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A little bit of history

Modern logic is based on precise calculus rules and was born in the middle of the

XIX® century with Gottfried Leibniz (1847), George Boole (1847), Augustus de
Morgan (1847) and Bertrand Russell (1910).

To know more about the history of logic visit

@ http://individual.utoronto.ca/pking/miscellaneous/
history-of-logic.pdf

@ http://en.wikipedia.org/wiki/History_of_logic
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Axioms, postulates and propositions

Axioms, postulates and propositions

Mathematical language has to be uniform (everybody must use it in the same
way) and univocal (i.e., without any kind of ambiguity). We start from some
initial statements called axioms, postulates and definitions. These elements are
not questioned, they are not true or false, they simply are, and they serve to build
a logical reasoning.

Axiom If A and B are equal to C, then A is equal to B.
Postulate For any two points, there is a unique straight line that joins them.

Definition A prime number is a natural number that can only be divided by 1
and itself.
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Propositions

Propositions

Based on axioms, postulates and definitions, we can construct propositions that
are statements that refer to already introduced objects. Propositions can be true
or false. They are named with capital letters A, B, C, ...

2+3 (is not a proposition)
A: 243=5 (is a true proposition)
B: 2+3=7 (is a false proposition)
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Construction of new propositions

We can construct new propositions using already existing ones and logical
operators

Bample
2+2=4 (true)
2+3=5 (true)
2+3=7 (false)
A'y B (true)
A o C (true)

moow>»

and quantifiers

A: Soeme numbers are prime (true)
B: All even numbers can be divided by 2 (true)
C: None of odd numbers can be divided by 2 (true)
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Ais true if Ais false, and A is false if A is true. I

3+2=5 (true)
—A=3+2#5 (false)
3+2=6 (false)
—C =342 # 6 (true)
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A (not A)

A double negation is a positive statement.

A: 3+2=5 (true)
B: A=3+2+#5 (false)
C: B=3+2=5 (true)

’

It is not true that John is not at home.

A: John is at home
B: A= Not (John is at home) = John is not at home
C: B = Not (John is not at home) = John is at home = A

If C is true, then A is true. Therefore, John is at home.
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A: 3+2=5 (true)
B: 24+2=4 (true)
C: AN B = 3+2=5 and 2+2=4 (true)
D: 3+2=6 (false)
E: DN B = 3+2=6 and 2+2=4 (false)
I 0. Mathematical method September 7, 2013 12 / 63



A N B (A and B)

The common language AND is sometimes equivalent to the mathematical AND

Triangle ABC and triangle A’'B'C’ are equilateral =
A: ABC is equilateral
B: A'B'C' is equilateral
C: AN B = Triangle ABC is equilateral AND Triangle A'B'C' is
equilateral

and sometimes not

Triangle ABC and triangle A’'B'C’ are similar =
A: ABC is similar

B: A'B'C' is similar
C: AN B = Triangle ABC is similar AND Triangle A'B’C’ is similar
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A U B (A or B; A and/or B)

15% discounts for customers having a student card or university card. Of course,
people with both cards have a 15% discount. Inclusive OR.

Truth table Properties
B | AUB AUB:BUAI

477>
o B B |
e e e i

v

3+2=5 (true)
2-+2=4 (true)
AU B = 3+2=5 or 2+2=4 (true)
3+2=6 (false)
DU B = 3+2=6 or 2+2=4 (true)

moow>

v
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A @ B (either A or B; A xor B (eXclusive or))

We'll go to Paris or Berlin. Either Paris or Berlin, we cannot go to both places at
the same time. Exclusive OR.

Truth table Properties
| Ao B A@B:B@Al

— 47>
o

A: a<h
B: a=5
C: ApB=a<5h

If a =3, then Cis true. If a = 6, then C is false.
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Negation of and

ANB=AUB

This is one of Morgan's laws.
A B|AnB|ANB| A B|AUB
F F F T T T T
F T F T T F T
T F F T F T T
T T| T F ||[F F| F

A: It rained on Monday

B: It rained on Tuesday

C: AN B = It is not true that it rained on both days = Either it did
not rain on Monday or it did not rain on Tuesday.
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Negation of or

Inclusive OR: AUB=ANB
This is another Morgan's law.

A B|AuB|AUB||A B|ANnB

F F| F T [T T T

F T T F ||[T F| F

T F| T F F T| F

T T| T F ||[F F| F

Exclusive OR: A® B= (AN B)U (AN B)

A B|AeB|A&B||A B|AnB ANnB|(AnB)U(ANB)
F F F T T T| F F T
F T T F | T F| T F F
T F| T F |F T| F T F
T T| F T |F F| F F T
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o A implies B

o A is sufficient for B
@ A guarantees B

@ B is necessary for A
o If A, then B

o If not B, then not A




A = B (A implies B)

In natural language “If ..., then ..." is not used in the mathematical sense.

If it rains, I'll stay at home.

If he is at home, is it raining?
We don’t know, he didn’t say what he would do if it was not raining.

I'm going to the bank. If it is open, I'll bring 1000 euros.

If he is back with 1000 euros, is the bank open?
We don’t know, maybe a very good friend of his gave him 1000 euros.
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A = B (If not B, then not A)

I'm going to the bank. If it is open, I'll bring 1000 euros.

If I'm back without 1000 euros, is the bank open?
No, let’s see why

A: Bank is open
B: | bring 1000 euros

B | A= B | Why

The bank was closed

A friend gave me

| lied

| withdrew 1000 euros from bank

— < x>
— 7T
e e

There is only one situation in which my statement is true (I did not lie) and in
which | do not bring 1000 euros (B is false) that is when the bank is closed (A is
also false).

4

0. Mathematical method September 7, 2013 20/ 63



We can generally formulate this analysis as

A=B=B=A
A B|A=B| B A|B=A
FF[ T T T T
F T| T F T T
T F F T F F
T T| T F F| T



A = B (Not (A and not B))

Another interesting property

Properties
A= B=ANB
A= B=ANB

The proof of these properties is left to the reader.

I'm going to the bank. If it is open, I'll bring 1000 euros.
It is equivalent to:

It will not be the case that (the bank is open (A) and | don’t bring 1000
euros (not B)).
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A& B= (A= B)N(B= A)

In plain language, we say:
A is necessary and sufficient for B
B is necessary and sufficient for A
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Qualifiers

There might be a person that reads all newspapers every day.
Every day, there might be a person that reads all newspapers.
Every one reads a newspaper every day.

Every day, there is a newspaper that everybody reads. |
We say that the limit of the function f(x) when x goes to X is y if and only if for
all positive numbers (€), there exists another positive number (0) such that if

the distance between x and xp is smaller than ¢, then the distance between f(x)
and y is smaller than e.

lim f(x) =y & Ve>036>0]| |x —xo| <= |f(x) —y|<e

X—rXp
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V (for all), 3 (exists) and 3! (exists only one)

For all x in P

For any x in P

For each x with the property P

There exists at least one x in P

For at least one x in P

There exists at least one x with the property P
There exists exactly one x in P

Vx,x € P;Vx e P
Vx,x € P;Vx e P
Vx, P(x)

dx,x € P; dx € P
dx,x € P; dx € P
Ix, P(x)

dix,x € P; Alx € P

For all real numbers

For all real numbers smaller than 4
There exists at least one real number
There exists at least one real number greater than 2 | Ix € R, x > 2

There exists a single real number such that ...

Vx € R
Vx e R, x < 4
dx € R

AxeR| ...
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| (such that, it is verified, verifying)

There must be people that read all newspapers everyday. Let P be the set
of all persons, let N be the set of all newspapers, and let D be the set of all days.
Then, the previous sentence is formalized as

dp € P|Vd € D|Vn € N| p reads n on d.

Literal reading: There exist at least one person such that for all days and for all
newspapers it is verified that p reads n on d.

Every day, there must be someone that reads all newspapers.

Vd € D|3p € P|Vn € N| p reads n on d.

Literal reading: For all days it is verified that there exists at least one person
verifying that for all newspapers it is verified that p reads n on d.
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| (such that, it is verified, verifying)

lim f(x) =y & Ve>030>0]| [x—x| <d=|f(x)—y|<e

X—rXp

Literal reading: the limit of f(x) when x goes to xp is y if and only if for any e
greater than 0, there exists 4 greater than 0 such that if [x — xo| < J is true, then
|f(x) — y| < €is also true.

Fermat-Wiles Theorem:

Vn € Z,n>2¥(x,y,z) €ER3 x" +y" = 2"|xyz = 0

Literal reading: For all integer numbers it is verified that for any real numbers x,
y z with the property x" 4+ y" = z" it is verified that at least one of the three
numbers is 0.
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Negation of qualifiers

Let's say we state that all elements in a given set S has a certain property (
Vx € S|P(x)). The negation of this statement is that there exists at least one
element of S that does not have that property (3x € S|P(x)).

Similarly, if we state that there exists at least one element in a given set S that
has a certain property ( 3x € S|P(x)). The negation of this statement is that
none of the elements of S have that property (Vx € S|P(x)).
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Negation of qualifiers

In a previous example we had: There must be people that read all

newspapers everyday. Its negation is

dp € P|Vd € D|Vn € N|preadsn on d.
Vp € P|Vd € D|Vn € N|preadsnond.

Vp € P|3d € D|Vn € N|p readsn on d.

Vp € P|3d € D|3n € N|preadsn on d.
Vp € P|3d € D|3n € N|p does not read n on d.

That is, For everybody, there is at least one day and one paper, such that p

did not read n on d.

v
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Modus ponens

The following proofs follow a reasoning model called Modus ponens which is
formally written as

(An(A=B))=B.

The intuitive meaning is that if A is true and A = B, then B is also true. Most
proofs follow this way of reasoning. They can be performed in a forward way

A=B =B,=..=8B
or in a backward way

B<B,<B,1<..<A
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Forward proofs (A = B; B is necessary for A)

Prove that the third power of an odd number is odd.
Proof
Let there be the following propositions:

A: x is odd.

B: x3 is odd.

We need to prove that A = B (B is necessary for A).
Proof A= B
Since x is an odd number we can write x = 2k + 1 for some integer
number k. Then,
x3 = (2k+1)3 = 8k3+12k? +6k+1 = 2(4k3+6k*+3k)+1 = 2k’ + 1.
For k' = 4k3 4 6k? + 3k, which is another integer number. Therefore,
x3 is odd. |
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Forward proofs (A = B; B is necessary for A)

A necessary condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120.

Proof

Let there be the following propositions:

A: To be multiple of 360
B: To be multiple of 3 and 120

We need to prove that A = B (B is necessary for A).
Proof A= B
Let x be a multiple of 360 (A) = There exists a natural number k such
that x =360 - k = x = 120 - 3 - k. From this factorization, it is obvious
that x is a multiple of 120 and a multiple of 3 (B).
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Forward proofs (A < B; B is sufficient for A)

A sufficient condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120. Proof
Let there be the following propositions:

A: To be multiple of 360

B1: To be multiple of 3

B2: To be multiple of 120

B: B1 N B2

We need to prove that B = A (B is sufficient for A).
Proof B = A

We can easily prove that B # A with a counterexample. Let us consider
x = 240. It is a multiple of 3 (B1). It is a multiple of 120 (B2). Therefore,
B is true. However, 240 is not a multiple of 360 (A is false). Therefore, we
have proved that B = A.
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Forward proofs (A = B)

— 2 __
Show that x = —2Fvbi—4ac

- is solution of the equation ax? + bx + ¢ =0
Proof

Let there be the following propositions:
. o _ —b+y/b>—4ac
A. X = T
B:ax’+bx+c=0

We need to prove that A = B.
If A= B is true, then it must also be true that A = B;

B;: a (—b+\/b2—4ac> + b—b—l—\/b2 —4ac +c=0

2a

that we can rewrite as

Bl 3 ( b2 T P2 —dac _ 2b\/b2—4ac) + b_b—H /b2 —4ac L= 0

432 4232 2a
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Forward proofs (A = B)

that we can simplify to

2 2 by/b2—4ac _p? by/ b2 —4ac
By: b—+b——C——+2—g+T+C=0

B L+ g "7‘/@ 73;5+%Z+¢ 0
B 0=0

Since B is always true (a statement that is always true is called a tautology),
then A = Bj is true, as we wanted.
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Forward proofs (A < B)

In this case we have to prove both directions: A= B and B = A.

A necessary and sufficient condition for a natural number to be a multiple of 360
is that it is a multiple of 5 and 72.

Proof

Let there be the following propositions:

A: To be multiple of 360
B1: To be multiple of 5
B2: To be multiple of 72
B: B1 N B2

We need to prove that A< B, thatis, A= Band B= A
Proof A= B
Let x be a multiple of 360 (A) = There exists a natural number k such that
x =360 -k = x=72-5- k. From this factorization, it is obvious that x is
a multiple of 72 and a multiple of 5 (B).
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Forward proofs (A < B)

Proof B = A

B1 = There is a natural number k; such that x =5 - k

B2 = There is a natural number k such that x =72 - k>

Therefore, 5ky = T2k, = ki = 75—2k2. But k; is a natural number not a
rational number, therefore, k> needs to be a multiple of 5, i.e., there exists
a natural number k3 such that k, = 5 - k3. Consequently, considering B2,
we have x = 72-5- k3 = 360 k3. That is x is a multiple of 360. Therefore,
we have proved that A= B.
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More forward proofs

If | want to prove that A does not imply B (A = B is false), | have to prove that
B is false, but A is true.

In our example, | have to prove that you did not bring 1000 euros (B is false), but
the bank is open (A is true). | don't have to prove that

@ B is false (you did not bring 1000 euros)

@ A is false (the bank is closed)

@ B is true but A is false (you brought 1000 euros, but the bank is closed)
@ A and B are false (you did not bring 1000 euros, and the bank is closed)
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If I know that B is false, and | want to proof that A implies B (A = B is true),
then | have to prove that A is also false.

A B|A=>B
F F| T
F T T
T F| F
T OT| T

If I know that you did not bring 1000 euros (B is false), all | have to prove to
show that A = B is true, is that the bank is closed (A is false).

e EEEE— 8 e e e S T s 0 G



If I want to proof that A implies B or C (A= BU C is true), and | prove that it is
false that A = BN C, have | finished? No,let's see why

BUC|A=BUC || BNC | A=BnC

o M Mt i B B B B s |0
e i s B B s B B 1)

44 4m A+

=T

e i B B e B W o
T4 444

444 4mmnm>



More forward proofs

If | prove that A= BN C is false, that amounts to selecting the following rows
from the table

A B C|BUC|A=>BUC | BNnC|A=BNnC
T F F| F F F F
T F T T T F F
T T F T T F F

In those lines, A = BU C is true for two of the A, B, C combinations (that's
good), but false for the other (that's bad). Therefore, we have not finished yet
and we have to prove that either B or C is true, so that we can finally reduce the
table to

A B C|BUC|A=BUC| BNC|A=BNC
T F T T T F F
T T F| T T F F

in which A = BU C is true, and consequently, we have proved that A= BU C.
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Backward proofs (A = B)

Show that if x > 0, then x + % > 2.

Proof

Let there be the following propositions:
A: x>0
B: x + % >2

It is obvious that G; = B, & = G, (3 = G being
Cl: x+ % —-2>0
C2: XHl=2x > g
3 =0 >

It is also obvious that A = G5 and, in this way, we have proved that A = B. We
can simplify the writing of this proof as:

2 _1)2
x+1>2ex4l 2508250 ) 500450
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Backward proofs (A = B)

If x,y €R, x,y >0, then \/x_yg’%z
Proof
VY S e xy - <0 - xy >0

Since x and y are p05|t|ve numbers, we can write them as x = a® and y = b?.
Then, XX — \/xy >0<:a+b ab>0«< a2 +b>—2ab>0«< (a—b)?>>0
This Iast proposition is always true, therefore \/xy < %Z is also true.
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Modus tollens

The following proofs follow a reasoning model called Modus tollens which is
formally written as

(BN(A= B)) = A

The intuitive meaning is that if A =- B is true and B is false, then A must also be
false. Another way of writing this reasoning is

(A= B) & (B = A).

That is if we want to prove A = B, it is enough to prove B = A.
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Modus tollens

Show that if x3 is even, then x is even.
Proof
Let there be the following propositions:

A: x3 is even
B: x is even
We want to prove that A = B. Instead, we'll prove that B = A, with
B: x is odd
A: x3 is odd

But we already proved this in a previous example. Therefore, A = B is true.
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Modus tollens

Show that if ¢ is odd, then the equation n®> + n — ¢ = 0 has no integer solution.
Proof
Let there be the following propositions:

A: c is odd
B: n> + n — c = 0 has no integer solution
We want to prove that A = B. Instead, we'll prove that B = A, with

B: n? 4 n— ¢ = 0 has an integer solution

A: cis even
Proof B = A
Let's assume that n € Z is solution of n?> + n — ¢ = 0.
If nis even, then c is even because ¢ = n>+n = (2k)?+2k = 2(2k>+k).
If nis odd, then c is also even because ¢ = n>+n = (2k+1)2+(2k+1) =
2(2k? + 3k +1).
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Reductio ad absurdum

The following proofs follow a reasoning model called Reductio ad absurdum which

is formally written as

A= B < (AN B = absurdum).

Absurdum is a statement that is always false, like P N P. Let's analyze the truth

table for this proposition

Truth table
A B|A=B|AnB PNnP|ANB=(PNP)
F F| T F F T
F T| T F F T
T F F T F F
T T T F F T

We see that the third and sixth columns are identical.
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Reductio ad absurdum

Show that v/2 is irrational.
Proof
It does not appear in the form A = B but it can be put with

A: All facts we know about numbers
B: v/2 is irrational

Let's assume that v/2 is rational (B), that is Ip, q € Z|v/2 = § and p, q are
irreducible (they don't have any common factor). If this is true, then 2¢% = p?,
i.e., 2 must be a factor of p and consequently p must be p = 2r. Substituting this
knowledge into 2g% = p? we obtain 2g® = (2r)?> = g% = 2r2. Consequently, 2 is
another factor of g. But we presumed that

P: p and g were irreducible

So, if v/2 is rational, then we have P and P at the same time, which is a
contradiction, and therefore /2 cannot be rational.
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Reductio ad absurdum

Show that there are infinite prime numbers.
Proof
Let's presume they is a finite list of prime numbers (in ascending order):

2,3,5,7,...,P
Now we construct the number M =2-3.5.7-.... P+ 1.
If M is prime, then we have a contradiction is M is prime and is larger than P.

If M is not prime, then it has as a factor at least one of the prime numbers in the
list. Let's assume it is 3, that is

M=3H=2.3.5-7-....P+1=>1=3H—-2-5-7-...- P)

that means that 3 is a factor of 1, which is an absurdum.
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Weak induction

This is a strategy to prove a property of a natural number, P(n). We follow the
strategy below:

Q@ Prove that P(k) is true.
@ Prove that if P(n— 1) is true, then P(n) is also true

n

Show that S, = Y j = 22l
i=1

Proof

1
Q 5=>i= @ = 1, which is obviusly true.
i=1

n—

n—1
@ Llet's assume that S,_ 1 = > i= % Then, we need to prove that
i=1

SHZZizw. But

i=1
5,,:5n_1+n:@+n:n("771+1):w. g.e.d.
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Strong induction

The goal is similar to the previous method, but now in the second step we assume
that the property is true for all previous integers

@ Prove that P(k) is true.

@ Prove that if P(k) is true and P(k + 1) is true and ... P(n— 1) is true, then
P(n) is also true

Show that for all natural numbers larger than 1 either it is prime or it is the
product of prime numbers
Proof

@ The property is true for 2.

@ Let's assume that it is true for 2,3,4,....n — 1.
If nis prime, then the property is also true for n.
If nis not prime, then it can be written as the product of several numbers
between 2 and n — 1. But the property is true for all these numbers, and
therefore, the property is also true for n.
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Case distinction

For each case we follow a different strategy.

Show that Va, b € R||a+ b| < |a| + |b|
Proof
We remind that the absolute value is a function defined by parts:
_ x x>0
x| = { —x x<0
Casea+b>0:a+b<|al+|b|
For all real numbers it is obvious that x < |x|. Therefore, we have
a < |a| and b < |b|. Consequently, a+ b < |a| + |b|.
Case a+ b < 0: —(a+b) < |a| + |b]
For all real numbers it is also true that —x < |x|. Therefore, we have
—a < |a| and —b < |b|. Consequently, —(a+ b) = —a — b < |a| + |b|.
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Counterexample

To prove that something is not true, it is enough to show that it is not true for
one example. This example is called a counterexample.

Show that Vx, y,z € RT and Vn € Z,n > 2 it is verified that x" + y" # 2"

Proof
The proposition is false because, for instance, for x =3, y =4, z=5and n=2

we have

3P +4=5
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Common math mistakes

Avoid some common mathematical mistakes (many of them, algebraic):

Common math mistakes Video 1:
http://www.youtube.com/watch?v=VHo_sfVdieM

Common math mistakes PDF:
http://tutorial.math.lamar.edu/pdf/Common_Math_Errors.pdf

Common math mistakes Video 2:
http://www.youtube.com/watch?v=qHSUU_q_2wA

Common math mistakes Video 3:
http://www.youtube.com/watch?v=cTiuocJfyCs

Common math mistakes Video 4:
http://www.youtube.com/watch?v=r5Yro2GdJ6w

0. Mathematical method September 7, 2013

62/ 63


http://www.youtube.com/watch?v=VHo_sfVdieM
http://tutorial.math.lamar.edu/pdf/Common_Math_Errors.pdf
http://www.youtube.com/watch?v=qHSUU_q_2wA
http://www.youtube.com/watch?v=cTiuocJfyCs
http://www.youtube.com/watch?v=r5Yro2GdJ6w

© Mathematical language
@ Axioms, postulates, definitions and propositions (a)
@ Logical operators (a)
@ Qualifiers (b)
@ Mathematical proofs
@ Modus ponens (b)
@ Modus tollens (c)
@ Reductio ad absurdum (c)
@ Induction (c)
@ Case distinction (c)
@ Counterexample (c)
@ Common math mistakes (c)



C.0.S. Sorzano

Biomedical Engineering

December 3, 2013

CEU

Universidad
San Pablo




© Vectors
@ Vectors and basic operations (a)
@ Linear combination (a)
@ Inner product or dot product (b)
@ Norm, vector length and unit vectors (b)
@ Distances and angles (b)
@ Multiplication by matrices (b)



References

Introduction to

LINEAR ALGEBRA

"

GILBERT STRANG

G. Strang. Introduction to linear algebra (4th ed). Wellesley Cambridge Press
(2009). Chapter 1.

1. Vectors December 3, 2013 3/49



References

Linear Algebra

D. Lay. Linear algebra and its applications (3rd ed). Pearson (2006). Chapter 1.

1. Vectors December 3, 2013 4 /49



A little bit of history

Vectors were developed during the XIX*® century by mathematicians and
physicists like Carl Friedrich Gauss (1799), William Rowan Hamilton (1837), and
James Clerk Maxwell (1873), mostly as a tool to represent complex numbers, and
later as a tool to perform geometrical reasoning. Their modern algebra was
formalized by Josiah Willard Gibbs (1901), a university professor at Yale.

To know more about the history of vectors visit
@ http:
//www.math.mcgill.ca/labute/courses/133£f03/VectorHistory.html
@ https://www.math.ucdavis.edu/~temple/MAT21D/
SUPPLEMENTARY-ARTICLES/Crowe_History-of-Vectors.pdf
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What is a vector?

Definition 1.1
Informally, a vector is a collection of n numbers of the same type. We say it has
n components (1,2,...,n)

We'll see that this definition is terribly simplistic since many other things (like
functions, infinite sequences, etc.) can be vectors. But, for the time being, let's
stick to this simple definition.

-1
0 € Z3 s a collection of 3 integer numbers
1

-1.1 5 . . .

11 € Q° is a collection of 2 rational numbers

V2
Matlab:
[-1.1; sqrt(2)]

( -11 ) e R? s a collection of 2 real numbers

4
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Transpose

We distinguish between column vectors (for instance v below) and row vectors

(w). In the first case, we say v is a n x 1 vector, while in the second, we say w is
a 1 x n vector.

vi
v
v = and w = (wywa...w,).

Vn

Definition 1.2

The transpose is the operation that transforms a column vector into a row vector
and viceversa.

4

= (7))

Matlab:
[-1 1]

y
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Addition of vectors

Definition 1.3

v wi

. Vo wh
Given two vectors v = and w = the sum of these two vectors

Vn Whn

vi + wy

. . Vo + wa
is another vector defined as v+ w = . Note that you can only add

vy + W,

two column vectors or two row vectors, but not a column and a row vector.

Properties 1.1

—1.1 -1.1 -2.2 Commutativity:
< 1.1 )+< V2 >_<1,1+\/§> Viw=w-+v
Matlab:

[-1.1; 1.1]+[-1.1; sqrt(2)]
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Addition of vectors

v
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Product by scalar

Definition 1.4
Given a vector v and a scalar ¢, the multiplication of ¢ and v is defined as

vy

CV,
CV = 2

CVp

Matlab:
2%[-1.1; 1.1] -[1.1; 1.1]

V.
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Product by scalar

What is the shape of all scaled ¢
vectors of the form cw? 2
If w = 0, then it is a single .
point (0). If w # 0, then it
is the straight line that passes
through 0 and w. *
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Properties

For simplification we will present them as properties for R", but they apply to all
vector spaces. Given any three vectors u,v,w € R"” and any two scalars ¢, d € R,

we have

Vector operation properties
Regarding the sum of vectors:
Q@ u+ v =v+ u Commutativity
@ (u+v)+w=u+ (v+ w) Associativity
© u+ 0 =0+ u=u Existence of neutral element
Q u+ —u= —u+ u=0 Existence of symmetric element
Regarding the sum of vectors and scalar product:
@ c(u+ v) = cv + cu Distributivity with respect to the sum of vectors
@ (c+d)u = cu + du Distributivity with respect to the sum of scalars
Regarding the scalar product:
@ c(du) = (cd)u Associativity
©Q 1lu = u Existence of neutral element
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Linear combination

Definition 2.1

Given a collection of p scalars (x;, i =1,2,...,p) and p vectors (v;), the linear

combination of the p vectors using the weights given by the p scalars is defined
as

P
DXV = X1V1 + XoVo + ... + XpVp
i=1

Matlab:
format rational
-1/2x[-1; 11-2/3%[2; 2]
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Linear combination

A very basic model of the activity of neurons is

output = f(>_ weight;input;)

where f(x) is a non-linear function. In fact, this is the model used in artificial
neuron networks.

NEURON

dendrite motor end plate N muscle fibre

r cell body terminal arborisation —— [
2y N\
axon

nucleus
cytoplasme

myelin sheath " . rFovisualino

The human brain has in the order of 10! neurons and about 108 connections.

See https://www.youtube.com/watch?v=zLp-edwiGUU.

W
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https://www.youtube.com/watch?v=zLp-edwiGUU

Linear combination

13ve12w

We may think of the weight coefficients as the “travelling” instructions. For
instance, for the figure in the right, the instructions say: “Travel % of v along v,
then travel % of w along w”.

4
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Linear combination

If the two vectors are not collinear (i.e., w # kv), then it is the whole plane

passing by 0, v .and w. We can think of it as the sum of all vectors belonging to

the line Ov and Ow.

The plane generated by v and w is
the set of all vectors that can be
generated as a linear combination
of both vectors.

M= {rlr=cv+dwVc,d e R}

1312w

1/3v+1/2w
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Linear combination

The previous example prompts the following definition:

Definition 2.2 (Spanned subspace)

The subspace spanned by the vectors v, i = 1,2, ..., p, is the set of all vectors
that can be expressed as the linear combination of them. Formally,

(V1,V2,...,Vp) = Span{vi, v, ..., vp} 2 {veR"v = xv; + xoVo + ... + XpVp }

Assuming all vectors below are linearly p "
independent: roperties J

Span {v; } is a straight line. 0 € Span{-}
Span {vi,v,} is a plane.
Span {vi, Vo, ...,v,_1} is a hyperplane.

1. Vectors December 3, 2013 19 / 49



Linear combination

Let v=(1,1,0) and w = (0,1,1). The linear combinations of v and w fill a plane
in 3D. All points belonging to this plane are of the form

M= {rlr=1¢(1,1,0) + d(0,1,1) Vc,d € R} = {r = (c,c+ d,d) Vc,d € R}

It is clear that the vector ¥’ = (0,1, 0) ¢ I, therefore, it is outside the plane.
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Let v =(1,0).
Q S ={r=cvVceZ}is a set of points
Q@ S, ={r=cvVceR"} is a semiline
@ S3={r=cvVceR}isaline
3 3 3
A R S
R S o
o 3 ...::..' @ a
Y S R S S S S

e EEEE— i, Ve Dl B s 2 [



Let v=(1,0) and w = (0,1).
Q Si={r=cv+dwVceZVd e R} is a set of lines
Q@ Sy ={r=cv+dwVceR" VdeR}is a semiplane
Q@ Ss={r=cv+dwVc,deR}is a plane

e EEEE— i, Ve
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Linear combination

Let v=(2,—1), w=(—1,2) and b = (1,0). Find ¢ and d such that
b = cv+ dw.

Solution

We need to find ¢ and d such that

1\ 2 -1\ ([ 2c—-d
0o )=\ -1 2 )7\ 2d-c¢
This gives a simple equation system

2c—d=1
2d —c=0

whose solution is ¢ = % and d = % We can easily check it with Matlab:
2/3%[2 -1]°+1/3*%[-1 2]’
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 3:
e 131
e 133
e 136

1.3.7

1.3.25

1.3.27

1.3.29

1.3.31
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Inner product

Definition 3.1

Given two vectors v and w the inner or dot product between v and w is defined
as

n

A
vyw) =v-w2viw=> viw, = viw; + vowp + ... + v,w,
i=1

Mathematically, the concept of inner product is much more general, and this
operational definition is just a particularization for vectors in R”. Although, the
introduced inner product is the most common, it is not the only one that can be
defined in R”. But, let's leave these generalization for the moment.

(‘2‘>-(_21>:4.(—1)+2-2:0

Matlab:
dot([4; 2]1,[-1; 21)

Properties 3.1

Commutativity:
V-W=WwW-V
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Vector norm and vector length

Definition 4.1

Given a vector v, its length or norm is defined as
vl = \/(v,v)

In the particular case of working with the previously introduced inner product, this

definition boils down to
n
v = VvTv = %
i=1

that is known as the Euclidean norm of vector v.

Properties 4.1

F=vil =l
llevll = Telllvl]

-
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”(_laO? 1)” = (—1)2 +024+12 = \/5 )
- os vl
Matlab: 0 \

norm([-1;0;11)

|| . D o e 2



v is unitary iff ||v|| = 1. I

€ = (1’ 0)

e = (0, 1)

ep = (cos(h), sin())
Matlab:

theta=pi/4;
e_theta=[cos(theta) ;sin(theta)];
norm(e_theta)

December 3, 2013
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Unit vectors

Definition 4.3 (Construction of a unit vector)

Given any vector v (whose norm is not null), we can always construct a unitary

vector with the same direction of v as u, = \‘\:I .

-

. Vectors
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15 .

Given two vectors v and w, the distance be-
tween both is defined as lv-wi

d(v,w) £ v —w]| o .v

and their angle is -8

A vw_
(v, w) = acos iy = 0

Two vectors are orthogonal (perpendicular) iff their inner product is 0. We then
write v L w. In this case, Z(v,w) = T.




Distance and angle between two vectors

Let v=(—2,2) and w = (1, ). The angle between these two vectors can be
calculated as

o= (-31+33-2

Ivil = /(=2)2 + (32 = 428 T :
wil = /(1)2 + ()2 =£ N\

Z(v,w) = acosﬁ =87.27°

15 B]
v and w are almost orthogonal.

Let v=(1,0,0,1,0,0,1,0,0,1) and w=(0,1,1,0,1,1,0,1,1,0). These two
vectors in a 10-dimensional space are orthogonal because
v-w=1-0+0-1+0-1+1-04+0-14+0-14+1-04+0-1+0-14+1-0=0
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Distance and angle between two vectors

Search for a vector that is orthogonal to v = (—%,

Solution
Let the vector w = (wy, w») be such a vector. Since it is orthogonal to v it must
meet

wIN

(v,w) =0= (—%)W1 +%W2 = wy = ¢

That is, any vector of the form w = (wy, 2w1) = wy(1, 3) |s perpendicular to v.
This is the line passing by the origin and with dlrectlon (1, ) In particular, for
wi = 5 we have that w = (3, £) and for w; = —3 we have w=(-3-2).

This is a general rule in 2D. Given a vector v = (a, b), the vectors w = (b, —a)
and w = (—b, a) are orthogonal to v.

(a,b) L (b,—a) and (a,b) L (—b, a)
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Distance and angle between two vectors

Theorem 5.1 (Pythagorean theorem)

Ifv 1w, then |lv —wl? = |lv||® + ||w]>.
Proof
Jv—wlP = (v—w)(v—w) = vTv—vTw—wTv-+wTw = [v|2+ |w[2—2 (v, w)

But, because v | w, we have (v,w) = 0, and consequently

v —w|? = [lv]]* + [[w]* (q.e.d.)

Corollary 5.1
o If(v,w) <O, then 5 <6 <.
o If(v,w) >0, then0 <6 < 7.

e For two unit vectors, u; and uy, we have cos6 = (uy,uy), and as a
consequence —1 < (up,up) < 1.

1. Vectors December 3, 2013 36 /49



Distance and angle between two vectors

Theorem 5.2 (Cosine formula)
For any two vectors, v and w, such that ||v|| # 0 and ||w]|| # 0, we have
(v, w) = ||v|[[|wl| cos 6

Proof

By use of Definition 4.3, we can construct the unit vectors associated to v and w,
that is uy and u,,. Then by Corollary 5.1 we know that

cosf = (uy,uy) = (”:7“>T (L) 1 yTw= vw)

lwll (Tull[wl]

From this point it is trivial to deduce that (v,w) = ||v||||w]|| cos @ (g.e.d.)
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Distance and angle between two vectors

To compute the knee flexion angle, we need to calculate the dot product between
the vectors aligned with the leg before and after the knee.

1 1
0 3 0 73 100
% Gait Cyele

Stance Swing
*— Phase — | Phese ™

Initial Toe Initial
Contact off Contact

http: A medscape com
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Distance and angle between two vectors

Theorem 5.3 (Cauchy-Schwarz inequality)

For any two vectors, v and w, it is verified that

[ (v, w) [ < [|v|f|wl]

Proof
From the cosine formula (Theorem 5.2), we know that

v vil{w]| cos 6 =

= [llvllllwll cos 8] = flv]|[w[ |cos 6] < |[v|[||wl]

7w>
[ (v, w) |

4

Let v=(—2,2) and w = (1,2). We already know that v-w = v = \/—5376,

and ||w| = @ Let us check Cauchy-Schwarz inequality

45’

12| < VA6 VI3 o, 0,0444 < 0.9344

.
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Distance and angle between two vectors

Show that for any two positive numbers, x and y, the geometric mean (/xy) is
always smaller or equal than the arithmetic mean (%) For instance, the
statement is verified for x =2 and y = 3: V6 < % & 2.4495 < 2.5.

Proof

Let there be vectors v = (a, b) and w = (b, a). Then, by Cauchy-Schwarz
inequality we know that

[ (v, w) | < ||v][lw]| = [2ab| < 2* + b

Since x and y are positive numbers, we may consider them to be x = a? and
y = b?. Consequently, we can rewrite the previous expression as

2Vxy <x+y = /xy < (qed)

In fact, the geometric mean is nothing more than the arithmetic mean in
logarithmic units

log(y/xy) = log(xy)? = L(logx + logy) = '&xtloey
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Distance and angle between two vectors

Theorem 5.4 (Triangular inequality)

For any two vectors, v and w, it is verified that

[lv+ wi| < flv]| + [[w]

Proof
By definition we know that

v+ wl? = (v+w)"(v+w) = lv[* + [[w]* + 2 (v,w)
Applying the Cauchy-Schwarz inequality (Theorem 5.3), we have

v+ wl? < [Jv[* + [[w]|* + 2[|v]|[w]| = (lv]| + [lw]])?
Taking the square root we have

v+ wi| < {lv[| + [|w]
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Distance and angle between two vectors

Let v= (—%, %) and w = (1, ) We already know that ||v|| = ‘/_ and
lw|| = @ Let us check the triangular inequality

vEw=(33) > v+ w] = P N
81
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Distance and angle between two vectors

Orthogonal projections

Let us consider the orthogonal projection of v onto w.

15

The length of this vector is

[[wl]

/ w (V,W> w
vV = (V. W = T :
(v, W) [Tz = Twl Twl g

<05 H

i)

>

Let v=(2,1) and w = (3,0). Then, v/ = %34:;10(170) = (3,0). See the figure

above.
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Multiplication by matrices

1 0
Let’s consider three vectors v; = ( ) Vo = ( B ) and vz = ( ) Let's

=1
0

= oo

consider the linear combination
1 0 0 x1
Yy = x1V1 + XoVo + X3V3 =X1( s ) +X2( L ) +X3( o ) = ( X3 = x )
- B =
| can obtain the same result by constructing a matrix
1 0

A:(vlvzv;;):(fol L g)

And making the multiplication

X1 1 0 O X1
y:A<2>:(V1V2V3) x |=| -1 1 0 X | =
° X3 0 -1 1 X3
X1
X2 — X1
X3 — X2
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Multiplication by matrices

We can also achieve the same result by calculating y as the inner product of the
rows of the matrix A and the weight vector.

(.00, (4,22, 7))

il
y = ?”@ - ( o )

(0, =1,1), (x1, x2, x3)

Matlab:
syms x1 x2 x3
x=[x1; x2; x3]
A=[1 0 0; -1 1 0; 0 -1 1];
y=A*xx
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Multiplication by matrices

Matrix multiplication as a linear combination

This is a general rule: a matrix multiplication can be seen as the linear
combination of the columns of the matrix.

P
A=(c1¢2..cp) = y=Ax= > xC;
i=1

Matrix multiplication as inner products

Also, a matrix multiplication can be seen as the dot product of the weight vector
with the rows of the matrix.

rl: <I’1, X>
A=| " =y=Ax= Uizt
r] {rp,X)
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A(u+v) = Au+ Av \
A(cu) = ¢(Au)
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Linear independence (c)
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A little bit of history

Linear equations in their modern form are known since the middle of the XVIIIt
century and they were strongly developed during the XIXt" century with important
contributions of people like Gabriel Cramer (1750), Carl Friedrich Gauss (1801),
Sir William Rowan Hamilton (1843) and Wilhelm Jordan (1873). They were
mostly developed to explain the mechanics of celestial objects.

AR

To know more about the history of linear equations visit

@ http://hom.wikidot.com/cramer-s-method-and-cramer-s-paradox
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A little bit of history

Wassily Leontief was a Russian-American economist that worked in Harvard. In
1949 he performed an analysis with the early computers at Harvard using data
from the U.S. Bureau of Labor Statistics to classify the U.S. economy into 500
sectors, that were later simplified to 42. He used linear equation systems to do so.
It took 56 hours in Mark Il (one of the first computers) to solve it. He was
awarded the Nobel prize in 1970 for his work on input-output tables that analyze
how outputs from some industries are inputs to some other industries.
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A little bit of history

Currently, we need about two weeks in a supercomputer (128 cores) to solve the

structure of a macromolecular assembly (in the figure, the HIV virus capsid). We
have 1,000 million equations with about 3 million unknowns.

September 24, 2013 6 /103



© Linear equation system

@ Introduction (a)
Gauss-Jordan algorithm (b)
Interpretation as a subspace (b)
Existence and uniqueness of solutions (c)
Applications (c)
Linear independence (c)
Linear transformations (d)
Geometrical transformations (e)
Classification of functions (e)
More applications (e)

® ©6 6 6 6 6 6 6 o



What is a linear equation system?

Definition 1.1 (Linear equation system)

A linear equation is one that can be expressed in the form

n
Z aiXj = b
i=1
aixy + axxo + ...+ apx, = b
(a,x) =b

The unknowns are x; (i = 1,2, ...,n) while a;'s and b are coefficients. When we
have several of these equations, we have a linear equation system.

xamples of linear equations xamples of non-linear equations
7X1 2X2 = 4 X1+ Xo + X1 X0 = 1
7(X1 \/_Xz) = X1 = vXaat+x =1

(7 — —2)X1 7\/_X2 =0

2. Linear equation systems September 24, 2013 8 /103



Set of solutions of a linear equation

Definition 1.2 (Set of solutions of a linear equation system)

The set of solutions of a linear equation system S C R”" is the set of all those
values that we can assign to xi, xa,

..., Xp such that the equation system is
fulfilled.

Consider the following equation system

2X1—X2:7
x1+2x =11

x = (5,3) is a solution to this equation system because

2.5-3=7
54+2-3=11

In fact it is its unique solution and, therefore, S = {(5,3)} C R2.

2. Linear equation systems September 24, 2013 9 /103



Geometric interpretation

h: 2X1—X2=7:>X2:2X1—7:>V1:(1,2)
b: X1+2X2=11:>X2=11—%X1:>V2:(1,—%)

Each one of the equations is actually representing a line, and both lines, in this
case intersect at the point (5, 3), the unique solution of this equation system.

v
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Geometric interpretation

There can be a single solution (left), no solution (middle), or infinite (i, = h;
right)

2 4 e 8 w0 a2 o 2 4 s 8 10 n

In general

With linear equations we can represent:
alinein 2D: a;x; +ayxo = b

a plane in 3D: ajx; + axxp + asx3 = b

a hyperplane in nD: a;jx; + axxo + ... + apx, = b

W
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Matrix notation

The equation system

can be represented as

or

X1 — 2X2 —|—X3 = 0
2xp —8xz3 = 8
—4x; +5x, +9x3 = -9
1 -2 1 0
0 2 -8 8 [A]
—4 5 9| -9
-2 1 X1 0
2 -8 x | = 8 | [Ax=b]

5 9 X3 -9

2. Linear equation systems September 24, 2013
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Matrix notation

In general

A € M« is called the system matrix of an equation system with m equations
and n unknowns.

Ae M mx(nt1) is called the augmented system matrix of an equation system
with m equations and n unknowns.

Basic row iterations

To solve the equation system with the augmented system matrix, we used the
so-called basic row operations:

Substitution: r; < kir; + kjrj: Row i is substituted by a linear combination of
rows i and j

Swapping: r; <+ r;: Row i swapped with row j
Scaling: r; + k;r;: Row i is multiplied by a scale factor

All these operations transform the equation system into an equivalent system
(with the same set of solutions). The two matrices (original and transformed) are
said to be row equivalent.

2. Linear equation systems September 24, 2013 13 / 103



Solving the equation system

In the following example we will see how linear combinations are actually changing
the equation system to a different one, while scaling is not.

2X1 —Xp = 7 2 -1 7
x1 2% = 11 1 2|11

|
.
‘
‘
,
‘
.

1
r < sn (

— =
N N=

—
= NI~
N——

o’

2. Linear equation systems September 24, 2013 14 / 103



Solving the equation system

/N

— =
|

N NI

[y
=N~
N—

< r—r (

NI =

S| Gror~
N—

o =

2. Linear equation systems September 24, 2013 15 / 103



Solving the equation system

N\

o =
|

NIOIN| =

N Grol~
N—

ry < %I’z

/N

o =
|

=N

WNIN
N——
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Solving the equation system

/N
o
|
=N

WNIN
N——

r1<—r1+%r2 (

= O
w o1
N~

o =
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Existence and uniqueness of solutions

X1 —2xo +x3 = 0 1 -2 10
2xp —8xz3 = 8 ~ ... ~ 0 1 4|4
—4x; +5x% +9x3 = -9 0 0 1|3

| can solve for x3 (x3 = 3), then use this value in the second equation to solve for
Xp, and finally use these two values in the first equation to solve for x;. Thus, the
equation system has a solution and it is unique. We say the equation system is
compatible. The set of solutions is S = {(29,16,3)}.

Matlab:

A=[1 -2 1; 0 2 -8; -4 5 9];
b=[0; 8; -9];

x=A\b

2. Linear equation systems September 24, 2013 18 / 103



Existence and uniqueness of solutions

X2 —4X3 = 8 2 -3 2 1
2x1 —3x 4+2x3 = 1 ~ ~ 0 1 —4|38
5x; —8xx +7x3 = 1 0 0 03

Last equation implies 0 = % which is impossible. Consequently, there is no
solution and we say that the equation system is incompatible. The set of
solutions is S = @.

X1 +Xp = 1 1 1)1
2x1 2% = 2 0 0|0

There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S = {(x1,1 — x1)}.
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 1:
e 1.1.11
e 114

1.1.15

1.1.18

1.1.25

1.1.26

1.1.33
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Echelon matrices

The following matrices are echelon matrices:

VERVERVY
A= 0 0 O O
00 0 0
(0 0 9 ©
A2_<000<>>

In the previous matrices we have marked with ¢ the leading elements (the first
ones different from 0 in their row), and with © the rest of the elements different

from 0. )
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Echelon matrices

Definition 2.1 (Echelon matrix)
A rectangular matrix has an echelon form iif:

@ Within each row, the first element different from zero (called the leading
entry) is in a column to the right of the leading entry of the previous row.

@ Within each column, all values below a leading entry are zero.

@ All rows without a leading entry (i.e., they only have zeros) are below all the
rows in which at least one element is not zero.

Definition 2.2 (Reduced echelon matrix)

A rectangular matrix has a reduced echelon form iif:
@ It is echelon.
@ The leading entry of each row is 1.
© The leading entry is the only 1 in its column.
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Echelon matrices

Theorem 2.1
Each matrix is row equivalent to one and only one reduced echelon matrix.
1 2 3
4 5 6
-1 -1 0
r <ty —4r L 2 ro—r —2r - =0
r2<—r2+r1 O =8 = r1<—11r i O 9
2T o 1 3 A 00 1
1 2 3 1 00
r ot 0 1 3| nEntIs{oq g
0 -3 -6 28N o 01
1 2 3
r3 <> 13+ 3rp 01 3
0 0 3
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Echelon matrices

Matlab:

A=[1 2 3; 45 6; -1 -1 0]
A(2,:)=A(2,:)-4*%A(1,:)
A(3,:)=A(3,:)+A(1,:)

aux=A(2,:); A(2,:)=A(3,:); A(3,:)=aux
A(3,:)=A(3,:)+3%A(2,:)
AC1,:)=A(1,:)-2%A(2,:)
A(3,:)=1/3*%A(3,:)
AC1,:)=A(C1,:)+3*%A(3,:)
A(2,:)=A(2,:)-3*%A(3,:)
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Echelon matrices

Now, we'll repeat the same example using different row operations:

rp < 1r3

rg < —r

I <t —4n
r3<r3—r

1

4
1 —
-1 —

4

1

OO R FH MR
== N O
WO O WOOO NI, EFL OIN

3

W oo oo

ri<ri—»nr

r3 < r3—1rp
1

r3<——§r3

ry < r; + 6r3
ry < ry — 6r;3

OO HOOHOOHR
O OO, OOHO
(o))
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Gauss-Jordan algorithm

Definition 2.3 (Pivot and pivot column)

A pivot element is the element of a matrix that is used to perform certain
calculations. For the Gauss-Jordan algorithm it corresponds to the first element
different from zero in a given row. A pivot column is a column that contains a
pivot.

Step 1

Choose the left-most pivot column. The pivot element (marked in red) is any
value within this column different from 0. Note: Normally, we should take the one
with maximum absolute value to avoid numerical errors.

v

0 3 -6 6 4 -5
3 -7 8 -5 8 9
3 -9 12 -9 6 15

V.
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Gauss-Jordan algorithm

Step 2 J

Sort rows if necessary so that the pivot is as high as possible.

3 -9 12 -9 6 15
r3 < r 3 -7 8 -5 8 9
0 3 —6 6 4 -5

Step 3

Use row operations to force the elements below the pivot to be 0.

3 -9 12 -9 6 15
< r—rnr 0 2 —4 4 2 —6
0 3 —6 6 4 -5
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Gauss-Jordan algorithm

Step 4

Repeat Steps 1 to 3 with the rows below the pivot.

3 -9 12
0 3 -6
0 2 —4
3 -9 12
r3 < r3 — %I‘g 0 3 —6
0O 0 0
3 -9 12
0 3 —6
0O 0 0

N}

. Linear equation systems
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Gauss-Jordan algorithm

Step 5

Starting from the lowest and right-most pivot, force the elements above that pivot
to be zero. If the pivot is not 1, then rescale the row. Repeat with the next pivot
on the left.

3 -9 12 -9 6 15
3 —3r3 0 3 —6 6 4 —5
0 0 0 0 1 4
3 —9 12 -9 0 -9
rp = rp —dr3 0 3 -6 6 o0 -2
L AL = o 0o o0 0 1 4
3 —9 12 -9 0 -9
o+« in 0 1 -2 2 0 -7
0 0 0 0o 1 4
3 0 -6 9 0 -—72
r vt or @ 4 =8 2 ® =7
0 o 0o o0 1 4
1 0 -2 3 0 -2
n—in o 1 -2 2 0 -7
0o o 0o o0 1 4
v

Computing the inverse of a n x n matrix costs in the order of n® operations
(O(n®)). However, calculating the reduced echelon form is only in the order of n?
(O(n?)). This difference is more and more important as n grows.
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Existence and uniqueness of solutions (revisited)

We can now review the issue of existence and uniqueness under the light of the
reduced echelon matrix.

1 0 0]1
01 04
0 0 1|0

The system is compatible and the set of solutions is formed by a single point
S={(1,4,0)}.

1 0 0]1
0 1 1|4
0 0 00

There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S = {(1,4 — x3, x3) Vx3 € R®}. Because the set of solutions
depends on a single variable, the set of solutions is a line.

V.
2. Linear equation systems September 24, 2013 31 /103




Existence and uniqueness of solutions (revisited)

O O
o = O
o = O
o = O
o B~

There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S = {(1,4 — X3 — Xa,X3,%3) VX3, x4 € ]R3}. Now, the set of
solutions depends on 2 variables and, consequently, it is a plane.

W

o o
o= O
o~ o
[ N

The system is incompatible since the last equation is 0 = 1. The set of solutions
is the empty set, S = @.

W
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 2:
@ 122
e 128
e 1.2.19
e 1.2.33
e 1.2.34

2. Linear equation systems September 24, 2013 33 /103



© Linear equation system
Introduction (a)

@ Gauss-Jordan algorithm (b)

@ Interpretation as a subspace (b)
@ Existence and uniqueness of solutions (c)
Applications (c)

Linear independence (c)

Linear transformations (d)
Geometrical transformations (e)
Classification of functions (e)
More applications (e)

(]

® 6 6 6 6 ¢



Interpretation as a subspace

Subspace spanned by columns

Consider the equation system given by the matricial equation Ax = b, where
A€ Mpyp. Let us call the p columns of A as ¢; € R". The previous equation can
be rewritten as

X1
X2 L
:b:>ZX,'C;:b

i=1

(c1ca...¢p)

Xp
That is, Ax is the subspace spanned by the columns of matrix A.
Span{ci,cy,....,cp} = {v € R"|v = Ax ¥x € RP}

The equation system Ax = b the poses the question: Find the weight
coefficients x; such that vector b belongs to Span {ci,co, ..., ¢, }.
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Interpretation as a subspace

The equation system

X1 +2x —x3 = 4
—bx, +3x3 = 1
can be represented as
1 2 -1 f e
0 -5 3 > \1
X3

That is, which are the weight coefficients x;, xo and x3 such that the vector (4,1)
belongs to the subspace generated by the vectors (1,0), (2, —5), and (-1, 3).
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Interpretation as a subspace

Theorem 3.1

The matrix equation Ax = b has the same solution as the vector equation

P -
> x;c; = b and as the equation system whose augmented matrix is A = (A|b).
i=1

Theorem 3.2

For any A € M, and vector b € R", the following four statements are
equivalent, that is, P & P, & P3 < Py

P1: The equation Ax = b has a solution.
P>: b is a linear combination of the columns of A.
P3: The columns of A span all R", i.e., Span{c;} = R".

P,: A has a pivot in each row.
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 4:
e 1413

1.4.18

1.4.26

1.4.27

1.4.32

1.4.39

°
o
°
°
°
@ 1.4.41 (bring computer)
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the homogeneous system Ax = 0. It obviously has the trivial
solution x = 0. Non-trivial solutions can be found through the echelon matrix

—3x1 —2x +4x3 =
6x1 +x, —8xz3 =

= 000 AY

o O O
O O
o = O
O Owls

0
0
0

This is a compatible indeterminate system whose set of solutions is
S ={(—3%x3,0,x3) Vx3 € R}, or what is the same

S = Span {(—3%,0,1)}.

That is, any of the infinite points in the straight line whose director vector is
(—%,0, 1) is a solution of the equation system.
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the non-homogeneous system Ax = b.

3 +hx —4xz = 7 10 3]0
—3x1 2% +4x3 = -1 = ..~ 01 0|2
6X1 —|-X2 —8X3 = —4 0 0 0|0

This is a compatible indeterminate system whose set of solutions is
S ={(—3x3,2,x3) Vx3 € R}, or what is the same

5 =1{(0,2,0) + (—%x3,0,x3) Vx3 € R} = (0,2,0) + Span {(—3%,0,1)}.

That is, any of the infinite points in the straight line whose director vector is
(—%,0, 1) and passes through the point (0,2, 0) is a solution of the equation
system.
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Existence and uniqueness of solutions (revisited once
again)

Consider the following homogeneous equation system

10 —3x —2x3 = 0 =..~(10 -3 —2|0)

This is a compatible indeterminate system whose set of solutions is
S ={(3x + tx3,%,x3) Vx2, x3 € R}, or what is the same

S = Span {(3,1,0),(3,0,1)}.

That is, any of the infinite points in the plane containing the vectors (s, 1,0) and
(%,07 1) is a solution of the equation system.

4
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Existence and uniqueness of solutions (revisited once
again)

Consider now the following non-homogeneous equation system

10, —3x —2x3 = 10 = ..~ (10 -3 —2|10)

This is a compatible indeterminate system whose set of solutions is
S={1+ %XQ + %X3,X2,X3) VX2, x3 € R}, or what is the same

SZ{ 1 0, 0 ~|—(10X2+ X3,X2,X3)VX2,X3 ER} =
(1 0 0)+Spa’n{ 100 7 ) (%7071)}
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Existence and uniqueness of solutions (revisited once
again)

Corollary 4.1

Consider the compatible, non-homogeneous equation system given by Ax = b and
its homogeneous counterpart Ax = 0. Let S be the set of solutions of the
homogeneous equation system. Then, the set of solutions of the
non-homogeneous equation system is of the form

Snh = X0 + Sh

For some xg € R".

Definition 4.1 (Null space of A)

Sh is called the null space of the matrix A. It has the property that given an
equation system Ax = b, if Xy is a solution of the equation system, then xq + X, is
also a solution, for any x, € Sp,.
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Existence and uniqueness of solutions (revisited once
again)
In this example, the authors describe how to solve a problem appearing in the

tomographic use of a certain microscope due to the absence of some
measurements (resulting in an important null space of the tomographic problem).

e f
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2. Linear equation systems September 24, 2013 46 / 103



Existence and uniqueness of solutions (revisited once
again)

In this example, the authors describe how the exact location of a tooth fracture is
uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A,; Mol, A; Tyndall, D. A., Rivera, E. M. In vitro of local graphy for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 5:
e 1511
e 1513
e 1.5.19

1.5.21

1.5.25

1.5.26

1.5.36

1.5.39
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Applications

In fluorescence microscopy, we can quantitatively measure the amount of
fluorescence coming from each source with a linear equation system.

A

Be 100 0 |5
1 )

pl|rioo|;

|10 to|f

B c § 1o A

Clathin accumulation
5 atthelS

2 o
NOSEE +SEE

C. Calabia-Linares, M. Pérez-Martinez, N. Martin-Cofreces, M. Alfonso-Pérez, C. Gutiérrez-Vazquez, M. Mittelbrunn, S. Ibiza, F.R. Urbano-Olmos, C.
Aguado-Ballano, C.0.S. Sorzano, F. Sanchez-Madrid, E. Veiga. Clathrin drives actin accumulation at the immunological synapse. J. Cell Science, 124:

820-830 (2011)
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Applications

In computed tomography, a simple model (but widely used) for data collection
states that the data observed is the sum of the values of the density found along
the X-ray path.

radiation
detector “______
I!n

FIGURE 25-14
CT data acquisition. A simple CT system
Basses a narrow beam of x-rays through the
ody from source to detector. The source
and detector are then translated to obtain a
lete view. The remaining views are
obtained by rotating the source and detector
in about 1= increments, and repeating the
translation procass

radiation
source
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Applications

In the blood system, at each node, the sum of output flows must be equal to the

sum of input flows.

Head
L— 1 omumn +—

2. Linear equation systems

September 24, 2013
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In a very simplified model, respiration is the burning of glucose that can be
written as

x1CeH1206 + %005 — x3C0O5 + x4H, O
Respiration

sH120s + O,

l
C.O‘ Engrg ’

C: 6X1 = X3
H: 6x1 = 2x4
O: 6x1 +2x =2x3 + X3




Exercises

From Lay (4th ed.), Chapter 1, Section 6:
@ 165

e 16.7
@ 16.12
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A set of vectors vi, Vo, ...,V is linearly independent if

X1V1 +X2V2+...+XPVP=0=>X1 =X2=...=Xp=0

That is the only solution of the previous equation is the trivial solution x = 0.
The set is linearly dependent if at least two x;’s are different from 0.




Linear independence

Determine if the vectors v; = (1,2,3), vo = (4,5,6), and v3 = (2,1,0) are
linearly independent.

Solution

The augmented matrix associated to the equation system in Definition 6.1 is

1 4 2|0 1 4 210
2 5 1|0 | ~.~| 0 =3 =30
36 0/[0 0 0 0]0

Since the system is compatible indeterminate, there exists a solution apart from
the trivial solution and, therefore, the vectors are linearly dependent.
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Linear independence

If possible, find a linear relationship among the three vectors. Solution
We continue transforming the augmented matrix to its reduced echelon form

1 4 210 1 0 -2|0

0 -3 3|0 ~..~ |01 110

0 0 0]0 0 0 0fO0
From which x; = 2x3 and x, = —x3. Simply by choosing x3 = 1, we obtain have
that a possible solution to the equation system in Definition 6.1 is x; = 2,
xp = —1 and x3 = 1, consequently we have that

2vi — vy +v3 =0
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Linear independence

vi = (3,1) and v, = (6,2) are linearly dependent because

V2:2V1:>—2V1+V2:0:>v1:

2

V2

If two vectors are linearly dependent of each other, then any one of them is a

multiple of the other.

y
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vi = (3,2) and v, = (6, 2) are linearly independent

e EEEE— R y——
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Linear independence

vi = (1,1,0), vo = (—1,1,0) and v3 = (0,2,0) are linearly dependent because

V3 = Vi + Vo

v
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Linear independence

vi = (1,1,0), vo = (—1,1,0) and v3 = (0,2,1) are linearly independent
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Linear independence

Theorem 6.1 (Linear independence of matrix columns)

The columns of the matrix A are linearly independent iff the only solution of
Ax = 0 is the trivial one.
Proof

Let A= [a; a; ... @] so that the columns of the matrix A are the vectors a;.
According to Definition 6.1 these vectors are linearly independent iff

xai+xar+..+xa,=0=>xx=x=..=x=0
or what is the same

AX=0=>x1=x=.=x=0

as stated by the theorem (q.e.d.)
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Linear independence

Theorem 6.2

Any set {vi,Vva,...,vp} with v; € R" is linearly dependent if p > n.

Proof

Let A= [v1 vy ...vp] and let us consider the equation system Ax =0. If p > n
there are more unknowns than equations, and consequently, there are free
variables and the system is compatible indeterminate. Thus, there are more
solutions apart from the trivial one and the set of vectors is linearly dependent.

Theorem 6.3

If any set {v1,Va,...,vp} with v; € R" contains the vector 0, then the set of
vectors is linearly dependent.

Proof
We can assume, without loss of generality, that vi = 0. Then, we can set x; = 1,
Xp = X3 = ... = X, = 0 so that the following equation is met:

1vi +0vp + ...+ 0v, =0 (g.e.d.)
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Linear independence

Theorem 6.4

A set of vectors is linearly dependent iff at least 1 of the vectors is linearly
dependent on the rest
Proof

Proof <=

Let us assume that v; is a linear combination of the rest of the vectors,
that is,

Vj = Z XKV K

k#j
Then, we can write vj — 3 xivi = 0 =
k#j
—X1V1 — XpV2 — ... — Xj_1V;_1 + Vj — Xj+1Vj+1 — XpVp = 0

And consequently there exists a non-trivial solution of the equation of
Definition 6.1.
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Linear independence

Proof =
If vi = 0, then we have already a vector that is a trivial combination of

the rest (vi = Ovy + Ovz + ... + 0v,).
If vi # 0, then there exist some coefficients such that

X1V1 + XV + ... + xpvp, =0

Let j be the largest index for which x; # 0 (that is, Xj41 = Xj42 = ... =
x, = 0).

If j =1, then xyv; = 0, but this is not possible because v; £ 0. Then,
j > 1 and consequently

X1V1 + XoV2 + ... + XV + 0Vj+1 + ...+ OVP =0=
XjVj = —X1V1 — XoV2 — ... — Xj_1Vj—1 =

Xy, X2y, — XLy
Vi =gV V2 e T T (g.e.d.)
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 7:
e 179
e 1.7.39
e 1.7.40
@ 1.7.41 (bring computer)
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Linear transformations

Definition 7.1 (Transformation)

A transformation (or function or mapping), T, from R" to R™ is a rule that
assigns to each vector of R" a vector of R™.
T:R" — R™
x — T(x)

R" is called the domain of the transformation, and R™ its codomain. T(x) is the
image of vector x under the action of T. The set of all images is the range of T.

Domain Codomain
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Linear transformations

Definition 7.2 (Matrix transformation)

T is a matrix transformation iff T (x) = Ax for some matrix A € M pxp.

J

Let us consider A = g _03 513 i’ and the matrix transformation y = Ax. For
instance, the image of x = (1,1,1,1) is

- (2

The equation system Ax = (g) looks for all those x, if any, such that

=

5

T(x) = (8) The domain of this transformation is R* and its codomain R?.

v
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Linear transformations

1 0
Let us consider A= | 0 1| and the matrix transformation y = Ax. The domain
0 0

of this transformation is R? and its codomain R3. However, not all points in R3
need to be an image of some point x € R?, only a subset of them may be. In this
case,

R* 5 Range(T) = ((1,0,0),(0,1,0))

In general, the range of the transformation T is the subspace spanned by the
columns of the matrix A.
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Linear transformations

1 -3
Let us consider A= | 3 5 | and the matrix transformation y = Ax.
-1 7
@ What is the image of u = (2,—1) under T7?
T(u) = Au=(5,1,9)
@ Let b =(3,2,-5). Which is x such that T(x) = b?

1 -3| 3 10%
3 5| 2| ~(01]|-]
-1 7/|-5 0 0| O

From which we deduce x = (3, —3).

@ Is there any other x such that T(x) = b?

No, the previous solution is unique because the equation system is definite
compatible.
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Linear transformations

@ Does c = (3,2,5) belong to Range(T)?

1 —-3|3 10%
3 5|2 ~|01| -2
-1 715 0 0] -35

Since the system is incompatible, we deduce that there is no vector x whose
image is ¢ and, consequently, ¢ & Range(T).

@ Which is the function y = T(x)?
N 1 -3 X1 — 3X2
vl = 3 5 <X1) = | 3x1 +5x
Y3 -1 7 2 —x1 + X2

© Which is Range(T)?
Range( T) = <(1a 37 _1)7 (_3) 57 7)> =

1 -3
y€R3|y:x1 3 + X 5 Vx1,x € R
=il 7
Because (1,3,—1) and (—3,5,7) are linearly independent, Range(T) is a

plane.
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Linear transformations

1 0 O X1 X1
Consider the transformation T(x)= ({0 1 0 x| = x|. Thisis a
0 0 O X3 0

projection transformation that projects any 3D point onto the XY plane.

v
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Linear transformations

Definition 7.3 (Linear transformation)

T is a linear transformation iff Vx1,x; € Dom(T), Vc € R
Q T(x1+x2) = T(x1) + T(x2)
Q@ T(cx1) =cT(x1)

Theorem 7.1
If T(x) is a linear transformation, then

Q@ 7(0)=0

Q@ T(axi+ ax)=aT(x1)+ aT(x2)Vxy,x2 € Dom(T), Vei,c €R
Proof

Q@ T(0) = T(0x1) =[(2), Def. 7.3]=0T(x1) =0 (g.e.d.)

Q@ T(axi+ ax) =[(1), Def. 7.3]= T(c1x1) + T(c2x2) =[(2), Def. 7.3]
(5] T(Xl) + C T(X2) (qed)
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Linear transformations

Theorem 7.2

If¥x1,%x2 € Dom(T), Ve, 2 € R it is verified that
T(cix1 + ox2) = a1 T(x1) + 2 T(x2), then T(x) is a linear transformation.
Proof
@ Let us consider the case c; = ¢, = 1, then according to the assumption of the
theorem we have T (x1 +x2) = T(x1) + T(x2), which implies (1) in Def. 7.3.
@ Let us consider the case c; = 0, then according to the assumption of the
theorem we have T(c1x1) = ¢1 T(x1), which implies (2) in Def. 7.3.

(g.e.d.)
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If Vx; € Dom(T), Vc; € R it is verified that T (E c,-x,-) =5 ¢ T(x).

Proof
Apply the previous theorem multiple times. (q.e.d.)




Linear transformations

Show that T(x) = <(1) 01> (?) is a linear transformation.
- 2

Proof
Q Show that T(x; +x2) = T(x1) + T(x2)

On one side we have T(x; + xp) = ((1) _01> (2; 122) = <_X)1<12+_X)2;2>

On the other side we have T(x1) + T(x2) =

M REVRCIRCIEY
- = - =
0 —-1) \x12 0 —1) \x2 —X12 —X22 —X12 — X22
Obviously, these two calculations give the same result.
@ Show that T(c1x1) = 1 T(x1)

(1 0 Gxit) _ [ axu ) _ o
T(axi) = <0 —1> <C1x12>_<_C1X12>_C1 <_X12>

-« ((1) _°1> <X11> — aT(x)

X12

o’
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Any matrix transformation is a linear transformation.
Proof

@ Show that T(X1 a4 Xz) = T(X]_) ol T(Xz)

T(x1+x2) = A(x1 + Xx2) = Axy + Axy = T(x1) + T(x2) (g.e.d.)
@ Show that T(cix1) = 1 T(x1)

T(cax1) = A(aix1) = c1(Ax1) = a T(x1) (g.e.d.)




Reinterpreting the columns of a matrix

Consider T(x) = Ax with A= <4 31 3). Consider the standard canonical

2 0 5 1
basis of R* formed by the vectors e; = (1,0,0,0), e, = (0,1,0,0),
e3 = (0,0,1,0), and e = (0,0,0,1). Let us consider the transformation of each
one of these vectors
3

4 -3 1
() o= (3) mer- (3 mer- ()
In general, we note that the transformation of e; is the i-th column of matrix A.

V.

Corollary

The columns of the matrix A € M,,«, can be understood as the transformations
of the canonical basis of R":

A=(a; a .. a,) = (T(e1) T(e2) ... T(en))
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Reinterpreting the columns of a matrix

In the previous example consider transforming the vector x = (1, —2,3,5). This
vector is equal to

x =e; — 2e, + 3e3 + bey
Then, we have

T(x) = T(e;1—2e,+3es+5e,)=T(e1)—2T(ex)+3T(e3)+5T(es)

() -2(c) 2() (1) (=)
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 8:
e 1.8.23
e 1.8.25
e 1.8.26
e 1.8.30
e 1.8.34
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Certain matrix transformations are used to transform the unit square into different
shapes. The following table shows some of such transformations.

Transformation Standard Matrix
Reflection through x, 1 0
the xy-axis [1] [0 _1i|

0




Reflection through

the x,-axis
Reflection through 0 1
the line x; = x| [ 1 0]




Reflection through
the line x, = —Xx|

[

Reflection through
the origin

I




TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matri
Horizontal k0
contraction [ 0 1 :|
and expansion

—
—_—
1
k
0
O<k<l1 k>1

Vertical x, x 1 0
contraction 0k
and expansion [2]

X

O<k<l k>1




TABLE 3 Shears

Transformation Image of the Unit Square Standard Matrix
Horizontal shear X X [ 1 k ]
0 1

k<0

Vertical shear




TABLE 4 Projections

Transformation

Image of the Unit Square

Standard Matrix

Projection onto
the x|-axis

Projection onto
the x;-axis

X

[0 o]
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Classification of functions

Definition 9.1
Functions can be classified as surjective, injective or bijective:

Surjective: A function is surjective if every point of the codomain has at least
one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.

surjection injection bijection
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Classification of functions

Here we have some examples of the classification of functions applied to linear
transformations

i T A. ai T 3
ot S . o PR Rq”&e
i
8
[f [+ ' ﬂﬁ Q'h

Tis not onto R™ Tis onto R™

FIGURE 3 Is the range of T all of R™?

T is not one-to-one T is one-to-one

FIGURE 4 Is every b the image of at most one vector?
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Classification of functions

1 4 8 1
Consider T(x) = Ax with A= [0 2 —1 3]. Thisis a transformation from
0 O 0 5

R* onto R3. The columns of A aj, a,, and a4 are linearly independent and span
R3 (that is, the function is surjective). Therefore, there must be points in R3 that
come from several points in R* (the function is not injective). Let us find some of

these points.

1 -4 8 1 n 1 0 6 0 y1—2_y2—%y3
0 2 -1 3|y | ~(01 -0 Lpn-—23y =
0 0 0 5|y 00 01 tys

X1 =y1— 2y, — 2y3 — b6x3
X2 =35yr — 1%}/3 + %X3
X4 = 5)3

Since x3 is a free variable, we have that for each point in the codomain, there is a
straight line that maps onto it (the equation of the line is the one given above).

V.
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Classification of functions

Theorem 9.1

Let T(x) be a linear transformation. T (x) is an injective function iff T(x) =0
has only the trivial solution x = 0.

Proof
Proof =

If T is injective, then, by definition, every point of the codomain, in
particular O is the mapping of at most one point in the domain. We
already know that for any linear transformation T(0) = 0, therefore,
x = 0 must be the unique solution of the equation T(x) = 0.
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Classification of functions

Proof <=

For any linear transformation we know that 7(0) = 0. Let us assume
that the statement is false, that is T(x) = 0 has only the trivial solution,
but T is not injective. IF T is not injective there exist a point y in the
codomain that is the image of two points in the domain

T(x1) =y
T(x2) =y

If we know subtract the two equations we have

T(Xl) - T(Xz) =0
T(x1 —x2)=0 T is linear
X1 —x2=0 There is only one solution of T(x) =0
X1 = Xp contradiction (q.e.d.)
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Classification of functions

Theorem 9.2
Let T(x) = Ax be a linear transformation. Then:

@ Range(T) =R™ iff Span(ay, az, ...,a,) = R™.

@ T is injective iff all columns of A are linearly independent.
Proof

@ According to Theorem 3.2, the columns of A span R™ if for each b € R™, the
equation Ax = b is consistent, that is, if there exists at least one solution of
T(x) = b. If this is true, then Range(T) = R™.

@ According to Theorem 9.1, T is injective iff T(x) = 0 has only the trivial
solution, or what is the same iff Ax = 0 has only the trivial solution. This

happens only if the columns of A are linearly independent as stated by
Theorem 6.1.
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Classification of functions

3X1 —+ X2
Let T(x) = | 5x1 + 7x
x1 + 3x
@ Show that it is a linear transformation
@ Does it map R? onto R3?

Solution
31
@ The transformation is of the form T(x) = Ax with A= [ 5 7| and,
1 3

therefore, the transformation is linear.

@ The columns of A are linearly independent (because they are not multiples of
each other), then, by the previous theorem, the transformation is injective.
However, they do not span all R? (since they are only two vectors and for
spanning all R3 we need at least 3 vectors). Consequently, the transformation
is not surjective, and it does not map R? onto R3.

V.
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Exercises

Exercises

From Lay (4th ed.), Chapter 1, Section 9:
e 1901
@ 1903

1.9.17

1.9.33

1.9.36

1.9.37

1.9.39
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More applications

Given the following nutritional information:

Amounts (g) Supplied per 100 g of Ingredient Amounts (g) Supplied by

Nutrient Nonfat milk Soy flour Whey Cambridge Diet in One Day
Protein 36 51 13 33
Carbohydrate 52 34 74 45
Fat 0 7 11 3

What is the amount of nonfat milk, soy flour and whey needed to provide the
protein carbohydrate and fat planned for one day?

Solution
36 51 13| 33 1 0 0]0.277
52 34 74|45 ~|( 0 1 0]0.392
0 7 11| 3 0 0 1]0.233

That is, we need x; = 0.277 - 100g= 277g of non-fat milk, x, = 392g of soy flour
and x3 = 233 g of whey.

W
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More applications

In a simplistic model red blood cells (erythrocytes) are created in the bone
marrow, then some of them pass to the blood. After some time, old red blood
cells are destroyed in the spleen (bazo).

Erythropoetin
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More applications

Let's say that at every time interval:

@ 5% of the erythrocytes in the marrow leave to the blood stream.
@ 2% of the erythrocytes in the blood stream are destroyed by the spleen.
@ 1M new red blood cells are created at the marrow.
The following equation can be used to determine the amount of erythrocytes at

any moment
(x&ﬁﬁi%) (0.95 0 ) (x,(n?,mw> . (106)
k+1 = k
Xt(;/ood) 0.05 0.98 Xt(a/o)od 0

This kind of models is called difference equations.
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A little bit of history

Matrices appeared as a regular arrangement of numbers more than 2,000 years
ago. However, it was during the XVII?", XVIII" and XIXt centuries that they
developed in the way we know them now. Some important names in their modern
development are Seki Takakazu (1683), Gottfried Leibniz (1693), Gabriel Cramer
(1750), James Sylvester (1850), and Arthur Cayley (1858). They were applied in
all kind of mathematical problems as a way to organize calculations.

To know more about the history of matrix algebra visit

@ http://www-groups.dcs.st-and.ac.uk/~history/PrintHT/Matrices_
and_determinants.html
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Applications

Finite elements has been one of the most successful approaches to

biomechanical modeling. In the figure we show one of such a model for the heart.

Using this model, all kind of local stresses can be calculated.

B K Kl Ko
fal |0 K K
falTlo 0 K
f‘M 0 0 0
)

0 0 0 ](dy

KL 0 0 |ldg

0 KL 0 |ld,

0o o ko|ld.

J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, M. Ganter. Banded Matrix Approach to Finite Element Modeling for Soft Tissue Simulation.

December 3, 2013
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Basic definitions

Definition 1.1 (Matrix)

Informally, we can define a matrix as a regular arrangement of numbers that are
laid out in a grid of m rows and n columns. More formally, we say that

A € Mp,xn. We denote as a; as its j-th column, and aj; the element in the i-th
row and the j-th column.

ail =ik din

dni ano aon
A= (a1 a a,) =

dml dm2 --- Admn

The main diagonal is the vector given by (a1, ax, ...). Two important special
matrices are the identity matrix (I € M,x,) that is zero everywhere except the
main diagonal that is full of 1s; and the zero matrix (0 € M, ,,) that is zero
everywhere.

MATLAB: A=[1 2 3; 4 5 6]
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Matrix operations

Definition 1.2 (Sum with a scalar)

We define the sum operator between a scalar and a matrix as:

+: RXxMpxn — Momscn
+(k, A) — B=k+A |bj=k+ay

We overload the notation to define the sum operator between a matrix and a

scalar as

= ManXR — men
+(Ak) = B=A+k |bj=a;+k

1 2 3 Properties
A = 1 —2 -3
-1 -2 - k+A = A+k
B=1+4 = (2 2 _42> kit k) +A = kit (ko+A)

MATLAB: B=1+A
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Matrix operations

Definition 1.3 (Multiplication with a scalar)

We define the multiplication operator between a scalar and a matrix as:

RXMan — men

We overload the notation to define the multiplication operator between a
matrix and a scalar as

ManXR — Man
(Ak) = B=Ak |bj=ak

Properties
A (1 2 3
- \-1 —2 -3 kA = Ak
e — 2 4 6 (kiko)A = ki(koA)
- - —2 4 —6 (kl + k2)A = kA+ kA

MATLAB: B=2x*A
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Matrix operations

Definition 1.4 (Sum of two matrices)

We define the sum operator between two matrices as:

+ 1 Mpmxn X Mpxn
+(A, B)

— Mpxn
A“r‘B |c,J:a,J+b,J

— C=

A:

B =

C=A+B =
MATLAB: C=A+B

1
-1

2
—2

4 5 6
0 11

5
-1

7
=1

)

3
-3

9
=2

)
)

3. Matrix algebra

Properties

A+ B

A+ (B+C)
A+0
k(A+ B)

B+A
(A+B)+C
A

KA + kB
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Matrix operations

Proof of the properties

We are not proving all properties, although all of them follow the same strategy.

Let's see an example

k(A+ B) = kA + kB

Proof
Let us develop the left hand side

C:A+B c,-j:a,-j+b,-j
D = kC = k(A+ B) | dj = kejj = k(aj + by) = kaj + kbj

Now, the right hand side

E = kA e,-j:ka,-j
F = kB | f; = kb
G=E+F=kA+kB | gj=ej+f; = kaj+ kb

It is obvious that dj; = gj;, and consequently k(A + B) = kA + kB. (q.e.d.)
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Matrix operations

Definition 1.5 (Multiplication of two matrices)

We define the multiplication operator between two matrices as:
men X Mnxp — MmXP
n
-(A, B) — C=AB |C,'j = Z a,-kbkj
k=1
If we consider the different columns of B, then we have
B = (b1 b, .. bp) = AB = (Ab1 Ab, .. Abp)

That can be interpreted as “the j-th column of AB is a weighted sum of the
columns of matrix A using the weights defined by the j-th column of B’

MATLAB: A%B l
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Matrix operations

2 3 4 3 6
LetA—<1 _5> and B—(l 9 3).Then,

2 3\ /(4 11
Ab = {1 s 1):<—1>

2 3\(3 0
Az = {1 5 —2)‘ 13

2 33 /6)_ (21

—_
|
o1

w - (-

11 0 21
AB (Ab;  Ab, Ab3):<_1 13 _9>

To directly compute a specific entry, for instance, (AB),3 we have to multiply the
2nd row of A and the third column of B
3 4 3 6

e [
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Matrix operations

Geometrical interpretation

Consider the linear transformations

Ta(x) = Ax
Ts(x) = Bx

that map any input vector using the matrix A or B, respectively. Now consider the
sequential application of first Tg, and then T4, as shown in the following figure:

Multiplication Multiplication
" byB s "  byAd T~
=7 o Y
oy |4 ;A(Bx)
.’/
Multiplication _J_i_,,_/-r-"""
by AB

Matrix multiplication helps us to define a single transformation such that we can
transform the original vectors in a single step:

TAB(X) = (AB)X = A(BX) = TA(TB(X))
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TOwW; (AB) = I'OW,'(A) B

row, (AB) = row, (A)B = (2 3) (‘1‘ 2 g)z(n 0 21)

A(BC) = (AB)C Associativity
A(B+ C) = AB+ AC  Left distributivity
(A+ B)C = AC+ BC  Right distributivity

r(AB) = (rA)B = A(rB)  For any scalar r
I A=A=Al, For A € Mpxn

e a— D & e 15 e



Matrix operations

Proof A(BC) = (AB)C
Let us consider the column decomposition of matrix C.

C=(a1 & ... ¢)=
BC=(Bc; Bc, .. Bg,) =
A(BC) = (A(Ber) A(Bcy) ... A(Bcy))

But we have seen in the geometrical interpretation of matrix multiplication that
A(Bc;) = (AB)c;, therefore

A(BC) = ((AB)e1  (AB)e; ... (AB)c,) = (AB)C

Warnings
@ AB # BA, matrix multiplication is not commutative.
e AB=AC= B=C.
e AB=0=%B=0or C=0.
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If A€ M, «n, then the k-th power of the matrix is defined as

Ak=A-A. ... A
—_—

k times

MATLAB: A"k l

Note: A® = [,




If A€ Mpmxn, then the transpose of A (AT ) is a matrix in M ,x such that the
rows of A are the columns of AT, or more formally

(AT); = A;

1 4 (AT)T=A
A=<‘11 g 2)=>AT= 2 5) (A+B)T = AT + BT
3 6 (rA)T = rAT
MATLAB: A’ (AB)T = BTAT

e ea— ey



Matrix operations

Proof (AB)T = BT AT
Let A€ Myxn and B € My, By the definition of matrix multiplication we
know that

(AB)j = > awby
k=1
Let B = BT and A’ = AT. For the same reason
(BTAT); = (B'A)y = k; bl ay;
But b}, = by and a;j = aji, consequently
(BTAT)ij = 3 buax = 3 aubi = (AB);i
k=1 k=1

or what is the same

BTAT = (AB)T

3. Matrix algebra December 3, 2013
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Exercises

Exercises

From Lay (3rd ed.), Chapter 2, Section 1:

213 @ 2.1.23
e 2.1.10 0 2124
@ 2.1.12 @ 2.1.25
@ 21.18 @ 2.1.26
e 2.1.19 e 2.1.27
@ 2.1.20 @ 2.1.39 (bring computer)
@ 21.22 @ 2.1.40 (bring computer)
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Matrix inverse

The inverse of a number is a clear concept

5§ =5-5"1=1=571.5

Definition 2.1 (Inverse of a matrix)

A matrix A € My, is invertible (or non-singular) if there exists another matrix
C € M «n such that AC = I, = CA. C is called the inverse of A and it is denoted
as A~L. If A is not invertible, it is said to be singular. (MATLAB: inv(4))

v

Properties

The inverse of a matrix is unique.
Proof
Let us assume that there exist two different inverses C; and C,. Then,

G = Gl = G(AG) = (GA)G = IG = G

which is a contradiction and, therefore, the inverse must be unique. (q.e.d.)

y
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Matrix inverse

[ 2 5 1 (=7 =5
LetA_(_3 _7> and A —(3 2>

It can easily be verified that

10
—1_ A-1la_ [ —
AAT = A A—/2—<0 1)

Theorem 2.1 (Inverse of a 2 x 2 matrix)

Let A= <i Z) If ad — bc # 0, then A is invertible and its inverse is

_ d —b
A ! = adibc <_C a )
Proof

It is easy to verify that AA™L = A"1A = I,.

4
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Matrix inverse

Theorem 2.2

If A€ M, xn is invertible, then for every b € R", the equation Ax = b has a
unique solution that is x = A~'b.
Proof

Proof x = A~'b is a solution

If we substitute the solution in the equation we have

Ax = A(A7'b) = (AA"Y)b =b (g.ed.)

Proof x = A~'b is the unique solution
Let us assume that x' # x is also a solution, then

Ax' =b
If we multiply on the left by A=, we have
A1AX = A"lb = x' =x

which is obviously a contradiction and, therefore, x = A~'b must be the
unique solution. (g.e.d.)
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EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected to
forces at points 1. 2. 3. as shownin Fig. 1. Letfin R? list the forces at these points, and
let y in R? list the amounts of deflection (that is. movement) of the beam at the three
points. Using Hooke’s law from physics, it can be shown that

y=Df

where D 1s a flexibility matrix. Its inverse 1s called the stiffiess matfrix. Describe the
physical significance of the columns of D and D!

FIGURE 1 Deflection of an elastic beam.

e EEEE— % s e D, 3, A0

25 /114



Matrix inverse

Consider the equation y = Df, D = and the fact that

DNl
NI= =N =
=N

D = DIl = (Del De2 DE3)

Therefore, the i-th column of D can be interpreted as the deflection at the

different points when a unit force (e;) is applied onto the i-th point. In our

example when we apply a unit force at point 1, the first column of D is (1, %, %)

meaning that the first point displaces 1 m., the second point % m., and the third
fl

point 7 m.
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Matrix inverse

If we now consider that f = D=y, D! = —% & —% and the fact that

0 —

Wl
wWIN
o

wINy

4
3
D l=p1l = (D*1e1 D*1e2 D*1e3)

Therefore, the i-th column of D~! can be interpreted as the forces needed to be
applied at the different points to produce a unit deformation (e;) at the i-th
point. In our example, to produce a displacement of 1 m. in the first point and
none at the other points (e; = (1,0, O) we need to push point 1 with a force of 5
N., to pull point 2 with a force of —% 2 N., and we do not need to apply any force
at point 3.
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Matrix inverse

Theorem 2.3
Q If A is invertible, then A~ is also invertible and its inverse is A.
@ If A and B are invertible, then AB is also invertible and its inverse is B~1A~1
© If A is invertible, then AT is also invertible and its inverse is (A=1)T.
Proof 1)
The definition of A=1 is that it is a matrix such that
AA"L=ATA=|
The inverse of A~ must be a matrix C such that

CAl=A"1C=1

If we compare this equation with the previous one, we easily see that C = A is the
inverse of A=
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Matrix inverse

Proof 2)
Let us check that B~1A~1 is actually the inverse of AB

(AB)(B~1A=1) = A(BB"1)Al = AIA~l = AA"L = |
(B~TA=1)(AB) = B-Y(A"1A)B=B"1IB=B1B=1

Proof 3)
Let us check that (A~1)7 is actually the inverse of AT

AT(A)T = [(AB)T = BTAT| = (A 1A)T = 1T =
(A-1)TAT = [(AB)T = BTAT] = (AA-1)T = [T = |

Theorem 2.4

We may generalize the previous theorem and state that

(ArAg. Ap) = AJTA L LATAY

3. Matrix algebra December 3, 2013
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Matrix inverse

Proof
Let's prove it by weak induction. That is, we know that the statement is true for

p = 2 (by the previous theorem). Let us assume it is true for p — 1, that is
(ArAo. Apr) P = AL LATATY

We wonder if it is also true for p. Let us define B = A;A...A,—1. Then, we can
rewrite the left hand side of the theorem as

(A1A2...Ap)_1 = (BAP)_l

This is the inverse of the multiplication of two matrices. We know by the previous
theorem that (BA,)~! = A;'B~! But we presumed that

Bl =(AAr. A1)t = A LLATATY

And consequently

(BA,) ™t = ASTAL LATTAT (g.ed.)
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Elementary matrices

The elementary operations we can perform on the rows of a matrix are
@ Multiply by a scalar
Q@ Swap two rows
© Replace a row by a linear combination of two or several rows

All these operations can be represented as matrix multiplications.

a b c
Consider the matrix A= |d e f
g h i
@ We can multiply the third row by a scalar r by multiplying on the left by the
matrix

1 00 a b c

E;=10 1 0)]=EA=|d e f

0 0 r rg rh ri
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Elementary matrices

@ We can swap the first and second rows of the matrix by multiplying on the
left by the matrix

010 d e f
Eb=11 0 0)]=EA=|a b c
0 01 g h i
© We can substitute the third row by r3 + kir; by multiplying on the left by the
matrix
1 0 O a b c
Es=|10 1 0| =EA= d e f
kk 0 1 g+ kia h+ kb i+ kc

Definition 3.1 (Elementary matrix)

An elementary matrix is one that differs from the identity matrix by one single,
elementary row operation.

v
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Elementary matrices

Theorem 3.1

The inverse of an elementary matrix is another elementary matrix of the same
type. That is, row operations can be undone.

1 0 0

Q@ E'=(01 0
00 1
010

QE'=(1 00
0 0 1

=i __

R E3=[1 0 0; 01 0; k1 0 1];

—k 0 1

inv (E3)

.
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Elementary matrices

Theorem 3.2

A matrix A € M, «, is invertible iff it is row-equivalent to I,. In this case, the
sequence of operations that transforms A into |, is also the one that transforms I,

into A71,
Proof =

If A is invertible, then by theorem 2.2 we know that the equation system
Ax = b has a unique solution for every b. If it has a solution for every
b, then it must have a pivot in every row, that must be in the diagonal

and, consequently the reduced echelon form of A must be I,.
Proof <

If A is row-equivalent |,, then there exists a sequence of elementary
matrices that transform A into I,

A~ EA~EBEA~ .. ~EE, 1..BLEEA=I,

E = E,E,_1...E>E; is a candidate to be the inverse of A. Since each
of the elementary matrices is invertible, and the product of invertible
matrices is invertible, then E is invertible and A must be its (unique)
inverse. Conversely, E is the inverse of A and A is invertible.
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An algorithm to invert matrices

Algorithm

Algorithm: Reduce the augmented matrix ( A | / )
If A is invertible, then ( A ‘ / ) ~ ( / ‘ AL )
If Ais not invertible, then we will not be able to reduce A into /.

This algorithm is very much used in practice because it is numerically stable and
rather efficient.

4

0 1 2
Let A= 1 0 3
4 -3 8

We construct the augmented matrix

0 1 2|1 0O
1 0 3(0 10
4 -3 8|0 0 1

o’
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An algorithm to invert matrices

And now we transform it
0 1 2|1 0 O
1 0 3(0 1 0
4 -3 8|0 0 1
1 0 3/{0 1 0
rL < r 0 1 211 0 O
4 -3 8(0 0 1
1 0 310 1 O
r3 < r3 —4r; 0 1 2 1 0 0
0 -3 4|0 -4 1
1 0 3|]0 1 O
r3 < r3+ 3rp 01 2(1 0 O
0 0 213 —4 1
1 0 3{]0 1 O
r3 %r3 01 211 0 O
0013 -2 %
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An algorithm to invert matrices

10 3/0 1 O
01 2(1 0 O
0013 21
10 3/0 1 O
r2<—r2—2r3 0 1 0| -2 4 -1
00 1|3 —2 1
1o00[-2 7 -3
rp < r; —3r3 01 0| -2 4 -1
0013 —2 1

Since A is row-equivalent to /3, then A is invertible and its inverse is

9 3
-9 7 _3
2 2
Al=[-2 4 —1|. To finalize the exercise we should check that
3 1
3 _o 1
2 2

AAT = ATA= I

’
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An algorithm to invert matrices

A new interpretation of matrix inversion

By constructing the augmented matrix (A | / ) we are simultaneously solving
multiple equation systems

Ax—=e; Ax=e, Ax=e;

0 1 2|1 0 1 20 0 1 20
1 0 3|0 1 0 3|1 1 0 3|0
4 -3 8|0 4 -3 810 4 -3 8|1

This note is important because if we want to compute only the i-th column of
AL it is enough to solve the equation system

Ax:e,-
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Exercises

Exercises

From Lay (3rd ed.), Chapter 2, Section 2:
@ 227
e 2211
@ 2213

2.2.17

2.2.19

2.2.21

2.2.25

2.2.36
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Characterization of invertible matrices

Theorem 5.1 (The invertible matrix theorem)

Let A€ M, x,. The following statements are equivalent (either they are all true
or they are all false):

i. A is invertible.

ii. A is row-equivalent to I,.

iii. A has n pivot positions.

iv. Ax = 0 only has the trivial solution x = 0.

v. The columns of A are linearly independent.

vi. The transformation T (x) = Ax is injective.

vii. The equation Ax = b has at least one solution for every b € R".
viii. The columns of A span R".

ix. The transformation T(x) = Ax maps R" onto R".

x. There exists a matrix C € M« such that CA = I,.
xi. There exists a matrix D € M« such that AD = I,.
xii. AT is an invertible matrix

v
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Characterization of invertible matrices

To prove the theorem we will follow the reasoning scheme below:

// -
/ 7 Xii vV < vi h )
"'; 1 X—=Iv—=10 ——=1
d
xi — vii <= viii < ix
. ‘
N P
Proof i = x
If i is true, then x is true simply by doing C = A1
Proof x = iv

See Exercise 2.1.23 in Lay.

Proof iv = iii

See Exercise 2.2.23 in Lay.

Proof iii = ii

If iii is true, then the n pivots have to be in the main diagonal and in this case,
the reduced echelon form must be /,.
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Characterization of invertible matrices

Proof ii = i

If ii is true, then i is true thanks to Theorem 3.2.
Proof i = xi

If i is true, then xi is true simply by doing D = A~
Proof xi = vii

See Exercise 2.1.24 in Lay.

Proof vii = i

See Exercise 2.2.24 in Lay.

Proof vii < viii & ix

See Theorems 3.2 and 8.2 in Chapter 2.

Proof iv& v & vi

See Theorems 3.2, 5.1 and 8.1 in Chapter 2.
Proof i = xii

See Theorem 2.3.

Proof i < xii

See Theorem 2.3 interchanging the roles of A and AT.

The power of this theorem is that it connects equation systems to invertibility,

linear independence and subspace bases.
3. Matrix algebra December 3, 2013 45 / 114



@ If Ais invertible, then Ax = b has a unique solution for every b € R".

@ If A B M,y, and AB = I,, then A and B are invertible and B = A~! and
A= Bl

Watch out that this corollary only applies to square matrices.




© Matrix algebra

@ Matrix operations (a)
Inverse of a matrix (b)
Elementary matrices (b)
An algorithm to invert matrices (b)
Characterization of invertible matrices (c)
Invertible linear transformations (c)
Partitioned matrices (c)
LU factorization (d)
An application to computer graphics and image processing (d)
Subspaces of R” (e)
Dimension and rank (e)

® 6 6 6 ¢

® 6 6 6 ¢



Invertible linear transformations

Consider the linear transformation
T:R" — R”
x — Ax

Definition 6.1 (Inverse transformation)

T is invertible iff there exists S : R" — R" such that Vx € R":

S(T(x)) = x = T(S(x))

T(x) = <_01 (1)) x is invertible and its inverse is S(x) = <_01 (1)> X.
Proof
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Invertible linear transformations

T(x) x is not invertible because T((1,0)) = T((1,1)) = (1,0), so

_ 0
- \0 0
given the “output” (1,0), we cannot recover the input vector that originated this
output.

Theorem 6.1

If T is invertible, then it is surjective.

Proof

Consider any vector b € R", we can always apply the transformation S to get a
new vector x = S(b). And then, recover b making use of the fact that T is the
inverse of S, that is, b = T(x). In other words, any vector b is in the range of T
and, therefore, T is surjective.
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Invertible linear transformations

Theorem 6.2

T is invertible iff A is invertible. If T is invertible, then the only function that
satisfies the previous definition is

S(x) = A"1x

Proof =

If T is invertible, then it is surjective (see previous Theorem). Then, A is
invertible by Theorem 5.1 (items i and ix).

Proof <

If A is invertible, then we may construct the linear transformation S = A 1x. Sis
an inverse of T since
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Invertible linear transformations

Proof uniqueness

Let us assume that there are two inverses S;(x) = Bix and S3(x) = Bx with

Bi # B;. Let v e R” and v = T(x) for some x € R” (since T is invertible and,
therefore, surjective, we are guaranteed that there exists at least one such x). Now

Si(v) = BiAx = x = Byv

S2(V):BZAX:X282V }:>Bl\/:82V[VV€R] :>BIIB2

which is a contradiction and, consequently, there exists only one inverse (q.e.d.)

Definition 6.2 (lll-conditioned matrix)

Informally, we say that a matrix A is ill-conditioned if it is “nearly singular”. In
practice, this implies that the equation system Ax = b may have large variations
in the solution (x) when b varies slightly.
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Exercises

Exercises

From Lay (3rd ed.), Chapter 2, Section 3:
@ 2.3.13
@ 2.3.16
e 2.3.17
@ 2.3.33
@ 2.3.41
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Partitioned matrices

Partitioned matrices sometimes help us to gain insight into the structure of the
problem by identifying blocks within the matrix.

=1 2
A— _35 (2) 4‘3 _93‘1 :<A11|A12|A13>
8§ 6 3|1 7 -4 A | Ay | Ass

A€ Mzye,
A1 € Moy, Arp € Mayo, A1z € Moy,
Ar1 € Mixs, Axx € Miyo, Aoz € Mixy.
MATLAB:
A=[30-159 -2; -5240-31; -8 -63 17 -4];
A11=A(1:2,1:3)
A12=A(1:2,4:5)
A13=A(1:2,6)
A21=A(3,1:3)
A22=A(3,4:5)
A23=A(3,6)

o’
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Partitioned matrices

Definition 7.1 (Sum of partitioned matrices)

Let A and B be two matrices partitioned in the same way. Then the blocks of
A+ B are simply the sum of the corresponding blocks.

A+ B= A; 1 B; = Aj+ B;

Definition 7.2 (Multiplication by scalar)

The multiplication by a scalar simply multiplies each one of the blocks
independently

rA=r A,J = I’A,'j
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Partitioned matrices

Definition 7.3 (Multiplication of partitioned matrices)

Multiply the different block as if they were scalars (but applying matrix
multiplication).

2 3 11]0 -4
letA=| 1 5 —2‘3 -1 :(ﬁ“” 2‘12>
0 -4 2|7 -1 Sl
6 4
—5 1l
and B=| -3 7 :(21)
—1 3 2
5 2
Ay A B AwBi + AB 9o
Th,AB: 11 12)( 1>:( 1101 122)2 _62
en <A21 A B> A By + AxnB; 5 1

3. Matrix algebra December 3, 2013
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Partitioned matrices

Theorem 7.1 (Multiplication of matrices)
Let A€ Mpyyn and B € My, then

AB = " columng(A)rowk(B)
k=1

Proof
Let us analyze each one of the terms in the sum
aik
_ | 92« _
columny (A)row,(B) = (bkl beo ... bkp) =
Amk
aikbkn  awkbko ... aikbip
aubrr  axbka ... axbip
amkbk1  amkbke ... amkbip
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Partitioned matrices

In general, the jj-th term is
(columnk(A)rowk(B)),-j = a,-kbkj

If we now analyze the ij-th element of the sum

(Z columnk(A)rowk(B)) = > (column(A)rowx(B))j = > aiby
k=1 i k=1 k=1

But this is the definition of matrix multiplication and, therefore,

(i columnk(A)rowk(B)) = (AB)jj (q.e.d.)

k=1 ij
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Partitioned matrices

Definition 7.4 (Transpose of partitioned matrices)

Transpose the partitioned matrix as if it were composed of scalars, and transpose
each one of the blocks.

| \

A | Az | Az Al | AL | AL
A= A21 A22 A23 = AT = AIZ A2T2 A3T2
Az | Az | Asz Al | Af; | Ads

2 -3 1|0 -4
A=|1 5 —2(3 -1 |=>AT=
0 4 2|7 -1

y
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Partitioned matrices

Definition 7.5 (Inverse of partitioned matrices)

The formula for each one of the cases is worked out particularly for that case.

Here go a couple of examples.

4

A1 | O 0
Let A= 0 Ao 0
0 0 | Asz

A€ Mupxn A1 € Mpxp, A € quq, Asz € err such that p+q-+r=n.

We look for a matrix B such that

0 A22 0 Bz]_ Bzz 823 = 0 Iq 0 =
AnBi1 | AuiBro | A1nBis Ib 100
AxpBr1 | ApBy | AnBoz | = 0|l | 0
A33Bs1 | AszBsz | As3Bas 00|/

3. Matrix algebra

December 3, 2013
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Partitioned matrices

For each one of the entries we have a set of equations:

Finally,

VA1 € Mpxp A11Bi1 = Ip = B = Al_ll
VA1 € MPXP A11Bio=0= B, =0
VA1 € MPXP A11Biz=0= Bi;3=0
VA € quq A»nBy; =0= B; =0
VA € quq A By = Iq = By, = A2_21
VA € quq A»Byx3 =0= B3 =0
VAs3 € M, x, A33B31 = 0= B3; =0
VAs3 € M;x, A33Bso = 0= B3 =0
VAs3 € My, As3Bsz = I, = B3z = Agj

Al o | o
B= 0 AL ] 0
0| o [AG

’
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Partitioned matrices

(A | A
Ac€ Mnx,,, A1 € Mpxp, A € Mpxq, A € quq such that p+q=n.

We look for a matrix B such that
:<A11|A12><Bll|812>:(lp|0>$
0 | A22 Bg]_ | Bgz 0 | /q

< A11Bi1 + A12Bo1 | A11 Bz + A1z Bx > _ ( |0

A2 Bo A22B2 01
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Partitioned matrices

For each one of the entries we have a set of equations:

VA € quq A»xBy1 =0= By =0
VA22 € Mqu Azszz = Iq = 822 = A2_21
VA1 € Mgxg, Az € Mpyg AuBu + ABy =1, = [Ba = 0] =
A11B11 = Ip = By = Al_ll
VAL € Mgxg, Atz € Mpxg A11Bio + A1nBa = 0 = [Bay = Ay =
A11Bio + ApAyt = 0= A By = —ApAy, =

By = —AtAAL

Finally,

B AL | —ALARAY
—1
0 A,
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Partitioned matrices

Computational Tomography (CT) with multiple rows gives a non-block structure
for the system matrix that forces the problem to be solved in 3D. However, with a
single row detector, the system matrix has a block structure so that the problem
can be solved as a series of 2D problems strongly accelerating the process (on the
other side the redundancy introduced by multiple row offers better resolution and
robustness to noise).

T

= | ‘i
¥ iy ~
&=~/
o _,,r/j' - ———)

\
Single Row , g D Multiple Row
Detectors —p. | * petectors r‘//,,—mp/,
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Exercises

Exercises

From Lay (3rd ed.), Chapter 2, Section 4:
@ 2415
@ 2416
@ 2418
e 2.4.19
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LU factorization

Let us presume that we have a collection of equation systems

AX:bl
AX:b2

and A is not invertible, which could be an efficient way of solving all of them
together? Factorize A as A = LU (see below) and solve the equation system in
two steps. In fact the method is so efficient it is even used to solve a single

equation system.
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LU factorization

Definition 8.1 (LU factorization)

Let A€ M, that can be reduced to a reduced echelon form without row
permutations. We can factorize A as A = LU, where L is an invertible, lower
triangular matrix (with 1s in the main diagonal) of size m x m and U is an upper
triangular matrix of size m x n.

MATLAB: [L,U]=1u(4)

W

Let A € Myyxs. LU factorization will produce two matrices L and U may be of the
following structure

A=LU=

[CRCRCH
SCRCH =
3~ oo
= o oo
cooo
co< A
co i34
o> 33
o334
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Consider the equation system Ax = b, and assume we have decomposed A as
A = LU. Then, we can solve the equation system in two steps:

Ly=b

Ax:b:>(LU)x:L(Ux):b:>{ Ux —y

Multiplication

Xe sh

Multiplication ¥ Multiplication
by U by L
FIGURE 2 Factorization of the mapping X +> Ax.




LU factorization

Consider

8 = =2 2 1 0

e -3 5 1 0 _ —il 1
= 6 —4 0o -5 = 2 -5
-9 5 —5 12 -3 8

and b =(—9,5,7,11). We first solve Ly = b

=7 =2
=2 =il

W= oo
~ o oo

coow
o
|
-
[SUSCNNY
N—

0 0 =

1 0 0 0 —9 1 0 0 0 —9

=1 1 0 0 5 - 0 1 0 0 —4

2 =5 1 0 7 0 0 1 0 5

=3 8 B] 1 11 0 0 0 1 1

and now we solve Ux =y

S] —7 —2 2 —9 1 0 0 0 B]

0 —2 =il 2 —4 - 0 1 0 0 4

0 0 =il 1 5 0 0 1 0 —6

0 0 0 =il 1 0 0 0 1 =il

The trick is that, thanks to the triangular structure, solving these two equation
systems is rather fast.
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An algorithm to simple LU factorizations

Algorithm

Let us assume that A is row-equivalent to U only using row replacement only with
the rows above the replaced row. Then, there must be a sequence of elementary
matrices such that

A~ U= Ep...EzElA =U= A= (Ep...EzEl)_IU

By inspection, we note that L = (E,...E2E;) ",

In the previous algorithm we are making using of the following theorem:

Theorem 8.1

@ The product of two lower triangular matrices is lower triangular.

@ The inverse of a lower triangular matrix is lower triangular.
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An algorithm to simple LU factorizations

I’2(—I’2—%I’1 E1:
2 —
I’3<—I‘3—§I‘2 E =

Now, we calculate L as

L=(BE)'=E"E"=

[y

o O =
NI—=
= O
o = O
_ O O+~ OO

ONIm
o~ O
= O O

o

>
Il

<
Il

W = O

SO Nor~N

o OoON

= O O

OPNIW H LW = N

0
1

2

0

1

2

0

1

4

3

1 00
110
0 21
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An algorithm to simple LU factorizations

I’2(—I’2—%I’1 E1:
2 —
I’3<—I‘3—§I‘2 E =

Now, we calculate L as

L=(BE)'=E"E"=

[y

o O =
NI—=
= O
o = O
_ O O+~ OO

ONIm
o~ O
= O O

o

>
Il

<
Il

W = O

SO Nor~N

o OoON

= O O

OPNIW H LW = N

0
1

2

0

1

2

0

1

4

3

1 00
110
0 21
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LDU factorization

Note that the L and U matrices found so far are assymetric in the sense that L
has 1s in its main diagonal, but U has not. We can extract the elements in the
main diagonal of U to a separate matrix D by simply dividing the corresponding
row of U by that element:

1 00\ /210
2 4
0 £ 1 0 0 3 where D is always a
100\ /20 0\/t1Lo0
=tbUu= (3 1 0ff0o 3 0f|0 1 3
0 2 1/\oo0 3/\0 01

diagonal matrix.
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Other factorization examples

Other factorizations

There are many other possibilities to factorize a matrix A € M ,»,. See
http://en.wikipedia.org/wiki/Matrix_decomposition. Among the most
important are:
QR: A = QR where Q € M« is orthogonal (Q*Q = D) and
R € M« is upper triangular.
SVD: A= UDV* where U € M is unitary (U'U = I,), D € Mpxn
is diagonal, and V € M, is also unitary (V'V = I,).
Spectral: A= PDP~! (only for square matrices) where P € M, and
D € M, «, is diagonal.
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Exercises

From Lay (3rd ed.), Chapter 2, Section 5:
@ 259

@ 2.5.Practice problem
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An application to computer graphics and image processing

In vectorial graphics, graphics are described as a set of connected points (whose
coordinates are known).

EXAMPLE 1 The capitalletter N in Fig. 1 is determined by eight points, or vertices.
The coordinates of the points can be stored in a data matrix, D.

8 65
Vertex:
h 1 2 3 4 5 6 7 8
} x-coordinate [0 5 S5 6 6 55 55 0] -D
; y-coordinate | 0 0 642 0 8 8 158 8
In addition to D, it is necessary to specify which vertices are connected by lines. but we
omit this detail. u
12 4

8 65
We may produce “italic” fonts by shearing the
standard coordinates T(x) = Ax where A = 3

<1 O.25>
0 1 12 4
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An application to computer graphics and image processing

Coordinate translations can be expressed as T(x) = x + xg. But this is not a
linear transformation:
T(u) = u+xg
T(v) = v+xo
Tu+v) = u+v+xg
T(u)+T(v) = (u+x0)+ (v+x0)=u+v+2xg
Tu+v) # T(u)+ T(v)

We can solve this problem with homogeneous coordinates.
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An application to computer graphics and image processing

Definition 9.1 (Homogeneous coordinates)

Given a point with coordinates x we can construct its homogeneous coordinates

as
- [hx
*=h

. . . ~ u
Or in other words, given the homogeneous coordinates it = h)’ they represent

the point at Y. It is customary to use h = 1 (but it is not compulsory, and in
certain applications it is better to use other h's).

W

The 2D point (1,2) can be represented in homogeneous coordinates as (1,2,1),
as (2,4,2) and, even, as (=2, —4, —2). They all represent the same point.
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An application to computer graphics and image processing

Now, coordinate translations in homogeneous coordinates is a linear
transformation. For instance, in 2D:

1 0 Ax X x + Ax
T(X)=Ax= |0 1 Ay y|=|y+Ay
0 0 1 1 1

2D transformations in homogeneous coordinates

In general, any 2D transformation of the form T(x) = Ax can be represented in

homogeneous coordinates as
- A 0).
T(X) = (0 1) X

3. Matrix algebra December 3, 2013 81 /114



An application to computer graphics and image processing

An application in 3D graphics:
http://www.youtube.com/watch?v=EsNmiiK1RXQ

Let's say we want to

Rotate a point 30°about the Y
axis.

@ then, translate by (—6,4,5)
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An application to computer graphics and image processing

We need to use the transformation T(X) = A% with
1 0 0 -6 cos(30°) 0 sin(30°) O
41010 4 0 1 0 0
~ {0 0 1 5 —sin(30°) 0 cos(30°) O
00 0 1 0 0 0 1
and
X
x=|”
V4
1
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An application to computer graphics and image processing

Let's say we want to produce perspective projections. Let's imagine that the
screen is on the XY plane and the viewer's eye is at (0,0, d) (the distance to the
screen is d). Any object between the viewer and the screen is projected onto the

screen as in the figure below

(b

(a)
FIGURE 6 Perspective projection of (x, y,z) onto (x*, y*,0)

By similar triangles we have

_ X _ _x *
tana = 75 = g5 = X = 1=

=
d
W
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An application to computer graphics and image processing

Similarly, y* = 1—_"'—§ Using homogeneous coordinates we want that (x, y, z,1)

maps onto (1%, %=,0, 1), or what is the same (x,y,0,1 — Z). We can achieve
d d
this with the perspective transformation:

1

o2

Il
o O O
O O = O

o O O
= O O O

Q=
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Exercises

From Lay (3rd ed.), Chapter 2, Section 7:
@272
@ 273
@ 2.7.10
@ 2.7.12
@ 2.7.22
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Subspace

Definition 10.1 (Subspace of R")
H C R" is a subspace of R" if:
Q@0cH
@ Yu,ve H u+veH (His closed under vector addition)
Q@ Yue HVreR rue H (His closed under multiplication by a scalar)

The following two sets are subspaces of R":

o H=1{0}

Q@ H=R"
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Subspace

A plane is defined as

H = Span {vi,vo} = {v € R"|v = A\v; + Xpvp}
This plane is a subspace of R3

Proof

Q Proof 0 € H
If A1 =X =0, thenv=0.
@ Proofu+veH
ue H=u=>A\;,vi + X,V
ve H=v=M\,vi+ AV
u+v = (Avi 4+ A2uv2) + (Anvi + Az v2)
- (Alu + >\1V)V1 + (A2u + >\2v)v2 eH
© Proof rue H
ue H=u=>A,vi + X,
ru = r(Avi + Aauv2)
= rAuVi1+riouve € H

4
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Subspace

A line (L) that does not pass through the origin is not a subspace, because
Q0¢L
@ If we take two points belonging to the line (u and v), u+v ¢ L.
@ If we take a point belonging to the line (w), 2w ¢ L.

u+ visnoton L 2wisnoton L
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Subspace

Consider v; and vo = kvy. Then,

H = Span {vi,v,} =

Span {v }

is a line. It is easy to prove that this line is a subspace of R".

Vi

o
S
o

vi Z 0. vy =kvy.

o

’
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Let A€ Mp,«n. Let aj € R™ be the columns of A. The column space of A is
defined as

Col{A} = Span{aj,az,...,a,} CR™

Col{A} is a subspace of R™. l




Column space

1 -3 -4 3
let A= 4 6 -2 |andb= 3
-3 7 6 —4

Determine if b belongs to Col{A}.

Solution
If b € Col{A} there must be some coefficients x;, xo and x3 such that

b = x;a; + xpap + x3a3

To find these coefficients we simply have to solve the equation system Ax = b.

1 -3 —4 3 1 -3 4| 3
—4 6 -2 3 |~ 0 —6 —-18|15
-3 7 6|4 0 O 0| 0

In fact, there are infinite solutions to the equation system and, consequently,
b € Col{A}.

W
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Null space

Definition 10.3 (Null space of a matrix)
Let A€ M xn. The null space of A is defined as

Nul{A} = {v € R"|Av = 0}

Theorem 10.2

Nul{A} is a subspace of R".
Proof

@ Proof 0 € Nul{A}
A0 =0= 0 c Nul{A} (q.ed.)

@ Proofu+v € Nul{A}

ue Nul{A} = Au=0

veNu{A} = Av=0

Alu+v) =Au+Av=0+0=0= u+ve Nu{A} (ged)
@ Proof ru € Nul{A}

uc Nul{A} = Au=0

A(ru) = rAu = r0 = 0 = ru € Nul{A} (g.e.d.)
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Basis of a subspace

Definition 10.4 (Basis of a subspace)
Let H C R". The set of vectors B is a basis of H if:

@ All vectors in B are linearly independent
@ H = Span{B}

Let be the vectors

1 0 0 0
0 1 0 0
ee=1]0 e;=10 es=|1 e,=10
0 0 0 1

The set B = {ey, ey, ...,e,} is the standard basis of R".
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Basis of a subspace

-3 6 -1 1 -7
Find a basis for the null space of A = 1 -2 2 3 -1
2 -4 5 8 —4

Solution
The null space of A are all those vectors satisfying Ax = 0.

1 20 -1 3]0
(A|0O)~| 0 01 2 =210
0 00 0 0]0

. . .oX1 = 2x0 + x4 — 3x
So the solution of the equation system is 2+ > }

X3 = —2X4 + 2x5
2X2 + Xa — 3X5 2 1 -3
X2 1 0 0
X = —2X4 aF 2X5 = X2 0l + X4 —2 + X5 2
X4 0 1 0

X5 0 0 1

4
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Null space and equation systems

The set B ={(2,1,0,0,0),(1,0,—2,1,0),(—3,0,2,0,1)} is a basis of Nul{A}.
By construction, we have chosen them to be linearly independent.

.

1 0 0
Consider A={0 1 0
0 0 O

o {e3} is a basis for Nul{A}
o Consider b = (7,3,0). The general solution of Ax = b is of the form
X = X 4 Xpu/

where xq is a solution of Ax = b that does not belong to Nul{A} and xy,,
belongs to Nul{A}. In this particular case,

X = (7, 3, O) + Xx3e3

’
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Null space and equation systems

Let us prove that the general solution is actually a solution of Ax = b
Ax = A(Xo +XNuI) = Axg+ Axnyy=b+0=0Db

Intuititively we can say that the null space is the set of all solutions for which we
have no measurements. The equation system only impose some constraints on
those coefficients for which we have measurements. This is a problem in real
situations as shown in the following slide.
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Null space and equation systems

In this example, the authors describe how the exact location of a tooth fracture is

uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A.; Mol, A;; Tyndall, D. A, Rivera, E. M. In vitro

of local d t

graphy for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Basis of a subspace

Find a basis for the column space of B =

O O O
o O+~ O
o N
o m
o = O O

Solution
From the columns with non-pivot positions of matrix B we learn that

bs; = —3b; + 2b,

b, = 5b; — by
Then,
Col{B} = {veR*v=xb;+xbs+xsbs + x4bs + xsbs }
. v € R* v = xib; + xbs + X3(—3b1 aF 2b2)+
- X4(5b1 — bz) aF X5b5

= {veR*v=x{b; + x}bs + xsbs }
And, consequently, Basis{Col{B}} = {bj, bz, bs}

4
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Basis of a subspace

1 3 3 2 -9
-2 -2 2 -8 2
2 3 0 7 1
3 4 -1 11 -8

Find a basis for the column space of A =

Solution

It turns out that A ~ B (B in the previous example). Since row operations do not
affect linear dependence relations among the columns of the matrix, we should
have

a3 = —3a; + 2a,
a; = 5a; — ap

and Basis{Col{A}} = {a1,ap, a5}

Theorem 10.3
The pivot columns of A form a basis of Col{A}}.

o
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Exercises

From Lay (3rd ed.), Chapter 2, Section 1:
e 281

@ 28.2
@ 285
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Coordinate system

Definition 11.1 (Coordinates of a vector in the basis B)

Suppose B = {by, by, ...,b,} is a basis for the subspace H C R". For each x € H,
the coordinates of x relative to the basis B are the weights c; such that

x = c1b; + by + ... 4+ b,
The coordinates of x with respect to the basis B is the vector in RP
c
[x]z =

Sp
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Coordinate system

Let x = (3,12,7), vi = (3,6,2), vo = (—1,0,1), B = {vi,v2}.
© Show that B is a linearly independent set

@ Find the coordinates of x in the coordinate system B
Solution

@ We need to prove that the only solution of the equation system
civi+ vy =0is ¢g = ¢ = 0.

3 -1|0 1 0|0
6 0|0 |~ 0 1|0
2 1]0 0 0|0

And, therefore, the unique solution is ¢; = ¢ = 0 (q.e.d.)
@ We need to find ¢; and ¢ such that c;vy + covo = x

3 1| 3 1 0|2
6 012 |~ O 1|3
2 1| 7 0 0/0

And, therefore, [x]g = (2, 3).

o’
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The following figure shows how x is equal to 2v; + 3v;

e EEEE— % s e D s 0 i



Coordinate system

Theorem 11.1

The coordinates of a given vector with respect to a given basis are unique.
Proof

Let us assume they are not unique. Then, there must be two different sets of
coordinates such that

x = ciby + by + ... + Cpbp
X = C{bl ar Cébz 4+ ...+ C;,bp

If we subtract both equations, we have
0=(ci—¢)bi+(c2a—c)ba+ ...+ (¢, — ;)b
But because the basis is a linearly independent set of vectors, it must be

’
)
czfc2:0:>c2:c2

cl—c{:0:>51:c
/

c;,—cl'):O:r:p:c;7

This is a contradiction with the hypothesis that there were two different sets of
coordinates, and therefore, the coordinates of the vector x must be unique.
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Subspace dimension

Isomorphism to RP

For any given subspace H and its corresponding basis B, the mapping

T:H — R°r
x — [X]s

is a linear, injective transformation that makes H to behave as RP.

Definition 11.2 (Dimension)

The dimension of a subspace H (dim{H}) is the number of vectors of any of its
basis.

The dimension of H = {0} is 0.

V.

In our previous example in which B = {v1,v,}, the dimension is 2, in fact H
behaves like a plane (see previous figure in the example).

4
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Rank of a matrix

Definition 11.3 (Rank of a matrix)

The rank of a matrix A is rank{A} = dim{Col{A}}, that is, the dimension of
the column space of the matrix.
MATLAB: rank (4)

Theorem 11.2

The rank of a matrix is the number of pivot columns it has.

Proof

Since the pivot columns form a basis of the column space of A, the number of
pivot columns is the rank of the matrix.

v

1 3 3 2 -9 1 0 -3 5 0
A -2 -2 2 -8 2 |0 1 2 -1 0
2 3 0 7 1 00 0 01
3 4 -1 11 -8 00 0 00O

Therefore, the rank of A is 3.

4
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If A has n columns, then

Rank{A} + dim{Nul{A}} =n

Let H be a subspace of dimension p. Any linearly independent set of p vectors of
H is a basis of H. Any set of p vectors that span H is a basis of H.




Characterization of invertible matrices (continued)

Theorem 11.5 (The invertible matrix theorem)

Let A € M,x,. The following statements are equivalent (either they are all true

or they are all false):
xiii. The columns of A form a basis of R"
xiv. Col{A} =R"
xv. dim{Col{A}} =n
xvi. Rank{A} =n
xvii. Nul{A} = {0}
xviii. dim{Nul{A}} =0
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Characterization of invertible matrices

Proof v = xiii

This is true by the basis theorem.
Proof xiii = xiv

By the definition of basis.
Proof xiii = xv

By the definition of dimension.
Proof xv = xvi

By the definition of rank.
Proof xvi = xviii

By the rank theorem.

Proof xvii = iv

By the definition of null space.
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Exercises

From Lay (3rd ed.), Chapter 2, Section 9:
0291
0293
@ 299
@ 2.9.19
@ 2.9.27
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A little bit of history

The determinant of a matrix was first proposed by Seki Takakazu (1683) and
Gottfried Leibniz (1693). Then Gabriel Cramer (1750) and Augustin Cauchy
(1812) used them to solve problems in analytical geometry. Currently, they are

not so much used in computational algebra, but they give important insights into
the structure of a matrix.
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Applications

The determinant plays an important role in the analysis of Brownian motion. It
was first described by Robert Brown in 1827 (looking at pollen grains in water).
Albert Einstein published in 1905 a paper in which he explained brownian motion
as the result of the hitting molecules to bigger particles. This served as a
theoretical basis for a posterior experiment by Jean Perrin that confirmed the
existence of atoms. Jean Perrin was Nobel Prize in 1926.

See video at https://www.youtube.com/watch?v=hy-clLi8gHg
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Cofactor

Definition 1.1 (Cofactor)
The cofactor of the jj-th element of the matrix A is
Gy = (~1)* |4

where Aj; is the matrix that results after eliminating the i-th row and the j-th
column from matrix A.

v

In the following example we calculate As

1 -2 5 0
2 0 4 -1
£ T R
0 4 -2 0

1
Aggz 2
0 —
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Determinant of a matrix

Definition 1.2 (Determinant of a matrix)

The determinant of a square n X n matrix A (|A| or det{A}) is a mapping from
Mpxn onto R such that

A = A n=1
| auGua+anGoe+ ...+ a1nG, n>2

where aj; is the ij-th element of matrix A.
MATLAB: det (4)

(4 )b {(3 )} {(

} = 1:-(=2)—5-0+0-(—4)=-2
_é é = 4det{0} — (—1)4det{—2} =4-0 — (—1) - (—2) = —2

= 2det{0} — (—1)det{0} =20 — (—=1)-0=0

=  2det{—2} —4det{0} =2-(—2) —4-0= —4
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Determinant of a matrix

Theorem 1.1

For n > 2, the determinant can be computed as a weighted sum of the cofactors
along any row or column

n n
Al =3 2;Ci =3 3Gy
j=1 i=1

1 5 0
det 2 4 -1 = 0:-CG3—1-C3+0-G3=-2
0 -2 0
ors| 1 5
G = (12°|5 5 |=-ai-21-sion =2

y
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@ Forn=2,
|A| = a11d22 — a12a21

e Forn=3,
|A| = 11822333 + 312423331 + 313321332 — 31123432 — 12321333 — 313322431

3x9 = (=5)x(~5)

= 27 - 25
= 2
T g th oE B e
d f
g i

aei + bfg + cdh - afh - bdi - ceg

- 4 Determinantof a matrix September 30, 2013
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Determinant of a matrix

Theorem 1.3 (Useful particular cases (continued))

o For triangular matrices,
n
|Al =TT ai
i=1

1 4 3 2
5 1 2 -10
01 2 —10 1 12
00 1 | =" 8 é 1i _1'1‘0 1‘_1-1-1|1|_1
00 0 1

Computing the determinant requires O(n!) operations if we do it through the
cofactor expansion. There are much faster algorithms (O(n®)) that look for
triangular matrices that have the same determinant as the original matrix and,
then, they use this theorem that makes a much faster calculation.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 3, Section 1:
@ 3.1.42
@ 3.1.43 (with computer; MATLAB: A=rand(4))
@ 3.1.44 (with computer)
@ 3.1.45 (with computer)
@ 3.1.46 (with computer)
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Properties of determinants

Theorem 2.1 (Determinant of the multiplication)

det{AB} = det{A}det{B}
det{kA} = k"det{A}

Note: In general, det{A + B} # det{A} + det{B}

Theorem 2.2 (Determinant of row operations)
© If a multiple of one row of a matrix A is added to another row to obtain a
matrix B, then det{B} = det{A}.
@ If two rows of a matrix A are interchanged to obtain a matrix B, then
det{B} = —det{A}.
© If a row of a matrix A is multiplied by k to obtain a matrix B, then
det{B} = kdet{A}.
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Properties of determinants

Consider the following transformations that are of the form B = EA

1 00 0
k 1 0 0

Q B= 00 1 0 A= |B| = |E||A| = 1]A]|
0 0 01
01 00
1 0 00

Q B= 00 1 0 A= |B| = |E||A| = —1|A]
0 0 01
k 0 0 O
01 00

Q B= 0 01 0 A:>|B|:|E||A|:k|A|
0 0 01
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Properties of determinants

2 4 6
A= 3 5 7 Al
1 2 3
1 2 3
r1<—%r1 Blz 3 5 7 |Bl|=%|A|:>|A|:2|Bl|
1 2 3
1 2 3
I’2(—I’2—3I’1 82: 0 -1 -2 |Bg|=|Bl|:>
< r—rnr 0 0 0 |A|:2|BQ|:2(1(—1)0):0
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A is invertible iff |A| # 0. In that case, |A~1| = |A|7L. '
If |JA| = 0, then the columns of A are not linearly independent. l

For any matrix A € M, it is verified that |A| = |AT|.

The effect of column operations on the determinant is the same as the effect of
row operations.




Exercises

Exercises

From Lay (3rd ed.), Chapter 3, Section 2:
e 3.2.14
e 3.2.15
@ 3.2.18

3.2.19

3.2.24

3.2.31

3.2.32

3.2.33

3.2.45 (computer)
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Cramer's rule

Cramer's rule is useful for a theoretical comprehension of what the determinant is
and its properties, but it is not so useful for computational calculations.
Theorem 3.1 (Cramer’s rule)

Let A € M, «, be an invertible matrix. For every b € R" the i-th entry of the
unique solution x of Ax = b is

_ det{Ai(b)}
Xi = Tdet{A}

where A;(b) is the A matrix in which the i-th column has been substituted by b,
that is,
Aib)=(a; a .. a1 b a1 .. a,

Proof
Lete; (i=1,2,...,n) be the columns of the identity matrix I,. Consider the
product

AI,'(X) (Ae1 Aez Ae,-_l Ax Ae,-+1 Ae,,) =

= (al ax ... aAj_1 b ajir1 ... an):A,-(b)
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Cramer’s rule

Now we take the determinant on both sides

Ai(B)] = JAK(x)] = [Al[4(x)] = |Alx; = x; = 2

v

Consider the equation system (isﬁ _2> (X1> = (i) Its solution is given by

S X2

4 -2

= Los | _ ast2 _ _4s+d)
3s -2 3s2—12 — 3(s—2)(s+2)
—6 s
3s 4

X = —6 1 _ 3s24 _ _ s+8
3s —2 3s2—12 (s—2)(s+2)
—6 s

4
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Matrix inversion

Algorithm to invert a matrix

We know that the inverse is a matrix such that AA=1 = /.. If we call x; to the
i-th column of A~1, then we have

AA71:A(X1 X2 ... x,,):(el e ... en)

i.e., we are solving simultaneously n equation systems of the form Ax; = e;. The
i-th entry of these columns is

L 1Al
Xij = A

If we now calculate the determinant in the numerator by expanding by the j-th
column, we have |A;(e;)| = (—1)"|A;i|, where Aj is the submatrix that results
after eliminating the j-th row and the i-th column (or, what is the same, the
cofactor of the ji-th element).

Ml G
Xj = TT1AT . T TA
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Matrix inversion

Definition 4.1 (Adjoint (adjugate, adjunta) of a matrix)

Let A € M, «, be a square matrix. The adjoint of A is another n X n matrix,
denoted by A* such that

A; =Gy

Algorithm to invert a matrix (continued)

Finally we have

Cu G ... Cu
Co Co .. C
11 |G G2 2
AN =@ | T
Cin Gon .. Cor

Watch out that the indexes of the cofactors are transposed with respect to the
standard order. Consequently

A—l — |71‘(AT)4<
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Matrix inversion

Theorem 4.1

(A7) = (AT

10

Cpp = (—itt ‘ 1 ‘ =1
10

G = (—12F? | 1 | =-1
10

G = (- | | -0

2 1 0
A=11 1 0| =
0 01
[A] =1
G = (-1'*? | 5 =-1
o = (—1)*F2 (2, (1] =2
Ca=(-32| 2 0 -0
no=
(-1 2
( o 0

11
as=n| o 5 [=0
2 1
Cp3 = (—1)2F3 o o | =0
2 1
Gg=(-1*3| 7 1 |=1
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Areas and volumes

Theorem 5.1 (Area of a parallelogram, Volume of a parallelepiped)

If Ais a 2 X 2 matrix, then |det{A}| is the area of the parallelogram formed by
the columns of A. If A is a 3 x 3 matrix, then | det{A}| is the volume of the
parallelepiped formed by the columns of A.

Let be the parallelogram ABCD (A = (—2,-2), B=(0,3), C = (4,-1),
D = (6,4)).

The area can be calculated as
|det( B—A C—A )=

Vi o 2<3>6>(_5> (—il) -(3) )I-
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Areas and volumes

Theorem 5.2 (Area after a linear transformation)

Consider the transformation T(x) = Ax.
If A€ Mayyo and S is a parallelogram in R?, then

Area{T(S)} = |det A|Area{S}
If A€ Msys and S is a parallelepiped in R3, then the volume of T(S) is
Volume{ T(S)} = | det A|[Volume{S}

Proof
Let’s prove it for the 2D case (the 3D one is analogous).

Consider the columns of A, A = (a1 az). Without loss of generality we may
consider S to be at the origin with sides given by by and b;:

S = {X S R2‘X = s51b; + s,by Vs, 5 € [0, 1]}
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The image of S by T is
T(S) = {y € R?|y = Ax = 51Ab; + 5Ab, Vs;, 5, € [0,1]}
which is another parallelogram. Therefore, the area of T(S) is

Area{T(S)} = |det(Aby Aby)|=|det{A(by by)}|=det{AB}
— | det A|| det B| = | det A|Area{S}

(q.e.d.)




Areas and volumes

Theorem 5.3

The previous theorem is valid for any closed region in R? or R? with finite area or

volume.
Proof (hint)

We only need to divide the region into very small (infinitely small) parallelograms
(or parallelepipeds) and apply the previous theorem to each one of the pieces.

————————
FLS S /

7 7 7
YA YA Y

LT T TN

T / £ /’/’ X / +
A 5 ~—~ [ 7L i Y77
/A / 11/
7 / /
; /7 : /
0 80 i /7
kY f-f A /
/ ,f( /_/
/ 7
SmE i /!{\f / 7 /{ [
A paNNN,

/.,ﬂ,ﬂl.-,,',;_”f,z,z,
7 7
7777777777777 777

FIGURE 7 Approximating 7 (R) by a union of parallelograms.
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Areas and volumes

Suppose that the unit disk defined as

D={ueR?u}+u3 <1}

is transformed with the transformation

T(u) = (8 2) u

=G 8- ()}

Exploiting the facts that x; = auy = u; = °%, xp = buy = up = 3 we may also
characterize the transformed region as

to produce

EET(D):{XGR2

that is a solid ellipse.

4
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| det A|Area{D} = (ab)(m(1)?)

mab

) . Area{E}
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Exercises

Exercises

From Lay (3rd ed.), Chapter 3, Section 3:
e 331
e 3.3.7
e 3.3.11

3.3.21

3.3.25

3.3.26

3.3.29

3.3.32
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© Vector spaces

@ Definition (a)

@ Vector subspace (a)

@ Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)

Dimension of a vector space (d)
@ Rank of a matrix (d)
@ Change of basis (d)
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A little bit of history

Vectors were first used about 1636 in 2D and 3D to describe geometrical
operations by René Descartes and Pierre de Fermat. In 1857 the notation of
vectors and matrices was unified by Arthur Cayley. Giuseppe Peano was the firsst
to give the modern definition of vector space in 1888, and Henri Lebesgue (about
1900) applied this theory to describe functional spaces as vector spaces.
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Applications

It is difficult to think a mathematical tool with more applications than vector
spaces. Thanks to them we may sum forces, control devices, model complex
systems, denoise images, ... They underlie all these processes and it is thank to
them that we can “nicely” operate with vectors. They are a mathemtical structure
that generalizes many other useful structures.

Vector Space

Algebra over a field
K-Algebra

Hypercomplex Numbers

Clifford
Algebras

Matrix

Cayley-
Dickson Algebras

Orthogonal
g double
complex  dual
quaternion double comple
octionion  double-
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Vector subspace (a)
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Coordinate system (c)

Dimension of a vector space (d)
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Vector space

Definition 1.1 (Vector space)

A vector space is a non-empty set, V, of objects (called vectors) in which we
define two operations: the sum among vectors and the multiplication by a scalar
(an element of any field, K), and that Yu,v,w € V and Vc,d € K it is verified
that

ut+veV

utv=v-+u

(u+v)+w=u+(v+w)

e Vju+0=u

Vue V 3w e Viju+w =0 (we normally write w = —u)
cveV

c(lu+v)=cu+cv

(c+d)u=cu+du

c(du) = (cd)u

lu=u

©6000000O0O0CO0C
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Vector space

Theorem 1.1 (Other properties)

@ 0u=0
@ c0=0
® —u=(—1u

Watch out that 0 and 1 refer respectively to the neutral elements of the sum and

multiplication in the field K. —1 is the opposite number in K of 1 with respect to
the sum of scalars.

R" is a vector space of finite dimension
for any n. As well as C".

V.
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Vector space

Consider V to be the set of all arrows (directed line segments) in 3D. Two arrows
are regarded as equal if they have the same length and direction. Define the sum
of arrows and the multiplication by a scalar as shown below:

X

aU+V

v ‘f 3v —v/
X

FIGURE 3 The parallelogram rule.

0
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Vector space

Here is an example of the application of some of the properties of vector spaces

u+v+w

FIGURE2 u+v=v+u FIGURE3 (u+v)+w=u+(v+w).

With a force field we may define at every point in 3D space, which is the force
that is applied.

Conservative force field

y
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Vector space

Let S be the set of all infinite sequences of numbers
u= (7 u_»,u_1, Up, Uy, Uz, )
Define the sum among two vectors and the multiplication by a scalar as

U+v=_(.,u_o+ Voo, u_1+v_i, U+ Vo, + vi,tp+ v,...)
cu = (..., cu_p, cu_q, cup, cuy, Cuy, ...)

i

~_

Digital Signal ' . !
Processing bt

#0)

o
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Vector space

Let P, be the set of all polynomials of degree n
u(x) = up + upx + upx® + ... + upx"
Define the sum among two vectors and the multiplication by a scalar as

(u+ v)(x) = (o + vo) + (ur + vi)x + (2 + v2)x% + ... + (up + vy)x"
(cu)(x) = cup + curx + cupx® + ... + cu,x"

legendre polynomials

-

,,//

05 (-

Legendre
polynomials

Pa(x)
°
T
1

05 > Po(x) -
/' Pi(x)

Pa(x)

/ P
| Pa(x)
1 1 | P 7

-1 05 0 05 1

4
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Vector space

Let I be the set of all real valued functions defined in some domain (f : D — R)
Define the sum among two vectors and the multiplication by a scalar as

(u+v)(x) = u(x) + v(x)
(cu)(x) = cu(x)

Ex: u(x)=3+x
Ex: v(x) =sinx
Ex: Zernike polynomials

o’
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Vector subspace

Sometimes we don't need to deal with the whole vector space, but only a part of
it. It would be nice if it also has the space properties.

Definition 2.1 (Vector subspace)

Let V' be a vector space, and H C V a part of it. H is vector subspace iff
a)0e H

b) Yuyve H u-+ve H (H is closed with respect to sum)
c) Yue H, Ve e K cu € H (H is closed with respect to scalar multiplication)

H = {0} is a subspace. I

The vector space of polynomials (of any degree), P € F(R), is a vector subspace
of the vector space of real valued functions defined over R (F(R) = {f : R — R}).
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Vector subspace

H = R? is not a subspace of R3 because R? ¢ R3, for instance, the vector
u— (;) € R?, but u ¢ R3.

H = R? x {0} is a subspace of R3 because all vectors of H are of the form
X1

u= | x2 | € R3. It is obvious that H “looks like” R2. This resemblance is
0

mathematically called isomorphism.

Any plane in 3D passing through the origin is a subspace of R3.
Any plane in 3D not passing through the origin is not a subspace of R3, because 0
does not belong to the plane.
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Vector subspace

Theorem 2.1

If H is a vector subspace, then H is a vector space.
Proof
a)=4
a=0eH
4=30€ Vju+0=u
b) =1
b=YuveH u+veH
l=u+veV
Since H C V and thanks to b) = 2,3,7,8,9,10
2=u+4+v=v+u
3=(ut+v)+w=u+(v+w)
7T=c(u+v)=cu+cv
8=(c+d)u=cu+du
9 = ¢(du) = (cd)u
10=1u=u

5. Vector spaces December 3, 2013
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Proof (continued)
c)=6
c=YueH VceK cueH
6=cveV
Proof of 5
Since H is a subset of V, we know that for every u € H there exists
a unique w € V|u+ w = 0. The problem is whether
or not w is in H. We also know that w = (—1)v, and
by c), w € H.
(q.e.d.)
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Subspace spanned by a set of vectors

Let vi,vy € V be two vectors of a vector space, V. The subset
H = Span{vy, vz}

is a subspace of V.
Proof

Any vector of H is of the form v = Ajv; + Ayv; for some Ap, Ap € K.
Proofa) 0 € H

Simply by setting Ay = A, =0, we get 0 € H
Proof b)u+v e H

u = Ap,vi + AguV2
vV = A1, V1 + Aoy Vo

Letu,ve H=

(A1uv1 + A2uv2) + (A1vva + Aoyvo)
= A+ Avi+ (Aow + Ao )ve € H

u-+v
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Subspace spanned by a set of vectors

Proof ¢) cu € H
Letue H=

u=X\v; + vy = cu=c(Avi + Xova) = cA\yvi + chovp € H

Theorem 3.1
Let vi,vo,...,v, € V be p vectors of a vector space, V. The subset
H = Span{vi, v, ...,v,}

is a subspace of V.
Proof

Analogous to the previous example.
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Subspace spanned by a set of vectors

Consider the set of vectors R* D H = {(a—3b,b — a,a,b) Va,b € R}. Isit a
vector subspace?

Solution
All vectors of H can be written as
a—3b 1 -3
b—a -1 1
H>u= R =al + b 0
b 0 1

Therefore, H = Span{(1,—1,1,0),(—3,1,0,1)} and by the previous theorem, it is
a vector subspace.

y
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 1:
e 411
0 414
@ 415

4.1.6

4.1.19

4.1.32

4.1.37 (computer)
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Null space of a matrix

Consider the matrix
1 -3 -2
-5 9 1

The point x = (5,3, —2) has the property that Ax = 0.

Definition 4.1 (Null space)

The null space of a matrix A € M+, is the set of vectors

Nul{A} = {x € R"|Ax = 0}

™

e |
e |
“ Nl

v
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Null space of a matrix

NjwNo

o O
N—

Therefore

Nul{A} = {(—2x3, —3x3,x3)Vx3 € R}

The previous example (x = (5,3, —2)) is the point we obtain for x3 = —2.
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Null space of a matrix

Theorem 4.1

Nul{A} is a vector subspace of R".

Proof

It is obvious that Nul{A} C R" because A has n columns
Proof a) 0 € Nul{A}
A0, =0, = 0, € Nul{A}
Proof b) u + v € Nul{A}

Let u,v € Nul{A} = Au=1 }:>

Av=10
Alu+v)=Au+Av=0+0=0= u+ve Nul{A}

Proof c) cu € Nul{A}
Letue H=

Au =0 = A(cu) = c(Au) = c0 = 0 = cu € Nul{A}
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Null space of a matrix

LetH:{(a,b,c,d)eR“ a=2b+5c=d
c—a=>»bt
Solution

We may rewrite the conditions of belonging to H as

a
a—2b+5c=d 1 25 —1\[b]|_
c—a=bh ;‘(—1 ~1 1 0) c| =0

d

and, thanks to the previous theorem, H is a vector subspace of R*.

}. Is H a vector subspace of R*?
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Null space of a matrix

We can even provide a basis for H

1 -2 5 -1 1 01 -1
-1 -1 1 0 01 0 O

The solution of Ax = 0 are all points of the form

a —c+d -1 1
b 0 0 0
c c 1 = 0
d d 0 1

Consequently H = Span{(—1,0,1,0),(1,0,0,1)}.
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Let A€ Mxn, a matrix and a; € R™ (i =1,2,...n) its columns. The column
space of the matrix A is defined as

Col{A} = Span{aj, az, ...a,} = {b € R"|Ax = b for some x € R"}

The column space of a matrix is a subspace of R™ Proof
Col{A} is a set generated by a number of vectors and by Theorem 3.1 it is a
subspace of R™.




Column space of a matrix

Find a matrix A such that Col{A} = {(6a — b,a + b, —7a)Va,b € R}
Solution We can express the points in Col{A} as

6a—b 6 -1
Co{A}sx=|a+b|=a| 1l |+b| 1
—7a —7 0

Therefore, Col{A} = Span{(6,1,—7),(—1,1,0)}. That is, these must be the two
columns of A

6 -1
A=11 1
-7 0
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Comparison between the Null and the Column spaces

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A

Col A

h

. Nul A is a subspace of R".
. Nul A is implicitly defined; that is, you are

given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul 4. Row

operationson [ 4 0] are required.

. There is no obvious relation between Nul A

and the entries in A.

. A typical vector v in Nul 4 has the property

that Av = 0.

. Given a specific vector v, it is easy to tell if

v is in Nul A. Just compute Av.

. Nul A = {0} if and only if the equation

Ax = 0 has only the trivial solution.

. Nul A = {0} if and only if the linear trans-

formation x +> AX is one-to-one.

. Col A is a subspace of R™.
. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A. since each column of
Aisin Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[A ] are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in B™.

. Col A = R™ if and only if the linear trans-

formation x ++ Ax maps R" onte R™.
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Vector subspace (a)

Subspace spanned by a set of vectors (a)
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Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)

Dimension of a vector space (d)

Rank of a matrix (d)

Change of basis (d)



Linear transformation

We have said that T(x) = Ax is a linear transformation, but it is not the only one.

Definition 5.1 (Linear transformation)
The transformation T : V — W between two vectors spaces V and W is a rule
that for each vector v € V assigns a unique vector w = T(v) € W, such that
Q@ T(vi+wvy)=T(v1)+ T(v2) Yvi,vp €V
Q@ T(cv)=cT(v) YWe V,VceK

4

For a matrix A € M,,,x,, we have that

T:R" — RM
x — Ax

is a linear transformation (we can easily verify that T meets the two required
conditions).
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Linear transformation

Consider the space of all continuous, real-valued functions defined over R whose
all derivatives are also continuous. We will refer to this space as C*°(R). For
instance, all polynomials belong to this space, as well as any sin, cos function. It
can be proved that C*°(R) is a vector space.

Consider the transformation that assigns to each function in C*°(R) its derivative

D:C=®R) — C=(R)
f — D(f)

is a linear transformation.
Proof

O D(f +¢g) = D(f) + D(g)
@ D(cf) = cD(f)
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The kernel of a transformation T is the set of all vectors such that

Ker{T}={ve V|T(v)=0}

The range of a transformation T is the set of all vectors such that

Range{T}={we W|ave V T(v)=w}

Kernel is a Range is a
subspace of V subspace of W




Ker{T} = Nul{A}
Ker{D} = {f(x) = c} because D(c) =0

If T(x) = Ax, then

Ker{T} = Nul{A}
Range{T} = Col{A}

By e D o e 8 {108



Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 2:
@ 423
@ 429
e 4211
e 4.2.30
e 4231
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Linear independence

Definition 6.1 (Linear independence)

A set of vectors {v1,Vs, ...,V } is linearly independent iff the only solution to the
equation

cavit+ovo+..+cv,=0

is the trivial solution (c; = ¢; = ... = ¢, = 0). The set is linearly dependent if
there exists another solution to the equation.

Watch out that we cannot simply put all vectors as columns of a matrix A and
solve Ac = 0 because this is only valid for vectors in R”, but it is not valid for any

vector space.

5. Vector spaces December 3, 2013 40 / 102



Linear independence

@ {v;} is linearly dependent if v; = 0.

o {v1,vy} is linearly dependent if vp = cv;.
@ {0,vq,V2,...,v,} is linearly dependent.

In the vector space of continuous functions over R, C(R), the vectors
fi(x) = sinx and f(x) = cos x are independent because

fa(x) # chi(x)

S TS S

|
—

’
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Linear independence

Theorem 6.1

A set of vectors {v1,Va, ...,V }, with vi # 0 is linearly dependent if any of the
vectors vj (j > 1) is linearly dependent on the previous ones {vq,Va,...,vj_1}.

4

In the vector space of polynomials, consider the vectors po(x) = 1, p1(x) = x,
p2(x) =4 — x. The set {po(x), p1(x), p2(x)} is linearly dependent because

p2(x) = 4po(x) — p1(x) = p1(x) — 4po(x) + p2(x) =0
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Linear independence

In the vector space of continuous functions, consider the vectors
fi(x) = sin(x) cos(x) and f(x) = sin(2x). The set {f1(x), K(x)} is linearly
dependent because f>(x) = 2f1(x)
1
08
06
MATLAB: o4
x=[-pi:0.001:pi] %
f1=sin(x) .*cos(x); 0
£2=s5in(2*x) ; s
plot (x,f1,x,£2) s
—06
—08
B
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Basis of a subspace

Definition 6.2 (Basis of a subspace)

A set of vectors B = {v1,Va,...,V,} is a basis of the vector subspace H iff
© B is a linearly independent set of vectors
@ H = Span{B}

In other words, a basis is a non-redundant set of vectors that span H.

v

Let A be an invertible matrix. By Theorem 5.1 and 11.5 of Chapter 3 (the
invertible matrix theorem), we know that the columns of A span R” and that they
are linearly independent. Consequently, the columns of A are a basis of R”.

4
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Basis of a subspace

The standard basis of R" are the columns of /,

1 0 0

0 1 0
e; = e = .. €ep=

0 0 1

| A

Let vi = (3,0, —6), vo = (—4,1,7), v3 = (=2,1,5). Is {v1,v2,v3} a basis of R3?
Solution
This question is the same as whether A is invertible with

3 -4 -2
A= 0 1 1 |=A=6=3A"
—6 7 5

Because A is invertible, we have that {vi,v,v3} is a basis of R3.
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Basis of a subspace

In 1953, Rosalind Franklin, James Watson and Francis Crick determined the 3D
structure of DNA using data coming from X-ray diffraction of crystallized DNA.
Watson and Crick received the Nobel prize in physiology and medicine in 1962
(Franklin died 1958).

© Hydrogen
© Oxygen

@ Nitrogen

© Carbon

© Phosphorus

At
it

Pyrimidines Purines

Minor groove

Major groove

.
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Basis of a subspace

Three-dimensional crystals repeat a certain motif all over the space following a
crystal lattice. The vectors that define the crystal lattice are a basis of R3

i c
a il
3 ay az
aZ aZ y 1
1

a,-a,-a a-a,-azzC 8y=85¢C
allanghzs 90§ anglls alg to E : 90° all lnveg 90°
angles between a axes = 60°
ISOMETRIC HEXAGONAL TETRAGONAL
(CUBIC)
. " /A .
b b b
/ a
avbsc aubuc aybsc
all angles 90° angle between a&b all angles & 90°
and bac = 909
angle between c&a > 900
ORTHORHOMBIC MONOGCLINIC TRICLINIC

’
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Basis of a subspace

B = {1,x,x%,x3,...} is the standard basis of the vector space of polynomials P.
Proof

@ B is linearly independent:
Vx € R C01+C1X+C2X2+C3X3+...:0:>C02C1:CQI...:O

The only way that a polynomial of degree whichever is 0 for all values of x is
that the coefficients of the polynomial are all 0.

@ P = Span{B}:
It is obvious that any polynomial can be written as a linear combination of
elements of B (in fact, this is they way we normally do).
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Basis of a subspace

H = Span{vi, v, v3} with v; = (0,2, —1), vo = (2,2,0), vz = (6,16,—5). Find a

basis of H
Solution
All vectors in H are of the form:

H > x = cvi + cvy + c3vs
We realize that v3 = 5v; + 3vj,, therefore, v3 is redundant:

H>x = cvi+ cvs+ cs(5vi + 3va)
= (C1 4 5C3)V1 + (C2 + 3C3)V2
= cjvi + chvp

It suffices to construct our basis with v; and vs.
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Basis of a subspace

Theorem 6.2 (Spanning set theorem (conjunto generador))
Let S = {vi,vz,...,v,} be a set of vectors and H = Span{S}. Then,

@ Ifvy is a linear combination of the rest, then the set S — {v\} still generates

H.
@ If H # {0}, then some subset of S is a basis of H.
Proof
@ Assume that the linear combination that explains vy is
Vg = a1V1 + ... + ak—1Vk—1 + ak+1Vk+1 + --- + apVp
Consider any vector in H
X = QaVi+ova+t ...+ CpVp
= (C1 S+ al)vl TE oo AF (Ck71 S+ ak,l)kal—k
(Ckr1 4 aks1)Vis1 + - + (G + ap)vp
That is we can express x not using vy.

@ Step 1: If S is a linearly independent set, then S is the basis of H.
Step 2: If S is not, using the previous point we can remove a vector to
produce S’ that still generates H (go to Step 1).
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Basis for Nul{A}

-3 6 -1 1 -7
Let A= 1 -2 2 3 -1
2 -4 5 8 —4

We solve the equation system Ax = 0 to find

1 1 30
(Alo)~ | 0 0 1 2 =210
0 0 00
we have coloured the pivot columns from which learn

2x> + X4 — 3x5

X2
X1 = 2X> + X4 — 3x5 _ _
s = —2x3 1 2xs = Nul{A} 5 x = 2x4X~|— 2xs5
4

X5
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Basis for Nul{A}

2X2 + Xq — 3X5 2 1 -3
X2 1 0 0
Nul{A} 5 x = —2x4 + 2x5 =% 0] +x3| 2| +x5| 2
Xa 0 1 0
X5 0 0 1

Finally the basis for Nul{A} is

Nul{A} = Span

OO O LN
| —
N

= O N O
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Basis for Col{A}

Consider A as in the previous example. We had

1 -2 0 -1 3
A~ 0 0 1 2 -2 | =8B
0 00 0 0

Let’s call this latter matrix B. Non-pivot columns of B can be written as a linear
combination of the pivot columns:

b, = —2b;

b, = —b;+ 2b;
bs = 3b; —2bj
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Basis for Col{A}

Since row operations do not change the linear dependences among matrix

columns, we can derive the same relationships for matrix A

a = —281
a; = —a;+2a3
as = 3a; —2a3

Finally, the basis of Col{A} is {a1,as}.

Col{A} = Span {a;,a3} = Span 1],[ 2
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Basis for Col{ A}

Theorem 7.1

The pivot columns of A constitute a basis for Col{A}.
Proof
Let B the reduced echelon form of A.
© The pivot columns of B form a linearly independent set because none of its
elements can be expressed as a linear combination of the elements before
each one of them.
@ The dependence relationships among columns are not affected by row

operations. Therefore, the corresponding pivot columns of A are also linearly
independent and, consequently, a basis of Col{A}.
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Two views of a basis

As small as possible, as large as possible

@ The Spanning Set Theorem states that the basis is as small as possible as
long as it spans the required subspace.

@ The basis has the maximum amount of vectors spanning the required
subspace. If we add one more, the new set is not linearly independent.

V.

e {(1,0,0),(2,3,0)} is a set of 2 linearly independent vectors. But it cannot
span R3 because for this we need 3 vectors.

e {(1,0,0),(2,3,0),(4,5,6)} is a set of 3 linearly independent vectors that
spans R3, so it is a basis of R3.

e {(1,0,0),(2,3,0),(4,5,6),(7,8,9)} is a set of 4 linearly dependent vectors
that spans R3, so it cannot be a basis.
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 3:
e 43.1
@ 432
e 438

43.12

43.24

4.3.31

4.3.32

4.3.33

4.3.37 (computer)
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Coordinate system

An important reason to assign a basis to a vector space V is that it makes V to
“behave” as R"” through, what is called, a coordinate system.

Theorem 8.1 (The unique representation theorem)

Let B ={by,by,...,b,} a basis of the vector space V, and consider any vector
v € V. There exists a unique set of scalars such that

v =cb; + by + ... + ¢c,b,

Proof
Let assume that there exists another set of scalars such that

v =cjby + ctby + ... + c/b,
Subtracting both equations we have
0= (c1 —cj)bs + (c2 — ch)ba + ... + (cn — ¢} )b,y
But since the vectors b; form a basis and are linearly independent, it must be

(a-a)=(e-g)=(cn—¢)=0
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Coordinate system

Proof (continued)

Finally, c1 = ¢{, 2 = ¢, ..., ¢, = ¢}, which is a contradiction with the hypothesis
that there were two different sets of scalars representing the vector. Consequently,
the set of scalars must be unique.

Definition 8.1 (Coordinates)

Let B={by,b,,...,b,} a basis of the vector space V, and consider any vector
v € V. The coordinates of v in B are the c; coefficients such that

(o]
v=cb + by +..+cb, = [v]g =
Cn

The transformation T : V — R" such that T(x) = [x|g is called the coordinate
mapping.
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Coordinate system

Let B = {(1,0),(1,2)} be a basis of R? and [x]z = (-2, 3), then

X = —2b; + 3by — —2 <c1)> i @) - @

In fact (1, 6) are the coordinates of x in the standard basis {e1,es}

=0 =1(8) v (%) = (2

That is, the point x does not change, but depending on the coordinate system
employed, we “see” it with different coordinates.
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Coordinate system

In ths figure we see how a X-ray diffraction pattern of a crystal is “indexed”.
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Coordinates in R”

If we have a point x in R we can easily find its coordinates in any basis, as in the

following example.

Let x = (4,5) and the basis B = {(2,1),(—1,1)}. We need to find ¢; and ¢, such

that

—abitab = (1) =a () e t) = (3
X = C1Db; +— C&2b2 5—C11 (&) 1]~ \1

From which we can easily derive
that ¢ =3 and ¢, = 2.

FIGURE 4

The B-coordinate vector of x is

(3.2).

+)(5)

4
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Change of basis

Change from the standard basis to an arbitrary basis

Note that the previous equation system is of the form
X = PB[X]B

where Pg is called the change-of-coordinates matrix and its columns are the
vectors of the basis B (consequently, it is invertible). We find the coordinates of
the vector x in the basis B as

x|z = P5'x

Change between two arbitrary bases

Let's say we know the coordinates of a point in some basis, Bj, and we want to
know its coordinates in some other basis, B,. We may use

x = Pg,[x]s, = Pg,[X|z, = [X|g, = Pg, Ps,[x]5,
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The coordinate mapping is a bijective, linear transformation.

[1s

x* 1 [xlg

I
— ‘7“@}7\__

(¥

FIGURE 5 The coordinate mapping from V onto R".

Since the coordinate mapping is a linear transformation it extends to linear
combinations

[au + a2uz + ... + apup] g = ai[ur]g + ax[uz]s + ... + ap[uy]s




Coordinate mapping

Consequences

Any operation in V can be performed in R” and then go back to V.

For spaces of functions, this opens a new door to analyze functions (signals,
images, ...) in R” using the appropriate basis: Fourier transform, wavelet
transform, Discrete Cosine Transform, ...
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Coordinate mapping

Consider the space of polynomials of degree 2, P,. any polynomial in this space is
of the form

p(t) = ap + art + at?
If we choose the standard basis in P> that is
B={1,t,t%}
Then, we have the coordinate mapping

ao
T(p(t)) = [plz =

L
flary

a

that is an isomorphism from P, onto R3.
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Coordinate mapping

Now we can perform any reasoning in P, by studying an analogous problem in R3.
For instance, let's study if the following polynomials are linearly independent

p(t) = 1+2t2 = [;(t)]s=(1,0,2)
pa(t) = 4+t+5t2 = [pa(t)]s = (4,1,5)
p3(t) = 3+2t = [ps(t)ls = (3,2,0)

We simply need to see if the corresponding coordinates in R3 are linearly
independent

1 4 3 1 0 -5
01 2|~(0 1 2
2 50 0 0 O

Looking at the non-pivot columns we learn that

p3(t) = =5p1(t) + 2pa(t)

Finally, we conclude that the 3 polynomials are not linearly independent.

W
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Coordinate mapping

Consider vi = (3,6,2), vo = (—1,0,1), B = {vy,v2}, and H = Span{B}. H is
isomorphic to R? (because its points have only 2 coordinates). For instance, the
coordinates of x = (3,12,7) € H are [x]g = (2, 3).

FIGURE 7 A coordinate system on a plane f{ in

R

y
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Coordinate mapping

Consider vi = (3,6,2), vo = (—1,0,1), B = {vy,v2}, and H = Span{B}. H is
isomorphic to R? (because its points have only 2 coordinates). For instance, the
coordinates of x = (3,12,7) € H are [x]g = (2, 3).

FIGURE 7 A coordinate system on a plane f{ in

R

y
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 4:

0 443
4438
449
4413
4.4.17
4419
4.4.22
4.4.24
4.4.25
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Dimension of a vector space

We have just said that if the basis of a vector space V' has n elements, then V is
isomorphic to R". n is a characteristic number of each space called the dimension.

Theorem 9.1

Let V be a vector space with a basis given by B = {by,b,,...,b,}. Then, any
subset of V' with more than n elements is linearly dependent.
Proof

Let S be a subset of V with p > n vectors
S={vi,vo,...,vp}
We now consider the set of coordinates of these vectors.
{lvils [vols; -, [vplB}

They are p > n vectors in R" and, therefore, necessarily linearly dependent. That
is, there exist ci, ¢, ..., Cp, not all of them 0, such that

a[vilg + olva]g + cplvple =0 € R”
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Dimension of a vector space

Proof (continued)
If we now exploit the fact that the coordinate mapping is linear, then we have

[civi + V2 + V] =0 € R”
Finally, we make use of the fact that the coordinate mapping is bijective
avi+ o+ v, =0cV

And, consequently, we have shown that the p vectors in S are linearly dependent.

Theorem 9.2

If a basis of a vector space has n vectors, then all other bases also have n vectors.
Proof

Let B; be a basis with n vectors of a vector space V. Let B, another basis of V.
By the previous theorem, B, has at most n vectors. Let us assume now that B,
has less than n vectors, then by the previous theorem By would not be a basis.
This is a contradiction with the fact that B; is a basis and, consequently, B,
cannot have less than n vectors.
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Dimension of a vector space

Definition 9.1

If the vector space V' is spanned by a finite set of vectors, then V is
finite-dimensional and its dimension (dim{V'}) is the number of elements of
any of its bases. The dimension of V = {0} is 0. If V is not generated by a finite
set of vectors, then it is infinite-dimensional.

vy

dim{R"} = n
dim{P,} = 3 because one of its bases is {1, t, t*}
dim{P} = oo

dim{Span{vi,vp}} =2
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Dimension of a vector space

There is a single subspace of dimension 0 ({0})

There are infinite subspaces of dimension 1 (all lines going through the origin)
There are infinite subspaces of dimension 2 (all planes going through the origin)
There is a single subspace of dimension 3 (R?)

2-dim

x,

(b)
FIGURE 1 Sample subspaces of R

W
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Let H C V be a vector subspace of a vector space V. Then,

dim{H} < dim{V}

Let V' a n-dimensional vector space (n > 1).
@ Any linearly independent subset of VV with n elements is a basis.

o Any subset of V' with n elements that span V is a basis.




Dimension of a vector space

Theorem 9.5

Consider any matrix A € M s p.
o dim{Nul{A}} is the number of free variables in the equation Ax = 0.
o dim{Col{A}} is the number of pivot columns of A.

-3 6 -1 1 -7 1 -2 0 -1 3
A= 1 -2 23 -1 |~[0 01 2 =2
2 4 5 8 —4 0o 00 0 O

The number of pivot columns of A is 2 = dim{Col{A}} (in blue), while the
number of free variables is 3 = dim{Nul{A}} (the free variables are x, x4 and
X5).
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 5:
e 451
@ 4513
e 4521

45.25

4.5.26

4527

4528

4531

4532
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© Vector spaces

@ Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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The rank of a matrix is the number of linearly independent rows of that matrix.
It can also be defined as the number of linearly independent columns of that

matrix because both definitions yield the same number. We'll see a more formal
definition below.

Given a matrix A € M ,xn, the row space of A is the space spanned by all rows
of A (Row{A} CR").

Row{A} = Col{AT} l




Rank of a matrix

Theorem 10.2

If a matrix A is row equivalent to another matrix B, then Row{A} = Row{B}.

If B is in a reduced echelon form, then the non-null rows of B form a basis of
Row{A}
Proof
Proof Row{A} 2 Row{B}
Since the rows of B are obtained by row operations on the rows of A,
then any linear combination of the rows of B can be obtained as linear

combinations of the rows of A.
Proof Row{A} C Row{B}

Since the row operations are reversible, then any linear combination of

the rows of A can be obtained as linear combinations of the rows of B.
Proof non-null rows of B form a basis

They are linearly independent because any non-null row of B cannot
be obtained as a linear combination of the rows below (because it is in
echelon form and there are numbers in early columns that have Os below)
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Rank of a matrix

-2 -5 8 0 17 1 3 -5 1 5

A— 1 3 51 5| . B— 01 -2 2 -7
3 11 -19 7 1 00 0 —4 20

1 7 —-13 5 -3 00 0 0 O

Pivot columns have been highlighted in blue. At this point we can already
construct a basis for the row and column spaces of A

R® > ROW{A} = Span{(la 35 _57 17 5)a (07 17 _2» 27 _7)a (07 Oa 07 _4v 20)}
R* = COI{A} = Spa‘n{(_271)37 1)5(_57371177))(0717775)}

To calculate the null space of A we need the reduced echelon form

10 10 1
01 -2 0 3
Al o0 01 -5
00 00 0

4
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Rank of a matrix

1 0 1 0 1
01 -2 0 3
A~loo 01 5|7

0 0 0 0 0
-1 -1
X1 = —X3— X 2 -3
X = 2x3— 3x3 :>N111{A}9X=X3 1 + X5 0
X4 = 5X5 0 5
0 1

Finally,

R5 D Nul{A} = Span{(-1,2,1,0,0),(-1,-3,0,5,1)}
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Rank{A} = dim{Col{A}}

That is, by definition, Rank{A} is the number of pivot columns of A.




Rank of a matrix

Theorem 10.3 (Rank theorem)
For any matrix A € Myxn
Q dim{Row{A}} = dim{Col{A}}
@ Rank{A} + dim{Nul{A}} =n
Proof
@ Let B be the reduced echelon form of A. By definition Rank{A} is the
number of pivot columns in A (that is the same as the number of pivot
columns in B). Since B is in reduced echelon form, each of its non-zero rows
has a column pivot and, consequently, the number of non-zero rows coincides

with the number of pivot columns. The basis of Row{B} = Row{A} must
have as many elements as pivot columns.

@ From Theorem 9.5 we know that Null{A} is the number of free variables in
Ax = 0, that is, the number of non-pivot columns of B. Consequently, we
have

dim{Col{A}} + dim{Nul{A}} = n
But by definition, Rank{A} = dim{Col{A}}, which proves the theorem.

A
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Rank of a matrix

Let A € Myyg. We know dim{Nul{A}} = 2. What is Rank{A}?
According to the previous theorem

Rank{A} = n — dim{Nul{A}} =9—-2=7
Let A € Mgyg. Can it be dim{Nul{A}} = 27
Let us presume that it can be dim{Nul{A}} = 2, then

Rank{A} = n — dim{Nul{A}} =9—-2=7

But since A has only 6 rows, the maximum rank can only be 6 (not 7), and
therefore, it must be dim{Nul{A}} > 3.
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Rank of a matrix

Nul{A} = {(O,XQ,O) Vxo € R}

A= g 8 :} Row{A} = {(x1,0,x3) Vxi,x3 € R}
- 4 0 5 Col{A} = {(>x2,x2,x3) Vx2,x3 € R}
NUI{AT} = {(Xl, —X1, 0) VX]_ € R}
.'-(3 13
A
_— /

~ / B -

0 —
0| A 1 Xy
I/\ \3\1”

Xy
o’ Souq
R3 X R3
FIGURE 1 Subspaces determined by a matrix A.

5. Vector spaces December 3, 2013 90 / 102



Rank of a matrix

Theorem 10.4 (The invertible matrix theorem (continued))

The following statements are equivalent to those in Theorems 5.1 and 11.5 of
Chapter 3 (the invertible matrix theorem). Let A € Mpxn

xix. The columns of A form a basis of R".
xx. Col{A} =R".
xxi. dim{Col{A}} =n
xxii. Rank{A} =n
xxiii. Nul{A} = {0}.
xxiv. dim{Nul{A}} = 0.
Proof vii & xx
vii=The equation Ax = b has at least one solution for every b € R".

But Col{A} is the set of all b’s for which Ax = b has a solution. Therefore, vii =

XX.
Proof xx & xxi & xxii
Because of the definition of rank.
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Rank of a matrix

Proof v,viii < xix

v=The columns of A are linearly independent.

viii=The columns of A span R”.

But both together are the definition of a basis for R”.

Proof xxi < xxiv

Knowing xxi and thanks to the rank theorem 10.3, we can infer that
dim{Nul{A}} =n—n=0

Proof xxiv <> xxiii

The only subset with null dimension is {0}.
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 6:
@ 46.1
@ 4.6.13
@ 4.6.15

4.6.19

4.6.26

4.6.28

4.6.29

4.6.33

4.6.35
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Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
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Bases for Nul{A} and Col{A} (c)
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Change of basis

Let us assume we have a vector x that has two different coordinates in two
different coordinate systems B and C.

[x]z = (3,1) and [x]c = (6,4)

(a) (b)

FIGURE 1 Two coordinate systems for the same vector space.

5. Vector spaces December 3, 2013 95 / 102



Change of basis

Presume that for our example

by = 4c+c
b, = —6c;+c

We can calculate the coordinates of the basis vectors B in the C coordinate
system as

[bi]lc = (41)
[bo]c = (=6,1)

The coordinates of x in the basis B tell us
x = 3b; + b,

If we now apply the coordinate mapping transformation we have

e-smicmics(£)+(4)- (8 £)(2)-(8)
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Change of basis

Note that the columns of the matrix

(171)

are the coordinates of each one of the elements of the basis B expressed in the
coordinate system C, and that the overall change of coordinates has the form

We= (5 77 ) e
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Change of basis

Theorem 11.1 (Change of basis)

Let B={by,by,....b,} and C = {cy,cy,...,c,} be two bases of the vector space
V. We can transform coordinates from one coordinate system to the other by
multiplying by a single, invertible n X n matrix, called Pc.g whose columns are
the coordinates of the vectors of B in the basis C.

[X]c = Pcglx]s

v
O
[, [ 1,
. multiplication .
e by 2, s
R" R"
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Change of basis

Corollary

To convert from C coordinates back to B coordinates we simply have to invert the
transformation.

=1l
Pgic = 'DCHB

Corollary

Consider the standard base in V given by E = {ej, ey, ...,e,}. The matrix to
convert the coordinates from B to E is simply

Pecg= (b1 by .. by)
Consequently, we have that for two different bases
x = Pe.g[x]g = Pecc[x]|c
Finally,
[Xlc = Pel cPecslxls
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Change of basis

Numerical trick

Given the two basis B and C we can easily find the coordinates of B in the basis

C in the following way. Let us define two matrices B and C whose columns are the
elements of the basis. Then

(CIB) ~ (In|Pc+8)

4

Let's say we are given by = (—9,1), b, = (—5,-1), ¢; = (1, —4), c2 = (3, -5).
1 3| -9 5 N 1 0 6 4
—4 -5 1 -1 0 1|-5 3

Then, PCeB = < _g g )
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Exercises

From Lay (3rd ed.), Chapter 4, Section 7:
e 471

@ 479
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Outline

© Vector spaces

@ Definition (a)

@ Vector subspace (a)

@ Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)

Dimension of a vector space (d)
@ Rank of a matrix (d)
@ Change of basis (d)
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@ Eigenvalues and eigenvectors
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@ Characteristic equation (a)
o Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)
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A little bit of history

Eigenvalues (or “proper values") were first used in the study of the motion of rigid
bodies through the inertia matrix by Leonhard Euler and Joseph-Louis Lagrange in
the mid of XVIllth century. Then Augustin-Louis Cauchy used it to analyze
quadratic surfaces and conic sections in the early XIXth. Since then, they have
found applications in most scientific problems.
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Applications

In this example eigenvalues are used to estimate the size of carotid in a volumetric
image.

15, 477-488.

Hameeteman, K.; Zuluaga, M. A_; et al. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal, 2011,
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Applications

In this example eigenvalues were used as a part of another technique (Principal
Component Analysis) to automatically analyze luminiscent images.

:;mfn 3fsr) U‘ \_/
(b)

Spinelli, A.E., Boschi, F. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging. J Biomed Opt, 2011, 16, 120506
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e Eigenvalues and eigenvectors
@ Definition (a)
@ Characteristic equation (a)
@ Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)



Eigenvalues and eigenvectors

Consider the linear transformation T (x) = (i’ _02> x on the vectors u = (—1,1)
and v =(2,1)
3 -2\ (-1 5 ] o
- G HO-Q ]

FIGURE 1 Effects of multiplication by A.

u is changing its direction and module, but v is only changing its module.
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Eigenvalues and eigenvectors

Definition 1.1 (Eigenvalue and eigenvector)

Given the matrix A € M, xn, A is an eigenvalue of A if there exists a non-trivial
solution v € R" of the equation

Av = A\v

The solution v is the eigenvector associated to the eigenvalue \.

v

In the previous example, v was an eigenvector with eigenvalue 2 (because
(2,1) — (4,2), while u was not an eigenvector.
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Eigenvalues and eigenvectors

Show that A =7 is an eigenvalue of A = (é g)

Solution
We must find a solution of the equation Av = Av, or what is the same

(€96 DE-E 966

Any vector of the form v = (v, v;) satisfies the previous equation

Theorem 1.1

In general, eigenvectors are solution of the equation
(A—XHv=0

That is, all eigenvectors belong to Nul{A — \I}. This is called the eigenspace.
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Eigenvalues and eigenvectors

We see that we have a whole set of vectors associated to A =7
of the eigenspace:

Eigenspace{7} = {(v1,v1) Vv € R}

It is a line passing through the origin with the direction (1, 1).

, this is a subspace

The other eigenvalue of matrix A is A = —4
Xy
I Multiplication _ ,
L by7, -
4 L7
\ [ Eigenspace
\ v fork=7
. _ 5 N T
ElgenSpace{_4}_{(Vl’_gvl) VV1 GR} LIy S e e e e e e ]
Multiplication™ £ _ > 2
by -4 = Eigenspace
4 forA=—4
1 (6.-5)

FIGURE 2 Eigenspaces for

A=—4and1=7.

v
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Eigenvalues and eigenvectors

4 -1 6
Knowing that A = 2 is an eigenvalueof A= |2 1 6|, find a basis of its
2 -1 8
eigenspace.
Solution
4 -1 6 2 00 2 -1 6 2 -1 6
A-2/[=12 1 6|—-]10 2 0)]=(2 -1 6]~(0 0O O
2 -1 8 0 0 2 2 -1 6 0 0 O

So any vector fulfilling this equation must satisfy

-3

x| = %X2 — 3x3 = Eigenspace{2} 2 x = x +x3| 0
1

O NI

Finally the basis is formed by the vectors (1,1,0) and (—3,0,1).
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Within the eigenspace, A acts as a dilation.

X3 X3
Multiplication

—_— .
by A




Eigenvalues and eigenvectors

Theorem 1.2

The eigenvalues of a triangular matrix A are the elements of the main diagonal
(a;,-, i = 1, 27 o009 n).

Proof

Consider the matrix A — Al

a;; — A arn a1z ain
0 dpo — A dn3 aon
0 0 ds33 — A asn
0 0 0 e 8pn— A

The equation system A — Al = 0 has a non-trivial solution if at least 1 of the
entries in the diagonal is 0. Therefore, it must be A = a;; for some i. Varying i
from 1 to n we obtain that all the elements in the main diagonal are the n
eigenvalues of the matrix A.

6. Eigenvalues and eigenvectors December 3, 2013

14 /70



Eigenvalues and eigenvectors

3 6 -8
The eigenvaluesof A=[0 0 6 | are A=3,0,2.
00 2
Theorem 1.3
Let vy, Vo, ..., v, be r eigenvectors associated to r different eigenvalues. Then,
the set S = {v1,vy, ..., v, } is linearly independent.
Proof

Let us assume that S is linearly dependent. Without loss of generality, we may
assume that the first p (p < r) are linearly independent, and that the p + 1-th
vector is dependent on the precedent vectors. Then, there must exist c1, C, ..., Cp
not all of them zero such that

Vpt1 = CiVi + ©Vo + ... + CpVp (1)

V.
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Eigenvalues and eigenvectors

If we multiply both sides of the equation by A, then we have

Avpr1 = CAvi + AV + ..+ Ay,
)\p+1vp+1 = CA1V1 + AoV + ...+ cp)\pvp

If we multiply Eq. (1) by Ap+1 and subtract from Eq. (2), we have
0=c1(M — Apr1)vi + (X2 — Apr1)Va + . + co(Ap — Apt1)Vp
Since the first p vectors are linearly independent it must be for i =1,2,...,p
ci(Ai = Apt1) =0

Because all eigenvalues are different, then it must be ¢; =0 (i = 1,2, ..., p). But
this is a contradiction with the initial hypothesis that not all of them were 0.
Consequently, the set S must be linearly independent. (qg.e.d.)
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Eigenvalues and eigenvectors

Let us assume we have two populations of cells: stem cells and mature cells.
Everyday we measure the number of them and we observe that:
Stem cells: Somatic cells:
@ 80% of them have remained as stem cells @ 95% of them have remained as
@ 15% of them have differentiated into somatic cells
somatic cells @ 5% of them have died
@ 5% of them have died

@ There are 20% new stem cells.

Stem cells Somatic cells

O

80% 95%
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Eigenvalues and eigenvectors

If we call xs(fe)m the number of stem cells on the day k, and xs(f;atic the number of

somatic cells the same day, then the following equation reflects the dynamics of

the system:
) N _ (1 0\ [ X
KK 1015 0.95) | (K
somatic somatic

Let us assume that the day 0, there are 10,000 stem cells, and 0 somatic cells.
Then, the evolution over time is

XN (1 o (&, \_ (1 010,000\ _ (10,000
XU ) \015 095) \x©@ | \0.15 0.95 0 =\ 1,500
X2\ (1 o\ (x2,\_(1 0 (10,000 (10,000
x@ )= \o1s 095) 0 ] =015 095)\ 1,500/~ \ 2,925

4
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Eigenvalues and eigenvectors

Difference equations

The previous model is of the form

x(k+1) — Ax(K)

The simplest way of constructing a solution of the previous equation is by taking
an eigenvector x; and its corresponding eigenvalue, A:

x(K) — )\ll‘xl
This is actually a solution because:
x(kH) = Ax(K) = A(Nrxp) = AK(Axy) = M(\ixq) = AfFixg

It turns out that any linear combination of eigenvectors is also a solution

x(k) = Cl)\fxl + Cz)\I2<X2 + ...+ C,,)\ﬁx,,
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Exercises

Exercises

From Lay (3rd ed.), Chapter 5, Section 1:
e 511
e 513
@519

5.1.17

5.1.19

5.1.23

5.1.25

5.1.26

5.1.27
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e Eigenvalues and eigenvectors
@ Definition (a)
@ Characteristic equation (a)
@ Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)



Characteristic equation

Find the eigenvalues of A = <§ —36>

Solution
We need to find scalar values A such that the equation

(A= X)x=0

has non-trivial solutions. By the Invertible Matrix theorem we know that this
problem is equivalent to that of finding A values such that

A= M| =0

G %)-6 3=

‘:(2—)\)(—6—)\)—9:>\2+4>\—21:0

In this case

2—A 3
3 —6— A
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Characteristic equation

—44\/42—4.1.(—21) —7
)\2+4)\—21:0:)\:T:{ 3

Theorem 2.1 (The invertible matrix theorem (continued))
This theorem adds to the Theorems 5.1, 11.5 of Chapter 3 and 10.4 of Chapter 5.

xxv. |A| # 0.
xxvi. 0 is not an eigenvalue of A.

Definition 2.1 (Characteristic equation)

A scalar X is an eigenvalue of a matrix A € M, «, iff it is solution of the
characteristic equation

A= X[ =0

The determinant of A — M\l is called the characteristic polynomial.

4
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Characteristic equation

5 -2 6 -1
. |0 3 -8 0
Let us calculate the eigenvalues of A = 0 0 5 4
0 0 0 1

5—-\ =2 6 -1

0 3—X -8 0

|A— )\l = 0 0 5_ ) 4 =5-2)3,B-N1-)N)=0
0 0 0 1—A

whose solutions are A = 5 (with multiplicity 2), A =3, and A\ = 1.

Let us find the eigenvalues of a matrix whose characteristic polynomial is

JA— M| = A6 —4X5 — 120 = M(\2 =4\ —12) = X*(A —6)(A+2) =0

whose solutions are A = 0 (with multiplicity 4), A =6, and A\ = —2.

4
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Given two matrices A, B € M, «,, A is similar to B iff there exists an invertible
matrix P € M« such that

B=P AP

Watch out that similarity is not the same as row equivalence (A and B are row
equivalent if there exists a E such that B = EA being E invertible and the
product of row operation matrices).



Characteristic equation

Theorem 2.2

If A is similar to B, then B is similar to A.
Proof

It suffices to take the definition of A similar to B and solve for B. If we multiply
by P on the right

B=P AP = PB = AP
Now, we multiply by P on the left (P~ exists because P is invertible)
PB=AP = PBP1=A

and this is the definition of B being similar to A.
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Characteristic equation

Theorem 2.3

If A and B are similar matrices, then they have the same characteristic polynomial.
Proof

If A is similar to B, then there exists an invertible matrix P such that
B=PlAP
If we subtract on both sides A\l we have
B—\=P AP -\ =P IAP - AP71P =P L (A- NP

Now taking the determinant of both sides

|IB— M| =|P7YA=X)P| =|P7Y|A—=X||IP| = |P|"YA = M||P| = |A— )|
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Characteristic equation

Theorem 2.4

If A and B are similar matrices, then they have the same characteristic polynomial.
Proof

If A is similar to B, then there exists an invertible matrix P such that
B=PlAP
If we subtract on both sides A\l we have
B—\=P AP -\ =P IAP - AP71P =P L (A- NP

Now taking the determinant of both sides

|IB— M| =|P7YA=X)P| =|P7Y|A—=X||IP| = |P|"YA = M||P| = |A— )|
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Exercises

Exercises

From Lay (3rd ed.), Chapter 5, Section 2:
e 521
@ 529

5.2.18

5.2.19

5.2.20

5.2.23

5.2.24

5.2.28 (computer)
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e Eigenvalues and eigenvectors
@ Definition (a)
@ Characteristic equation (a)
o Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)



Diagonalization

Definition 3.1 (Diagonalization)

A € M, is diagonalizable if there exists P, D € My, (with P invertible and
D diagonal) such that

A = PDP~!

Diagonalization simplifies the calculation of powers of A (A), is used to decouple

dynamic systems, and in multivariate statistics to produce uncorrelated random
variables.

(5 0\ ., (5% 0\ 5 (5 0
D‘(o 3) D—<o 32>D—<0 g?
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Diagonalization

Let us assume that A = PDP~1. Let us calculate calculate now the different

powers of A

A2 = A- A= (PDP~Y)(PDP-1) = (PD)(P~1P)(DP~) = PDDP~! = PD?P~1

A3 = A2. A= (PD2P~)(PDP™Y) = PD3P~!
Ak = PDkpP~1

Let us particularize this result for A = U 2) that can be factorized with

—4 1

(1 1 (5 0 - 1
P_<—1 _2> andD—<0 3> as A= PDP—*.

K ppkpet_ (1 1Y (5 0\[/2 1)_
A= PDEP _<—1 —2J\0 3)\-1 -1)~

2.5k -3k pk_3k
2.3k _2.5k 2.3k_ 5k
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Diagonalization

Theorem 3.1 (Diagonalization theorem)

A € M, is diagonalizable iff A has n linearly independent eigenvectors.
In this case, we may construct P by stacking the n eigenvectors, and D as a
diagonal matrix with the corresponding eigenvalues.

Proof
d 0 .. 0
. 0 db .. O
Consider the columns of P = (p1 p2 ... Pn) and D=
0 0 .. d,
Let us assume that A = PDP~' and we multiply by P on the right
AP = PD
d 0 .. 0
0 & ... O
0 0 .. d,
(Ap1 Apz ... Ap,) = (dip1 ap2 ... dnpn)
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Diagonalization

This implies that

Ap: = dip1
Ap2 = dop2
Apn = dnpn

But this is the definition of eigenvector, so the columns of P (p;) must be
eigenvectors of A and d; its corresponding eigenvalue. Since P is invertible, its
columns must be linearly independent.
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Diagonalization

1 3 3
Diagonalize A= | -3 -5 -3
3 3 1

Step 1: Find the eigenvalues of A

A= M| =0= - -3 +4=—-(A-1)(A+2)2=0

whose solutions are A =1 and A = —2 (double).
Step 2: Find a linearly independent set of eigenvectors
A=1
1 3 3 1 00 0 3 3 0 1 1
A-X=|-3 -5 -3]-(010|=(-3 6 -3]~10 0 0
3 3 1 0 01 3 3 0 110
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Diagonalization

Step 2: Find a linearly independent set of eigenvectors

A=1
A—/\IN(

A=-2
1 3
A-Xl=|-3 -5
3 3

01 1 o
00 0|]= 077%
-

110

3 -2 0 0 3 3 3
-3]-{0 -2 0]=-3 -3 -3
1 0 0 -2 3 3 3

1 1 -1 -1
0 0] =x1=-—Xx—x3 =V, = 1 ,V3 = 0
0 0 0 1

6. Eigenvalues and eigenvectors December 3, 2013
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Diagonalization

Step 3: Construct P and D

1 -1 -1 1 0 O
P={-1 1 0 D=0 -2 0
1 0 1 0 0 -2

Step 4: Check everything is correct
P is invertible |P| # 0

Pl=1
A= PDP~ = AP = PD
1 2 2 1 2 2
AP=|-1 =2 0| PD=[-1 —2 o0
1 0 -2 1 0 -2
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Diagonalization

Step 4: Check everything is correct
P is invertible |P| # 0
MATLAB:
P=[1 -1 -1; -1 10; 1 0 11;
det (P)
A=PDP~!= AP =PD
MATLAB:
A=[1 3 3; -3 -
P=[1 -1 -1; -1
D=[1 0 0; 0 -2
AxP
PxD

3;
0;

o w
e

—_
-

5
1
0;

O = W

5 ©
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Diagonalization

2 4 3
Diagonalize A= -4 -6 -3
3 3 1

Step 1: Find the eigenvalues of A
A= M| =0=-X -3 +4=—-(A-1)(A+2)2=0

whose solutions are A = 1 and A = —2 (double). (Same eigenvalues as in the
previous example)
Step 2: Find a linearly independent set of eigenvectors

A=1
2 4 3 1 00 1 4 3 1 0 -1
A-XM=|-4 6 -3|-|101O0|=|-4 -7 -3]~]01 1
3 3 1 0 0 1 3 3 0 0 0 O
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Diagonalization

Step 2: Find a linearly independent set of eigenvectors

A=1
1 0 -1 Y 1
A-XM~f0 1 1 ]= 7758 Sy=|[-1
00 0 2= 1
(The same eigenspace as in the previous example).
A=-2
2 4 3 -2 0 0 4 4 3
A-M=|-4 -6 3|-[0 —2 0|=[-4 -4 3|~
3 3 1 0 0 -2 3 3 3
113 X1 = —xp — 3x B
00 0f= 17, 2 48 y=11
00 ! a8 = 0

(A cannot be diagonalized because there are not 3 linearly independent vectors)
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Diagonalization

Theorem 3.2

If a n X n matrix has n different eigenvalues, then it is diagonalizable.
Proof

Let vi, va, ..., v, be the n eigenvectors corresponding to the n different
eigenvalues. The set

{vi,Vv2, ...,V }

is linearly independent by Theorem 1.3 and A is diagonalizable by Theorem 3.1.

W

5 -8 1

IsA=|0 0 7 | diagonalizable?
0 0 -2

Solution

A is a triangular matrix and its eigenvalues are 5, 0 and -2, all of them distinct,
and by the previous theorem A is diagonalizable.

’
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Diagonalization

Theorem 3.3

Let A e M, «, with p < n different eigenvalues. Let dy be the dimension
associated to the eigenvalue \. Then,

@ dy is smaller or equal the multiplicity of \g.
Q@ A is diagonalizable iff di is equal to the multiplicity of \x. In this case,

P
Z dk =n
k=1

© If A is diagonalizable and By are the bases of each one of the eigenspaces,
then {B1, By, ..., Bp} is a basis of R".
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Diagonalization

5 0 0 O
0 5 0 0 , . 1 .
Let A= 1 4 -3 0l Let's factorize it as A = PDP~". The eigenvalues
-1 -2 0 3
and associated eigenvectors are
-8 —16 -8 —-16 0 0
4 4 4 4 0 0
)\1 =5 & V] = 1 Vy = 0 P = 1 0 10
0 1 N 0 1 0 1
0 0 5 0 0 0
0 0 0 5 0 0
)\2——3 <~ V3 = 1 V4 = 0 D = 00 -3 0
0 1 0 0 0 -3
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Exercises

Exercises

From Lay (3rd ed.), Chapter 5, Section 3:
e 531
@ 53.23

5.3.27

5.3.28

5.3.29

5.3.31

5.3.32

5.3.33 (computer)
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e Eigenvalues and eigenvectors
@ Definition (a)
o Characteristic equation (a)
@ Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)



The matrix of a linear transformation

The objective of this section is to show that if A is diagonalizable (A = PDP~1),
then the transformation T(x) = Ax is essentially the same as Tp(u) = Du.

Definition 4.1 (The matrix of a linear transformation)

Consider a linear transformation between two vectors spaces T : U — V. Let B
be a basis of V, and C be a basis of W. Let x € V' and consider its coordinates
[X]g = (r1, 2, -y 1n)-

FIGURE 1 A linear transformation from V to W.
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The matrix of a linear transformations

Let's analyze x and T(x)

X = nbi+nmby+..+nrb,=
T(x) = T(nbi+nby+..+r,b,) [T is linear]
= nT(b))+nrnT(b)+..+rT(b,)

Now, let us consider the coordinates in C of the transformed vector
[T()lc = n[T(b1)lc + r2[T(b2)]c + ... + ra[ T(bn)]c
We can write this equation in matrix form as
[T(X)lc = Mx]s

where M € M« is a matrix formed by the transformations of each one of the
basis vectors in B

M= ([T(b)lc [T(b2)lc - [T(b)lc)

Matrix M is called the matrix of T relative to the bases B and C.

v
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The matrix of a linear transformations

X > T(x)

Multiplication
by M

[xlz > [T(x)],

Let B = {bl,bz} and C = {C1,C2,C3} and

T(bl) = 3c; —2cr + 5c3 M= _32 ‘7].
T(bz) = 4c;+7cr —c3 - 5 1
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Transformations from V into V

Definition 4.2 (B-matrix for T)

If T is a transformation from V into V' and B is a basis of V/, then the matrix M
is called the B-matrix of T.

v

Consider in the vector space of polynomials of degree 2 (IP;), the derivative
transformation

T : Pz — Pz
T(ao + art + axt?) = ay + 2apt

Consider the standard basis of P,, B = {1, t, t?}.
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Transformations from V into V

Which is the B-transformation matrix?
Solution

T1)=0 — [T()s=

T(t)=1 — [T(t)]s=

[T(t)]s = (

O O O oo

T(t?) =2t —

O N O
SN———

U

<

Il
~
o oo
o o
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Transformations from V into V

Verify that [T(x)]s = M[x]|s
Solution

Given any polynomial p(t) = ap + a1t + apt? its coordinates are
[p(t)]s = (0, a1, a2). The derivative of p(t) is T(p(t)) = a1 + 2a»t, then

91 0 1 0\ [ao
[T(p(t))]B - 232 =10 0 2 a
O 0 0 O a
T
Pz H agtat+ uzfz ||:D2 NCIN 2”2’

K

l'l

112
Multiplication a
\\—\*./ 1

Ty g {7}
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Transformations from R” into R”

Theorem 4.1 (Diagonal matrix representation)

Suppose matrix A is diagonalizable (A = PDP~!). If B is the basis of R" formed
by the columns of P, then D is the B-matrix of the linear transformation

T(x) = Ax.

Proof

Let by, by, ...,b, be the columns of P so that B = {by, by, ...,b,} is a basis. We
know that for any basis in R"

x = P[x]g = [x]s = P~ x

Let [T]g be the transformation matrix in the basis B. We know that by definition

[Tle = ([T(b)ls [T(b2)lz ... [T(bn)lg)  (T(x)=Ax)
= ([Abi]g [Abo]z ... [Ab,]g) (change of coordinates)
= (P 'Aby P'Ab, .. P 'Ab,) (matrix multiplication)
= P1A (bl b, .. bn) (definition of P)

= PlAP=D
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Transformations from R” into R”

Let T(x) = (_74 i) x. Find a basis B in which the B-matrix of T is diagonal.

Solution

We diagonalize A as A= PDP~1, with P = _11 _12> and D = <g g) We

may change vectors x to the basis B = {(1,—1), (1, —2)} by applying
u= P Ix
Then, in this new basis, T can be applied as
T(u) = Du= DP~x
If we now, come back to the original basis
T(x) = PT(u) = PDP~1x = Ax

Understanding D as the transformation matrix in some basis gives us insight on its
effect (in this example, an anisotropic dilation).

’
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Similar matrices

Definition 4.3 (Similar matrices)

A and C are similar matrices iff there exists another matrix P such that

A = PCP~L. Given the transformation T(x) = Ax, C is the B-matrix of the
transformation T, when B is the basis defined by the columns of the matrix P.

Conversely, if B is any basis and P is the matrix formed by the vectors in the basis

B, then the B-matrix of the transformation T is P~1AP.

Multiplication

> AX

Multiplication
by P

. by A
Multiplication
by P!
Multiplication
[X]B N
by C

> [Ax] 5
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Similar matrices

Let A= <j _89> T(x) = Ax and b; = (3,2), by = (2,1). Ais not
diagonalizable but the basis B = {by, by} has the property that [T]g is triangular
(it is said to be in Jordan form). According to the previous definition, the

B-matrix of the transformation T is
-1 2 4 -9\ (3 2 -2 1
_ p-1 _ _
[Tls =P AP‘(z —3>(4 8)(2 1)‘(0 —2>

Numerical note

An easy way to compute P~1AP once we have AP is to find a row equivalent
matrix

(P|AP )~ (1| PtAP)
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Exercises

Exercises

From Lay (3rd ed.), Chapter 5, Section 4:
e 541
e 543
@ 545

5.4.13

5.4.18

5.4.22

5.4.23

5.4.25

5.4.27 (computer)
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e Eigenvalues and eigenvectors
@ Definition (a)
@ Characteristic equation (a)
@ Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)



Complex eigenvalues

Complex eigenvalues are always related to a rotation around a certain axis.

g _1> X is a rotation of 90°.

Consider the linear transformation T(x) = <1 0

Ai4, 2)
L 2

SR
Rg sp A — (2,-4)

Obviously, there cannot be any real eigenvector since all the vectors are rotating.
All eigenvalues are complex:

[A=M=0=X+1=M\—-i)A+1i)

4
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Complex eigenvalues

Let's see what happens if we allow applying the transformation on complex

vectors: ((1) _O1> <_1;> =i <_1,->
G )()=~()
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Complex eigenvalues

Bxample
i)

Find the eigenvalues and eigenvectors of A = (
4 10

Solution
To find the eigenvalues we solve the characteristic equation:

Y _3
3 11 5)\‘:)\2—%)\+1:>)\:
4 0

olls
H_
ollw
=

1
2

0=]A—\|=

MATLAB: A=[1/2 -3/5; 3/4 11/10]; l=eigs(A)
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Complex eigenvalues

__ 4 3

Al—g—gl

1_ (4 _ 3 _3 _3 13 _3

A—\Il = (2 (53 5’) u 45—§i)>:< 10;‘5/ 1_}_53/)

1 2—“’1_4_ 1 5 5 4 ) 104' 5

s+ i 5 —2 —4i

~ <0 505 ):>X1:—(§+51)X2:>V1—< 5 >
MATLAB:

A_1T=A-1(1)*eye(2);
A_1T(1,:)=A_1I(1,:)/A_1I(1,1)
A_1T1(2,:)=A_1I(2,:)-A_1I(1,:)*A_11(2,1)
=t+di=X

(GI1S}

_Vl

1 §—gi Y 244\
A—Xal ~ (0 05 ):>x1=—(§—‘51/)xzz>v2:< : >—
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Complex eigenvalues

The application of A on R? is a rotation. To see this, we may start with

%o = (2,0) and calculate
x=an=[3 ]G]
n-a=[3 71][1%]-
X3 = Axy, ...

Figure 1 shows xg, . .
Xig0. The sequence lies along an elliptical orbit.

.
By
ol
X,
+ 0 x
v 4
s, [}
i
) t
Xg " .
- ’
. o
® e @ = Xy
rs

X
6. Eigenvalues and eigenvectol

.. Xg as larger dots. The smaller dots are the locations of xo, ...
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Complex eigenvalues

Definition 5.1 (Conjugate of a vector and matrix)

The conjugate of a vector is defined as

Vi vy
*

Vo V.

v = =Svi=| "2
Vi 78

In the same way, the conjugate of a matrix is defined as

a1 412 ... A1 ann A
A= |32 2 o A | ay Ay
ami  aAm2 amn a1 amo
Theorem 5.1 (Properties)
(rv) = rv (AB)* = A*B*
(Av)* = A*v* (rA)* = r*A*

6. Eigenvalues and eigenvectors

*
An
*
an

LS

mn
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Eigenanalysis of a real matrix that acts on C”

Theorem 5.2

Let A € M, «, be a matrix with real coefficients. If X is an eigenvalue of A, then
A* is also an eigenvalue. If v is an eigenvector associated to A\, then v* is an
eigenvector associated to \*.

Proof

If X is an eigenvalue and v one of its eigenvectors, then we know that
Av = \v
If we now conjugate both sides
(Av)* = (Av)* = Av* = \*v*

(Remind that A has real coefficients and that's why A* = A).

The previous equation means that v* is also an eigenvector of A and that \* is its
eigenvalue.
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Eigenanalysis of a real matrix that acts on C”

Let A= (? _ab). Its eigenvalues are A = a & bi and the corresponding

b
eigenvectors v = g
igenv rsv=1|,.)
a —b 1 a+ bi .
b a (—i - b—ai>:(3+bl) i

(03w

In particular if a = cos(¢) and b = sin(¢), then we have a rotation matrix whose
eigenvalues are

(¢) —sin(¢) _ ()i — et
(:):(@ ccisrqu) ) = \ = cos(¢) £ sin(¢)i = e*i¢
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Eigenanalysis of a real matrix that acts on C”

3

1
Let A= (3 1 |. Consider \; = % — %i and its corresponding eigenvector

4 10
vi = (—2 — 4i,5). Now, we construct the matrix

P = (Re{vi} Im{Vl}):(_52 _o4>

and make a change of basis to the basis whose vectors are the columns of P:

5

iAo (E =3\ [cos(36.87°) —sin(36.87°)
Salia i <§ 5) - (sin(36.87°) cos(36.87°) >

ol

That is, C is a pure rotation and thanks to the change of basis we obtain an
elliptical rotation as shown in Slide 62.
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Eigenanalysis of a real matrix that acts on C”

Theorem 5.3

Let A be a real, 2 x 2 matrix with complex eigenvalue A\ = a — bi (b # 0) and an
associated eigenvector in C2. Then

A= PCP1
where
P = (Re{v} Im{v})
and
(%)
Proof

It makes use of

Re{Av} = ARe{v}
Im{Av} = Alm{v}
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Eigenanalysis of a real matrix that acts on C”

4 3
£ -2 0
5
Consider A = g g 0 |. This is the rotation previously described in the
0 0 107

XY plane plus a scaling in the Z direction. Any point in the XY (for instance,
wo = (2,0,0)) plane rotates within the plane. Any point outside the plane (for
instance, xo = (2,0, 1) rotates in XY and shifts along Z). The following figure
shows the successive application of A on wg and xg.

Xy
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Exercises

Exercises

From Lay (3rd ed.), Chapter 5, Section 5:
e 551
@ 557
@ 55.13

5.5.23

5.5.24

5.5.25

5.5.26

5.5.27
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@ Eigenvalues and eigenvectors
@ Definition (a)
@ Characteristic equation (a)
o Diagonalization (b)
@ Eigenvectors and linear transformations (b)
o Complex eigenvalues (c)
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Outline

@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)
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A little bit of history

Least squares was first used to solve problems in geodesy (Andrien-Marie
Legendre, 1805) and astronomy (Carl Friedrich Gauss, 1809). Gauss made the
connection of this method to the distribution of measurement errors. Currently it
is one of the best understood and most widely spread methods.
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Applications

In this example Least Squares are used to plan a radiation therapy.

AutoBeam vs 2

o Optmse

Welcome to

AutoBeam

Bedford, J. L. Sinogram analysis of aperture optimization by iterative least-squares in volumetric modulated arc therapy. Physics in Medicine and Biology,

2013, 58, 1235-1250
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Applications

Traditionally, control applications were formulated in a least-squares setup.

Currently, they have found more sophisticated goal functions that can be regarded
as evolved versions of least squares.
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)

Gram-Schmidt orthogonalization (b)

Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)

Applications of inner product spaces (d)
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Inner product

Definition 1.1 (Inner product or dot product)

Let u,v € R" be two vectors. The inner product or dot product between these
two vectors is defined as

n
u-v=(uv) 2> yy
i=1

Theorem 1.1
If we considered u and v to be column vectors (€ M,x1), then

U'V:UTV

Let u=(2,-5,—1) and v = (3,2, -3).

u-v=2-3+(-5)-2+1-(-3)=-1
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For any three vectors u,v,w € R" and any scalar r € R it is verified that
Qu-v=v-u

Q@ (u+v) - w=u-w+v-w

Q (ru)-v=r(u-v)=u-(rv)

Qu-u>0

Qu u=0su=0

(nus + nua+ ...+ rpup) - v=r(ug - v) + r(uz - v) + ... + rp(up - v)




Given any vector v, its length is defined as

vl = Vv-v

Given any vector v € R"

vl =/VZ+vZ+ ...+ 2

The length of v = (1,—2,2,0) is
Ivll = T2+ (2 + Z + 07 =3

R, iy e .| D & e 10 10



Length

Theorem 1.4
For any vector v and any scalar r it is verified that
[[rv]| = [r[llv]

Proof
It will be given only forv € R":

Ivll = V()2 + () + o+ (ve)2 = V/r2(v + 5 + . +V)(q.e.d.)
= V2B +vi+ .+ v2=]r||v|

Find a vector of unit length that has the same direction as v = (1, —2,2,0).
Solution

w=py =330 = lwl =3+ 5+ +0=

7. Orthogonality and least squares December 3, 2013 11 / 119



The distance between any two numbers a, b € R can be defined as

d(a,b) = |a— b

Calculate the distance between 2 and 8 as well as between -3 and 4.

b

b
T I T
4

a
I T T T T
1 2 3 4 5 6
6 units apart

7 8

12-8l=I-6l=6 or I18-2I=16l=6

FIGURE 3 Distances in R.

|

T T
9 -3 -2-1 0 1 2 3
T units apart |
I

=

I(=3)-4l=1-TI=7 or 14-(3)=171=7

R, iy e .| D 5, A0
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Distance

Definition 1.4 (Distance in R")

The distance between any two vectors u,v € R" can be defined as

d(u,v) = [lu—v]|

Calculate the distance between u = (7,1) and v = (3,2)

d(u,v) = [(7,1) ~ (3,2)]| = |4, ~1)|| = VA F 12 = VI7

FIGURE 4 The distance between u and v is
the length of u — v.

4
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For any two vectors in R3, u and v, the distance can be calculated through

d(u,v) = [lu —v|| = [[(1n = v1, 1y — vy, u3 — w3)[| =
(1 —vi)? + (U2 — v2)? + (u3 — v3)?

R, iy e .| D & e 10 {10



Orthogonality

Any two vectors in R?, u and v, are orthogonal if d(u,v) = d(u, —v)

llu—(= vl

d*(u,v) = lu—v|[?=(u—v) - (u—v)=u-u+v-v—2u-v=|ul]?+|v|]?>—2u-v
d?(u,—v) = [Ju+v|?2 = (u+v)-(u+v) =u-u+v-v+2u-v = |luf|>+|v[*+2u-v

d?*(u,v) = d*(u,—v) = 2u-v=2u-v=>u-v=0
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Any two different vectors, u and v, in a vector space V' are orthogonal iff

u-v=20

0 is orthogonal to any other vector.

Any two vectors, u and v, in a vector space V are orthogonal iff

lu+ vl = [lul|* + ]lv]?




Orthogonality

Definition 1.6 (Orthogonality between vector and vector space)

Let u be a vector in a vector space VV and W a vector subspace of V. u is
orthogonal to W if u is orthogonal to all vectors in W. The set of all vectors
orthogonal to W is denoted as W+ (the orthogonal complement of W ).

Let W be a plane in R3 passing through the origin and L be a line, passing

through the origin and perpendicular to W. For any vector w € W and any vector
z € L we have

w-z=0 ~
Therefore, 0 .

L=Wtesw=1L"
W

y
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Let W be a vector subspace of a vector space V.

Q xec Wt iffxis orthogonal to every vector in a set that spans W

@ W is a vector subspace of V.

N
Let A € Myxn, then ~ |-
Q (Row{A})* = Nul{A} 03\ /g.
Q (Col{A})* =Nul{AT} Yoy b
g Corg

FIGURE 8 The fundamental subspaces determined
by an /n x n matrix A.




Orthogonality

Proof Nul{A} C (Row{A})*
Consider the rows of A, a; (i = 1,2,...,m) as column vectors, then for any vector
x € Nul{A} we know

T T
alT alTx a; - X 0
a a, X a - X 0
Ax=0= |2 [x= "] =] =
T T
a,, a,x am - X 0

Consequently, x is orthogonal to all the rows of A, which span Row{A} and by
the previous theorem, x € (Row{A})*
Proof Nul{A} O (Row{A})*

Conversely, let x € (Row{A})", then by the previous theorem we know that

ai-x fori=1,2 .. m=Ax=0

So, x € Nul{A}
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Proof (Col{A})* = Nul{A"}
Let's define B = AT. By the first part of this theorem, we know

(Row{B})" = Nul{B} = (Row{AT})* = Nul{AT} = (Col{A})* = Nul{AT}

For any two vectors u and v in a vector space V, the angle between the two can
be measured through the dot product:

u - v = [|ufl[|v]| cos®




Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 1:
@ 6.1.15
e 6.1.22
@ 6.1.24

6.1.26

6.1.28

6.1.30

6.1.32 (computer)
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)

Gram-Schmidt orthogonalization (b)

Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)
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Orthogonal sets

Definition 2.1 (Orthogonal set)

Let S = {uy,uy,...,u,} be a set of vectors. S is an orthogonal set iff

ui-u =0 Vije{l,2,..,p}i#j

V.

Letu; = (3,1,1), up = (=1,2,1), us = (—3, -2, Z). Check whether the set
S = {uy1,uy,u3} is orthogonal.

Solution
up-u; = 3-(— 1)+1 2+1-1=0
wous = 3-(-1)+1-(-2)+1-(3)=0
u-uz = (=1)-(-3)+2-(-2)+1-(3)=0
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Orthogonal sets

Theorem 2.1

If' S is an orthogonal set of non-null vectors, then S is linearly independent and,
consequently, it is a basis of the subspace spanned by S.

Proof

Letu; (i=1,2,...,p) be the elements of S. Let us assume that S is linearly
dependent. Then, there exists coefficients c1, ¢, ..., ¢, not all of them null such
that

0=cu; +cuy+ ...+ cup
Now, we compute the inner product with u;

0 -u = (C1IJ1 + couy + ... + cpup) s Uy
0=ci(us-u1)+ c(uz-u) + ... + cp(up - u1) = ciflug]|? = 1 =0

Multiplying by u; (i = 2,3, ..., p) we can show that all ¢;’s are 0, and, therefore,
the set S is linearly independent.
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Orthogonal basis

Definition 2.2 (Orthogonal basis)

A set of vectors B is an ortohogonal basis of a vector space V if it is an
ortohogonal set and it is a basis of V.

Theorem 2.2

Let {uy,uy,...,u,} be an orthogonal basis for a vector space V/, for each x € V
we have

— Xu X-Up X-Up
X = +—5U —5 U u
TulZYL T+ a2 + - + T Ye

Proof

If x is in V/, then it can be expressed as a linear combination of the vectors in a
basis of V

X = Cju; + Qup + ... + CpUp
Now, we calculate the dot product with uy

x-up = (cus + ua + ...+ Goup) - U = aluil? = a = ﬁ
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Orthogonal basis

Let u; = (3,1,1), up = (-1,2,1), u3 = (—3, -2, 1), and B = {uy, up, u3} be an
orthogonal basis of R3. Let x = (6,1, —8). The coordinates of x in B are given by

X'U]_:]_]_ X'U2:—12 X'U1:—33
lmlP=11  fuaP=6 fus|?=2
x = fjut et P

u; — 2UQ — QU3
The coordinates of x in the basis B are

]z = (1,-2,-2)
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Orthogonal projections

Orthogonal projection onto a vector

Consider a vector y and another one u. Let us assume we want to decompose y as
the sum of two orthogonal vectors y (along the direction of u) and another vector

z (orthogonal to u):

y=y+z=au+z= I/':

® 0 .
z=y-Yy | ¥

FIGURE 2

Finding « to make

orthogonal to u.
We need to find a that makes u and z orthogonal.

0O=z-u=(y—au)-u=y-u—qaful?=a=

y is the orthogonal projection of y onto u.

y=¥

y-u
[lull?
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Orthogonal projections

Let y = (7,6) and u = (4,2). Then,

g — Yyu

40 Y= JupY =
y-u=

lul2 = 20 } -

20“

¥

& 7
-5

dy,9) =lly =9Il = llzll =

-

8
2u = 4

(6)=()

NG VRN

. L=Span{u}

4
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Orthonormal set

Definition 2.3 (Orthonormal set)

{u1,uy, ...,u,} is an orthonormal set if it is an orthogonal set and all u; vectors

have unit length.

Show that the set {uj,uy,us} is orthonormal, with

3 -1 1

1 1 1
U = — 1 U = —&— 2 us = — —4
1\ Vel vee \ ¢

Solution
Let's check that they are orthogonal:

up U= =3 (-1)+1:24+1-1)=0
upuz= =e(3-(-1)+1-(-4)+1:7)=0
upug = Z—=((-1) (1) +(2) - (-4) + (1) 7) =0

v
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Orthonormal set

Now, let's check that they have unit length:

lua || = \/(\%ﬁ) (32+12+12) = \/9+T+1:
Juz|| = \/(%5)2((—1)2+22+12 [1ra+1 _
Just = /() (202 + (o247 - \/? L

Theorem 2.3

If S = {uy,uy,...,u,} is an orthonormal set, then it is an orthonormal basis of
Span{S}.

{e1,es,...,e,} is an orthonormal basis of R". I
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Orthonormal basis

Theorem 2.4

Let S = {uy,uy,...,u,} is an orthogonal set of vectors, then the set
S ={uf,u), ..., u} where

is a orthonormal set (this operation is called vector normalization).
Proof

Let’s check that the u} vectors are orthogonal:

/ /U v 1
u.-u. = . = —UuU; - u;
7 Nl gl flui [ |

But this product is obviusly 0 because the u; vectors are orthogonal. Let’s check
now that the u! vectors have unit length:

il = |

u || =l g
nu,-uH lui
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Orthonormal matrix

Theorem 2.5
Let U € M« be a square matrix. The columns of U form an orthonormal set iff
utu =1,
It is said that U is an orthonormal matrix.
Proof
Let's consider the columns of U
U = (Ul u ... Un)
Let's calculate now UT U
u/ u/u; u/uy ... ulu,
T T T T
u Uu,u; U Uy ... UU
UTU=1]"2[(u u .. u,)=|["2 1o T2 25n
ul ulug uluy ... ulu,

T _ . .
The condition UT U = I, simply states { 3’7-3] (1) : #j. , which is the
i = =

definition of an orthonormal set.
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Orthonormal matrix

Theorem 2.6
Let U € Mpx, be an orthonormal matrix and Vx,y € R", then

0 [[Ux| =[]
Q@ (Ux)-(Uy)=x-y
Q (Ux)-(Uy)=0<x-y=0

1 2
V2 3 V2
1 2
Let U = 5 T3 andx:(3>.
0 s
3
U is an orthonormal matrix because
1 1 9 12
. 2 V2 23, 10
Uiu=1 3 Va2 3|7 \o 1
—2 1) \y 1
3 3 3

V.
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Orthonormal matrix

Let's calculate now Ux

12 3
Ux = f —32 v2) _ -1
=z 5 )= ;
0 3
Let's check now that ||Ux|| = |||
o = 5,1, 1 = VLI 7~

x| = [|(vV2,3)]| = v/ (V2)2 + 32 = \/_1

Theorem 2.7
Let U be an orthonormal and square matrix. Then,
Q U l=UT
@ U7 is also an orthonormal matrix (i.e., the rows of U also form an
orthonormal set of vectors).

4
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Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 2:
@ 6.2.1
@ 6.2.10
@ 6.2.15

6.2.25

6.2.26

6.2.29

6.2.35 (computer)
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The orthogonal projection of a point 'y onto a vector subspace W is a point

y € W such that

e




Orthogonal projections

Let {u1,uy,...,us} be an orthogonal basis of R®. Consider the subspace
W = Span{uy,u,}. Given any vector y € R®, we can decompose it as the sum of
a vector in W and a vector perpendicular to W

y=9y+z

Solution
If {u1,us,...,us} is a basis of R, then any vector y € R® can be written as

y = ciuj + cup + ... + Csus
We may decompose this sum as

y = cu + cup
Z = C3U3 + C4U4 + CsUs
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Orthogonal projections

It is obvious that § € W. Now we need to show that z € W. For doing so, we
will show that

z-u; =0
z-u, =0

To show the first equation we note that

z-u; = (cusz+ quy+ csus) - ug

c3(uz - ug) + c4(ug - ug) + cs(us - ug)
c3-04+c-0+c-0

= 0

We would proceed analogously for z - u, = 0.
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Orthogonal projections

Theorem 3.1 (Orthogonal Decomposition Theorem)

Let W be a vector subspace of a vector space V. Then, any vectory € V can be
written uniquely as

y=y+z

with§ € W and z € W, In fact, if {u1,uy, ...,u,} is an orthogonal basis of W,
then

y-u

¥ = Tafzu + fafzu2 + -+ 1ol

Z=y-¥ y

¥ =projyy
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Orthogonal projections

Proof
y is obviously in W since it has been written as a linear combination of vectors in
a basis of W. z is perpendicular to W because

z:th = (y* (Huuv“l + Roafzt2 -+ g uz"P)) it

Yy -up — ||U1H2(u1 u1) ||u2H2(UQ U1) 000 = ﬁ(up . u1)
[{u;} is an orthogonal set]

y-up— ﬁ(ul'ul)

y g — i fJug]?

= yuw—-y-u

=0

T

We could proceed analogously for all elements in the basis of W.
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Orthogonal projections

We need to show now that the decomposition is unique. Let us assume that it is
not unique. Consequently, there exist different vectors such that

y=9y+z
y=y+7

We subtract both equations

0=@-9)+G-2)=9-5 -2~z

Let v=y — ¥ It is obvious that v € W because it is written as a linear
combination of vectors in W. On the other side, v=2 —z, i.e., it is a linear
combination of vectors in W=, so v € W=. The only vector that belongs to W
and W+ at the same time is

v=0= {

and consequently, the orthogonal decomposition is unique. Additionally, the
uniqueness of the decomposition depends only on W and not on the particular
basis chosen for W'.

— 3/
=Yy
:zl

N <
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Orthogonal projections

Let u; = (2,5, —
and up. Lety =

A

y

1) and up = (—2,1,1). Let W be the subspace spanned by u;
(1,2,3) € R3. The orthogonal projection of y onto W is
= Tl el
2 _
1-242:543:(—1 1-(=2)42-143-1
= ot | 5| e 1
2 — _2
5
9
-1 1 l
2 7
1 -5 5
1 14
3 5 5
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y can be understood as the sum of the orthogonal projection of y onto each one
of the elements of the basis of W.

u,

y-uy 3 a
u+ u, =¥+
LR PR B e ] Nty

\:. i

If' y belongs to W, then the orthogonal projection of y onto W is itself:
y=y
7 Orthogonality and least squares  December3, 2013 44 /119




Properties of orthogonal projections

Theorem 3.3 (Best approximation theorem)
The orthogonal projection of y onto W is the point in W with minimum distance
toy, ie.,

ly =9I < lly — vl

for allv e W,v #y.
Proof

We know that 'y —y is orthogonal to W. For any vectorv € W v #£ §, we have
that y — v is in W. Now consider the orthogonal decomposition of the vectory —v

W ly — vl

FIGURE 4 The orthogonal projection of y
onto W is the closest point in W to y.
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Properties of orthogonal projections

Due to the orthogonal decomposition theorem (Theorem 3.1), this decomposition
is unique and due to the Pythagorean theorem (Theorem 1.5) we have

ly = vl = lly = 91> + Iy — v|?

Since v # § we have ||§ — v||?> > 0 and consequently

ly — vl > [ly — 9]
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Properties of orthogonal projections

Theorem 3.4
If {u1,uy,...,u,} is an orthonormal basis of W, then the orthogonal projection of
y onto W is
9 = <y7 U1> u; + <y7 U2> u + ...+ <y7 up> up
If we construct the orthonormal matrix U = (u1 u .. up), then
y=UuU"y
Proof

By Theorem 3.1 we know that for all orthogonal bases it is verified

O — Yyu y-u y-up
= u iz U — = U
Y= Qa2 ¥ fuppY2 e T g Ye

Since the basis is in this case orthonormal, then ||u|| =1 and consequently

¥ = (y,u1)u; + (y,up) uz + ... + (y,up) u,

7. Orthogonality and least squares December 3, 2013
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Properties of orthogonal projections

On the other side we have

uy ujy (u1,y)
UTy = u; y = uy _ (u2,y)
uy uyy (up,y)
Then,
(u1,y)
UUTy = (ul u ... up) <u.2.,.y> = (y,u)u; + (y,up) up + ... + (y, u,) u,
(up, y)
(q.ed.)
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Let U= (uy uz .. up) beanx p matrix with orthonormal columns and
W = Col{U} its column space. Then,

Vx € RP UTUx=x No effect
Yy € R” UUTy=9 Orthogonal projection of y onto W

If Uisanx n, then W =R" and the projection has no effect

Vy eR" UUTy=9=y No effect




Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 3:
@ 6.3.1
° 6.3.7
@ 6.3.15
@ 6.3.23
@ 6.3.24
@ 6.3.25 (computer)
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Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is a procedure aimed at producing an orthogonal
basis of any subspace W.

Let W = Span{xy, x2} with x; = (3,6,0) and xz = (1,2,2). Let’s look for an
orthogonal basis of W.

Solution

We may keep the first vector for the basis

Vi = X1 = (3,6,0)

For the second vector in the basis, we need to keep the component of x;, that is
orthogonal to x;. For doing so we calculate the projection of x, onto x; (p), and
we decompose x; as

X2 =Pp+ (X2 _p) = (1a2v0) +(Ov072)
We, then, keep the orthogonal part of x;
Vo) = Xo — P = (0,0,2)

y
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Gram-Schmidt orthogonalization

The set {v1, vz} is an orthogonal basis of W.

Xy

FIGURE 1

Construction of an orthogonal
basis {v;, v2}.

4

7. Orthogonality and least squares December 3, 2013 53 /119



Gram-Schmidt orthogonalization

Let W = Span{xy, X2, x3} with x; = (1,1,1,1), x, = (0,1,1,1) and

x3 = (0,0,1,1). Let's look for an orthogonal basis of W.

Solution

We may keep the first vector for the basis. Then we construct a subspace (W)
with a single element in its basis

Vi = X1 = (1, 17 ].7 1) W1 = Span{vl}

For the second vector in the basis, we need to keep the component of x; that is
orthogonal to W;. With the already computed basis vectors, we construct a new
subspace (W) with two elements in its basis

Vo :XQ—PI'ijl(Xz) = (—%7%,%7%) W2 :Span{vl,vQ}
For the third vector in the basis, we repeat the same procedure

v3 = X3 — Projy, (x3) = (0,—3,3,5) Wi =Span{vi, vy, v3}

y
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Given a basis {x1,%2,...,Xp} for a vector subspace W. Define

Vi =X W, = Span{v; }
Vo = X — PI‘Oj A (X2) W2 = Span{vl, V2}

Vp =xp, — Projy,_ (xp) W, =Span{vi, v, ...,vp} =W

Then {v1,v2,...,vp} is an orthogonal basis of W.




Gram-Schmidt orthogonalization

Proof

Consider Wy = Span{vy, v, ..., vk} and let us assume that {vy,vo, ..., v} is a
basis of W). Now we construct

Vii1 = Xkp1 — Projyy, (Xkg1)  Wigr = Span{vi,va, ..., Viy1}

By the orthogonal decomposition theorem (Theorem 3.1), we know that vy is
orthogonal to Wy. Because x,11 is an element of a basis, we know that

Xk+1 & Wk. Therefore, vy is not null and xx11 € Wii1. Finally, the set
{v1,V2,...,viy1} is a set of orthogonal, non-null vectors in the

(k + 1)-dimensional space Wy 1. Consequently, by Theorem 9.4 in Chapter 5, it
must be a basis of Wj.1. This process can be iterated till k = p.
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Gram-Schmidt orthogonalization

Orthonormal basis

Once we have an orthogonal basis, we simply have to normalize each vector to
have an orthonormal basis.

4

Let W = Span{xi, x2} with x; = (3,6,0) and xo = (1,2,2). Let’s look for an
orthonormal basis of W.
Solution

In Slide 52 we learned that an orthogonal basis was given by

vi = (3,6,0)
Vo = (Oa 072)

Now, we normalize these two vectors to obtain an orthonormal basis

y
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QR factorization of matrices

If we apply the Gram-Schmidt factorization to the columns of a matrix, we have
the following factorization scheme. This factorization is used in practice to find
eigenvalues and eigenvectors as well as to solve linear equation systems.

Theorem 4.2 (QR factorization)

Let A € M« with linearly independent columns. Then, A can be factored as
A= QR

where Q@ € M ,,«n is a matrix whose columns form an orthonormal basis of
Col{A} and R € M, is an upper triangular invertible matrix with positive
entries on its diagonal.

Proof

Let’s orthogonalize the columns of A following the Gram-Schmidt procedure and
construct the orthonormal basis of Col{A}. Let {uy,uy,...,u,} be such a basis.
Let us construct the matrix

Q: (Ul u ... u,,)
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QR factorization of matrices

Let us call a; (i = 1,2, ..., n) to the columns of A. By the Gram-Schmidt
orthogonalization, we know that for any k between 1 and n we have

Span{aj, ay,...,ax} = Span{uy,uy, ..., ux}
Consequently, we can express each column of A in the orthonormal basis:
ax = niuy + rguz 4+ o+ rgu +0-ugpg + ...+ 0 u,

If rx is negative, we can multiply both rx, and u, by -1. We now collect all these
coefficients in a vector ry = (rik, fak, -, fkk, 0,0, ..., 0) to have

ax = Qry
By gathering all these vectors in a matrix, we have the triangular matrix R

R:(r1 rno.. r,,)

R is invertible because the columns of A are linearly independent.
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QR factorization of matrices

Let’'s calculate the QR factorization of A = . From Slide 54 we know

e
=)
=)

that the vectors

vi=(1,1,1,1)

_ 3111
V2_(_Z g’]z_’ll_l)
v3:(07_§7§7§)

Is an orthogonal basis of the column space of A. We now normalize these vectors
to obtain the orthonormal basis in @

1 _3 9

i
=|] T

2 V12 Ve

v
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QR factorization of matrices

To find R we multiply on both sides of the factorization by @

A=QR=QTA=Q"QR=R
1 1 1 1 1 00
2 i it 1 110
3
R=QTA = (V& V& v& v2||1 11
o -2 at T
V6 V6 6 111
2 2 1
_ o & =2
= T
00%
6
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Exercises

From Lay (3rd ed.), Chapter 6, Section 4:
e 6.4.7
@ 6.4.13
e 6.4.19
@ 6.4.22
e 6.4.24
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Least squares

Let's assume we want to solve the equation system Ax = b, but, due to noise,
there is no solution. We may still look for a solution such that Ax =~ b. In fact the
goal will be to minimize d(Ax,b).

Definition 5.1 (Least squares solution)

Let A be a m x n matrix and b € R™. x € R" is a least squares solution of the
equation system Ax = b iff

Vx € R” ||b— A%| < ||b— Ax]|

hy

0
Col A ‘Ax

FIGURE 1 The vector b is closer to A% than
to Ax for other x.
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Applying the Best Approximation Theorem (Theorem 3.3), we may project b onto
the column space of A

b= Projcoiray {b}

Then, we solve the equation
system

Ax=b

that has at least one solution.

FIGURE 2 The least-squares solution ¥ is in R".




Least squares

Theorem 5.1
The set of least-squares solutions of Ax = b is the same as the set of solutions of
the normal equations

ATAx=ATb

Proof: least-squares solutions C normal equations solutions
Let us assume that X is a least-squares solution. Then, b — Ax is orthogonal to
Col{A}, and in particular, to each one of the columns of A (a;, i =1,2,...,n):

ai-(b—AR) =0 Vie{l,2,..,n}=
al(b—AX) =0 Vie{l,2,...n} =
AT(b— AR) =0 =
ATb = AT A%

That is, every least-squares solution is also a solution of the normal equations.

7. Orthogonality and least squares December 3, 2013 66 / 119



Least squares

Proof: least-squares solutions O normal equations solutions
Let us assume that X is solution of the normal equations. Then,

ATb = AT A% =
AT(b— A%) =0 =
al(b—A%)=0 Vie{1,2,.. n}

That is, b — A% is orthogonal to the columns of A and, consequently, to Col{A}.
Hence, the equation

b = A% + (b — A%)

is the orthogonal decomposition of b as a vector in Col{A} and a vector
orthogonal to Col{A}. By the uniqueness of the orthogonal decomposition, A%
must be the orthogonal projection of b onto Col{A} so that

A% = b

and, therefore, X is a least-squares solution.
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Least squares

4 0
Find a least-squares solution to Ax =b with A= |0 2| andb= | 0
11

Solution
Let’s solve the normal equations ATAXx = A™b

17 1 19
TaA_ Th —
AA_<1 5) Ab_(ll)
17 N\ (19) L4 17 1\ ' /19\ (1
1 5 T \11 ~\1 5 1) — \2
Let’'s check that X is not a solution of the original equation system but a

least-squares solution

2

1 4 0
()= (£) 6 5- s
3 11

4 0
Ax= |0 2
11

4
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The least-squares error is defined as

0? £ ||A% —b|]* = b — b||?

In this case:

o? = /(4,4,3) — (2,0,11)|| = [|(2,4, -8)|| ~ 9.165

R, iy e .| D & e 10



Least squares

Unfortunately, the least-squares solution may not be unique as shown in the next

example (arising in ANOVA). Find a least-squares solution to Ax = b with

1
1
1
S 1
1
1
Solution

1

O OO o

0

OO =M= O

o

== O OO

and b =

ATA =

NN DN O

-3
-1
0
2
5
1
2 2 2 4
2. 00 | -4
0o 20| AP=|2
00 2 6
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Least squares

The augmented matrix is
6 2 2 2| 4 1 00 1 3
22004 [01 0 -1 5
2 0 20 2 0 01 -1 2
2 0 0 2 6 0 00 O0f O
Any point of the form
3 -1
& —5 1
X = ) + Xxa 1 Vxq € R
0 1
is a least-squares solution of the problem.
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The matrix AT A is invertible iff the columns of A are linearly independent. In this
case, the equation system Ax = b has a unique least-squares solution given by

x=A"b
where AT is the Moore-Penrose pseudoinverse

At = (ATA)1AT




Least squares and QR decomposition

Sometimes AT A is ill-conditioned, this means that small perturbations in b
translate into large perturbations in X. The QR decomposition offers a numerically
more stable way of finding the least-squares solution.

Theorem 5.3
Let there be A € M« with linearly independent columns. Consider its QR
decomposition (A= QR). Then, for each b € R™ there is a unique least-squares
solution of Ax = b given by
Xx=R1'Q'b

Proof
If we substitute X = R~1QTb into Ax we have

Ax=AR1Q"b = QRR'Q"b = QQ"b.

But Q is an orthonormal basis of Col{A} (Theorem 4.2 and Corollary in Slide 49)
and consequently QQTb is the orthogonal projection of b onto Col{A}, that is, b.
So, 8 = R71Q"b is a least-squares solution of Ax = b. Additionally, since the
columns of A are linearly independent, by Theorem 5.2, this solution is unique.
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Least squares and QR decomposition

Remind that numerically it is easier to solve RXx = Qb than x = R71Q"b

1 3 5 3
et A= 1 1 g and b = ? . Its QR decomposition is
1 3 3 -3
1 1 1
2 2 g 2 4 5
A=QR=| %1 % % 023
i 1t J\0o2
2 2 2
6 2 4 5 6 10
Q™b=| 6 |=10 2 3|x=[ -6 |=x%x= 6
4 0 0 2 4 2
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Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 5:

@ 6.5.1
@ 6.5.19
@ 6.5.20
@ 6.5.21
@ 6.5.24
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)



Least-squares linear regression

In many scientific and engineering problems, it is needed to explain some
observations y as a linear function of an independent variable x. For instance, we
may try to explain the weight of a person as a linear function of its height

Weight (kg)
90

80

Weight = 5y + (51 Height

¥=-133.18 + 115.91"X

40 ————r=0,886 —
% R-squared linear = 0.785
1.60 1.70 1.80 1.90
Height (m)

A. Schneider, G. Hommel, M. Blettner. Linear Regression Analysis. Dtsch Arztebl Int. 2010 November; 107(44): 776-782.

p
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Least-squares linear regression

For each observation we have an equation

Height (m.) | Weight (kg.)

57 = By + 1.7053;

1;2 Z; 43 = By + 1.530;

100 o 94 = By + 1.90/3;
1 1.70 57

1 153 Bo) _ |43
1 1.90 B1) |94
which is of the form

XB=y
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Least-squares linear regression

Least-squares regression

Each one of the observed data points (x;, y;) gives an equation. All together
provide an equation system

XB=y

that is an overdetermined, linear equation system of the form Ax = b. The matrix
X is called the system matrix and it is related to the independent (predictor)
variables (the height in this case). The vector y is called the observation vector
and collects the values of the dependent (predicted) variable (the weight in this
case). The model

y=po+ Bix+e

is called the linear regression of y on x. g and (3; are called the regression
coefficients. The difference between the predicted value and the observed value
for a particular observation (¢) is called the residual of that observation.
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y .
Daapoint_ (x. y.)

(‘r'! ﬁ{] + ﬁ]xj)

. - /
Point on line Rl For
Residual — Residual

Y=By+Bx
I I I x

FIGURE 1 Fitting a line to experimental data.

The residual of the j-th observation is defined as

& =Y; — (Bo + B1x)




Least-squares linear regression

The goal of least-squares regression is to minimize
= 2
> =ly—XBl
Jj=1

Let's analyze this term

1 x Bo + Bixt N
1 x| (bo Bo + Baxo 72
X = = =
=1 2| (%
1 X 60+6nxn }I}n
Then
A 2
yi—n
ly=xslI2= ||| ||| =S0-mr=x4
= = =1
Yn — Yn
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Least-squares linear regression

Suppose we have observed the following values of height and weight (1.70,57),

1 1.70
(1.53,43), (1.90,94). We construct the system matrix X = [ 1 1.53 | and the
1 1.90
57
observation vector y = | 43 | . Now we look the normal equations
94

XB=y=XTXB=XTy
3.00 5.13 194.00\ 4 ~173.14
Ty — Ty — — Ty\-1yT, —
XX = (5.13 8.84) Xy = (341.29) f=XIX) Xy = ( 137.90 )
Weight = —173.39 + 139.21 Height
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Least-squares linear regression

110

MATLAB:

o X=[1 1.70; 1 1.53; 1 1.90];
y=[57; 43; 94];
beta=inv (X’ *X) *X’ *xy

100

90

80

3" x=1.5:0.01:2.00;
o0 R yp=beta(1l)+beta(2)*x;
50 plot(x,yp,X(:,1),y,%0°)
wf ° xlabel (*Height (m)’)
e - . - - | ylabel(’Weight (kg)’)
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Least-squares linear regression

The general linear model

The linear model is not restricted to straight lines. We can use it to fit any kind of
curves:

= Pofo(x) + 1fi(x) + Bafa(x) +

4

fo(x) = 1 y1 = fo(x1) + Bifi(x1) + Bafa(x1)
A =x = 2= h0e) + AifiCe) + failoe)
2
o= Yo =64+ i) + o)
1 X1 ﬁo €1
1 x Bl + | =y=XB+e¢
B> -
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Least-squares linear regression

In this example they model the deformation of the wall of the zebra fish embryo as
a function of strain.

Z. Lua, P. C.Y. Chen, H. Luo, J. Nam, R. Ge, W. Lin. Models of maximum stress and strain of zebrafish embryos under indentation. J. Biomechanics 42

(5): 620-625 (2009)
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Least-squares linear regression

Multivariate linear regression

The linear model is not restricted to one variable. By fitting several variables we
may fit surfaces and hypersurfaces

y = Bofo(x1, x2) + Br1hi(x1, x2) + Bafa(x1, x2) + ...

fo(xi,x) =1

f(x1, %) =x 1 xu1 x2 xi x5 xxa
h(x1, %) = X X = 1 X1 xo X4 X5 XX
f3(x1, x0) = x? -

fa(x1, x2) = x3 1 Xm Xm2 X3 X% XniXm
fs(x1, x2) = x1x2
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Least-squares linear regression

In this example they model the shape of cornea using videokeratoscopic images.

2-Axis [mm]

y-Axis [mm]
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 6:
@ 6.6.1
@ 6.6.5
@ 6.6.9
@ 6.6.12 (computer)
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)



Inner product spaces

Manifold ¢—mo——  R”

Banach space
(Norm and completeness)

-~

Hilbert space

€——— (Dot product and

completeness)

Normed vector space

v

(Norm)

l

Metric space

(Distance)
v
Topological space
(open set)

v

Inner product space
(Dot product)

Locally convex spaces
(Seminorm)

Vector space
(Linear combination)
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Inner product spaces

Definition 7.1 (Inner product)

An inner product in a vector space V is a function that assigns a real number to

every pair of vectors u and v, (u,v) and that satisfies the following axioms for all
u,v,w € V and all scalars c:

Q (u,v) =(v,u)
Q@ (u+v,w)= (u,w)+ (v,w)
Q (cu,v) =c(u,v)
Q@ (u,u) >0 and (u,u) =0 iffu=0. )

For instance in Weighted Least Squares (WLS) we may use an inner product in
R? defined as:

(u,v) = 4uyvy +5urvy

In this way we give less weight to distances in the first component with respect to
distances in the second component.

4
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Inner product spaces

Now we have to prove that this function is effectively an inner product:

Q (u,v) = (v,u)

(u,v)

4uivi + B vy [by definition]
4viuy + Bvoun [commutativity of scalar multiplication]
(v, u) [by definition]

Q@ (utv,w) = (u,w)+ (v,w)

(u+v,w)

4(U1 + V1)W1 + 5(U2 + V2)W2
= 4U1W1 aF 4-V1W1 a4 5UQW2 =F 5V2W2

Augwy + Suows + dviwy + Svoun

= {u,w) + (vw)

7. Orthogonality and least squares

[by definition]
[distributivity of scalar]
[multiplication/addition]
[commutativity]

[of scalar addition]

[by definition]
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Inner product spaces

Q (cu,v) =c(u,v)
(cu,v) = dcuyvs +5cuove [by definition]
= cdviu + Ao [commutativity of scalar multiplication]
= c(4viuy +5vu) [distributivity of scalar multiplication]
= c(u,v) [by definition]
Q (u,u) >0 and (u,u) =0 iffu=0.
@ (u,u) >0
(uyuy = 4uf+503 [by definition]
which is obviously larger than 0.
@ (u,u)=0iffu=0.
(Uu) =042 +53 =0 =w=0
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Inner product spaces

Consider two vectors p and g the vector space of polynomials of degree n (P,).
Let to, t1, ..., t, be n distinct real numbers and K any scalar. The inner product
between p and g is defined as

(p,q) = K(p(t0)q(to) + p(t1)q(tr) + ... + p(ts)q(tn))

Axioms 1-3 are easy to check. Let's prove Axiom 4

Q (p,p) >0and (p,p) =0iff p=0.
o (p,p) >0
p,p) = K (pz(to) + p%(t1) + ... + p2(t,,)) [by definition]

which is obviously larger than 0.

@ (p,p)=0iff p=0.

(p,p) =0 K (p°(to) + P°(tr) + ... + P*(ta)) &
p(to) = p(t1) = ... = p(tn) =0

But p is a polynomial of degree n so, at most, it can have n zeros. However,
the previous condition requires the polynomial to vanish at n+ 1 points. This
is impossible unless p = 0.

o’
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Inner product spaces

Consider two vectors p and g the vector space of polynomials of degree n (P,).
Assume that we regularly space the n+ 1 points in the interval [—1,1]

AT =

1
n

t, t ot ot oty ..t

1, =-1+iAT
and set K = AT, then the inner product between the two polynomials becomes

{p,q) = (p(to)q(to) + p(tr)q(tr) + ... + p(tn)q(tn)) AT = ;)P(ti)q(ti)AT
Making AT tend to O, the inner product becomes

(pya) = [, p(t)a(t)dt

.
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Inner product spaces

Legendre polynomials are orthogonal polynomials in the interval [—1,1]

P(x)=1

P(x)=x
P(x)=7(3x"-1)
Py(x) = +(5x" - 3x)

Pr(x)

P, (x)=+(35x" —=30x" +3)

Po(x) = £(63x° —70x° +15x)

P (x)=%(231x" = 315x* +105x* - 5)

P (x) =75 (429x7 - 693x” +315x° - 35x)

Legendre polynomials are very useful for regression of high-order polynomials as

shown in next slide.

-1
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Length, distance and orthogonality

Length, distance and orthogonality

The length of a vector u in an inner product space is defined in the standard way
Jull = v/{u, u)
Similarly, the distance between two vectors u and v is defined as
d(u,v) = [u—v||

Finally, two vectors u and v are said to be orthogonal iff

(u,v) =0
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Length, distance and orthogonality

In the vector space of polynomials in the interval [0, 1], P[0, 1], let's define the
inner product

(p.a) = Jy p(t)q(t)dt

What is the length of the vector p(t) = 3t2?
Solution

VI.P) =/ Jo pP()dt =/ 5 (3¢2)2dt =/ [ ottt

t5
9%

el
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Gram-Schmidt orthogonalization

Gram-Schmidt is applied in the standard way. For in
basis of P;[—1,1]. A basis that spans this space is

{1,¢t,t%}

Let's orthogonalize it

stance, find an orthogonal

po(t) = 1 .
tdt
pi(t) = t—EBDp(r) =t - —1—ff—‘ —l=t—fl=t
—1
t%,po(t) t2,p1(t)
pl) = &~ L0~ (e
1
_ 2 f_itzdt B f_lltztdt o % _ tz—%
f—ldt f_ltzdt

In Slide 97 we proposed the Legendre polynomial of

P,(t) = (3t — 1), we can easily show that P,(t) =

p2(t) is orthogonal to po(t) and pi(t) so is Pa(t).

degree 2 to be
%pg(t). Consequently, if

v
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Best approximation

What is the best approximation in Po[—1,1] of p(t) = t3?

Solution

We know the answer is the orthogonal projection of p(t) onto P;[—1,1]. An
orthogonal basis of Po[—1,1] is {1, ¢, — }. Therefore, this projection can be
calculated as

p(t) = Proje,_1 1 {p(t)} = &&hpo(t) + E2 py (1) + 24 ps (1)

Let's perform these calculations:

(p,polt)) = [, dt =0 Ipoll* = [ dt =2

(p,pu(t)) = J1, 3edt = 2 lpu2 = fﬁﬁ 2

(p.pa(t)) = 1, (22— D)dt =0 | |pafl? = 2, (2 =}t = &
ﬁ(t):%+§t+:§5—(t2—l :gt
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Best approximation

In this example we exploited the best approximation property of orthogonal
wavelets to speed-up and make more robust angular alignments of projections in
3D Electron Microscopy.

C.0.S.Sorzano, S. Jonic, C. El-Bez, J.M. Carazo, S. De Carlo, P. Thévenaz, M. Unser. A multiresolution approach to orientation assignment in 3-D

electron microscopy of single particles. Journal of Structural Biology 146(3): 381-392 (2004, cover article)
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Given any vector v in an inner product space V' and a subspace of it W C V we
have

Iv[I? = [[Projw{v}? + v — Projy, {v}||?

v

llv — proj wll

FIGURE 2
The hypotenuse is the longest side.




The Cauchy-Schwarz inequality

Theorem 7.2 (The Cauchy-Schwarz inequality)
For all u,v € V it is verified
[ (u,v) [ < luf{lv]]

Proof
Ifu=0, then

[(0,v)| =0 and [O]ffv]| = Ofv]| =0

So the inequality becomes an equality.
Ifu # 0, then consider W = Span{u} and

(vu) I [wvu)] v,u)

[Projy {v}|| = u”2uH = Tarz llull = lHUH

But by the Pythagorean Theorem (Theorem 7.1) we have ||Projy,, {v}| < ||v]|-
Consequently,

vl < ) = | (v,u)| < ullv] (g-e.d.)

v
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The Triangle inequality

Theorem 7.3 (The Triangle inequality)

For allu,v € V it is verified

lu+ ]| < flulf + [v]

Proof
lu+v|? = (u+v,u+v)
= (u,u) +(v,v) +2(u,v)
< HUH§+HV||§+2|<U,V>|
< Jull® + vl 2+ 2([uf{{|vl
= ([lull +{lv[})
=
utvl < o+ v
(9.ed.)

[By definition]

[Properties of inner product]

(u,v) < | (u,v) |

Cauchy-Schwarz

[Taking square root]
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 7:
@ 6.7.1
@ 6.7.13
@ 6.7.16
@ 6.7.18
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)

Gram-Schmidt orthogonalization (b)

Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)

Applications of inner product spaces (d)

® 6 6 6 ¢



Weighted Least Squares

Weighted Least Squares

Let us assume we have a table of collected data and we want to fit a least squares
model. However, we want to give more importance to some observations because
we are more confident about them or they are more important. We encode the
importance as a weight value (the larger the weight, the more importance the
observation has)

Let us call §; the prediction of the model for the j-th observation and ¢; the
committed error

Y=Y t€
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Weighted Least Squares

The goal is now to minimize the weighted sum of square errors

n n n

> (wie)? = 32 (wily; = 97)° = X (wyy; — wi;)°

j=1 j=1 j=1
Let us collect all observed values into a vector y and do analogously with the
predictions y. Let us define the diagonal matrix

wg 0 O ... O
0 w O 0
W=1]10 0 ws 0
0 0 O W

Then, the previous objective function becomes

> (wy; — wig)? = Wy — wy|]?

n
J=1
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Weighted Least Squares

Now, suppose that ¥ is calculated from the columns of a matrix A, that is,
y = Ax. The objective function becomes

n
> (wyy; = w;9;)? = Wy — WAx|]?
j:

The minimum of this objective function is attained for X that is the least-squares
solution of the equation system
WAx = Wy

The normal equations of the problem are

(WA)T WAx = (WA)T Wy
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Weighted Least Squares

In this work they used Weighted Least Squares to calibrate a digital system to
measure maximum respiratory pressures.

J.L. Ferreira, F.H. Vasconcelos, C.J. Tierra-Criollo. A Case Study of Applying Weighted Least Squares to Calibrate a Digital Maximum Respiratory

Pressures Measuring System. Applied Biomedical Engineering, Chapter 18 (2011)
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Fourier Series

Fourier tools are, maybe, the B ey
most widespread tool to analyze TN
signals and its frequency VA VAYE
components. Fourier AT LT AW H WL

decomposition states that any NN\

signal can be obtained by

summing sine waves of different f\[\/\/\/\/\/\/,
amplitude, phase and frequency. [\/\/\/V\/\/\/\f

I aSpectre
8

@
Harmoniques composantes

[ sonore

W
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Fourier Series

Theorem 8.1

Consider the vector space of continuous functions in the interval [0, 2x], C[0, 2x].

The set

S = {1, cos(t),sin(t), cos(2t), sin(2t), ..., cos(Nt), sin(Nt) }

is orthogonal with respect to the inner product defined as

(F(1).(t)) = [ F(t)g(t)dt

Proof

(cos(nt),cos(mt)) = fozﬂ cos(nt) cos(mt)dt
= 027r L(cos((n+ m)t) + cos((n — m)t))dt
. . 2%
_ % (Sm(s,’r_,:)t) + 5|n(E1l'L—’:1)t))

0

0

where we have used cos(A) cos(B) = %(cos(A + B) + cos(A — B)).
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Analogously we could prove that
(cos(nt),sin(mt)) = 0
(cos(nt),1) = 0
(sin(nt),1) = 0
|cos(nt)||? = =
|sin(nt)|? = =
1 = 2=




Fourier Series

Theorem 8.2 (Fourier series)
Given any function f(t) € C[0,2x], f(t) can be approximated as closely as desired
by a sum of the form simply by orthogonally projecting it onto W = Span{S}
N
F(t),si .
Z ( Hcoscc;st('hg)) cos(nt) + <|\(;)n?:t()'|7\g)> 5'”("t)>

f(t) ~ Proj, {f(t)} = <
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Fourier Series

In this work we used Fourier space to simulate and to align electron microscopy
images
Synthetic
cryo-EM
A\ Projection CTF image
-
! "
3D Object b Filter
n'a
S. Jonic, C.0.S.Sorzano, P. Thévenaz, C. El-Bez, S. De Carlo, M. Unser. Spline-Based image-t« I g ion for th di | electron
microscopy. Ultramicroscopy, 103: 303-317 (2005)
.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 8:
@ 6.8.1
@ 6.8.6
@ 6.8.8
@ 6.8.11

7. Orthogonality and least squares December 3, 2013 118 / 119



Outline

@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)
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Applications

In this example of particle picking in Single Particles, one of the features we

analyze is the autocorrelation function at different subbands. The autocorrelation
is a symmetric matrix.

Cross-correlations

Frequency
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Micrograph
.

B @2 63w

T} (w a2 43

@3 o G4 65

Sample = I E

e
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matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics (2013)
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In one of the steps, we construct a basis that spans the set of rotations of the
particle template. For doing so, perform a Principal Component Analysis that
diagonalizes the covariance matrix (which is again a symmetric matrix).

V. Abrishami, A. Zaldivar-Peraza, J.M. de la Rosa-Trevin, J. Vargas, J. Otén, R. Marabini, Y. Shkolnisky, J.M. Carazo, C.0.S. Sorzano. A pattern

matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics (2013)
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)



Diagonalization of symmetric matrices

Definition 1.1 (Symmetric matrix)

A € M, is a symmetric matrix iff A= AT.

The following two matrices are symmetric

1oy (% g
0 -3

6 -2 -1
Let's diagonalize the matrix A= | —2 6 —1 | The characteristic equation is
-1 -1 5

|A— M| =0=—X+17A2 — 90\ + 144 = —(\ — 8)(\ — 6)(\ — 3)
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Diagonalization of symmetric matrices

The associated eigenvectors are

A=8 v;=(-1,1,0)—>u = (—%1%,01) i
A=06 V2:(—1,—1,2)—>u2:1(—1%71—%’%)
A=3 V3:(171’1)_>u3:(%7%’ﬁ)
The v vectors constitute an orthogonal basis of R® and after normalizing them
(u; = m) we have an orthonormal basis Thus, we can factorize A as
A = PDP~1 with
1 1 L
g P T
P=1 & % 3 D=10 6 0
0 2 1 0 0 3

V6 V3
Exploiting the fact that P is orthonormal, then P~! = PT and A= PDPT.
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Diagonalization of symmetric matrices

Theorem 1.1

If A is symmetric, then any two eigenvectors from different eigenspaces are

orthogonal.
Proof

Let vi and v, be two eigenvectors from two different eigenvalues A1 and \,. Let’s

show that vy -vo, =0

)\1(V1 -V2) =

Hence (A1 — A2)(v1 - v2) = 0 but A\; — Ay # 0 because the two eigenvalues are

different. Consequently, vq

(Alvl)Tvz [By definition]

(Av1) vy [Definition of eigenvector]
v/ ATv, [Transpose of product]
v/ (Avo) [A is symmetric]

v] (Aavz) [Definition of eigenvector]

A2(vy - Vo) [By definition]

-vp =0 (g.ed.)

8. Symmetric matrices and quadratic forms December 3, 2013

9/73



Diagonalization of symmetric matrices

Definition 1.2 (Orthogonal diagonalization)

A is orthogonally diagonalizable iff A= PDPT being P an orthogonal (i.e.,

P- 1 __ PT)

Theorem 1.2

A is orthogonally diagonalizable iff A is symmetric.
Proof orthogonally diagonalizable = symmetric
Let us assume that A= PDPT, then

AT = (PDPT)T = (PT)TDTPT = PDTPT = PDPT = A

Proof orthogonally diagonalizable <= symmetric
We omit this proof since it is more difficult.
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Diagonalization of symmetric matrices

3 -2 4
Let's orthogonally diagonalize A= -2 6 2
4 2 3

Solution
The characteristic equation is

JA—XM=0=-X3+12)2 - 21X\ - 98 = —(A = 7)?(A + 2)
Its associated eigenvectors are

A=7 vl_(101)—>u1_(ioi)
2

A=-2 wv3=(-1,— 1)—>U3—(—§,—%,§)

u; and uy are unitary and linearly independent, but they are not orthogonal. ujz is
orthogonal to the other two vectors because it belongs to a different eigenspace
(see Theorem 1.1).

4
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Diagonalization of symmetric matrices

We can orthogonalize u; and u; following the Gram-Schmidt procedure:

wh = vy — (vp,wy)wy = (—
Wy 1 2V2

W2 = gty = (;3 73

W3:V3:(7§77§7§)

So A= PDPT with

P =

1 2
A

2v2 _1 D =
12

3v2 3

1 1 _ 1 2
0B =
7 0 O
0 7 0
0 0 -2

N

S‘»—l

o
N—r
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Diagonalization of symmetric matrices

Definition 1.3 (Spectrum of a matrix)

The set of eigenvalues of a matrix is called the spectrum of that matrix.

Theorem 1.3 (Spectral theorem for symmetric matrices)
An n X n symmetric matrix has the following properties:
@ A has n real eigenvalues (including multiplicities).

@ The dimension of each eigenspace is the multiplicity of the corresponding
eigenvalue as root of the characteristic equation.

© CEigenspaces corresponding to distinct eigenvalues are mutually orthogonal.

Q@ A is orthogonally diagonalizable.
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Diagonalization of symmetric matrices

Definition 1.4 (Spectral decomposition of symmetric matrices)

Let A= PDPT with P = (uy u; ... u,). Then
A O 0 le
A = (ul u u,,) 0 X 0 2
0 O An U,z—

u

ul

= ()\1[]1 )\QUQ )\,,u,,) 2

ul

= Augu! 4+ dououd + L4+ Aupu]

The latest equation is the spectral decomposition of A. Each one of the terms
/\,-u,-u,-T is an n x n matrix of rank 1 (since all the columns are multiples of u;.
Additionally, u;u] x is the orthogonal projection of any vector onto the subspace
generated by u;.
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Diagonalization of symmetric matrices

Write the spectral decomposition of

2 _ 1 2
7w v )\ 3\

=

Solution

Consider u; = (\%, \/ig) be the first column of P and up; = (—

. 4 2 . 1 _2
uu; = (3 3 wuy = % 4
5 5 5 5

The spectral decomposition is therefore

4 2
A= )\1[]1[1{ A )\2u2u2T =38 <§ i) +3 (
5 5

o |
[SIIN)
\/
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Exercises

Exercises

From Lay (3rd ed.), Chapter 7, Section 1:
e 716
e 7.1.7
@ 7.1.13

7.1.23

7.1.27

7.1.29

7.1.35
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)



Quadratic forms

Introduction

Most expressions appearing so far are linear: Ax, (w,x), x', that is, if we
construct an operator T(x) with them (e.g., T(x) = Ax, T(x) = (w,Xx),
T(x) =x"), it meets

T(axy + bxp) = aT(x1) + bT(x2)

However, there are nonlinear expressions like xTx. Particularly, this one is said to
be quadratic and they normally appear in applications of linear algebra to
engineering (like optimization) and signal processing (like signal power). They also
arise in physics (as potential and kinetic energy), differential geometry (as the
normal curvature of surfaces) and statistics (as confidence ellipsoids).
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Quadratic forms

Definition 2.1 (Quadratic forms)

A quadratic form in R" is a function Q(x) : R" — R that can be computed as
Q(x) = x" Ax

being A € M, «x, a symmetric matrix.

4

Q Q(X) = XTIX = (Xl X2) <(]5 ?) <§;> = X12 +X22

Q Q(x)=x" (g g) x = 4x? + 3x3
Q Qx)=x" <_32 _72> x =3x¢ +7x3 — 4x1x0
-

0
Q@ Qx)=x"| -2 3 4|x=5x+3xF+2xF — x1x2 + 8x2x3
0 4 2
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Change of variables in quadratic forms

Change of variables

A change of variables is an equation of the form x = Py or equivalently P~ 1x =y,
where P is an invertible matrix. Exploiting the fact that, in a quadratic form, A is
symmetric, then we have A= PDPT. We perform the change of variables

x = Py
to obtain
Q(x) = (Py)TA(Py) = y"PTAPy = Q(y)
But we know
A= PDP" = D= PTAP
Consequently
Q(y) =y’ Dy

That is, there is a basis, in which the matrix of the quadratic form is diagonal.
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Change of variables in quadratic forms

Consider Q(x) = x” Ax with
2 1
A ( 1 _4> _ ( z %
4 _—5 -1 2
NG

Q(x) = xZ — 5x3 — 8x1x

That is

If we make the change of variable
2 1
y=pTx= (052
TEX]_ + TEXQ
then

Qly) =y" Dy =3y? — 7y2

4
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Change of variables in quadratic forms

Let's check that effectively both ways of calculating the quadratic form are
equivalent. For doing so, we'll calculate the value of Q(x) for x = (2, —2):

Q(x) =x"Ax=22-5.(-2)2-8.2-(-2)=4—-20+32=16

If we make the change of variable

then

8. Symmetric matrices and quadratic forms December 3, 2013

22 /73



Change of variables in quadratic forms

R2 \FA\ g
- .
Multiplication | %
by P 0 16
.\TD}_J
o P
R? !

FIGURE 1 Change of variable in x"Ax.

Theorem 2.1 (Principal axes theorem)

Let A € M, «, be a symmetric matrix. Then, there exists a change of variable
x = Py such that the quadratic form x” Ax becomes y” Dy with D an n x n
diagonal matrix. The columns of P are the principal axes.
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Principal axes

A geometric view of the principal axes

Consider the quadratic form @Q(x) = x” Ax with x € R? and the isocurve
Q(x) = c. The isocurve is either an ellipse, a circle, a hyperbola, two intersecting
lines, a point, or contains no points at all. If A is diagonal, then

Q(x) = 311X12 + 322X22 =c

The equation of an ellipse is

b
2 2
A2 =
aZ + bZ - 1 i
a 1
with a, b > 0. Therefore
a=./< b=,/%
ai an . N
ﬂ+£:1. a>b>0
a b?
ellipse

e

Symmetric matrices and quadratic forms December 3, 2013 24 /73



The equation of a hyperbola is

2 2
3-4-1
with a,b >0




If A is not diagonal, then the ellipse or the hyperbola are rotated
Y2 % "
+1
— — — —x
(a) Sx3—dx x, + 53 =48 (b)x}—8x,x, - 5x3=16




Principal axes

Let's analyze the rotated ellipse

5x2 — 4xyxo + 5x3 = 48

1 1
= 3 0 V2
L j\0o 7/\-=
V2 V2
_ _ [a8 _ _ T
a= /a_;_ /?_3 b=,/==1/7 ~265

L

1
The change of variable x = (\{i 1\5) y diagonalizes the quadratic form (see
V2 o V2

The corresponding matrix is

>
Il
—
Lo
o
~
Il
—
S-S
S
N
NaXs
~_

So,

2
the new axes in the previous slide).

.
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Classification of quadratic forms

Look at the following surfaces defined as z = Q(x)

: s
NS
ALEE TN S )
I :,',-\\\e\\\\t%‘
ANUIRRLeeS gl
Rty

(a) z=3x]+7x] (b) z=3x] (c) z=3x] - Tx} (d) z=-3x1-Tx3

The curves seen in R? are the cut of these surfaces with the plane z = c. It is
obvious that some of the surfaces are always above z = 0 (a and b), others are
always below z = 0 (d), and still other are sometimes below and sometimes above
z=0 (c).
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Classification of quadratic forms

Definition 2.2 (Classification of quadratic forms)

We say Q(x) is
e positive definite if
Q(x)>0 VxeR"x#0
o negative definite if
Q(x) <0 VxeR"x#0 .

===

. . . . r O’;;““};is\\‘\\-\
e indefinite if Q(x) assumes both positive ; :t““:\\\{“{\“\\\ .
and negative values (i

o positive semidefinite if Negative definite
QR(x)>0 VxeR"x#0 z

o negative semidefinite if
Q(x) <0 VxeR"x#0

Indefinite
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Classification of quadratic forms

Theorem 2.2 (Classification of quadratic forms and quadratic forms)
Let Q(x) = x” Ax with A € M,x, and symmetric. Let \; be the eigenvalues of A.
Q(x) is

e positive definite iff \; >0 Vi

@ negative definite iff \; <0 Vi

o indefinite iff there are positive and negative eigenvalues

o positive semidefinite iff \; >0 Vi

e negative semidefinite iff \; <0 Vi
Proof

By the Theorem of Principal Axes (Theorem 2.1), there is a change of variable
such that

Q(y) = y" Dy = My? 4+ XoyZ + ... + Any?

where \; is the i-th eigenvalue. The values of Q depend on \; in the way that the
theorem states (e.g., Yy #0 Q(y) > 0 iff \; >0 Vi, etc.)

v
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Classification of quadratic forms

o Q(x) =3x? + 7x3 is positive definite because its eigenvalues are 3 and 7
(both larger than 0).

o Q(x) = 3x2 is positive semidefinite because its eigenvalues are 3 and 0 (both
larger or equal than 0).

o Q(x) = 3x2 — 7x2 is indefinite because its eigenvalues are 3 and -7 (one
positive and another negative).

o Q(x) = —3x7 — 7x3 is negative definite because its eigenvalues are -3 and -7
(both smaller than 0).

Definition 2.3 (Classification of symmetric matrices)

A symmetric matrix is positive definite if its corresponding quadratic form is
positive definite. Analogously for the rest of the classification.
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Cholesky factorization factorizes a symmetric matrix A as

A=RTR

being R an upper triangular matrix. A is positive definite if all entries in the
diagonal of R are positive.




Exercises

Exercises

From Lay (3rd ed.), Chapter 7, Section 2:
e 721
@723

7.2.5

1.2.7

7.2.19

7.2.23

7.2.24

7.2.26

7.2.27
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)



Constrained optimization

Introduction
Many problems in engineering or physics are of the form

min Q(x) max (_)

subject to |x|2=1 *  subjectto |x|?

v

Calculate the minimum and maximum of Q(x) = 9x2 + 4x2 + 3x2 subject to
|Ix||> = 1. Solution
By taking the minimum and maximum coefficient in Q(x) we have

32 +3E+32 < Q(x) < 9x+9xF+0x2
302+ +x3) < Q(x) < 90F+E +xZ)
3< Q) <9

The minimum value Q(x) = 3 is attained for x = (0,0, 1), while the maximum
value Q(x) = 9 is attained for x = (1,0,0). In fact the minimum and maximum
values that the constrained quadratic form can take are A, and Aax.

o’
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Constrained optimization

Calculate the minimum and maximum of Q(x) = 3xZ + 7x2 subject to [|x|> = 1.
Solution

|x||> = 1 is a cylinder in R3 while z = Q(x) is a parabolic surface. The minimum
and maximum of the constrained problem are attained among those points
belonging to the curve that is the intersection of both surfaces.

FIGURE 1 z = 3x} + 7x3. FIGURE 2 The intersection of z =
3x? + 7x3 and the cylinder x7 + x3 = 1.
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Constrained optimization

Theorem 3.1

Let A be a symmetric matrix and let

m = min {x" Ax|[|x|? =1}
M = max {x" Ax|||x|> = 1}

Then, M = Apax and m = Apin. M is attained for x = up,ax (the eigenvector

associated to Amax ) and m is attained for x = up,;, (the eigenvector associated to
)\min)-
Proof

Let’s orthogonally diagonalize A as A= PDPT and we make the change variables
y = PTx. We already know that

Q(x) =x"Ax =y’ Dy
Additionally |ly||* = ||x||* because
Iyll> =yTy = (PTx)T(PTx) = x" PPTx = xTx = [|x|]®

In particular ||y|| =1 < [|x|| = 1.
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Constrained optimization

Then,

m = min {y" Dy ||ly|]> =1}
M = max {y" Dy||ly||> =1}

Since D is diagonal we have

Y Dy = Ay? + XoyZ + .+ Any?

Let's look for the maximum of these values subject to |ly|| = 1. Consider the
maximum eigenvalue, \nax, then

y'Dy = Ayf+Xoyi+..+ Ay
Amax¥Z + Amax¥3 + .. + Amax¥s
Amax(V + Y5 + - + y2)
/\maXHYH = Amax

A
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Constrained optimization

In fact the value \,. is attained for y,.« = (0 o .. 001 0 .. O), where

the 1 is at the location corresponding to Ap,ax. The corresponding x is

X = Py - (ul uz coo Umax—1 Umax  Umax+1 un) 1 = Umax

We could reason analogously for the minimum.
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Constrained optimization

3 21
Let A=|2 3 1]. Solve the following optimization problem
1 1 4
max Q(x) = x" Ax
subject to  x||> =1
Solution

The characteristic equation is
[A—X|=0=—-(A=-6)(A—=3)(A—-1)

The maximum eigenvalue is A = 6 and its corresponding eigenvector is

u= (\/i3 % %) Therefore, the maximum of Q(x) is 6 that is attained for
x= (L 1 1y
37373
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Let A, Amax and un,y be defined as in the previous theorem. Then the solution of

max Q(x) = x" Ax
subject to  ||x|[?=1
X Umax = 0

is given by the second largest eigenvalue Apnax—1 that is attained for its associated
eigenvector (Umax—1)-




Exercises

From Lay (3rd ed.), Chapter 7, Section 3:
e 731

e 733
e 7.3.13
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)



Singular Value Decomposition (SVD)

Introduction

Unfortunately, not all matrices can be diagonalized and factorized as
A= PDP-1

However, all of them (even rectangular matrices) can be factorized as
A= QDP~1

This is called the Singular Value Decomposition. It imitates the property of
stretching/shrinking of eigenvalues and eigenvectors. For instance, assume u is an
eigenvector, then

Au = Au = ||Au|| = |A|[|ul|

If [A] > 1, then the transformed vector Au is stretched with respect to u. On the
contrary, if |A| < 1, then the transformed vector Au is shrinked with respect to u.

y
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Singular Value Decomposition (SVD)

4 11 14
8 7 =2
transforms the unit sphere in R onto an ellipse of R?

Consider A = ( ) and the linear transformation T(x) = Ax. It

5
Multiplication

X

FIGURE 1 A transformation from R to R,

Look for the direction that maximizes ||Ax|| subject to ||x|| = 1.

8. Symmetric matrices and quadratic forms December 3, 2013

45 /73



Singular Value Decomposition (SVD)

Solution
We may maximize ||Ax||? because ||Ax|| is maximum iff ||Ax||? is maximum.

| Ax||? = (Ax) T (Ax) = xT AT Ax

which is a quadratic form since AT A is symmetric:

80 100 40
ATA= (100 170 140
40 140 200

By Theorem 3.1, the maximum eigenvalue is max || Ax|> = A\yax = 360 and its
associated eigenvector umax = (3,3,3). Consequently max ||Ax|| = v/360 = 61/10

that is attained for
18
Aumax = ( 6 >
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Singular Value Decomposition (SVD)

Definition 4.1

Singular Values of a matrix Let A € Mpx,. ATA can always be orthogonally
diagonalized. Let {v1,vs,...,v,} a base of R" formed by the eigenvectors of AT A
and let A1, Ao, ..., A, be its corresponding eigenvalues. Then

[Avi[|* = (Av;))T(Av;) = v] AT Av; = v] (Aivi) = Aif|vi]?
If we take the square root
[Avi]l = VXilvill

That is, \/\; reflects the amount by which v; is stretched or shrinked. \/\; is
called a singular value and it is denoted as o;.
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Singular Value Decomposition (SVD)

Multiplication
by

FIGURE 1 A transformation from R to R2.

In the example of Slide 45, the singular values are the lengths of the ellipse in R?

and they are 64/10, 34/10 and 0. From the singular values we learn that the unit
sphere in R3 (there are 3 singular values) is collapsed in 2D (one of the singular
values is 0) onto an ellipse (the remaining two singular values are different from

each other).
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Singular Value Decomposition (SVD)

Theorem 4.1

Let {vi,va,...,v,} a basis of R" formed by the eigenvectors of AT A sorted in
descending order and let A1, Ao, ..., A\, be its corresponding eigenvalues. Let us
assume that A has r non-null singular values. Then

S ={Avy, Avy, ..., Av, }
is a basis of Col{A} and
Rank{A} =r

Proof

By Theorem 1.1, any two eigenvectors are orthogonal to each other if they
correspond to different eigenvalues, that is, v; -v; = 0. Then,

(Av)) - (Avj) = v] AT Av; = v (Ajv)) = Nj(v]v;) = Aj(vi - v) = 0

That is Av; and Av; are also orthogonal.
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Singular Value Decomposition (SVD)

Additionally, if the eigenvectors v; are unitary, then (see Definition 4.1)
o = [|Avi]|

Since there are r non-null singular values, Av; = 0 only for i =1,2,...,r. So the
set S is a set of non-null, orthogonal vectors. To show it is a basis of Col{A} we
still need to show that any vector in Col{A} can be expressed as a linear
combination of the vectors in S. We know that the eigenvalues of AT A is a basis
of R”. Then for any vector x € R” there exist coefficients ¢y, ¢, ..., ¢, not all of
them zero such that

X = C1V1 + GOV + ... + CpVv,
If we transform this vector

Ax = A(avi+ vy + ...+ cpvy) [Linear transformation]
= qAvi + AV + ... + c,Av, [non-null singular values]
= qAvi + Av; + ... + ¢ Av,
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Singular Value Decomposition (SVD)

That is any transformed vector Ax can be expressed as a linear combination of the
elements in S. Consequently, S is a basis of Col{A}.

Finally, Rank{A} is nothing more than the dimension of Col{A}. Since A is a
basis of Col{A} and it has r vectors, then Rank{A} = r.
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Singular Value Decomposition (SVD)

Theorem 4.2 (The Singular Value Decomposition)

Let A € M, «n be a matrix with rank r. Then, there exists a matrix £ € M ,xn
whose diagonal entries are the first r singular values of A sorted in descending
order (o1 > 03 > ... > o, > 0) and there exist orthogonal matrices U € My m

and V € M« such that
A=UZVT

Y is unique but U and V are not. The columns of U are called the left singular

vectors, and the columns of V' are the right singular vectors.

Vit Var

(311 arp a3 314>:<U11 U12> (Ul 0 0 0> Vig Va2
a2 adx» a3 ax Up1 U 0 oo 0 0/ |wviz wva3
Vig V24

V31
V32
V33
V34

Va1
Va2
Va3
Vaq
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Singular Value Decomposition (SVD)

Proof
Let \; and v; (i = 1,2,..., n) be the eigenvalues and eigenvectors of AT A. By
Theorem 4.1 we know that S = {Avy, Avs, ..., Av, } is an orthogonal basis of
Col{A}. Let's normalize these vectors

=2 i =12..r

i

and we extend the set {uj, u,...,u,} to be an orthogonal basis of R™. Let us
construct the matrices

U= (u1 u ... um)
V=(vi v2 .. v,
By construction U and V are orthogonal, and
AV = (Av1 Av, ... Av, 0 .. 0)
= (O’lul oU2 ... O U, 0o .. 0)
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Singular Value Decomposition (SVD)

Proof (continued)
On the other side, let
01 0 0
10 o ... O (D 0
p=|® =~ °] ==(7 9)
0O 0 .. o
Then,
UZ:(Ul u ... Um) (g 8)—(01U1 o2U2 ... O U, 0o .. 0)
Therefore,

UL =AV=A=ULVT

since V is orthogonal.
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Singular Value Decomposition (SVD)

Theorem 4.3 (Properties of the SVD decomposition)
In a SVD decomposition
o The left singular vectors of A are eigenvectors of AAT .
@ The right singular vectors of A are eigenvectors of AT A.
o The singular values are the square root of the eigenvalues of both AAT and
ATA.
@ The singular values are the length of the semiaxes of the mapping of the unit
hypersphere in R" onto R™.

@ The columns of U form an orthogonal basis of R™.

@ The columns of V form an orthogonal basis of R".
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Singular Value Decomposition (SVD)

Let's calculate the SVD decomposition of A = (g 171 ié)
Step 1: Orthogonally diagonalize AT A
80 100 40
ATA= 1100 170 140
40 140 200
Its eigenvalues and eigenvectors are
M =360 v =(122)
M=90 wv,=(-%-132)
)\3=0 V3:(§a_%v%)
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Singular Value Decomposition (SVD)

Step 2: Construct V and X

1 _2 2
3 1 3%
V: Vv A" \' = = = )
(1 2 3) 2 23 l3
3 3 3
s_ (VA& 00\ _ 6v10 0 0
Lo VX 0o/ \ 0 3/10 0
Step 3: Construct U
u =22 = (35, o)
w2 =% = (5~ )

The set {uy,uy} is already a basis of R?, so there is no need to extend it.
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Singular Value Decomposition (SVD)

Finally we have

3
(4 11 14) _ <¢11—0
8 7 -2 +

MATLAB: [U,S,V]=svd([4

11 14; 8 7 -2])

O

0
0

wIN W=
wIN

WIN
=

WINWI
W[FWINWIN
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Singular Value Decomposition (SVD)

Let's calculate the SVD decomposition of A= | —2 2
Step 1: Orthogonally diagonalize AT A
9 -9
TA_
ATA= (_9 . )
Its eigenvalues and eigenvectors are

/\1218 V1=(
/\2:0 V2=(

1
3_17’)
7_2)

N

S
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Singular Value Decomposition (SVD)

Step 2: Construct V and *

Step 3: Construct U

The set {u;} is not yet a basis of R, so we need to extend it with orthogonal
vectors. All vectors orthogonal to u; fulfill

U1-UZOZ%X1—%X2+§X3:>X1:2X2—2X3
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Singular Value Decomposition (SVD)

Step 3: Construct U (continued)
A basis of this space is wp = (2,1,0) and w3 = (—2,0,1). But this basis is not
orthogonal. Let's make it orthogonal following Gram-Schmidt procedure

_ wpy __ (2 1
42 = Tug]] = (750 75°0) ..
w3 =w3— < W3,Vo > Vo = (—¢,5,1)

_ws _(_ 2 4 5

us = = (=55 58 7)

In fact, SVD does not require the u vectors to be unitary, but it is simply
convenient. We can make uy and us unitary because they are “free” (we are
constructing them simply to extend the set of u vectors to be a basis of R3), but
not u; because it is “bound” to the singular value.
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Finally we have




Algebraic applications of SVD

Matrix condition number

Let o1 and o, be the largest and smallest singular values of a matrix A. The

condition number of the matrix is defined as
K(A) =2

ar

If this condition number is very large, the equations system Ax = b is ill-posed
and small perturbations in b translate into large perturbations in x. As a rule of
thumb, if k(A) = 10X, then you may lose up to k digits of accuracy.
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The U and V matrices provide bases for Row{A}, Col{A} = Row{AT}, Nul{A}

and Nul{A”}
Multiplication
~ " byA =

vy — O
e Gy

Col A = Row AT

FIGURE 4 The four fundamental subspaces and the
action of A.




Algebraic applications of SVD

Theorem 4.4 (The Invertible Matrix Theorem (continued))

The Invertible Matrix Theorem has been developed in Theorems 5.1 and 11.5 of
Chapter 3, Theorem 10.5 of Chapter 5, Theorem 2.1 of Chapter 6. Here, we give
an extension if A is invertible, then the following statements are equivalent to the
previous statements:

xxvii. (Col{A})* = {0}.
xviii. (Nul{A})+ = R".
xxix. (Row{A}) =R".

xxx. A has n non-null singular values.
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Algebraic applications of SVD

Reduced SVD and pseudoinverse of A

If within U and V we distinguish two submatrices, each one with r columns we
have

= (U,Um_,) and V = (Vrvn—r)
Then,

.
A=UEVT = (U,Un,) (g 8) (\}/T ) = U,DV,T

Despite the fact that we may have removed many columns of U and V/, we have
not lost any information and the recovery of A is exact. The Moore-Penrose
pseudoinverse is defined as

A+ = V.D71UT

that is a n X m matrix such that

ATAAT = AT AATA=A
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Algebraic applications of SVD

Pseudoinverse of A and Least Squares

It can be shown that the least-squares solution of the equation system Ax = b is
given by

x=A'tb

Matrix approximation

If instead of taking r components in the split of U and V (see previous slide) we
take only k (assuming singular values have been ordered in descending order), and
we reconstruct Ay

Ac = U D V[T

This matrix is the matrix of rank k that minimizes the Frobenius norm of the
difference

n
= i A—B|2z = i i — by)?
k Ranrlp{lg}:k I ” Ranrln{lg}:k /',jzzzl (a, J)
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Exercises

Exercises

From Lay (3rd ed.), Chapter 7, Section 4:
e 743
e 7411

7.4.15

7.4.17

7.4.18

7.4.19

7.4.20

7.4.23

7.4.24
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Applications of SVD

SVD is very much used to analyze the response of different genes to different

assays or conditions.
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Applications of SVD

SVD is very much used to analyze the response of different genes to different

assays or conditions.
A u. W .

Alter, O., Brown, P. O. and Botstein, D. (2000) Proc. Natl. Acad. Sci. USA 97, 10101
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Applications of SVD

In this example we see the effect of matrix approximation by the reduced SVD.

4
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We can also use SVD to automatically analyze documents.

m Tarms

P. Marksberry, D. Parsley. Managing the IE (Industrial Engineering)

n Documents

Sparse matrix
(mostly zeros)

A

r
I'n. |

= U

L Otk Rt

r

IHiggh Ovidar Reanikes.
{lesa cominant)
Mindset: A itative il igation of Toyota's ical thinking shared among

employees. J. Industrial Engineering and Manegement, 4: 771-799 (2011)

e, S s e e || | Dl 3, A0
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© Symmetric matrices and quadratic forms
@ Diagonalization of symmetric matrices (a)
@ Quadratic forms (b)
@ Constrained optimization (b)
@ Singular Value Decomposition (SVD) (c)
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Q Linear algebra applications in geometry
@ Local and global coordinates
@ Points and vectors
@ Lines in 2D
o Affine maps in 2D
@ Conic sections in 2D
@ 3D Geometry
@ Quadrics in 3D



GERALD FARIN )
DIANNE HANSFORD Al

PRACTICAL
LINEAR
AL A

G. Farin, D. Hansford. Practical Linear Algebra: a geometry toolbox. A.K. Peters
(2005). i
J. de Burgos. Algebra lineal y geometria cartesiana. McGraw Hill 22 Ed. (2000)
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e Linear algebra applications in geometry
@ Local and global coordinates
@ Points and vectors
@ Lines in 2D
o Affine maps in 2D
@ Conic sections in 2D
@ 3D Geometry
@ Quadrics in 3D



Local and global coordinates

Reference

Farin and Hansford, Chapter 1

Local and global coordinates

In real applications we may need to distinguish between local and global
coordinates.

Y
X .
local (nb_)ec_'t)
% o 2xes
A
2% gleba) (wor\d)
axes

And we need some way of transforming one into the other. This is nothing more
than a change of basis.
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Local and global coordinates

In Vector Graphics it is common to design
objects in a local coordinate system (d) and,
then, place, rotate and scale the object in the
global coordinate system (e). We need some
transformation to go from one space to the
other.

For the first component, d;, we note that we
go from a local interval [0, 1] to a global
interval [min;, max;]. We may easily perform
the transformation as

d]*O _ elfminl

1-0 " max;—min; f
ey = miny + (max1 — m/nl)dl

e,4 z
max,:
min,T
min,  max, €,

W
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Local and global coordinates

The more general transformation maps the local interval [ming;, maxq1] to the
global interval [ming;, maxe;]. This is achieved with transformation

maxXe1 — mmel d

€1 = Miney + maxg1 —ming;

The same kind of transformation is applied to the second component (d> — e).

Putting everything in matrix notation we have

o Maxey —Minej 0
e — Mmine1 + maxq1 —mingy ) d
mineg 0 maxez — Minep

maxg;— mingo

This transformation is of the form
e=T(d) =enin+ Ad

that is not a linear transformation because of the shift (e.g., show that
T(dy +d2) # T(d1) + T(d2)).
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e Linear algebra applications in geometry
@ Local and global coordinates
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Points and vectors

Reference

Farin and Hansford, Chapter 2

Points and vectors

We also need to distinguish between points and
vectors. Both are represented as a list of
coordinates. Informally, a point indicates a
location in space, while a vector indicates a
direction (orientation+sense) in space. In this
example, we have two points, p and q, and a
vector v that goes from p to q. We may talk
about the length of a vector, but not of a point.
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Points and vectors

Points and vectors

In this example we have multiple copies of the
same vector (since they all have the same
direction and magnitude). In Physics, forces
are vectors that are applied to objects that are
located at points. In this figure we would see
the same force applied to different objects.
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Points and vectors

Points and vectors

More formally, points belong to an Euclidean
space while vectors belong to a vector space.

p,q € E?
v € R?2

Although we may represent both spaces in the
same figure and we may define operations using
both kinds of spaces. The goal of distinguishing
between points and vectors is to distinguish
between operations that depend on the
coordinate system and operations that do not.
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E2 x E? — R? v=q-p
+: E? x R? — [E?2 P=q+v

+: R?2xR? - R? v=u+w
: RxR?2— R? V=ru

+: E?2xE? - E? t=p+q
R x E? — E? q=rp




Any function that assigns a vector to a point f :

E2 - R2

v =f(p)

f(XaY) = (Xay)

f(Xay)_(_an)
¥
JE-1 ESEENE S
st REUNNNNN
///‘,‘,,_.--‘.\\\\\
/.r’f/”"‘\\\\\\
{;;,t‘,l,_,\\\\\\
I O LR |
i'P;o-‘..kl“‘
x 1i|'l' . . uallfx
—?\i.—l,,.....-r!?
INESE SRR et !
\\‘\“.-fl;ff!‘l‘
NN S
:\\\\\.‘__-1/!///
\\\\.\.‘____.-.r-’////’
\\\\.‘..__Q_....-.-.-'////
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Combinations of points

Barycentric combinations

A weighted sum of points where the weights add up to 1 is called a barycentric

combination

r=(1-t)p+tg=p—+

t(a—p) s =tir+ top + t3q

f\‘fjrg ——

!

’
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e Linear algebra applications in geometry
@ Local and global coordinates
@ Points and vectors
@ Lines in 2D
o Affine maps in 2D
@ Conic sections in 2D
@ 3D Geometry
@ Quadrics in 3D



Lines in 2D

Reference

Farin and Hansford, Chapter 3

Parametric equation of a line

e Given two points:
I(t)=p+tla—p) teR

@ Given point and vector:
I(t)=p+tv teR
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@ Given a point and the normal direction:
a-(x—p)=0

In 2D:

(a1, @) (x1 — pr,xo —p2) = 0=
axi +bxx+c=0




e Given a point and slope:
In 2D:

X2 = pa + m(xi — p1)
X = mx; + b
X = (tan@)x; + b

But it is not a good representation for
vertical lines.




@ Implicit line:
Line:a-(x—p)=0
Point: r

Let w = r — p and calculate:
a-w = [[a]|[|lwl| cos(#)

Analyzing the figure we note that
cos(f) = ol ” Then
aw

a-w=|alld=>d =l




@ Parametric line:
Line: I(t) = p+ tv
Point: r

Let w = r — p and calculate:
v w = [|v[|[|w][ cos(a)

Analyzing the figure we note that

sin(a) = m = /1 — cos?(«). Then

d= ||w||\/m




@ Parametric line:
Line: I(t) = p + tv
Point: r

Let w =r — p. The closest point within
the line to r is

q = p + Proj {w} = p + (v




@ Parametric lines:
Line 1: li(t) =p + tv
Line 2: Ix(s) =g+ sw

We need to solve the equation system

lh(t) = Io(s)
p+tv=q-+sw

(v -w) (z)zq—p




o Implicit lines:
Linel: a-(x—p)=0
Linel:a-(x—q)=0

We need to find x satisfying both

equations at the same time
a'x—a’p=0
a'x—a'q=0

B
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Affine maps in 2D

Reference
Farin and Hansford, Chapter 6

Affine change of coordinates

We transform the point x into point x’. Note
that the matrix multiplication is performed on
vectors, not on points

v = Av

|
|
|
\
V=X—0 !
|
x’:p—|—v’ ‘

|

|

In total

x'=p+A(x—o)

We may go back by

x=0+A1(X —p)
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@ Translation: X' = p+ (x — 0)
@ Rotation: X' —r = R,(x —r)




@ Mirror:
p=3(x+x)
x' =2p —x
o Compositions:
x' =o'+ A(x— o)
xl/ = ol/ _|_ Al(x/ _ 0/)
x"=0"+ A'A(x — o)
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Conic sections

Reference
Juan de Buegos (2000), Capitulo 11

Conic sections

The circle, the ellipse, the parabola, and the hyperbola are all curves stemming
from a section of a cone.

Circle

&)
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Conic sections

Conic sections

They are all second order curves

i +bEtoaetdagteat f =0
N—_—— N~~~
2nd order 1st order Oth order

By renaming the coefficients, we may rewrite it as

«311X12 A 322X22 a4 2312X1X2 + 2b1X1 + 2b2X2 +c=0
d11  a12 X1 X1 _
o ) (312 322) (X2> 2(by by) (Xz) te=0
xTAx+2Bx+c=0

Compare this to the more widely known equation of the parabola
y = ax? + bx + c. Finally, we can write it in a very compact form

ain a2 b1\ [x
)?TM)N( = (Xl X2 1) dip ax b2 X2 | = 0
bl b2 @© 1
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Conic sections

Definition 5.1 (Conic sections)

A conic section or conics is the locus (lugar geométrico) of all points satisfying

"M =0
Definition 5.2 (Conic equality)
Two conics X" Myx = 0 and X7 Mok = 0 are the same if
My = kM,

for some real number k.

Definition 5.3 (Degenerate and ordinary conics)

A conic section is degenerate if
det{M} =0
A conic section is ordinary, if it is not degenerate.
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Conic sections

Circumphere ’:—22 + rLzz

Ellipse f; 4F },;72 =
Hyperbola ’;—2 — {)—2 =
Parabola y? = 2px

Two lines x2—y?=(x—-y)x+y)=0
Two lines x2—4=(x—2)(x+2)=0
Two lines (superposed) x2 =0

Two complex lines x2+y?=(x—iy)(x+iy)=0
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Intersection of a conics and a line

Intersection of a conics and a line

Consider the parametric equation of a line in homogeneous coordinates

. h(t) p1 + tvy p1 %1
(t)=|ht)|=[p+tv]|=|p|+t|v]|=Dp+tv
1 1 1 0

We need to find a point in the line (i.e., t) such that

i(t)™Mi(t) =0
(B + )T M(p + ti) = 0
9T M2 + 20T Mpt + 7 Mp = 0

This is a second order equation in t. If there is no solution, then the line does not
intersect the conics. If there is only 1 solution, then the line is tangent to the
conics. If there are 2 solutions, then the line intersects the conics (the line is
secant to the conics, secante).
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Reduced equation of a conics

Reduced equation of a conics
Let A\; and A, be the eigenvalues of A = (zil ZZ) Then, there exists a basis
in which the conics can be expressed as
NP0 R0 [+ g =0 | oo B
/\é;{s\)}l?;#oo y? = 2\/@x Parabolas
Aé;{g\)},?joo y2 =k Pairs of parallel lines

August 25, 2013 34 /73
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General classification of conics

Definition 5.4 (Signature of a quadratic form)

Consider a quadratic form Q(x) = x" Ax and its diagonalization such that
QY) = My + Aoy3 + . + Anys

The signature of Q(x) is (no, ny, n_) where ng is the number of null X
coefficients, n. the number of positve A coefficients, and n_ the number of
negative \ coefficients.

Theorem 5.1

The signature of a quadratic form is invariant to changes of basis, i.e., it only
depends on Q.

Definition 5.5 (Signature of a matrix)

The signature of a symmetric matrix is the signature of its associated quadratic
form.

9. Linear algebra applications in geometry August 25, 2013 35 /73



General classification of conics

General classification of conics

A M Conics

Sig{M} = (0,1,2) or (0,2,1) | (Real) Ellipse

det{A} >0 | Sig{M} =(0,3) or (0,3,0) | Empty set (or imaginary ellipse)
A point (or the intersection

Det{M} =0 of two imaginary lines)
det{M} #0 Hyperbola
det{A} <0 det{M} =0 Two secant (real) lines
B det{M} #0 Parabola
det{A} =0 det{M} =0 Two parallel (real) lines
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@ Shift: Shift the center to € = (c1, 2, 0)
(x—&)TMy(%—¢&) =0

@ Rotate: Rotate the conics with a rotation matrix R:

(R%)T My(R%) = 0
%T(RTMyR)% = 0

(cos(a) —sin(a) 0)
with R = [ sin(a) cos(a) 0].
0 0 1




Reduced equation:

Parametric equation:

Interfocal distance:

2 =
X = acost
y = bsint

t €[0,2m)

d(F,F’)=2c

where

a4 b =c?

t+ do = 2a
a  -C c ga
focus Ofx
d1

Z




. 2 2
Reduced equation: LE-5=1
. . X = F+acosht
Parametric equation: .
y = bsinht
teR
Interfocal distance: d(F,F’)=2c
where
a% + b? = c?
cosx = e"‘—i—z—e_"‘ cosh x = ex+2€_x
sinx = £=¢ " sinhx = €=~
cos? x +sin?x =1 | cosh® x —sinh?x =1




Reduced equation: y? = 2px
2

Parametric equation: = ?P
teR

) diréctrix
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Cross product

Reference

Farin and Hansford, Chapter 10

Cross product

The cross product is defined for 3D vectors as

€ € e3
Uu=vXxw= %1 Vo V3
wy wy w3

Properties:

ulvandulw

v > w2 = [|vi[[lw]] — (v w)?
vx(cv)=0

v X (cw) = (cv) x w = ¢(v X w)
WXV=—VXW

ux(vtw)=uxvtuxw
ux(vxw)#(uxv)xw
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u=-e; Xe = 1 0 0 |=e3
0 1 0
e; ey e3
u=exe=| 0 1 0 |=-e;3
1 0 O
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@ Right-handed:
XXy=1z2
yXz=x
ZXX=Y

o Left-handed:
XXYy=-—2
yxXz=x
ZXX=-—Y

>

Lett hand Right hand




The norm of v X w is the area of the
parallelogram formed by u and v and is
equal to:

A= [lvx wl| = [|v][|wl|sin(9)




A line is defined in 3D (and nD) by two points or a point and a vector

e Given two points:
(t)=p+tla—p) teR
@ Given point and vector:
(t)=p+tv teR
Giving a point and a perpendicular vector does no longer work.




Planes

Implicit equation of a planes

A plane is defined in 3D by a point and a perpendicular vector

@ Given a point and the normal direction: —
n-(x—p)=0

In 3D:

(n1, ma, n3)-(x1—p1,x2—p2,x3—p3) = 0 =
AX1—|—BX2—|—CX3—|—D:0

The absolute value of D in the implicit

equation is the distance of the plane to

the coordinate system origin.
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Hyperplanes

Hyperplanes

A hyperplane of R" is an affine space of a dimension n — 1. For instance

R” Dimension Dimension of hyperplane ‘ Hyperplane name

R? 2D 1 Line
R3 3D 2 Plane
R” nD n-1 Hyperplane

All hyperplanes are defined by a point (p) and a normal vector (n)

n-(x—p)=0

Distance of a point to a plane (hyperplane)

The distance between a point r and a plane (or hyperplane) is given by

9. Linear algebra applications in geometry August 25, 2013

48 /73



A plane can also be defined in 3D (and nD) by a point and two in-plane vectors

@ Given a point and two in-plane vectors:
P(s,t)=p+sv+tw Vs teR

@ Given three points:
P(s,t) =p+s(q—p)+t(r—p) Vs,teR




The volume of a parallelepiped can be
measured with the scalar triple product

V=u-(vxw)
Properties:

u-(vxw)=v-(uxw)=w-(vxu)

uncosd

VAW




Distance between two lines

Distance between two lines
Given two lines in parametric form
Il(sc) = Ppo + Scu |2(tc) = qo + tcv

The distance between the two lines is the
length of the vector w. that is perpendicular to
both lines. w, is defined by two points: one in
line 1 (x1) and another one in line 2 (x):

We = X2 — X1 = (o + tv — (Po + Scu)

The conditions on w, are:

we-u=0andw.,-v=0

After reorganizing the terms

(W ) ()= (68)
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The two lines in the previous slide intersect if x; = x,. We also note that the two
lines intersect if u, v and pg — qg are in the same plane, or what is the same they
are linearly dependent

[(u v Po—qo)| =0




Intersection of a line and a plane

Intersection of a line and a plane

@ Parametric line, implicit plane:

I(t)=p+tv
n-(x—q)=0
For the intersection we need to find

t such that
n-(p+tv—q)=0
whose solution is
t = n-(qu)

v(a—p)
'

x=p+ “LPly
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Intersection of a line and a plane

Intersection of a line and a plane

@ Parametric line, parametric plane:
I(t)=p+tv
P(t1, ) =q+ tiu+ bw

We need to find t, t; and t> such
that

p+tv=q+ tiu + Hw
Reorganizing the terms:
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Intersection of a line and a triangle

Intersection of a line and a triangle

@ Parametric line, 3 points of a triangle:

I(t) =p+tv
P(t1,t2) = p1+ti(p2 —p1) + t2(P3 — P1)
ti,tr €[0,1],t1 + <1

We need to find t, t; and t, such that

P+ tv=p1+ ti(p2 — p1) + t2(P3 — P1)
Reorganizing the terms:

t
(P2—p1 Ps—pP1 V) []=p—p:
t
The intersection point is within the
triangle if t;,t € [0,1], 81 + t, < 1.
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@ Reflection:
This situation is encountered, for instance,
in reflected light rays. By inspecting the
figure we note that
n-v=-n-v
On the other side, it must also be
cn=v —v
We have two unknowns ¢ and v and two
equations. After some manipulation we
reach
vV =v—-2(n-nT)v

August 25, 2013
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Intersection of three planes

Intersection of three planes

@ Implicit equations:
For each of the planes, we have

n - (x—p1)=0=n{x=np;
ny (x—p2) =0=nJx=nlp,
n3-(x—p3)=0=nlx=n/p; \
Gathering all together

T T
n; n; p1
T _ T
n2T X = n2Tp2
n; n; p3

In non-degenerate situations, this equation
system has a unique solution that is the
intersection point. Otherwise, the planes
may intersect in one line, two lines, three
lines, or even in a plane (if the three
planes are the same plane).
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Intersection of two planes

Intersection of two planes

@ Implicit equations:
For each of the planes, we have
n-(x—p1)=0=n"x=n"p;
m-(x—p2)=0=m'x=m'p,
The two planes intersect in a line of the
form

I(t) =p+ t(n x m)
To find p we solve the equation system

n” n"p;
m’ x=|mTpy
(nxm)T 0
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e Linear algebra applications in geometry
@ Local and global coordinates
@ Points and vectors
@ Lines in 2D
o Affine maps in 2D
@ Conic sections in 2D
@ 3D Geometry
@ Quadrics in 3D



Quadrics

Reference

Juan de Buegos (2000), Capitulo 12

Quadrics

Quadrics are 3D surfaces that meet a second order equation.

Quadrics in the Wikipedia

Hyperbolic Paraboloid

2
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Ellipsoid Hyperboloid — One Sheet

2+ =1 Ao P=i

Hyperboloid — Two Sheets

RPN
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http://en.wikipedia.org/wiki/Quadric

2
Reduced equation: f; - 4 %; =1

X = acos usinv

Parametric equation:  y = bsinusinv
Z = ccosv
u,v € [0,2m)

Cuts along X, Y and Z are ellipses.




Reduced equation: L+ -5=1
Parametric equation:

= acosh ucos v
b cosh usin v
z = csinhu

velo2n), ueR

Parametric equation:

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.




Hyperboloid of two sheets

Hyperboloid of two sheets

A S

. > 2 > “!‘_‘-‘.“" MR

Reduced equation: et+L-%=-1 - “"‘?::f:?‘
x = asinh ucos v

Parametric equation:  y = bsinhusinv

z = ccoshu
velo,2n), ueR

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.
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2
Reduced equation: S+ —==40
x = ay/ucosv
Parametric equation:  y = by/usinv
z=c

Cuts along X and Y are parabolas.
Cuts along Z are ellipses.




Reduced equation: 7 {,—z -Z=
x = ay/ucosh v
Parametric equation:  y = by/usinhv
z=cu
u,v eR

Cuts along Y are parabolas.
Cuts along Z are hyperbolas.




2
Reduced equation: S S =0
Parametric equation: =

velo2n),ueR

Cuts along Y are parabolas.
Cuts along Z are ellipses.




. 2 2

Reduced equation: E+5=1

X = acosv

Parametric equation:  y = bsinv
z=u

velo2n),uelR

Cuts along X and Y are pairs of lines.
Cuts along Z are ellipses.




2 2
Reduced equation: LE-5=1
X = acosh v
Parametric equation:  y = bsinhv
z=u
u,veR

Cuts along X and Y are pairs of lines.
Cuts along Z are hyperbolas.




Reduced equation: §§ -%£=0
X = au
Parametric equation:  y = bu?
z=v
u,veR

Cuts along X and Y are pairs of lines or
single lines.
Cuts along Z are parabolas.




Quadrics All quadrics can be written as

3
Y agxix;+ 2
ij=1

with a; = aj and

a1 d12 a13
a a a
M= 12 22 23
a13 a3 a3z
by by b3

3

E b,'X,' +c=0
i=1

"M% =0

b

bs

and X =

X1
X2




Quadrics

Definition 7.2 (Quadrics equality)
Two quadrics X7 Mi% = 0 and X" Mo% = 0 are the same if
M, = kM,

for some real number k.

Definition 7.3 (Degenerate or ordinary quadrics)

A quadrics is degenerate if det{ M} =0 (e.g., cones, cylinders and pairs of
planes). It is ordinary if it is not degenerate (e.g., ellipsoids, paraboloids,
hyperboloids)

4

x2—y?=0=(x—y)(x+y) A pair of planes

x>+ y?=0=(x—iy)(x+iy) A pair of imaginary planes
x2—1=0=(x—-1)(x+1) A pair of planes

x> 4y?—-25=0 Cylinder of radius 5

.

9. Linear algebra applications in geometry August 25, 2013 71 /73



General classification of quadrics

General classification of quadrics

Let A1, A2 and A3 be the eigenvalues of A. Then, there exists a basis such that
the reduced equation of the quadrics is

Condition

AL # 0, A2 # 0, A3 #0

Quadrics
/\1X2 ol )\2)/2 TP /\322 aF c(ijztt\g{l\/:l}} =0
Ellipsoids, hyperboloids and cones

A Z0, 0 £0, 33 =0
det{M} #£0

Ai1x? + Aoy? = 2\/—7(16;1{)/\:’}2

Paraboloid

M #0, X #0, =0
det{M} =0

)\1X2 + )\2}/2 =k
Elliptical cylinder

M =00, Z£0 =0
Rank{M} =3

y? = 2qgx Parabolic cylinder

M =0, Z0, 2 =0
Rank{M} < 3

y? = k Pair of planes
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Sets

Definition 1.1 (Set)

A set is a well-defined collection of elements. We denote the different elements

asacs.

Definition 1.2 (Empty set)

The only set without any element is the empty set (0)).

Describing sets
We may provide the elements of a set:

@ Intensional definition: by giving a property they all meet
(e.g., even numbers from 1 to 10)

o Extensional definition: by listing all the elements in the set

(e.g..{2,4,6,8,10}). The order in which the different elements are written
has no meaning.
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Sets

Definition 1.3 (Subset and proper subset)

B is subset of A (denoted B C A or A D B) if all the elements of B are also

elements of A. B is a proper subset of A if B is a subset of A and B is different
from A (BC AorAD B).

Properties
@ A is an improper subset of A.
@ () is a proper subset of A.

Definition 1.4 (Power set (Partes de un conjunto))

The set of all subsets of a set A is called the power set of A.

Let A= {1,2,3} the power set of A is
P(A) = {0,{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}
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Sets

Definition 1.5 (Cartesian product)

The cartesian product of the sets A and B is the set of all ordered pairs in which
the first element comes from A and the second element comes from B.

Ax B={(a,b)lac A be B}
Note that because of the ordered nature of the pair A x B # B x A.

V.

Let A= {1,2,3} and B = {4,5}.

Ax B=1{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

Definition 1.6 (Cardinality)

The cardinality of a set is the number of elements it has.
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Sets

Definition 1.7 (Disjoint sets)

Two sets are disjoint if they do not have any element in common.

Integer numbers: Z = {...,—2,-1,0,1,2,...}, |Z| = Rg

Natural numbers, positive integers: N =271 ={1,2,3,...}, [N| =Yg
Negative integers: Z~ = {...,—3,—2,—1}, |Z7| =Ny

Non-null integers: Z* =Z — {0} ={..., —2,-1,1,2, ...}, |Z*| = N
Rational numbers: Q, |Q| = N

Real numbers: R, |R| = ¥y

Interval: [0, 1], |[0,1]] = &y

Complex numbers: C = {a + bila, b € R}, |C| =Ny

10. Abstract algebra August 26, 2013
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Relations

Definition 2.1 (Relation)

A relation aRb is a subset of the cartesian product A x B.
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Functions

Definition 2.2 (Function)

A function f : X — Y is a relation between X and Y in which each x € X
appears at most in one of the pairs (x,y). We may write

(x,y) € forf(x)=

The domain of f is X, the codomain of f is Y. The support of f is the set of
all those values in X for which there exists a pair (x,y). The range of f are all
values in Y for which there exists at least one pair (x,y).

v

f:R — R
flx) = x°
(2,8) € f{:} f(2) =

+:RxR — R
((2,3),5) € + < +((2,3) =5©2+3=5

V.
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Classification of functions

Definition 2.3
Functions can be classified as surjective, injective or bijective:

Surjective: A function is surjective if every point of the codomain has at least
one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.

surjection injection bijection
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Consider an injective function f : X — Y. f~1: Y — X is the inverse of f iff

(x,y)ef=(y,x)ef?

o f(x)=x+3=fHy)=y-3
o f(x)=x*=fl(y) =y}
e f(x) = x? is not invertible because it is not injective (f(—2) = f(2) = 4)

e m— P



Inverse function

Theorem 2.1
e If f is invertible, its inverse is unique.
e If f is bijective, so is f 1.

e X and Y have the same cardinality if there exists a bijective function
between the two.

v

Consider the following function f : Z —+ N

0O -1 1 -2 2 -3 3
0 12 3 4 5 6 ..
f =4{(0,0),(-1,1),(1,2),(-2,3),(2,4),(-3,5),(3,6), ...}

f is bijective. Consequently, Z has the same cardinality as N.
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Partition

Definition 3.1 (Partition)

A partition of a set S is a collection of non-empty subsets such that each element
of S belongs to one and only one subset (cell) of the partition. We denote as x
the subset that contains the element x. All cells in a partition are disjoint to any
other cell.

4

@ We may partition the set of natural numbers into the subset of even numbers
({2,4,6,...}) and the subset of odd numbers ({1, 3,5,...}).

@ We may partition the set of integer numbers into the subset of all multiples
of 3 ({...,—6,-3,0,3,6,...}), the subset of all numbers whose remainder
after dividing by 3is 1 ({...,—5,—2,1,4,7,...}), and the subset of all
numbers whose remainder after dividing by 3 is 2 ({..., —4,—1,2,5,8,...}).

4
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Equivalence relation

Definition 3.2 (Equivalence relation)

R is an equivalence relation in S if it verifies:
Q R is reflexive: xRx
@ R is symmetric: xRy = yRx
© R is transitive: xRy,yRz = xRz

@ = is an equivalence relation.

@ Congruence modulo n is an equivalence relation (two numbers are related if
they have the same remainder after dividing by n)
Example: 1 and 4 have remainder 1 after dividing by 3. We write
1 = 4(mod3)

Q@ Vn,meZ nRm< nm >0 is not an equivalence relationship because it is
not transitive (e.g., —3R0, OR5 but —3R5).

4
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Let S be a non-empty set, and R an equivalence relation defined on S. Then R
partitions S with the cells

a = {x € S|xRa}
Additionally, we may define another equivalence relation ~

a~b&3=bh




Partition and equivalence relation

Congruence modulo 3 is an equivalence relation in Z (two numbers are related if
they have the same remainder after dividing by 3)

0=1{..,-6,-3,0,3,6,...}

i = {"‘7 5? 27 174’ 7’ }

2={.,-4,-1,2,58,...}
Additionally
and

Z=0Ulu2 |
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Partition and equivalence relation

Consider the cartesian product Z x (Z — {0}). Let (m1, n1) and (my, n2) be two
ordered sets of this cartesian product. Consider now the equivalence relation

(m1,m ~ (M2, np) < minp — mpn; =0

The set of rational numbers is formally defined Q as the set of equivalence classes
of Z x (Z — {0}) under the relation ~.

.
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Binary operations

Introduction
What is addition?

Let us assume that we arrive to a classroom in Mars, and
that martians are learning to add. The teacher says
Gloop, poyt
and the students reply:
Bimt.

Then, the teacher says:

Ompt, gaft

and the students reply:

Poyt.
We don’t know what they do but it seems that when the teacher gives two

elements, students respond with another element.
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What is addition?
This is what we do when we say “three plus four”, “seven”. And we may not use

any two elements (“three plus apples” is not defined). We can only use elements
on a given set. This is what we formally call a binary operation.

A binary operation on a set S is a function:

x:5xS — §
x(a,b) = axb




Binary operations

The following binary operations are all different:

+: RxR—-R
+:Z XL —7Z
+ : Muscn(R) X Mpmxn(R) = Mpxa(R)

The following is not a binary operation because it is not well defined
+: M(R) x M(R) — M(R)

we don't know how to add a 2 x 2 matrix with a 3 x 3 one.
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Let S be a set and H a subset of S. H is said to be closed with respect to the
operation * defined in S iff

Va,be H axbeH
Then we may define the binary operation in H:

x:HxH — H
x(a,b) = axb

which is called the binary operation induced in H.




Closed set

Let S=Zand H={n?ln€ ZT} = {1,4,9,16,25,36,...}. H is not closed with
respect to addition. For example:

le H
4e H

Let S=Zand H={n’|n€ Z*} = {1,4,9,16,25,36,...}. H is closed with
respect to multiplication. For example:

but 1+4¢ H

n?eH

m? e H and n? - m? = (nm)? ¢ H
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Closed set

Let S be the set of real-valued functions with a single real argument
S = {R — R}. Let us define the addition of functions as

+ R>Rx(R—-R) - R—-R
(fF+e)x) = f(x)+elx)

Similarly for the multiplication and subtraction of functions. Let us define the
composition of functions as

o:R=>R)x(R—-R) — R—=R
(fog)x) = flg(x)

S is closed with respect to addition, subtraction, multiplication and composition.

V.
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Definition of a binary operation

To define a binary operation either we give the full table (intensional definition)

as in
a*b|b:0 b=1 b=2 aAb|b:O b=1 b=2
a=20 0 1 2 or a=20 1 2 0
a= 1 2 0 a=1 1 1 2
a=2 2 0 1 a=2 0 0 2

or we give a rule to compute it (extensional definition) as in

axb=(a+ b)mod3

10. Abstract algebra August 26, 2013 28 / 62



A binary operation is commutative iff

as*xb=>bxa

* is commutative because its definition table is symmetric with respect to the
main diagonal, but A is not commutative.

e m— PR



Properties of a binary operation

Definition 4.4 (Associativity)

A binary operation is associative iff

(axb)xc=ax(bxc)

/\ is not associative because

(0A0)AD = 1A0 = 1
0A(0AD) = 0A1 =2

But * is associative

(0x0)x0=0%x0=0
0x(0%x0)=0%x0=0

We would have to test all possible triples, but after a a little bit of work we could
show that x* is associative.

4
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Properties of a binary operation

Function composition is associative although not commutative.
Proof
Function composition is not commutative

(fog)(x) = f(g(x)) # &(f(x)) = (g o F)(x)

Function composition is associative

((fog) o h)(x) = (f o g)(h(x)) = f(g(h(x))) = f((g © h)(x)) = (f o (g0 h))(x) |
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Properties of a binary operation

A function may not be well defined. For instance,

/:Q@xQ) — Q
a/b

- 2
is not well defined for b=0¢€ Q

’

A function may not be closed in S. For instance,

/i ZXZ) — L

a/lb = %

is not closed because a=1€ Z,b=3 € Z but 1 ¢ Z.
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Properties of a binary operation

Definition 4.5 (Existence of a neutral element)

A binary operation has a neutral element, e, iff

VaeS axe=exa=a

0 is the neutral element of addition in R because

VreR r+0=0+r=r
1 is the neutral element of multiplication in R because
VreR r-1=1-r=r

Addition in N has no neutral element since 0 ¢ N.
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Properties of a binary operation

Definition 4.6 (Existence of an inverse element)

A binary operation has an inverse element iff
VaeS dbeSlaxb=bxa=e

being e the neutral element of .

The inverse element of 2 with respect to addition in R is -2 because

2+(-2)=(-2)+2=0
The inverse element of 2 with respect to multiplication in R is % because
1_1
2 . 5 = E . 2 = 1

Multiplication in N has no inverse element since Vn € N

S

¢ N.
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Groups and subgroups

Introduction
Groups and subgroups are algebraic structures. They are the ones that allow
solving equations like

X+x=a=x=3

and that the equation

does not have a solution in R if a < 0.
We'll see that defining a group amounts to define the elements belonging to the
group as well as the operations that can be used with them.
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Groups

Definition 5.1 (Group)

Given a set S and a binary operation x defined on S, the pair (S, ) is a group if
G is closed under * and

G1. x* is associative in S
G2. * has a neutral element in S

G3. % has an inverse element in S

Definition 5.2 (Abelian group)

(S, *) is an abelian group if (S, *) is a group and * is commutative.

Definition 5.3 (Subgroup)

Let (S, *) be a group. Let H be a subset of S, H C S, and *y be the x induced
operation in H. The pair (H, xy) is a subgroup of (S, %) if it verifies the
conditions to be a group.
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Groups

Consider S={z € C|z=¢€"¥ Ve R}. (U,-) is a group.

ImA , .
; e'?=cos ¢ +isinp

sin @

@
0jcos ¢ 1

|

Proof
G1. - is associative in S

21(2223) — ei4P1(ei<Pzei903) — eiipl(ei(ipfrips)) — el(P1tpateps)
(2122)23 — (eiﬁaleiWZ)e’.‘P3 = (ei‘P1+4P2)ei‘P3 — ei(‘P1+‘P2+‘P3)
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Groups

Proof
G2. - has a neutral element in S
1=€e0€¢S
7.1 = ei?el0 = i(v+0) — giv —
1.z= eioei‘/’ = ei(0+‘P) = ei<P =z

G3. - has an inverse element in S
For each z = €'?, its inverse element with respect to - is
z7l=gel%¥
zz7l = eiPeiv = gilp—¥) = 0 —
771y — e—iPely — e"(_(P"F‘P) =0 =1
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Groups

o (N, +) is not a group because it has no neutral element.

o (NU{0},+) is not a group because it has no inverse element.

o (Z,+), (Q,+), (R,+), (C,+) and (R",+) are abelian groups.

® (M pyxn,+) is an abelian group.

o (R,-) is not a group because 0 has no inverse.
0 0 .. 0

o (M,xn(R)),") is not a group because 0 0 . has no inverse.
0 0 .. 0

o Let S € M, »n(R) be the set of invertible matrices of size n x n. (S,) is a

group (although not abelian). It is called the General Linear Group of degree
n (GL(n,R)).
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Groups

The existence of groups is what allows us to solve equations. For instance,

consider the equation

5+x=2

and its solution in the group (Z, +)

54x = 2
-5+ (5+x) = —5+2 [Addition is associative |
(-5+5+x = -3 [Definition of inverse]
0+x = -3 [Definition of neutral element]
x = =3

[Addition of the inverse of 5 with respect to + in bo

10. Abstract algebra
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Groups

Consider the equation
2x =3

and its solution in the group (Q, -)

2x = 3 [Multiplication by the inverse of 2 in both sides]
I(2x) = 53 [Multiplication is associative |
(32)x = = [Definition of inverse]
1x = g [Definition of neutral element]
X = 3
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Groups

Theorem 5.1 (Cancellation laws)

Given any group (S, *), Va, b,c € S it is verified
o Left cancellation: axb=axc=b=c
@ Right cancellation: bxa=cxa=b=c

Theorem 5.2 (Existance of a unique solution of linear equations)

Given any group (S, *), VYa, b € S the linear equations
asxx=bandyxa=>b

always have a unique solution in S.

Theorem 5.3 (Properties of the inverse)

Given any group (S, ), Va € S its inverse is unique and Va,b € S
(axb)™t = (b"1)x(a"")

10. Abstract algebra August 26, 2013
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Homomorphisms

Consider the sets S = {a, b,c} and S’ = {A, B, C} with the operations
x:SxS—>Sand ' : S xS =5

x*y|y:a y=b y=c x*’y|y:A y=B y=C
X=a a b c x=A A B C
x=0>b b c a e x=B B C A
X=c c a b x=C C A B

We may construct a function that “translates” elements in S into elements in S’
with the “same properties”.

p:S — &
Pp(a) = A
¢(b) = B
¢p(c) = C

We note that

bxc=a= ¢(b)* ¢(c)=¢(a) = B+ C=A
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Given two groups (S, *) and (S', '), the function ¢ : S — S’ is a group
homomorphism iffVa,b € S

¢(ax b) = ¢(a) ' ¢(b)

Given two groups (S, *) and (S', "), the function ¢ : S — S’ is a group
isomorphism iff it is a group homomorphism and it is bijective.




Homomorphisms

Consider the two groups (R”,+) and (R™,+) and a matrix A € Mpx,(R). The
application

¢:R" — R"
¢(x) = Ax

is a group homomorphism because
H(u+v) = Al +v) = Au + Av = 6(u) + 6(v)
Consider the two groups (GL(n,R),-) and (R, ). The application

¢:GL(n,R) — R
¢(A) = det{A}

is a group homomorphism because

$(AB) = det{AB} = det{A} det{B} = ¢(A) - ¢(B)
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Homomorphisms

Theorem 6.1

Let ¢ : S — S’ be a group homomogrphism between two groups. Then,
e ¢e)=¢
o ¢(a~t) = (¢(a))}

Definition 6.3 (Kernel of a group homomorphism)

Let ¢ : S — S’ be a group homomogrphism between two groups. Then, the kernel
of ¢ is the set

Ker{o} = {x € S[o(x) = €'}

v

Let ¢(x) = Ax. Then,

Ker{¢} = {x € R"|Ax = 0} = Nul{A}

W
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If two groups (S, *) and (S', ') are isomorph (i.e., there exists an isomorphism
between the two groups), then S and S’ have the same cardinality.

X Y
1 .

> 0 @ g

2
3-
4




Isomorphisms

@ Q and R cannot be isomorph because the cardinality of Q is Ng and the
cardinality of R is N;.

@ There are as many natural numbers as natural even numbers. In other words,
the cardinality of N and 2N are the same. The reason is that the function
¢(n) = 2n is an isomorphism between N and 2N.

Consider the set R, = [0, c) € R and the operation x +.y = (x + y) mod c. The

pair (Re, +) is a group. Consider now the two particular cases (Ry, +2,) and
(Ry,+1) and the mapping

(ﬁ:Rzﬂ' — Rl
o(x) = 3

¢ is an isomorphism between (Ra;, +2,) and (Ry,+1). In fact, all (Re, +¢)
groups are isomorph to any other (R./, +./) group.

’
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Isomorphisms

Cardinality is a group property. The nice things about isomorphisms is that they
preserve group properties.

Theorem 6.3
If two groups (S, *) and (S',*') are isomorph, then
o If x is commutative, so is *’.
@ If there is an order relation in S, it can be “translated” into an order relation
inS’.
o IfVs € S there exists a solution in S of the equation x x x = s, then Vs’ € S’
there exists a solution in S’ of the equation x *' x = s'.
e I/fVa,b € S there exists a solution in S of the equation ax x = b, then
Va', b’ € S’ there exists a solution in S' of the equation a’' ¥’ x = b’.
@ The kernel of any isomorphism ¢ between (S, ) and (S', ) is
Ker{¢} = {e} being e the neutral element of * in S.
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Isomorphisms

((Z),+) is not isomorph to ((Q),+) because the equation
X+Xx=s

has a solution in Q for any s € Q (that is x = 5), but it does not have a solution
in Z for any s € Z (it only has a solution in Z if s is an even number).

v

((R),-) is not isomorph to ((C),-) because the equation

X - X=Z
has two solution in C for any z € C (in fact there are two solutions, if z = re’?,
then x = +re? are the two solutions) , but it does not have a solution in R for
any z € R (it only has a solution in R if z is a non-negative number).
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Algebraic structures

Algebraic structures

Algebraic structures are tools that help us to define operate on numbers and
elements within a set, solve equations, etc.

Set § with binary operation +
Operation + is associative
monoid Existence of identity element of +in§ .
group Existence of inverse elements of + in § /.,
abelian group Commutativity of +

Associative binary operation
pseudo-ring Distributivity of * over + N
ring Existence of identity element of * in§

commutative ring Commutativity of
field Existence of inverse elements of * in § .
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Algebraic structures

Definition 7.1 (Ring)
The tuple (S, *,0) is a ring iff
R1. (S,%) is an abelian group.
R2. o is associative.
R3. o is distributive with respect to %, i.e., Ya,b,c € S
o Left-distributive: ao (b*c) = (aob)x(aocc)
o Right-distributive: (ax b)oc = (aoc)*(boc)

e (Z,+, ')v (Q’+7 ')' (Rv+7 ')1 (C7+v ) are rings.
° (men(R)’+a ) is a ring.
o (R—R,+,:) is aring.
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Algebraic structures

Theorem 7.1 (Properties of rings)

Let (S, x,0) be a ring and let e be the neutral element of * in S. For any a € S,
let a’ be the inverse of a with respect to the operation x. ThenVa,b € S

@ aoe=coa=ce.

@ aob'=a ob=(aob)

@ dob =aoh

v

Consider the ring (R, +, ). We are used to the properties Va, b € R
@a-0=0-a=0.
@ a-(—b)=(—a)-b=—(a-b)
e (—a)-(-b)=a-b

But, as stated by the previous theorem, these are properties of all rings.
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Algebraic structures

Definition 7.2 (Kinds of rings)
A ring (S,*,0) is
e commutative iff o is commutative.
@ unitary iff o has a neutral element (referred as 1).
o divisive if it is unitary and
VaeS—{e} 3FlaleS|acal=aloa=1

That is each element has a multiplicative inverse.

o (P, +, ) the set of polynomials with coefficients from a ring is a ring.
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A divisive, commutative ring is called a field. I

o (Q,+,-), (R,+,-), and (C,+, ) are fields.
@ (Z,+,-) is not a field because multiplication has not an inverse in Z.

e m— P o, s |59 (32



Algebraic structures

Definition 7.4 (Vector space over a field)

Consider a field (K, ,0). A vector space over this field is a tuple (V,+,-) so

that V is a set whose elements are called vectors, and + : V x V — V is a binary
operation under which V is closed, - : K x V — V is an operation between scalars
in the field (K) and vectors in the vector space (V') such that Va, b € K,Yu,v € V

V1. (V,+) is an abelian group.
V2. (a-u) e

V3. a-(b- u) (aob)-u

V4. (axb)-u=a-u+b-u
V5. a-(u+v)=a-u+a-v
V6. 1-u=u
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Algebraic structures

o (R" +,-) and (C", +, ).
® (Mpxn(R),+,): the set of matrices of a given size with coefficients in a
field.

(P, +,): the set of polynomials with coefficients in a field.

({X — V},+,-): the set of all functions from an arbitrary set X onto an
arbitrary vector space V.

The set of all continuous functions is a vector space.
The set of all linear maps between two vector spaces is also a vector space.

The set of all infinite sequences of values from a field is also a vector space.

o’
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Algebraic structures

Definition 7.5 (Algebra)

Consider a vector space (V,+,-) over a field (K, *,0) and a binary operation
o: VXV —=V. (V,+,0)is an algebra iffVa, b € K,Vu,v,w € V

Al Left distributivity: (u+v)ew =uew+vew

A2. Right distributivity: ue (v+w) =uevtuew

A3. Compatibility with scalars: (a-u)e (b-v)=(aob)-(uev)

@ Real numbers (R) are an algebra (“1D").

@ Complex numbers (C) are an algebra (“2D").

@ Quaternions are an algebra (“4D").
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