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1 Chapter 1

Lay, 1.1.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Solve the following equation system applying row operations on the aug-
mented matrix:

x1 + 5x2 = 7
−2x1 − 7x2 = −5

Solution: Let us construct the augmented matrix of the equation system(
1 5 7
−2 −7 −5

)
Now we add twice row 1 to row 2(

1 5 7
0 3 9

)
Now we divide the second row by 3(

1 5 7
0 1 3

)
Finally, we subtract 5 times row 2 from row 1(

1 0 −8
0 1 3

)
This equation system is compatible determinate and its solution is x1 = −8 and
x2 = 3.
Lay, 1.1.4
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the point of intersection of the lines x1 + 2x2 = −13 and 3x1− 2x2 = 1
Solution: Let us construct the augmented system matrix(

1 2 −13
3 −2 1

)
Now, we apply row operations to solve it

r2 ← r2 − 3r1

(
1 −5 1
0 −8 40

)
r2 ← − 1

8r2

(
1 −5 1
0 1 −5

)
r1 ← r1 + 5r2

(
1 0 −3
0 1 −5

)
The two lines intersect in a single point (x1, x2) = (−3,−5).
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Lay, 1.1.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Solve the equation system

x2 + 5x3 = −4
x1 + 4x2 + 3x3 = −2

2x1 + 7x2 + 1x3 = −2

Solution: Let us construct the augmented system matrix 0 1 5 −4
1 4 3 −2
2 7 1 −2


Now, we apply row operations to solve it

r2 ↔ r1

 1 4 3 −2
0 1 5 −4
2 7 1 −2


r3 ← r3 − 2r1

 1 4 3 −2
0 1 5 −4
0 −1 −5 2


r3 ← r3 + r2

 1 4 3 −2
0 1 5 −4
0 0 0 −2


Last row represents the equation 0 = −2 which is non-sense and, therefore,
there is no solution of the system. The equation system is incompatible.
Lay, 1.1.12
Clara Susana Rey Abad, Oct. 29, 2013

Solve the equation system:
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x1 − 5x2 + 4x3 = −3
2x1 − 7x2 + 3x3 = −2
−2x1 + x2 + 7x3 = −1

Solution: Let us construct the augmented system matrix 1 −5 4 −3
2 −7 3 −2
−2 1 7 −1


Now, we apply row operations to solve it

r2 ← r2 + r3

 1 −5 4 −3
0 −6 10 −3
−2 1 7 −1


r3 ← r3 − 2r1

 1 −5 4 −3
0 −6 10 −3
0 −9 15 −7


r2 ← r2 ÷ 3

 1 −5 4 −3
0 −2 10/3 −1
0 −9 15 −7


r3 ← r3 ÷ 3

 1 −5 4 −3
0 −2 10/3 −1
0 −3 5 −7/3


r3 ← r3 · 2− r2 · 3

 1 −5 4 −3
0 −2 10/3 −1
0 0 0 −5/3


Last row represents the equation 0 = −5/3 which is non-sense and, therefore,

there is no solution of the system. The equation system is incompatible.
Lay, 1.1.13
Clara Susana Rey Abad, Oct. 30, 2013

Solve the equation system:

x1 − 3x3 = 8
2x1 + 2x2 + 9x3 = 7

x2 + 5x3 = −2

Solution: Let us construct the augmented system matrix 1 0 −3 8
2 2 9 7
0 1 5 −2


Now, we apply row operations to solve it
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r2 ↔ r3

 1 0 −3 8
0 1 5 −2
2 2 9 7


r3 ← r3 − 2r1

 1 0 −3 8
0 1 5 −2
0 2 15 −9


r3 ← r3 − 2r2

 1 0 −3 8
0 1 5 −2
0 0 5 −5


r2 ← r2 − r3

 1 0 −3 8
0 1 0 3
0 0 5 −5


r3 ← r3 +÷5
r1 ← r1 + 3r3

 1 0 0 5
0 1 0 3
0 0 1 −1


Whe can deduce from the reduced echelon form that

x1 = 5
x2 = 3
x3 = −1

Therefore, there is a unique solution of the system. The equation system is
compatible determinate.

Lay, 1.1.14
Clara Susana Rey Abad, Nov. 4, 2013

Solve the equation system:

2x1 − 6x3 = −8
x2 + 2x3 = 3

3x1 + 6x2 − 2x3 = −4

Solution: Let us construct the augmented system matrix 2 0 −6 −8
0 1 2 3
3 6 −2 −4


Now, we apply row operations to solve it
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r1 ← r1 ÷ 2

 1 0 −3 −4
0 1 2 3
3 6 −2 −4


r3 ← r3 − 3r1

 1 0 −3 −4
0 1 2 3
0 6 4 8


r3 ← r3 ÷ 2

 1 0 −3 −4
0 1 2 3
0 3 2 4


r3 ← r3 − 3r2

 1 0 −3 −4
0 1 2 3
0 0 −4 −5


r3 ← r3 ÷ 4

 1 0 −3 −4
0 1 2 3
0 0 −1 −5/4


r2 ← r2 + 2r3

 1 0 −3 −4
0 1 0 1/2
0 0 −1 −5/4


r1 ← r1 − 3r3

 1 0 0 −1/4
0 1 0 1/2
0 0 −1 −5/4


r3 ← r3 ÷−1

 1 0 0 −1/4
0 1 0 1/2
0 0 1 5/4


Whe can deduce from the reduced echelon form that

x1 = −1/4
x2 = 1/2
x3 = 5/4

Therefore, there is a unique solution of the system. The equation system is
compatible determinated.

Lay, 1.1.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine whether the following system is consistent (do not fully solve the
system).

x1 −6x2 = 5
x2 −4x3 +x4 = 0

−x1 +6x2 +x3 +5x4 = 3
−x2 +5x3 +4x4 = 0

Solution: Let us construct the augmented system matrix
1 −6 0 0 5
0 1 −4 1 0
−1 6 1 5 3

0 −1 5 4 0


Now, we apply row operations to solve it
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r3 ← r3 + r1


1 −6 0 0 5
0 1 −4 1 0
0 0 1 5 8
0 −1 5 4 0


r4 ← r4 + r2


1 0 3 0 2
0 1 0 −3 3
0 0 1 5 8
0 0 1 5 0


r4 ↔ r4 − r3


1 0 3 0 2
0 1 0 −3 3
0 0 1 5 8
0 0 0 0 −8


The system is incompatible since the last row implies the equation 0 = −8.
Lay, 1.1.16
Clara Susana Rey Abad, Nov. 4, 2013

Determine whether the following system is consistent (do not fully solve the
system).

2x1 −4x4 = −10
+3x2 +3x3 = 0

+x3 +4x4 = −1
−3x1 +2x2 +3x3 +x4 = 5

Solution: Let us construct the augmented system matrix
2 0 0 −4 −10
0 3 3 0 0
0 0 1 4 −1
−3 2 3 1 5


Now, we apply row operations to solve it

r1 ← r1 ÷ 2


1 0 0 −2 −5
0 3 3 0 0
0 0 1 4 −1
−3 2 3 1 5


r2 ← r2 ÷ 3


1 0 0 −2 −5
0 1 1 0 0
0 0 1 4 −1
−3 2 3 1 5


r4 ← r4 + 3r1


1 0 0 −2 −5
0 1 1 0 0
0 0 1 4 −1
0 2 3 −5 −10


r4 ← r4 − 2r2


1 0 0 −2 −5
0 1 1 0 0
0 0 1 4 −1
0 0 1 −5 −10


r4 ← r4 − r3


1 0 0 −2 −5
0 1 1 0 0
0 0 1 4 −1
0 0 0 −9 −9


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The system is compatible since there are four equations and four leading
entries.
Lay, 1.1.17
Andrea Santos Cortés, Oct. 20th., 2014

Do the three lines 2x1 + 3x2 = −1, 6x1 + 5x2 = 0 and 2x1 − 5x2 = 7 have a
common point of intersection? Explain.
Solution: Let us construct the augmented system matrix 2 3 −1

6 5 0
2 −5 7


Now, we apply row operations to determine whether it is compatible or not

r3 ← r3 − r1

 2 3 −1
6 5 0
0 8 −8


r2 ← r2 − 3r1

 2 3 −1
0 −4 3
0 8 −8


r3 ← r3 + 2r2

 2 3 −1
0 −4 3
0 0 −2


The system is incompatible and consequently the three lines do not intersect at
a common point.

Lay, 1.1.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Do the three planes 2x1 + 4x2 + 4x3 = 4, x2 − 2x3 = −2 and 2x1 + 3x2 = 0
have at least one common point of intersection? Explain.
Solution: Let us construct the augmented system matrix 2 4 4 4

0 1 −2 −2
2 3 0 0


Now, we apply row operations to determine whether it is compatible or not

r3 ← r3 − r1

 2 4 4 4
0 1 −2 −2
0 −1 −4 −4


r3 ← r3 + r2

 2 4 4 4
0 1 −2 −2
0 0 −6 −6


The system is compatible determinate and consequently the three planes inter-
sect at a single point.
Lay, 1.1.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Find an equation involving g, h, and k that makes this augmented matrix
correspond to a consistent system.
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 1 −4 7 g
0 3 −5 h
−2 5 −9 k


Solution: We apply row operations to reduce this augmented matrix

r3 ← r3 + 2r1

 1 −4 7 g
0 3 −5 h
0 −3 5 2g + k


r3 ← r3 + r2

 1 −4 7 g
0 3 −5 h
0 0 0 2g + k + h


The system is compatible only if 2g + k + h = 0. In this case, the system has
in�nite solutions since it is compatible indeterminate.
Lay, 1.1.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the system below is compatible for all possible values of f and g.
What can you say about the coe�cients c and d?

2x1 + 4x2 = f
cx1 + dx2 = g

Solution: Let us construct the augmented matrix and apply row operations to
reduce it (

2 4 f
c d g

)
r2 ← r2 − c

2r1

(
2 4 f

0 d− 2c g − cf
2

)
If the system is compatible for any value of f and g, then it must be that the
coe�cient d− 2c is di�erent from 0 (if it were 0, then there would be combina-
tions of f and g for which the system would be incompatible).
Lay, 1.1.33
Carlos Oscar Sorzano, Aug. 31st, 2013

An important concern in the study of heat transfer is to determine the
steady-state temperature distribution of a thin-plate when the temperature
around the boundary is known. Assume the plate shown in the �gure repre-
sents a cross section of a metal beam, with negligible heat �ow in the direction
perpendicular to the plate. Let T1, ..., T4 denote the temperatures at the four
interior nodes of the mesh in the �gure. The temperature at a node is approxi-
mately equal to the average of the four nearest nodes (to the left, below, right
and above). For instance,

T1 = 1
4 (10 + 20 + T2 + T4)
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Write a system of four equations whose solution gives estimates for the temper-
atures T1, ..., T4
Solution: The following equations express the temperatures at each node as
the average of the four surrounding nodes.

T1 = 1
4 (10 + 20 + T2 + T4)

T2 = 1
4 (20 + 40 + T1 + T3)

T3 = 1
4 (30 + 40 + T2 + T4)

T4 = 1
4 (10 + 30 + T1 + T3)

We may rewrite this equation system as

T1 − 1
4T2 − 1

4T4 = 7.5
− 1

4T1 +T2 − 1
4T3 = 15

− 1
4T2 +T3 − 1

4T4 = 17.5
− 1

4T1 − 1
4T3 +T4 = 10

Lay, 1.2.1
Ignacio Sanchez Lopez, Jan. 12th, 2015

Determine which of the following matrices are in reduced echelon form and
which others are only in echelon form.

a

1 0 0 0
0 1 0 0
0 0 1 1



b

1 0 1 0
0 1 1 0
0 0 0 1



c


1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1



d


1 1 0 1 1
0 2 0 2 2
0 0 0 3 3
0 0 0 0 4


Solution:

a It is in reduced echelon form.
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b It is in echelon form .

c It is not in echelon form nor in reduced echelon form because there is a row
full of zeros above another row with elements diferent from zero .

d It is in echelon form.

Lay, 1.2.2
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine which of the following matrices are in reduced echelon form and
which others are only in echelon form.

a

1 0 1 1
0 1 1 1
0 0 0 0



b

1 0 0 0
0 2 0 0
0 0 1 1



c


0 0 0 0
1 2 0 0
0 0 1 0
0 0 0 1



d


0 1 1 1 1
0 0 1 1 1
0 0 0 0 1
0 0 0 0 0


Solution: Let's remind the conditions to be in reduced echelon form.

1. Within each row, the �rst element di�erent from zero (called the leading
entry) is in a column to the right of the leading entry of the previous row.

2. Within each column, all values below a leading entry are zero.

3. All rows without a leading entry (i.e., they only have zeros) are below all
the rows in which at least one element is not zero.

4. The leading entry of each row is 1.

5. The leading entry is the only 1 in its column.

Those matrices meeting only 1-3 are said to be in echelon form. Looking at the
matrices of the exercise.

a It is in reduced echelon.

b It is in echelon form because there is a leading entry in the second column
but it is not 1.

c It is not in echelon form nor in reduced echelon form because the �rst row is
full of zeroes, and there are rows with leading entries below.
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d It is in echelon form because the leading entries in each row are not the only
non-zero values in their columns.

Lay, 1.2.7
Ignacio Sanchez Lopez, Jan. 14th, 2015

Find the general solution of the system whose augmented matrix is(
1 3 4 7
3 9 7 6

)
Solution: The augmented matrix is row equivalent to(

1 3 0 3
0 0 1 3

)
that represents the equations

x1 = −3x2 + 3
x3 = 3

and there is no constraint for x2 Therefore, the set of solutions of the equation
system is

S = {(−3x2 + 3, x2, 3) ∀x2 ∈ R}

Lay, 1.2.8
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the general solution of the system whose augmented matrix is(
1 −3 0 −5
−3 7 0 9

)
Solution: The augmented matrix is row equivalent to(

1 0 0 4
0 1 0 3

)
That represents the equations

x1 = 4
x2 = 3

and there is no constraint for x3. Therefore, the set of solutions of the equation
system is

S = {(4, 3, x3) ∀x3 ∈ R}

Lay, 1.2.9
Ignacio Sanchez Lopez,Jan. 14th, 2015

Find the general solution of the system whose augmented matrix is
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(
0 1 −6 5
1 −2 7 6

)
Solution: The augmented matrix is row equivalent to(

1 0 5 16
0 1 −6 5

)
that represents the equations

x1 = −5x3 + 16
x2 = 6x3 + 5

and there is no constraint for x3. Therefore, the set of solutions of the equation
system is

S = {(−5x3 + 16, 6x3 + 5, x3) ∀x3 ∈ R}

Lay, 1.2.10
Ignacio Sanchez Lopez, Jan. 14th, 2015

Find the general solution of the system whose augmented matrix is(
1 −2 −1 3
3 −6 −2 2

)
Solution: The augmented matrix is row equivalent to(

1 −2 0 −4
0 0 1 −7

)
that represents the equations

x1 = 2x2 − 4
x3 = −7

and there is no constraint for x2. Therefore, the set of solutions of the equation
system is

S = {(2x2 − 4, x2,−7) ∀x2 ∈ R}

Lay, 1.2.11
Ignacio Sanchez Lopez, Jan. 17th, 2015

Find the general solution of the system whose augmented matrix is 3 −4 2 0
−9 12 −6 0
−6 8 −4 0


Solution: The augmented matrix is row equivalent to 1 −4/3 2/3 0

0 0 0 0
0 0 0 0


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That represents the equation

x1 = 4/3x2 − 2/3x3

and there are no constraints for x2, x3. Therefore, the set of solutions of the
equation system is

S = {(4/3x2 − 2/3x3, x2, x3) ∀x2, x3 ∈ R}

Lay, 1.2.18
Carlos Oscar Sorzano, June, 14th 2014

Determine h such that the augmented matrix

(
1 −3 1
h 6 −2

)
(1)

corresponds to a consistent linear system.
Solution: If we subtract h times the �rst row from the second row we get the
augmented matrix

(
1 −3 1
0 6 + 3h −2− h

)
(2)

If the system must be consistent then

1. Either 6 + 3h 6= 0⇒ h 6= −2, or

2. 6 + 3h = 0 and −2− h = 0. These two equations are satis�ed by h = −2

Consequently, it does not matter the value h takes, the equation system is al-
ways consistent.
Lay, 1.2.19
Carlos Oscar Sorzano, Aug. 31st, 2013

In the following equation system

x1 + hx2 = 2
4x1 + 8x2 = k

choose values for h and k such that it has (a) no solution, (b) a unique solution,
and (c) many solutions.
Solution: The augmented matrix of the equation system is(

1 h 2
4 8 k

)
Let's reduce it

r2 ← r2 − 4r1

(
1 h 2
0 8− 4h k − 8

)
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a If 8− 4h = 2 and k − 8 6= 0, then the equation system has no solution. Two
speci�c values are h = 3

2 and k = 0.

b If 8 − 4h 6= 2, then there is a unique solution. In particular, for h = k = 0,
the equation system has a unique solution.

c If 8 − 4h = 2 and k − 8 = 0, there are in�nite solutions. Particularly, this
happens for h = 3

2 and k = 8.

Lay, 1.2.25
Carlos Oscar Sorzano, Nov. 4th, 2014

Suppose the coe�cient matrix of a system of linear equations has a pivot
position in every row. Explain why the system is consistent.
Solution: Tne only way in which a equation system is inconsistent is if there
is a row in which there is no pivot while the corresponding independent term is
not 0. If the coe�cient matrix has a pivot in every row, then the system cannot
be inconsistent, and it is consistent, consequently.
Lay, 1.2.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the interpolating polynomial p(t) = a0 + a1t+ a2t
2 for the data (1, 6),

(2, 15), and (3, 28).
Solution: We need to �nd a0, a1 and a2 such that

a0 + a1(1) + a2(1)2 = 6
a0 + a1(2) + a2(2)2 = 15
a0 + a1(3) + a2(3)2 = 28

⇒

 1 1 12

1 2 22

1 3 32

 a0
a1
a2

 =

 6
15
28


The augmented matrix is 1 1 12 6

1 2 22 15
1 3 32 28

 ∼
 1 0 0 1

0 1 0 3
0 0 1 2


Consequently, a0 = 1, a1 = 3 and a2 = 2. The interpolating polynomial is

p(t) = 1 + 3t+ 2t2

The data points as well as the polynomial are represented below
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Lay, 1.2.34
Carlos Oscar Sorzano, Aug. 31st, 2013

In a wind tunnel, the force on a projectile due to air resistance was measured
at di�erent velocities:

Velocity (100 ft/s) 0 2 4 6 8 10
Force (100 lb) 0 2.90 14.8 39.6 74.3 119

Find an interpolating polynomial for these data and estimate the force on the
projectile when it is travelling at 750 ft/s. Use f(t) = a0 + a1t+ a2t

2 + a3t
3 +

a4t
4 + a5t

5. What happens if you try to use a polynomial of degree 3?
Solution: Similarly to the previous problem, the equation system is

1 0 02 03 04 05

1 2 22 23 24 25

1 4 42 43 44 45

1 6 62 63 64 65

1 8 82 83 84 85

1 10 102 103 104 105




a0
a1
a2
a3
a4
a5

 =


0

2.9
14.8
39.6
74.3
119


Its solution is

f(t) = 1.7125t− 1.1948t2 + 0.6615t3 − 0.0701t4 + 0.0026t5

At a velocity of 750 ft/s, the force on the projectile is

f(7.50) = 1.7125(7.50)− 1.1948(7.50)2 + 0.6615(7.50)3 − 0.0701(7.50)4 +
0.0026(7.50)5 = 64.6(100lb)

If we try to solve the same equation system with a polynomial of degree 3,
1 0 02 03

1 2 22 23

1 4 42 43

1 6 62 63

1 8 82 83

1 10 102 103




a0
a1
a2
a3

 =


0

2.9
14.8
39.6
74.3
119


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we �nd that there is no solution of the equation system.

Lay, 1.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Compute u + v with u =

(
−1
2

)
and v =

(
−3
−1

)
Solution:

u + v =

(
−1
2

)
+

(
−3
−1

)
=

(
−4
1

)
Lay, 1.3.2
Marta Monsalve Buendía, Oct. 13th, 2014

Compute u + v and u− 2v with u =

(
3
2

)
and v =

(
2
−1

)
Solution:

u + v =

(
3
2

)
+

(
2
−1

)
=

(
5
1

)

u− 2v =

(
3
2

)
− 2

(
2
−1

)
=

(
−1
4

)

Lay, 1.3.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Draw in a graph u, v, −v, −2v, u + v, u− v, and u− 2v with u =

(
−1
2

)
and v =

(
−3
−1

)
Solution: Let's make �rst all these calculations:

u =
(
−1 2

)
v =

(
−3 −1

)
−v = −

(
−3 −1

)
=
(
3 1

)
−2v = −2

(
−3 −1

)
=
(
6 2

)
u + v =

(
−1 2

)
+
(
−3 −1

)
=
(
−4 1

)
u− v =

(
−1 2

)
−
(
−3 −1

)
=
(
2 3

)
u− 2v =

(
−1 2

)
− 2

(
−3 −1

)
=
(
−1 2

)
+
(
6 2

)
=
(
5 4

)
The following �gure shows these vectors
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u−v
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Lay, 1.3.5
Yolanda Manrique Marcos, Dec. 17th, 2013

Write an equation system that is equivalent to the vector equation:

x1

 3
−2
8

+ x2

 5
0
−9

 =

 2
−3
8


Solution: We may write the following equation system (in matrix form): 3 5

−2 0
8 −9

(x1
x2

)
=

 2
−3
8


Lay, 1.3.6
Carlos Oscar Sorzano, Aug. 31st, 2013

Write an equation system that is equivalent to the vector equation:

x1

(
3
−2

)
+ x2

(
7
3

)
+ x3

(
−2
1

)
=

(
0
0

)
Solution: We may write the following equation system (in matrix form):(

3 7 −2
−2 3 1

)x1x2
x3

 =

(
0
0

)

Lay, 1.3.7
Carlos Oscar Sorzano, Aug. 31st, 2013

In the following �gure
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write a, b, c and d as a function of u and v.
Solution:

a = u− 2v
b = 2u− 2v
c = 2u− 3.5v
c = 3u− 4v

Lay, 1.3.8
Marta Monsalve Buendía, Oct. 13th, 2014

In the following �gure

write w, x, y and z as a function of u and v.
Solution:

w = −u + 2v
x = −2u + 2v
y = −2u + 3.5v
z = −3u + 4v

Lay, 1.3.13
Andrea Santos Cortés, Oct. 15th, 2014

18



Let A =

 1 −4 2
0 3 5
−2 8 −4

 and b =

 3
−7
−3

. Determine if b is a linear

combination of the vectors formed from the columns of the matrix A

Solution: The vectors that form the columns of the matrix A are a1 =

 1
0
−2

,
a2 =

−4
3
8

 and a3 =

 2
5
−4

. To check whether b is a linear combination of

a1,a2 and a3 all we have to do is to �nd coe�cients x1, x2, and x3 such that

x1a1 + x2a2 + x3a3 = b

or what is the same  x1 − 4x2 + 2x3
3x2 + 5x3

−2x1 + 8x2 − 4x3

 =

 3
−7
−3


This is an inconsistent system of equations and, consequently,

b /∈ Span{a1,a2,a3}

Lay, 1.3.22
Carlos Oscar Sorzano, Nov. 4th, 2014

Construct a 3× 3 matrix A, with nonzero entries, and a vector b ∈ R3 such
that b is not in the set spanned by the columns of A.

Solution: Let b =

0
0
1

 and A =

1 2 3
1 2 3
1 2 3

. Obviously b is not in the space

spanned by the columns of A because the column space of A are all vectors of
the form (x1, x1, x1).

Lay, 1.3.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

 1 0 −4
0 3 −2
−2 6 3

 and b =

 4
1
−4

. Denote the columns of A as a1,

a2, and a3, and let W = Span{a1,a2,a3}

a Is b in {a1,a2,a3}? How many vector are in {a1,a2,a3}?

b Is b in W? How many vectors are in W?

c Show that a1 is in W .

Solution:

a No, b is not equal to any of the columns of A. In {a1,a2,a3} there are only
3 vectors.
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b In W there are in�nite vectors. To check whether b is in W all we have to
do is to �nd coe�cients x1, x2, and x3 such that

x1a1 + x2a2 + x3a3 = b

or what is the same x1 − 4x2
3x2 − 2x3

−2x1 + 6x2 + 3x3

 =

 4
1
−4


Solving the equation system we �nd: x1 = −4, x2 = −1, x3 = −2, i.e.

b = −4a1 − a2 − 2a3 = −4

 1
0
−2

−
0

3
6

− 2

−4
−2
3

 =

 4
1
−4


and, consequently, b ∈ Span{a1,a2,a3}.

c It is enough to observe that

a1 = 1a1 + 0a2 + 0a3

Lay, 1.3.27
Carlos Oscar Sorzano, Aug. 31st, 2013

A mining company has two mines. One's day operation at mine #1 produces
ore that contains 30 metric tons of copper and 600 kg of silver, while one day's
operation at mine #2 produces ore that containes 4 metric tones of copper and

380 kg of silver. Let v1 =

(
30
600

)
and v2 =

(
40
380

)
. Then, v1 and v2 represent

the output per day at mines #1 and #2, respectively.

a What physical interpretation can be given to the vector 5v1?

b Suppose the company operates mine #1 for x1 days, and mine #2 for x2
days. Write a vector equation whose solution gives the number of days each
mine should operate in order to produce 240 tons of copper and 2824 kg of
silver.

c Solve the previous equation

Solution:

a 5v1 is the production of copper and silver of mine #1 after 5 days of operation.

b The vector equation sought is

x1v1 + x2v2 =

(
240
2824

)
or what is the same
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(
30x1 + 40x2

600x1 + 380x2

)
=

(
240
2824

)
c The solution of this equation is x1 = 1.7270 and x2 = 4.7048, as can be easily
checked (

30 · 1.7270 + 40 · 4.7048
600 · 1.7270 + 380 · 4.7048

)
=

(
240
2824

)

Lay, 1.3.29
Carlos Oscar Sorzano, Aug. 31st, 2013

Let v1, v2, ..., vk be points in R3 and suppose that for j = 1, 2, ..., k an
object of mass mj is located at point vj . Physicists call such objects as point
masses. The total mass of the system of point masses is

m = m1 +m2 + ...+mk

The center of gravity (or center of mass) of the system is:

v = 1
m (m1v1 +m2v2 + ...+mkvk)

Compute the center of mass of the system consisting of the following point
masses (see �gure):

Solution: Let us calculate the total mass

m = m1 +m2 +m3 +m4 = 4 + 2 + 3 + 5 = 14g

Now, the center of mass

v = 1
m (m1v1 +m2v2 +m3v3 +m4v4) =

1
14

4

 2
−2
4

+ 2

−4
2
3

+ 3

 4
0
−2

+ 5

 1
−6
0

 =

 17
14
− 17

7
8
7


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Lay, 1.3.31
Carlos Oscar Sorzano, Aug. 31st, 2013

A thin triangular, metal plate of uniform density and thickness has vertices
v1 = (0, 1), v2 = (8, 1), and v3 = (2, 4)

and the mass of the plate is 3g.

a Find the (x, y)-coordinates of the center of mass of the plate. This �balanced
point� of the plate coincides with the center of mass of a system consisting of
three 1-gram point masses located at the vertices of the plate.

b Determine how to distribute an additional mass of 6g at the three vertices to
move the balance point of the plate to (2,2).

Solution:

a Let us calculate the total mass

m = m1 +m2 +m3 = 1 + 1 + 1 = 3g

Now, the center of mass

v = 1
m (m1v1 +m2v2 +m3v3) = 1

3

(
1

(
0
1

)
+ 1

(
8
1

)
+ 1

(
2
4

))
=

(
10
3
2

)
b If we now want to shift the center of masses, let us de�ne as w1, w2 and w3

the masses to be added to each one of the vertices, with the constraint

w1 + w2 + w3 = 6

The new center of masses will be

v = 1
m+6 ((m1 + w1)v1 + (m2 + w2)v2 + (m3 + w3)v3) =

1
9

((
0

1 + w1

)
+

(
8(1 + w2)

1 + w2

)
+

(
2(1 + w3)
4(1 + w3)

))
=

(
2
2

)
(

10+8w2+2w3

9
6+w1+w2+4w3

9

)
=

(
2
2

)
which gives us the equation system

w1 + w2 + w3 = 6
8w2 + 2w3 = 8

w1 + w2 + 4w3 = 12
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whose solution is w1 = 3.5g, w2 = 0.5g, w3 = 2g.

Lay, 1.4.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u = (0, 4, 4) and A =

 3 −5
−2 6
1 1

. Is u in the plane spanned by the

columns of A? Why or why not?

Solution: We need to solve the vector equation

u = c1a1 + c2a2

or what is the same, the equation system represented by the augmented matrix
below  3 −5 0

−2 6 4
1 1 4

 ∼
 3 −5 0

0 8
3 4

0 0 0


The system is compatible determinate, meaning that there exist c1 and c2 so that
the vector equation is satis�ed and, therefore, u belongs to the plane spanned
by the columns of A.
Lay, 1.4.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Let B =


1 4 1 2
0 1 3 −4
0 2 6 7
2 9 5 −7

. Can every row of R4 be written as a linear

combination of the columns of B? Do the columns of B span R3?
Solution: Let's see if every column of B has a pivot element. For doing so, we
will compute a row-equivalent matrix by applying row elementary operations:

B ∼


1 4 1 2
0 1 3 −4
0 0 0 15
0 0 0 0


Not all the columns have a pivot element, for instance, column 3 has not, there-
fore, the columns of B cannot spane R4. The columns of B do not span R3

because they are vectors of R4 and not vectors of R3.
Lay, 1.4.26
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Carlos Oscar Sorzano, Aug. 31st, 2013

Let u =

7
2
5

, v =

3
1
3

, andw =

5
1
1

. It can be shown that 2u−3v−w =

0. Use this fact (and no row operations) to �nd x1 and x2 that satisfy the
equation: 7 3

2 1
5 3

(x1
x2

)
=

5
1
1


Solution: We note that the �rst column of the matrix in the system equa-
tion is u, the second column is v and the vector of independent terms is w.
Consequently, the equation system is trying to �nd x1 and x2 such that

x1u + x2v = w

Comparing this equation with the fact of the statement

2u− 3v −w = 0⇒ 2u− 3v = w

we deduce that x1 = 2 and x2 = −3.
Lay, 1.4.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Rewrite the (numerical) matrix equation below in symbolic form as a vector
equation, using v1, v2, ... for the vectors and c1, c2, ... for scalars. De�ne what
each symbol represents using the data given in the matrix equation.

(
−3 5 −4 9 7
5 8 1 −2 −4

)
−3
1
2
−1
2

 =

(
11
−11

)

Solution: Let us de�ne v1 as the �rst column of the matrix (i.e., v1 =

(
−3
5

)
),

v2 as the second column (v2 =

(
5
8

)
), ... Let us also de�ne c1 as the �rst

coe�cient in the vector in the left-hand side of the equation (c1 = −3), c2 as
the second coe�cient (c2 = 1), ...

c1v1 + c2v2 + ...+ c5v5 =

(
11
−11

)
Lay, 1.4.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Could a set of 3 vectors in R4 span all of R4? Explain. What about n vectors
in Rm when n is less than m?
Solution: None of the two situations is possible. To span all R4 one need at
least 4 vectors (in fact it is enough with 4 linearly independent vectors). The
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same happens with Rm, one needs at least m vectors. Any smaller number of
vectors cannot fully span Rm.
Lay, 1.4.35
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be a 5× 3 matrix, let y be a vector in R3, and let z be a vector in R5.
Suppose Ay = z. What fact allows you to conclude that the system Ax = 5z is
consistent?
Solution: If Ay = z, then multiplying the equation by 5 we get

5(Ay) = 5z

Using the properties of scalar, matrix and vector multiplications, we may rear-
range the equation as

A(5y) = 5z

Now, simply calling x = 5y we get the equation proposed in the problem:

Ax = 5z

whose solution is obviously x = 5y.
Lay, 1.4.37
Sarah Rance Lopez, Jan. 12th, 2015

Determine if the columns of the following matrix span all R4

A =


7 2 −5 8
−5 −3 4 −9
6 10 −2 7
−7 9 2 15


Solution: By applying row operations we reach

A ∼


7 2 −5 8
0 −11 3 −23
0 0 50 −189
0 0 0 0


This latter matrix has 3 pivot columns (1, 2, 3), therefore, it does not span
R4.
Lay, 1.4.38
Sarah Rance Lopez, Jan. 12th, 2015

Determine if the columns of the following matrix span all R4

A =


4 −5 −1 8
3 −7 −4 2
5 −6 −1 4
9 1 10 7


Solution: By applying row operations we reach

A ∼


4 −5 −1 8
0 −1 −1 24
0 0 72 1084
0 0 0 328


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This latter matrix has 4 pivot columns, therefore, it spans R4.
Lay, 1.4.39
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine if the columns of the following matrix span all R4

A =


10 −7 1 4 6
−8 4 −6 −10 −3
−7 11 −5 −1 −8
3 −1 10 12 12


Solution: By applying row operations we reach

A ∼


10 −7 1 4 6
0 −1.6 −5.2 −6.8 1.8
0 0 −24.125 −24.125 3.0625
0 0 0 0 12.215


This latter matrix has 4 pivot columns (1, 2, 3 and 5), therefore, it spans
R4.
Lay, 1.4.40
Sarah Rance Lopez, Jan. 12th 2015

Determine if the columns of the following matrix span all R4

A =


5 11 −6 −7 12
−7 −3 −4 6 −9
11 5 6 −9 −3
−3 4 7 2 7


Solution: By applying row operations we reach

A ∼


5 11 −6 −7 12
0 1 −0.87 −0.3 0.02
0 0 −1 −0.99 −0.77
0 0 0 −0.6 0.07


This latter matrix has 4 pivot columns (1, 2, 3 and 4), therefore, it spans R4.

Lay, 1.5.7
Sarah Rance Lopez,Jan. 12th, 2015

Describe all solutions of Ax = 0 where A is row equivalent to

B =

(
1 3 −3 7
0 1 −4 5

)
Solution: Last equation implies that x2 = 4x3−5x4. The �rst equation implies

x1 = −3x2 + 3x3 − 7x4
x2 = 4x3 − 5x4

Considering the last equation we may simplify the �rst equation:

x1 = −3(4x3 − 5x4) + 3x3 − 7x4 = −9x3 + 8x4
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Gathering all this information we deduce that the general solution of Ax = 0 is

x =


−9x3 + 8x4
4x3 − 5x4

x3
x4

 ∀x3, x4 ∈ R

Note that the free variables (x3, x4) are the non-pivot columns in matrixB.
Lay, 1.5.10
Ignacio Sanchez Lopez, Jan. 12th, 2015

Describe all solutions of Ax = 0 where A is row equivalent to

B =

(
1 3 0 −4
2 6 0 8

)
Solution: We can clearly see that row 1 and row to are equivalents(row 2 is 2
times row 1), and we can easily deduce

x1 = −3x2 + 4x4

Gathering all this information we deduce that the general solution of Ax = 0
is

x =


−3x2 + 4x4

x2
x3
x4

 ∀x2, x3, x4 ∈ R

Note that the free variables (x2, x3, x4) are the non-pivot columns in matrix
B.
Lay, 1.5.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Describe all solutions of Ax = 0 where A is row equivalent to

B =


1 −4 −2 0 3 −5
0 0 1 0 0 −1
0 0 0 0 1 −4
0 0 0 0 0 0


Solution: Last equation implies that x5−4x6 = 0 or what is the same x5 = 4x6.
Similarly, the �rst three equations imply

x1 = 4x2 + 2x3 − 3x5 + 5x6
x3 = x6
x5 = 4x6

Considering the last two equations we may simplify the �rst equation:

x1 = 4x2 + 2x6 − 3(4x6) + 5x6 = 4x2 − 5x6

Gathering all this information we deduce that the general solution of Ax = 0 is
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x =


4x2 − 5x6

x2
x6
x4
4x6
x6

 ∀x2, x4, x6 ∈ R

Note that the free variables (x2, x4, x6) are the non-pivot columns in matrix
B.
Lay, 1.5.12
Sarah Rance Lopez,Jan. 12th, 2015

Describe all solutions of Ax = 0 where A is row equivalent to

B′ =


1 −2 3 −6 5 0
0 0 0 1 4 −6
0 0 0 0 0 1
0 0 0 0 0 0


Solution: We can further reduce the system matrix to

B =


1 −2 3 0 29 0
0 0 0 1 4 0
0 0 0 0 0 1
0 0 0 0 0 0


This set of equations can be rewritten as

x1 = 2x2 − 3x3 − 29x5
x4 = −4x5
x6 = 0

Gathering all this information we deduce that the general solution of Ax = 0 is

x =


2x2 − 3x3 − 29x5

x2
x3
−4x5
x5
0

 ∀x2, x3, x5 ∈ R

Note that the free variables (x2, x3, x5) are the non-pivot columns in matrix
B.
Lay, 1.5.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the solution set of a certain system of linear equations can be de-
scribed as x1 = 5 + 4x3, x2 = −2 − 7x3, with x3 free. Use vectors to describe
this set as a line in R3.
Solution: The general solution of the system of linear equations is

x =

 5 + 4x3
−2− 7x3

x3

 =

 5
−2
0

+ x3

 4
−7
1


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This is a line that passes through the point x0 = (5,−2, 0) and whose direction
vector is (4,−7, 1).
Lay, 1.5.14
Sarah Rance Lopez, Jan 12th, 2015

Suppose the solution set of a certain system of linear equations can be de-
scribed as x1 = 5x4, x2 = 3 − 2x4, x3 = 2 + 5x4 with x4 free. Use vectors to
describe this set as a �line� in R3.
Solution: The general solution of the system of linear equations is

x =


5x4

3− 2x4
2 + 5x4
x4

 =


0
3
2
0

+ x4


5
−2
5
1


This is a line that passes through the point x0 = (0, 3, 2, 0) and whose direction
vector is (5,−2, 5, 1).
Lay, 1.5.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine the parametric equation of the line through a = (−2, 0) and
parallel to b = (−5, 3).
Solution: The requested line can be expressed as a function of a free parameter
t ∈ R

l(t) = a + tb =

(
−2
0

)
+ t

(
−5
3

)
=

(
−2− 5t

3t

)
Lay, 1.5.21
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine the parametric equation of the line M through p = (3,−3) and
q = (4, 1).
Solution: In the following �gure, we show how the direction vector of the
requested line is q− p (or p− q).

The requested line can be expressed as a function of a free parameter t ∈ R

l(t) = p + t(q− p) =

(
3
−3

)
+ t

((
4
1

)
−
(

3
−3

))
=

(
3
−3

)
+ t

(
1
4

)
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Note that this line is at p for t = 0 and at q for t = 1.
Lay, 1.5.25
Carlos Oscar Sorzano, Aug. 31st, 2013

a Suppose p is a solution of Ax = b, so that Ap = b. Let vh be any solution
of the homogeneous equation Avh = 0 and let w = p + vh. Show that w is
a solution of Ax = b.

b Let w be a any solution of Ax = b, and de�ne vh = w − p. Show that vh
is a solution of Ax = 0. This shows that every solution of Ax = b has the
form w = p+vh with p a particular solution of Ax = b and vh a solution of
Ax = 0.

Solution:

a Let us check whether Aw = b
Aw = A(p + vh) By de�nition of w

= Ap +Avh By distributivy of matrix product
= b + 0 By de�nition of p and vh
= b Because 0 is the neutral of vector addition

b By de�nition of w and p we have

Aw = b
Ap = b

If we subtract both equations, we obtain

Aw −Ap = b− b
A(w − p) = 0

Taking into account that vh = w − p, this means

Avh = 0

As required by the exercise, we have proven that vh is a solution of the
equation Ax = 0.

Lay, 1.5.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is the 3×3 zero matrix. Describe the solution set of the equation
Ax = 0
Solution: The set of solutions is S = R3 since for any vector x ∈ R3 we have

Ax =

0 0 0
0 0 0
0 0 0

x1x2
x3

 =

0
0
0

 = 0
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Lay, 1.5.36
Carlos Oscar Sorzano, Aug. 31st, 2013

Given A =

 3 −2
−6 4
12 −8

, �nd one nontrivial solution of the equation Ax = 0.

Solution: We note that the second and third rows of A are multiples of the
�rst one. So any solution of the form (given by the �rst row)

3x1 − 2x2 = 0

is a solution. In particular x1 = 2 and x2 = 3 is a solution. We can check that

2

 3
−6
12

+ 3

−2
4
−8

 =

 6
−12
24

+

 −6
12
−24

 =

0
0
0


Lay, 1.5.39
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be a m × n matrix, and let v and w be vectors with the property
that Av = 0 and Aw = 0. Explain why A(v + w) = 0. Then, explain why
A(cv + dw) = 0 for each pair of scalars c and d.
Solution: We know that

Av = 0
Aw = 0

Adding both equations

A(v + w) = 0

As stated by the problem. For showing that A(cv + dw) = 0 we may follow a
di�erent strategy

A(cv + dw) = A(cv) +A(dw) By distributivity of matrix multiplication
= c(Av) + d(Aw) By scalar product property of matrix multiplication
= c(0) + d(0) By de�nition of v and w
= 0

Lay, 1.6.5
Carlos Oscar Sorzano, Aug. 31st, 2013

An economy has four sectors: Agriculture, Manufacturing, Services and
Transportation. Agriculture sells 20% of its output to Manufacturing, 30%
to Services, 30% to Transportation, and retains the rest. Manufacturing sells
35% of its output to Agriculture, 35% to Services, 20% to Transportation, and
retains the rest. Services sells 10% of its output to Agriculture, 20% to Man-
ufacturing, 20% to Transportation, and retains the rest. Transportation sells
20% of its output to Agriculture, 30% to Manufacturing, 20% to Services and
retains the rest.
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a. Construct the exchange table of this economy.

b. Find a set of equilibrium prices for the economy if the value of Transportation
is $10,00 per unit.

c. The Services sector launches a successful �eat farm fresh� campaign, and
increases its share of the output from the Agricultural sector to 40%, whereas
the share of the Agricultural production going to Manufacturing falls to 10%.
Construct the exchange table for this new economy.

d. Find a set of equilibrium prices for this new economy if the value of Trans-
portation is still $10,00 per unit. What e�ect has the �eat farm fresh� cam-
paign had on the equilibrium prices for the sectors of this economy?

Solution:

a. The exchange matrix is given by

E =


0.20 0.20 0.30 0.30
0.35 0.10 0.25 0.20
0.10 0.20 0.50 0.20
0.20 0.30 0.20 0.30


First row implies that the output of Agriculture is sold 20% to Agriculture,
20% to Manufacturing, 30% to Services and 30% to Transportation.

b. In equilibrium the expenses of any of the sectors are equal to its incomes. If
we construct the vector of sector values v, we may express this relationship as

v = Ev⇒ (I − E)v = 0

Expanding the di�erent elements


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0.20 0.20 0.30 0.30
0.35 0.10 0.35 0.20
0.10 0.20 0.50 0.20
0.20 0.30 0.20 0.30




vA
vM
vS
vT

 =


0
0
0
0




0.80 −0.20 −0.30 −0.30 0
−0.35 0.90 −0.35 −0.20 0
−0.10 −0.20 0.50 −0.20 0
−0.20 −0.30 −0.20 0.70 0

 ∼


1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0


The solution of this homogeneous system is

vA = vM = vS = vT ∀vT ∈ R

In particular, since the problem states that vT = 10, we have vA = vM =
vS = vT = 10.

c. The new exchange table is
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E =


0.20 0.10 0.40 0.30
0.35 0.10 0.25 0.20
0.10 0.20 0.50 0.20
0.20 0.30 0.20 0.30


d. The new augmented matrix is

0.80 −0.10 −0.40 −0.30 0
−0.35 0.90 −0.35 −0.20 0
−0.10 −0.20 0.50 −0.20 0
−0.20 −0.30 −0.20 0.70 0

 ∼


1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 0


Again the solution is

vA = vM = vS = vT ∀vT ∈ R

So, the campaign has had no e�ect on the di�erent prices.

Lay, 1.6.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Alka-Seltzer contains sodium bicarbonate (NaHCO3) and citric acid (H3C6H5O7).
When a tablet is dissolved in water, the following reaction produces sodium cit-
rate, water and carbon dioxide (gas):

NaHCO3 +H3C6H5O7 → Na3C6H5O7 +H20 + CO2

Balance this chemical equation.
Solution: Let's assign a number of molecules to each one of the compounds

x1NaHCO3 + x2H3C6H5O7 → x3Na3C6H5O7 + x4H2O + x5CO2

Now let's count the number of atoms of each kind

Na: x1 = 3x3
H: x1 + 3x2 + 5x2 = 5x3 + 2x4
C: x1 + 6x2 = 6x3 + x5
O: 3x1 + 7x2 = 7x3 + x4 + 2x5

The augmented matrix of this equation system is
1 0 −3 0 0 0
1 8 −5 −2 0 0
1 6 −6 0 −1 0
3 7 −7 −1 −2 0

 ∼


1 0 0 0 −1 0
0 1 0 0 − 1

3 0
0 0 1 0 − 1

3 0
0 0 0 1 −1 0


Letting x5 = 3, we have x1 = x5 = 3, x2 = 1

3x5 = 1, x3 = 1
3x5 = 1, x4 = x5 = 3.

Finally, the balanced chemical reaction is

3NaHCO3 +H3C6H5O7 → Na3C6H5O7 + 3H2O + 3CO2
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Lay, 1.6.12
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the general �ow pattern of the network shown in the �gure. Assuming
that the �ows are all nonnegative, what is the smallest possible value for x4?

Solution: To analyze this network we note that at each node the inputs must
be equal to its outputs. Consequently:

A x1 + x4 = x2
B x2 = x3 + 100
C x3 + 80 = x4

The augmented matrix of this equation system is 1 −1 0 1 0
0 1 −1 0 100
0 0 1 −1 −80

 ∼
 1 0 0 0 20

0 1 0 −1 20
0 0 1 −1 −80


The general solution of this equation system is

(x1, x2, x3, x4) = (20, 20 + x4,−80 + x4, x4)

If all �ows must be nonnegative, x4 must be at least 80, because otherwise, x3
would be negative.

Lay, 1.7.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the vectors v1 =

 1
−3
2

, v2 =

−3
9
−6

, and v3 =

 5
−7
h

. For which
value of h is the set S = {v1,v2,v3} linearly dependent.
Solution: We need to solve the vector equation

x1v1 + x2v2 + x3v3 = 0

and �nd a non-trivial solution. The augmented matrix of this equation system
is  1 −3 5 0

−3 9 −7 0
2 −6 h 0

 ∼
 1 −3 5 0

0 0 8 0
0 0 0 0


This equation system is compatible indeterminate for any value of h, meaning
that the set of vectors is linearly dependent disregarding the value of h. This is
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because v2 = −3v1.
Lay, 1.7.39
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is am×n matrix with the property that for all b in Rm, the equa-
tion Ax = b has at most one solution. Use the de�nition of linear independence
to explain why the columns of A must be linearly independent.
Solution: If Ax = b has at most one solution for all b, then in particular for
b = 0, the equation Ax = 0 has at most one solution. But we already know
that x = 0 is a solution (the trivial solution). So it must be its only solution.
Let us refer to the columns of A as ai (i = 1, 2, ..., n). The equation Ax = 0
can be rewritten as

x1a1 + x2a2 + ...+ xnan = 0

Because the trivial solution is its only solution, then the set of column vectors
of A is linearly independent.

Lay, 1.7.40
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose anm×n matrix has n pivot columns. Explain why for each b ∈ Rm
the equation Ax = b has at most one solution. [Hint: Explain why Ax = b
cannot have in�nitely many solutions.
Solution: In order to have in�nite solutions, we need to have free variables that
correspond to non-pivot columns of the matrix A. If A has n pivot columns,
then there are no free variables, and there cannot be an in�nite number of
solutions.

Lay, 1.8.23
Carlos Oscar Sorzano, Aug. 31st, 2013

De�ne f : R→ R by f(x) = mx+ b.

a. Show that f is a linear transformation when b = 0.

b. Find a property of linear transformations that is violated when b 6= 0.

c. Why is f called a linear function?

Solution:

a. We need to show that ∀x1, x2 ∈ R, ∀c ∈ R

• f(x1 + x2) = f(x1) + f(x2)
In this particular case:

f(x1 + x2) = m(x1 + x2) = mx1 +mx2 = f(x1) + f(x2)

• f(cx1) = cf(x1)
In this particular case:

f(cx1) = m(cx1) = c(mx1) = cf(x1)
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b. When b 6= 0 none of the two properties is ful�lled. Let's see an example with
the second one:

f(cx1) = m(cx1) + b = cmx1 + b 6= cmx1 + cb = c(mx1 + b) = cf(x1)

c. f is called a linear function because its graph (x, f(x)) is a line the 2D plane.
However, to be a linear transformation the line needs to pass through the
origin. If b 6= 0 the line de�ned by f does not pass through the origin.

Lay, 1.8.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Given v 6= 0 and p in Rn, the line through p in the direction of v has the
parametric equation x = p+tv. Show that a linear transformation T : Rn → Rn
maps this line onto another line or onto a single point (a degenerate line).
Solution: Let's de�ne y = T (x) and check whether it is a line or not:

y = T (x) By de�nition of x
= T (p + tv) By linearity of T
= T (p) + tT (v)

If T (v) 6= 0, then y describes a line that goes through T (p) in the direction of
T (v). If T (v) = 0, then y is a single point.
Lay, 1.8.26
Carlos Oscar Sorzano, Aug. 31st, 2013

a. Show that the line through the vectors p and q in Rn may be written in
parametric form as x = (1− t)p + tq.

b. The line segment from p to q is the set of points of the form (1−t)p+tq with
0 ≤ t ≤ 1 (as shown in the �gure below). Show that a linear transformation
maps this line segment onto a line segment or onto a single point.

Solution:

a. It is obvious that the line x = (1− t)p+ tq goes through p (substitute t = 0)
and by q (substitute t = 1). We need to show that the locus of all these
points is a line. To do so we rewrite it as

x = (1− t)p + tq = p + t(q− p)

that is the parametric form of a line.

b. If we transform the points in the segment y = T (x) we have

y = T (x) By de�nition of x
= T (p + t(q− p)) By linearity of T
= T (p) + tT (q− p) By linearity of T
= T (p) + tT (q)− tT (p)
= (1− t)T (p) + tT (q)
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If T (q − p) 6= 0, then y describes a line that goes through T (p) in the
direction of T (q− p). If T (q− p) = 0, then y is a single point.

Lay, 1.8.30
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose vectors v1, v2, ..., vp span Rn, and let T : Rn → Rn be a linear
transformation. Suppose T (vi) = 0 for i = 1, 2, ..., p. Show that T is the zero
transformation. That is, show that if x is any vector in Rn, then T (x) = 0
Solution: If v1, v2, ..., vp span Rn, then any vector x ∈ Rn can be expressed
as a linear combination of vi's:

x = c1v1 + c2v2 + ...+ cpvp

Applying the transformation T to x we get

T (x) = T (c1v1 + c2v2 + ...+ cpvp) By de�nition of x
= c1T (v1) + c2T (v2) + ...+ cpT (vp) By linearity of T
= c10 + c20 + ...+ cp0 As stated by the problem
= 0

Lay, 1.8.34
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : R3 → R3 be the transformation that re�ects each vector x =
(x1, x2, x3) through the plane x3 = 0 onto T (x) = (x1, x2,−x3). Show that
T is a linear transformation.
Solution: We need to show that ∀u,v ∈ R3, ∀c ∈ R

• f(u + v) = f(u) + f(v)
In this particular case:

T (u + v) = T ((u1 + v1, u2 + v2, u3 + v3)) = (u1 + v1, u2 + v2,−u3 − v3)

On the other hand:

T (u) + T (v) = (u1, u2,−u3) + (v1, v2,−v3) = (u1 + v1, u2 + v2,−u3 − v3)

which are obviously equal.

• T (cu) = cT (u)
In this particular case:

T (cu) = T ((cu1, cu2, cu3)) = (cu1, cu2,−cu3) = c(u1, u2,−u3) = cT (u)

Lay, 1.9.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the standard matrix of T : R2 → R4, when T (e1) = (3, 1, 3, 1) and
T (e2) = (−5, 2, 0, 0) where e1 = (1, 0) and e2 = (0, 1).
Solution: The standard matrix of T is
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A =
(
T (e1) T (e2)

)
=


3 −5
1 2
3 0
1 0


Lay, 1.9.2
Yolanda Manrique Marcos, December 17th, 2013

Find the standard matrix of T : R3 → R2, when T (e1) = (1, 4), T (e2) =
(−2, 9) and T (e3) = (3,−8) where e1,e2 and e3 are the columns of the 3 × 3
identity matrix.
Solution: The standard matrix of T is

A =
(
T (e1) T (e2) T (e3)

)
=

(
1 −2 3
4 9 −8

)
Lay, 1.9.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the standard matrix of T : R2 → R2, when T is a vertical shear that
maps e1 into e1 − 3e2, but leaves e2 unchanged.
Solution: The standard matrix of T is

A =
(
T (e1) T (e2)

)
=

(
1 0
−3 1

)
Lay, 1.9.7
Carlos Oscar Sorzano, Nov. 4th, 2014

T : R2 → R2 �rst rotates points through − 3π
4 radians (clockwise) and then

re�ects points through the horizontal x1-axis.
Solution: Let us construct a matrix of the form

A =
(
T (e1) T (e2)

)
After rotating the vector e1 =

(
1
0

)
by − 3π

4 , the vector becomes

(
− 1√

2

− 1√
2

)
. If we

re�ect through the x1-axis, we have T (e1) =

(
− 1√

2
1√
2

)
.

Doing the same with e2 =

(
0
1

)
by − 3π

4 , the vector becomes

(
1√
2

− 1√
2

)
. If we

re�ect through the x1-axis, we have T (e2) =

(
1√
2
1√
2

)
.

Finally, the transformation matrix becomes

A =
(
T (e1) T (e2)

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)

Lay, 1.9.17
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Carlos Oscar Sorzano, Aug. 31st, 2013

Let T (x1, x2, x3, x4) = (x1 + 2x2, 0, 2x2 + x4, x2 − x4). Show that T is a
linear transformation by �nding a matrix that implements the mapping.
Solution: If we de�ne x = (x1, x2, x3, x4), then we may de�ne T as

T (x) =


1 2 0 0
0 0 0 0
0 2 0 1
0 1 0 −1



x1
x2
x3
x4


Since this transformation is a matrix transformation of the form T (x) = Ax,
then it is a linear transformation.
Lay, 1.9.23
Carlos Oscar Sorzano, Nov. 11th, 2013

For each of the following statements determine if they are True or False.
Justify your answer.

1. A linear transformation T : Rn → Rm is completely determined by its
e�ect on the columns of the matrix n× n identity matrix.

2. If T : R2 → R2 rotates vectors about the origin through an angle φ, then
T is a linear transformation.

3. When two linear transformations are performed one after another, the
combined e�ect may not always be a linear transformation.

4. A mapping T : Rn → Rm is onto Rm if every vector x in Rn maps onto
some vector in Rm.

5. If A is a 3× 2 matrix, then the transformation x→ Ax cannot be one-to-
one.

Solution:

1. True. Since the columns of In are a basis of Rn, then any vector in Rn
can be expressed as:

x = x1e1 + ...+ xnxn

Since T is a linear transformation, then

T (x) = T (x1e1 + ...+ xnen) = x1T (e1) + ...+ xnT (en)

That is, to calculate T (x) we only need to know how to transform the
columns of the identity matrix of size n× n.

2. True. As shown in Example 1.9.3, such a rotating transformation can be
expressed as

T (x) =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
x1
x2

)
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That is, it is of the form T (x) = Ax, that is a linear transformation.

3. False. The composition of two linear transformations is also a linear trans-
formation as shown below:
Let T1 : Rn → Rm and T2 : Rm → Rp be two linear transformations, and
T12 : Rn → Rp be de�ned as (T1 ◦ T2)(x) = T2(T1(x))

• We need to show that for all u,v ∈ Rn, it is veri�ed that T12(u+v) =
T12(u) + T12(v)

T12(u + v) = T2(T1(u + v)) By de�nition
= T2(T1(u) + T1(v)) T1 is a linear transformation
= T2(T1(u)) + T2(T1(v)) T2 is a linear transformation
= T12(u) + T12(v) By de�nition

4. False. For instance the mapping T : R2 → R3 given by T (x1, x2) =
(x1, x2, 0) produces a vector in R3 for every vector in R2. However, the
transformation is not onto R3 because there are vectors in this space that
are not coming from any input vector (for instance, the vector (0, 0, 1) is
not the image of any of the vectors in R2).

5. False. Consider the matrix A =

1 0
0 1
0 0

. The transformation T is, then,

de�ned as T (x1, x2) = (x1, x2, 0). Let us analyze how many input vectors
map onto each vector y in R3. For doing so, let us analyze the equation
system Ax = y  1 0 y1

0 1 y2
0 0 y3


This equation system has no solution if y3 6= 0, and a unique solution
if y3 = 0 (the unique solution is x1 = y1 and x2 = y2). Therefore, the
transformation is one-to-one.

Lay, 1.9.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : Rn → Rm be a linear transformation. Then, there exists a unique
matrix A such that

T (x) = Ax

In fact,

A =
(
T (e1) T (e2) ... T (en)

)
where ei is the i-th column of the n×n identity matrix. Show that A is unique.
Solution: Let us assume A is not unique. That is, there exists another matrix
A′ 6= A such that ∀x ∈ Rn
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T (x) = A′x

If we now subtract the two equations (T (x) = Ax and T (x) = A′x), we have

T (x)− T (x) = Ax−A′x
0 = (A−A′)x

If this is true for all x is because A−A′ = 0, or what is the same, A = A′. But
this is a contradiction with our hypothesis that A 6= A′ and, consequently A is
unique.
Lay, 1.9.34
Carlos Oscar Sorzano, Aug. 31st, 2013

Let S : Rp → Rn and T : Rn → Rm be linear transformations. Show that
the mapping x→ T (S(x)) is a linear transformation from Rp to Rm.
Solution: We need to show that ∀x1,x2 ∈ R, ∀c ∈ R

• T (S(x1 + x2)) = T (S(x1)) + T (S(x2))

T (S(x1 + x2)) = T (S(x1) + S(x2)) Because S is linear
= T (S(x1)) + T (S(x2)) Because T is linear

• T (S(cx1)) = cT (S(x1))

T (S(cx1)) = T (cS(x1)) Because S is linear
= cT (S(x1)) Because T is linear

Lay, 1.9.37
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T be a linear transformation whose standard matrix is given by A =−5 6 −5 6
8 3 −3 8
2 9 5 −12

. Is T a one-to-one transformation?

Solution: The standard matrix is row-equivalent to1 0 0 0.38
0 1 0 −0.32
0 0 1 −1.97


The transformation is not one-to-one (injective) because the columns of the
standard matrix are not linearly independent (the fourth column can be ex-
pressed as 0.38a1 − 0.32a2 − 1.97a3).
Lay, 1.9.39
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T be a linear transformation whose standard matrix is given by

A =


4 −7 3 7 5
6 −8 5 12 −8
−7 10 −8 −9 14
3 −5 4 2 −6
−5 6 −6 −7 3


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Does T map R5 onto R5?
Solution: The standard matrix is row-equivalent to

1 0 0 5 0
0 1 0 1 0
0 0 1 −2 0
0 0 0 0 1
0 0 0 0 0


The transformation is not onto because there are only 4 pivot columns, i.e., only
4 linearly independent vectors and we need 5 to span R5.

Lay, 1.Suppl.3
Carlos Oscar Sorzano, Jan. 19th 2015

The solutions (x, y, z) of a single linear equation

ax+ by + cz = d

form a plane in R3 when a, b and c are not all zero. Construct sets of three
linear equations whose graphs (a) intersect in a single line, (b) intersect in a
single point, and (c) have no points in common. Typical graphs are illustrated
in the �gure.

Solution: The following equation systems show an example of each one of the
situations.
Case a:

−y + z = 0
y + z = 0

z = 0
⇒

 0 −1 1 0
0 1 1 0
0 0 1 0

 ∼
 0 −1 1 0

0 0 1 0
0 0 0 0

⇒ y = z = 0
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Any vector of the form (x, 0, 0) is solution of the equation system. Since the set
of solutions

S = {(x, 0, 0) ∀x ∈ R}
is de�ned by a single free variable, the set of solutions is a straight line.

Case b:

x = 0
y = 0
z = 0

⇒

 1 0 0 0
0 1 0 0
0 0 1 0

⇒ x = y = z = 0

The only solution of the equation system is the point (0, 0, 0).
Case c:

−y + z = 1
y + z = 1

z = 0
⇒

 0 −1 1 1
0 1 1 1
0 0 1 0

 ∼
 0 −1 1 1

0 0 1 1
0 0 0 −1


The system is incompatible because the last equation states 0 = −1.

Case c':

y = 0
z = 1
z = 0

⇒

 0 1 0 0
0 0 1 1
0 0 1 0

 ∼
 0 1 0 0

0 0 1 1
0 0 0 −1


The system is incompatible because the last equation states 0 = −1.
Burgos, 1.1.a
Carlos Oscar Sorzano, Nov. 4th, 2014

Consider the equation system

n∑
j=1

aijxj = bi (i = 1, 2, ...,m)

Assume that α = (α1, α2, ..., αn) and β = (β1, β2, ..., βn) are solutions of the
equation system. Show that

1. α− β is a solution of the equation system

n∑
j=1

aijxj = 0 (i = 1, 2, ...,m)

2. α + λ(α− β) is also a solution for any λ ∈ R
Solution:

1. Let us substitute α − β into the homogeneous equation system. For any
i = 1, 2, ...,m we have

n∑
j=1

aij(αj − βj) =

n∑
j=1

aijαj −
n∑
j=1

aijβj = bi − bi = 0

2. Let us substitute α+λ(α−β) into the nonhomogeneous equation system.
For any i = 1, 2, ...,m we have

n∑
j=1

aij(αj + λ(αj − βj)) =

n∑
j=1

aijαj + λ

n∑
j=1

aij(αj − βj) = bi + 0 = bi
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2 Chapter 2

Lay, 2.1.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

(
2 −5
3 −2

)
. Calculate 3I2 −A and (3I2)A

Solution:

3I2 −A = 3

(
1 0
0 1

)
−
(

2 −5
3 −2

)
=

(
3 0
0 3

)
−
(

2 −5
3 −2

)
=

(
1 5
−3 5

)
(3I2)A =

(
3

(
1 0
0 1

))(
2 −5
3 −2

)
=

(
3 0
0 3

)(
2 −5
3 −2

)
=

(
6 −15
9 −6

)
Lay, 2.1.4
Carlos Oscar Sorzano, Aug. 31st, 2013

Compute A− 5I3 and (5I3)A, where

A =

 5 −1 3
−4 3 −6
−3 1 2


Solution:

A− 5I3 =

 5 −1 3
−4 3 −6
−3 1 2

− 5

1 0 0
0 1 0
0 0 1

 =

 5 −1 3
−4 3 −6
−3 1 2

−
5 0 0

0 5 0
0 0 5

 =

 0 −6 −2
−9 −2 −11
−8 −4 −3


(5I3)A =

5

1 0 0
0 1 0
0 0 1

 5 −1 3
−4 3 −6
−3 1 2

 =

5 0 0
0 5 0
0 0 5

 5 −1 3
−4 3 −6
−3 1 2

 =

 25 −5 15
−20 15 −30
−15 5 10


Lay, 2.1.5
Andrea Santos Cortés, Oct, 7th, 2014

Given the matrices

A =

−1 3
2 4
5 −3


B =

(
4 −2
−2 3

)
Compute the product AB in two ways:(a) by the de�nition, where Ab1 and

Ab2 are computed separately, and (b) by the row-column rule for computing
AB.
Solution:

Ab1 =

−1 3
2 4
5 −3

( 4
−2

)
=

−10
2
26


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Ab2 =

−1 3
2 4
5 −3

(−2
3

)
=

 11
8
−19


AB =

−1 3
2 4
5 −3

( 4 −2
−2 3

)
=

−10 11
2 8
26 −19


Lay, 2.1.6

Andrea Santos Cortés, Oct, 13th, 2014

Given the matrices

A =

 4 −3
−3 5
0 1


B =

(
1 4
3 −2

)
Compute the product AB in two ways:(a) by the de�nition, where Ab1 and

Ab2 are computed separately, and (b) by the row-column rule for computing
AB.
Solution:

Ab1 =

 4 −3
−3 5
0 1

(1
3

)
=

−5
12
3


Ab2 =

 4 −3
−3 5
0 1

( 4
−2

)
=

 22
−22
−2


AB =

 4 −3
−3 5
0 1

(1 4
3 −2

)
=

−5 22
12 −22
3 −2


Lay, 2.1.7

Andrea Santos Cortés, Oct. 13th, 2014

If a matrix A is 5×3 and the product AB is 5×7, what is the size of B?
Solution: B is a matrix of size 3×7.
Lay, 2.1.8
Carlos Oscar Sorzano, Aug. 31st, 2013

How many rows does B have if BC is a 5 x 4 matrix?

Solution:

Let's say BC = D.
D will be a 5 x 4 matrix if and only if B5,i and Ci,4.
Therefore, B has 5 rows.

Lay, 2.1.10
Carlos Oscar Sorzano, Aug. 31st, 2013
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Let A =

(
3 −6
−1 2

)
, B =

(
−1 1
3 4

)
and C =

(
−3 −5
2 1

)
. Verify that

AB = AC and yet B 6= C.
Solution:

AB =

(
3 −6
−1 2

)(
−1 1
3 4

)
=

(
−21 −21

7 7

)
=

(
3 −6
−1 2

)(
−3 −5
2 1

)
= AC

Lay, 2.1.12
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

(
3 −6
−2 4

)
. Construct a 2× 2 matrix B such that AB is the zero

matrix. Use two di�erent nonzero columns for B

Solution: We search for a matrix B =

(
b11 b12
b21 b22

)
such that

AB =

(
3 −6
−2 4

)(
b11 b12
b21 b22

)
=

(
3b11 − 6b21 3b12 − 6b22
4b21 − 2b11 4b22 − 2b12

)
=

(
0 0
0 0

)
This matrix equation gives us 4 equations

3b11 − 6b21 = 0
3b12 − 6b22 = 0
4b21 − 2b11 = 0
4b22 − 2b12 = 0

The augmented matrix of this equation system is
3 0 −6 0 0
0 3 0 −6 0
−2 0 4 0 0

0 −2 0 4 0

 ∼


1 0 −2 0 0
0 1 0 −2 0
0 0 0 0 0
0 0 0 0 0


Consequently, b11 = 2b21 and b12 = 2b22. That is, any matrix of the form

B =

(
2b21 2b22
b21 b22

)
yields AB = 0. One such example is B =

(
2 2
1 1

)
Lay, 2.1.17
Ana Peña Gil, Jan. 19th, 2014

If A =

(
1 −3
−3 5

)
and AB =

(
−3 −11
1 17

)
, determine the �rst and second

columns of B.

Solution: We search for a matrix B =

(
b11 b12
b21 b22

)
such that

AB =

(
1 −3
−3 5

)(
b11 b12
b21 b22

)
=

(
b11 − 3b21 b12 − 3b22
5b21 − 3b11 5b22 − 3b12

)
=

(
−3 −11
1 17

)
This matrix equation gives us 4 equations
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b11 − 3b21 = −3
b12 − 3b22 = −11
5b21 − 3b11 = 1
5b22 − 3b12 = 17

The augmented matrix of this equation system is
1 0 −3 0 −3
0 1 0 −3 −11
−3 0 5 0 1

0 −3 0 5 17

 ∼


1 0 −3 0 −3
0 1 0 −3 −11
0 0 −4 0 −8
0 0 0 −4 −16


Consequently, b11 = 3, b12 = 1, b21 = 2 and b22 = 4. The �rst and second
columns of B are:

B =

(
3 1
2 4

)
Lay, 2.1.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the third column of B is all zeros. What can be said about the
third column of AB?
Solution: Let us consider the di�erent columns of B

B =
(
b1 b2 b3 ...

)
The product of AB is

AB = A
(
b1 b2 b3 ...

)
=
(
Ab1 Ab2 Ab3 ...

)
If b3 = 0, then

Ab3 = A0 = 0

So, the third column is also 0.
Lay, 2.1.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the third column of B is the sum of the �rst two columns. What
can be said about the third column of the product AB?
Solution: Let us consider the di�erent columns of B

B =
(
b1 b2 b3 ...

)
The product of AB is

AB = A
(
b1 b2 b3 ...

)
=
(
Ab1 Ab2 Ab3 ...

)
If b3 = b1 + b2, then

Ab3 = A(b1 + b2) = Ab1 +Ab2
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That is, the third column of AB is also the sum of the �rst and second columns
of AB.
Lay, 2.1.20
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose that the �rst two columns, b1 and b2, of B are equal. What can
be said about the columns of AB? Why?
Solution: Let us consider the di�erent columns of B

B =
(
b1 b2 b3 ...

)
The product of AB is

AB = A
(
b1 b2 b3 ...

)
=
(
Ab1 Ab2 Ab3 ...

)
If b1 = b2, then

Ab1 = Ab2

So, both columns are also equal. Additionally, we may say that the columns of
AB are not linearly independent because there exists a linear combination of
them that produces the vector 0.

1(Ab1)− 1(Ab2) + 0(Ab3) + 0(Ab4) + ... = 0

Lay, 2.1.22
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if the columns of B are linearly independent, so are the columns
of AB.
Solution: This statement is not true. For instance, the columns of

B =

(
1 0
0 1

)

are linearly independent. However, given A =

(
1 2
2 4

)
, the columns of

AB =

(
1 2
2 4

)(
1 0
0 1

)
=

(
1 2
2 4

)
are not linearly independent because the second column is twice the �rst one.

AB is linearly independent if the columns of A and B are linearly indepen-
dent.
Lay, 2.1.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m × n matrix. Suppose there exists an n ×m matrix C such
that CA = In (the n× n identity matrix). Show that the equation Ax = 0 has
only the trivial solution. Explain why A cannot have more columns than rows.
Solution: If x satis�es Ax = 0, then

CAx = C(Ax) = C0 = 0.
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But on the other side

CAx = (CA)x = Inx = x.

Consequently, x = 0. This shows that the equation Ax = 0 has no free variables.
A requirement for this is that there are not more columns than rows.
Lay, 2.1.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is a 3 × n matrix whose columns span R3. Explain how to
construct an n× 3 matrix D such that AD = I3.
Solution: Let us de�ne a generic matrix D

D =


d11 d12 d13
d21 d22 d23
... ... ...
dn1 dn2 dn3


We need that AD = I3. This gives us 9 (= 3 ·3) equations to �nd the matrix D.
If the columns of A span R3 and n > 3, the system is compatible indeterminate
and there will be in�nite solutions to the problem. If n = 3, there is a single
solution to the problem. In the case that the columns of A did not span R3,
there would not be any solution to the problem.
Lay, 2.1.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is an m×n matrix and there exist n×m matrices C and D such
that CA = In and AD = Im. Prove that m = n and C = D. [Hint : think of
the product CAD.]
Solution: Let us compute

(CA)D = InD = D

On the other side, let us compute

C(AD) = CIm = C

But we know that matrix multiplication is associative and, consequently, C = D.
By Exercise Lay 2.1.23 we know that A cannot have more columns than

rows, and by Exercise Lay 2.1.26 we know that A cannot have more rows than
columns. Consequently, the number of rows and columns must be the same and
m = n.
Lay, 2.1.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m × n matrix. Suppose there exists an n ×m matrix D such
that AD = Im (the m ×m identity matrix). Show that for any b ∈ Rm, the
equation Ax = b has a solution. Explain why A cannot have more rows than
columns.
Solution: Let us consider the rows of D =

(
d1 d2 ... dm

)
. The product

AD is

AD =
(
Ad1 Ad2 ... Adm

)
= Im =

(
e1 e2 ... em

)
49



where ei is the i-th column of Im. For a particular column, we have

Adi = ei

The columns of Im form a basis of Rm. Therefore, for any b ∈ Rm it can be
expressed as a linear combination of the ei vectors

b =
m∑
i=1

biei =
m∑
i=1

biAdi = A

(
m∑
i=1

bidi

)
So we deduce, there exists a solution to the equation Ax = b that is

x =
m∑
i=1

bidi

If A had more rows than columns, then it would not have a solution for every
b because there would be b's for which the reduced echelon form has rows full
of zeros and the independent terms are not 0.
Lay, 2.1.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u =

−3
2
−5

 and v =

ab
c

. Compute uTv, vTu, uvT and vuT .

Solution:

uTv =
(
−3 2 −5

)ab
c

 = −3a+ 2b− 5c

vTu =
(
a b c

)−3
2
−5

 = −3a+ 2b− 5c

uvT =

−3
2
−5

(a b c
)

=

−3a −3b −3c
2a 2b 2c
−5a −5b −5c


vuT =

ab
c

(−3 2 −5
)

=

−3a 2a −5a
−3b 2b −5b
−3c 2c −5c


Lay, 2.2.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

(
1 2
5 12

)
, b1 =

(
−1
3

)
, b2 =

(
1
−5

)
, b3 =

(
2
6

)
, and b4 =

(
3
5

)
.

a. Find A−1 and use it to solve the four equations Ax = b1, Ax = b2, Ax = b3,
Ax = b4.

b. The four equations in part (a) can be solved by the same set of row opera-
tions, since the coe�cients matrix is the same in each case. Solve the four
equations in part (a) by reducing the augmented matrix

(
A b1 b2 b3 b4

)
.

Solution:
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a. To �nd A−1 we will apply row operations on the augmented matrix exploit-
ing that

(
A I

)
∼
(
I A−1

)
.

(
1 2 1 0
5 12 0 1

)
∼
(

1 0 6 −1
0 1 − 5

2
1
2

)
Now we use this inverse matrix to solve the linear equations(

6 −1
− 5

2
1
2

)(
−1
3

)
=

(
−9
4

)
(

6 −1
− 5

2
1
2

)(
1
−5

)
=

(
11
−5

)
(

6 −1
− 5

2
1
2

)(
2
6

)
=

(
6
−2

)
(

6 −1
− 5

2
1
2

)(
3
5

)
=

(
13
−5

)
b. Now, we will apply row operations on the augmented matrix suggested by

the problem(
1 2 −1 1 2 3
5 12 3 −5 6 5

)
∼
(

1 0 −9 11 6 13
0 1 4 −5 −2 −5

)

Lay, 2.2.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an invertible n × n matrix, and let B be an n × p matrix. Show
that the equation AX = B has a unique solution X = A−1B.
Solution: Consider the columns of X and B:

X =
(
x1 x2 ... xp

)
B =

(
b1 b2 ... bp

)
The matrix equation AX = B is a simultaneous set of equations:

Ax1 = b1

Ax2 = b2

...
Axp = bp

Since A is invertible, each equation has a unique solution given by

x1 = A−1b1

x2 = A−1b2

...
xp = A−1bp

Or what is the same

X =
(
A−1b1 A−1b2 ... A−1bp

)
= A−1

(
b1 b2 ... bp

)
= A−1B
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Lay, 2.2.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose AB = AC, where B and C are n× p matrices and A is invertible.
Show that B = C. Is this true, in general, if A is not invertible?
Solution: If A is invertible we multiply on the left by A−1 to obtain

A−1(AB) = A−1(AC)
(A−1A)B = (A−1A)C

InB = InC
B = C

If A is not invertible, then the statement is not generally true. For example, let

A =

(
1 0
0 0

)
, B =

(
1
0

)
and C =

(
1
1

)
.

AB =

(
1 0
0 0

)(
1
0

)
=

(
1
0

)
=

(
1 0
0 0

)(
1
1

)
= AC

Lay, 2.2.16
Carlos Oscar Sorzano, Nov. 4th 2014

Suppose A and B are n× n matrices, B is invertible, and AB is invertible.
Show that A is invertible. [Hint : Let C = AB and solve this equation for A]
Solution: If we solve for A in

C = AB ⇒ A = CB−1 = (AB)B−1

This matrix is well constructed because AB and B−1 are both n × n matrices
and can, therefore, be multiplied. Also B−1 exists because B is invertible.

The inverse of A would be:

A−1 = ((AB)B−1)−1 = B(AB)−1

Since AB is invertible (see problem statement), then A−1 is also well constructed
and it exists.
Lay, 2.2.17
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A, B and C are invertible n× n matrices. Show that ABC is also
invertible by producing a matrix D such that (ABC)D = I = D(ABC)
Solution: The sought matrix D is

D = C−1B−1A−1

Let us check that this matrix is actually the inverse of ABC.

(ABC)D = (ABC)(C−1B−1A−1) = AB(CC−1)B−1A−1

= ABB−1A−1 = AA−1 = I

D(ABC) = (C−1B−1A−1)(ABC) = C−1B−1(A−1A)BC
= C−1B−1BC = C−1C = I
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Lay, 2.2.19
Carlos Oscar Sorzano, Aug. 31st, 2013

If A, B and C are invertible n × n matrices, does the equation C−1(A +
X)B−1 = In have a solution, X? If so, �nd it.
Solution: If B and C are invertible, so are B−1 and C−1, and their inverses
are B and C, respectively. In this way, we may multiply on the left by C and
on the right by B to obtain

CC−1(A+X)B−1B = CInB
A+X = CB
X = CB −A

Lay, 2.2.21
Carlos Oscar Sorzano, Aug. 31st, 2013

Explain why the columns of an n × n matrix A are linearly independent
when A is invertible.
Solution: If A is invertible we have shown (see Theorem 2.2, Chapter 3,
Biomedical Engineering Notes) that for every b ∈ Rn, there is a unique so-
lution of the equation Ax = b. In particular, there exists a solution for the
equation Ax = 0 that is x = A−10 = 0. Since the only solution of this prob-
lem is the trivial one, then by Theorem 6.1, Chapter 2, Biomedical Engineering
Notes, the columns of A are linearly independent.
Lay, 2.2.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider A =

(
a b
c d

)
. Show that if ad− bc = 0, then the equation Ax = b

has more than one solution. Why does this imply that A is not invertible?
Solution: Let us reduce the augmented matrix

(
A|b

)
.(

a b b1
c d b2

)
∼
(
a b b1
0 ad− bc ab2 − cb1

)
In fact if ad − bc = 0, the matrix equation may have in�nite solutions (if
ab2 − cb1 = 0) or no solution at all (if ab2 − cb1 6= 0). This implies that
A is not invertible because if it were invertible for any b ∈ R2 the equation
Ax = b would have a single solution.
Lay, 2.2.34

Use the algorithm from this section to calculate the inverse of

A =


1 0 0 ... 0
2 2 0 ... 0
3 3 3 ... 0
... ... ... ... ...
n n n ... n


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Solution: Let us apply row operations to the matrix
(
A I

)
to reduce it to(

I A−1
)


1 0 0 0 ... 0 1 0 0 0 ... 0 0
2 2 0 0 ... 0 0 1 0 0 ... 0 0
3 3 3 0 ... 0 0 0 1 0 ... 0 0
4 4 4 4 ... 0 0 0 0 1 ... 0 0
... ... ... ... ... ... ... ... ... ... ... ... ...
n n n n ... n 0 0 0 0 ... 0 1

 ∼
1 0 0 0 ... 0 1 0 0 0 ... 0 0
0 1 0 0 ... 0 −1 1

2 0 0 ... 0 0
3 3 3 0 ... 0 0 0 1 0 ... 0 0
4 4 4 4 ... 0 0 0 0 1 ... 0 0
... ... ... ... ... ... ... ... ... ... ...
n n n n ... n 0 0 0 0 ... 0 1

 ∼
1 0 0 0 ... 0 1 0 0 0 ... 0 0
0 1 0 0 ... 0 −1 1

2 0 0 ... 0 0
0 0 1 0 ... 0 0 − 1

2
1
3 0 ... 0 0

4 4 4 4 ... 0 0 0 0 1 ... 0 0
... ... ... ... ... ... ... ... ... ... ... ... ...
n n n n ... n 0 0 0 0 ... 0 1

 ∼
1 0 0 0 ... 0 1 0 0 0 ... 0 0
0 1 0 0 ... 0 −1 1

2 0 0 ... 0 0
0 0 1 0 ... 0 0 − 1

2
1
3 0 ... 0 0

0 0 0 1 ... 0 0 0 − 1
3

1
4 ... 0 0

... ... ... ... ... ... ... ... ... ... ... ... ...
n n n n ... n 0 0 0 0 ... 0 1

 ∼
1 0 0 0 ... 0 1 0 0 0 ... 0 0
0 1 0 0 ... 0 −1 1

2 0 0 ... 0 0
0 0 1 0 ... 0 0 − 1

2
1
3 0 ... 0 0

0 0 0 1 ... 0 0 0 − 1
3

1
4 ... 0 0

... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 0 0 0 0 ... − 1

n−1
1
n


Lay, 2.2.36
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

−25 −9 −27
536 185 537
154 52 143

. Find the second and third columns of A−1

without computing the �rst column.
Solution: Let us reduce the augmented matrix

(
A e2 e3

)
. −25 −9 −27 0 0

536 185 537 1 0
154 52 143 0 1

 ∼
 1 0 0 0.1126 −0.1559

0 1 0 −0.5611 1.0077
0 0 1 0.0828 −0.1915


The last two columns of the latter matrix are the two columns required by the
problem.

Lay, 2.3.13
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Carlos Oscar Sorzano, Aug. 31st, 2013

An m × n upper triangular matrix is one whose entries below the main
diagonal are 0's. When is a square upper triangular matrix invertible?
Solution: An upper triangular matrix is already in echelon form. It is row-
equivalent to In, and hence invertible, if its diagonal elements are di�erent from
0. If any of the diagonal entries is zero, then there would be free variables in
the equation system Ax = b and the matrix would not be invertible.
Lay, 2.3.15
Ana Peña gil, Jan. 19th 2014

Is it possible for a 4x4 matrix to be invertible when its columns do not span
R4? Why or why not?

Solution: This is not possible. If an 4x4 matrix does not span R4, then it
means that their columns are not linearly independent. If the columns are lin-
early dependent, the determinant of the matrix is 0, so the matrix cannot be
invertible.

Lay, 2.3.16
Carlos Oscar Sorzano, Aug. 31st, 2013

If an n × n matrix A is invertible, then the columns of AT are linearly
independent. Explain why.
Solution: By the Invertible Matrix Theorem, if A is invertible, so is AT . if
AT is invertible, then by the same theorem, the columns of AT are linearly
independent.
Lay, 2.3.17
Carlos Oscar Sorzano, Aug. 31st, 2013

Can a square matrix with two identical columns be invertible? Why or why
not?
Solution: It cannot be invertible because the two columns are not linearly in-
dependent, and by the Invertible Matrix Theorem, if a matrix is invertible, then
its columns are linearly independent.
Lay, 2.3.18
Ana Peña Gil, Jan. 19th 2014

Can a square matrix with two identical columns be invertible? Why or why
not?

Solution: When the 2x2 matrix has identical columns, we say their columns
are linearly dependent, so its determinant is zero. Because of that, the matrix
is not invertible.

Lay, 2.3.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : R2 → R2 given by T (x1, x2) = (−5x1 + 9x2, 4x1 − 7x2). Show that
T is invertible and �nd a formula for T−1.
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Solution: We may write the transformation as

T (x1, x2) =

(
−5 9
4 −7

)(
x1
x2

)

By de�ning the matrix A =

(
−5 9
4 −7

)
and computing its inverse A−1 =(

−0.0986 0.1268
0.0563 0.0704

)
, we may write the inverse transformation as

T (x1, x2) =

(
−0.0986 0.1268
0.0563 0.0704

)(
x1
x2

)
Lay, 2.3.41
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose an experiment leads to the following system of equations

4.5x1 + 3.1x2 = 19.249
1.6x1 + 1.1x2 = 6.843

a. Solve the previous equation system, and then, the equation system below in
which the data on the right has been rounded to two decimal places.

4.5x1 + 3.1x2 = 19.25
1.6x1 + 1.1x2 = 6.84

b. The entries in the rounded system of equations di�er from those of the exact
system by less than 0.05%. Find the percentage error when using the solution
of the rounded equation system as an approximation to the solution of the
exact system.

Solution:

a. The solution of the exact equation system is

xexact = A−1
(

19.249
6.843

)
=

(
3.94
0.49

)
. The solution of the rounded equation system is

xrounded = A−1
(

19.25
6.84

)
=

(
2.90
2.00

)
b. The error percentage is given for each variable as

ε1 = 100
|x1,exact−x1,rounded|

|x1,exact| = 100 |3.94−2.90||3.94| = 26.40%

ε2 = 100
|x2,exact−x2,rounded|

|x2,exact| = 100 |0.49−2.00||0.49| = 308.16%
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Lay, 2.4.1
Ignacio Sánchez López, Dec, 15th, 2014

Assume that the matrices are patitions conformably for block multiplication.
Compute the following product:

A =

(
I 0
E I

)

B =

(
A B
−C D

)
Solution: Let us compute AB

AB =

(
I 0
E I

)(
A B
C D

)
=

(
A B

EA+ C EB +D

)
Lay, 2.4.2

Ignacio Sanchez Lopez, Dec, 29th, 2014

Assume that the matrices are patitioned conformably for block multiplica-
tion. Compute the following product:

A =

(
E 0
0 F

)

B =

(
P Q
R S

)
Solution: Let us compute AB

AB =

(
E 0
0 F

)(
P Q
R S

)
=

(
EP EQ
FR FS

)
Lay, 2.4.3

Ignacio Sanchez Lopez, Dec, 29th, 2014

Assume that the matrices are patitioned conformably for block multiplica-
tion. Compute the following product:

A =

(
0 I
I 0

)

B =

(
A B
C D

)
Solution: Let us compute AB

AB =

(
0 I
I 0

)(
A B
C D

)
=

(
C D
A B

)
Lay, 2.4.4

Ignacio Sanchez Lopez, Dec, 29th, 2014
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Assume that the matrices are patitioned conformably for block multiplica-
tion. Compute the following product:

A =

(
I 0
−E I

)

B =

(
W X
Y Z

)
Solution: Let us compute AB

AB =

(
I 0
−E I

)(
W X
Y Z

)
=

(
W X

Y − EW Z − EX

)

Lay, 2.4.15
Carlos Oscar Sorzano, Aug. 31st, 2013

When a deep space probe is launched, corrections may be necessary to place
the probe on a precisely calculated trajectory. Radio telemetry provides a
stream of vectors, x1, x2, ..., xk, giving information at di�erent times about
how the probe's position compares with its planned trajectory. Let Xk be the
matrix

(
x1 x2 ... xk

)
. The matrix Gk = XkX

T
k is computed as the radar

data is analyzed. When xk+1 arrives a new Gk+1 must be computed. Since
the data vectors arrive at high speed, the computational burden could be se-
vere. But partitioned matrix multiplication helps tremendously. Compute the
column-row expansions of Gk and Gk+1, and describe what must be computed
in order to update Gk to form Gk+1.
Solution: Let's analyze �rst Gk:

Gk = XkX
T
k =

(
x1 x2 ... xk

)
xT1
xT2
...
xTk

 =
k∑
i=1

xix
T
i

Similarly

Gk+1 = Xk+1X
T
k+1 =

k+1∑
i=1

xix
T
i =

(
k∑
i=1

xix
T
i

)
+ xk+1x

T
k+1 = Gk + xk+1x

T
k+1

Thus, it su�ces to compute xk+1x
T
k+1 and add it to the previous matrix Gk.

Lay, 2.4.16
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

(
A11 A12

A21 A22

)
. If A11 is invertible, then the matrix S = A22 −

A21A
−1
11 A12 is called the Schur complement of A11. Likewise, if A22 is invertible,

the matrix A11 − A12A
−1
22 A21 is called the Schur complement of A22. Suppose

A11 is invertible. Find X and Y such that(
A11 A12

A21 A22

)
=

(
I 0
X I

)(
A11 0
0 S

)(
I Y
0 I

)
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Solution: Let us multiply the matrices on the right(
I 0
X I

)(
A11 0
0 S

)(
I Y
0 I

)
=

(
A11 0
XA11 S

)(
I Y
0 I

)
=(

A11 A11Y
XA11 XA11Y + S

)
Comparing this product to A we derive the following equations:

A11Y = A12

XA11 = A21

XA11Y + S = A22

That are solved like

Y = A−111 A12

X = A21A
−1
11

We need to check that the last equation is veri�ed

XA11Y + S = A22

(A21A
−1
11 )A11(A−111 A12) + (A22 −A21A

−1
11 A12) = A22

A21A
−1
11 A12 +A22 −A21A

−1
11 A12 = A22

A22 = A22

Lay, 2.4.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Let X be an m× n data matrix such that XTX is invertible, and let M =
Im − X(XTX)−1XT . Add a column x0 to the data to form W =

(
X x0

)
.

Compute WTW . The (1,1)-entry is XTX. Show that the Schur complement
(Exercise Lay 2.4.16) of XTX can be written in the form xT0Mx0. It can be
shown that (xT0Mx0)−1 is the (2,2)-entry in (WTW )−1. This entry has a useful
statistical interpretation under apropriate hypotheses.
Solution:

WTW =

(
XT

xT0

)(
X x0

)
=

(
XTX XTx0

xT0X xT0 x0

)
The Schur complement is de�ned as S = A22 −A21A

−1
11 A12, that in this partic-

ular case is

S = xT0 x0 − xT0X(XTX)−1XTx0 = xT0 (Im −X(XTX)−1XT )x0 = xT0Mx0

Lay, 2.4.19
Carlos Oscar Sorzano, Aug. 31st, 2013

In the study of engineering control of physical systems, a standard set of
di�erential equations is transformed by Laplace transforms into the following
system of linear equations:(

A− sIn B
C Im

)(
x
u

)
=

(
0
y

)
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where A is n×n, B is n×m, C is m×n and s is a variable. The vector u ∈ Rm
is the �input� to the system, y ∈ Rm is the �output� of the system, and x ∈ Rn
is the �state� vector. Actually, the vectors u, x and y are functions of s, but
this does not a�ect the algebraic calculations of this exercise.

Assume A− sIn is invertible and view the previous equation as a system of
two matrix equations. Solve the top equation for x and substitute in the bottom
equation. The result is an equation of the form W (s)u = y, where W (s) is a
matrix that depends on s. W (s) is called the transfer function of the system
because it transforms the input u into the output y. Find W (s) and describe
how it is related to the partitioned system matrix of the equation above.
Solution: The �rst equation gives us

(A− sIn)x +Bu = 0⇒ x = −(A− sIn)−1Bu

Now we go with the second equation and substitute this value into it

Cx + u = y
C(−(A− sIn)−1Bu) + u = y

(−C(A− sIn)−1B + Im)u = y
(Im − C(A− sIn)−1B)u = y

So, the transfer function is given by the matrixW (s) = Im−C(A−sIn)−1B.

Lay, 2.5.Practice
Carlos Oscar Sorzano, Aug. 31st, 2013

Find an LU factorization of the matrix A =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4


Solution: We apply row operations on A to reduce it to an upper triangular
matrix and annotate the di�erent matrices that we needed
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A =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4

 r2 ← r2 − 3r1 E1 =


1 0 0 0 0
−3 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



E1A =


2 −4 −2 3
0 3 1 −1
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4

 r3 ← r3 − r1 E2 =


1 0 0 0 0
0 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1



E2E1A =


2 −4 −2 3
0 3 1 −1
0 −3 −1 6
4 −2 −2 −1
−6 3 3 4

 r4 ← r4 − 2r1 E3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−2 0 0 1 0
0 0 0 0 1



E3E2E1A =


2 −4 −2 3
0 3 1 −1
0 −3 −1 6
0 6 2 −7
−6 3 3 4

 r5 ← r5 + 3r1 E4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
3 0 0 0 1


E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 −3 −1 6
0 6 2 −7
0 −9 −3 13

 r3 ← r3 + r2 E5 =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1


E5E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 6 2 −7
0 −9 −3 13

 r4 ← r4 − 2r2 E6 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 −2 0 1 0
0 0 0 0 1


E6E5E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 −5
0 −9 −3 13

 r5 ← r5 + 3r2 E7 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 3 0 0 1


E7

E6E5E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 −5
0 0 0 10

 r4 ← r4 + r3 E8 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1


E8E7

E6E5E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 10

 r5 ← r5 − 2r3 E9 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −2 0 1


E9E8E7

E6E5E4

E3E2E1A
=


2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 0


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This latter matrix is U and L is

L = (E9E8E7E6E5E4E3E2E1)−1 =

=


1 0 0 0 0
−3 1 0 0 0
−4 1 1 0 0
0 −1 1 1 0
2 1 −2 0 1


−1

=


1 0 0 0 0
3 1 0 0 0
1 −1 1 0 0
2 2 −1 1 0
−3 −3 2 0 1


Finally, we have

A = LU ⇒


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4

 =


1 0 0 0 0
3 1 0 0 0
1 −1 1 0 0
2 2 −1 1 0
−3 −3 2 0 1




2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 0


Lay, 2.5.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Find an LU factorization of the matrix A =

 3 1 2
−9 0 −4
9 9 14


Solution: We apply row operations on A to reduce it to an upper triangular
matrix and annotate the di�erent matrices that we needed

A =

 3 1 2
−9 0 −4
9 9 14

 r2 ← r2 + 3r1 E1 =

1 0 0
3 1 0
0 0 1


E1A =

3 1 2
0 3 2
9 9 14

 r3 ← r3 − 3r1 E2 =

 1 0 0
0 1 0
−3 0 1


E2E1A =

3 1 2
0 3 2
0 6 8

 r3 ← r3 − 2r1 E3 =

1 0 0
0 1 0
0 −2 1


E3E2E1A =

3 1 2
0 3 2
0 0 4


This latter matrix is U and L is

L = (E3E2E1)−1 = E−11 E−12 E−13

=

 1 0 0
−3 1 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 2 1

 =

 1 0 0
−3 1 0
3 2 1


Finally, we have
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A = LU ⇒

 3 1 2
−9 0 −4
9 9 14

 =

 1 0 0
−3 1 0
3 2 1

3 1 2
0 3 2
0 0 4


Lay, 2.7.2
Carlos Oscar Sorzano, Aug. 31st, 2013

Use matrix multiplication to �nd the image of the triangle with data matrix

D =

(
4 2 5
0 2 3

)
under the transformation that re�ects a point through the

y-axis. Sketch both the original triangle and its image.
Solution: The referred to transformation is the one whose matrix is A =(

1 0
0 −1

)
D′ = AD =

(
1 0
0 −1

)(
4 2 5
0 2 3

)
=

(
4 2 5
0 −2 −3

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

D

D’

Lay, 2.7.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the 3× 3 matrix that translate by (2, 1) and then rotate by 90◦ about
the origin in 2D using homogeneous coordinates.
Solution: The required transformation is

Ã =

 cos(90◦) sin(90◦) 0
− sin(90◦) cos(90◦) 0

0 0 1

1 0 2
0 1 1
0 0 1

 =

 0 1 1
−1 0 −2
0 0 1


Lay, 2.7.10
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider the following geometric 2D transformations: D, a dilation (in which
the x and y coordinates are scaled by the same factor); R, a rotation; and T ,
a translation. Does D commute with R? That is (D(R(x)) = R(D(x)) for all
x ∈ R2? Does D commute with T? Does T commute with R?
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Solution: The three proposed transformations can be written as matrix trans-
formations in homogeneous coordinates

D(x) =

r 0 0
0 r 0
0 0 1

 x̃

R(x) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 x̃

T (x) =

1 0 ∆x
0 1 ∆y
0 0 1

 x̃

Now we need to check whether D(R(x)) = R(D(x))

D(R(x)) = D

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

xy
1


= D

 cos(α)x+ sin(α)y
− sin(α)x+ cos(α)y

1

 =

r 0 0
0 r 0
0 0 1

 cos(α)x+ sin(α)y
− sin(α)x+ cos(α)y

1


=

 r cos(α)x+ r sin(α)y
−r sin(α)x+ r cos(α)y

1


On the other side

R(D(x)) = R

r 0 0
0 r 0
0 0 1

xy
1


= R

rxry
1

 =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

rxry
1


=

 r cos(α)x+ r sin(α)y
−r sin(α)x+ r cos(α)y

1


So D(R(x)) = R(D(x)) and rotation commutes with dilation.
If we repeat the same exercise with dilations and translations

D(T (x)) = D

1 0 ∆x
0 1 ∆y
0 0 1

xy
1


= D

x+ ∆x
y + ∆y

1

 =

r 0 0
0 r 0
0 0 1

x+ ∆x
y + ∆y

1


=

rx+ r∆x
ry + r∆y

1


On the other side
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T (D(x)) = T

r 0 0
0 r 0
0 0 1

xy
1


= T

rxry
1

 =

1 0 ∆x
0 1 ∆y
0 0 1

rxry
1


=

rx+ ∆x
ry + ∆y

1


So D(T (x)) 6= T (D(x)) and translation does not commute with dilation. Repet-
ing once more the exercise with rotation and translation we would reach the
conclusion that they do not commute.
Lay, 2.7.12
Carlos Oscar Sorzano, Aug. 31st, 2013

A rotation in R2 usually requires four multiplications. Compute the product
below and show that the matrix for a rotation can be factored into three shear
transformations (each of which requires only one multiplication).1 tan(φ2 ) 0

0 1 0
0 0 1

 1 0 0
− sin(φ) 1 0

0 0 1

1 tan(φ2 ) 0
0 1 0
0 0 1


Solution: Multiplying the three matrices we get1− tan(φ2 ) sin(φ) tan(φ2 )(2− tan(φ2 ) sin(φ))

− sin(φ) 1− tan(φ2 ) sin(φ) 0
0 0 1


At this point, we make use of the trigonometric identity

tan(φ2 ) = sin(φ)
1+cos(φ) = 1−cos(φ)

sin(φ)

Then

1− tan(φ2 ) sin(φ) = 1− sin(φ)
1+cos(φ) sin(φ) = 1+cos(φ)−sin2(φ)

1+cos(φ) = cos2(φ)+cos(φ)
1+cos(φ)

= cos(φ) cos(φ)+1
1+cos(φ) = cos(φ)

Let us simplify now tan(φ2 )(2− tan(φ2 ) sin(φ)):

tan(φ2 )(2− tan(φ2 ) sin(φ)) = tan(φ2 )
(

2− 1−cos(φ)
sin(φ) sin(φ)

)
= tan(φ2 )(2− (1− cos(φ))) = tan(φ2 )(1 + cos(φ))

= sin(φ)
1+cos(φ) (1 + cos(φ)) = sin(φ)

In summary1− tan(φ2 ) sin(φ) tan(φ2 )(2− tan(φ2 ) sin(φ))

− sin(φ) 1− tan(φ2 ) sin(φ) 0
0 0 1

 = cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


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That is, the multiplication of the three matrices above is the same as the appli-
cation of a rotation matrix. But applying a rotation matrix involves 4 multipli-
cations, while the application of the three matrices requires only 3.
Lay, 2.7.22
Carlos Oscar Sorzano, Aug. 31st, 2013

The signal broadcast by commercial television describes each color by a
vector (Y, I,Q). If the screen is black and white, only the Y coordinate is used
(this gives a better monochrome picture than using CIE data for colors). The
correspondence between Y IQ and a �standard� RGB color is given byYI

Q

 =

0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.528 0.311

RG
B


(A screen manufacturer would change the matrix entries to work for its RGB
entries.) Find the equation that converts the Y IQ data transmitted by the
television station to the RGB data needed for the television screen.
Solution: If we consider the equation above to beYI

Q

 = A

RG
B

,
then RG

B

 = A−1

YI
Q

 =

1.0031 0.9548 0.6179
0.9968 −0.2707 −0.6448
1.0085 −1.1105 1.6996

YI
Q


Lay, 2.8.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the set H represented below (bold lines imply that those points belong
to H)

Give a speci�c reason of why the set is not a subspace of R2

Solution: For instance x = (1, 0) belongs to H, but −x = (−1, 0) does
not.
Lay, 2.8.2
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the set H represented below (bold lines imply that those points belong
to H)
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Give a speci�c reason of why the set is not a subspace of R2

Solution: For instance x1 = (−1, 1) and x2 = (2, 0) belong to H, but x1+x2 =
(1, 1) does not.
Lay, 2.8.5
Carlos Oscar Sorzano, Aug. 31st, 2013

Let v1 = (1, 3,−4), v2 = (−2,−3, 7), and w = (−3,−3, 10). Determine if w
is in the subspace of R3 generated by v1 and v2.
Solution: If w is in the subspace generated by v1 and v2, then there must
exists two constants c1 and c2 such that

w = c1v1 + c2v2

We may solve this problem through the augmented matrix 1 −2 −3
3 −3 −3
−4 7 10

 ∼
 1 −2 −3

0 3 6
0 0 0


The equation system is compatible determinate existing a single solution, and
consequently, w belongs to the subspace generated by v1 and v2.
Lay, 2.8.11
Carlos Oscar Sorzano, June, 6th 2014

Let A be the matrix

A =

 3 2 1 −5
−9 −4 1 7
9 2 −5 1

 (3)

Give the values of p and q such that Nul{A} is a subspace of Rp and Col{A} is
a subspace of Rq.
Solution: Since A is a 3 × 4 matrix, the transformation T (x) = Ax takes
vectors of R4 and transforms them into vectors of R3. Nul{A} is formed by
those vectors in the input space that map onto the 0 vector of the output space.
Consequently, p = 4. In the same way, Col{A} is the subspace of the output
space formed by all those vectors that can be reached by the transformation.
Consquently, q = 3.
Lay, 2.8.13
Carlos Oscar Sorzano, June, 6th 2014
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Let A be the matrix in Exercise 2.8.11. Find a non-zero vector of Nul{A}
and a non-zero vector of Col{A}.
Solution: To �nd a non-zero vector of Col{A} we simply take the �rst column
of A

Col{A} 3 y =

 3
−9
9

 (4)

This vector is achieved by multiplying A by x =


1
0
0
0

.
To �nd a non-zero vector of Nul{A} we need to solve the equation system

Ax = 0 3 2 1 −5 0
−9 −4 1 7 0

9 2 −5 1 0

 ∼
 3 2 1 −5 0

0 2 4 −8 0
0 −4 −8 16 0

 ∼
 3 2 1 −5 0

0 2 4 −8 0
0 0 0 0 0

 ∼ 3 0 −3 3 0
0 2 4 −8 0
0 0 0 0 0

 ∼
 1 0 −1 1 0

0 1 2 −4 0
0 0 0 0 0


(5)

We see that x3 and x4 are free variables, and that x1 and x2 can be calculated
as

x1 = x3 − x4
x2 = −2x3 + 4x4

(6)

If we substitute x3 = 1 and x4 = 0 we get the vector

x =


1
−2
1
0

 (7)

Lay, 2.8.28
Carlos Oscar Sorzano, Nov. 11th, 2013

Construct a 3× 3 matrix A and a vector b such that b is not in Col{A}.

Solution: Consider the matrix A =

1 0 0
0 1 0
0 0 0

 and b =

0
0
1

. Obviously,

b /∈ Col{A} because there is no way that we can combine the columns of the
matrix A to obtain a 1 in the third component.
Lay, 2.8.35
Carlos Oscar Sorzano, Nov. 4th 2014

If B is a 5 × 5 matrix and Nul{B} is not the zero subspace, what can be
said about Col{B}?
Solution: If Nul{B} 6= {0}, then the columns of B are not linearly indepen-
dent, and consequently we can assess that Col{B} 6= R5 because a basis of
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Col{B} has less than 5 elements, but to span R5 we need 5 linearly independent
vectors.
Lay, 2.8.36
Carlos Oscar Sorzano, Nov. 4th 2014

What can be said about Nul{C} when C is a 6 × 4 matrix with linearly
independent columns?
Solution: If the columns are linearly independent the only solution of the
problem Cx = 0 is x = 0. Consequently, Nul{C} = {0}.

Lay, 2.9.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the basis B =

{(
1
1

)
,

(
2
−1

)}
and [x]B =

(
3
2

)
. Find x and illustrate

your answer.
Solution: Using the coordinates of x in the basis B we �nd

x = 3b1 + 2b2 = 3

(
1
1

)
+ 2

(
2
−1

)
=

(
7
1

)
The following �gure illustrates this situation

0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

b
1

b
2

x
B
=(3,2)

x
1

x 2

Lay, 2.9.3
Carlos Oscar Sorzano, Aug. 31st, 2013

x =

(
0
7

)
is in a subspace H whose basis is B = {b1,b2} with b1 =

(
2
−3

)
and b2 =

(
−1
5

)
. Find the coordinates of x in the basis B.
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Solution: Let us look for the coordinates that satisfy

x = c1b1 + c2b2

For this, we will use the augmented matrix(
2 −1 0
−3 5 7

)
∼
(

1 0 1
0 1 2

)
So, the coordinates of x in the basis B are [x]B =

(
1
2

)
.

Lay, 2.9.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider A =


1 3 2 −6
3 9 1 5
2 6 −1 9
5 15 0 14

 and its echelon form


1 3 3 2
0 0 5 −7
0 0 0 5
0 0 0 0

.
Find bases for Nul{A} and Col{A}.
Solution: The basis of Nul{A} is found by the equation system Ax = 0 whose
augmented matrix is row-equivalent to

1 3 3 2 0
0 0 5 −7 0
0 0 0 5 0
0 0 0 0 0


We may calculate its reduced echelon form

1 3 3 2 0
0 0 5 −7 0
0 0 0 5 0
0 0 0 0 0

 ∼


1 3 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 = B

This implies the following equations:

x1 = −3x2
x3 = 0
x4 = 0

So the basis of Nul{A} is given by the non-pivot columns of B, i.e.,

Basis{Nul{A}} = {(−3, 1, 0, 0)}

The basis of Col{A} is given by the pivot columns of B. The basis of the
column space of B is given by its �rst, third and fourth columns ({b1,b3,b4}).
Similarly, the basis of the column space of A is given by its �rst, third and
fourth columns ({a1,a3,a4}), i.e.,

Basis{Col{A}} = {(1, 3, 2, 5), (2, 1,−1, 0), (−6, 5, 9, 14)}

Lay, 2.9.19
Carlos Oscar Sorzano, Aug. 31st, 2013

If the subspace of all solutions of Ax = 0 has a basis consisting of 3 vectors
and if A is a 5× 7 matrix, what is the rank of A.
Solution: According to the rank theorem
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Rank{A}+ dim{Nul{A}} = n

where n is the number of columns of A. In this particular case,

Rank{A}+ 3 = 7⇒ Rank{A} = 4

Lay, 2.9.23
Carlos Oscar Sorzano, Nov. 11th, 2013

If possible, construct a 3 × 5 matrix such that dim{Nul{A}} = 3 and
dim{Col{A}} = 2.

Solution: Consider the matrix A =

(
1 1 1 0 0
0 0 0 1 1

)
. The dimension of its

column space is given by the number of pivot columns (columns 1 and 4 are
pivot columns), while the dimension of its null space is given by the number of
non-pivot columns (columns 2, 3 and 5 are non-pivot).
Lay, 2.9.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose vectors b1, b2, ..., bp span a subspace W , and let {a1,a2, ...,aq} by
any set in W containing more than p vectors. Fill in the details of the following
argument to show that {a1,a2, ...,aq} must be linearly dependent. First, let
B =

(
b1 b2 ... bp

)
and A =

(
a1 a2 ... aq

)
.

a. Explain why for each vector aj , there exists a vector cj in Rp such that
aj = Bcj .

b. Let C =
(
c1 c2 ... cq

)
. Explain why there is a non-zero vector u such

that Cu = 0.

c. Use B and C to show that Au = 0. This shows that the columns of A are
linearly dependent.

Solution:

a. Each vector aj is in W , that is spanned by the bi vectors. That means that
there exist some coe�cients cji such that

aj = cj1b1 + cj2b2 + ...+ cjpbp

or what is the same

aj = Bcj

b. Note that the cj vectors are in Rp since they have p components. The problem
stated that q > p, that is there are more cj vectors than p (their dimension).
By Theorem 6.2 of Chapter 2, we have that this set of equations is linearly
dependent, that is, there exist some coe�cients (not all of them zero) such
that
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u1c1 + u2c2 + ...+ upcp = 0

or

Cu = 0

c. Let us calculate Au. From point a, we know that A = BC, therefore

Au = (BC)u = B(Cu) = B0 = 0

Lay, 2.9.28
Carlos Oscar Sorzano, Nov. 4th 2014

Use Exercise 2.9.27 to show that if A and B are bases for a subspace W
of Rn, then A cannot contain more vectors than B, and, conversely B cannot
contain more vectors than A.
Solution: If A and B are bases of W , then

Span{A} = Span{B} = W

If A has more vectors than B, then the set of vectors A would not be linearly
independent, because there is a basis with fewer vectors. But this is a contra-
diction with the hypothesis that A is a basis, so A cannot have more vectors
than B.

Using the same reasoning we deduce that B cannot have more vectors than
A.
Lay, 2.Suppl.8
Carlos Oscar Sorzano, Jan. 19th 2015

Find a matrix A such that the transformation x→ Ax maps (1, 3) and (2, 7)
into (1, 1) and (3, 1), respectively.
Solution: In general, matrix transformations of R2 into R2 respond to the
equation

y = Ax⇒
(
y1
y2

)
=

(
a11 a12
a21 a22

)(
x1
x2

)
In this case we have(

1
1

)
=

(
a11 a12
a21 a22

)(
1
3

)
⇒
{

1 = a11 + 3a12
1 = a21 + 3a22(

3
1

)
=

(
a11 a12
a21 a22

)(
2
7

)
⇒
{

3 = 2a11 + 7a12
1 = 2a21 + 7a22

Or what is the same
1 3 0 0
0 0 1 3
2 7 0 0
0 0 2 7



a11
a12
a21
a22

 =


1
1
3
1

⇒

a11
a12
a21
a22

 =


−2
1
4
−1


The matrix sought is

A =

(
−2 1
4 −1

)
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3 Chapter 3

Lay, 3.1.42
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u =

(
a
b

)
and v =

(
c
0

)
, where a, b, c are positive (for simplicity). Com-

pute the area of the parallelogram determined by u, v, u+v and 0, and compute
the determinants of the matrices

(
u v

)
and

(
v u

)
. Draw a picture and ex-

plain what you �nd.
Solution: The area of the parallelogram is base times height. In this case:

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

v

u u+v

x

y

A = cb

The determinant of
(
u v

)
is∣∣∣∣ a c
b 0

∣∣∣∣ = a · 0− bc = −bc

The determinant of
(
v u

)
is∣∣∣∣ c a
0 b

∣∣∣∣ = cb− a · 0 = cb

We see that A = abs
(∣∣(u v

)∣∣) = abs
(∣∣(v u

)∣∣)
Lay, 3.2.14
Carlos Oscar Sorzano, Aug. 31st, 2013

Combine the methods of row reduction and cofactor expansion to compute

the determinant

∣∣∣∣∣∣∣∣
−3 −2 1 −4

1 3 0 −3
−3 4 −2 8

3 −4 0 4

∣∣∣∣∣∣∣∣
Solution:
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D =

∣∣∣∣∣∣∣∣
−3 −2 1 −4

1 3 0 −3
−3 4 −2 8

3 −4 0 4

∣∣∣∣∣∣∣∣
r3 ← r3 + 2r1 D =

∣∣∣∣∣∣∣∣
−3 −2 1 −4

1 3 0 −3
−9 0 0 0

3 −4 0 4

∣∣∣∣∣∣∣∣ = (−1)1+31

∣∣∣∣∣∣
1 3 −3
−9 0 0

3 −4 4

∣∣∣∣∣∣
D =

∣∣∣∣∣∣
1 3 −3
−9 0 0

3 −4 4

∣∣∣∣∣∣ = (−1)2+1(−9)

∣∣∣∣ 3 −3
−4 4

∣∣∣∣
D = 9(3 · 4− (−3) · (−4)) = 0

Lay, 3.2.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
a b c
d e f

5g 5h 5i

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

a b c
d e f

5g 5h 5i

∣∣∣∣∣∣ = 5

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 5 · 7 = 35

Lay, 3.2.16
Marta Monsalve Buendía, Oct. 14th, 2014

Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
a b c

3d 3e 3f
g h i

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

a b c
3d 3e 3f
g h i

∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 3 · 7 = 21

Lay, 3.2.17
Marta Monsalve Buendía, Oct. 18th, 2014

Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
a b c
g h i
d e f

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

a b c
g h i
d e f

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = −7

Lay, 3.2.18
Carlos Oscar Sorzano, Aug. 31st, 2013
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Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
g h i
a b c
d e f

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

g h i
a b c
d e f

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a b c
g h i
d e f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7

Lay, 3.2.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
a b c

2d+ a 2e+ b 2f + c
g h i

∣∣∣∣∣∣.
Solution:

∣∣∣∣∣∣
a b c

2d+ a 2e+ b 2f + c
g h i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c

2d 2e 2f
g h i

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 2 · 7 = 14

Lay, 3.2.20
Andrea Santos Cortés, Oct. 20th, 2014

Assume

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7. Calculate

∣∣∣∣∣∣
a+ d b+ e c+ f

d e f
g h i

∣∣∣∣∣∣.
Solution:

∣∣∣∣∣∣
a+ d b+ e c+ f

d e f
g h i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣+

∣∣∣∣∣∣
d e f
d e f
g h i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 7

Lay, 3.2.21
Andrea Santos Cortés, Oct. 20th, 2014

Use determinants to �nd out if the matrix is invertible

A =

2 3 0
1 3 4
1 2 1


Solution: Let's calculate the determinant∣∣∣∣∣∣

2 3 0
1 3 4
1 2 1

∣∣∣∣∣∣ = (2 · 3 · 1) + (1 · 2 · 0) + (3 · 4 · 1)− (0 · 3 · 1)− (3 · 1 · 1)− (2 · 2 · 4) = 7

The determinant is di�erent from 0 and consequently, this matrix is invert-
ible.
Lay, 3.2.24
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Carlos Oscar Sorzano, Aug. 31st, 2013

Use determinants to decide if the set of vectors

 4
6
−7

,
−7

0
2

, and
−3
−5
6


is linearly independent.
Solution: ∣∣∣∣∣∣

4 −7 −3
6 0 −5
−7 2 6

∣∣∣∣∣∣ = 11

The three vectors are linearly independent because their determinant is di�erent
from 0.
Lay, 3.2.25
Andrea Santos Cortés, Oct. 21th, 2014

Use determinants to decide if the set of vectors

 7
−4
−6

,
−8

5
7

, and
 7

0
−5


is linearly independent.
Solution: ∣∣∣∣∣∣

7 −8 7
−4 5 0
−6 7 −5

∣∣∣∣∣∣ = −1

The three vectors are linearly independent because their determinant is di�erent
from 0.
Lay, 3.2.31
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A is invertible, then det{A−1} = 1
det{A}

Solution: If A is invertible, then

AA−1 = I

Taking determinants on both sides

det{AA−1} = det{I}
det{A}det{A−1} = 1
det{A−1} = 1

det{A}

Lay, 3.2.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a formula for det{rA} when A is an n× n matrix.
Solution: Consider the column decomposition of A

A =
(
a1 a2 ... an

)
Then
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rA =
(
ra1 ra2 ... ran

)
det{rA} =

∣∣ ra1 ra2 ... ran
∣∣

= r
∣∣ a1 ra2 ... ran

∣∣
= r2

∣∣ a1 a2 ... ran
∣∣

= rn
∣∣ a1 a2 ... an

∣∣
= rn det{A}

Lay, 3.2.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A and B square matrices. Show that even though AB and BA may not
be equal, it is always true that det{AB} = det{BA}
Solution: By applying properties of the determinants

det{AB} = det{BA}
det{A} det{B} = det{B} det{A}

Lay, 3.2.34
Carlos Oscar Sorzano, Nov. 4th 2014

LetA and P be square matrices, with P invertible. Show that det{PAP−1} =
det{A}.
Solution: Since P is invertible, we have

det{P−1} =
1

det{P}

Then,

det{PAP−1} = det{P}det{A}det{P−1} = det{P}det{A} 1

det{P}
= det{A}

Lay, 3.2.35

Let U be a square matrix such that UTU = I. Show that det(U) = ±1.
Solution:

UTU = I A = B ⇒ det(A) = det(B)
det(UTU) = det(I) det(I) = 1

det(UTU) = 1 For square matrices A and B, det(AB) = det(A) det(B)
det(UT ) det(U) = 1 det(AT ) = det(A)
det(U) det(U) = 1

(det(U))2 = 1
det(U) = ±1

Lay, 3.2.36
Carlos Oscar Sorzano, Nov. 11th, 2013

Suppose that A is a square matrix such that detA4 = 0. Explain why A
cannot be invertible.
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Solution: We know that |A4| = 0 = |A|4. This means that |A| = 0 and conse-
quently, it cannot be invertible.
Lay, 3.2.37
Ana Peña Gil, Jan. 19th 2014

Let A =

(
3 1
4 2

)
. Write 5A. Is det{5A} = 5 det{A}?

Solution:

5A = 5

(
3 1
4 2

)
=

(
15 5
20 10

)
det{5A} =

∣∣∣∣ 15 5
20 10

∣∣∣∣ = 50

5 det{A} = 5

∣∣∣∣ 3 1
4 2

∣∣∣∣ = 5 · 2 = 10

We see that det{5A} 6= 5 det{A}

Lay, 3.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Use Cramer's rule to solve the following equation system

5x1 + 7x2 = 3
2x1 + 4x2 = 1

Solution:

x1 =

∣∣∣∣∣∣ 3 7
1 4

∣∣∣∣∣∣∣∣∣∣∣∣ 5 7
2 4

∣∣∣∣∣∣
= 3·4−7·1

5·4−7·2 = 5
6

x2 =

∣∣∣∣∣∣ 5 3
2 1

∣∣∣∣∣∣∣∣∣∣∣∣ 5 7
2 4

∣∣∣∣∣∣
= 5·1−3·2

5·4−7·2 = − 1
6

Lay, 3.3.2
Laura Zarandieta, Oct. 29th 2013

Use Cramer's rule to solve the following equation system

4x1 + x2 = 6
5x1 + 2x2 = 7

Solution:

x1 =

∣∣∣∣∣∣ 6 1
7 2

∣∣∣∣∣∣∣∣∣∣∣∣ 4 1
5 2

∣∣∣∣∣∣
= 6·2−7·1

4·2−1·5 = 5
3
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x2 =

∣∣∣∣∣∣ 4 6
5 7

∣∣∣∣∣∣∣∣∣∣∣∣ 4 1
5 2

∣∣∣∣∣∣
= 4·7−6·5

4·2−1·5 = −2
3

Lay, 3.3.3
Laura Zarandieta, Oct. 29th 2013

Use Cramer's rule to solve the following equation system

3x1 − 2x2 = 7
−5x1 + 6x2 = −5

Solution:

x1 =

∣∣∣∣∣∣ 7 −2
−5 6

∣∣∣∣∣∣∣∣∣∣∣∣ 3 −2
−5 6

∣∣∣∣∣∣
= 7·6−(−2)(−5)

3·6−(−2)(−5) = 32
8 = 4

x2 =

∣∣∣∣∣∣ 3 7
−5 −5

∣∣∣∣∣∣∣∣∣∣∣∣ 3 −2
−5 6

∣∣∣∣∣∣
= 3(−5)−7(−5)

3·6−(−2)(−5) = 20
8 = 10

4 = 2.5

Lay, 3.3.4
Andrea Santos Cortés, Oct. 14th, 2014

Use Cramer's rule to solve the following equation system

−5x1 + 3x2 = 9
3x1 − x2 = −5

Solution:

We may write the following equation system (in matrix form):(
−5 3
3 −1

)(
x1
x2

)
=

(
9
−5

)

x1 =

∣∣∣∣∣∣ 9 3
−5 −1

∣∣∣∣∣∣∣∣∣∣∣∣ −5 3
3 −1

∣∣∣∣∣∣
= 9·(−1)−3·(−5)
−5·(−1)−3·3 = − 3

2

x2 =

∣∣∣∣∣∣ −5 9
3 −5

∣∣∣∣∣∣∣∣∣∣∣∣ −5 3
3 −1

∣∣∣∣∣∣
= −5·(−5)−9·3
−5·(−1)−3·3 = 1

2

Lay, 3.3.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine the values of the parameter s for which the system below has a
unique solution.
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6sx1 + 4x2 = 5
9x1 + 2sx2 = −2

Solution: Applying Cramer's rule

x1 =

∣∣∣∣∣∣ 5 4
−2 2s

∣∣∣∣∣∣∣∣∣∣∣∣ 6s 4
9 2s

∣∣∣∣∣∣
= 5·2s−4·(−2)

6s·2s−4·9 = 10s+8
12s2−36 =

10(s+ 8
10 )

12(s+
√
3)(s−

√
3)

=
5(s+ 8

10 )

6(s+
√
3)(s−

√
3)

x2 =

∣∣∣∣∣∣ 6s 5
9 −2

∣∣∣∣∣∣∣∣∣∣∣∣ 6s 4
9 2s

∣∣∣∣∣∣
= 6s·(−2)−5·9

6s·2s−4·9 = − 12s+45
12s2−36 = − 12(s+ 45

12 )

12(s+
√
3)(s−

√
3)

=

− s+ 45
12

(s+
√
3)(s−

√
3)

This equation system has a unique solution if the denominator of the frac-
tions above do not vanish, that is, s 6= ±

√
3.

Lay, 3.3.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Calculate the adjugate of the matrix A =

 0 −2 −1
3 0 0
−1 1 1

. Then, use it to
calculate A−1.
Solution: For calculating the adjugate of the matrix A we need to calculate all
its cofactors

C11 = (−1)1+1

∣∣∣∣ 0 0
1 1

∣∣∣∣ = 0

C12 = (−1)1+2

∣∣∣∣ 3 0
−1 1

∣∣∣∣ = −3

C13 = (−1)1+3

∣∣∣∣ 3 0
−1 1

∣∣∣∣ = 3

C21 = (−1)2+1

∣∣∣∣ −2 −1
1 1

∣∣∣∣ = 1

C22 = (−1)2+2

∣∣∣∣ 0 −1
−1 1

∣∣∣∣ = −1

C23 = (−1)2+3

∣∣∣∣ 0 −2
−1 1

∣∣∣∣ = 2

C31 = (−1)3+1

∣∣∣∣ −2 −1
0 0

∣∣∣∣ = 0

C32 = (−1)3+2

∣∣∣∣ 0 −1
3 0

∣∣∣∣ = −3

C33 = (−1)3+3

∣∣∣∣ 0 −2
3 0

∣∣∣∣ = 6

The adjoint is

A∗ =

 0 −3 3
1 −1 2
0 −3 6


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For calculating A−1 we need the determinant of A. We use the cofactor expan-
sion along the second row

|A| = a21C21 + a22C22 + a23C23 = 3 · 1 = 3

Now

A−1 = 1
|A| (A

∗)T = 1
3

 0 1 0
−3 −1 −3

3 2 6

 =

 0 1
3 0

−1 − 1
3 −1

1 2
3 2


Lay, 3.3.19
Marta Monsalve Buendía, Oct. 18th, 2014

Find the area of the parallelogram whose vertices are (0,0), (5,2), (6,4),
(11,6).
Solution:

Note that this parallelogram has a vertex at 0. Consequently, calling xA =
(5, 2)T , xB = (6, 4)T , the sought area is the absolute value of the determinant
of the vectors xA and xB .

abs
(∣∣ xA xB

∣∣) = abs

(∣∣∣∣ 5 6
2 4

∣∣∣∣) = 8

Lay, 3.3.20
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the area of the parallelogram whose vertices are (-1,0), (0,5), (1,-4),
(2,1).
Solution: Let us draw the parallelogram: Calling xA = (−1, 0), xB = (0, 5),
xC = (1,−4), the sought area is the absolute value of the determinant of the
vectors xB − xA and xC − xA.

xB − xA =
(
0 5

)
−
(
−1 0

)
=
(
1 5

)
xC − xA =

(
1 −4

)
−
(
−1 0

)
=
(
2 −4

)
abs

(∣∣ xB − xA xC − xA
∣∣) = abs

(∣∣∣∣ 1 2
5 −4

∣∣∣∣) = 14

Lay, 3.3.21
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the area of the parallelogram whose vertices are (-1,0), (0,5), (1,-4),
(2,1).
Solution: Let us draw the parallelogram:
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−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4
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x
1

x 2

Calling xA = (−1, 0), xB = (0, 5), xC = (1,−4), the sought area is the absolute
value of the determinant of the vectors xB − xA and xC − xA.

xB − xA =
(
0 5

)
−
(
−1 0

)
=
(
1 5

)
xC − xA =

(
1 −4

)
−
(
−1 0

)
=
(
2 −4

)
abs

(∣∣ xB − xA xC − xA
∣∣) = abs

(∣∣∣∣ 1 2
5 −4

∣∣∣∣) = 14

Lay, 3.3.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Use the concept of volume to explain why the determinant of a 3× 3 matrix
is zero i� A is not invertible.
Solution: From the invertible matrix theorem, we know that a matrix is invert-
ible i� its columns are linearly independent. So the statement of this problem
can be restated as the determinant of a 3×3 matrix is zero i� the three columns
of A are linearly dependent. On the other side interpreting the determinant of
A as the volume of the parallelepiped formed by the three columns, the problem
is �the volume of the parallelepiped formed by three vectors is zero i� the three
columns of A are linearly dependent�.

If the three vectors are linearly dependent, they span a subspace of dimension
2 or 1. In both cases, there is no real parallelepiped but a parallelogram or a
segment and the volume of the parallelepiped is 0.

Let us show that if the volume of the parallepiped is zero, then three columns
are linearly dependent. Let's assume they are linearly independent. Then, they
would actually span a three-dimensiional space, and the volume of the paral-
lelepiped formed by the three would not be zero. But this is a contradiction
with our hypothesis. So the three vectors have to be linearly dependent.
Lay, 3.3.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : Rn → Rm be a linear transformation, and let p be a vector and
S a set in Rn. Show that the image of p + S under T is the translated set
T (p) + T (S) in Rm.
Solution: Any vector of the set p + S is of the form

x = p + s
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where s ∈ S. If we apply T to x and exploiting the fact that T is a linear
transformation, we get

T (x) = T (p + s) = T (p) + T (s)

The set of all vectors of the form T (s) is actually T (S), so we have that, as
stated by the problem,

T (x) ∈ T (p) + T (S)

Lay, 3.3.29
Carlos Oscar Sorzano, June, 6th 2014

Find a formula for the area of the triangle whose vertices are 0, v1, and v2

in R2.
Solution: We know that the area of the parallelepiped formed by the vectors
0, v1, v2, and v1 + v2 is given by the determinant of the 2×2 matrix A (see
Theorem 3.3.9)

A =
(
v1 v2

)
.

The area of the required triangle is just one half of this. In this way

AreaOfTriangle = 1
2 det

{(
v1 v2

)}
.

Lay, 3.3.30
Carlos Oscar Sorzano, Nov. 4th 2014

Let R be the triangle with vertices (x1, y1), (x2, y2) and (x3, y3). Show that

Area{R} =
1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
[Hint : Translate R to the origin by subtracting one of the vertices and use
Exercise 3.3.29.]
Solution: Let us translate the triangle to the origin by subtracting the vertex
(x1, y1). The new vertices of the triangle are v1 = (x2 − x1, y2 − y1) and
v2 = (x3 − x1, y3 − y1). By applying Exercise 3.3.29, the area of this triangle is

Area{R} =
1

2

∣∣∣∣ x2 − x1 x3 − x2
y2 − y1 y3 − y2

∣∣∣∣ =
1

2

∣∣∣∣ x2 − x1 y2 − y1
x3 − x2 y3 − y2

∣∣∣∣
Let us now develop the determinant porposed

1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣
x1 y1 1

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
= 1

2x1(−1)1+1

∣∣∣∣ y2 − y1 0
y3 − y1 0

∣∣∣∣+
1
2y1(−1)1+2

∣∣∣∣ x2 − x1 0
x3 − x1 0

∣∣∣∣+
1
21(−1)1+3

∣∣∣∣ x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣
= 1

2

∣∣∣∣ x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣
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Lay, 3.3.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Let S be the tetrahedron in R3 with vertices at the vectors 0, e1, e2 and e3
and let S′ be the tetrahedron with vertices at vectors 0, v1, v2 and v3. See the
�gure.

a. Describe a linear transformation that maps S into S′.

b. Find a formula for the volume of the tetrahedron S′ using the fact

Volume of S= 1
3 Area of the base · Height.

Solution:

a. Consider the matrix

A =
(
v1 v2 v3

)
The tetrahedron S is formed by all those points that can be written in the
form

x = λ00 + λ1e1 + λ2e2 + λ3e3

with

λ0 + λ1 + λ2 + λ3 ≤ 1

If we consider now Ax, we have

Ax = A(λ00 + λ1e1 + λ2e2 + λ3e3)
= λ0A0 + λ1Ae1 + λ2Ae2 + λ3Ae3
= λ00 + λ1v1 + λ2v2 + λ3v3

So this is a point in the tetrahedron S′ as required by the problem.

b. The base of the tetrahedron S is a triangle with vertices 0, e1 and e2, whose
area is
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Area triangular base = 1
2 Base · Height = 1

21 · 1 = 1
2 .

The height of the tetrahedron is the length of e3, that is, 1. Finally

Volume of S= 1
3 Area of the base · Height = 1

3
1
21 = 1

6

According to Theorem 5.2 in Chapter 4, the volume of S′ is

Volume of S′=|det{A}| Volume of S= 1
6 |det{A}|

Lay, 3.Suppl.9
Carlos Oscar Sorzano, Nov. 11th, 2013

Let T be the Vandermonde matrix T =

1 a a2

1 b b2

1 c c2

. Use row operations

to show that |T | = (b− a)(c− a)(c− b)
Solution: Let us calculate the determinant of T

det

1 a a2

1 b b2

1 c c2

 =

r2 ← r2 − r1
r3 ← r3 − r1

det

1 a a2

0 b− a b2 − a2
0 c− a c2 − a2

 =

1 det

(
b− a b2 − a2
c− a c2 − a2

)
=

r2 ← 1
b−ar2

r3 ← 1
c−ar3

(b− a)(c− a) det

(
1 b2−a2

b−a
1 c2−a2

c−a

)
=

(b− a)(c− a) det

(
1 b+ a
1 c+ a

)
=

r2 ← r2 − r1 (b− a)(c− a) det

(
1 b+ a
0 c− b

)
=

(b− a)(c− a)1 det
(
c− b

)
=

(b− a)(c− a)(c− b)
Lay, 3.Suppl.15
Carlos Oscar Sorzano, Jan. 19th 2015

Let A, B, C and D be n× n matrices with A invertible.

1. Find matrices X and Y to produce the block LU factorization(
A B
C D

)
=

(
I 0
X I

)(
A B
0 Y

)
and then show that

det

(
A B
C D

)
= det(A) det(D − CA−1B)
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2. Show that if AC = CA, then

det

(
A B
C D

)
= det(AD − CB)

Solution:

1. Let us develop the right-hand side(
I 0
X I

)(
A B
0 Y

)
=

(
A B
XA XB + Y

)
By comparing to the left-hand side, we see that

XA = C ⇒ X = CA−1

XB + Y = D ⇒ Y = D −XB = D − CA−1B

That is (
A B
C D

)
=

(
I 0

CA−1 I

)(
A B
0 D − CA−1B

)
The determinant of a triangular block matrix is the product of the deter-
minants of its diagonal blocks. Then

det

(
A B
C D

)
= det(I) det(I) det(A) det(D−CA−1B) = det(A) det(D−CA−1B)

2. Let us multiply the block matrix from the left by(
I 0
−C A

)(
A B
C D

)
=

(
A B

−CA+AC −CB +AD

)
Since AC = CA, we have(

I 0
−C A

)(
A B
C D

)
=

(
A B
0 AD − CB

)
Taking determinants on both sides

det

(
I 0
−C A

)
det

(
A B
C D

)
= det

(
A B
0 AD − CB

)

det(A) det

(
A B
C D

)
= det(A) det(AD − CB)

Since A is invertible, its determinant is di�erent from 0 and we can divide
by it

det

(
A B
C D

)
= det(AD − CB)

Villa, 5.15
Carlos Oscar Sorzano, Nov. 4th, 2014
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Calculate the determinant of order n∣∣∣∣∣∣∣∣
1 + x 1 1 ... 1

1 1 + x 1 ... 1
... ... ... ... ...
1 1 1 ... 1 + x

∣∣∣∣∣∣∣∣
Solution: If we add all rows from 2 to n to the �rst row we have∣∣∣∣∣∣∣∣

1 + x 1 1 ... 1
1 1 + x 1 ... 1
... ... ... ... ...
1 1 1 ... 1 + x

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
n+ x n+ x n+ x ... n+ x

1 1 + x 1 ... 1
... ... ... ... ...
1 1 1 ... 1 + x

∣∣∣∣∣∣∣∣
= (n+ x)

∣∣∣∣∣∣∣∣
1 1 1 ... 1
1 1 + x 1 ... 1
... ... ... ... ...
1 1 1 ... 1 + x

∣∣∣∣∣∣∣∣
We now subtract the �rst row from the rest of rows and develop the determinant
by the cofactors of the �rst column:

(n+ x)

∣∣∣∣∣∣∣∣
1 1 1 ... 1
1 1 + x 1 ... 1
... ... ... ... ...
1 1 1 ... 1 + x

∣∣∣∣∣∣∣∣ = (n+ x)

∣∣∣∣∣∣∣∣
1 1 1 ... 1
0 x 0 ... 0
... ... ... ... ...
0 0 0 ... x

∣∣∣∣∣∣∣∣
= (n+ x)xn−1

4 Chapter 4

Lay, 4.1.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let V be the �rst quadrant in the xy-plane; that is, let

V =

{(
x
y

)
|x, y ≥ 0

}
a. If u and v are in V , is u + v in V ? Why?

b. Find a speci�c vector u ∈ V and a speci�c scalar c such that cu is not in V .
(This is enough to show that V is not a vector space.)

Solution:

a. Let u =

(
ux
uy

)
and v =

(
vx
vy

)
, then

u + v =

(
ux
uy

)
+

(
vx
vy

)
=

(
ux + vx
uy + vy

)
If ux ≥ 0 and vx ≥ 0, then ux + vx ≥ 0. Similarly for uy + vy. Consequently,
u + v is also in V .
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b. Let V 3 u =

(
1
0

)
and c = −1, then

cu = −
(

1
0

)
=

(
−1
0

)
that is not in V .

Lay, 4.1.2
Andrea Santos Cortés, Nov. 11th, 2014

Let W be the union of the �rst and third quadrants in the xy-plane. That
is, let

W =

{(
x
y

)
|xy ≥ 0

}
a. If u is in W and c is any scalar, is cu in W? Why?

b. Find speci�c vectors u and v in W such that u + v is not in W . This is
enough to show that W is not a vector space.

Solution:

a. Let u =

(
ux
uy

)
, then

cu = c

(
ux
uy

)
=

(
cux
cuy

)
If ux ≥ 0 and uy ≥ 0, then cu is also in W .(regardless of the sign of c)

b. Let W 3 u =

(
0
1

)
and W 3 v =

(
−1
0

)
, then

u + v =

(
0
1

)
+

(
−1
0

)
=

(
−1
1

)
that is not in W .

Lay, 4.1.3 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014

Let H be the set of points inside and on the unit circle in the xy-plane. That
is, let

H =

{(
x
y

) ∣∣x2 + y2 ≤ 1

}
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Find a speci�c example-two vectors or a vector and a scalar-to show that H
is not a subspace of R2.

Solution: If u =

(
1
0

)
, and c=2, then u is in H, but cu isn't.

Lay, 4.1.4
Carlos Oscar Sorzano, Aug. 31st, 2013

Construct a geometric �gure that illustrates why a line in R2 not through
the origin is not closed under vector addition.
Solution:

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x 2

u v

u+v

In the �gure above it is clear that vector u and v belong to the line, but u + v
does not.
Lay, 4.1.5
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine if the set of all polynomials of the form p(t) = at2 ∀a ∈ R are a
subspace of P2.
Solution: Let H = {p(t) ∈ P2|p(t) = at2}. We need to show that this set
meets the three requirements to be a subspace

• 0 ∈ H
This is true because for a = 0 we have p(t) = 0t2 = 0.

• Given any two polynomials p1(t), p2(t) ∈ H, p1(t) + p2(t) ∈ H
Assume p1(t) = a1t

2 and p2(t) = a2t
2, then

p1(t) + p2(t) = a1t
2 + a2t

2 = (a1 + a2)t2

So p1(t) + p2(t) ∈ H

• Given any polynomial p(t) ∈ H and c ∈ R, cp(t) ∈ H

cp(t) = c(at2) = (ac)t2

So cp(t) ∈ H

89



Since H meets all properties, H is a subspace of P2.
Lay, 4.1.6
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine if the set of all polynomials of the form p(t) = a + t2 ∀a ∈ R
are a subspace of P2.
Solution: Let H = {p(t) ∈ P2|p(t) = a + t2}. We need to show that this set
meets the three requirements to be a subspace

• 0 ∈ H
But this is not true for H, there is no value of a such that p(t) = a+ t2 =
0 ∀t ∈ R

Since H does not meet one of the conditions to be subspace, it cannot be a
subspace of P2.
Lay, 4.1.9
Ana Peña Gil, Jan. 19th 2014

Let H be the set of all vectors of the form

−2t
5t
3t

. Find a vector v in R3

such that H = Span{v}. Why does this show that H is a subspace of R3?

Solution:

∀v ∈ H ⇒ v =

−2t
5t
3t

 = t

−2
5
3


So H = Span{(−2, 5, 3)}. Since H is generated by a set of vectors of R3, by
Theorem 4.1, H is a vector subspace of R3.
Lay, 4.1.10
Ana Peña Gil, Jan. 19th 2014

Let H be the set of all vectors of the form

 3t
0
−7t

, where t is any real

number. Show that H is a subspace of R3.

Solution: Let u ∈ H. Then, we can write u =

 3t
0
−7t

 = t

 3
0
−7

. So

H = Span{(3, 0,−7)} andH is a vector subspace R3 because it can be generated
by a vector of R3.

Lay, 4.1.11
Ana Peña Gil, Jan. 19th 2014

Let W be the set of all vectors of the form

2b+ 3c
−b
2c

, where b and c are
arbitrary. Find the vectors u and v such that H = Span{u,v)}. Why does this
show that W is a subspace of R3?
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Solution: Let w ∈W . We can write

w =

2b+ 3c
−b
2c

 = b

 2
−1
0

+ c

3
0
2

 = bu + cv

So, H = Span{(u,v)} = Span{(2,−1, 0), (3, 0, 2)}. W is a vector subspace R3

because it can be generated by a set of vector of R3.

Lay, 4.1.11 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014

Let W be the set of all vectors of the form

W =

5b+ 2c
b
c


where b and c are arbitrary. Find vectors u and v such that W = Spam{u, v}
Why does this show that W is a subspace of R3?

Solution:

5b+ 2c
b
c

 = b

5
1
0

+ c

2
0
1

 So W = Spam{u, v} where u =

5
1
0


and v =

2
0
1


Lay, 4.1.19
Carlos Oscar Sorzano, Aug. 31st, 2013

If a mass m is placed at the end of a spring, and if the mass is pulled
downward and released, the mass-spring system will begin to oscillate. The
displacement y of the mass from its resting position is given by a function of
the form

y(t) = c1 cos(ωt) + c2 sin(ωt)

where ω is a constant that depends on the mass and the spring. (See the �gure
below.) Show that the set of all functions described above (with �xed ω and
c1, c2 arbitrary) is a vector space.

Solution: Let us call V the set of all functions that can be expressed as
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V = {y(t)|y(t) = c1 cos(ωt) + c2 sin(ωt)}

To show that V is a vector space we need to show that ∀u,v,w ∈ V and
∀c, d ∈ R

1. u + v ∈ V

2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. ∃0 ∈ V |u + 0 = u

5. ∀u ∈ V ∃!w ∈ V |u + w = 0 (we normally write w = −u)

6. cv ∈ V

7. c(u + v) = cu + cv

8. (c+ d)u = cu + du

9. c(du) = (cd)u

10. 1u = u

Let's prove all these properties:

1. u + v ∈ V

u + v = (c1u cos(ωt) + c2u sin(ωt)) + (c1v cos(ωt) + c2v sin(ωt))
= (c1u + c1v) cos(ωt) + (c2u + c2v) sin(ωt) ∈ V

2. u + v = v + u

v + u = (c1v cos(ωt) + c2v sin(ωt)) + (c1u cos(ωt) + c2u sin(ωt))
= (c1v + c1u) cos(ωt) + (c2v + c2u) sin(ωt)
= (c1u + c1v) cos(ωt) + (c2u + c2v) sin(ωt) = u + v

3. (u + v) + w = u + (v + w)

(u + v) + w = ((c1v cos(ωt) + c2v sin(ωt)) + (c1u cos(ωt) + c2u sin(ωt))) +
(c1w cos(ωt) + c2w sin(ωt))

= (c1u + c1v) cos(ωt) + (c2u + c2v) sin(ωt) + (c1w cos(ωt) + c2w sin(ωt))
= (c1u + c1v + c1w) cos(ωt) + (c2u + c2v + c2w) sin(ωt)

u + (v + w) = (c1u cos(ωt) + c2u sin(ωt))+
((c1v cos(ωt) + c2v sin(ωt))) + (c1w cos(ωt) + c2w sin(ωt))

= (c1u cos(ωt) + c2u sin(ωt)) + (c1v + c1w) cos(ωt) + (c2v + c2w) sin(ωt)
= (c1u + c1v + c1w) cos(ωt) + (c2u + c2v + c2w) sin(ωt)
= (u + v) + w
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4. ∃0 ∈ V |u + 0 = u
The addition neutral element is 0 = 0 cos(ωt) + 0 sin(ωt). Let's see why

u + 0 = (c1u cos(ωt) + c2u sin(ωt)) + (0 cos(ωt) + 0 sin(ωt))
= (c1u + 0) cos(ωt) + (c2u + 0) sin(ωt)
= c1u cos(ωt) + c2u sin(ωt) = u

5. ∀u ∈ V ∃!w ∈ V |u + w = 0 (we normally write w = −u)
If u = c1u cos(ωt) + c2u sin(ωt), its inverse with respect to addition is
−u = −c1u cos(ωt)− c2u sin(ωt).

u + (−u) = (c1u cos(ωt) + c2u sin(ωt)) + (−c1u cos(ωt)− c2u sin(ωt))
= (c1u + (−c1u)) cos(ωt) + (c2u + (−c2u)) sin(ωt)
= 0 cos(ωt) + 0 sin(ωt) = 0

6. cv ∈ V

cu = c(c1u cos(ωt) + c2u sin(ωt))
= (cc1u) cos(ωt) + (cc2u) sin(ωt) ∈ V

7. c(u + v) = cu + cv

c(u + v) = c((c1u + c1v) cos(ωt) + (c2u + c2v) sin(ωt))
= (cc1u + cc1v) cos(ωt) + (cc2u + cc2v) sin(ωt)

cu + cv = (cc1u cos(ωt) + cc2u sin(ωt)) + (cc1v cos(ωt) + cc2v sin(ωt))
= (cc1u + cc1v) cos(ωt) + (cc2u + cc2v) sin(ωt) = c(u + v)

8. (c+ d)u = cu + du

(c+ d)u = (c+ d)(c1u cos(ωt) + c2u sin(ωt))
= (c+ d)c1u cos(ωt) + (c+ d)c2u sin(ωt)
= (cc1u + dc1u) cos(ωt) + (cc2u + dc2u) sin(ωt)
= cc1u cos(ωt) + dc1u cos(ωt) + cc2u sin(ωt) + dc2u sin(ωt)
= (cc1u cos(ωt) + cc2u sin(ωt)) + (dc1u cos(ωt) + dc2u sin(ωt))
= c(c1u cos(ωt) + cc2u sin(ωt)) + d(c1u cos(ωt) + c2u sin(ωt))
= cu + du

9. c(du) = (cd)u

c(du) = c(dc1u cos(ωt) + dc2u sin(ωt))
= cdc1u cos(ωt) + cdc2u sin(ωt)
= cd(c1u cos(ωt) + c2u sin(ωt))
= (cd)u
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10. 1u = u

1u = 1(c1u cos(ωt) + c2u sin(ωt))
= (1 · c1u) cos(ωt) + (1 · c2u) sin(ωt)
= c1u cos(ωt) + c2u sin(ωt)
= u

Lay, 4.1.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Let H and K be subspaces over a vector space V . The intersection of H and
K, written as H ∩K, is the set of all vectors v ∈ V that belong to both H and
K. Show that H ∩K is a subspace of V . (See �gure below.) Give an example
in R2 to show that the union of subspaces is not, in general, a subspace.

Solution: We need to show that this H ∩K meets the three requirements to
be a subspace

• 0 ∈ H ∩K
This is true because for 0 belongs to both H and K since both of them
are, in their turn, subspaces.

• Given any two vectors u,v ∈ H ∩K, u + v ∈ H ∩K
u and v belong to both H and K. And these sets are subspaces, then

u + v ∈ H
u + v ∈ K

So u + v ∈ H ∩K

• Given any vector u ∈ H ∩K and c ∈ R, cu ∈ H ∩K
u belongs to both H and K. And these sets are subspaces, then

cu ∈ H
cu ∈ K

So cu ∈ H ∩K

Since H ∩K meets all properties, H ∩K is a subspace of V .
The union of subspaces is not, in general, a subspace. For instance in R2, the
following sets are subspaces:
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H = {(x, 0) ∈ R2}
K = {(0, y) ∈ R2}

but the union H ∪K is not a subspace. For instance, u = (1, 0) ∈ H ∪K and
v = (0, 1) ∈ H ∪K, but u + v = (1, 1) /∈ H ∪K.

Lay, 4.1.33 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014

Given subspaces H and K of a vector space V , the sum of H and K, written
as H + K, is the set of all vectors in V that can be written as the sum of two
vectors, one in H and the other in K ; that is, H + K = {w|w = u + v} for
some u in H and some v in K

a. Show that H +K is a subspace of V .

b. Show that H is a subspace of H +K and K is a subspace of H +K.

Solution:

a. H +K is a subspace of V because:

• 0 ∈ H +K: since 0 ∈ H,K ⇒ 0 + 0 = 0 ∈ H +K.

• Let two vectors in H + K be w1 = u1 + v1 and w2 = u2 + v2, with
u1,u2 ∈ H and v1,v2 ∈ K. Then

w1 + w2 = (u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2)

since u1 + u2 ∈ H and v1 + v2 ∈ K (because H and K are subspaces
of V ), then w1 + w2 ∈ H +K.

• Let w = u + v be a vector in H +K with u ∈ H and v ∈ K. Then

cw = c(u + v) = (cu) + (cv)

since cu ∈ H and cv ∈ K (because they are subspaces of V ), then
cw ∈ H +K.

b. H is a subspace of H +K because any vector of u ∈ H can be written as

w = u + 0 ∈ H +K

consequently H is a subset of H +K. Since H is a subspace of V , H is also
a subspace of H +K. Similarly, any vector v ∈ K can be written as

w = 0 + v ∈ H +K

and K is a subset of H +K and since K is a subspace of V , then it is also a
subspace of H +K.

Lay, 4.2.1 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014
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Determine if w=

 1
3
−4

 is in Nul{A}, with A =

 3 −5 −3
6 −2 0
−8 4 1

.
Solution:  3 −5 −3

6 −2 0
−8 4 1

 1
3
−4

 =

0
0
0


So w is in Nul{A}.

Lay, 4.2.2 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014

Determine if w=

 5
−3
2

 is in Nul{A}, with A =

 5 21 19
13 23 2
8 14 1

.
Solution:  5 21 19

13 23 2
8 14 1

 5
−3
2

 =

0
0
0


So w is in Nul{A}.

Lay, 4.2.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Find an explicit description of the null space of A by listing the vectors that
span it.

A =

(
1 2 4 0
0 1 3 −2

)
Solution: The null space of A is de�ned as those vectors such that

Ax = 0

If we construct the augmented matrix of this equation system we get(
1 2 4 0 0
0 1 3 −2 0

)
∼
(

1 0 −2 4 0
0 1 3 −2 0

)
So all points satisfying Ax = 0 are of the form

x1 = 2x3 − 4x4
x2 = −3x3 + 2x4

}
⇒ x = x3(2,−3, 1, 0) + x4(−4, 2, 0, 1)

So a basis of Nul{A} is given by

Basis{Nul{A}} = {(2,−3, 1, 0), (−4, 2, 0, 1)}

Lay, 4.2.4
Ignacio Sanchez Lopez, Jan. 15th, 2015

Find an explicit description of the null space of A by listing the vectors that
span it.
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A =

(
1 −6 4 0
0 0 2 0

)
Solution: The null space of A is de�ned as those vectors such that

Ax = 0

If we construct the augmented matrix of this equation system we get(
1 −6 4 0 0
0 0 2 0 0

)
∼
(

1 −6 0 0 0
0 0 1 0 0

)
So all points satisfying Ax = 0 are of the form

x1 = 6x2
}
⇒ x =


6x2
x2
x3
x4

 = x2


6
1
0
0

+ x3


0
0
1
0

+ x4


0
0
0
1


So a basis of Nul{A} is given by

Basis{Nul{A}} = {(6, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

Lay, 4.2.5 (3rd ed.)
María Postigo Fliquete, Dec. 7th, 2014

Find an explicit description of Nul{A}, by listing vectors that span the null

space. A =

1 −2 0 4 0
0 0 1 −9 0
0 0 0 0 1

.
Solution: The Null space is composed by the set of solutions of the system
Ax = 0 1 −2 0 4 0

0 0 1 −9 0
0 0 0 0 1



x1
x2
x3
x4
x5

 =

x1 − 2x2 + 4x4
x3 − 9x4

x5


x1 − 2x2 + 4x4

x3 − 9x4
x5

 =

0
0
0


That is

x1 = −4x4 + 2x2

x3 = 9x4

x5 = 0

or equivalently

Nul{A} 3 x =


x1
x2
x3
x4
x5

 =


2x2 − 4x4

x2
9x4
x4
0

 = x2


2
1
0
0
0

+ x4


−4
0
9
1
0


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So the vectors are


2
1
0
0
0

 and


−4
0
9
1
0

 constitute a basis of the Null space of A.

Lay, 4.2.6
Ignacio Sanchez Lopez, Jan. 15th, 2015

Find an explicit description of the null space of A by listing the vectors that
span it.

A =

1 5 −4 −3 1
0 1 −2 1 0
0 0 0 0 0


Solution: The null space of A is de�ned as those vectors such that

Ax = 0

If we construct the augmented matrix of this equation system we get 1 5 −4 −3 1 0
0 1 −2 1 0 0
0 0 0 0 0 0

 ∼
 1 0 6 −8 1 0

0 1 −2 1 0 0
0 0 0 0 0 0


So all points satisfying Ax = 0 are of the form

x1 = −6x3 + 8x4 − x5
x2 = 2x3 − x4

}
⇒ x = x3


−6
2
1
0
0

+ x4


8
−1
0
1
0

+ x5


−1
0
0
0
1


So a basis of Nul{A} is given by

Basis{Nul{A}} = {(−6, 2, 1, 0, 0), (8,−1, 0, 1, 0)(−1, 0, 0, 0, 1)}

Lay, 4.2.9
Carlos Oscar Sorzano, Aug. 31st, 2013

For the set below, either �nd an appropriate theorem to show that W is a
vector space or �nd a speci�c example to show the contrary.

W =



p
q
r
s

 |p− 3q = 4s, 2p = s+ 5r


Solution: We can rewrite the two conditions for the vectors in W as

(
1 −3 0 −4
2 0 −5 −1

)
p
q
r
s

 =

(
0
0

)
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So,W is nothing more than the null space of the matrixA =

(
1 −3 0 −4
2 0 −5 −1

)
and consequently it is a vector subspace of R4. Since any vector subspace is a
vector space, then W is a vector space.
Lay, 4.2.10
Ana Peña Gil, Jan. 19th 2014

For the set below, either �nd an appropriate theorem to show that W is a
vector space or �nd a speci�c example to show the contrary.

W =



a
b
c
d

 |3a+ b = c, a+ b+ 2c = 2d


Solution: We can rewrite the two conditions for the vectors in W as

(
3 1 −1 0
1 1 2 −2

)
a
b
c
d

 =

(
0
0

)

So, W is nothing more than the null space of the matrix A =

(
3 1 −1 0
1 1 2 −2

)
and consequently it is a vector subspace of R4. Since any vector subspace is a
vector space, then W is a vector space.

Lay, 4.2.11
Carlos Oscar Sorzano, Aug. 31st, 2013

For the set below, either �nd an appropriate theorem to show that W is a
vector space or �nd a speci�c example to show the contrary.

W =



s− 2t
3 + 3s
3s+ t

2s

 |∀s, t ∈ R


Solution: W is not a subspace because R4 3 0 /∈ W . To show why, consider
the vector equation 

s− 2t
3 + 3s
3s+ t

2s

 =


0
0
0
0


The equation for the last component implies

2s = 0⇒ s = 0

But for the second component

3 + 3s = 0⇒ s = −1
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Since s cannot take the values 0 and -1 at the same time, we conclude that there
are no values of s and t such that 0 ∈ W , and consequently, the set W cannot
be a vector space.
Lay, 4.2.13 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Use an appropriate theorem to show that the given set,W , is a vector space,
or �nd a speci�c example to the contrary.

W =


c− 6d

d
c

 ∀c, d ∈ R


Solution: c− 6d

d
c

 = c

1
0
1

+ d

−6
1
0


That is W = Col{A} for A =

1 −6
0 1
1 0

, so W is a vector space.

Lay, 4.2.26
Carlos Oscar Sorzano, Dec. 16th, 2014

Let A be a m× n matrix. Mark each statement True or False. Justify each
answer.

1. The null space of A is a vector space.

2. The column space of A is in Rm.

3. Col{A} is the set of all solutions of Ax = b.

4. Nul{A} is the kernel of the mapping x→ Ax.

5. The range of a linear transformation is a vector space.

6. The set of all solutions of a homogeneous linear di�erential equation is the
kernel of a linear transformation.

Solution:

1. True, the null space of a matrix is a vector subspace (see Theorem 4.2.2)
and any vector subspace is a vector space.

2. True, the column space of A is the vector subspace of Rm formed by all
the vectors that can be obtained as linear combinations of the columns of
A (which are of size m).

3. False, see previous answer for the de�nition of Col{A}.

4. True, the kernel of the proposed transformation are all those vectors in
Rn such that Ax = 0, but this is the de�ntion of Nul{A}.
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5. True. To show that the range is a vector space, let us �rst prove that it
is a vector subspace. Let us denote as T to the linear transformation.

• 0 ∈ Range{T}. We know that for any linear transformation T (0) =
0.

• ∀y1,y2 ∈ Range{T} ⇒ y1 + y2 ∈ Range{T}. Let us denote as
x1 and x2 two vectors in the input space such that T (x1) = y1

and T (x2) = y2. Since the transformation is linear we know that
T (x1 + x2) = y1 + y2. Consequently, y1 + y2 ∈ Range{T}.
• ∀y ∈ Range{T},∀c ∈ R ⇒ cy ∈ Range{T}. Let us denote as x a
vector such that T (x) = y. Since T is linear we have T (cx) = cy
and, consequently, cy ∈ Range{T}.

So, Range{T} is a vector subspace of the output vector space, but any
vector subspace is a vector space.

6. True, a homogeneous linear di�erential equation is one of the form

fn(x)y(n) + fn−1(x)y(n−1) + ...+ f1(x)y′ + f0(x)y = 0

Let us de�ne the transformation

T (y) = fn(x)y(n) + fn−1(x)y(n−1) + ...+ f1(x)y′ + f0(x)y

Let us show that T is a linear transformation

T (y1 + y2) = fn(x)(y1 + y2)
(n) + fn−1(x)(y1 + y2)

(n−1) + ...+ f1(x)(y1 + y2)
′ + f0(x)(y1 + y2)

= fn(x)(y
(n)
1 + y

(n)
2 ) + fn−1(x)(y

(n−1)
1 + y

(n−1)
2 ) + ...+ f1(x)(y

′
1 + y′2) + f0(x)(y1 + y2)

=
[
fn(x)y

(n)
1 + fn−1(x)y

(n−1)
1 + ...+ f1(x)y

′
1 + f0(x)y1

]
+[

fn(x)y
(n)
2 + fn−1(x)y

(n−1)
2 + ...+ f1(x)y

′
2 + f0(x)y2

]
= T (y1) + T (y2)

T (cy) = fn(x)(cy)
(n) + fn−1(x)(cy)

(n−1) + ...+ f1(x)(cy)
′ + f0(x)(cy)

= fn(x)cy
(n) + fn−1(x)cy

(n−1) + ...+ f1(x)cy
′ + f0(x)cy

= c(fn(x)y
(n) + fn−1(x)y

(n−1) + ...+ f1(x)y
′ + f0(x)y)

= cT (y)

The kernel of this linear transformation is

Ker{T} = {y|T (y) = 0}

that is, the set of all solutions of the homogeneous linear di�erential equa-
tion

fn(x)y(n) + fn−1(x)y(n−1) + ...+ f1(x)y′ + f0(x)y = 0

Lay, 4.2.30
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : V → W be a linear transformation from a vector space V into a
vector space W . Prove that the range of T is a subspace of W . [Hint: typical
elements of the range have the form T (u) and T (v) for u,v ∈ V .]
Solution: We need to show that the range of T meets the three requirements
to be a subspace
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• 0W ∈ Range{T}
We know that for any linear transformation T (0V ) = 0W , so 0W is in the
range of T .

• Given any two vectors T (u), T (v) ∈ Range{T}, ∈ T (u) + T (v)Range{T}
Since T is a linear transformation

T (u + v) = T (u) + T (v)

So T (u) + T (v) is also in the range of T .

• Given any vector T (u) ∈ Range{T} and c ∈ R, cT (u) ∈ Range{T}
Again, exploiting the fact that T is linear

T (cu) = cT (u)

So cT (u) is in the range of T

Since Range{T} meets all properties, Range{T} is a subspace of W .
Lay, 4.2.31
Carlos Oscar Sorzano, Aug. 31st, 2013

De�ne T : P2 → R2 by T (p(t)) = (p(0), p(1)). For instance, if p(t) =
3 + 5t+ 7t2, then T (p(t)) = (3, 15).

a. Show that T is a linear transformation. [Hint: for arbitrary polynomials p(t)
and q(t) in P2, compute T (p(t) + q(t)) and T (cp(t))].

b. Find a polynomial p(t) in P2 that spans the kernel of T , and describe the
range of T .

Solution:

a. Let p(t) = ap + bpt+ cpt
2 and q(t) = aq + bqt+ cqt

2. We have

T (p(t) + q(t)) = T ((ap + bpt+ cpt
2) + (aq + bqt+ cqt

2))
= T ((ap + aq) + (bp + bq)t+ (cp + cq)t

2)
= (ap + aq, ap + aq + bp + bq + cp + cq)
= (ap, ap + bp + cp) + (aq, aq + bq + cq)
= T (p(t)) + T (q(t))

T (cp(t)) = T (c(ap + bpt+ cpt
2))

= T (cap + cbpt+ ccpt
2)

= (cap, cap + cbp + ccp)
= c(ap, ap + bp + cp)
= cT (p(t))

Since T meets the two conditions to be a linear transformation, it is a linear
transformation.

b. The kernel of T is formed by all those polynomials such that

T (p(t)) = (ap, ap + bp + cp) = (0, 0)

102



for that we need

ap = 0
ap + bp + cp = 0⇒ cp = −bp

That is, all polynomials in the kernel of T are of the form p(t) = bpt− bpt2,
in particular

Ker{T} = Span{t− t2}

The range of T is formed by all those vectors of the form

Range{T} = {(ap, ap + bp + cp)∀ap, bp, cp ∈ R} = R2

Lay, 4.2.33 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Let M2×2 be the vector space of all 2x2 matrices, and de�ne

T : M2×2 →M2×2 by T (A) = A+AT where A =

(
a b
c d

)
a. Show that T is a linear transformation.

b. Let B be any element of M2×2 such that BT=B. Find an A in M2×2 such
that T (A) = B.

c. Show that the range of T is the set of B in M2×2 with the property that
BT = B.

d. Describe the kernel of T .

Solution:

a. To show that a transformation is linear we need to show that

T (A+B) = (A+B) + (A+B)T = A+B +AT +BT

= (A+AT ) + (B +BT ) = T (A) + T (B)
T (cA) = (cA) + (cA)T = cA+ cAT = c(A+AT ) = cT (A)

b. Let A = 1
2B, then

T (A) =

(
1

2
B

)
+

(
1

2
B

)T
=

1

2
B +

1

2
BT =

1

2
B +

1

2
B = B

c. Consider any matrix B such that B = T (A). Then

BT = (T (A))T = (A+AT )T = AT +A = T (A) = B

d. The kernel of T is composed by all matrices such that

T (A) = 0 = A+AT

This requires that aii = 0 and aij = −aji. Any matrix ful�lling this condition
is in the kernel of T .
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Lay, 4.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine whether the set B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis or not
for R3. If it is not, determine if it is linearly independent.
Solution: B has three linearly independent vectors because if we form the

matrix A =

1 1 1
0 1 1
0 0 1

 the unique solution of the equation Ax = 0 is x = 0.

Since B has 3 linearly independent vectors, it spans R3 and it is, therefore,
a basis for R3.
Lay, 4.3.2
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine whether the set B = {(1, 1, 0), (0, 0, 0), (0, 1, 1)} is a basis or not
for R3. If it is not, determine if it is linearly independent.
Solution: The set B is not linearly independent because it contains the vector
(0, 0, 0). So it cannot be a basis for R3.
Lay, 4.3.3
Ana Peña Gil, Jan. 19th 2014

Determine whether the set B = {(1, 0,−3), (3, 1,−4), (−2,−1, 1)} is a basis
or not for R3. If it is not, determine if it is linearly independent.

Solution: B has three linearly dependent vectors because if we form the matrix

A =

 1 3 −2
0 1 −1
−3 −4 1


its determinant det{A} = 0, which means that A is formed by linearly dependent
vectors.

Since B has 3 linearly dependent vectors, it does not span R3 and it is not,
therefore, a basis for R3.

Lay, 4.3.6
Ana Peña Gil, Jan. 19th 2014

Determine whether the set B = {(1, 2,−4), (−4, 3, 6)} is a basis or not for
R3. If it is not, determine if it is linearly independent.

Solution: B does not span R3 because it has only two vectors. It needs exactly
three independent vectors to span R3. And therefore, it cannot be a basis for
R3.
The two vectors of the set B are linearly independent because none of them is
a multiple of the other.

Lay, 4.3.7
Andrea Santos Cortés, Nov. 16th, 2014

104



Determine whether the set B = {(−2, 3, 0), (6,−1, 5)} is a basis or not for
R3. If it is not, determine if it is linearly independent.
Solution: B does not span R3 because it has only two vectors. It needs exactly
three linearly independent vectors to span R3 . And therefore, it cannot be a
basis for R3. The two vectors of the set B are linearly independent because none
of them is a multiple of the other

Lay, 4.3.8
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine whether the set B = {(1,−2, 3), (0, 3,−1), (2,−1, 5), (0, 0,−1)} is
a basis or not for R3. If it is not, determine if it is linearly independent.
Solution: The set B cannot be linearly independent because in R3 there can
be at most 3 linearly independent vectors.
Lay, 4.3.9
María Postigo Fliquete, Dec. 8th, 2014

Find bases for the null space of the matrix

1 0 −3 2
0 1 −5 4
3 −2 1 −2


Solution: 1 0 −3 2

0 1 −5 4
3 −2 1 −2

 ∼
1 0 −3 2

0 1 −5 4
0 0 0 0


1 0 −3 2

0 1 −5 4
0 0 0 0



x1
x2
x3
x4

 =

x1 − 3x3 + 2x4
x2 − 5x3 + 4x4

0

 =

0
0
0


x1 = 3x3 − 2x4

x2 = 5x3 − 4x4

Any vector in the null space is of the form
3x3 − 2x4
5x3 − 4x4

x3
x4

 = x3


3
5
1
0

+ x4


−2
−4
0
1



So a basis for Nul{A} is formed by the vectors


3
5
1
0

 and


−2
−4
0
1

.
Lay, 4.3.12
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a basis for the set of vectors in R2 on the line y = −3x.
Solution: All these vectors are of the form

r =

(
x
−3x

)
= x

(
1
−3

)
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So, a basis for these vectors is

B =

{(
1
−3

)}
Lay, 4.3.13 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Assume thatA =

−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3

 is row equivalent toB =

1 0 6 5
0 2 5 3
0 0 0 0

.
Find bases for Nul{A} is and Col{A}.
Solution: 1 0 6 5

0 2 5 3
0 0 0 0



x1
x2
x3
x4

 =

 x1 + 6x3 + 5x4
2x2 + 5x3 + 3x4

0


That is

x1 = −6x3 − 5x4

x2 = −5

2
x3 −

3

2
x4

So any vector in Nul{A} is of the form
−6x3 − 5x4
− 5

2x3 −
3
2x4

x3
x4

 = x3


−6
− 5

2
1
0

+ x4


−5
− 3

2
0
1


A basis for Nul{A} is formed by the set


−6
− 5

2
1
0

 ,


−5
− 3

2
0
1




The basis for Col{A} are the colums of A corresponding to the pivot columns
(columns 1 and 2) of B: 

−2
2
−3

 ,

 4
−6
8


Lay, 4.3.14
Ana Sanmartín, Dec. 15th, 2014

Assume that A is row equivalent to B. Find bases for Nul{A} and Col{A}.

A =


1 2 3 −4 8
1 2 0 2 8
2 4 −3 10 9
3 6 0 6 9

 ∼ B =


1 2 0 −2 5
0 0 3 −6 3
0 0 0 0 −7
0 0 0 0 0


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Solution: If B is the reduced echelon form of A, then, the pivot columns of B
form a linearly independent set. Because the dependence relationships among
columns are not a�ected by row operations, the corresponding pivot columns of
A are also linearly independent and, consequently a basis of Col{A}:


1
1
2
3

 ,


3
0
−3
0

 ,


8
8
9
9




For the basis of Nul{A} we make use of the equations implied by Bx = 0:

x1 + 2x2 − 2x4 + 5x5 = 0
3x3 − 6x4 + 3x5 = 0

−7x5 = 0
⇒

x1 = −2x2 + 2x4
x3 = 2x4
x5 = 0

Nul{A} 3 x =


−2x2 + 2x4

x2
2x4
x4
0

 = x2


−2
1
0
0
0

+ x4


2
0
2
1
0


So a basis for Nul{A} is 


−2
1
0
0
0

 ,


2
0
2
1
0




Lay, 4.3.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Let B = {v1,v2, ...,vn} be a linearly independent set of Rn. Explain why
B must be basis for Rn.
Solution: To be a basis for Rn a set needs to be linearly independent (B is
so by hypothesis) and span Rn. Let's check this latter requirement. Let us
form the matrix A =

(
v1 v2 ... vn

)
. B spans Rn if for any vector b ∈ Rn,

the matrix equation Ax = b has a solution. Since the columns of A are lin-
early independent, by the invertible theorem matrix (Theorem 5.1, Chapter 3),
we know that the matrix equation above has a solution, and consequently, the
columns of A (that is B) spans Rn.
Lay, 4.3.25
Carlos Oscar Sorzano, Jan. 20th, 2013

Let v1 = (1, 0, 1), v2 = (0, 1, 1) and v3 = (0, 1, 0), and let H be the set of
vectors of R3 whose second and third entries are equal. Then every vector in
H has a unique expansion as a linear combination of v1, v2 and v3 because
(s, t, t) = s(1, 0, 1)+(t−s)(0, 1, 1)+s(0, 1, 0). Is {v1,v2,v3} a basis of H? Why
or why not?
Solution: v1 and v3 do not belong to H (because they do not have the same
values in the second and third position), so they cannot participate of any basis
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of H.
Lay, 4.3.31
Carlos Oscar Sorzano, Aug. 31st, 2013

Let V and W be vector spaces, and T : V → W a linear transformation
between the two. Let S = {v1,v2, ...,vp} be a subset of V . Show that if S is
linearly dependent in V , then the set of images T (S) = {T (v1), T (v2), ..., T (vp)}
is linearly dependent inW . This fact shows that if a linear transformation maps
S onto a linearly independent set of vectors, then S is also linearly independent
(because it cannot be linearly dependent).
Solution: If S is linearly dependent, then there exist coe�cients c1, c2, ..., cp
not all of them zero such that

c1v1 + c2v2 + ...+ cpvp = 0V

Apply the lienar transformation T to both sides yields

c1T (v1) + c2T (v2) + ...+ cpT (vp) = 0W

that is, there exist coe�cients c1, c2, ..., cp not all of them zero such that the lin-
ear combination of the transformed vectors is 0W . This means that S′ = T (S)
is a set of linearly dependent vectors.
Lay, 4.3.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Let V and W be vector spaces, and T : V → W a linear transformation
between the two. Let S = {v1,v2, ...,vp} be a subset of V . Suppose T is a
one-to-one transformation, so that an equation T (u) = T (v) always implies
u = v. Show that if the set of images T (S) = {T (v1), T (v2), ..., T (vp)} is
linearly dependent, then S = {v1,v2, ...,vp} is also linearly dependent. This
fact shows that a one-to-one linear transformation maps a linearly independent
set onto a linearly independent set (because in this case the set of images cannot
be linearly dependent).
Solution: If T (S) is linearly dependent, then there exist coe�cients c1, c2, ...,
cp not all of them zero such that

c1T (v1) + c2T (v2) + ...+ cpT (vp) = 0W

If T is one-to-one, we infer that it must also be

c1v1 + c2v2 + ...+ cpvp = 0V

that is, there exist coe�cients c1, c2, ..., cp not all of them zero such that the
linear combination of the transformed vectors is 0V . This means that S is a set
of linearly dependent vectors.
Lay, 4.3.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider the polynomials p1(t) = 1 + t2 and p2(t) = 1− t2. Is {p1(t), p2(t)}
a linearly independent set in P3? Why or why not?
Solution: We may de�ne the linear transformation T : P3 → R4 such that
T (a + bt + ct2 + dt3) = (a, b, c, d). It can be easily veri�ed that T is a linear
transformation.

The polynomials p1(t) and p2(t) are transformed to
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T (p1(t)) = (1, 0, 1, 0)
T (p2(t)) = (1, 0,−1, 0)

which is clearly a linear independent set in R4 and by Exercise Lay 4.3.31, this
implies that {p1(t), p2(t)} is a linearly independent set in P3.

Lay, 4.4.1
Andrea Santos Cortés, Nov. 17th, 2014

Given the coordinate [x]B = (5, 3) and the basis B = {(3,−5), (−4, 6)}, �nd
the vector x.
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x

x = x1b1 + x2b2 = 5

(
3
−5

)
+ 3

(
−4
6

)
=

(
3
−7

)
Lay, 4.4.2
Andrea Santos Cortés, Nov. 17th, 2014

Given the coordinate [x]B = (−2, 5) and the basis B = {(3, 2), (−4, 1)}, �nd
the vector x.
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x

x = x1b1 + x2b2 = −2

(
3
2

)
+ 5

(
−4
1

)
=

(
−26

1

)
Lay, 4.4.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the coordinate [x]B = (1, 0,−2) and the basisB = {(1,−2, 3), (5, 0,−2), (4,−3, 0)},
�nd the vector x.
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x

x = x1b1 + x2b2 + x3b3 = 1

 1
−2
3

+ 0

 5
0
−2

− 2

 4
−3
0

 =

−7
4
0


Lay, 4.4.4
Andrea Santos Cortés, Nov. 17th, 2014

Given the coordinate [x]B = (−3, 2,−1) and the basisB = {(−2, 2, 0), (3, 0, 2), (4,−1, 3)},
�nd the vector x.
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x

x = x1b1 + x2b2 + x3b3 = −3

−2
2
0

+ 2

3
0
2

− 1

 4
−1
3

 =

 8
−5
1


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Lay, 4.4.5
Andrea Santos Cortés, Nov. 17th, 2014

Find the coordinates of x = (−1, 1) relative to the basisB = {(1,−2), (3,−5)}
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x. We need to �nd the weights such that

x = x1b1 + x2b2 = x1

(
1
−2

)
+ x2

(
3
−5

)
We can solve this problem through the augmented matrix(

1 3 −1
−2 −5 1

)
∼
(

1 0 5
0 1 −2

)
The coordinates are [x]B = (5,−2).
Lay, 4.4.8
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the coordinates of x = (0, 0,−2) relative to the basisB = {(1, 1, 3), (2, 0, 8), (1,−1, 3)}
Solution: The coordinates of x in the basis B specify the linear combination
of the vectors in the basis B to �nd x. We need to �nd the weights such that

x = x1b1 + x2b2 + x3b3 = x1

1
1
3

+ x2

2
0
8

+ x3

 1
−1
3


We can solve this problem through the augmented matrix 1 2 1 0

1 0 −1 0
3 8 3 −2

 ∼
 1 0 0 1

0 1 0 −1
0 0 1 1


The coordinates are [x]B = (1,−1, 1).
Lay, 4.4.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the change-of-coordinates matrix from the basis B = {(1,−3), (2,−5)}
to the standard basis of R2.
Solution: The matrix sought is the one whose columns are the vectors in the
basis B

PE←B =

(
1 2
−3 −5

)
Lay, 4.4.11 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Use an inverse matrix to �nd [x]B for the given x and B.

B =

{(
3
−5

)
,

(
−4
6

)}
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x =

(
2
−6

)
Solution:

x = PB [x]B

PB =

(
3 −4
−5 6

)
We calculate the inverse matrix(

3 −4 1 0
−5 6 0 1

)
∼
(

1 0 −9/3 −2
0 1 −5/2 −3/2

)
P−1B =

(
−3/9 −2
−5/2 −3/2

)
[x]B = P−1B x

[x]B =

(
−3/9 −2
−5/2 −3/2

)(
2
−6

)
=

(
6
4

)
Lay, 4.4.13
Carlos Oscar Sorzano, Aug. 31st, 2013

The set B = {1 + t2, t+ t2, 1 + 2t+ t2} is a basis for P2. Find the coordinate
vector of p(t) = 1 + 4t+ 7t2 relative to B.
Solution: Consider the standard basis of P2 ({1, t, t2}). The change-of-coordinate
matrix from B to the standard basis is the one whose columns are the expression
of each one of the elements in the basis B in the standard basis

PE←B =

1 0 1
0 1 2
1 1 1


We use this matrix to convert B-coordinates into E-coordinates

[x]E = PE←B [x]B

Conversely, we may invert this equation to �nd the B-coordinates of the poly-
nomial p(t).

[x]B = P−1E←B [x]E =

 1
2 − 1

2
1
2

−1 0 1
1
2

1
2 − 1

2

1
4
7

 =

 2
6
−1


Lay, 4.4.14 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

The set B = {1 + t2, t+ t2, 1 + 2t+ t2} is a basis for P2. Find the coordinate
vector of p(t) = 3 + t+ 6t2 relative to B .

111



Solution:

p(t) = 3 + t+ 6t2 ⇒ [p(t)]E =

3
1
6


B = {1 + t2, t+ t2, 1 + 2t+ t2} ⇒ PB =

1 0 1
0 1 2
1 1 1


The following equation relates the coordinates in the standard basis and the B
basis

[p(t)]E = PB [p(t)]B

We solve the augmented matrix 1 0 1 3
0 1 2 1
1 1 1 6

 ∼
 1 0 0 4

0 1 0 3
0 0 1 −1

⇒ [p(t)]B =

 4
3
−1


Lay, 4.4.17
Carlos Oscar Sorzano, Aug. 31st, 2013

The vectors v1 = (1,−3), v2 = (2,−8) and v3 = (−3, 7) span R2 but do
not form a basis. Find two di�erent ways to express x = (1, 1) as a linear
combination of v1,v2,v3.
Solution: We need to �nd x1, x2, x3 such that

x1v1 + x2v2 + x3v3 = x(
1 2 −3 1
−3 −8 7 1

)
∼
(

1 0 −5 5
0 1 1 −2

)
So any linear combination of the form

x1 = 5 + 5x3
x2 = −2− x3

⇒

5 + 5x3
−2− x3
x3


is a representation of x as a linear combination of v1,v2,v3.
Lay, 4.4.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Let S be a �nite set of in a vector space V with the property that every x
in V has a unique representation as a linear combination of the elements of S.
Show that S is a basis of V .
Solution: The fact that every x in V has a representation as a linear combina-
tion of elements of S means that S spans V . The fact that this representation
is unique implies that the set S is linearly independent. These are the two con-
ditions to become a basis and, therefore, the set S is a basis of V .
Lay, 4.4.20
Carlos Oscar Sorzano, Feb. 15th, 2014

Suppose {v1,v2,v3,v4} is a linearly dependent set spanning a vector space
V . Show that each w in V can be expressed in more than one way as a linear
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combination of v1,v2,v3,v4. [Hint : Let w = k1v1 + k2v2 + k3v3 + k4v4 be an
arbitrary vector of V . Use the linear dependence of {v1,v2,v3,v4} to produce
another representation of w as a linear combination of v1,v2,v3,v4.]
Solution: Without loss of generality, let us assume that v4 is a linear combi-
nation of the rest of the vectors

v4 = a1v1 + a2v2 + a3v3

Then, we can reexpress w as

w = k1v1 + k2v2 + k3v3 + k4v4

= k1v1 + k2v2 + k3v3 + k4(a1v1 + a2v2 + a3v3)
= (k1 + k4a1)v1 + (k2 + k4a2)v2 + (k3 + k4a3)v3

Lay, 4.4.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that the coordinate mapping is onto Rn. That is, given any y ∈ Rn,
with entries y1, y2, ..., yn, produce a u ∈ V such that [u]B = y.
Solution: Assume that the basis B is formed by the vectors b1, b2, ..., bn.
Then the coordinates of the vector

u = y1b1 + y2b2 + ...+ ynbn

are y.
Lay, 4.4.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that the subset {u1,u2, ...,up} in V is linearly independent if and only
if the set of coordinate vectors {[u1]B , [u2]B , ..., [up]B} is linearly independent in
Rn. Hint : Since the coordinate mapping is one-to-one, the following equations
have the same solution c1, c2, ..., cp:

c1u1 + c2u2 + ...+ cpup = 0V
c1[u1]B + c2[u2]B + ...+ cp[up]B = 0

Solution: Consider the equation

c1u1 + c2u2 + ...+ cpup = 0V

and its solution coe�cients c1, c2, ..., cp. Since the coordinate mapping is one-
to-one, the set of solutions is the same as the one for the equation

[c1u1 + c2u2 + ...+ cpup]B = [0V ]B

and because the coordinate mapping is a linear transformation, we have

c1[u1]B + c2[u2]B + ...+ cp[up]B = 0

But, by hypothesis, the set {[u1]B , [u2]B , ..., [up]B} is linearly independent.
That means that the only solution of the equation is c1 = c2 = ... = cp = 0 and
so is the solution of the �rst equation in the sequel.

Lay, 4.5.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a basis for the subspace below and state its dimension
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S =


s− 2t
s+ t

3t

 ∀s, t ∈ R


Solution: We may write the set as

S =

s
1

1
0

+ t

−2
1
3

 ∀s, t ∈ R


Thus, a basis is given by the vectors

Basis{S} =


1

1
0

 ,

−2
1
3


Since the basis has two vectors, the dimension of S is 2.
Lay, 4.5.2
Marta Monsalve Buendía, Dic. 4th, 2014

Find a basis for the subspace below and state its dimension

S =


 2a
−4b
−2a

 ∀a, b ∈ R


Solution: We may write the set as

S =

a
 2

0
−2

+ b

 0
−4
0

 ∀a, b ∈ R


Thus, a basis is given by the vectors

Basis{S} =


 2

0
−2

 ,

 0
−4
0


Since the basis has two vectors, the dimension of S is 2.
Lay, 4.5.3
Marta Monsalve Buendía, Dic. 4th, 2014

Find a basis for the subspace below and state its dimension

S =




2c
a− b
b− 3c
a+ 2b

 ∀a, b, c ∈ R


Solution: We may write the set as

S =

a


0
1
0
1

+ b


0
−1
1
2

+ c


2
0
−3
0

 ∀a, b, c ∈ R


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Thus, a basis is given by the vectors

Basis{S} =




0
1
0
1

 ,


0
−1
1
2

 ,


2
0
−3
0




Since the basis has three vectors, the dimension of S is 3.
Lay, 4.5.4
Ana Peña Gil, Jan. 19th 2014

Find a basis for the subspace below and state its dimension

S =



p+ 2q
−p

3p− q
p+ q

 ∀s, t ∈ R


Solution: We may write the set as

S =

p


1
−1
3
1

+ q


2
0
−1
1

 ∀p, q ∈ R


Thus, a basis is given by the vectors

Basis{S} =




1
−1
3
1

 ,


2
0
−1
1




Since the basis has two vectors, the dimension of S is 2.

Lay, 4.5.5
Ana Peña Gil, Jan. 19th 2014

Find a basis for the subspace below and state its dimension

S =




p− 2q
2p+ 5r
−2q + 2r
−3p+ 6r

 ∀p, q, r ∈ R


Solution: We may write the set as
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S =

p


1
2
0
−3

+ q


−2
0
−2
0

+ r


0
5
2
6

 ∀p, q, r ∈ R


Thus, a basis is given by the vectors

Basis{S} =




1
2
0
−3

 ,


−2
0
−2
0

 ,


0
5
2
6




Since the basis has three vectors, the dimension of S is 3.

Lay, 4.5.6
Marta Monsalve Buendía, Dic. 4th, 2014

Find a basis for the subspace below and state its dimension

S =




3a− c
−b− 3c

−7a+ 6b+ 5c
−3a+ c

 ∀a, b, c ∈ R


Solution: We may write the set as

S =

a


3
0
−7
−3

+ b


0
−1
6
0

+ c


−1
−3
5
1

 ∀a, b, c ∈ R


Thus, a basis is given by the vectors

Basis{S} =




3
0
−7
−3

 ,


0
−1
6
0

 ,


−1
−3
5
1




Since the basis has three vectors, the dimension of S is 3.
Lay, 4.5.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine the dimensions of Nul{A} and Col{A} for the matrix

A


1 −6 9 0 −2
0 1 2 −4 5
0 0 0 5 1
0 0 0 0 0


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Solution: The basis of the null space is formed by those non-pivot columns, in
the case of A, the third and �fth columns. So, the dimension of Nul{A} is 2.
The basis of the column space is formed by the pivot columns, in this case, the
�rst, second and fourth columns. So, the dimension of Col{A} is 3.
Lay, 4.5.15 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Determine the dimensions of Nul{A} and Col{A}

A =

(
1 0 9 5
0 0 1 −4

)
Solution: (

1 0 9 5
0 0 1 −4

)
∼
(

1 0 0 41
0 0 1 −4

)
The given matrix has two pivot colums so dim{Col{A}} = 2 and two non-pivot
columns so dim{Nul{A}} = 2.

Lay, 4.5.17 (3rd ed.)
Ignacio Sanchez Lopez, Jan. 17th, 2015

Determine the dimensions of Nul{A} and Col{A}

A =

1 −1 0
0 4 7
0 0 5


Solution: 1 −1 0

0 4 7
0 0 5

 ∼
1 0 0

0 1 0
0 0 1


The given matrix has three pivot colums so dim{Col{A}} = 3 and zero non-
pivot columns so dim{Nul{A}} = 0.
Lay, 4.5.20
Carlos Oscar Sorzano, Jan. 20th, 2014

Mark each statement as true or false. Justify each answer.

1. R2 is a two-dimensional subspace of R3

2. The number of variables in the equation Ax = 0 equals the dimension of
Nul{A}.

3. A vector space is in�nite-dimensional if it is spanned by an in�nite set.

4. If dim{V } = n and if S spans V , then S is a basis of V .

5. The only three-dimensional subspace of R3 is R3 itself.

Solution:

1. False, R2 is not a subpace of R3. Although it is true that R2 is isomorph
to a two-dimensional subspace of R3.
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2. False, the number of variables in the equation Ax = 0 equals the number
of columns of A. The dimension of Nul{A} is equal to the number of free
variables in the equation Ax = 0.

3. False, the in�nite set must be a basis of A, that is, there cannot be a
proper subset of S that also spans the same vector space.

4. False, for this to be true we also need that S has n vectors.

5. True, R3 is said to be an improper subspace of itself.

Lay, 4.5.21
Carlos Oscar Sorzano, Aug. 31st, 2013

The �rst four Hermite polynomials are 1, 2t, −2 + 4t2 and −12t + 8t3.
These polynomials arise naturally in the study of certain important di�erential
equations in mathematical physics. Show that the �rst four Hermite polynomials
form a basis of P3.
Solution: Consider the standard basis of P3:

E = {1, t, t2, t3}

In order to know whether the four Hermite polynomials are linearly independent
or not we resort to the following augmented matrix whose columns are the
expression of the Hermite polynomials in the standard basis of P3

1 0 −2 0 0
0 2 0 −12 0
0 0 4 0 0
0 0 0 8 0

 ∼


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


So the four Hermite polynomials are linearly independent. Since they are 4
and the dimension of P3 is also 4, then by Theorem 9.4 of Chapter 5, the four
Hermite polynomials are a basis of P3.
Lay, 4.5.22
Carlos Oscar Sorzano, Jan. 20th, 2013

The �rst four Laguerre polynomials are 1, 1−t, 2−4t+t2 and 6−18t+9t2−t3.
Show that these polynomials form a basis of P3.
Solution: Consider the standard basis of P3:

E = {1, t, t2, t3}

In order to know whether the four Laguerre polynomials are linearly independent
or not we resort to the following augmented matrix whose columns are the
expression of the Laguerre polynomials in the standard basis of P3

1 1 2 6 0
0 −1 −4 −18 0
0 0 1 9 0
0 0 0 −1 0

 ∼


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


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So the four Laguerre polynomials are linearly independent. Since they are 4
and the dimension of P3 is also 4, then by Theorem 9.4 of Chapter 5, the four
Laguerre polynomials are a basis of P3.
Lay, 4.5.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Let S be a subset of an n-dimensional vector space V , and suppose S contains
fewer than n vectors. Explain why S cannot span V .
Solution: Note that n ≥ 1 because S cannot have fewer than 0 vectors. If S
spans V , then there exists a subset S′ ⊆ S that is a basis of V . S′ must have
fewer than n vectors (because S has fewer than n vectors), but by Theorem 9.2
of Chapter 5, this is impossible because all bases of V have n vectors.
Lay, 4.5.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Let H be an n-dimensional subspace of an n-dimensional vector space V .
Show that H = V .
Solution: Let BH be a basis of H. Since H is an n-dimensional vector space,
BH must have n vectors. But by Theorem 9.4 of Chapter 5, any set of n linearly
independent vectors of V is a basis of V . So BH is also a basis for V . Since
both spaces have the same basis, both spaces are the same.
Lay, 4.5.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Explain why the space P of all polynomials is an in�nite-dimensional space.
Solution: Let us assume that P is �nite-dimensional and that its dimension is
n. Consider the set of polynomials of degree n (Pn). This obviously a subset of
P so the dimension of P is larger than the dimension of Pn

Pn ⊂ P⇒ dim{Pn} < dim{P}

The dimension of Pn is n+ 1, but n+ 1 > n so this is a contradiction with our
hypothesis, and P is an in�nite-dimensional space.
Lay, 4.5.28
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that the space C(R) of all continuous functions de�ned on the real line
is an in�nite-dimensional space.
Solution: In the previous exercise we showed that the space of polynomials P
is in�nite-dimensional. Since all polynomials are continuous functions on the
real line we have P ⊆ C(R). Consequently, C(R) must be in�nite-dimensional
since its dimension cannot be smaller than the dimension of P.
Lay, 4.5.31
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider �nite-dimensionals spaces V and W , and a linear transformation
T : V → W . Let H be a nonzero subspace of V , and let T (H) be the set
of images of vectors in H. Then T (H) is a subspace of W , by Exercise 35 in
Section 4.2. Prove that dim{T (H)} ≤ dim{H}.
Solution: Let k = dim{T (H)}. If k = 0, then k < dim{H}. If k > 0, then
T (H) must have a basis formed by k vectors in T (H) of the form T (v1), T (v2),
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..., T (vk). Since the set {T (v1), T (v2), ..., T (vk)} is linearly independent and T
is a linear transformation, then by Exercise 4.3.31 the set {v1,v2, ...,vk} is also
linearly independent in H and consequently dim{H} ≥ k.
Lay, 4.5.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider �nite-dimensionals spaces V and W , and a linear transformation
T : V → W . Let H be a nonzero subspace of V , and let T (H) be the set of
images of vectors in H. Suppose, additionally, that T is a one-to-one mapping.
Prove that dim{T (H)} = dim{H}. If T happens to be a one-to-one mapping
of V onto W , then dim{V } = dim{W}. Isomorphic �nite-dimensional vector
spaces have the same dimension.
Solution: If T is a one-to-one mapping, it means that it maps linearly inde-
pendent sets from V to W and viceversa. If the dimension of H is k, then any
basis of H ⊆ V has k linearly independent vectors, that are mapped by T onto
k linearly independent vectors of W . So they are also a basis of T (H), and
consequently dim{T (H)} = k.

Lay, 4.6.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Assume

A =

 1 −4 9 −7
−1 2 −4 1
5 −6 10 7

 ∼
1 0 −1 5

0 −2 5 −6
0 0 0 0

 = B

Without calculations list Rank{A} and dim{Nul{A}}. Then �nd bases for
Col{A}, Row{A}, and Nul{A}.
Solution: The rank of A is the dimension of the column space of A that is
given by the number of pivot columns of A. This is the same as the number of
pivot columns of B, that is, 2 (�rst and second columns). The dimension of the
null space of A, thanks to the rank theorem, can be calculated as the number
of columns of A minus its rank, in this case, 4− 2 = 2.

The basis of Col{A} is given by the pivot columns of A, that are the same
as the pivot columns of B:

Basis{Col{A}} =


 1
−1
5

 ,

−4
2
−6


The space spanned by the rows of B is the same as the space spanned by

the rows of A. So a basis for the row space of A is

Basis{Row{A}} =




1
0
−1
5

 ,


0
−2
5
−6




For the null space of A we write the equations implied by the two rows of B

x1 = x3 − x4
−2x2 = −5x3 + 6x4

⇒


x1
x2
x3
x4

 = x3


1
5
2
1
0

+ x4


−1
−3
0
1


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So the basis of Nul{A}} is given by

Basis{Row{A}} =




1
5
2
1
0

 ,


−1
−3
0
1




Lay, 4.6.3 (3rd ed.)
María Postigo Fliquete, Dec. 8th, 2014

Assume that the matrix A is row equivalent to B. Without calculations,
list Rank{A} and dim{Nul{A}}. Then �nd bases for Col{A}, Row{A}, and
Nul{A}.

A =


2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1



B =


2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0


Solution: The matrix has 3 pivot colums so Rank{A} = dim{Col{A}} = 3
and 2 non pivot colums so dim{Nul{A}} = 2. The basis of Col{A} is formed
by the columns of A corresponding to the pivot columns of B:


2
−2
4
−2

 ,


6
−3
9
3

 ,


2
−3
5
−4




The basis of Nul{A} comes from the equations implied by B

2x1 − 3x2 + 6x3 + 2x4 + 5x5 = 0
3x3 − x4 + x5 = 0
x4 + 3x5 = 0

⇒
x1 = 3

2x2 + 9
2x5

x3 = − 4
3x5

x4 = −3x5
x1
x2
x3
x4
x5

 = x2


3
2
1
0
0
0

+ x5


9
2
0
− 4

3
−3
1


So the basis of Nul{A} is 


3
2
1
0
0
0

 ,


9
2
0
− 4

3
−3
1



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Finally the basis of Row{A} comes from the rows of B


2
−3
6
2
5

 ,


0
0
3
−1
1

 ,


0
0
0
1
3




Lay, 4.6.5
Carlos Oscar Sorzano, June, 6th 2014

If a 4× 7 matrix A has rank 3, �nd dim{Nul{A}}, dim{Row{A}}, and rank
of AT .
Solution: According to the rank theorem, the rank of A plus dim{Nul{A}}
must be the number of columns of A. Since the rank of A is 3, dim{Nul{A}}
must be 4. On another side, the rank is de�ned as the dimension of the row
space of A, so dim{Row{A}} = 3. Finally

rank{AT } = dim{Row{AT }} = dim{Col{A}} = rank{A} = 3

Lay, 4.6.13
Carlos Oscar Sorzano, Aug. 31st, 2013

If A is a 7× 5 matrix, what is the largest possible rank of A? If A is a 5× 7
matrix, what is the largest possible rank of A? Explain your answers.
Solution: In both cases the rank can be 5 at maximum, because for any m×n
matrix the rank meets (Rank Theorem)

dim{Row{A}} = dim{Col{A}} = Rank{A}

In the �rst case, the rank cannot be larger than 5 because there are only 5
columns. In the second case, the rank cannot be larger than 5 because there
are only 5 rows.
Lay, 4.6.15
Carlos Oscar Sorzano, Aug. 31st, 2013

If A is a 3× 7 matrix, what is the smallest possible dimension of Nul{A}?
Solution: By the Rank Theorem we know that for a m× n matrix

dim{Nul{A}}+ Rank{A} = n

The rank cannot be larger than 3, so the dimension of Nul{A} cannot be smaller
than 4, i.e., dim{Nul{A}} ≥ 4.
Lay, 4.6.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the solutions of a homogeneous system of 5 linear equations in 6
unknowns are all multiples of one nonzero solution. Will the system necessarily
have a solution for every possible choice of constants on the right sides of the
equation? Explain.
Solution: The fact that all homogeneous solutions are multiples of one nonzero
solution implies that the null space is 1-dimensional. By the Rank Theorem,
the rank of A (the system matrix) is 5 (so that 5 + 1 = 6). So,
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Rank{A} = dim{Col{A}} = 5

Since the matrix A is 5× 6, its column space must be a subspace of R5. On the
other side, since its dimension is 5, then

Col{A} = R5

and consequently, for every b ∈ R5 there is a solution of the equation Ax =
b.
Lay, 4.6.20
Carlos Oscar Sorzano, Jan. 20th, 2014

Suppose a nonhomogeneous system of six linear equations in eight unknowns
has a solution, with two free variables. Is it possible to change some constants
on the equations' right sides to make the new system inconsistent? Explain.
Solution: If the equation system has a solution with two free variables, it means
that the system matrix has rank 6. By changing the right side we cannot make
the system inconsistent since for this we would need at least one of the equations
to have only 0 coe�cients in the left side (which is not possible because the rank
of the matrix is 6).
Lay, 4.6.26
Carlos Oscar Sorzano, Aug. 31st, 2013

In statistical theory, a common requirement is that a matrix be of full rank.
That is, the rank should be as large as possible. Explain why an m× n matrix
with more rows than columns has full rank if and only if its columns are linearly
independent.
Solution: The if there are more rows than columns then m > n and the rank
can be at most n. The rank is n i� the dimension of the column space is n. But
since there are only n columns in the matrix, this can only be achieved if they
are linearly independent.
Lay, 4.6.28
Carlos Oscar Sorzano, Aug. 31st, 2013

Justify the following equalities:

a. dim{Row{A}}+ dim{Nul{A}} = n

b. dim{Col{A}}+ dim{Nul{AT }} = m

Solution:

a. By the Rank Theorem we know that

dim{Col{A}}+ dim{Nul{A}} = n

Since Rank{A} = dim{Col{A}} = dim{Row{A}} we have immediately the
proposed equality.

b. If we apply the Rank Theorem to AT we get

dim{Col{AT }}+ dim{Nul{AT }} = m
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But dim{Col{AT }} = dim{Row{A}} = dim{Col{A}}, and again we have
the proposed equality.

Lay, 4.6.29
Carlos Oscar Sorzano, Aug. 31st, 2013

Use Exercise 28 to explain why the equation Ax = b has a solution for all
b ∈ Rm if and only if the equation ATx = 0 has only the trivial solution.
Solution: If the equation ATx = 0 has only the trivial solution, then the
dimension of its null space is 0 (dim{Nul{AT }} = 0) and by the proposition b
of Exercise 4.6.28, dim{Col{A}} = m. This means that the columns of A span
Rm and by the Invertible Matrix theorem, there is a solution of the equation
Ax = b for all b ∈ Rm.

This reasoning could be reversed in all its steps to show that if there is a
solution of the equation Ax = b for all b ∈ Rm, then the equation ATx = 0
has only the trivial solution.
Lay, 4.6.33
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be any 2× 3 matrix such that Rank{A} = 1, let u be the �rst column
of A, and suppose that u 6= 0. Explain why there is a vector v ∈ R3 such that
A = uvT . How could this construction be modi�ed if the �rst column of A were
zero.
Solution: If Rank{A} = 1, then the dimension of the column space of A is
1, meaning that all columns are multiples of a single vector. Without loss of
generality, we may assume that the �rst column of A is the basis of the column
space. Then

M2×3 3 A =
(
u au bu

)
The vector v proposed by the problem is

v =

1
a
b


It can be easily veri�ed that A = uvT .

If the �rst column of A is zero, then the new vector v would be of the form

v =

0
1
a


and now the basis of the column space of A is given by its second column and
not by its �rst column.

Lay, 4.7.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let B = {b1,b2} and C = {c1, c2} be bases for a vector space V , and
suppose b1 = 6c1 − 2c2 and b2 = 9c1 − 4c2.
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a. Find the change-of-coordinates matrix from B to C.

b. Find [x]C for x = −3b1 + 2b2

Solution:

a. The change-of-coordinates matrix is

PC←B =
(
[b1]C [b2]C

)
=

(
6 9
−2 −4

)

b. We note that [x]B =

(
−3
2

)
, then

[x]C = PC←B [x]B =

(
6 9
−2 −4

)(
−3
2

)
=

(
0
−2

)

Lay, 4.7.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Let B = {b1,b2} and C = {c1, c2} be bases for a vector space R2 with

b1 =

(
7
5

)
, b2 =

(
−3
−1

)
, c1 =

(
1
−5

)
, and c2 =

(
−2
2

)
. Find the change-of-

coordinates matrices from B to C and from C to B
Solution: The change-of-coordinates matrices from B and C to the standard
basis of R2 are given by

PE←B =
(
[b1]E [b2]E

)
=

(
7 −3
5 −1

)
PE←C =

(
[c1]E [c2]E

)
=

(
1 −2
−5 2

)
Now we note that for each one of the basis we have

[x]E = PE←B [x]B = PE←C [x]C ⇒ [x]C = P−1E←CPE←B [x]B

In this particular case

PC←B = P−1E←CPE←B =

(
1 −2
−5 2

)−1(
7 −3
5 −1

)
=

(
−3 1
−5 2

)
In the other direction

PB←C = P−1C←B =

(
−2 1
−5 3

)
Lay, 4.7.13
Carlos Oscar Sorzano, Dec. 16th, 2014

In P2 �nd the change-of-coordinates matrix from the basis B = {1 − 2t +
t2, 3 − 5t + 4t2, 2t + 3t2} to the standard basis C = {1, t, t2}. Then �nd the
B-coordinate vector for −1 + 2t.
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Solution: The matrix sought is the one whose columns are the coordinates in
the C coordinate system of the vectors in the basis B

PC←B =

 1 3 0
−2 −5 2
1 4 3


This matrix can be used to convert coordinates in B into coordinates in C

[x]C = PC←B[x]B

Conversely
[x]B = P−1C←B[x]C

In the case of the example of this problem

[x]B = P−1C←B

−1
2
0

 =

−23 −9 6
8 3 −2
−3 −1 1

−1
2
0

 =

 5
−2
1



Lay, 4.Suppl.4
Carlos Oscar Sorzano, Jan. 19th 2015

Explain what is wrong with the following discussion: Let f(t) = 3 + t and
g(t) = 3t + t2. Note that g(t) = tf(t). The set {f, g} is linearly dependent
because g is a multiple of f .
Solution: g is not a multiple of f . To be a multiple it should be g = kf .
Actually, g and f are linearly independent because their ratio is not constant

g

f
= t

Lay, 4.Suppl.9
Carlos Oscar Sorzano, Jan. 19th 2015

Let T : Rn → Rm be a linear transformation.

1. What is the dimension of Range{T} if T is a one-to-one mapping? Explain.

2. What is the dimension of Ker{T} if T maps Rn onto Rm? Explain.

Solution:

1. If T is a one-to-one mapping, it means that there are vectors in Rm that
do not come from any vector in Rn. So the dimension of Range{T} would
be at most m− 1. For being linear, we also know that Range{T} can be
at most n. So we have

dim{Range{T}} ≤ min(n,m)
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2. If T is surjective, it means that all vectors in Rm come at least from 1
vector in Rn. Since T is linear and the dimension of Range{T} can be at
most n, it means that

dim{Range{T}} = m ≤ n

The di�erence between n and m must be the dimension of the kernel of
T .

dim{Ker{T}} = n−m
Note that this dimension can be 0 if n = m.

Lay, 4 Suppl. 12

Show from parts (a) and (b) that rank(AB) cannot exceed the rank of A
and the rank of B. (In general, the rank of a product of matrices cannot exceed
the rank of any factor in the product.)

• Show that if B is n × p, then rank(AB) ≤ rank(A). [Hint : Explain why
every vector in the column space of AB is in the column space of A.]

• Show that if B is n × p, then rank(AB) ≤ rank(B). [Hint : Use part (a)
to study rank((AB)T ).]

Solution:

• Let bi be one of the columns of the matrix B. The product Abi is a linear
combination of the columns of A with the weights given by the elements
of the vector bi and, consequently, it belongs to the column space of the
matrix A. For the same reason, all columns of the product AB also belong
to the column space of the matrix A. The rank of a matrix is the dimension
of the column space of that matrix. Since all the columns of AB are in
the column space of A, the rank of AB cannot be larger than the rank of
A.

• (AB)T = BTAT . Applying the same reasoning as above the rank of
(AB)T cannot be larger than the rank of AT . On the other side, we
know that the rank of a matrix is equal to the rank of its transponse.
Consequently

Rank(AB) = Rank((AB)T ) ≤ Rank(AT ) = Rank(A)

Lay, 4 Suppl. 13

Show that if P is an invertible m×m matrix, then Rank(PA) = Rank(A).
[Hint : Apply 4.Suppl. 12 to PA and P−1(PA).]
Solution: Applying 4.Suppl. 12 we have that

Rank(A) = Rank(P−1(PA)) ≤ Rank(PA) ≤ Rank(A)

That is

Rank(A) ≤ Rank(PA) ≤ Rank(A)⇒ Rank(PA) = Rank(A)
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5 Chapter 5

Lay, 5.1.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Is λ = 2 an eigenvalue of

(
3 2
3 8

)
? Why or why not?

Solution: To check whether λ = 2 is an eigenvalue or not, we test whether it
is a solution of the equation∣∣∣∣(3 2

3 8

)
− λI

∣∣∣∣ = 0⇒
∣∣∣∣(3 2

3 8

)
− 2

(
1 0
0 1

)∣∣∣∣ = 0⇒
∣∣∣∣ 1 2

3 6

∣∣∣∣ = 0⇒ 0 = 0

Since we have got an identity (0 = 0), λ = 2 is a solution of the eigenvalue
problem and it is an eigenvalue of the proposed matrix.
Lay, 5.1.2 Yolanda Manrique Marcos, Dec. 17th, 2013

Is λ = −3 an eigenvalue of

∣∣∣∣ −1 4
6 9

∣∣∣∣? Why or why not?

Solution: To check whether λ = −3 is an eigenvalue or not, we test whether it
is a solution of the equation∣∣∣∣( −1 4

6 9

)
− λI

∣∣∣∣ = 0⇔∣∣∣∣( −1 4
6 9

)
− (−3)

(
1 0
0 1

)∣∣∣∣ = 0⇔∣∣∣∣ 2 4
6 12

∣∣∣∣ = 0⇔
0 = 0

Since we have got an identity (0 = 0), λ = −3 is a solution of the eigenvalue
problem and it is an eigenvalue of the proposed matrix.

Lay, 5.1.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Is

(
1
3

)
an eigenvector of

(
1 −1
6 −4

)
? If so, �nd the eigenvalue.

Solution: To check whether

(
1
3

)
is an eigenvector or not, we test whether it

has the property

Av = λv(
1 −1
6 −4

)(
1
3

)
=

(
−2
−6

)
= −2

(
1
3

)

So,

(
1
3

)
is an eigenvector and its associated eigenvalue is −2.

Lay, 5.1.4
Ana Peña Gil, Jan. 19th 2014
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Is

(
−1
1

)
an eigenvector of

(
5 2
3 6

)
? If so, �nd its eigenvalue.

Solution: To check whether

(
−1
1

)
is an eigenvector or not, we test whether it

has the property

Av = λv(
5 2
3 6

)(
−1
1

)
=

(
−3
3

)
= 3

(
−1
1

)
So,

(
−1
1

)
is an eigenvector and its associated eigenvalue is 3.

Lay, 5.1.5
Marta Monsalve Buendía, Dic. 6th, 2014

Is

 3
−2
1

 an eigenvector of

−4 3 3
2 −3 −2
−1 0 −2

? If so, �nd the eigenvalue.

Solution: To check whether

 3
−2
1

 is an eigenvector or not, we test whether

it has the property

Av = λv−4 3 3
2 −3 −2
−1 0 −2

 3
−2
1

 =

−15
10
−5

 = −5

 3
−2
1


So,

 3
−2
1

 is an eigenvector and its associated eigenvalue is −5.

Lay, 5.1.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a basis for the eigenspace corresponding to each of the eigenvalues of

A =

(
3 0
2 1

)
, λ = 1, 3

Solution: We need to �nd the set of vectors such that for each eigenvalue they
meet

Av = λv⇒ (A− λI)v = 0

λ = 1

((
3 0
2 1

)
−
(

1 0
0 1

))
v = 0(

2 0
2 0

)
v = 0

The general solution of this homogeneous equation system is v =

(
0
x2

)
. This is

the eigenspace associated to the eigenvalue λ = 1 and one of its basis is {(0, 1)}.
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λ = 3

((
3 0
2 1

)
− 3

(
1 0
0 1

))
v = 0(

0 0
2 −2

)
v = 0

The general solution of this homogeneous equation system is v =

(
x2
x2

)
. This

is the eigenspace associated to the eigenvalue λ = 3 and one of its basis is
{(1, 1)}.
Lay, 5.1.17
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the eigenvalues of A =

0 0 0
0 3 4
0 0 −2

.
Solution: We solve for λ the equation

|A− λI| = 0∣∣∣∣∣∣
−λ 0 0

0 3− λ 4
0 0 −2− λ

∣∣∣∣∣∣ = −λ(3− λ)(−2− λ) = 0

whose roots are λ = 0, λ = 3, and λ = −2.
Lay, 5.1.18
Marta Monsalve Buendía, Dic. 6th, 2014

Find the eigenvalues of A =

 5 0 0
0 0 0
−1 0 3

.
Solution: We solve for λ the equation

|A− λI| = 0∣∣∣∣∣∣
5− λ 0 0

0 −λ 0
−1 0 3− λ

∣∣∣∣∣∣ = (5− λ)(−λ)(3− λ) = 0

whose roots are λ = 0, λ = 5, and λ = 3.
Lay, 5.1.19
Carlos Oscar Sorzano, Aug. 31st, 2013

For A =

1 2 3
1 2 3
1 2 3

, �nd one eigenvalue, with no calculation. Justify your

answer.
Solution: The determinant of A is zero because it has duplicated rows. On
the other hand, the determinant is the product of the matrix eigenvalues, so at
least one of the eigenvalues of A must be zero.
Lay, 5.1.20
Carlos Oscar Sorzano, Aug. 31st, 2013
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Without calculation, �nd one eigenvalue and two linearly independent vec-

tors of A =

2 2 2
2 2 2
2 2 2

. Justify your answer.

Solution: The determinant of A is zero because it has duplicated rows. On
the other hand, the determinant is the product of the matrix eigenvalues, so at
least one of the eigenvalues of A must be zero. The eigenspace associated to the
eigenvalue λ = 0 is the set of vectors satisfying Ax = 0. Since the three rows are
the same, we can eliminate the last two by subtracting the �rst one. To �nd the
eigenvectors we note that if we subtract the �rst column to the second column
we get a null vector (the corresponding eigenvector is (−1, 1, 0)). Similarly, if
we subtract the �rst column to the third column, we again get a null vector (a
second eigenvector is (−1, 0, 1)).
Lay, 5.1.21
Ana Sanmartin, Jan. 16th, 2015

Mark each statement as True or False.

• If Ax = λx for some vector x, then λ is an eigenvalue of A.

• A matrix A is not invertible if and only if 0 is an eigenvalue of A.

• A number c is an eigenvalue of A if and only if the equation (A−cI)x = 0
has a non trivial solution.

• Finding an eigenvector of A may be di�cult, but checking whether a given
vector is in fact an eigenvector is easy.

• To �nd the eigenvalues of A, reduce A to echelon form.

Solution:

• FALSE, this is true as long as the vector x is not the zero vector.

• TRUE, we need to prove it in both ways such that:

� If A is not invertible, then 0 is an eigenvalue. Proof: If we assume
that A is not invertible, then Ax = 0 does not have only the trivial
solution. So by the equation Ax = 0 = 0x we can obtain that by
de�nition, 0 is an eigenvalue.

� If 0 is an eigenvalue, then A is not invertible. Proof: if A were
invertible, by the invertible matrix theorem, there would only be the
trivial solution to the problem Ax = 0, that is x = 0. But the
eigenvector associated to the eigenvalue 0 is a non-zero vector that
ful�lls Ax = 0. Since the solution to the problem Ax = 0 is not
unique, A is not invertible.

• TRUE, we may rearrange (A − cI)x = 0 as Ax − cx = 0 or, what is the
same, Ax = cx. Since the �rst problem, (A − cI)x = 0 has a non-trivial
solution, so does the problem Ax = cx. But this is the de�nition of x
being an eigenvector associated to the eigenvalue c.
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• TRUE, to �nd an eigenvector of A we need to look for the eigenvalues of
A, and then solve an equation system. But for cheking is a given vector is
in fact an eigenvector, we just need to see if Ax is a scalar multiple of x.

• FALSE, by row reducing we make the matrix easier to participate in equa-
tion systems, but this operation changes the eigenvectors and eigenvalues.

Lay, 5.1.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Explain why a 2× 2 matrix can have at most two distinct eigenvalues. Ex-
plain why a n× n matrix can have at most n distinct eigenvalues.
Solution: The eigenvalue problem

|A− λI| = 0

implies �nding the roots of a polynomial of degree n (|A− λI). Since a polyno-
mial of degree n can have at most n distinct roots, then A can have at most n
distinct eigenvalues.
Lay, 5.1.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Let λ be an eigenvalue of an invertible matrix A. Show that λ−1 is an
eigenvalue of A−1. [Hint : suppose a non-zero x satis�es Ax = λx.]
Solution: Suppose

Ax = λx

Let's multiply on both sides by A−1

x = λA−1x
λ−1x = A−1x

So λ−1 is an eigenvalue of A−1 and x is its associated eigenvector. It is note-
worthy to see that x is an eigenvector of A and of A−1.
Lay, 5.1.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A2 is the zero matrix, then the only eigenvalue of A is 0.
Solution: Suppose λ is an eigenvalue of A

Ax = λx

Let's multiply on both sides by A

A2x = λAx
0 = λ(λx)
0 = λ2x

But x is non-zero (by the de�nition of eigenvector). Then, λ2 = 0 and this
implies that the only eigenvalue of A is 0.
Lay, 5.1.27
Carlos Oscar Sorzano, Aug. 31st, 2013
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Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of AT .
[Hint : Find out how A− λI and AT − λI are related.]
Solution: Let us calculate the transpose of the matrix A− λI

(A− λI)T = AT − λIT = AT − λI

Now, by Theorem 6c of Section 2.2, (A − λI)T is not invertible if and only
if A − λI is not invertible. If λ is one of the eigenvalues, then A − λI is not
invertible. So (A−λI)T = AT −λI is not invertible neither, and λ is one of the
eigenvalues of AT .
Lay, 5.1.29
Carlos Oscar Sorzano, Feb. 15th, 2014

Consider an n×n matrix A with the property that the row sums all equal the
same number s. Show that s is a eigenvalue of A. [Hint : Find an eigenvector.]
Solution: We will show that the vector v = (1, 1, ..., 1)T is an eigenvector of
A. The product Av is equal to

Av =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann




1
1
...
1

 =



n∑
j=1

a1j

n∑
j=1

a2j

...
n∑
j=1

anj


=


s
s
...
s

 = s


1
1
...
1



Lay, 5.2.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the characteristic equation and the real eigenvalues of the matrix A =(
2 7
7 2

)
.

Solution: The characteristic equation is |A− λI| = 0. In this particular case∣∣∣∣ 2− λ 7
7 2− λ

∣∣∣∣ = 0

(2− λ)2 − 49 = 0
4 + λ2 − 4λ− 49 = 0
λ2 − 4λ− 45 = 0

λ = 4±
√
16+4·45
2 = 4±14

2 =

{
9
−5

The two real eigenvalues are λ = 9 and λ = −5.
Lay, 5.2.2
Andrea Santos Cortés, Nov. 25th, 2014

Find the characteristic equation and the real eigenvalues of the matrix A =(
−4 −1
6 1

)
.

Solution: The characteristic equation is |A− λI| = 0. In this particular case
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∣∣∣∣ −4− λ −1
6 1− λ

∣∣∣∣ = 0

(−4− λ) · (1− λ) + 6 = 0
−4 + 4λ− λ+ λ2 + 6 = 0

λ2 + 3λ2 = 0

λ = −3±
√
9−4·2
2 = −3±1

2 =

{
−1
−2

The two real eigenvalues are λ = −1 and λ = −2.
Lay, 5.2.3
Andrea Santos Cortés, Nov. 25th, 2014

Find the characteristic equation and the real eigenvalues of the matrix A =(
−4 2
6 7

)
.

Solution: The characteristic equation is |A− λI| = 0. In this particular case∣∣∣∣ −4− λ 2
6 7− λ

∣∣∣∣ = 0

(−4− λ) · (7− λ)− 12 = 0
−28 + 4λ− 7λ+ λ2 − 12 = 0

λ2 − 3λ− 40 = 0

λ = 3±
√
9−4·−40
2 = −3±13

2 =

{
8
−5

The two real eigenvalues are λ = 8 and λ = −5.
Lay, 5.2.4
Andrea Santos Cortés, Nov. 25th, 2014

Find the characteristic equation and the real eigenvalues of the matrix A =(
8 2
3 3

)
.

Solution: The characteristic equation is |A− λI| = 0. In this particular case∣∣∣∣ 8− λ 2
3 3− λ

∣∣∣∣ = 0

(8− λ) · (3− λ)− 6 = 0
24− 8λ− 3λ+ λ2 − 6 = 0

λ2 − 11λ+ 18 = 0

λ = 11±
√
121−4·18
2 = 11±7

2 =

{
9
2

The two real eigenvalues are λ = 9 and λ = 2.
Lay, 5.2.5
Andrea Santos Cortés, Nov. 25th, 2014

Find the characteristic equation and the real eigenvalues of the matrix A =(
8 4
4 8

)
.

Solution: The characteristic equation is |A− λI| = 0. In this particular case∣∣∣∣ 8− λ 4
4 8− λ

∣∣∣∣ = 0
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(8− λ)2 − 16 = 0
64 + λ2 − 16λ− 16 = 0
λ2 − 16λ+ 48 = 0

λ = 16±
√
256−4·48
2 = 16±8

2 =

{
4

12

The two real eigenvalues are λ = 4 and λ = 12.
Lay, 5.2.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the characteristic equation and the real eigenvalues of the matrix A =4 0 −1
0 4 −1
1 0 2

.
Solution: The characteristic equation is |A− λI| = 0. In this particular case∣∣∣∣∣∣

4− λ 0 −1
0 4− λ −1
1 0 2− λ

∣∣∣∣∣∣ = 0

We calculate this determinant by expanding the factors and cofactors of the
second column. Disregarding the cofactors multiplied by a zero value, we have

(4− λ)

∣∣∣∣ 4− λ −1
1 2− λ

∣∣∣∣ = 0

(4− λ)((4− λ)(2− λ) + 1) = 0

Now, we factorize the term (4− λ)(2− λ) + 1

(4− λ)(2− λ) + 1 = (8 + λ2 − 6λ) + 1 = λ2 − 6λ+ 9 = (λ− 3)2

So the characteristic equation is

(4− λ)(λ− 3)2 = 0

whose solutions are λ = 4 and λ = 3 (with multiplicity 2).
Lay, 5.2.13
Ana Sanmartin, Jan. 16th, 2015

Find the characteristic polynomial using either a cofactor expansion or the

special formula of 3× 3 determinants of the matrix A =

 6 −2 0
−2 9 0
5 8 3

.
Solution: The characteristic polynomial is |A − λI| = 0. In this particular
case: ∣∣∣∣∣∣

6− λ −2 0
−2 9− λ 0

5 8 3− λ

∣∣∣∣∣∣ = 0

We calculate this determinant by expanding the factors and cofactors of the
third column. Disregarding the cofactors multiplied by a zero value we have

(3− λ)

∣∣∣∣ 6− λ −2
−2 9− λ

∣∣∣∣ = 0

(3− λ)((6− λ)(9− λ)− 4) = 0

Now we factorize the term (6− λ)(9− λ)− 4
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(6− λ)(9− λ)− 4 = (54− 15λ+ λ2)− 4 = 50− 15λ+ λ2 = (λ− 10)(λ− 5)

So the characteristic equation is

(3− λ)(λ− 10)(λ− 5) = 0

whose solutions are λ = 3, λ = 10 and λ = 5.
Lay, 5.2.18
Carlos Oscar Sorzano, Aug. 31st, 2013

It can be shown that the algebraic multiplicity of an eigenvalue λ is always
greater than or equal to the dimension of the eigenspace corresponding to λ.
Find h in the matrix A below such that the eigenspace of λ = 4 is two dimen-
sional.

A =


4 2 3 3
0 2 h 3
0 0 4 14
0 0 0 2


Solution: Let's calculate the eigenspace associated to the eigenvalue λ = 4.
For doing so we solve the homogenous equation (A − λI)x = 0 making use of
the augmented matrix below

0 2 3 3 0
0 −2 h 3 0
0 0 0 14 0
0 0 0 −2 0

 ∼


0 1 3
2 0 0

0 0 h+ 3 0 0
0 0 0 1 0
0 0 0 0 0


Note that we have not made the elements a13 = 0 and a23 = 1 because for doing
that we would need to perform the row operations

r1 ← r1 −
3
2

h+3r2
r2 ← 1

h+3r2

which are not allowed if h = −3. If h 6= −3, then the eigenspace is formed by
all the vectors of the form {x1, 0, 0, 0} whose dimension is 1. If h = −3, then
the eigenspace is formed by all the vectors of the form {x1,− 3

2x3, x3, 0} whose
dimension is 2.

Lay, 5.2.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an n×nmatrix, and suppose A has n real eigenvalues, λ1, λ2, ..., λn,
repeated according to multiplicities, so that

det{A− λI} = (λ1 − λ)(λ2 − λ)...(λn − λ)

Explain why det{A} is the product of the n eigenvalues of A. (This result is
true for any square matrix when complex eigenvalues are considered.)
Solution: Since the equation above is true for any value of λ, we simply take
λ = 0 to obtain

det{A} = λ1λ2...λn
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Lay, 5.2.20
Carlos Oscar Sorzano, Aug. 31st, 2013

Use a property of determinants to show that A and AT have the same char-
acteristic polynomial.
Solution: The characteristic polynomial of A is given by

det{A− λI}

For any matrix X, we know that det{X} = det{XT }, then

det{A− λI} = det{(A− λI)T } = det{AT − λIT } = det{AT − λI}

But this latter expression is the characteristic polynomial of AT .
Lay, 5.2.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A = QR with Q invertible, then A is similar to A1 = RQ.
Solution: We remind that the matrices A and B are similar if there exists
an invertible matrix P such that B = P−1AP (with A,B, P ∈ Mn×n). This
means that we need to �nd an invertible matrix P such that

A1 = P−1AP
RQ = P−1QRP

If we make P = Q, since Q is invertible, we have P−1 = Q−1 and

RQ = Q−1QRQ = RQ

So, we have proven that A and A1 are similar.
Lay, 5.2.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A and B are similar, then det{A} = det{B}.
Solution: If A and B are similar, then there exists an invertible matrix P such
that

B = P−1AP

Applying the determinant on both sides we have

det{B} = det{P−1AP} = det{P−1}det{A}det{P}
= 1

det{P} det{A}det{P} = det{A}

Lay, 5.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A = PDP−1 with P =

(
1 2
2 3

)
and D =

(
1 0
0 3

)
. Calculate A4.

Solution: If A = PDP−1, then
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A4 = PD4P−1

=

(
1 2
2 3

)(
14 0
0 34

)(
−3 2
2 −1

)
=

(
321 −160
480 −239

)
Lay, 5.3.3
Carlos Oscar Sorzano, Dec. 16th, 2014

Calculate Ak with

A =

(
a 0

2(a− b) b

)
=

(
1 0
2 1

)(
a 0
0 b

)(
1 0
−2 1

)
Solution: Since A = PDP−1 we can calculate Ak as

Ak = PDkP−1 =

(
1 0
2 1

)(
ak 0
0 bk

)(
1 0
−2 1

)
=

(
ak 0

2(ak − bk) bk

)
Lay, 5.3.17
Carlos Oscar Sorzano, June, 6th 2014

Diagonalize the matrix A =

2 0 0
2 2 0
2 2 2

.
Solution: The characteristic polynomial is

det(A− λI) = det

2− λ 0 0
2 2− λ 0
2 2 2− λ

 = (2− λ)3

whose only root is λ = 2 with multiplicity 3. We now analyze the eigenvectors
of the matrix A− 2I

(A− 2I)x =

0 0 0
2 0 0
2 2 0

x = 0

It can be easily seen that the corresponding eigenspace has x1 = x2 = 0, while

x3 is free. That is, x is of the form x =

 0
0
x3

. Consequently, the dimension

of this eigenspace is 1. But to be diagonalizable we need that the sum of the
dimensions of all eigenspaces is equal to the number of columns of the matrix
A (see Theorem 5.3.7), so we conclude that the matrix A is not diagonaliz-
able.
Lay, 5.3.23
Carlos Oscar Sorzano, Aug. 31st, 2013

A is a 5×5 matrix with two eigenvalues. One eigenspace is three-dimensional,
and the other eigenspace is two-dimensional. Is A diagonalizable? Why?
Solution: According to Theorem 6.3.7, if the sum of the dimensions of the
di�erent eigenspaces is equal to the number of columns of A, then A is diago-
nalizable. This is the case of the matrix A of the problem for which 3 + 2 = 5,
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and consequently A is diagonalizable.
Lay, 5.3.24
Carlos Oscar Sorzano, Aug. 31st, 2013

A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional.
Is A diagonalizable? Why?
Solution: According to Theorem 5.3.7b, a matrix is diagonalizable if and only
if the sum of the dimensions of all the eigenspaces is equal to the number of
rows and columns of the matrix A. Since in this case 1 + 1 = 2 6= 3, A is not
diagonalizable.
Lay, 5.3.26
Ana Sanmartin, Jan. 16th, 2015

A is a 7×7 matrix with three eigenvalues. One eigenspace is two-dimensional,
and one of the other eigenspaces is three-dimensional. Is it possible that A is
not diagonalizable? Justify your answer.
Solution: The matrix A will be diagonalizable if v1,v2 are two independent
eigenvectors for the �rst eigenvalue, w1,w2,w3 are three independent eigen-
vectors for the second eigenvalue, and p1,p2 are two independent eigenvectors
for the third eigenvalue. We have to diagonalize A, so we will write A such as
A = PDP−1. Let us de�ne

P =
(
v1 v2 w1 w2 w3 p1 p2

)
Then, A is diagonalizable if it can be written as

A = P



λ1 0 0 0 0 0 0
0 λ1 0 0 0 0 0
0 0 λ2 0 0 0 0
0 0 0 λ2 0 0 0
0 0 0 0 λ2 0 0
0 0 0 0 0 λ3 0
0 0 0 0 0 0 λ3


P−1

If A is diagonalizable, then P must be invertible, and for that p1 and p2 must
be linearly independent. If p1 and p2 are linearly dependent, then A is not
diagonalizable. In other words, A may be non-diagonalizable if the dimension
of the 3rd eigenspace is not 2.
Lay, 5.3.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A is both diagonalizable and invertible, then so is A−1

Solution: If A is diagonalizable, then there exist an invertible matrix P and a
diagonal matrix D such that

A = PDP−1

If A is invertible, then

A−1 = (PDP−1)−1 = (P−1)−1D−1P−1 = PD−1P−1

So, D is also invertible and we see that A−1 is also diagonalizable.
Lay, 5.3.28
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Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A has n linearly independent eigenvectors, then so does AT .
[Hint : Use the Diagonalization Theorem.]
Solution: The Diagonalization Theorem states that A is diagonalizable if and
only if it has n linearly independent eigenvectors, and that in that case, A can
be expressed as

A = PDP−1,

where the columns of P are the n linearly independent eigenvectors. Taking the
transpose in both sides, we have

AT = (PDP−1)T = (P−1)TDTPT = (PT )−1DTPT

So, AT is also diagonalizable and, by the Diagonalization Theorem again, it
must have n linearly independent eigenvectors.
Lay, 5.3.29
Carlos Oscar Sorzano, Aug. 31st, 2013

The diagonalization of a matrix is not unique. Given the following diago-
nalization of the matrix A

A = PDP−1(
7 2
−4 1

)
=

(
1 1
−1 −2

)(
5 0
0 3

)(
1 1
−1 −2

)−1
Now consider a new factorization of the form A = P1D1P

−1
1 withD1 =

(
3 0
0 5

)
.

Find the matrix P1.
Solution: P1 is simply the reorganization of the columns in P such that each
eigenvector is in the same column as its corresponding eigenvalue in D1

P1 =

(
1 1
−2 −1

)
Lay, 5.3.31
Carlos Oscar Sorzano, Aug. 31st, 2013

Construct a 2× 2 matrix that is invertible but not diagonalizable.
Solution: The matrix A below is such a matrix

A =

(
1 1
0 1

)
Its inverse is

A−1 =

(
1 −1
0 1

)
But it is not diagonalizable. Let's see why. Let's calculate the eigenspace
associated to λ = 1.

(A− I)v = 0(
0 1
0 0

)
v = 0
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whose set of solutions is formed by all vectors of the form v = (x1, 0) and its
basis is {(1, 0)}. Since the dimension of the eigenspace is 1 and there are 2
columns in A, by Theorem 6.3.7, the matrix is not diagonalizable.
Lay, 5.3.32
Carlos Oscar Sorzano, Aug. 31st, 2013

Construct a 2× 2 matrix that is diagonalizable but not invertible.

Solution: Consider P =

(
1 0
0 1

)
and D =

(
1 0
0 0

)
. Now let us construct the

matrix

A = PDP−1 =

(
1 0
0 0

)
It is obviously diagonalizable by construction, but it is not invertible because
one of its eigenvalues is 0, and D is not invertible.

Lay, 5.4.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let B = {b1,b2,b3} and D = {d1,d2} be bases for vector spaces V and W ,
respectively. Let T : V →W be a linear transformation with the property that

T (b1) = 3d1 − 5d2

T (b2) = −d1 + 6d2

T (b3) = 4d2

Find the matrix of T relative to B and D
Solution: The matrix sought is

M =
(
[T (b1)]D [T (b2)]D [T (b3)]D

)
=

(
3 −1 0
−5 6 4

)
We can apply it as

[T (x)]D = M [x]B

Lay, 5.4.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Let E = {e1, e2, e3} be the standard basis for R3, let B = {b1,b2,b3} be a
basis for a vector space V , and let T : R3 → V be a linear transformation with
the property that

T (x1, x2, x3) = (2x3 − x2)b1 − (2x2)b2 + (x1 + 3x3)b3

a. Compute T (e1), T (e2) and T (e3).

b. Compute [T (e1)]B, [T (e2)]B and [T (e3)]B.

c. Find the matrix for T relative to E and B

Solution:
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a. Applying the transformation T to the three standard vectors we get

T (e1) = T (1, 0, 0) = b3

T (e2) = T (0, 1, 0) = −b1 − 2b2

T (e3) = T (0, 0, 1) = 2b1 + 3b3

b. Let's calculate now the coordinates of the di�erent transformed vectors in B

[T (e1)]B = (0, 0, 1)
[T (e2)]B = (−1,−2, 0)
[T (e3)]B = (2, 0, 3)

c. The matrix sought is the one whose columns are the vectors in part b.

M =

0 −1 2
0 −2 0
1 0 3


Lay, 5.4.5
Carlos Oscar Sorzano, Aug. 31st, 2013

Let T : P2 → P3 be the transformation that maps a polynomial p(t) into the
polynomial (t+ 3)p(t).

a. Find the image of p(t) = 3− 2t+ t2

b. Show that T is a linear transformation

c. Find the matrix for T relative to the bases {1, t, t2} and {1, t, t2, t3}.

Solution:

a. T (3− 2t+ t2) = (t+ 3)(3− 2t+ t2) = 9− 3t+ t2 + t3

b. We need to show that T (p1(t)+p2(t)) = T (p1(t))+T (p2(t)) and T (c(p(t)) =
cT (p(t))

• T (p1(t) + p2(t)) = T (p1(t)) + T (p2(t))

T (p1(t) + p2(t)) = (t+ 3)(p1(t) + p2(t)) = (t+ 3)p1(t) + (t+ 3)p2(t)
= T (p1(t)) + T (p2(t))

• T (c(p(t)) = cT (p(t))

T (c(p(t)) = (t+ 3)(cp(t)) = c(t+ 3)p(t) = c((t+ 3)p(t)) = cT (p(t))

c. We need to calculate the transformation of each of the elements in the basis
{1, t, t2}

T (1) = (t+ 3)1 = t+ 3
T (t) = (t+ 3)t = t2 + 3t
T (t2) = (t+ 3)t2 = t3 + 3t2
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The matrix sought is

M =


3 0 0
1 3 0
0 1 3
0 0 1


Lay, 5.4.9
Carlos Oscar Sorzano, Feb. 15th, 2014

De�ne T : P2 → R3 by T (p(t)) = (p(−1), p(0), p(1))T .

1. Find the image under T of p(t) = 5 + 3t.

2. Show that T is a linear transformation.

3. Find the matrix for T relative to the basis {1, t, t2} for P2 and the standard
basis of R3.

Solution:

1. T (5 + 3t) = (5 + 3 · (−1), 5 + 3 · 0, 5 + 3 · (1))T = (2, 5, 8)T

2. To show that T is a linear transformation we will show that

T (k1p1(t) + k2p2(t)) = k1T (p1(t)) + k2T (p2(t))
T (k1p1(t) + k2p2(t)) = ((k1p1 + k2p2)(−1), (k1p1 + k2p2)(0), (k1p1 + k2p2)(1))T

= (k1p1(−1) + k2p2(−1), k1p1(0) + k2p2(0), k1p1(1) + k2p2(1))T

= (k1p1(−1), k1p1(0), k1p1(1))T + (k2p2(−1), k2p2(0), k2p2(1))T

= k1(p1(−1), p1(0), p1(1))T + k2(p2(−1), p2(0), p2(1))T

= k1T (p1(t)) + k2T (p2(t))

3. Let us refer to {1, t, t2} as {p0(t), p1(t), p2(t)}. The required matrix is
given by

M =
(
T (p0(t)) T (p1(t)) T (p2(t))

)
=

p0(−1) p1(−1) p2(−1)
p0(0) p1(0) p2(0)
p0(1) p1(1) p2(1)

 =

1 −1 1
1 0 0
1 1 1


Lay, 5.4.13
Carlos Oscar Sorzano, Aug. 31st, 2013

De�ne T : R2 → R2 by T (x) = Ax with A =

(
0 1
−3 4

)
. Find a basis B for

R2 with the property [T ]B is diagonal.
Solution: Let's diagonalize A

A = PDP−1 =

(
0 1
−3 4

)
=(

−0.3162 −0.7071
−0.9487 −0.7071

)(
3 0
0 1

)(
−0.3162 −0.7071
−0.9487 −0.7071

)−1
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If we construct the basis B = {(−0.3162,−0.9487), (−0.7071,−0.7071)} is a
basis in which the matrix of T relative to B is

[T ]B =

(
3 0
0 1

)
Lay, 5.4.18
Carlos Oscar Sorzano, Aug. 31st, 2013

De�ne T : R3 → R3 by T (x) = Ax, where A is a 3×3 matrix with eigenvalues
5, 5 and -2. Does there exist a basis B for R3 such that the B-matrix of T is a
diagonal matrix? Discuss.
Solution: It depends on whether A is diagonalizable or not. Since A does
not have all its eigen values distinct, the condition is (see Theorem 5.3.7) that
the dimension of the eigenspace associated to eigenvalue 5 is 2, and that the
dimension of the eigenspace associated to eigenvalue -2 is 1.
Lay, 5.4.21
Carlos Oscar Sorzano, Dec. 16th, 2014

Show that if B is similar to A and C is similar to A, then B is similar to C.
Solution: If B and C are similar to A is because there exist two invertible
matrices PB and PC such that

B = P−1B APB

C = P−1C APC

From the second equation we see that

A = PCCP
−1
C

Substituting into the �rst one

B = P−1B PCCP
−1
C PB = (P−1C PB)−1C(P−1C PB)

From which it can be seen that B is similar to C because there exists an invert-
ible matrix P = P−1C PB such that B can be written as

B = P−1CP

Lay, 5.4.22
Carlos Oscar Sorzano, Aug. 31st, 2013

If A is diagonalizable and B is similar to A, then B is also diagonalizable.
Solution: If A is diagonalizable, there exist an invertible matrix P and a
diagonal matrix D such that

A = PDP−1

If B is similar to A, then there exists an invertible matrix Q such that

B = QAQ−1
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Combining both results we have

B = Q(PDP−1)Q−1 = (QP )D(P−1Q−1)

So B is also diagonalizable since it can be expressed as

B = P ′D(P ′)−1

being P ′ = QP an invertible matrix and D a diagonal matrix.
Lay, 5.4.23
Carlos Oscar Sorzano, Aug. 31st, 2013

If B = P−1AP and x is an eigenvector of A corresponding to an eigenvalue
λ, then P−1x is an eigenvector of B corresponding also to an eigenvalue λ.
Solution: Let's check whether the statement proposed by the problem is true
or not. If it is true, it means that

B(P−1x) = λ(P−1x)

According to the problem we have that B = P−1AP , so

B(P−1x) = (P−1AP )(P−1x) = P−1Ax

But by hypothesis x is an eigenvector of A corresponding to an eigenvalue λ,
that is Ax = λx. Consequently,

P−1Ax = P−1(λx) = λ(P−1x)

Finally, we have proven that, as stated by the problem,

B(P−1x) = λ(P−1x)

Lay, 5.4.25
Carlos Oscar Sorzano, Aug. 31st, 2013

The trace of a square matrix A is the sum of the diagonal entries in A and is
denoted as tr{A}. It can be veri�ed that tr{FG} = tr{GF} for any two n× n
matrices F and G. Show that if A and B are similar, then tr{A} = tr{B}.
Solution: If A and B are similar, then there exists an invertible matrix P such
that

B = PAP−1

Taking the trace of both sides

tr{B} = tr{PAP−1}
= tr{P (AP−1)} [by trace property]
= tr{(AP−1)P}
= tr{A(P−1P )}
= tr{A}

Lay, 5.4.26
Carlos Oscar Sorzano, Aug. 31st, 2013

It can be shown that the trace of a matrix equals the sum of its eigenvalues.
Verify this statement for the case when A is diagonalizable.
Solution: If A is diagonalizable, then A = PDP−1, that is D is similar to A.
Then, by Exercise 5.4.25
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tr{A} = tr{D} =
n∑
i=1

λi

Lay, 5.4.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Let V be Rn with a basis B = {b1,b2, ...,bn}; letW be Rn with the standard
basis, denoted here by E ; and consider the identity transformation I : V → W ,
I(x) = x. Find the matrix for I relative to B and E . What was this matrix
called in the context of coordinate systems (Section 4.4)?
Solution: The transformation matrix is given by

M =
(
[I(b1)]E [I(b2)]E ... [I(bn)]E

)
=

(
b1 b2 ... bn

)
This was the change of coordinates matrix in Section 4.4, denoted as PE←B.

Lay, 5.5.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let the matrix A =

(
1 −2
1 3

)
act on C2. Find the eigenvalues and a basis

for each of the eigenspace in C2.
Solution: The eigenvalues are the solutions of the characteristic equation

|A− λI| = 0∣∣∣∣ 1− λ −2
1 3− λ

∣∣∣∣ = (1− λ)(3− λ) + 2 = 0

To solve this equation we multiply the two monomials to get

|A− λI| = λ2 − 4λ+ 5 = 0⇒ λ = 2± i

The two eigenvalues are complex, and the characteristic polynomial can be
factorized as

|A− λI| = (λ− (2 + i))(λ− (2− i))

Let's �nd now a basis for each one of the eigenspaces.

λ = 2 + i
We need to solve the homogeneous equation system (A− λI)v = 0(

1− (2 + i) −2
1 3− (2 + i)

)
v = 0

We use the augmented matrix below(
−1− i −2 0

1 1− i 0

)
∼
(

1 1− i 0
0 0 0

)
All vectors in this eigenspace are of the form v = ((−1+ i)x2, x2) x2 ∈ R. One
of its bases is {(−1 + i, 1)}

λ = 2− i
We need to solve the homogeneous equation system (A− λI)v = 0
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(
1− (2− i) −2

1 3− (2− i)

)
v = 0

We use the augmented matrix below(
−1 + i −2 0

1 1 + i 0

)
∼
(

1 1 + i 0
0 0 0

)
All vectors in this eigenspace are of the form v = ((−1− i)x2, x2) x2 ∈ R. One
of its bases is {(−1− i, 1)}

In fact this is a general result, if λ and λ∗ are two complex conjugate eigen-
values, then their corresponding bases are also related by a complex conjugate
operation.
Lay, 5.5.3
Ignacio Sánchez López, Dec. 15th, 2014

Let the matrix A =

(
1 5
−2 3

)
act on C2. Find the eigenvalues and a basis

for each of the eigenspace in C2.
Solution: The eigenvalues are the solutions of the characteristic equation

|A− λI| = 0∣∣∣∣ 1− λ 5
−2 3− λ

∣∣∣∣ = (1− λ)(3− λ) + 10 = (λ− (2 + 3i))(λ− (2− 3i)) = 0

The two eigenvalues are complex. Let's �nd now a basis for each one of the
eigenspaces.

λ = 2 + 3i
We need to solve the homogeneous equation system (A− λI)v = 0(

1− (2 + 3i) 5
−2 3− (2 + 3i)

)
v = 0

We use the augmented matrix below(
−1− 3i 5 0
−2 1− 3i 0

)
∼
(

1 − 1
2 + 3

2 i 0
0 0 0

)
All vectors in this eigenspace are of the form v =

((
1
2 −

3
2 i
)
x2, x2

)
x2 ∈ C.

One of its bases is {(1− 3i, 2)}

λ = 2− 3i
For the second eigenvalue, we do not need to perform the same analysis because
the two eigenvalues are complex conjugate (because they come from a real-
valued matrix). Consequently, the two eigenspaces are also complex conjugates.
All vectors in this eigenspace are of the form v =

((
1
2 + 3

2 i
)
x2, x2

)
x2 ∈ R.

One of its bases is {(1 + 3i, 2)}.
Lay, 5.5.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Let the matrix A =

(√
3 −1

1
√

3

)
. Consider the transformation T : R2 → R2

de�ned as T (x) = Ax. T is the composition of a scaling and a rotation. Give
the scaling factor and the rotation angle.
Solution: The eigenvalues of A are
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|A− λI| = 0∣∣∣∣ √3− λ −1

1
√

3− λ

∣∣∣∣ = (
√

3− λ)2 + 1 = 0
√

3− λ = ±i
λ =
√

3± i = 2e±i30
◦

The scaling factor is 2 and the rotation angle 30◦ or -30◦(in fact looking only
at the eigenvalues we cannot determine the sign of the rotation). However We
note that

A =

(√
3 −1

1
√

3

)
=

(
2 0
0 2

)(
cos(30◦) − sin(30◦)
sin(30◦) cos(30◦)

)
So, the rotation angle is 30◦.
Lay, 5.5.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Let the matrix A =

(
1 −2
1 3

)
. Find an invertible matrix P and a matrix C

of the form

(
b −a
a b

)
such that A = PCP−1.

Solution: As in Exercise 5.5.1, the eigenvalues of A are λ = 2 ± i. A basis of
the eigenvalue λ = 2− i is {(−1− i), 1}. According to Theorem 5.5.9, λ = a− bi
and v is a basis of its eigenspace, we �nd the P and C matrices as

P =
(
Re{v} Im{v}

)
C =

(
a −b
b a

)
In this case,

P =

(
−1 −1
1 0

)
C =

(
2 −1
1 2

)
It can be easily veri�ed that

A =

(
1 −2
1 3

)
=

(
−1 −1
1 0

)(
2 −1
1 2

)(
−1 −1
1 0

)−1
Lay, 5.5.21
Carlos Oscar Sorzano, Feb. 15th, 2014

Let A =

(
0.5 −0.6
0.75 1.1

)
, whose eigenvalues are 0.8 ± 0.6i. The equation to

determine the eigenvectors associated to the eigenvalue 0.8− 0.6i are

A− (0.8− 0.6i)v = 0⇔ (−0.3 + 0.6i)x1 − 0.6x2 = 0
0.75x1 + (0.3 + 0.6i)x2 = 0

Solve the �rst equation above for x2 and from that produce the eigenvector
v = (2,−1 + 2i). Show that v is a (complex) multiple of v1 = (−2− 4i, 5).
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Solution:

x2 =
−0.3 + 0.6i

0.6
x1 =

(
−1

2
+ i

)
x1

The corresponding eigenvector is, therefore,

v =

(
x1
x2

)
=

(
x1(

− 1
2 + i

)
x1

)
For x1 = 2 we get

v =

(
2

−1 + 2i

)
Let k be such that v = kv1. That means(

2
−1 + 2i

)
=

(
(−2− 4i)k

5k

)
From where

2 = (−2− 4i)k
−1 + 2i = 5k

and

k =
−1 + 2i

5
= −1

5
+

2

5
i

We still need to prove that

2 = (−2− 4i)k

But this is actually the case because (−2−4i)
(
− 1

5 + 2
5 i
)

= 2. So v is a multiple
of v1 and the proportionality constant is − 1

5 + 2
5 i.

Lay, 5.5.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an n× n real matrix with the property that AT = A, let x be any
vector in Cn, and let q = (x∗)TAx. Show that q is a real number.
Solution: We need to show that q∗ = q.

q∗ = ((x∗)TAx)∗ [(AB)∗ = A∗B∗; (x∗)T = (xT )∗)]
= xTA∗x∗ [by hypothesis A is real]
= xTAx∗ [qT = q; (ABC)T = CTBTAT ]
= (x∗)TATx [by hypothesis AT = A]
= (x∗)TAx
= q

Lay, 5.5.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an n × n real matrix with the property that AT = A. Show that
if Ax = λx for some nonzero vector x ∈ Cn, then, in fact, λ is real and the real
part of x is an eigenvector of A. [Hint : Compute (x∗)TAx and use Exercise
5.5.23. Also, examine the real part of Ax.]
Solution: Let us calculate q = (x∗)TAx
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q = (x∗)TAx = (x∗)T (Ax) = (x∗)T (λx) = λ‖x‖2

Since ‖x‖2 is a real number and q is a real number, then λ is a real number.
Let us calculate the real part on both sides of the equation Ax = λx

Real{Ax} = Real{λx} [A and λ are real]
AReal{x} = λReal{x}

So Real{x} is an eigenvector of A.
Lay, 5.5.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be a real n × n matrix, and let x ∈ Cn. Show that Real{Ax} =
AReal{x} and Imag{Ax} = AImag{x}.
Solution: Consider

x = Real{x}+ iImag{x}

Multiplying on both sides by A on the left

Ax = A(Real{x}+ iImag{x})
= AReal{x}+ iAImag{x}

Now simply by taking the real and imaginary parts of Ax and taking into
account that A is a real matrix, we get the properties proposed:

Real{Ax} = AReal{x}
Imag{Ax} = AImag{x}

Lay, 5.5.26
Carlos Oscar Sorzano, Jan. 20th, 2014

Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi (b 6= 0)
and an associated eigenvector in v ∈ C2.

1. Show thatAReal{v} = aReal{v}+bImag{v} andAImag{v} = −bReal{v}+
aImag{v} (Hint: Write v = Real{v}+ iImag{v} and compute Av.)

2. Verify that if A is diagonalized as A = PCP−1, then AP = PC.

Solution:

1. Let us calculate Av

Av = λv
= (a− bi)Real{v}+ iImag{v}
= aReal{v}+ iaImag{v} − biReal{v}+ bImag{v}
= (aReal{v}+ bImag{v}) + i(aImag{v} − bReal{v})

(8)

2. It su�ces to multiply by P on the right to get

AP = (PCP−1)P = PC(P−1P ) = PC (9)
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Lay, 5.Suppl.2
Carlos Oscar Sorzano, Jan. 19th 2015

Show that if x is an eigenvector of the product AB and Bx 6= 0, then Bx is
an eigenvector of BA.
Solution: Let us calculate

BA(Bx) = B(AB)x

Since x is an eigenvector of AB it must be

ABx = λx

Consequently
BA(Bx) = Bλx = λ(Bx)

that means that Bx is eigenvector of BA and its eigenvalue is λ.
Strang, 6.2.28
Carlos Oscar Sorzano, Jan. 19th 2015

Heisenberg's uncertainty principle. In quantum mechanics the position
matrix P and the momentum matrix Q do not commute. In fact QP −PQ = I.
Then, we cannot have Px = 0 and at the same time Qx = 0 (unless x = 0).If
we know the position exactly, we could not also know the momentum exactly.
This is Heisenberg's uncertainty principle

‖Px‖
‖x‖

‖Qx‖
‖x‖

≥ 1

2

Assume that P = PT and Q = −QT . Then

xTx = xT (QP − PQ)x = xT (QP )x− xT (PQ)x

Use Schwarz inequality to show why

xTx ≤ 2‖Px‖‖Qx‖

or what is the same
‖Px‖
‖x‖

‖Qx‖
‖x‖

≥ 1

2

Solution: Let us rewrite

xT (QP )x = (xTQ)(Px) = (QTx)T (Px) = (−Qx)T (Px) = −〈Qx, Px〉

−xT (PQ)x = −(xTP )(Qx) = −(PTx)T (Qx) = −(Px)T (Qx) = −〈Px, Qx〉

Then
‖x‖2 = xT (QP )x− xT (PQ)x = −2 〈Qx, Px〉

from where

〈Qx, Px〉 = −1

2
‖x‖2
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Taking absolute values on both sides

| 〈Qx, Px〉 | = 1

2
‖x‖2

Schwarz inequality states that

1

2
‖x‖2 = | 〈Qx, Px〉 | ≤ ‖Qx‖‖Px‖

or what is the same
‖Px‖
‖x‖

‖Qx‖
‖x‖

≥ 1

2

6 Chapter 6

Lay, 6.1.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Let a =

(
8
−5

)
and b =

(
−2
−3

)
. Determine if both vectors are orthgonal.

Solution: a is orthogonal to b if their inner product is 0

a · b = 0
8 · (−2) + (−5) · (−3) = −16− 15 = −31 6= 0

So, they are not orthogonal.
Lay, 6.1.16
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u =

12
3
−5

 and v =

 2
−3
3

. Determine if both vectors are orthgonal.

Solution: u is orthogonal to v if their inner product is 0

u · v = 0
12 · (2) + (3) · (−3) + (−5) · (3) = 24− 9− 15 = 0

So, they are orthogonal.
Lay, 6.1.22
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u = (u1, u2, u3). Explain why u · u ≥ 0. When is u · u = 0?
Solution:

u · u = u21 + u22 + u23

Any real number squared is non-negative, and the sum of non-negative num-
bers is also non-negative. So, u · u ≥ 0. u · u = 0 if all its terms are 0, that is,
u1 = u2 = u3 = 0, or what is the same, if u = 0.
Lay, 6.1.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Verify the Parallelogram Law for vectors u and v in Rn:
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‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

Solution: We know that ‖x‖2 = x · x. In Rn the most standard inner product
is de�ned as

x · y = xTy

Then,

‖u + v‖2 + ‖u− v‖2 = (u + v)T (u + v) + (u− v)T (u− v)
= (‖u‖2 + ‖v‖2 + 2u · v) + (‖u‖2 + ‖v‖2 − 2u · v)
= 2‖u‖2 + 2‖v‖2

Lay, 6.1.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u =

 5
−6
7

, and let W the set of all x ∈ R3 such that u · x = 0. What

theorem of Chapter 4 can be used to show thatW is a subspace of R3? Describe
W in geometric language.
Solution: We may use Theorem 4.2.2 in which it is stated that the null space
of an m × n matrix is a subspace of Rn. We simply need to use the matrix
A = uT . Its null space is formed by all those vectors such that

Ax = uTx = u · x = 0

Geometrically, W is formed by the plane through the origin and perpendicular

to the vector u =

 5
−6
7

.
Lay, 6.1.27
Carlos Oscar Sorzano, Feb. 15th, 2014

Suppose a vector y is orthogonal to vectors u and v. Show that y is orthog-
onal to u + v.
Solution: If y is orthogonal to u and v, then y · u = 0 and y · v = 0. We now
calculate the dot product between y and u + v

y · (u + v) = y · u + y · v = 0 + 0 = 0

Lay, 6.1.28
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose y is orthogonal to u and v. Show that y is orthogonal to every w in
Span{u,v}. [Hint : An arbitrary w in Span{u,v} has the form w = c1u+ c2v.]
Solution: Let us calculate the inner product between y and w

y ·w = y · (c1u + c2v)
= c1y · u + c2y · v
= c1 · 0 + c2 · 0
= 0
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where we have made used of the fact that y is orthogonal to u and v, that is,
y · u = y · v = 0.
Lay, 6.1.30
Carlos Oscar Sorzano, Aug. 31st, 2013

LetW be a subspace of Rn, and letW⊥ be the set of all vectors ortohogonal
to W . Show that W⊥ is a subspace of Rn using the following steps:

a. Take z ∈ W⊥ and let u represent any vector in W . Then, z · u = 0. Take
any scalar c and show that cz is orthogonal to u. (Since u is any arbitrary
vector in W , this will show that cz is in W⊥.)

b. Take z1, z2 ∈ W⊥, and let u be any vector in W . Show that z1 + z2 is
orthogonal to u. What can you conclude about z1 + z2? Why?

c. Finish the proof that W⊥ is a subspace of Rn

Solution:

a. Let us calculate (cz) · u

(cz) · u = c(z · u) = c · 0 = 0

So cz is orthogonal to any vector u in W , and consequently cz belongs to
W⊥.

b. Let us calculate (z1 + z2) · u

(z1 + z2) · u = z1 · u + z2 · u = 0 + 0 = 0

So z1 + z2 is orthogonal to any vector u in W , and consequently z1 + z2
belongs to W⊥.

c. We still need to show that 0 ∈W⊥

0 · u = 0

So 0 ∈W⊥.

Lay, 6.2.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =

−1
4
3

, u2 =

5
2
1

, and u3 =

 3
−4
−7

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not
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u1 · u2 = 6
u1 · u3 = −40
u2 · u3 = 0

Only u2 is orthogonal to u3. The rest of vectors are not orthogonal to each
other, and consequently, the set S is not orthogonal.
Lay, 6.2.2
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =

 1
−2
1

, u2 =

0
1
2

, and u3 =

−5
−2
1

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 1 · 0 + (−2) · 1 + 1 · 2 = 0 + (−2) + 2 = 0
u1 · u3 = 1 · (−5) + (−2) · (−2) + 1 · 1 = (−5) + 4 + 1 = 0
u2 · u3 = 0 · (−5) + 1 · (−2) + 2 · 1 = 0 + (−2) + 2 = 0

All vectors are orthogonal to each other, and consequently, the set S is orthog-
onal.
Lay, 6.2.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =

 2
−7
−1

, u2 =

−6
−3
9

, and u3 =

 3
1
−1

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 2 · (−6) + (−7) · (−3) + (−1) · 9 = 0
u1 · u3 = 2 · 3 + (−7) · 1 + (−1) · (−1) = 0
u2 · u3 = (−6) · 3 + (−3) · 1 + 9 · (−1) = −30

u2 is not orthogonal to u3. Therefore, S is not orthogonal.
Lay, 6.2.4
Marta Monsalve Buendía,Dic. 13th, 2014

Let u1 =

 2
−5
−3

, u2 =

0
0
0

, and u3 =

 4
−2
6

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 0
u1 · u3 = −5
u2 · u3 = 0

u1 is not orthogonal to u3. The rest of vectors are orthogonal to each other,
and consequently, the set S is not orthogonal.
Lay, 6.2.5
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Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =


3
−2
1
3

, u2 =


−1
3
−3
4

, and u3 =


3
8
7
0

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 0
u1 · u3 = 2

u1 is not orthogonal to u3. Therefore, S is not orthogonal.
Lay, 6.2.6
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =


5
−4
0
3

, u2 =


−4
1
−3
8

, and u3 =


3
3
5
−1

. Is the set S = {u1,u2,u3}

orthogonal?
Solution: To check whether S is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 5 · (−4) + (−4) · 1 + 0 · (−3) + 3 · 8 = −20− 4 + 24 = 0
u1 · u3 = 5 · 3 + (−4) · 3 + 0 · 5 + 3 · (−1) = 15− 12− 3 = 0
u2 · u3 = (−4) · 3 + 1 · 3 + (−3) · 5 + 8 · (−1) = −12 + 3− 15− 8 = −32

u2 is not orthogonal to u3. Consequently, the set S is not orthogonal.
Lay, 6.2.9
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =

1
0
1

, u2 =

−1
4
1

, and u3 =

 2
1
−2

. Show that the set B =

{u1,u2,u3} is an orthogonal basis of R3. Let x =

 8
−4
−3

. Express x as a linear

combination of the ui's.
Solution: To check whether B is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 0
u1 · u3 = 0
u2 · u3 = 0

So, the set B is orthogonal. To express x as a linear combination of the ui's
we construct the matrix A =

(
u1 u2 u3

)
and solve the equation system

A[x]B = x1 −1 2
0 4 1
1 1 −2

 [x]B =

 8
−4
−3

⇒ [x]B =

1 −1 2
0 4 1
1 1 −2

−1 8
−4
−3

 =

 2.5
−1.5

2


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Lay, 6.2.10
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u1 =

 3
−3
0

, u2 =

 2
2
−1

, and u3 =

1
1
4

. Show that the set B =

{u1,u2,u3} is an orthogonal basis of R3. Let x =

 5
−3
1

. Express x as a linear

combination of the ui's.
Solution: To check whether B is orthogonal, we calculate all possible inner
products to check if they are 0 or not

u1 · u2 = 0
u1 · u3 = 0
u2 · u3 = 0

So, the set B is orthogonal. To express x as a linear combination of the ui's
we construct the matrix A =

(
u1 u2 u3

)
and solve the equation system

A[x]B = x 3 2 1
−3 2 1
0 −1 4

 [x]B =

 5
−3
1

⇒ [x]B =

 3 2 1
−3 2 1
0 −1 4

−1 5
−3
1

 =

 4
3
1
3
1
3


Lay, 6.2.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Let y = (3, 1) and u = (8, 6). Compute the distance from y to the line
through u and the origin.
Solution: Let's compute the �rst the projection of y onto u.

yu = y·u
u·uu = 30

100

(
8
6

)
=

(
2.4
1.8

)
The distance asked by the problem is the distance between y and yu:

d = ‖y − yu‖ =

∥∥∥∥(3
1

)
−
(

2.4
1.8

)∥∥∥∥ =

∥∥∥∥( 0.6
−0.8

)∥∥∥∥ = 1

Lay, 6.2.16
Carlos Oscar Sorzano, Aug. 31st, 2013

Let y = (−3, 9) and u = (1, 2). Compute the distance from y to the line
through u and the origin.
Solution: Let's compute the �rst the projection of y onto u.

yu = y·u
u·uu = 15

5

(
1
2

)
= 3

(
1
2

)
=

(
3
6

)
The distance asked by the problem is the distance between y and yu:
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d = ‖y − yu‖ =

∥∥∥∥(−3
9

)
−
(

3
6

)∥∥∥∥ =

∥∥∥∥(−6
3

)∥∥∥∥ =
√

(−6)2 + 32 =
√

45

Lay, 6.2.25
Carlos Oscar Sorzano, Aug. 31st, 2013

Prove the following theorem:
Let U ∈Mn×n be an orthonormal matrix and ∀x,y ∈ Rn, then

a. ‖Ux‖ = ‖x‖

b. (Ux) · (Uy) = x · y

c. (Ux) · (Uy) = 0⇔ x · y = 0

Solution: Let's prove �rst point b:

(Ux) · (Uy) = (Ux)T (Uy) = xTUTUy = xy = x · y

where we have made used that for any orthonormal matrix UTU = I.
Let's prove now point a:

‖Ux‖2 = (Ux) · (Ux) = x · x = ‖x‖2

Taking the square root

‖Ux‖ = ‖x‖

Finally, point c. From point b we know that (Ux) · (Uy) = x · y. So, it is
obvious that (Ux) · (Uy) = 0 i� x · y = 0.
Lay, 6.2.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose W is a subspace of Rn spanned by n non-zero orthogonal vectors.
Explain W = Rn.
Solution: A set of orthogonal vectors is always linearly independent (see The-
orem 6.2.4). We also know that any set of n linearly independent vectors is a
basis of Rn (see Theorem 4.5.12). So, the same set spans W and Rn, so both
sets are equal.
Lay, 6.2.27
Carlos Oscar Sorzano, Feb. 15th, 2014

Let U be a square matrix with orthonormal columns. Explain why U is
invertible.
Solution: If U has orthonormal columns, they are linearly independent (The-
orem 6.2.4) and its determinant must be di�erent from 0 (Theorem 6.2.6; since
UTU = I ⇒ |UTU | = |I| = 1 = |UT ||U | = |U |2 ⇒ |U | = ±1). Consequently,
the matrix U is invertible (Theorem 5.2.3).
Lay, 6.2.29
Carlos Oscar Sorzano, Aug. 31st, 2013

Let U and V be n×n orthogonal matrices. Explain why UV is an orthogonal
matrix.
Solution: Let's calculate (UV )−1
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(UV )−1 = V −1U−1 Properties of matrix inverse; U,V are invertible
= V TUT U and V are orthogonal matrices
= (UV )T Properties of matrix transpose

So, UV is invertible and its inverse is (UV )T .

Lay, 6.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

You may assume that {u1,u2,u3,u4} is an orthogonal basis of R4. Let
u1 = (0, 1,−4,−1), u2 = (3, 5, 1, 1), u3 = (1, 0, 1,−4), u4 = (5,−3,−1, 1). Let
x = (10,−8, 2, 0). Write x as the sum of two vectors, one in Span{u1,u2,u3}
and the other in Span{u4}.
Solution: We project x onto Span{u1,u2,u3}

x123 = x·u1

u1·u1
u1 + x·u2

u2·u2
u2 + x·u3

u3·u3
u3

= −16
18


0
1
−4
−1

+ −8
36


3
5
1
1

+ 12
18


1
0
1
−4

 =


0
−2
4
−2


x4 = x·u4

u4·u4
u4 = 72

36


5
−3
−1
1

 =


10
−6
−2
2


It can be easily veri�ed that x = x123 + x4.
Lay, 6.3.2
Carlos Oscar Sorzano, Aug. 31st, 2013

You may assume that {u1,u2,u3,u4} is an orthogonal basis of R4. Let
u1 = (1, 2, 1, 1), u2 = (−2, 1,−1, 1), u3 = (1, 1,−2,−1), u4 = (−1, 1, 1,−2).
Let v = (4, 5,−3, 3). Write v as the sum of two vectors, one in Span{u1} and
the other in Span{u2,u3,u4}.
Solution: We project v onto Span{u1} and then onto Span{u234}:

v1 = v·u1

u1·u1
u1 = 14

7


1
2
1
1

 =


2
4
2
2


v234 = v·u2

u2·u2
u2 + v·u3

u3·u3
u3 + v·u4

u4·u4
u4

= 3
7


−2
1
−1
1

+ 12
7


1
1
−2
−1

+ −8
7


−1
1
1
−2

 =


2
1
−5
1


It can be easily veri�ed that v = v1 + v234.
Lay, 6.3.5
Ignacio Sánchez López ,Dic. 15th, 2014

Verify that u1,u2 is an ortogonal set, and then �nd the ortogonal proyection

of y onto Span{u1,u2}. y =

−1
2
6

, u1 =

 3
−1
−2

, and u2 =

 1
−1
2

.
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Solution: To check if {u1,u2} is an ortogonal set we compute u1 ·u2 to seee if
its inner product is 0 or not.

u1 · u2 = 3 · 1 + (−1) · (−1) + 2 · (−2)

u1 is orthogonal to u2. Then we calculate the ortogonal proyection of y onto
W = Span{u1,u2}.

xW =
y · u1

u1 · u1
u1 +

y · u2

u2 · u2
u2 =

−17

14

 3
−1
−2

+
9

6

 1
−1
2

 =
1

7

−15
−2
38


Lay, 6.3.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Let W be the space spanned by u1 = (1, 3,−2) and u2 = (5, 1, 4) and let
y = (1, 3, 5). Write y as the sum of a vector in W and a vector orthogonal to
W .
Solution: We project y onto Span{u1,u2}

xW = x·u1

u1·u1
u1 + x·u2

u2·u2
u2

= 0
14

 1
3
−2

+ 28
42

5
1
4

 =

 10
3
2
3
8
3


To �nd the vector perpendicular to W , we simply calculate

xW⊥ = x− xW =

− 7
3

7
3
7
3


By construction, we have x = xW + xW⊥ .
Lay, 6.3.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Let y = (5,−9, 5), u1 = (−3,−5, 1) and u2 = (−3, 2, 1). Find the distance
from y = (5,−9, 5) to the plane in R3 spanned by u1 and u2.
Solution: We project y onto Span{u1,u2}

yW = x·u1

u1·u1
u1 + x·u2

u2·u2
u2

= 35
35

−3
−5
1

+ −28
14

−3
2
1

 =

 3
−9
1


To �nd the vector perpendicular to W , we simply calculate

yW⊥ = y − yW =

2
0
6


The required distance is simply the norm of this vector that is

√
40.

Lay, 6.3.22
Carlos Oscar Sorzano, June, 6th 2014

Matk each statement as true or false. Justify your answer.
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1. If W is a subspace of Rn and if v is in both W and W⊥, then v must be
the zero vector.

2. In the Orthogonal Decomposition Theorem (see Theorem 6.3.8), each term
of the formula

ŷ = y·u1

u1·u1
u1 + ...+

y·up
up·upup

is itself a projection of y onto a subspace of W .

3. If y = z1 +z2 where z1 is in a subspace W and z2 is in W
⊥, then z1 must

be the orthogonal projection of y onto W .

4. The best approximation to y by elements of a subspace W is given by the
vector y − ProjW {y}.

5. If an n × p matrix U has orthonormal columns, then UUTx = x for all
x ∈ Rn.

Solution:

1. True. 0 is the only vector that belongs simultaneously to W and W⊥.

2. True. The term y·u1

u1·u1
u1 is the orthogonal projection of y onto the vector

space spanned by u1. This latter space is a subspace of W (the space
spanned by the vectors v1, ..., vp).

3. True, because it is an orthogonal decomposition (z1 ⊥ v2) and accord-
ing to the Orthogonal Decomposition Theorem(see Theorem 6.3.8), this
decomposition is unique. Consequently, v1 must be the orthogonal pro-
jection of y onto W .

4. False. The best approximation is ProjW {y}. The proposed vector, y −
ProjW {y}, is called the residual: the part of y that cannot be explained
by W .

5. False. If U has orthonormal columns, then UUTx is the projection of
the vector x onto the subspace spanned by the columns of U . Unless x
is already in W , in general, x is di�erent from its projection onto W .
Consequently, in general, UUTx 6= x.

Lay, 6.3.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m×n matrix. Prove that every vector in x ∈ Rn can be written
in the form x = p + u, where p is in Row{A} and u is in Nul{A}. Also, show
that if the equation Ax = b is consistent, then there is a unique p in Row{A}
such that Ap = b.
Solution: First, we'll show that Row{A} and Nul{A} are orthogonal subspaces.
Let ai (i = 1, 2, ...,m) be the rows of matrix A. Any vector u in Nul{A} is such
that

Au = 0
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In particular, we may consider the multiplication of the i-th row of A and u

aTi u = 0⇒ ai · u = 0⇒ ai ⊥ u

Any vector p in Row{A} can be written as a linear combination of the rows
of A

p = c1a1 + c2a2 + ...+ cmam

Let's calculate the inner product between p and u

p · u = c1a1 · u + c2a2 · u + ...+ cmam · u = 0

So p ⊥ u for any p in Row{A} and any u in Nul{A}.
Since, both spaces are orthogonal to each other we may orthogonally project

x ∈ Rn onto Row{A} (obtaining p) and onto Nul{A} (obtaining u). By the Or-
thogonal Decomposition theorem we know that x can be uniquely decomposed
as a vector in Row{A} and a vector in (Row{A})⊥ = Nul{A}. This proves that
x = p + u.

For the second part of the problem, let us presume that there are two distinct
solutions p1 and p2 in Row{A} such that

Ap1 = b
Ap2 = b

Subtracting both equations we have

A(p1 − p2) = 0

That means that p1 − p2 is in Nul{A}. But at the same time it is in Row{A}
(because it is the linear combination of two vectors in Row{A} and Row{A} is
a vector space). The only vector that belongs both to Nul{A} and Row{A} is
the zero vector so

p1 − p2 = 0⇒ p1 = p2

which is a contradiction to our hypothesis that both solutions were distinct, and
therefore, there is a single solution p in Row{A} of the problem Ap = b.
Lay, 6.3.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Let W be a subspace of Rn with an orthogonal basis {w1,w2, ...,wp}, and
let {v1,v2, ...,vq} be an ortohogonal basis for W⊥.

a. Explain why {w1,w2, ...,wp,v1,v2, ...,vq} is an orthogonal set.

b. Explain why the set in part (a) spans Rn.

c. Show that dim{W}+ dim{W⊥} = n

Solution:

a. Since both sets {w1,w2, ...,wp} and {v1,v2, ...,vq} are orthogonal bases, all
products wi · wj = 0 = vi · vj (for i 6= j). We still need to show that the
products wi · vj = 0 for any i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q}. But this is
true since wi ∈W and vj ∈W⊥.
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b. SinceW andW⊥ are perpendicular spaces contained in Rn by the Orthogonal
Decomposition Theorem (Theorem 6.3.8) we have that any vector can be
decomposed as a sum of a vector in W and a vector in W⊥. But any vector
in W can be expressed as a linear combination of the wi vectors and any
vector in W⊥ can be expressed as a linear combination of the vi vectors. So
the combined set {w1,w2, ...,wp,v1,v2, ...,vq} can generate both parts of
the orthogonal decomposition, and consequently, can generate any vector in
Rn. In fact, since all the vectors in the set are orthogonal, the set is a basis
of Rn.

c. We know that dim{W} = p and dim{W⊥} = q. We need to show that
p+ q = n. But this is true since the set in part (a) has p+ q vectors, and we
have stated in part (b) that these p+ q vectors is a basis for Rn, so it must
have exactly n vectors.

Lay, 6.4.7
Carlos Oscar Sorzano, Aug. 31st, 2013

The set B = {x1,x2} = {(2,−5, 1), (4,−1, 2)} is a basis for a subspace W .
Use the Gram-Schmidt process to produce an orthogonal basis for W . Then,
normalize it to have an orthonormal basis.
Solution: In Gram-Schmidt process, the �rst vector is any of the vectors in
the basis, let's say

v1 = x1 =

 2
−5
1


The second vector is calculated as any other vector in the basis minus its pro-
jection onto the already explained subspace

v2 = x2 − ProjSpan{v1}{x2}
= x2 − x2·v1

v1·v1
v1

=

 4
−1
2

− 15
30

 2
−5
1

 =

3
3
2
3
2


The set {v1,v2} is an orthogonal basis of W . To produce an orthonormal basis,
we have to normalize each vector

u1 = v1

‖v1‖ = 1√
30

 2
−5
1


u2 = v2

‖v2‖ = 1√
27
2

3
3
2
3
2

 =
√

2
27

3
3
2
3
2


Lay, 6.4.13
Carlos Oscar Sorzano, Aug. 31st, 2013
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Let A =


5 9
1 7
−3 −5
1 5

 and Q =


5
6 − 1

6
1
6

5
6

− 3
6

1
6

1
6

3
6

. The columns of Q were ob-

tained by applying the Gram-Schmidt process to the columns of A. Find an
upper triangular matrix R such that A = QR.
Solution: Since Q is an orthogonal matrix, its inverse is its transpose QTQ = I.
Then, we simply multiply the decomposition A = QR byQT on the left to obtain

A = QR
QTA = R

R =

(
5
6

1
6 − 3

6
1
6

− 1
6

5
6

1
6

3
6

)
5 9
1 7
−3 −5
1 5

 =

(
6 12
0 6

)

Lay, 6.4.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose that A = QR where Q is m × n and R is n × n. Show that if the
columns of A are linearly independent, then R must be invertible. [Hint : Study
the equation Rx = 0 and use the fact that A = QR.]
Solution: Since Q is orthogonal and meets that QTQ = I we have

A = QR
QTA = R

Then, the equation Rx = 0 becomes

QTAx = 0

Multiplying both sides by Q we have

Ax = Q0 = 0

Since the columns of A are linearly independent, the only solution of this prob-
lem is x = 0 (see Equation 1.7.3) and, consequently, the only solution of Rx = 0
is also x = 0. But this implies, by the Invertible Matrix Theorem, that R is
invertible.
Lay, 6.4.20
Carlos Oscar Sorzano, Feb. 15th, 2014

Suppose A = QR where R is an invertible matrix. Show that A and Q have
the same column space. [Hint : Given y in Col{A}, show that y = Qx for some
x. Also, given y ∈ Col{Q}, show that y = Ax.]
Solution: Consider an arbitrary y in Col{A}, that is, there exists a vector b
such that

y = Ab = (QR)b = Q(Rb) = Qx

where x = Rb. That is y belongs to the column space of Q.
Alternatively, consider any y in Col{Q}, that is, there exists a vector b such

that
y = Qb
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Remind that A = QR. Since R is invertible, we can write AR−1 = Q. Conse-
quently, we can rewrite the equation above as

y = (AR−1)b = A(R−1b) = Ax

where x = R−1b. That is, y belongs to the column space of A.
Lay, 6.4.22
Carlos Oscar Sorzano, Aug. 31st, 2013

Let {u1, ...,up} be an orthogonal basis for a subspace W of Rn, and let
T : Rn → Rn be de�ned by T (x) = ProjW {x}. Show that T is a linear
transformation.
Solution: Since {u1,u2, ...,up} is an orthogonal basis of W , the projection
onto W can be calculated as

T (x) = ProjW {x} = x·u1

u1·u1
u1 + ...+

x·up
up·upup

To show that T is linear let us show that T (cx) = cT (x)

T (cx) = (cx)·u1

u1·u1
u1 + ...+

(cx)·up
up·up up

= c x·u1

u1·u1
u1 + ...+ c

x·up
up·upup

= c
(

x·u1

u1·u1
u1 + ...+

x·up
up·upup

)
= cT (x)

and that T (x1 + x2) = T (x1) + T (x2)

T (x1 + x2) = (x1+x2)·u1

u1·u1
u1 + ...+

(x1+x2)·up
up·up up

= x1·u1+x2·u1

u1·u1
u1 + ...+

x1·up+x2·up
up·up up

=
(

x1·u1

u1·u1
u1 + ...+

x1·up
up·upup

)
+
(

x2·u1

u1·u1
u1 + ...+

x2·up
up·upup

)
= T (x1) + T (x2)

Lay, 6.5.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a least-squares solution of Ax = b by constructing the normal equations

for x̂ and solving for it with A =

−1 2
2 −3
−1 3

 and b =

4
1
2

.
Solution: The normal equations are given by

ATAx̂ = ATb

In this particular case(
−1 2 −1
2 −3 3

)−1 2
2 −3
−1 3

 x̂ =

(
−1 2 −1
2 −3 3

)4
1
2


(

6 −11
−11 22

)
x̂ =

(
−4
11

)
x̂ =

(
6 −11
−11 22

)−1(−4
11

)
=

(
3
2

)
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Note that

Ax̂ =

1
0
3

 6=
4

1
2

 = b

The error vector is

ε = b− b̂ =

 3
1
−1


and its norm

σ2
ε = ‖ε‖ =

√
11

Lay, 6.5.2
Ignacio Sánchez López, Dec. 15th, 2014

Find a least-squares solution of Ax = b by constructing the normal equations

for x̂ and solving for it with A =

 2 1
−2 0
2 3

 and b =

−5
8
1

.
Solution: The normal equations are given by

ATAx̂ = ATb

In this particular case(
2 −2 2
1 0 3

) 2 1
−2 0
2 3

 x̂ =

(
2 −2 2
1 0 3

)−5
8
1


(

12 8
8 10

)
x̂ =

(
−24

8

)
x̂ =

(
12 8
8 10

)−1(−24
8

)
=

(
38/7
36/7

)
Lay, 6.5.9
Carlos Oscar Sorzano, Dec. 16th, 2014

Find the orthogonal projection of b = (4,−2,−3)T onto the column space

of A =

 1 5
3 1
−2 4

. Then, using this result �nd a least squares solution of the

problem Ax = b.
Solution: It can be seen that the two columns of A are orthogonal to each
other, so to project b onto the column space of A we simply calculate

b̂ = b·a1

‖a1‖2 a1 + b·a2

‖a2‖2 a2

= 4·1−2·3−3·(−2)
12+32+(−2)2

 1
3
−2

+ 4·5−2·1−3·4
52+12+42

5
1
4


= 4

14

 1
3
−2

+ 6
42

5
1
4

 =

1
1
0


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To solve the least-squares problem we need to solve the problem

Ax̂ = b̂

whose augmented matrix is 1 5 1
3 1 1
−2 4 0

 ∼
 1 0 2

7
0 1 1

7
0 0 0


So, the least-squares solution is

x̂ =
1

7

(
2
1

)

Lay, 6.5.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m×n matrix. Use the steps below to show that a vector x ∈ Rn
satis�es Ax = 0 if and only if ATAx = 0. This will show that Nul{A} =
Nul{ATA}.

a. Show that if Ax = 0, then ATAx = 0

b. Suppose ATAx = 0. Explain why xTATAx = 0, and use this to show that
Ax = 0

Solution:

a. Let us assume that

Ax = 0

Multiplying on the left by AT , we get

ATAx = AT0 = 0

b. Let us assume that

ATAx = 0

Multiplying both sides by xT , we get

xTATAx = xT0 = 0

But this means that the norm of Ax is null because

xTATAx = ‖Ax‖2 = 0

So Ax = 0.
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Lay, 6.5.20
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m × n matrix such that ATA is invertible. Show that the
columns of A are linerly independent. [Careful : You may not assume that A is
invertible; it may not even be square.]
Solution: By the Invertible Matrix Theorem (see Section 2.9), if ATA is in-
vertible, then Nul{ATA} = 0, that means that the only solution of the problem

ATAx = {0}

is the vector x = 0. In Exercise 6.5.19 we showed that Nul{ATA} = Nul{A},
so the only vector in Nul{A} = {0}, that is the only solution of the problem

Ax = 0

is x = 0, and consequently, the columns of A are linearly independent.
Lay, 6.5.21
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be an m×n matrix whose columns are linearly independent. [Careful :
A need not be square.]

a. Use Exercise 6.5.19 to show that ATA is an invertible matrix.

b. Explain why A must have at least as many rows as columns.

c. Determine the rank of A.

Solution:

1. If the columns of A are linearly independent, then the only solution of the
problem

Ax = 0

is x = 0, that is, Nul{A} = {0} and by Exercise 6.5.19, Nul{ATA} = {0}.
By the Invertible Matrix Theorem (see Section 2.9) this implies that ATA
is invertible.

2. A has at least as many rows as columns if m ≥ n. Note that ATA is of
size n× n and we need its rank to be n (so that it can be inverted). The
rank of a matrix meets:

Rank{ATA} = Rank{A} = Rank{AT } = Rank{AAT }

Note also that the rank of A is at most the minimum between m and n,
so if ATA is invertible, it must be m ≥ n because otherwise the rank of A
would be m < n and ATA would not be invertible.

3. See response to previous point, Rank{A} = n.
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Lay, 6.5.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Find a formula for the least-squares solution of Ax = b when the columns
of A are orthonormal.
Solution: The standard solution of the least-squares problem is

x̂ = (ATA)−1ATb

Consider the column decomposition of A and its implications in the computation
of ATA

A =
(
a1 a2 ... an

)
AT =


aT1
aT2
...
aTn


ATA =


aT1
aT2
...
aTn

(a1 a2 ... an
)

=


aT1 a1 aT1 a2 ... aT1 an
aT2 a1 aT2 a2 ... aT2 an
... ... ... ...

aTna1 aTna2 ... aTnan


Since the columns of A are orthonormal all products aTi aj with i 6= j are equal
to 0 and the products aTi ai are equal to 1. Thus, we have

ATA =


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1


Then (ATA)−1AT = AT . Finally, the least-squares solution is

x̂ = (ATA)−1ATb =


aT1
aT2
...
aTn

b =


aT1 b
aT2 b
...
aTnb


which is nothing more than the orthogonal projection of the vector b onto each
one of the orthonormal columns of A.

Lay, 6.6.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the equation y = β0 + β1x of the least-squares line, that better �ts the
points (0,1), (1,1), (2,2), (3,2).
Solution: We need to solve the overdetermined equation system

1 0
1 1
1 2
1 3

(β0β1
)

=


1
1
2
2


which is of the form Xβ = y. Its least-squares solution is
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β̂ = (XTX)−1XTy

that in this case is

β̂ =

(
0.9
0.4

)
That is, the least-squares line is de�ned as

y = 0.9 + 0.4x

Lay, 6.6.5
Carlos Oscar Sorzano, Aug. 31st, 2013

Let X be the design matrix used to �nd the least-squares line to �t data
(x1, y1), (x2, y2), ..., (xn, yn). Use a theorem in Section 6.5 to show that the
normal equations have a unique solution if and only if the data include at least
two points with di�erent x-coordinates.
Solution: Theorem 6.5.15 states that if the columns of A are linearly indepen-
dent, then A can be factorized as A = QR and the least-squares solution of the
problem Ax = b is unique and given by x̂ = R−1QTb.

If the data points do not have two di�erent x-coordinates, then the design
matrix of the least-squares will be of the form

A =


1 x1
1 x1
...
1 x1


It can be easily seen that its two columns are not linearly independent because
a2 = x1a1.

Lay, 6.6.9
Carlos Oscar Sorzano, Aug. 31st, 2013

A certain experiment produces the data (1,7.9), (2,5.4) and (3,-0.9). Describe
the model that produces a least-squares �t of these points by a function of the
form

y = A cos(x) +B sin(x)

Solution: For each one of the data points we have a linear equation

7.9 = A cos(1) +B sin(1)
5.4 = A cos(2) +B sin(2)
−0.9 = A cos(3) +B sin(3)

This can be rewritten in matrix form ascos(1) sin(1)
cos(2) sin(2)
cos(3) sin(3)

(A
B

)
=

 7.9
5.4
−0.9


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so we are back to the framework of least-squares �ttings and we can solve for A
and B by using the normal equations of the problem.

Lay, 6.6.19
Carlos Oscar Sorzano, Dec. 16th, 2014

Consider a design matrix X with two or more columns and a least-squares
solution β̂ of y = Xβ. Consider the following numbers:

• ‖Xβ̂‖2: the sum of the squares of the �regression term�. Denote this
number by SS(R).

• ‖y − Xβ̂‖2: the sum of the squares for the �error term�. Denote this
number by SS(E).

• ‖y‖2: the total sum of the squares of the y-values. Denote this number
by SS(T ).

To simplify matters, assume that the mean of the y-values is zero. In this case,
SS(T ) is proportial to what is called the variance of the set of y-values.

Justify the equation

SS(T ) = SS(R) + SS(E)

This equation is extremely important in Statistics, both in regression theory
and in analysis of variance.
Solution: The equation

SS(T ) = SS(R) + SS(E)

can be rewritten as
‖y‖2 = ‖Xβ̂‖2 + ‖y −Xβ̂‖2

This is the orthogonal decomposition of the vector y on its projection on the
column space of the matrix X (i.e., Xβ̂) and its residual (y − Xβ̂), which
is orthogonal to the column space of X. Thanks to the orthogonality of the
residual to the column space of X, the Pythagorean theorem applies. This
theorem is just

‖y‖2 = ‖Xβ̂‖2 + ‖y −Xβ̂‖2

that is, the SS equation proposed by the problem.

Lay, 6.7.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u = (u1, u2) and v = (v1, v2) be two vectors in R2. Let us de�ne the
inner product in R2 as

u · v = 4u1v1 + 5u2v2

Let x = (1, 1) and y = (5,−1).

a. Find ‖x‖, ‖y‖ and |x · y|2.

b. Describe all vectors that are orthogonal to y.
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Solution:

a. To �nd the required quantities we use their de�nition in terms of the dot
product

‖x‖ =
√
x · x =

√
(1, 1) · (1, 1) =

√
4 · 1 · 1 + 5 · 1 · 1 =

√
9

‖y‖ =
√
y · y =

√
(5,−1) · (5,−1) =

√
4 · 5 · 5 + 5 · (−1) · (−1) =

√
105

x · y = (1, 1) · (5,−1) = 4 · 1 · 5 + 5 · 1 · (−1) = 15
|x · y|2 = |15|2 = 225

b. Let w = (w1, w2) be an arbitrary vector in R2 orthogonal to y. It must ful�ll

w · y = 0
w · (5,−1) = 0

4w1(5) + 5w2(−1) = 0
w2 = 4w1

So, any vector w orthogonal to y according to the proposed inner product
must be of the form (w1, 4w1).

Lay, 6.7.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A by any invertible n × n matrix. Show that for u and v in Rn, the
formula 〈u,v〉 = (Au)T (Av) de�nes an inner product in Rn.
Solution: To show that the proposed operation is an inner product we need to
show all the properties below:

a. 〈u,v〉 = 〈v,u〉

〈u,v〉 = (Au)T (Av) [by de�nition]
= uTATAv
= (uTATAv)T the result of the inner product is a scalar
= vTATAu
= (Av)T (Au)
= 〈v,u〉

b. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

〈u + v,w〉 = (A(u + v))T (Aw) [by de�nition]
= (Au +Av)T (Aw)
= (uTAT + vTAT )(Aw)
= uTATAw + vTATAw
= (Au)T (Aw) + (Av)T (Aw)
= 〈u,w〉+ 〈v,w〉

c. 〈cu,v〉 = c 〈u,v〉

〈cu,v〉 = (A(cu))T (Av) [by de�nition]
= (cAu)T (Av)
= cuTATAv
= c(Au)T (Av)
= c 〈u,v〉
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d. 〈u,u〉 ≥ 0.

〈u,u〉 = (Au)T (Au) [by de�nition]
= ‖Au‖2 ≥ 0

e. 〈u,u〉 = 0 i� u = 0.

〈u,u〉 = 0⇒ ‖Au‖2 = 0⇒ Au = 0

According to the requirement of inner products, it must be that

Au = 0⇔ u = 0

This means that it must be Nul{A} = {0}. For an n × n matrix, this only
happens if and only if A is invertible (as stated by the problem; see the
Invertible Matrix Theorem).

Since the proposed inner product meets all the conditions, it is a true inner
product.

Lay, 6.7.16
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if S = {u,v} is an orthonormal set in V , then ‖u− v‖ =
√

2.
Solution: If S is orthonormal, then ‖u‖ = ‖v‖ = 1 and u · v = 0. Then,

‖u− v‖ =
√

(u− v) · (u− v)
=
√
u · u + v · v − 2u · v

=
√
‖u‖2 + ‖v‖2 − 2u · v

=
√

1 + 1− 2 · 0
=
√

2

Lay, 6.7.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that ‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.
Solution:

‖u + v‖2 + ‖u− v‖2 = (u + v) · (u + v) + (u− v) · (u− v)
=

(
‖u‖2 + ‖v‖2 + 2u · v

)
+
(
‖u‖2 + ‖v‖2 − 2u · v

)
= 2‖u‖2 + 2‖v‖2

Lay, 6.8.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the least-squares line y = β0 + β1x that best �ts the data (-2,0), (-
1,0), (0,2), (1,4), and (2,4), assuming that the �rst and last data point are less
reliable. Weight them half as much as the three interior points.
Solution: The Weighted Least Squares solves the normal equations of the
problem

WAβ = Wy
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being W the weight matrix, A the design matrix, β the unknown vector and y
the observed vector. In this case,

1
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2




1 −2
1 −1
1 0
1 1
1 2


(
β0
β1

)
=


1
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2




0
0
2
4
4


The normal equations of this problem are

(WA)TWAβ = (WA)TWy

and its solution

β̂ = ((WA)TWA)−1(WA)TWy

In this particular case,

β̂ =

(
2
3
2

)
That is, the WLS line is y = 2 + 3

2x that is represented below along with the
original data

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

6

x

y

Lay, 6.8.2
Carlos Oscar Sorzano, Dec. 16th, 2014

Suppose that 5 out of 25 measurements in a weighted least-squares problem
have a y-measurement that is less reliable than the others, and they have to
be weighted half as much as the other 20 points. One method is to weight the

20 points by a factor 1 and the other 5 by a factor
1

2
. A second method is to

weight the 20 points by a factor 2 and the other 5 by a factor 1. Do the two
methods produce di�erent results? Explain.
Solution: The two methods produce the same solution. To show why let us
callW1 to the weight matrix of the �rst method andW2 to the weight matrix of
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the second. We see that W2 = 2W1. The solution of the weighted least-squares
problem is the least-square solution of the equation system

WAx = Wy

In particular, for the second method

W2Ax = W2y

2W1Ax = 2W1y

W1Ax = W1y

That is, both methods are solving the same equation system.
Lay, 6.8.6
Carlos Oscar Sorzano, Aug. 31st, 2013

Let's de�ne the inner product in the set of all continuous functions within
the range [0, 2π] as

〈f(t), g(t)〉 =
2π∫
0

f(t)g(t)dt

Show that the functions sin(mt) and cos(nt) are orthogonal for all positive
integers m and n.
Solution: Let us solve �rst the inde�nite integral∫

sin(mt) cos(nt)dt = −n sin(mx) sin(nx)+m cos(mx) cos(nx)
m2−n2

Let us compute now the inner product

〈sin(mt), cos(nt)〉 =
2π∫
0

sin(mt) cos(nt)dt

= −n sin(mx) sin(nx)+m cos(mx) cos(nx)
m2−n2

∣∣∣2π
0

= −n sin(2πm) sin(2πn)+m cos(2πm) cos(2πn)
m2−n2 −

(
−n sin(0) sin(0)+m cos(0) cos(0)

m2−n2

)
= − m

m2−n2 −
(
− m
m2−n2

)
= 0

So the two functions sin(mt) and cos(nt) are orthogonal.

Lay, 6.8.8
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the third-order Fourier approximation to f(t) = t− 1 within the range
[0, 2π] with the inner product de�ned in Exercise 6.8.6.
Solution: The approximation we seek is of the form

f(t) ≈ 〈f(t),1〉‖1‖2 +
3∑

n=1

(
〈f(t),cos(nt)〉
‖ cos(nt)‖2 cos(nt) + 〈f(t),sin(nt)〉

‖ sin(nt)‖2 sin(nt)
)

Let us calculate the di�erent terms
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〈t− 1, 1〉 =
2π∫
0

(t− 1)dt = 2π(π − 1)

‖1‖2 =
2π∫
0

12dt = 2π

〈t− 1, cos(nt)〉 =
2π∫
0

(t− 1) cos(nt)dt = 0

〈t− 1, sin(nt)〉 =
2π∫
0

(t− 1) sin(nt)dt = − (π+1)
n

‖ sin(nt)‖2 =
2π∫
0

sin2(nt)dt = π

Gathering all together, we have

t− 1 ≈ 2π(π−1)
2π + −(π+1)

π sin(t) +
− (π+1)

2

π sin(2t) +
− (π+1)

3

π sin(3t)
= (π − 1)− π+1

π

(
sin(t) + 1

2 sin(2t) + 1
3 sin(3t)

)
We have both functions represented below

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

t

 

 

t−1
Third−order Fourier approximation

Lay, 6.8.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the third-order Fourier approximation to sin2(t) without performing
any integration calculations.
Solution: We know by trigonometric relationships that

sin2(t) = 1
2 −

1
2 cos(2t)

This is in fact the Fourier approximation of order 2, in this case, the approxi-
mation is exact.

Lay, 6.Suppl.4
Carlos Oscar Sorzano, Jan. 19th 2015

Let U be a n × n orthogonal matrix. Show that if {v1,v2, ...,vn} is an
orthogonal basis of Rn, then so is {Uv1, Uv2, ..., Uvn}
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Solution: Let us calculate the dot product between any two vectors in the
proposed set. Let us denote wi = Uvi.

〈wi,wj〉 = (wi)
T (wj) = (Uvi)

T (Uvj) = vTi U
TUvj

Since U is an orthogonal matrix, we have UTU = I and consequently

〈wi,wj〉 = vTi vj = 〈vi,vj〉

If the set {v1,v2, ...,vn} is an orthogonal basis of Rn, then so is {w1,w2, ...,wn}
because as shown in the previous equation any pair of distinct wi vectors are
orthogonal to each other.

7 Chapter 7

Lay, 7.1.1
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

(
3 5
5 −7

)
is symmetric.

Solution: A matrix A is symmetric if A = AT . So A is symmetric.
Lay, 7.1.2
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

(
−3 5
−5 3

)
is symmetric.

Solution: A matrix A is symmetric if A = AT . So A is not symmetric because
a12 6= a21.
Lay, 7.1.3
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

(
2 2
4 4

)
is symmetric.

Solution: A matrix A is symmetric if A = AT . So A is not symmetric because
a12 6= a21.
Lay, 7.1.4
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

0 8 3
8 0 −2
3 −2 0

 is symmetric.

Solution: A matrix A is symmetric if A = AT . So A is symmetric.
Lay, 7.1.5
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

−6 2 0
0 −6 2
0 0 −6

 is symmetric.

Solution: A matrix A is symmetric if A = AT . So A is not symmetric because
a12 6= a21 and a23 6= a32.
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Lay, 7.1.6
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine if the matrix A =

1 2 1 2
2 1 2 1
1 2 1 2

 is symmetric.

Solution: A matrix A is symmetric if A = AT . So one necessary condition to
be symmetric is that A is a square matrix. Since the matrix in the problem is
not square, it cannot be symmetric.

Lay, 7.1.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Determine if the matrix A =

(
0.6 0.8
0.8 −0.6

)
is orthogonal. If it is, �nd its

inverse.
Solution: A matrix A is orthogonal if all its columns are orthogonal to each
other and they are of unit norm. In this case

〈(0.6, 0.8), (0.8,−0.6)〉 = 0.6 · 0.8 + 0.8 · (−0.6) = 0
‖(0.6, 0.8)‖2 = 0.6 · 0.6 + 0.8 · 0.8 = 1

‖(0.8,−0.6)‖2 = 0.8 · 0.8 + (−0.6) · (−0.6) = 1

Since the two columns are orthogonal to each other, A is an orthogonal matrix.
The inverse of an orthogonal matrix is its transpose. In this case

A−1 = AT =

(
0.6 0.8
0.8 −0.6

)
Lay, 7.1.9
Marta Monsalve Buendía, Dic. 24th, 2014

Determine if the matrix A =

(
−5 2
2 5

)
is orthogonal. If it is, �nd its inverse.

Solution: A matrix A is orthogonal if all its columns are orthogonal to each
other and they are of unit norm. In this case

〈(−5, 2), (2, 5)〉 = (−5) · 2 + 2 · 5 = 0
‖(−5, 2)‖2 = (−5) · (−5) + 2 · 2 = 29
‖(2, 5)‖2 = 2 · 2 + 5 · 5 = 29

The two columns of A are orthogonal to each other but they are not unit norm
so A is not an orthogonal matrix.
Lay, 7.1.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Orthogonalize the matrix A =

(
3 1
1 3

)
giving a matrix P and a diagonal

matrix D.
Solution: Let's �nd �rst the eigenvalues of A

|A− λI| = 0∣∣∣∣ 3− λ 1
1 3− λ

∣∣∣∣ = (3− λ)2 − 1 = λ2 − 6λ+ 8 = (λ− 2)(λ− 4) = 0
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Let's �nd now the eigenvalues associated to each eigenspace
Eigenspace λ = 2
Let's solve the vector problem

(A− 2I)v = 0(
1 1
1 1

)
v = 0

whose solution are all vectors of the form v = (v1,−v1). In particular v1 =
( 1√

2
,− 1√

2
) is unit vector of this subspace.

Eigenspace λ = 4

(A− 4I)v = 0(
−1 1
1 −1

)
v = 0

whose solution are all vectors of the form v = (v1, v1). In particular v2 =
( 1√

2
, 1√

2
) is unit vector of this subspace.

The eigendecomposition of matrix A is, therefore,

A = PDP−1(
3 1
1 3

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
2 0
0 4

)( 1√
2
− 1√

2
1√
2

1√
2

)

Note that we can �nd an orthogonal matrix for P (and consequently P−1 = PT )
because A is a symmetric.

Lay, 7.1.17
Ana Sanmartin, Jan. 18th, 2015

Orthogonally diagonalize the matrix1 1 3
1 3 1
3 1 1


giving an orthogonal matrix P and a diagonal matrix D. The eigenvalues are:
5, 2, -2.
Solution: To orthogonally diagonalize a matrix, we follow the structure A =
PDPT being P orthogonal (P−1 = PT ). Firstly, we have to look for the
eigenvectors, following the formula

(A− λI)v = 0

λ = 5:

(A− 5I)v1 = 0⇒

−4 1 3
1 −2 1
3 1 −4

v1 =

1 0 −1
0 1 −1
0 0 0

v1 = 0⇒ v1 =


1√
3
1√
3
1√
3


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λ = 2:

(A− 2I)v2 = 0⇒

−1 1 3
1 1 1
3 1 −1

v2 =

1 0 −1
0 1 2
0 0 0

v2 = 0⇒ v2 =


1√
6

− 2√
6

1√
6


λ = −2:

(A+ 2I)v3 = 0⇒

3 1 3
1 5 1
3 1 3

v3 =

1 0 1
0 1 0
0 0 0

v3 = 0⇒ v3 =

− 1√
2

0
1√
2


Now, we can diagonalize A by setting the eigenvectors as the columns of the

matrix P and the corresponding eigenvalues in the diagonal of D:

A =


1√
3

1√
6
− 1√

2
1√
3
− 2√

6
0

1√
3

1√
6

1√
2


5 0 0

0 2 0
0 0 −2




1√
3

1√
3

1√
3

1√
6
− 2√

6
1√
6

− 1√
2

0 1√
2

 = PDPT

Lay, 7.1.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A =

3 1 1
1 3 1
1 1 3

 and u =

1
1
1

. Verify that 5 is an eigenvalue of A and

u is its eigenvector. Then, orthogonally diagonalize A.
Solution: Let's verify that u is an eigenvector of A

Au =

3 1 1
1 3 1
1 1 3

1
1
1

 =

5
5
5

 = 5

1
1
1


The other two vectors needed to orthogonally diagonalize A must be orthogonal
to u, let's call them v and w. They must meet

u · v = (1, 1, 1) · v = v1 + v2 + v3 = 0⇒ v3 = −v1 − v2
u ·w = (1, 1, 1) ·w = w1 + w2 + w3 = 0⇒ w3 = −w1 − w2

Additionally, they must be orthogonal to each other so

v ·w = (v1, v2,−v1−v2) ·(w1, w2,−w1−w2) = 2v1w1+2v2w2+v1w2+v2w1 = 0
2v1w1 + (2v2 + v1)w2 + v2w1 = 0

w2 = − 2v1w1+v2w1

2v2+v1

So the two vectors must be of the form

v = (v1, v2,−v1 − v2)
w = (w1,− 2v1w1+v2w1

2v2+v1
,−w1 + 2v1w1+v2w1

2v2+v1
)

Giving the values v1 = 1, v2 = 0, and w1 = 1, we get

v = (1, 0,−1)
w = (1,−2, 1)

The eigenvalue associated to these eigenvectors are 2 and 2 because
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Av =

3 1 1
1 3 1
1 1 3

 1
0
−1

 =

 2
0
−2

 = 2

 1
0
−1


Aw =

3 1 1
1 3 1
1 1 3

 1
−2
1

 =

 2
−4
2

 = 2

 1
−2
1


For an orthogonal diagonalization we need the vectors to be unitary so, we
normalize them

u′ = 1
‖u‖u = 1√

3
(1, 1, 1)

v′ = 1
‖v‖v = 1√

2
(1, 0,−1)

w′ = 1
‖w‖w = 1√

6
(1,−2, 1)

Finally, the orthogonal diagonalization of A is A = PDPT with

P =


1√
3

1√
2

1√
6

1√
3

0 − 2√
6

1√
3
− 1√

2
1√
6

 and D =

5 0 0
0 2 0
0 0 2


Lay, 7.1.27
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is a symmetric n × n matrix and B is any n ×m matrix. Show
that BTAB, BTB and BBT are symmetric matrices.
Solution: Let's calculate the transpose of each one of the matrices and show
that they are equal to the original matrices

(BTAB)T = BTAT (BT )T = BTAB
(BTB)T = BT (BT )T = BTB
(BBT )T = (BT )TBT = BBT

Lay, 7.1.29
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is invertible and orthogonally diagonalizable. Explain why A−1

is also orthogonally diagonalizable.
Solution: If A is orthogonally diagonalizable, then A = PDPT . Then,

A−1 = (PDPT )−1 = (PT )−1D−1P−1 = PD−1PT

So, A−1 is orthogonally diagonalizable.

Lay, 7.1.30
Carlos Oscar Sorzano, Feb. 15th, 2014

Suppose A and B are both orthogonally diagonalizable and AB = BA.
Explain why AB is orthogonally diagonalizable.
Solution: According to Theorem 7.1.2, a matrix is orthogonally diagonalizable
if and only if it is symmetric. So, matrices A and B are symmetric. Let us
compute (AB)T :

(AB)T = BTAT = BA
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But according to the problem statement BA = AB, so (AB)T = AB, that is,
AB is symmetric, and consequently orthogonally diagonalizable.
Lay, 7.1.31
Carlos Oscar Sorzano, Dec. 16th, 2014

Let A = PDP−1, where P is orthogonal and D is diagonal, and let λ be
an eigenvalue of multiplicity k. Then λ appears k times on the diagonal of D.
Explain why the dimension of the eigenspace for λ is k.
Solution: The diagonalization theorem (5.3.5) states that if A is diagonalizable,
and in this case it is, then the columns of P are linearly independent eigenvec-
tors of A, so P has exactly k eigenvectors corresponding to the eigenvalue λ.
These k eigenvectors form a basis of the eigenspace associated to λ.
Lay, 7.1.35
Carlos Oscar Sorzano, Aug. 31st, 2013

Let u be a unit vector in Rn, and let B = uuT .

a. Given any x ∈ Rn, compute Bx and show that Bx is the orthogonal projec-
tion of x onto u, as described in Section 6.2.

b. Show that B is a symmetric matrix and B2 = B.

c. Show that u is an eigenvector of B. What is the corresponding eigenvalue?

Solution:

a. The orthogonal projection of x onto u is de�ned as

Proju{x} = x·u
‖u‖2u

Since u is unitary, ‖u‖2 = 1, then

Proju{x} = (x · u)u [inner product is commutative]
= (u · x)u [by de�nition of inner product]
= (uTx)u [uTx is a scalar]
= u(uTx) [associativity of matrix multiplication]
= (uuT )x [B = uuT ]
= Bx

b. B is symmetric as shown in Exercise 7.1.27. Let's show now that B2 = B

B2 = (uuT )(uuT ) = u(uTu)uT

But uTu = 1 because u is unitary. Then,

B2 = uuT = B

The fact that B2 = B implies that projecting Proju{x} onto u (applying the
projection operation twice) has no e�ect.

c. Let's calculate the product Bu
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Bu = (uuT )u = u(uTu) = u

So, its eigenvalue is 1. The meaning of this latter property is that the or-
thogonal projection of u onto u is u itself.

Lay, 7.2.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Compute the quadratic form xTAx, when A =

(
5 1

3
1
3 1

)
and

a. x =

(
x1
x2

)

b. x =

(
6
1

)

c. x =

(
1
3

)
Solution:

a. We simply need to perform all the multiplications

Q(x) = xTAx

=
(
x1 x2

)(5 1
3

1
3 1

)(
x1
x2

)
=

(
x1 x2

)(5x1 + 1
3x2

1
3x1 + x2

)
= 5x21 + 2

3x1x2 + x22

b. We simply need to substitute x1 = 6 and x2 = 1 to obtain Q(6, 1) = 185.

c. Q(1, 3) = 16.

Lay, 7.2.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the matrix of the quadratic form. Assume x is in R2.

a. Q(x) = 10x21 − 6x1x2 − 3x22

b. Q(x) = 5x21 + 3x1x2

Solution: We look for the matrix A such that Q(x) = xTAx. It can be easily
veri�ed that the solution of this problem is

a. A =

(
10 −3
−3 −3

)

b. A =

(
5 3

2
3
2 0

)
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Lay, 7.2.5
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the matrix of the quadratic form. Assume x is in R3.

a. Q(x) = 8x21 + 7x22 − 3x23 − 6x1x2 + 4x1x3 − 2x2x3

b. Q(x) = 4x1x2 + 6x1x3 − 8x2x3

Solution: We look for the matrix A such that Q(x) = xTAx. It can be easily
veri�ed that the solution of this problem is

a. A =

 8 −3 2
−3 7 −1
2 −1 −3



b. A =

0 2 3
2 0 −4
3 −4 0


Lay, 7.2.6
Ignacio Sanchez Lopez, Dec. 29th, 2014

Find the matrix of the quadratic form. Assume x is in R3.

a. Q(x) = 5x21 − x22 + 7x23 + 5x1x2 − 3x1x3

b. Q(x) = x23 − 4x1x2 + 4x1x3

Solution: We look for the matrix A such that Q(x) = xTAx. It can be easily
veri�ed that the solution of this problem is

a. A =

 5 5/2 −3/2
5/2 −1 0
−3/2 0 7



b. A =

 0 −2 2
−2 0 0
2 0 1


Lay, 7.2.7
Carlos Oscar Sorzano, Aug. 31st, 2013

Make a change of variable, x = Py, that transforms the quadratic form
x21 +10x1x2 +x22 into a quadratic form with no cross-product term. Give P and
the new quadratic form.
Solution: If we orthogonally diagonalize the quadratic form, we obtain A =
PDPT

A =

(
1 5
5 1

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)(
6 0
0 −4

)( 1√
2
− 1√

2
1√
2

1√
2

)T
We need to do the change of variables
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x = Py⇒ y = PTx =

(
1√
2

1√
2

− 1√
2

1√
2

)(
x1
x2

)
=

(
1√
2
(x1 + x2)

1√
2
(−x1 + x2)

)
In this new set of variables, we have that the quadratic form is

Q(y) = yTDy = 6y21 − 4y22

Lay, 7.2.8
Ana Sanmartin, Jan. 18th, 2015

Let A be the matrix of the quadratic form 9x21 +7x22 +11x23−8x1x2 +8x1x3.
It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal
matrix P such that the change of variable x = Py transforms xTAx into a
quadratic form with no crossproduct term. Give P and the new quadratic form.
Solution: To �nd the matrix A, we have to know that the elements from the
main diagonal are the coe�cients going with x2i , and the ij-th entry is the half
of the coe�cient of xixj . So the matrix A is:

A =

 9 −4 4
−4 7 0
4 0 11


Now, we have to obtain the eigenvectors for each of the three eigenvalue of A.

v1 =

−2
−2
1

 corresponding to λ = 3

v2 =

−1
2
2

 corresponding to λ = 9

v3 =

 2
−1
2

 corresponding to λ = 15

Because eigenvectors from di�erent eigenvalues are orthogonal, the set {v1,v2,v3}
is an orthogonal set. We obtain the orthonormal set by dividing each vector by
its norm and putting them as columns of a matrix P

P =
1√
5

−2 −1 2
−2 2 −1
1 2 2


If we do the change of variable

x = Py⇒ y = PTx =
1√
5

−2 −2 1
−1 2 2
2 −1 2

x,

then the quadratic form can be expressed as

3y21 + 9y22 + 15y23

Lay, 7.2.19
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Carlos Oscar Sorzano, Aug. 31st, 2013

What is the largest possible value of the quadratic form 5x21 + 8x22 if x =
(x1, x2) and xTx = 1, that is, if x21 + x22 = 1? Try some examples of x.
Solution: The matrix associated to this quadratic form and its orthogonal
diagonalization is

A =

(
5 0
0 8

)
=

(
1 0
0 1

)(
5 0
0 8

)(
1 0
0 1

)T
The maximum value of the quadratic form in this constrained optimization
problem is equal to the value of the maximum eigenvalue, in this case 8, that is
achieved for x = (0, 1), the eigenvector associated to the maximum eigenvalue.
We show below the value of the quadratic form for a few values of x

Q(1, 0) = 5 · 12 + 8 · 02 = 5
Q( 1√

2
, 1√

2
) = 5 · ( 1√

2
)2 + 8 · ( 1√

2
)2 = 5

2 + 8
2 = 13

2

Q(0, 1) = 5 · 02 + 8 · 12 = 8

Lay, 7.2.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider the quadratic formQ(x) = xTAx when A =

(
a b
c d

)
and det{A} 6=

0. If λ1 and λ2 are the eigenvalues of A, then the characteristic polynomial of
A can be written in two ways: det{A− λI} and (λ− λ1)(λ− λ2). Use this fact
to show that λ1 + λ2 = a+ d (the diagonal entries of A) and λ1λ2 = det{A}.
Solution: We may express the characteristic polynomial as

P (λ) = det{A− λI} = det

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc
= λ2 − (a+ d)λ+ (ad− bc)
= λ2 − Trace{A}λ+ det{A}

P (λ) = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2

Identifying coe�cients we see that

Trace{A} = a+ d = λ1 + λ2
det{A} = ad− bc = λ1λ2

Lay, 7.2.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Consider the quadratic formQ(x) = xTAx when A =

(
a b
c d

)
and det{A} 6=

0. Verify the following statements:

a. Q is positive de�nite if det{A} > 0 and a+ d > 0.

b. Q is negative de�nite if det{A} > 0 and a+ d < 0.

c. Q is inde�nite if det{A} < 0.

186



Solution:

a. By de�nition, Q is positive de�nite if all its eigenvalues are positive. Accord-
ing to Exercise 7.2.23, det{A} = λ1λ2. Then det{A} = λ1λ2 > 0 implies
that either both eigenvalues are positive or both are negative. If a + d > 0,
then according to Exercise 7.2.23 λ1 + λ2 > 0, and both eigenvalues must be
positive.

b. By de�nition, Q is negative de�nite if all its eigenvalues are negative. As in
the previous point, det{A} = λ1λ2 > 0 implies that either both eigenvalues
are positive or both are negative. However, in this case, since a+d < 0, then
λ1 + λ2 < 0 and both eigenvalues are negative.

c. By de�nition, Q is inde�nite if it has positive and negative eigenvalues. If
det{A} = λ1λ2 < 0, then both eigenvalues have di�erent sign, and conse-
quently Q is inde�nite.

Lay, 7.2.26
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if an n × n matrix A is positive de�nite, then there exists a
positive de�nite matrix B such that A = BTB. [Hint : Write A = PDPT ,
with PT = P−1. Produce a diagonal matrix C such that D = CTC, and let
B = PCPT . Show that B works.]
Solution: If A is positive de�nite, then it is symmetric and it can be orthogo-
nally diagonalized as

A = PDPT

Since it is positive de�nite, all its eigenvalues are larger than 0. So the diagonal
matrix D has all its diagonal entries larger than 0. We now de�ne

C = D
1
2 =


λ

1
2
1 0 ... 0

0 λ
1
2
2 ... 0

... ... ... ...

0 0 ... λ
1
2
n


It can be easily veri�ed that

CTC = D

We now construct

B = PCPT

Let's check that BTB = A

BTB = (PCPT )TPCPT = (PT )TCTPTPCPT = PCTCPT = PDPT = A

Lay, 7.2.27
Carlos Oscar Sorzano, Aug. 31st, 2013
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Let A and B be symmetric n×n matrices whose eigenvalues are all positive.
Show that the eigenvalues of A+B are all positive. [Hint : Consider quadratic
forms.]
Solution: If A and B are symmetric matrices, then C = A + B is also sym-
metric. Consider now the quadratic form

QC(x) = xTCx = xT (A+B)x = xTAx + xTBx

We may de�ne the quadratic forms

QA(x) = xTAx
QB(x) = xTBx

So that QC(x) = QA(x)+QB(x). Since A and B are symmetric matrices, these
quadratic forms are well de�ned, and because all their eigenvalues are positive,
then QA and QB are positive de�nite quadratic forms. This means that for any
x ∈ Rn it is veri�ed that

QA(x) > 0
QB(x) > 0

Consequently, QC(x) > 0, that is QC is also positive de�nite and the eigenvalues
of C = A+B are all positive.

Lay, 7.3.1
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the change of variable x = Py that transforms the quadratic form
xTAx = yTDy as shown

5x21 + 6x22 + 7x23 + 4x1x2 − 4x2x3 = 9y21 + 6y22 + 3y23

Solution: Let A be

A =

5 2 0
2 6 −2
0 −2 7


We may orthogonally diagonalize it as

A = PDPT =

− 1
3

2
3 − 2

3
− 2

3
1
3

2
3

2
3

2
3

1
3

9 0 0
0 6 0
0 0 3

− 1
3

2
3 − 2

3
− 2

3
1
3

2
3

2
3

2
3

1
3

T

The required change of variable is x = Py with

P =

− 1
3

2
3 − 2

3
− 2

3
1
3

2
3

2
3

2
3

1
3


Lay, 7.3.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Let Q(x) = 5x21 + 6x22 + 7x23 + 4x1x2− 4x2x3 = 9y21 + 6y22 + 3y23 (see Exercise
7.3.1).
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a. Find the maximum value of Q(x) subject to the constraint xTx = 1.

b. Find a unit vector u where this maximum is attained.

c. Find the maximum of Q(x) subject to the constraints xTx = 1 and xTu = 0

Solution:

a. The maximum value of Q(x) subject to the constraint xTx = 1 is given by
the maximum eigenvalue (see Exercise 7.3.1), which is 9.

b. The unit vector u where this maximum is attained is given by the eigenvector
associated to this eigenvalue (see Exercise 7.3.1), that is, u = (− 1

3 ,−
2
3 ,

2
3 ).

c. The maximum of Q(x) subject to the constraints xTx = 1 and xTu = 0 is the
second eigenvalue of A, that is, 6. This value is attained for its corresponding
eigenvector, x = ( 2

3 ,
1
3 ,

2
3 )

Lay, 7.3.7

Let Q(x) = −2x21−x22 + 4x1x2 + 4x2x3. Find a unit vector x in R3 at which
Q(x) is maximized, subject to xTx = 1. [Hint: The eigenvalues of the matrix
of the quadratic form Q are 2,−1 and −4].
Solution: Firstly, we need to construct the matrix corresponding to the quadratic
form

A =

−2 2 0
2 −1 2
0 2 0


We should know that Q(x) will be maximized, with the constraint of being a
unit vector, with the value of the highest eigenvalue. Given the eigenvalues 2,−1
and −4, it is easy to say that the highest eigenvalue is 2. So we need to look for
the eigenvector that is attached to the eigenvalue 2. We get the corresponding
eigenvector solving the eigenvalue equation

(A− 2I)v =

−4 2 0
2 −3 2
0 0 0

v = 0⇒ v =
1

3

1
2
2


The maximum value of Q subject to xTx = 1 is obtained for x = v.
Lay, 7.3.9
Carlos Oscar Sorzano, Jan. 19th 2015

Find the maximum value of Q(x) = −3x21 + 5x2 − 2x1x2 subject to the
constraint x21 + x22 = 1. (Do not go on to �nd the a vector where the maximum
is attained.)
Solution: Let us express

Q(x) = xT
(
−3 −1
−1 5

)
x
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This is a quadratic form de�ned by a symmetric matrix. We know that its
maximum value subject to the constraint ‖x‖ = 1 is given by the maximum

eigenvalue of the matrix

(
−3 −1
−1 5

)
which is given by the determinant

det

(
−3− λ −1
−1 5− λ

)
= (−3−λ)(5−λ)− 1 = λ2− 2λ− 16 = 0⇒ λ = 1±

√
17

The largest eigenvalue is 1 +
√

17 and, consequently, the maximum sought is
1 +
√

17.
Lay, 7.3.12
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be a symmetric n×n matrix, let M and m denote the maximum and
minimum values of the quadratic form xTAx subtject to ‖x‖ = 1. Let λ be
any eigenvalue of A. Justify that m ≤ λ ≤ M . (Hint : Find an x such that
xTAx = λ.)
Solution: Thanks to the Principal Axes Theorem (Theorem 7.2.4) we know
that by diagonalizing matrix A = PDPT we can express the quadratic form
xTAx as

xTAx = yTDy = λ1y
2
1 + ...+ λny

2
n (10)

where we have made a change of variable x = Py. Let λ in the problem be the
i-th eigenvalue of A and consider a unitary vector with a single 1 at the i-th
positition (y = (0, 0, ..., 0, 1, 0, ..., 0)). It is obvious that

λ = xTAx = yTDy = λ102 + ...+λi−102 +λi1
2 +λi+102 + ...+λn02 = λi (11)

This result is attained for x = Py = ui, that is, the eigenvector associated to
the i-th eigenvalue.

Additionally, thanks to Theorem 7.3.6, we know that the quadratic form
xTAx is bounded between the minimum and maximum eigenvalue of A when x is
constrained to be unitary. Moreover, m = λmin and M = λmax. Consequently,
since λmin ≤ λ ≤ λmax, we have m ≤ λ ≤M .

Lay, 7.3.13
Carlos Oscar Sorzano, Aug. 31st, 2013

Let A be a symmetric n × n matrix, let M and m denote the maximum
and minimum values of the quadratic form xTAx, and denote corresponding
unit eigenvectors by u1 and un. The following calculations show that given
any number t between M and m, there is a unit vector x such that t = xTAx.
Verify that t = (1− α)m+ αM for some number α between 0 and 1. Then, let
x =
√

1− αun +
√
αu1, and show that xTx = 1 and xTAx = t.

Solution: Let us �rst show that any number t betweenm andM can be written
as

t = (1− α)m+ αM

with α ∈ [0, 1]. If α = 0, we get t = m. If α = 1, we get t = M . We see that
t = (1 − α)m + αM = m + α(M −m) is a linear (and, therefore, continuous)
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function of α. So for any value t between 0 and 1, there exists a value of α such
that t = (1− α)m+ αM .

Now, we construct

x =
√

1− αun +
√
αu1

Let's check that xTx = 1, for which we will exploit the fact that u1 and un are
unitary and orthogonal

xTx = (
√

1− αun +
√
αu1)T (

√
1− αun +

√
αu1)

= (
√

1− αuTn +
√
αuT1 )(

√
1− αun +

√
αu1)

= (1− α)uTnun + αuT1 u1 +
√

1− α
√
αuTnu1 +

√
1− α

√
αuT1 un

= (1− α) + α+ 0 + 0
= 1

Finally, we need to show that xTAx = t, remind that u1 is the eigenvector
associated to the eigenvalue M and that un is the eigenvector associated to
eigenvalue m:

xTAx = (
√

1− αun +
√
αu1)TA(

√
1− αun +

√
αu1)

= (
√

1− αuTn +
√
αuT1 )(

√
1− αAun +

√
αAu1)

= (
√

1− αuTn +
√
αuT1 )(m

√
1− αun +M

√
αu1)

= (m(1− α)uTnun +MαuT1 u1 +M
√

1− α
√
αuTnu1 +m

√
1− α

√
αuT1 un

= m(1− α) +Mα+ 0 + 0
= t

Lay, 7.4.3
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the singular values of the matrix A =

(√
6 1

0
√

6

)
Solution: We compute ATA

ATA =

(√
6 0

1
√

6

)(√
6 1

0
√

6

)
=

(
6
√

6√
6 7

)
whose eigenvalues are

λ1 = 9
λ2 = 4

The singular values of A are

σ1 =
√
λ1 = 3

σ2 =
√
λ2 = 2

Lay, 7.4.10
Carlos Oscar Sorzano, Dec. 16th, 2014

Find a SVD decomposition of the matrix A =

4 −2
2 −1
0 0

.
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Solution: Let us calculate ATA

AtA =

(
4 2 0
−2 −1 0

)4 −2
2 −1
0 0

 =

(
20 −10
−10 5

)
Its eigenvalues and associated eigenvectors are

λ1 = 25,v1 =
1√
5

(−2, 1)T

λ2 = 0,v2 =
1√
5

(1, 2)T

We now construct the V and Σ matrices:

V =
(
v1 v2

)
=

1√
5

(
−2 1
1 2

)

Σ =

√λ1 0
0

√
λ2

0 0

 =

5 0
0 0
0 0


Let us construct now the U matrix. For doing so, we calculate

u1 =
Av1

σ1
=

4 −2
2 −1
0 0

 1√
5

(
−2
1

)
5

=
1√
5

−2
−1
0


We need now to extend the basis. All vectors perpendicular to u1 ful�ll

u1 · u = 0 = − 2√
5
ux −

1√
5
uy + 0uz = 0⇒ uy = −2ux

That is, they are vectors of the form u =

 ux
−2ux
uz

 = ux

 1
−2
0

 + uz

0
0
1

. A
possible basis of this orthogonal space is

u2 =
1√
5

(1,−2, 0)T

u3 = (0, 0, 1)T

Note that u2 and u3 are orthogonal to each other. Finally, the matrix U sought
is

U =
(
u1 u2 u3

)
=

− 2√
5

1√
5

0

− 1√
5
− 2√

5
0

0 0 1


Finally, the SVD decomposition is

A = UΣV T =

− 2√
5

1√
5

0

− 1√
5
− 2√

5
0

0 0 1

5 0
0 0
0 0

(− 2√
5

1√
5

1√
5

2√
5

)T
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Lay, 7.4.11
Carlos Oscar Sorzano, Aug. 31st, 2013

Find the singular value decomposition of the matrix A =

−3 1
6 −2
6 −2


Solution: We compute ATA

ATA =

(
81 −27
−27 9

)
Its eigenvalues and eigenvectors are

λ1 = 90, v1 = (0.9487,−0.3162)
λ2 = 0, v2 = (0.3162, 0.9487)

We now construct the matrices V and Σ as

V =
(
v1 v2

)
=

(
0.9487 0.3162
−0.3162 0.9487

)
Σ =

√λ1 0
0

√
λ2

0 0

 =

9.4868 0
0 0
0 0


To construct the matrix U we calculate for the non-zero singular values

u1 = 1
σ1
Av1 = (− 1

3 ,
2
3 ,

2
3 )

We now need to extend the set {u1} to become a basis of R3. To do so, we add
the vectors

u2 = ( 2
3 ,−

1
3 ,

2
3 )

u3 = ( 2
3 ,

2
3 ,−

1
3 )

The matrix U is

U =
(
u1 u2 u3

)
=

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3


Finally, the SVD decomposition of A is

A = UΣV T−3 1
6 −2
6 −2

 =

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

9.4868 0
0 0
0 0

(0.9487 −0.3162
0.3162 0.9487

)

Lay, 7.4.15
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose the factorization below is an SVD of a matrix A, with the entries
U and V rounded to two decimal places.

A =

 0.40 −0.78 0.47
0.37 −0.33 −0.87
−0.84 −0.52 −0.16

7.10 0 0
0 3.10 0
0 0 0

0.30 −0.51 −0.81
0.76 0.64 −0.12
0.58 −0.58 0.58


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a. What is the rank of A?

b. Use the decomposition of A, with no calculations, to write a basis for Col{A}
and a basis for Nul{A}. [Hint : First write the columns of V .]

Solution: The factorization above is of the form A = UΣV T . A is a 3 × 3
matrix (n = 3).

a. Since A has only two non-zero singular values, its rank is 2.

b. V is

 0.30 0.76 0.58
−0.51 0.64 −0.58
−0.81 −0.12 0.58

. Since A is of rank 2, the �rst two columns

of U provide a basis for Col{A}

Basis{Col{A}} = {(0.40, 0.37,−0.84), (−0.78,−0.33,−0.52)}

Also, the last column (n− r = 3− 2 = 1) of V provides a basis for Nul{A}

Basis{Nul{A}} = {(0.58,−0.58, 0.58)}

Lay, 7.4.17
Carlos Oscar Sorzano, Aug. 31st, 2013

Suppose A is square and invertible. Find a Singular Value Decomposition
of A−1

Solution: Let A = UΣV T be a Singular Value Decomposition of the matrix
A. Since A is invertible, Σ is full rank. Since A is square, U and V are square
matrices, and they are always orthogonal matrices. So, we have

A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1 = V Σ−1UT

that is a Singular Value Decomposition of A−1.

Lay, 7.4.18
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A is square, then |det{A}| is the product of the singular values
of A.
Solution: Let A = UΣV T be a Singular Value Decomposition of the matrix A.
If A is square, then we may calculate its determinant and its absolute value as

|det{A}| = |det{UΣV T }| = |det{U} det{Σ}det{V T }| =
|det{U}||det{Σ}||det{V T }|

U and V are orthogonal matrices. This implies that their determinant is 1 or
-1. Then,

|det{A}| = |det{Σ}|

But Σ is a diagonal matrix, so its determinant is the product of its diagonal
entries, that are the singular values of A (which are all non-negative values)
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|det{A}| =
∣∣∣∣ n∏
i=1

Σii

∣∣∣∣ =
n∏
i=1

|Σii| =
n∏
i=1

σi

Lay, 7.4.19
Carlos Oscar Sorzano, Aug. 31st, 2013

Given a SVD decomposition of a matrix A, A = UΣV T , show that the
columns of V are eigenvectors of ATA, the columns of U are eigenvectors of
AAT , and the diagonal entries of Σ are the singular values of A. [Hint : Use the
SVD to compute ATA and AAT .]
Solution: Let us calculate ATA

ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV T = V (ΣTΣ)V T

But this is an eigendecomposition of ATA because V is an orthogonal matrix
V T = V −1 and ΣTΣ is a diagonal n× n matrix with r values σ2

i (being σi the
singular values of A and r the number of non-zero singular values of A) and
n−r zeros. By the Diagonalization Theorem (Theorem 5.3.5), we have that the
columns of V are the eigenvectors of A and the diagonal entries of ΣTΣ their
corresponding eigenvalues.

Since the eigenvalues of ATA are σ2
i , σi are the singular values of the matrix

A.
We can proceed analogously with AAT

AAT = (UΣV T )(UΣV T )T = UΣV TV ΣTUT = U(ΣΣT )UT

Similarly, the columns of U are the eigenvectors of the matrix AAT and ΣΣT is
an m×m diagonal matrix with the eigenvalues of AAT (r of them are non-zero
and m− r are zero).

Lay, 7.4.20
Carlos Oscar Sorzano, Aug. 31st, 2013

Show that if A is a positive de�nite matrix, then an orthogonal diagonaliza-
tion A = PDPT is a singular value decomposition of A.
Solution: Let us calculate ATA and consider the SVD A = UΣV T

ATA = (PDPT )T (PDPT ) = PDTPTPDPT = P (DTD)PT

Since A is positive de�nite DTD is a diagonal entry whose ii-th entry is λ2i . So

its singular value is σi =
√
λ2i = λi. That is, for an SVD, we have Σ = D.

By Exercise 7.4.19, we now that the columns of V are the eigenvectors of
ATA. Given the diagonalization ATA = P (DTD)PT and the Diagonalization
Theorem (Theorem 5.3.5), we see that the columns of P are the eigenvectors of
ATA. So, we can make V = P

Similarly, if we calculate AAT we have

AAT = (PDPT )(PDPT )T = PDPTPDTPT = P (DDT )PT

Again, this decomposition along with the Diagonalization Theorem show that
the columns of P are the eigenvectors of AAT and by Exercise 7.4.19, we can
make U = P .

Finally, the SVD decomposition of A becomes
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A = UΣV T = PDPT

Lay, 7.4.21
Carlos Oscar Sorzano, Jan. 20th, 2014

Show that if P is an orthogonalm×mmatrix, then PA has the same singular
values as A.
Solution: We know that the singular values of a matrix A are the square root
of the eigenvalues of the matrix ATA. The singular values of PA will be the
square root of the eigenvalues of the matrix

(PA)T (PA) = ATPTPA = ATA (12)

where we have made use of the fact that P is orthogonal and, consequently,
PTP = I.

Lay, 7.4.23
Carlos Oscar Sorzano, Aug. 31st, 2013

Given the Singular Value Decomposition theorem:

Let A ∈ Mm×n be a matrix with rank r. Then, there exists a matrix
Σ ∈ Mm×n whose diagonal entries are the �rst r singular values of A
sorted in descending order (σ1 ≥ σ2 ≥ ... ≥ σr > 0) and there exist
orthogonal matrices U ∈Mm×m and V ∈Mn×n such that

A = UΣV T

Let U =
(
u1 u2 ... um

)
and V =

(
v1 v2 ... vn

)
. Show that

A = σ1u1v
T
1 + σ2u2v

T
2 + ...+ σrurv

T
r

Solution: If we expand the SVD, we have

A = UΣV T

=
(
u1 u2 ... um

)


σ1 0 ... 0 0 ... 0
0 σ2 ... 0 0 ... 0
... ... ... ... ... ... ...
0 0 ... σr 0 ... 0
0 0 ... 0 0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 0 ... 0




vT1
vT2
...
vTn



=
(
σ1u1 σ2u2 ... σrur 0 ... 0

)
vT1
vT2
...
vTn


= σ1u1v

T
1 + σ2u2v

T
2 + ...+ σrurv

T
r

Lay, 7.4.24
Carlos Oscar Sorzano, Aug. 31st, 2013

Using the notation of Exercise 7.4.23, show that ATuj = σjvj .
Solution: Let's calculate �rst AT
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AT = (σ1u1v
T
1 + σ2u2v

T
2 + ...+ σrurv

T
r )T = σ1v1u

T
1 + σ2v2u

T
2 + ...+ σrvru

T
r

Now, we can easily calculate ATuj

ATuj =

(
r∑
i=1

σiviu
T
i

)
uj =

r∑
i=1

σiviu
T
i uj

Since the columns of U are orthogonal to each other all products uTi uj are 0 if
i 6= j and 1 if i = j. Then, the previous sum reduces to

ATuj = σjvj
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