two decimal places. decomposition of A4.
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21.

22,

23.

24,

25.

Show that if P is an orthogonal m x m matrix, then PA has
the same singular values as A.

Justify the statement in Example 2 that the second singular
value of a matrix A is the maximum of ||Ax| as x varies
over all unit vectors orthogonal to v;, with v; a right singular
vector corresponding to the first singular value of A. [Hint:
Use Theorem 7 in Section 7.3.]

LetU =[u; --- uw,]andV =[v,
u; and v; are as in Theorem 10. Show that

A =owvl +oowvl +---+ou,v7 .
Using the notation of Exercise 23, show that A™u; = o;v;
forl < j <r =rank 4.

Let T : R" — R™ be a linear transformation. Describe how
to find a basis B for R” and a basis C for R” such that the
matrix for T relative to B and C is an m x n “diagonal”
matrix.

[M] Compute an SVD of each matrix in Exercises 26 and 27.
Report the final matrix entries accurate to two decimal places. Use
the method of Examples 3 and 4.

29.

M —18 13 -4 4
2 19 —4 12
26. A= —14 11 —12 8
. -2 21 4 8
v, |, where the 6 -8 —4 5 —4
2 7 -5 -6 4
WA= 5 0 8 2 2
-1 -2 4 4 -8
28. [M] Compute the singular values of the 4 x 4 matrix in

Exercise 9 in Section 2.3, and compute the condition number
(o3} / Oy4.
[M] Compute the singular values of the 5 x 5 matrix in Ex-

ercise 10 in Section 2.3, and compute the condition number
01/0s.

SOLUTION TO PRACTICE PROBLEM

If A=UXVT, where ¥ is m xn, then AT = (VT)TSTUT = VETUT. This is an
SVD of AT because V and U are orthogonal matrices and X7 is an n x m “diagonal”
matrix. Since ¥ and X7 have the same nonzero diagonal entries, 4 and A” have the
same nonzero singular values. [Note: If A is 2 x n, then AA” is only 2 x 2 and its
eigenvalues may be easier to compute (by hand) than the eigenvalues of A7A.]

7.5  APPLICATIONS TO IMAGE PROCESSING AND STATISTICS

The satellite photographs in this chapter’s introduction provide an example of multidi-
mensional, or multivariate, data—information organized so that each datum in the data
set is identified with a point (vector) in R”. The main goal of this section is to explain a
technique, called principal component analysis, used to analyze such multivariate data.
The calculations will illustrate the use of orthogonal diagonalization and the singular
value decomposition.

Principal component analysis can be applied to any data that consist of lists of
measurements made on a collection of objects or individuals. For instance, consider a
chemical process that produces a plastic material. To monitor the process, 300 samples
are taken of the material produced, and each sample is subjected to a battery of eight
tests, such as melting point, density, ductility, tensile strength, and so on. The laboratory
report for each sample is a vector in R¥, and the set of such vectors forms an 8 x 300
matrix, called the matrix of observations.

Loosely speaking, we can say that the process control data are eight-dimensional.
The next two examples describe data that can be visualized graphically.

EXAMPLE 1 Anexample of two-dimensional data is given by a set of weights and
heights of N college students. Let X; denote the observation vector in R that lists the
weight and height of the jth student. If w denotes weight and / height, then the matrix
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in the sense that the sum of the squares of the orthogonal distances to the line is
minimized. In fact, principal component analysis is equivalent to what is termed
orthogonal regression, but that is a story for another day. Perhaps we’ll meet again.

CHAPTER 7 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. In

each part, A represents an n X 1 matrix.

a. If A is orthogonally diagonalizable, then A is symmetric.

b. If A is an orthogonal matrix, then A is symmetric.

c. If A is an orthogonal matrix, then || Ax| = ||x|| for all x
in R”.

d. The principal axes of a quadratic form x’Ax can be the
columns of any matrix P that diagonalizes A.

e. If P is an n x n matrix with orthogonal columns, then
PT =p~L

f. If every coefficient in a quadratic form is positive, then
the quadratic form is positive definite.

g. If x"Ax > 0 for some x, then the quadratic form x7Ax is
positive definite.

h. By a suitable change of variable, any quadratic form can
be changed into one with no cross-product term.

i. The largest value of a quadratic form x’4x, for |x| = 1,
is the largest entry on the diagonal of A.

j- The maximum value of a positive definite quadratic form
x7Ax is the greatest eigenvalue of A.

k. A positive definite quadratic form can be changed into
a negative definite form by a suitable change of variable
x = Pu, for some orthogonal matrix P.

I.  An indefinite quadratic form is one whose eigenvalues
are not definite.

m. If P is an n x n orthogonal matrix, then the change of
variable x = Pu transforms x’Ax into a quadratic form
whose matrix is P 'AP.

n. If U is m x n with orthogonal columns, then UUTx is
the orthogonal projection of x onto Col U.

o. If Bism x n and xis aunit vector in R”, then || Bx|| < o7,
where o is the first singular value of B.

p- A singular value decomposition of an m x n matrix B
can be written as B = PXQ, where P is an m X m
orthogonal matrix, Q is an n X n orthogonal matrix, and
¥ is an m x n “diagonal” matrix.

q. If Aisnxn, then A and A" have the same singular
values.

. Let {uj,...,u,} be an orthonormal basis for R”, and let
Al ..., A, be any real scalars. Define

A=2wul +---+ L,u,u’

a. Show that A4 is symmetric.

b. Show that A4, ..., A, are the eigenvalues of A.

Let A be an n x n symmetric matrix of rank r. Explain why
the spectral decomposition of A represents A as the sum of
r rank 1 matrices.

Let A be an n X n symmetric matrix.
a. Show that (Col A)- = Nul A. [Hint: See Section 6.1.]

b. Show that each y in R” can be written in the formy =
¥ + z, with y in Col A and z in Nul A.

Show that if v is an eigenvector of an n x n matrix A and v
corresponds to a nonzero eigenvalue of A, then v is in Col A.
[Hint: Use the definition of an eigenvector.]

Let A be an n x n symmetric matrix. Use Exercise 5 and
an eigenvector basis for R” to give a second proof of the
decomposition in Exercise 4(b).

Prove that an n x n matrix A is positive definite if and only
if A admits a Cholesky factorization, namely, A = R™R for
some invertible upper triangular matrix R whose diagonal
entries are all positive. [Hint: Use a QR factorization and
Exercise 26 in Section 7.2.]

Use Exercise 7 to show that if A4 is positive definite, then
A has an LU factorization, A = LU, where U has positive
pivots on its diagonal. (The converse is true, t00.)

If A is m x n, then the matrix G = A’A4 is called the Gram matrix
of A. In this case, the entries of G are the inner products of the
columns of A. (See Exercises 9 and 10.)

9.

10.

11.

Show that the Gram matrix of any matrix A is positive
semidefinite, with the same rank as A. (See the Exercises
in Section 6.5.)

Show that if an n x n matrix G is positive semidefinite and
has rank r, then G is the Gram matrix of some r X n matrix
A. This is called a rank-revealing factorization of G. [Hint:
Consider the spectral decomposition of G, and first write G
as BBT for an n x r matrix B.]

Prove that any n x n matrix A admits a polar decomposition
of the form A = PQ, where P is an n x n positive semidefi-
nite matrix with the same rank as A and where Q isann x n
orthogonal matrix. [Hint: Use a singular value decomposi-
tion, A = UXVT, and observe that A = (UZUT)(UVT).]
This decomposition is used, for instance, in mechanical en-
gineering to model the deformation of a material. The matrix
P describes the stretching or compression of the material (in
the directions of the eigenvectors of P), and Q describes the
rotation of the material in space.



Exercises 12—14 concern an m X n matrix A with a reduced sin-
gular value decomposition, A = U,DV,T, and the pseudoinverse
At =v,D7lUT.
12. Verify the properties of A*:
a. For eachy in R”, AATy is the orthogonal projection of
y onto Col 4.

b. Foreachxin R", AT Ax is the orthogonal projection of x
onto Row A.
c. AATA=Aand ATAAT = AT,

13. Suppose the equation Ax =b is consistent, and let
xT = ATb. By Exercise 23 in Section 6.3, there is exactly
one vector p in Row A such that Ap = b. The following
steps prove that x* = p and xt is the minimum length
solution of Ax = b.

a. Show thatxt isin Row A. [Hint: Write b as Ax for some
x, and use Exercise 12.]
b. Show that x™ is a solution of Ax = b.

c. Show that if u is any solution of Ax =b, then
x|l < |jul|, with equality only if u = x+.
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14. Givenanybin R", adapt Exercise 13 to show that AT b is the
least-squares solution of minimum length. [Hint: Consider
the equation Ax = b, where b is the orthogonal projection of
b onto Col A.]

[M] In Exercises 15 and 16, construct the pseudoinverse of A. Be-
gin by using a matrix program to produce the SVD of 4, or, if that
is not available, begin with an orthogonal diagonalization of A7A.
Use the pseudoinverse to solve Ax = b, for b = (6, —1,—4,6),
and let X be the solution. Make a calculation to verify that X
is in Row A. Find a nonzero vector u in Nul A, and verify that
IX|| < [IX + ||, which must be true by Exercise 13(c).

(3 3 =6 6 1]
-1 -1 -1 1 =2
BoA=1 09 0 -1 1 -1
L0 0 -1 1 -1
[ 4 0 -1 =2 0]
-5 0 3 5 0
16.:4=1 5 o -1 2 o0
L 6 0 -3 =6 0]
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