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A little bit of history

Modern logic is based on precise calculus rules and was born in the middle of the
XIXth century with Gottfried Leibniz (1847), George Boole (1847), Augustus de
Morgan (1847) and Bertrand Russell (1910).

To know more about the history of logic visit
http://individual.utoronto.ca/pking/miscellaneous/
history-of-logic.pdf

http://en.wikipedia.org/wiki/History_of_logic
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Axioms, postulates and propositions

Axioms, postulates and propositions
Mathematical language has to be uniform (everybody must use it in the same
way) and univocal (i.e., without any kind of ambiguity). We start from some
initial statements called axioms, postulates and definitions. These elements are
not questioned, they are not true or false, they simply are, and they serve to build
a logical reasoning.

Example
Axiom If A and B are equal to C, then A is equal to B.

Postulate For any two points, there is a unique straight line that joins them.
Definition A prime number is a natural number that can only be divided by 1

and itself.
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Propositions

Propositions
Based on axioms, postulates and definitions, we can construct propositions that
are statements that refer to already introduced objects. Propositions can be true
or false. They are named with capital letters A, B, C, ...

Example
2+3 (is not a proposition)

A: 2+3=5 (is a true proposition)
B: 2+3=7 (is a false proposition)
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Construction of new propositions

We can construct new propositions using already existing ones and logical
operators

Example
A: 2+2=4 (true)
B: 2+3=5 (true)
C: 2+3=7 (false)
D: A y B (true)
E: A o C (true)

and quantifiers

Example
A: Some numbers are prime (true)
B: All even numbers can be divided by 2 (true)
C: None of odd numbers can be divided by 2 (true)
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A (not A)

Definition
A is true if A is false, and A is false if A is true.

Example
A: 3+2=5 (true)
B: ¬A ≡ 3+ 2 6= 5 (false)
C: 3+2=6 (false)
D: ¬C ≡ 3+ 2 6= 6 (true)

Truth table
A A
F T
T F

Properties
A = A
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A (not A)

A double negation is a positive statement.

Example
A: 3+2=5 (true)
B: A ≡ 3+ 2 6= 5 (false)
C: B ≡ 3+ 2 = 5 (true)

Example
It is not true that John is not at home.

A: John is at home
B: A ≡ Not (John is at home) ≡ John is not at home
C: B ≡ Not (John is not at home) ≡ John is at home ≡ A

If C is true, then A is true. Therefore, John is at home.
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A ∩ B (A and B)

Truth table
A B A ∩ B
F F F
F T F
T F F
T T T

Properties
A ∩ B = B ∩ A

Example
A: 3+2=5 (true)
B: 2+2=4 (true)
C: A ∩ B ≡ 3+2=5 and 2+2=4 (true)
D: 3+2=6 (false)
E: D ∩ B ≡ 3+2=6 and 2+2=4 (false)

0. Mathematical method September 7, 2013 12 / 63



A ∩ B (A and B)

The common language AND is sometimes equivalent to the mathematical AND

Example
Triangle ABC and triangle A’B’C’ are equilateral ⇒

A: ABC is equilateral
B: A’B’C’ is equilateral
C: A ∩ B ≡ Triangle ABC is equilateral AND Triangle A’B’C’ is

equilateral

and sometimes not

Example
Triangle ABC and triangle A’B’C’ are similar ;

A: ABC is similar
B: A’B’C’ is similar
C: A ∩ B ≡ Triangle ABC is similar AND Triangle A’B’C’ is similar
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A ∪ B (A or B; A and/or B)
15% discounts for customers having a student card or university card. Of course,
people with both cards have a 15% discount. Inclusive OR.

Truth table
A B A ∪ B
F F F
F T T
T F T
T T T

Properties
A ∪ B = B ∪ A

Example
A: 3+2=5 (true)
B: 2+2=4 (true)
C: A ∪ B ≡ 3+2=5 or 2+2=4 (true)
D: 3+2=6 (false)
E: D ∪ B ≡ 3+2=6 or 2+2=4 (true)
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A ⊕ B (either A or B; A xor B (eXclusive or))

We’ll go to Paris or Berlin. Either Paris or Berlin, we cannot go to both places at
the same time. Exclusive OR.

Truth table
A B A⊕ B
F F F
F T T
T F T
T T F

Properties
A⊕ B = B ⊕ A

Example
A: a<5
B: a=5
C: A⊕ B ≡ a ≤ 5

If a = 3, then C is true. If a = 6, then C is false.
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Negation of and

A ∩ B = A ∪ B
This is one of Morgan’s laws.

A B A ∩ B A ∩ B A B A ∪ B
F F F T T T T
F T F T T F T
T F F T F T T
T T T F F F F

Example
A: It rained on Monday
B: It rained on Tuesday
C: A ∩ B ≡ It is not true that it rained on both days ≡ Either it did

not rain on Monday or it did not rain on Tuesday.
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Negation of or

Inclusive OR: A ∪ B = A ∩ B
This is another Morgan’s law.

A B A ∪ B A ∪ B A B A ∩ B
F F F T T T T
F T T F T F F
T F T F F T F
T T T F F F F

Exclusive OR: A⊕ B = (A ∩ B) ∪ (A ∩ B)

A B A⊕ B A⊕ B A B A ∩ B A ∩ B (A ∩ B) ∪ (A ∩ B)
F F F T T T F F T
F T T F T F T F F
T F T F F T F T F
T T F T F F F F T
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A ⇒ B (A implies B)

Natural language
A implies B
A is sufficient for B
A guarantees B
B is necessary for A
If A, then B
If not B, then not A

Truth table
A B A⇒ B
F F T
F T T
T F F
T T T
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A ⇒ B (A implies B)

In natural language “If ..., then ...” is not used in the mathematical sense.

Example
If it rains, I’ll stay at home.

If he is at home, is it raining?
We don’t know, he didn’t say what he would do if it was not raining.

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

If he is back with 1000 euros, is the bank open?
We don’t know, maybe a very good friend of his gave him 1000 euros.
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A ⇒ B (If not B, then not A)

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

If I’m back without 1000 euros, is the bank open?
No, let’s see why

A: Bank is open
B: I bring 1000 euros

A B A⇒ B Why
F F T The bank was closed
F T T A friend gave me
T F F I lied
T T T I withdrew 1000 euros from bank

There is only one situation in which my statement is true (I did not lie) and in
which I do not bring 1000 euros (B is false) that is when the bank is closed (A is
also false).
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A ⇒ B (If not B, then not A)

We can generally formulate this analysis as

Properties
A⇒ B = B ⇒ A

A B A⇒ B B A B ⇒ A
F F T T T T
F T T F T T
T F F T F F
T T T F F T
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A ⇒ B (Not (A and not B))

Another interesting property

Properties
A⇒ B = A ∩ B
A⇒ B = A ∩ B

The proof of these properties is left to the reader.

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

It is equivalent to:

It will not be the case that (the bank is open (A) and I don’t bring 1000
euros (not B)).
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A ⇔ B (A if and only if B)

Truth table
A B A⇔ B
F F T
F T F
T F F
T T T

Properties
A⇔ B = (A⇒ B) ∩ (B ⇒ A)

In plain language, we say:
A is necessary and sufficient for B
B is necessary and sufficient for A
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Qualifiers

Example
There might be a person that reads all newspapers every day.
Every day, there might be a person that reads all newspapers.
Every one reads a newspaper every day.
Every day, there is a newspaper that everybody reads.

Example
We say that the limit of the function f (x) when x goes to x0 is y if and only if for
all positive numbers (ε), there exists another positive number (δ) such that if
the distance between x and x0 is smaller than δ, then the distance between f (x)
and y is smaller than ε.

lim
x→x0

f (x) = y ⇔ ∀ε > 0 ∃δ > 0 | |x − x0| < δ ⇒ |f (x)− y | < ε
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∀ (for all), ∃ (exists) and ∃! (exists only one)

For all x in P ∀x , x ∈ P; ∀x ∈ P
For any x in P ∀x , x ∈ P; ∀x ∈ P
For each x with the property P ∀x ,P(x)
There exists at least one x in P ∃x , x ∈ P; ∃x ∈ P
For at least one x in P ∃x , x ∈ P; ∃x ∈ P
There exists at least one x with the property P ∃x ,P(x)
There exists exactly one x in P ∃!x , x ∈ P; ∃!x ∈ P

Example
For all real numbers ∀x ∈ R
For all real numbers smaller than 4 ∀x ∈ R, x < 4
There exists at least one real number ∃x ∈ R
There exists at least one real number greater than 2 ∃x ∈ R, x > 2
There exists a single real number such that ... ∃!x ∈ R| ...
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| (such that, it is verified, verifying)

Example
There must be people that read all newspapers everyday. Let P be the set
of all persons, let N be the set of all newspapers, and let D be the set of all days.
Then, the previous sentence is formalized as

∃p ∈ P|∀d ∈ D|∀n ∈ N| p reads n on d.

Literal reading: There exist at least one person such that for all days and for all
newspapers it is verified that p reads n on d.

Example
Every day, there must be someone that reads all newspapers.

∀d ∈ D|∃p ∈ P|∀n ∈ N| p reads n on d.

Literal reading: For all days it is verified that there exists at least one person
verifying that for all newspapers it is verified that p reads n on d.

0. Mathematical method September 7, 2013 27 / 63



| (such that, it is verified, verifying)

Example
lim

x→x0
f (x) = y ⇔ ∀ε > 0 ∃δ > 0 | |x − x0| < δ ⇒ |f (x)− y | < ε

Literal reading: the limit of f (x) when x goes to x0 is y if and only if for any ε
greater than 0, there exists δ greater than 0 such that if |x − x0| < δ is true, then
|f (x)− y | < ε is also true.

Example
Fermat-Wiles Theorem:
∀n ∈ Z, n > 2|∀(x , y , z) ∈ R3, xn + yn = zn|xyz = 0

Literal reading: For all integer numbers it is verified that for any real numbers x ,
y z with the property xn + yn = zn it is verified that at least one of the three
numbers is 0.
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Negation of qualifiers

Let’s say we state that all elements in a given set S has a certain property (
∀x ∈ S|P(x)). The negation of this statement is that there exists at least one
element of S that does not have that property (∃x ∈ S|P(x)).

Similarly, if we state that there exists at least one element in a given set S that
has a certain property ( ∃x ∈ S|P(x)). The negation of this statement is that
none of the elements of S have that property (∀x ∈ S|P(x)).
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Negation of qualifiers

Example
In a previous example we had: There must be people that read all
newspapers everyday. Its negation is

∃p ∈ P|∀d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∀d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∃n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∃n ∈ N|p does not read n on d.

That is, For everybody, there is at least one day and one paper, such that p
did not read n on d .
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Modus ponens

The following proofs follow a reasoning model called Modus ponens which is
formally written as

(A ∩ (A⇒ B))⇒ B.

The intuitive meaning is that if A is true and A⇒ B, then B is also true. Most
proofs follow this way of reasoning. They can be performed in a forward way

A⇒ B1 ⇒ B2 ⇒ ...⇒ B

or in a backward way

B ⇐ Bn ⇐ Bn−1 ⇐ ...⇐ A.
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Forward proofs (A⇒ B; B is necessary for A)

Example
Prove that the third power of an odd number is odd.
Proof
Let there be the following propositions:

A: x is odd.
B: x3 is odd.

We need to prove that A⇒ B (B is necessary for A).
Proof A⇒ B
Since x is an odd number we can write x = 2k + 1 for some integer
number k. Then,
x3 = (2k+1)3 = 8k3+12k2+6k+1 = 2(4k3+6k2+3k)+1 = 2k ′+1.
For k ′ = 4k3 + 6k2 + 3k, which is another integer number. Therefore,
x3 is odd.
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Forward proofs (A⇒ B; B is necessary for A)

Example
A necessary condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120.
Proof
Let there be the following propositions:

A: To be multiple of 360
B: To be multiple of 3 and 120

We need to prove that A⇒ B (B is necessary for A).
Proof A⇒ B
Let x be a multiple of 360 (A) ⇒ There exists a natural number k such
that x = 360 · k ⇒ x = 120 · 3 · k. From this factorization, it is obvious
that x is a multiple of 120 and a multiple of 3 (B).
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Forward proofs (A⇐ B; B is sufficient for A)

Example
A sufficient condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120. Proof
Let there be the following propositions:

A: To be multiple of 360
B1: To be multiple of 3
B2: To be multiple of 120
B: B1 ∩ B2

We need to prove that B ⇒ A (B is sufficient for A).
Proof B ⇒ A
We can easily prove that B ; A with a counterexample. Let us consider
x = 240. It is a multiple of 3 (B1). It is a multiple of 120 (B2). Therefore,
B is true. However, 240 is not a multiple of 360 (A is false). Therefore, we
have proved that B ; A.
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Forward proofs (A⇒ B)

Example

Show that x =
−b+
√

b2−4ac
2a is solution of the equation ax2 + bx + c = 0

Proof
Let there be the following propositions:

A: x =
−b+
√

b2−4ac
2a

B: ax2 + bx + c = 0
We need to prove that A⇒ B.

If A⇒ B is true, then it must also be true that A⇒ B1

B1: a
(
−b+
√

b2−4ac
2a

)2
+ b−b+

√
b2−4ac

2a + c = 0

that we can rewrite as

B1: a
(

b2

4a2 +
b2−4ac

4a2 − 2b
√

b2−4ac
4a2

)
+ b−b+

√
b2−4ac

2a + c = 0
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Forward proofs (A⇒ B)

Example (continued)
that we can simplify to

B1: b2

4a + b2

4a − c − b
√

b2−4ac
2a + −b2

2a +
b
√

b2−4ac
2a + c = 0

B1: ��
b2

4a +�
�b
2

4a − �c −���
��b

√
b2−4ac
2a +

�
�−b2

2a +
���

��b
√

b2−4ac
2a + �c = 0

B1: 0 = 0
Since B1 is always true (a statement that is always true is called a tautology),
then A⇒ B1 is true, as we wanted.
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Forward proofs (A⇔ B)

In this case we have to prove both directions: A⇒ B and B ⇒ A.

Example
A necessary and sufficient condition for a natural number to be a multiple of 360
is that it is a multiple of 5 and 72.
Proof
Let there be the following propositions:

A: To be multiple of 360
B1: To be multiple of 5
B2: To be multiple of 72
B: B1 ∩ B2

We need to prove that A⇔ B, that is, A⇒ B and B ⇒ A
Proof A⇒ B
Let x be a multiple of 360 (A)⇒ There exists a natural number k such that
x = 360 · k ⇒ x = 72 · 5 · k. From this factorization, it is obvious that x is
a multiple of 72 and a multiple of 5 (B).
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Forward proofs (A⇔ B)

Example (continued)
Proof B ⇒ A
B1⇒ There is a natural number k1 such that x = 5 · k1
B2⇒ There is a natural number k2 such that x = 72 · k2
Therefore, 5k1 = 72k2 ⇒ k1 = 72

5 k2. But k1 is a natural number not a
rational number, therefore, k2 needs to be a multiple of 5, i.e., there exists
a natural number k3 such that k2 = 5 · k3. Consequently, considering B2,
we have x = 72 · 5 · k3 = 360 · k3. That is x is a multiple of 360. Therefore,
we have proved that A⇒ B.
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More forward proofs

If I want to prove that A does not imply B (A⇒ B is false), I have to prove that
B is false, but A is true.

Example
In our example, I have to prove that you did not bring 1000 euros (B is false), but
the bank is open (A is true). I don’t have to prove that

B is false (you did not bring 1000 euros)
A is false (the bank is closed)
B is true but A is false (you brought 1000 euros, but the bank is closed)
A and B are false (you did not bring 1000 euros, and the bank is closed)
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More forward proofs

If I know that B is false, and I want to proof that A implies B (A⇒ B is true),
then I have to prove that A is also false.

A B A⇒ B
F F T
F T T
T F F
T T T

Example
If I know that you did not bring 1000 euros (B is false), all I have to prove to
show that A⇒ B is true, is that the bank is closed (A is false).
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More forward proofs

If I want to proof that A implies B or C (A⇒ B ∪ C is true), and I prove that it is
false that A⇒ B ∩ C , have I finished? No,let’s see why

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
F F F F T F T
F F T T T F T
F T F T T F T
F T T T T T T
T F F F F F F
T F T T T F F
T T F T T F F
T T T T T T T
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More forward proofs

If I prove that A⇒ B ∩ C is false, that amounts to selecting the following rows
from the table

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
T F F F F F F
T F T T T F F
T T F T T F F

In those lines, A⇒ B ∪ C is true for two of the A,B,C combinations (that’s
good), but false for the other (that’s bad). Therefore, we have not finished yet
and we have to prove that either B or C is true, so that we can finally reduce the
table to

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
T F T T T F F
T T F T T F F

in which A⇒ B ∪ C is true, and consequently, we have proved that A⇒ B ∪ C .
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Backward proofs (A⇒ B)

Example
Show that if x > 0, then x + 1

x ≥ 2.
Proof
Let there be the following propositions:

A: x > 0
B: x + 1

x ≥ 2
It is obvious that C1 ⇒ B, C2 ⇒ C1, C3 ⇒ C2 being

C1: x + 1
x − 2 ≥ 0

C2: x2+1−2x
x ≥ 0

C3: (x−1)2

x ≥ 0
It is also obvious that A⇒ C3 and, in this way, we have proved that A⇒ B. We
can simplify the writing of this proof as:
x + 1

x ≥ 2⇐ x + 1
x − 2 ≥ 0⇐ x2+1−2x

x ≥ 0⇐ (x−1)2

x ≥ 0⇐ x > 0
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Backward proofs (A⇒ B)

Example
If x , y ∈ R, x , y > 0, then √xy ≤ x+y

2
Proof√xy ≤ x+y

2 ⇐
√xy − x+y

2 ≤ 0⇐ x+y
2 −

√xy ≥ 0
Since x and y are positive numbers, we can write them as x = a2 and y = b2.
Then, x+y

2 −
√xy ≥ 0⇐ a2+b2

2 − ab ≥ 0⇐ a2 + b2 − 2ab ≥ 0⇐ (a − b)2 ≥ 0
This last proposition is always true, therefore √xy ≤ x+y

2 is also true.
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Modus tollens

The following proofs follow a reasoning model called Modus tollens which is
formally written as(
B ∩ (A⇒ B)

)
⇒ A.

The intuitive meaning is that if A⇒ B is true and B is false, then A must also be
false. Another way of writing this reasoning is

(A⇒ B)⇔ (B ⇒ A).

That is if we want to prove A⇒ B, it is enough to prove B ⇒ A.
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Modus tollens

Example
Show that if x3 is even, then x is even.
Proof
Let there be the following propositions:

A: x3 is even
B: x is even

We want to prove that A⇒ B. Instead, we’ll prove that B ⇒ A, with
B: x is odd
A: x3 is odd

But we already proved this in a previous example. Therefore, A⇒ B is true.
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Modus tollens

Example
Show that if c is odd, then the equation n2 + n − c = 0 has no integer solution.
Proof
Let there be the following propositions:

A: c is odd
B: n2 + n − c = 0 has no integer solution

We want to prove that A⇒ B. Instead, we’ll prove that B ⇒ A, with
B: n2 + n − c = 0 has an integer solution
A: c is even

Proof B ⇒ A
Let’s assume that n ∈ Z is solution of n2 + n − c = 0.
If n is even, then c is even because c = n2+n = (2k)2+2k = 2(2k2+k).
If n is odd, then c is also even because c = n2+n = (2k+1)2+(2k+1) =
2(2k2 + 3k + 1).
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Reductio ad absurdum

The following proofs follow a reasoning model called Reductio ad absurdum which
is formally written as

A⇒ B ⇔ (A ∩ B ⇒ absurdum).

Absurdum is a statement that is always false, like P ∩ P. Let’s analyze the truth
table for this proposition

Truth table
A B A⇒ B A ∩ B P ∩ P A ∩ B ⇒ (P ∩ P)
F F T F F T
F T T F F T
T F F T F F
T T T F F T

We see that the third and sixth columns are identical.
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Reductio ad absurdum

Example
Show that

√
2 is irrational.

Proof
It does not appear in the form A⇒ B but it can be put with

A: All facts we know about numbers
B:
√
2 is irrational

Let’s assume that
√
2 is rational (B), that is ∃p, q ∈ Z|

√
2 = p

q and p, q are
irreducible (they don’t have any common factor). If this is true, then 2q2 = p2,
i.e., 2 must be a factor of p and consequently p must be p = 2r . Substituting this
knowledge into 2q2 = p2 we obtain 2q2 = (2r)2 ⇒ q2 = 2r2. Consequently, 2 is
another factor of q. But we presumed that

P: p and q were irreducible
So, if

√
2 is rational, then we have P and P at the same time, which is a

contradiction, and therefore
√
2 cannot be rational.
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Reductio ad absurdum

Example
Show that there are infinite prime numbers.
Proof
Let’s presume they is a finite list of prime numbers (in ascending order):

2, 3, 5, 7, ...,P

Now we construct the number M = 2 · 3 · 5 · 7 · ... · P + 1.
If M is prime, then we have a contradiction is M is prime and is larger than P.
If M is not prime, then it has as a factor at least one of the prime numbers in the
list. Let’s assume it is 3, that is

M = 3H = 2 · 3 · 5 · 7 · ... · P + 1⇒ 1 = 3(H − 2 · 5 · 7 · ... · P)

that means that 3 is a factor of 1, which is an absurdum.
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Weak induction
This is a strategy to prove a property of a natural number, P(n). We follow the
strategy below:

1 Prove that P(k) is true.
2 Prove that if P(n − 1) is true, then P(n) is also true

Example

Show that Sn =
n∑

i=1
i = n(n+1)

2

Proof

1 S1 =
1∑

i=1
i = 1(1+1)

2 = 1, which is obviusly true.

2 Let’s assume that Sn−1 =
n−1∑
i=1

i = (n−1)n
2 . Then, we need to prove that

Sn =
n∑

i=1
i = n(n+1)

2 . But

Sn = Sn−1 + n = (n−1)n
2 + n = n

( n−1
2 + 1

)
= n(n+1)

2 . q.e.d.
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Strong induction

The goal is similar to the previous method, but now in the second step we assume
that the property is true for all previous integers

1 Prove that P(k) is true.
2 Prove that if P(k) is true and P(k + 1) is true and ... P(n − 1) is true, then

P(n) is also true

Example: Fundamental theorem of arithmetics
Show that for all natural numbers larger than 1 either it is prime or it is the
product of prime numbers
Proof

1 The property is true for 2.
2 Let’s assume that it is true for 2, 3, 4, ..., n − 1.

If n is prime, then the property is also true for n.
If n is not prime, then it can be written as the product of several numbers
between 2 and n − 1. But the property is true for all these numbers, and
therefore, the property is also true for n.
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Case distinction

For each case we follow a different strategy.

Example: Triangular inequality
Show that ∀a, b ∈ R||a + b| ≤ |a|+ |b|
Proof
We remind that the absolute value is a function defined by parts:

|x | =
{

x x ≥ 0
−x x < 0

Case a + b ≥ 0: a + b ≤ |a|+ |b|
For all real numbers it is obvious that x ≤ |x |. Therefore, we have
a ≤ |a| and b ≤ |b|. Consequently, a + b ≤ |a|+ |b|.
Case a + b < 0: −(a + b) ≤ |a|+ |b|
For all real numbers it is also true that −x ≤ |x |. Therefore, we have
−a ≤ |a| and −b ≤ |b|. Consequently, −(a + b) = −a − b ≤ |a|+ |b|.
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Counterexample

To prove that something is not true, it is enough to show that it is not true for
one example. This example is called a counterexample.

Example
Show that ∀x , y , z ∈ R+ and ∀n ∈ Z, n ≥ 2 it is verified that xn + yn 6= zn

Proof
The proposition is false because, for instance, for x = 3, y = 4, z = 5 and n = 2
we have

32 + 42 = 52
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Common math mistakes

Avoid some common mathematical mistakes (many of them, algebraic):
Common math mistakes Video 1:
http://www.youtube.com/watch?v=VHo_sfVdieM

Common math mistakes PDF:
http://tutorial.math.lamar.edu/pdf/Common_Math_Errors.pdf

Common math mistakes Video 2:
http://www.youtube.com/watch?v=qHSUU_q_2wA

Common math mistakes Video 3:
http://www.youtube.com/watch?v=cTiuocJfyCs

Common math mistakes Video 4:
http://www.youtube.com/watch?v=r5Yro2GdJ6w
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A little bit of history
Vectors were developed during the XIXth century by mathematicians and
physicists like Carl Friedrich Gauss (1799), William Rowan Hamilton (1837), and
James Clerk Maxwell (1873), mostly as a tool to represent complex numbers, and
later as a tool to perform geometrical reasoning. Their modern algebra was
formalized by Josiah Willard Gibbs (1901), a university professor at Yale.

To know more about the history of vectors visit
http:
//www.math.mcgill.ca/labute/courses/133f03/VectorHistory.html
https://www.math.ucdavis.edu/~temple/MAT21D/
SUPPLEMENTARY-ARTICLES/Crowe_History-of-Vectors.pdf
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What is a vector?

Definition 1.1
Informally, a vector is a collection of n numbers of the same type. We say it has
n components (1,2,...,n)

We’ll see that this definition is terribly simplistic since many other things (like
functions, infinite sequences, etc.) can be vectors. But, for the time being, let’s
stick to this simple definition.

Example −10
1

 ∈ Z3 is a collection of 3 integer numbers(
−1.1
1.1

)
∈ Q2 is a collection of 2 rational numbers(

−1.1√
2

)
∈ R2 is a collection of 2 real numbers

Matlab:
[-1.1; sqrt(2)]
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Transpose
We distinguish between column vectors (for instance v below) and row vectors
(w). In the first case, we say v is a n × 1 vector, while in the second, we say w is
a 1× n vector.

v =


v1
v2
...
vn

 and w = (w1w2...wn).

Definition 1.2
The transpose is the operation that transforms a column vector into a row vector
and viceversa.

Example

(−1 1)T =

(
−1
1

)
Matlab:
[-1 1]’
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Addition of vectors

Definition 1.3

Given two vectors v =


v1
v2
...
vn

 and w =


w1
w2
...
wn

 the sum of these two vectors

is another vector defined as v + w =


v1 + w1
v2 + w2
...

vn + wn

. Note that you can only add

two column vectors or two row vectors, but not a column and a row vector.

Example(
−1.1
1.1

)
+

(
−1.1√

2

)
=

(
−2.2

1.1 +
√
2

)
Matlab:
[-1.1; 1.1]+[-1.1; sqrt(2)]

Properties 1.1
Commutativity:
v + w = w + v
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Addition of vectors

Example (
4
2

)
+

(
−1
2

)
=

(
3
4

)

−2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

v
w

v+w

x
1

x 2
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Product by scalar

Definition 1.4
Given a vector v and a scalar c, the multiplication of c and v is defined as

cv =


cv1
cv2
...
cvn


Example

2
(
−1.1
1.1

)
=

(
−2.2
2.2

)
−
(
−1.1
1.1

)
=

(
1.1
−1.1

)
Matlab:
2*[-1.1; 1.1] -[1.1; 1.1]
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Product by scalar

Example

w =

(
−1
2

)

What is the shape of all scaled
vectors of the form cw?
If w = 0, then it is a single
point (0). If w 6= 0, then it
is the straight line that passes
through 0 and w.

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

5

w

2w

−w

x
1

x 2
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Properties
For simplification we will present them as properties for Rn, but they apply to all
vector spaces. Given any three vectors u, v,w ∈ Rn and any two scalars c, d ∈ R,
we have

Vector operation properties
Regarding the sum of vectors:

1 u + v = v + u Commutativity
2 (u + v) + w = u + (v + w) Associativity
3 u + 0 = 0 + u = u Existence of neutral element
4 u +−u = −u + u = 0 Existence of symmetric element

Regarding the sum of vectors and scalar product:
5 c(u + v) = cv + cu Distributivity with respect to the sum of vectors
6 (c+d)u = cu + du Distributivity with respect to the sum of scalars

Regarding the scalar product:
7 c(du) = (cd)u Associativity
8 1u = u Existence of neutral element
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Linear combination

Definition 2.1
Given a collection of p scalars (xi , i = 1, 2, ..., p) and p vectors (vi), the linear
combination of the p vectors using the weights given by the p scalars is defined
as

p∑
i=1

xivi = x1v1 + x2v2 + ...+ xpvp

Example
1
2

(
−1
1

)
− 2

3

(
2
2

)
=

(
− 5

6
− 11

6

)
Matlab:

format rational
-1/2*[-1; 1]-2/3*[2; 2]
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Linear combination

Example
A very basic model of the activity of neurons is

output = f (
∑

i
weighti inputi )

where f (x) is a non-linear function. In fact, this is the model used in artificial
neuron networks.

The human brain has in the order of 1011 neurons and about 1018 connections.
See https://www.youtube.com/watch?v=zLp-edwiGUU.
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Linear combination

Example

v =

(
4
2

)
w =

(
−1
2

)

We may think of the weight coefficients as the “travelling” instructions. For
instance, for the figure in the right, the instructions say: “Travel 1

3 of v along v,
then travel 1

2 of w along w”.
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Linear combination

What is the shape of all linear combinations of the form cv + dw
If the two vectors are not collinear (i.e., w 6= kv), then it is the whole plane
passing by 0, v and w. We can think of it as the sum of all vectors belonging to
the line 0v and 0w.

The plane generated by v and w is
the set of all vectors that can be
generated as a linear combination
of both vectors.
Π = {r|r = cv + dw ∀c, d ∈ R}
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Linear combination

The previous example prompts the following definition:

Definition 2.2 (Spanned subspace)
The subspace spanned by the vectors vi , i = 1, 2, ..., p, is the set of all vectors
that can be expressed as the linear combination of them. Formally,

〈v1, v2, ..., vp〉 = Span {v1, v2, ..., vp} , {v ∈ Rn|v = x1v1 + x2v2 + ...+ xpvp}

Example
Assuming all vectors below are linearly
independent:
Span {v1} is a straight line.
Span {v1, v2} is a plane.
Span {v1, v2, ..., vn−1} is a hyperplane.

Properties
0 ∈ Span {·}

1. Vectors December 3, 2013 19 / 49



Linear combination

Outside the plane
Let v = (1, 1, 0) and w = (0, 1, 1). The linear combinations of v and w fill a plane
in 3D. All points belonging to this plane are of the form

Π = {r|r = c(1, 1, 0) + d(0, 1, 1) ∀c, d ∈ R} = {r = (c, c + d , d) ∀c, d ∈ R}

It is clear that the vector r′ = (0, 1, 0) /∈ Π, therefore, it is outside the plane.
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Linear combination

Sets of points
Let v = (1, 0).

1 S1 = {r = cv ∀c ∈ Z} is a set of points
2 S2 = {r = cv ∀c ∈ R+} is a semiline
3 S3 = {r = cv ∀c ∈ R} is a line
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Linear combination

Sets of points
Let v = (1, 0) and w = (0, 1).

1 S1 = {r = cv + dw ∀c ∈ Z,∀d ∈ R} is a set of lines
2 S2 = {r = cv + dw ∀c ∈ R+,∀d ∈ R} is a semiplane
3 S3 = {r = cv + dw ∀c, d ∈ R} is a plane
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Linear combination

Combination coefficients
Let v = (2,−1), w = (−1, 2) and b = (1, 0). Find c and d such that
b = cv + dw.
Solution
We need to find c and d such that(

1
0

)
= c

(
2
−1

)
+ d

(
−1
2

)
=

(
2c − d
2d − c

)
This gives a simple equation system

2c − d = 1
2d − c = 0

whose solution is c = 2
3 and d = 1

3 . We can easily check it with Matlab:
2/3*[2 -1]’+1/3*[-1 2]’
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 3:

1.3.1
1.3.3
1.3.6
1.3.7
1.3.25
1.3.27
1.3.29
1.3.31
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Inner product

Definition 3.1
Given two vectors v and w the inner or dot product between v and w is defined
as

〈v,w〉 = v ·w , vT w =
n∑

i=1
viwi = v1w1 + v2w2 + ...+ vnwn

Mathematically, the concept of inner product is much more general, and this
operational definition is just a particularization for vectors in Rn. Although, the
introduced inner product is the most common, it is not the only one that can be
defined in Rn. But, let’s leave these generalization for the moment.

Example(
4
2

)
·
(
−1
2

)
= 4 · (−1) + 2 · 2 = 0

Matlab:
dot([4; 2],[-1; 2])

Properties 3.1
Commutativity:

v ·w = w · v
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Vector norm and vector length

Definition 4.1
Given a vector v, its length or norm is defined as

‖v‖ ,
√
〈v, v〉

In the particular case of working with the previously introduced inner product, this
definition boils down to

‖v‖ ,
√

vT v =

√
n∑

i=1
v2

i

that is known as the Euclidean norm of vector v.

Properties 4.1
‖ − v‖ = ‖v‖
‖cv‖ = |c|‖v‖
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Vector norm and vector length

Example

‖(−1, 0, 1)‖ =
√

(−1)2 + 02 + 12 =
√
2

Matlab:
norm([-1;0;1])
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1
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Unit vectors

Definition 4.2
v is unitary iff ‖v‖ = 1.

Example

e1 = (1, 0)
e2 = (0, 1)
eθ = (cos(θ), sin(θ))
Matlab:

theta=pi/4;
e_theta=[cos(theta);sin(theta)];
norm(e_theta)

−1.5 −1 −0.5 0 0.5 1 1.5
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Unit vectors

Definition 4.3 (Construction of a unit vector)
Given any vector v (whose norm is not null), we can always construct a unitary
vector with the same direction of v as uv = v

‖v‖ .

Example

v = (1, 1)

uv = v
‖v‖ = (1,1)√

2 =
(

1√
2 ,

1√
2

)
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Distance and angle between two vectors

Definition 5.1

Given two vectors v and w, the distance be-
tween both is defined as

d(v,w) , ‖v−w‖

and their angle is

∠(v,w) , acos v·w
‖v‖‖w‖ = θ

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v
w

||v−w||

x
1

x 2

θ

Definition 5.2
Two vectors are orthogonal (perpendicular) iff their inner product is 0. We then
write v ⊥ w. In this case, ∠(v,w) = π

2 .
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Distance and angle between two vectors

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). The angle between these two vectors can be
calculated as

v ·w = (− 2
5 )1 + 2

3
2
3 = 2

45

‖v‖ =
√

(− 2
5 )2 + ( 2

3 )2 =
√

136
15

‖w‖ =
√

(1)2 + ( 2
3 )2 =

√
13
3

∠(v,w) = acos
2
45√

136
15

√
13

3
= 87.27◦

v and w are almost orthogonal.
−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

v w

θ

x
1

x 2

Example
Let v = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1) and w = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0). These two
vectors in a 10-dimensional space are orthogonal because
v ·w = 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 = 0
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Distance and angle between two vectors

Example
Search for a vector that is orthogonal to v = (− 2

5 ,
2
3 )

Solution
Let the vector w = (w1,w2) be such a vector. Since it is orthogonal to v it must
meet

〈v,w〉 = 0 = (− 2
5 )w1 + 2

3w2 ⇒ w2 = 3
5w1

That is, any vector of the form w = (w1,
3
5w1) = w1(1, 3

5 ) is perpendicular to v.
This is the line passing by the origin and with direction (1, 3

5 ). In particular, for
w1 = 2

3 we have that w = ( 2
3 ,

2
5 ) and for w1 = − 2

3 we have w = (− 2
3 ,−

2
5 ).

This is a general rule in 2D. Given a vector v = (a, b), the vectors w = (b,−a)
and w = (−b, a) are orthogonal to v.

(a, b) ⊥ (b,−a) and (a, b) ⊥ (−b, a)
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Distance and angle between two vectors

Theorem 5.1 (Pythagorean theorem)
If v ⊥ w, then ‖v−w‖2 = ‖v‖2 + ‖w‖2.
Proof
‖v−w‖2 = (v−w)T (v−w) = vT v−vT w−wT v+wT w = ‖v‖2 +‖w‖2−2 〈v,w〉

But, because v ⊥ w, we have 〈v,w〉 = 0, and consequently

‖v−w‖2 = ‖v‖2 + ‖w‖2 (q.e.d.)

Corollary 5.1
If 〈v,w〉 < 0, then π

2 < θ ≤ π.
If 〈v,w〉 > 0, then 0 ≤ θ < π

2 .
For two unit vectors, u1 and u2, we have cos θ = 〈u1,u2〉, and as a
consequence −1 ≤ 〈u1,u2〉 ≤ 1.
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Distance and angle between two vectors

Theorem 5.2 (Cosine formula)
For any two vectors, v and w, such that ‖v‖ 6= 0 and ‖w‖ 6= 0, we have

〈v,w〉 = ‖v‖‖w‖ cos θ

Proof
By use of Definition 4.3, we can construct the unit vectors associated to v and w,
that is uv and uw. Then by Corollary 5.1 we know that

cos θ = 〈uv,uw〉 =
(

v
‖v‖

)T (
w
‖w‖

)
= 1
‖u‖‖w‖u

T w = 〈v,w〉
‖u‖‖w‖

From this point it is trivial to deduce that 〈v,w〉 = ‖v‖‖w‖ cos θ (q.e.d.)
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Distance and angle between two vectors

Example
To compute the knee flexion angle, we need to calculate the dot product between
the vectors aligned with the leg before and after the knee.
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Distance and angle between two vectors

Theorem 5.3 (Cauchy-Schwarz inequality)
For any two vectors, v and w, it is verified that

| 〈v,w〉 | < ‖v‖‖w‖

Proof
From the cosine formula (Theorem 5.2), we know that

〈v,w〉 = ‖v‖‖w‖ cos θ ⇒
| 〈v,w〉 | = |‖v‖‖w‖ cos θ| = ‖v‖‖w‖ |cos θ| ≤ ‖v‖‖w‖

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). We already know that v ·w = 2
45 , ‖v‖ =

√
136
15 ,

and ‖w‖ =
√

13
3 . Let us check Cauchy-Schwarz inequality

| 2
45 | <

√
136
15

√
13
3 ⇔ 0.0444 < 0.9344
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Distance and angle between two vectors

Example
Show that for any two positive numbers, x and y , the geometric mean (√xy) is
always smaller or equal than the arithmetic mean ( x+y

2 ). For instance, the
statement is verified for x = 2 and y = 3:

√
6 ≤ 5

2 ⇔ 2.4495 ≤ 2.5.
Proof
Let there be vectors v = (a, b) and w = (b, a). Then, by Cauchy-Schwarz
inequality we know that

| 〈v,w〉 | < ‖v‖‖w‖ ⇒ |2ab| ≤ a2 + b2

Since x and y are positive numbers, we may consider them to be x = a2 and
y = b2. Consequently, we can rewrite the previous expression as

2
√
x√y ≤ x + y ⇒ √xy ≤ x+y

2 (q.e.d.)

In fact, the geometric mean is nothing more than the arithmetic mean in
logarithmic units

log(
√xy) = log(xy)

1
2 = 1

2 (log x + log y) = log x+log y
2
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Distance and angle between two vectors

Theorem 5.4 (Triangular inequality)
For any two vectors, v and w, it is verified that

‖v + w‖ ≤ ‖v‖+ ‖w‖

Proof
By definition we know that

‖v + w‖2 = (v + w)T (v + w) = ‖v‖2 + ‖w‖2 + 2 〈v,w〉

Applying the Cauchy-Schwarz inequality (Theorem 5.3), we have

‖v + w‖2 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖+ ‖w‖)2

Taking the square root we have

‖v + w‖ ≤ ‖v‖+ ‖w‖
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Distance and angle between two vectors

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). We already know that ‖v‖ =
√

136
15 and

‖w‖ =
√

13
3 . Let us check the triangular inequality

v + w = ( 3
5 ,

4
3 )⇒ ‖v + w‖ =

√
481
15√

481
15 ≤

√
136
15 +

√
13
3 ⇔ 1.4621 ≤ 1.9793
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−0.5
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Distance and angle between two vectors

Orthogonal projections
Let us consider the orthogonal projection of v onto w.

v′ = 〈v,w〉 w
‖w‖2 = 〈v,w〉

‖w‖
w
‖w‖

The length of this vector is 〈v,w〉‖w‖

−1 0 1 2 3 4
−0.5

0

0.5

1

1.5

x
1

x 2

v

w

v’

Example
Let v = ( 5

2 , 1) and w = (3, 0). Then, v′ =
5
2 3+1·0

3 (1, 0) = ( 5
2 , 0). See the figure

above.
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Multiplication by matrices

Example
Let’s consider three vectors v1 =

(
1
−1
0

)
, v2 =

(
0
1
−1

)
and v3 =

(
0
0
1

)
. Let’s

consider the linear combination

y = x1v1 + x2v2 + x3v3 = x1

(
1
−1
0

)
+ x2

(
0
1
−1

)
+ x3

(
0
0
1

)
=
(

x1
x2 − x1
x3 − x2

)
I can obtain the same result by constructing a matrix

A = (v1 v2 v3) =
(

1 0 0
−1 1 0
0 −1 1

)
.

And making the multiplication

y = A
(

x1
x2
x3

)
= (v1 v2 v3)

 x1
x2
x3

 =

 1 0 0
−1 1 0
0 −1 1

 x1
x2
x3

 = x1
x2 − x1
x3 − x2
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Multiplication by matrices

Example
We can also achieve the same result by calculating y as the inner product of the
rows of the matrix A and the weight vector.

y =

 〈
(1, 0, 0), (x1, x2, x3)

〉〈
(−1, 1, 0), (x1, x2, x3)

〉〈
(0,−1, 1), (x1, x2, x3)

〉
 =

(
x1

x2 − x1
x3 − x2

)
Matlab:
syms x1 x2 x3

x=[x1; x2; x3]
A=[1 0 0; -1 1 0; 0 -1 1];
y=A*x
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Multiplication by matrices

Matrix multiplication as a linear combination
This is a general rule: a matrix multiplication can be seen as the linear
combination of the columns of the matrix.

A = (c1 c2 ...cp)⇒ y = Ax =
p∑

i=1
xici

Matrix multiplication as inner products
Also, a matrix multiplication can be seen as the dot product of the weight vector
with the rows of the matrix.

A =


rT
1

rT
2
...
rT
n

⇒ y = Ax =


〈r1, x〉
〈r2, x〉
...
〈rn, x〉
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Multiplication by matrices

Properties of multiplication by matrices
A(u + v) = Au + Av

A(cu) = c(Au)
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A little bit of history

Linear equations in their modern form are known since the middle of the XVIIIth
century and they were strongly developed during the XIXth century with important
contributions of people like Gabriel Cramer (1750), Carl Friedrich Gauss (1801),
Sir William Rowan Hamilton (1843) and Wilhelm Jordan (1873). They were
mostly developed to explain the mechanics of celestial objects.

To know more about the history of linear equations visit
http://hom.wikidot.com/cramer-s-method-and-cramer-s-paradox
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A little bit of history

Wassily Leontief was a Russian-American economist that worked in Harvard. In
1949 he performed an analysis with the early computers at Harvard using data
from the U.S. Bureau of Labor Statistics to classify the U.S. economy into 500
sectors, that were later simplified to 42. He used linear equation systems to do so.
It took 56 hours in Mark II (one of the first computers) to solve it. He was
awarded the Nobel prize in 1970 for his work on input-output tables that analyze
how outputs from some industries are inputs to some other industries.
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A little bit of history
Currently, we need about two weeks in a supercomputer (128 cores) to solve the
structure of a macromolecular assembly (in the figure, the HIV virus capsid). We
have 1,000 million equations with about 3 million unknowns.
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What is a linear equation system?

Definition 1.1 (Linear equation system)
A linear equation is one that can be expressed in the form

n∑
i=1

aixi = b

a1x1 + a2x2 + ... + anxn = b
〈a, x〉 = b

The unknowns are xi (i = 1, 2, ..., n) while ai ’s and b are coefficients. When we
have several of these equations, we have a linear equation system.

Example
Examples of linear equations

7x1 − 2x2 = 4
7(x1 −

√
3x2) =

1√
2x1 ⇒

(7− 1√
2 )x1 − 7

√
3x2 = 0

Examples of non-linear equations

x1 + x2 + x1x2 = 1√x1 + x2 = 1
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Set of solutions of a linear equation

Definition 1.2 (Set of solutions of a linear equation system)
The set of solutions of a linear equation system S ⊆ Rn is the set of all those
values that we can assign to x1, x2, ..., xn such that the equation system is
fulfilled.

Example
Consider the following equation system

2x1 − x2 = 7
x1 + 2x2 = 11

x = (5, 3) is a solution to this equation system because

2 · 5− 3 = 7
5+ 2 · 3 = 11

In fact it is its unique solution and, therefore, S = {(5, 3)} ⊂ R2.
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Geometric interpretation

Example
l1: 2x1 − x2 = 7⇒ x2 = 2x1 − 7⇒ v1 = (1, 2)
l2: x1 + 2x2 = 11⇒ x2 = 11− 1

2x1 ⇒ v2 = (1,− 1
2 )

Each one of the equations is actually representing a line, and both lines, in this
case intersect at the point (5, 3), the unique solution of this equation system.
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2
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v
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Geometric interpretation

Example
There can be a single solution (left), no solution (middle), or infinite (l1 = l2;
right)

In general
With linear equations we can represent:
a line in 2D: a1x1 + a2x2 = b
a plane in 3D: a1x1 + a2x2 + a3x3 = b
a hyperplane in nD: a1x1 + a2x2 + ... + anxn = b
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Matrix notation

Example
The equation system

x1 −2x2 +x3 = 0
2x2 −8x3 = 8

−4x1 +5x2 +9x3 = −9

can be represented as  1 −2 1 0
0 2 −8 8
−4 5 9 −9

 [Ã]

or  1 −2 1
0 2 −8
−4 5 9

 x1
x2
x3

 =

 0
8
−9

 [Ax = b]
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Matrix notation

In general
A ∈Mm×n is called the system matrix of an equation system with m equations
and n unknowns.
Ã ∈Mm×(n+1) is called the augmented system matrix of an equation system
with m equations and n unknowns.

Basic row iterations
To solve the equation system with the augmented system matrix, we used the
so-called basic row operations:
Substitution: ri ← ki ri + kjrj : Row i is substituted by a linear combination of

rows i and j
Swapping: ri ↔ rj : Row i swapped with row j
Scaling: ri ← ki ri : Row i is multiplied by a scale factor

All these operations transform the equation system into an equivalent system
(with the same set of solutions). The two matrices (original and transformed) are
said to be row equivalent.
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Solving the equation system

Example
In the following example we will see how linear combinations are actually changing
the equation system to a different one, while scaling is not.

2x1 −x2 = 7
x1 +2x2 = 11

(
2 −1 7
1 2 11

)
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Solving the equation system

Example

(
1 − 1

2
7
2

1 2 11

)
0 2 4 6 8 10 12
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r2 ← r2 − r1
(

1 − 1
2

7
2

0 5
2

15
2

)
0 2 4 6 8 10 12

−8

−6

−4

−2

0

2

4

6

x
1

x 2

l
1

l
2

2. Linear equation systems September 24, 2013 15 / 103



Solving the equation system

Example

(
1 − 1

2
7
2
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2

)
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r2 ← 2
5 r2
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Solving the equation system

Example

(
1 − 1

2
7
2

0 1 3

)
0 2 4 6 8 10 12
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r1 ← r1 + 1
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Existence and uniqueness of solutions

Example
x1 −2x2 +x3 = 0

2x2 −8x3 = 8
−4x1 +5x2 +9x3 = −9

∼ ... ∼

 1 −2 1 0
0 1 −4 4
0 0 1 3


I can solve for x3 (x3 = 3), then use this value in the second equation to solve for
x2, and finally use these two values in the first equation to solve for x1. Thus, the
equation system has a solution and it is unique. We say the equation system is
compatible. The set of solutions is S = {(29, 16, 3)}.

Matlab:
A=[1 -2 1; 0 2 -8; -4 5 9];

b=[0; 8; -9];
x=A\b
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Existence and uniqueness of solutions

Example
x2 −4x3 = 8

2x1 −3x2 +2x3 = 1
5x1 −8x2 +7x3 = 1

∼ ... ∼

 2 −3 2 1
0 1 −4 8
0 0 0 5

2


Last equation implies 0 = 5

2 which is impossible. Consequently, there is no
solution and we say that the equation system is incompatible. The set of
solutions is S = ∅.

Example
x1 +x2 = 1
2x1 +2x2 = 2 ∼ ... ∼

(
1 1 1
0 0 0

)
There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S = {(x1, 1− x1)}.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 1:

1.1.11
1.1.4
1.1.15
1.1.18
1.1.25
1.1.26
1.1.33
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More applications (e)
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Echelon matrices

Example
The following matrices are echelon matrices:

A1 =

 ♦ ♥ ♥ ♥
0 ♦ ♥ ♥
0 0 0 0


A2 =

(
0 ♦ ♥ ♥
0 0 0 ♦

)
In the previous matrices we have marked with ♦ the leading elements (the first
ones different from 0 in their row), and with ♥ the rest of the elements different
from 0.
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Echelon matrices

Definition 2.1 (Echelon matrix)
A rectangular matrix has an echelon form iif:

1 Within each row, the first element different from zero (called the leading
entry) is in a column to the right of the leading entry of the previous row.

2 Within each column, all values below a leading entry are zero.
3 All rows without a leading entry (i.e., they only have zeros) are below all the

rows in which at least one element is not zero.

Definition 2.2 (Reduced echelon matrix)
A rectangular matrix has a reduced echelon form iif:

1 It is echelon.
2 The leading entry of each row is 1.
3 The leading entry is the only 1 in its column.
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Echelon matrices

Theorem 2.1
Each matrix is row equivalent to one and only one reduced echelon matrix.

Example  1 2 3
4 5 6
−1 −1 0


r2 ← r2 − 4r1
r3 ← r3 + r1

 1 2 3
0 −3 −6
0 1 3


r2 ↔ r3

 1 2 3
0 1 3
0 −3 −6


r3 ↔ r3 + 3r2

 1 2 3
0 1 3
0 0 3



r1 ← r1 − 2r2
r3 ← 1

3 r3

 1 0 −3
0 1 3
0 0 1


r1 ← r1 + 3r3
r2 ← r2 − 3r3

 1 0 0
0 1 0
0 0 1
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Echelon matrices

Example (continued)
Matlab:
A=[1 2 3; 4 5 6; -1 -1 0]

A(2,:)=A(2,:)-4*A(1,:)
A(3,:)=A(3,:)+A(1,:)
aux=A(2,:); A(2,:)=A(3,:); A(3,:)=aux
A(3,:)=A(3,:)+3*A(2,:)
A(1,:)=A(1,:)-2*A(2,:)
A(3,:)=1/3*A(3,:)
A(1,:)=A(1,:)+3*A(3,:)
A(2,:)=A(2,:)-3*A(3,:)

2. Linear equation systems September 24, 2013 25 / 103



Echelon matrices

Example
Now, we’ll repeat the same example using different row operations: 1 2 3

4 5 6
−1 −1 0


r1 ← r3

 −1 −1 0
4 5 6
1 2 3


r1 ← −r1

 1 1 0
4 5 6
1 2 3


r2 ← r2 − 4r1
r3 ← r3 − r1

 1 1 0
0 1 6
0 1 3



r1 ← r1 − r2
r3 ← r3 − r2

 1 0 −6
0 1 6
0 0 −3


r3 ← − 1

3 r3

 1 0 −6
0 1 6
0 0 1


r1 ← r1 + 6r3
r2 ← r2 − 6r3

 1 0 0
0 1 0
0 0 1
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Gauss-Jordan algorithm

Definition 2.3 (Pivot and pivot column)
A pivot element is the element of a matrix that is used to perform certain
calculations. For the Gauss-Jordan algorithm it corresponds to the first element
different from zero in a given row. A pivot column is a column that contains a
pivot.

Step 1
Choose the left-most pivot column. The pivot element (marked in red) is any
value within this column different from 0. Note: Normally, we should take the one
with maximum absolute value to avoid numerical errors.

Example  0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
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Gauss-Jordan algorithm

Step 2
Sort rows if necessary so that the pivot is as high as possible.

Example

r3 ↔ r1

 3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5


Step 3
Use row operations to force the elements below the pivot to be 0.

Example

r2 ← r2 − r1

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5
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Gauss-Jordan algorithm

Step 4
Repeat Steps 1 to 3 with the rows below the pivot.

Example  3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 2 −4 4 2 −6


r3 ← r3 − 2

3 r2

 3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 − 2

3 − 8
3

 3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 − 2

3 − 8
3
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Gauss-Jordan algorithm

Step 5
Starting from the lowest and right-most pivot, force the elements above that pivot
to be zero. If the pivot is not 1, then rescale the row. Repeat with the next pivot
on the left.

Example
r3 ← −

3
2 r3

(
3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 1 4

)
r2 ← r2 − 4r3
r1 ← r1 − 6r3

(
3 −9 12 −9 0 −9
0 3 −6 6 0 −21
0 0 0 0 1 4

)
r2 ←

1
3 r2

(
3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4

)
r1 ← r1 + 9r2

(
3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

)
r1 ←

1
3 r1

(
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

)
Computing the inverse of a n × n matrix costs in the order of n3 operations
(O(n3)). However, calculating the reduced echelon form is only in the order of n2

(O(n2)). This difference is more and more important as n grows.
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Existence and uniqueness of solutions (revisited)
We can now review the issue of existence and uniqueness under the light of the
reduced echelon matrix.
Example  1 0 0 1

0 1 0 4
0 0 1 0


The system is compatible and the set of solutions is formed by a single point
S = {(1, 4, 0)}.

Example  1 0 0 1
0 1 1 4
0 0 0 0


There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S =

{
(1, 4− x3, x3) ∀x3 ∈ R3}. Because the set of solutions

depends on a single variable, the set of solutions is a line.
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Existence and uniqueness of solutions (revisited)

Example  1 0 0 0 1
0 1 1 1 4
0 0 0 0 0


There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S =

{
(1, 4− x3 − x4, x3, x4) ∀x3, x4 ∈ R3}. Now, the set of

solutions depends on 2 variables and, consequently, it is a plane.

Example  1 0 0 1
0 1 1 4
0 0 0 1


The system is incompatible since the last equation is 0 = 1. The set of solutions
is the empty set, S = ∅.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 2:

1.2.2
1.2.8
1.2.19
1.2.33
1.2.34
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Interpretation as a subspace

Subspace spanned by columns
Consider the equation system given by the matricial equation Ax = b, where
A ∈Mn×p. Let us call the p columns of A as ci ∈ Rn. The previous equation can
be rewritten as

(c1 c2 ... cp)


x1
x2
...
xp

 = b⇒
p∑

i=1
xici = b

That is, Ax is the subspace spanned by the columns of matrix A.

Span {c1, c2, ..., cp} = {v ∈ Rn|v = Ax ∀x ∈ Rp}

The equation system Ax = b the poses the question: Find the weight
coefficients xi such that vector b belongs to Span {c1, c2, ..., cp}.
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Interpretation as a subspace

Example
The equation system

x1 +2x2 −x3 = 4
−5x2 +3x3 = 1

can be represented as (
1 2 −1
0 −5 3

) x1
x2
x3

 =

(
4
1

)
That is, which are the weight coefficients x1, x2 and x3 such that the vector (4, 1)
belongs to the subspace generated by the vectors (1, 0), (2,−5), and (−1, 3).
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Interpretation as a subspace

Theorem 3.1
The matrix equation Ax = b has the same solution as the vector equation
p∑

i=1
xici = b and as the equation system whose augmented matrix is Ã = (A|b).

Theorem 3.2
For any A ∈Mn×p and vector b ∈ Rn, the following four statements are
equivalent, that is, P1 ⇔ P2 ⇔ P3 ⇔ P4

P1: The equation Ax = b has a solution.
P2: b is a linear combination of the columns of A.
P3: The columns of A span all Rn, i.e., Span {ci} = Rn.
P4: A has a pivot in each row.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 4:

1.4.13
1.4.18
1.4.26
1.4.27
1.4.32
1.4.39
1.4.41 (bring computer)
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the homogeneous system Ax = 0. It obviously has the trivial
solution x = 0. Non-trivial solutions can be found through the echelon matrix

Example
3x1 +5x2 −4x3 = 0
−3x1 −2x2 +4x3 = 0
6x1 +x2 −8x3 = 0

⇒ ... ∼

 1 0 4
3 0

0 1 0 0
0 0 0 0


This is a compatible indeterminate system whose set of solutions is
S =

{
(− 4

3x3, 0, x3) ∀x3 ∈ R
}
, or what is the same

S = Span
{
(− 4

3 , 0, 1)
}
.

That is, any of the infinite points in the straight line whose director vector is
(− 4

3 , 0, 1) is a solution of the equation system.
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the non-homogeneous system Ax = b.

Example
3x1 +5x2 −4x3 = 7
−3x1 −2x2 +4x3 = −1
6x1 +x2 −8x3 = −4

⇒ ... ∼

 1 0 4
3 0

0 1 0 2
0 0 0 0


This is a compatible indeterminate system whose set of solutions is
S =

{
(− 4

3x3, 2, x3) ∀x3 ∈ R
}
, or what is the same

S =
{
(0, 2, 0) + (− 4

3x3, 0, x3) ∀x3 ∈ R
}
= (0, 2, 0) + Span

{
(− 4

3 , 0, 1)
}
.

That is, any of the infinite points in the straight line whose director vector is
(− 4

3 , 0, 1) and passes through the point (0, 2, 0) is a solution of the equation
system.
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Existence and uniqueness of solutions (revisited once
again)

Consider the following homogeneous equation system

Example
10x1 −3x2 −2x3 = 0 ⇒ ... ∼

(
10 −3 −2 0

)
This is a compatible indeterminate system whose set of solutions is
S =

{
( 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
, or what is the same

S = Span
{
( 3

10 , 1, 0), ( 1
5 , 0, 1)

}
.

That is, any of the infinite points in the plane containing the vectors ( 3
10 , 1, 0) and

( 1
5 , 0, 1) is a solution of the equation system.
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Existence and uniqueness of solutions (revisited once
again)

Consider now the following non-homogeneous equation system

Example
10x1 −3x2 −2x3 = 10 ⇒ ... ∼

(
10 −3 −2 10

)
This is a compatible indeterminate system whose set of solutions is
S =

{
(1+ 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
, or what is the same

S =
{
(1, 0, 0) + ( 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
=

(1, 0, 0) + Span
{
( 3

10 , 1, 0), ( 1
5 , 0, 1)

}
.
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Existence and uniqueness of solutions (revisited once
again)

Corollary 4.1
Consider the compatible, non-homogeneous equation system given by Ax = b and
its homogeneous counterpart Ax = 0. Let Sh be the set of solutions of the
homogeneous equation system. Then, the set of solutions of the
non-homogeneous equation system is of the form

Snh = x0 + Sh

For some x0 ∈ Rn.

Definition 4.1 (Null space of A)
Sh is called the null space of the matrix A. It has the property that given an
equation system Ax = b, if x0 is a solution of the equation system, then x0 + xh is
also a solution, for any xh ∈ Sh.
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Existence and uniqueness of solutions (revisited once
again)
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Existence and uniqueness of solutions (revisited once
again)

In this example, the authors describe how to solve a problem appearing in the
tomographic use of a certain microscope due to the absence of some
measurements (resulting in an important null space of the tomographic problem).
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Existence and uniqueness of solutions (revisited once
again)

In this example, the authors describe how the exact location of a tooth fracture is
uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A.; Mol, A.; Tyndall, D. A., Rivera, E. M. In vitro assessment of local computed tomography for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 5:

1.5.11
1.5.13
1.5.19
1.5.21
1.5.25
1.5.26
1.5.36
1.5.39
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Introduction (a)
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Applications (c)
Linear independence (c)
Linear transformations (d)
Geometrical transformations (e)
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More applications (e)
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Applications

In fluorescence microscopy, we can quantitatively measure the amount of
fluorescence coming from each source with a linear equation system.

C. Calabia-Linares, M. Pérez-Martínez, N. Martín-Cofreces, M. Alfonso-Pérez, C. Gutiérrez-Vázquez, M. Mittelbrunn, S. Ibiza, F.R. Urbano-Olmos, C.

Aguado-Ballano, C.O.S. Sorzano, F. Sánchez-Madrid, E. Veiga. Clathrin drives actin accumulation at the immunological synapse. J. Cell Science, 124:

820-830 (2011)
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Applications

In computed tomography, a simple model (but widely used) for data collection
states that the data observed is the sum of the values of the density found along
the X-ray path.
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Applications
In the blood system, at each node, the sum of output flows must be equal to the
sum of input flows.
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Applications

In a very simplified model, respiration is the burning of glucose that can be
written as

x1C6H12O6 + x2O2 → x3CO2 + x4H2O

C: 6x1 = x3

H: 6x1 = 2x4

O: 6x1 + 2x2 = 2x3 + x4
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 6:

1.6.5
1.6.7
1.6.12
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Linear independence

Definition 6.1 (Linear independence)
A set of vectors v1, v2, ..., vp is linearly independent if

x1v1 + x2v2 + ... + xpvp = 0⇒ x1 = x2 = ... = xp = 0

That is the only solution of the previous equation is the trivial solution x = 0.
The set is linearly dependent if at least two xi ’s are different from 0.
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Linear independence

Example
Determine if the vectors v1 = (1, 2, 3), v2 = (4, 5, 6), and v3 = (2, 1, 0) are
linearly independent.
Solution
The augmented matrix associated to the equation system in Definition 6.1 is 1 4 2 0

2 5 1 0
3 6 0 0

 ∼ ... ∼

 1 4 2 0
0 −3 −3 0
0 0 0 0


Since the system is compatible indeterminate, there exists a solution apart from
the trivial solution and, therefore, the vectors are linearly dependent.
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Linear independence

Example
If possible, find a linear relationship among the three vectors. Solution
We continue transforming the augmented matrix to its reduced echelon form 1 4 2 0

0 −3 −3 0
0 0 0 0

 ∼ ... ∼

 1 0 −2 0
0 1 1 0
0 0 0 0


From which x1 = 2x3 and x2 = −x3. Simply by choosing x3 = 1, we obtain have
that a possible solution to the equation system in Definition 6.1 is x1 = 2,
x2 = −1 and x3 = 1, consequently we have that

2v1 − v2 + v3 = 0
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Linear independence

Example
v1 = (3, 1) and v2 = (6, 2) are linearly dependent because

v2 = 2v1 ⇒ −2v1 + v2 = 0⇒ v1 = 1
2v2

−1 0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x 2

v
1

v
2

If two vectors are linearly dependent of each other, then any one of them is a
multiple of the other.
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Linear independence

Example
v1 = (3, 2) and v2 = (6, 2) are linearly independent

−1 0 1 2 3 4 5 6 7
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Linear independence

Example
v1 = (1, 1, 0), v2 = (−1, 1, 0) and v3 = (0, 2, 0) are linearly dependent because

v3 = v1 + v2
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Linear independence

Example
v1 = (1, 1, 0), v2 = (−1, 1, 0) and v3 = (0, 2, 1) are linearly independent
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Linear independence

Theorem 6.1 (Linear independence of matrix columns)
The columns of the matrix A are linearly independent iff the only solution of
Ax = 0 is the trivial one.
Proof
Let A = [a1 a2 ... ap] so that the columns of the matrix A are the vectors ai .
According to Definition 6.1 these vectors are linearly independent iff

x1a1 + x2a2 + ... + xpap = 0⇒ x1 = x2 = ... = xp = 0

or what is the same

Ax = 0⇒ x1 = x2 = ... = xp = 0

as stated by the theorem (q.e.d.)
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Linear independence

Theorem 6.2
Any set {v1, v2, ..., vp} with vi ∈ Rn is linearly dependent if p > n.
Proof
Let A = [v1 v2 ... vp] and let us consider the equation system Ax = 0. If p > n
there are more unknowns than equations, and consequently, there are free
variables and the system is compatible indeterminate. Thus, there are more
solutions apart from the trivial one and the set of vectors is linearly dependent.

Theorem 6.3
If any set {v1, v2, ..., vp} with vi ∈ Rn contains the vector 0, then the set of
vectors is linearly dependent.
Proof
We can assume, without loss of generality, that v1 = 0. Then, we can set x1 = 1,
x2 = x3 = ... = xp = 0 so that the following equation is met:

1v1 + 0v2 + ... + 0vp = 0 (q.e.d.)
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Linear independence

Theorem 6.4
A set of vectors is linearly dependent iff at least 1 of the vectors is linearly
dependent on the rest
Proof

Proof ⇐
Let us assume that vj is a linear combination of the rest of the vectors,
that is,

vj =
∑
k 6=j

xkvk

Then, we can write vj −
∑
k 6=j

xkvk = 0⇒

−x1v1 − x2v2 − ...− xj−1vj−1 + vj − xj+1vj+1 − xpvp = 0

And consequently there exists a non-trivial solution of the equation of
Definition 6.1.
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Linear independence

Proof ⇒
If v1 = 0, then we have already a vector that is a trivial combination of
the rest (v1 = 0v2 + 0v3 + ... + 0vp).
If v1 6= 0, then there exist some coefficients such that

x1v1 + x2v2 + ... + xpvp = 0

Let j be the largest index for which xj 6= 0 (that is, xj+1 = xj+2 = ... =
xp = 0).
If j = 1, then x1v1 = 0, but this is not possible because v1 6= 0. Then,
j > 1 and consequently

x1v1 + x2v2 + ... + xjvj + 0vj+1 + ... + 0vp = 0⇒
xjvj = −x1v1 − x2v2 − ...− xj−1vj−1 ⇒

vj = − x1
xj
v1 − x2

xj
v2 − ...− xj−1

xj
vj−1 (q.e.d.)
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 7:

1.7.9
1.7.39
1.7.40
1.7.41 (bring computer)
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Linear transformations

Definition 7.1 (Transformation)
A transformation (or function or mapping), T , from Rn to Rm is a rule that
assigns to each vector of Rn a vector of Rm.

T : Rn → Rm

x → T (x)

Rn is called the domain of the transformation, and Rm its codomain. T (x) is the
image of vector x under the action of T . The set of all images is the range of T.
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Linear transformations

Definition 7.2 (Matrix transformation)
T is a matrix transformation iff T (x) = Ax for some matrix A ∈Mm×n.

Example

Let us consider A =

(
4 −3 1 3
2 0 5 1

)
and the matrix transformation y = Ax. For

instance, the image of x = (1, 1, 1, 1) is

y =

(
4 −3 1 3
2 0 5 1

)
1
1
1
1

 =

(
5
8

)

The equation system Ax =

(
5
8

)
looks for all those x, if any, such that

T (x) =
(
5
8

)
. The domain of this transformation is R4 and its codomain R2.
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Linear transformations

Example

Let us consider A =

1 0
0 1
0 0

 and the matrix transformation y = Ax. The domain

of this transformation is R2 and its codomain R3. However, not all points in R3

need to be an image of some point x ∈ R2, only a subset of them may be. In this
case,

R3 ⊃ Range(T ) = 〈(1, 0, 0), (0, 1, 0)〉

In general, the range of the transformation T is the subspace spanned by the
columns of the matrix A.
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Linear transformations

Example

Let us consider A =

 1 −3
3 5
−1 7

 and the matrix transformation y = Ax.

1 What is the image of u = (2,−1) under T?
T (u) = Au = (5, 1, 9)

2 Let b = (3, 2,−5). Which is x such that T (x) = b? 1 −3 3
3 5 2
−1 7 −5

 ∼
 1 0 3

2
0 1 − 1

2
0 0 0


From which we deduce x = ( 3

2 ,− 1
2 ).

3 Is there any other x such that T (x) = b?
No, the previous solution is unique because the equation system is definite
compatible.
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Linear transformations

Example
4 Does c = (3, 2, 5) belong to Range(T )? 1 −3 3

3 5 2
−1 7 5

 ∼
 1 0 3

2
0 1 − 1

2
0 0 −35


Since the system is incompatible, we deduce that there is no vector x whose
image is c and, consequently, c 6∈ Range(T ).

5 Which is the function y = T (x)?y1
y2
y3

 =

 1 −3
3 5
−1 7

(x1
x2

)
=

 x1 − 3x2
3x1 + 5x2
−x1 + 7x2


6 Which is Range(T )?

Range(T ) = 〈(1, 3,−1), (−3, 5, 7)〉 =y ∈ R3|y = x1

 1
3
−1

+ x2

−35
7

 ∀x1, x2 ∈ R


Because (1, 3,−1) and (−3, 5, 7) are linearly independent, Range(T ) is a
plane.
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Linear transformations

Example

Consider the transformation T (x) =

1 0 0
0 1 0
0 0 0

x1
x2
x3

 =

x1
x2
0

. This is a

projection transformation that projects any 3D point onto the XY plane.
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Linear transformations

Definition 7.3 (Linear transformation)
T is a linear transformation iff ∀x1, x2 ∈ Dom(T ), ∀c ∈ R

1 T (x1 + x2) = T (x1) + T (x2)

2 T (cx1) = cT (x1)

Theorem 7.1
If T (x) is a linear transformation, then

1 T (0) = 0
2 T (c1x1 + c2x2) = c1T (x1) + c2T (x2) ∀x1, x2 ∈ Dom(T ), ∀c1, c2 ∈ R

Proof
1 T (0) = T (0x1) =[(2), Def. 7.3]= 0T (x1) = 0 (q.e.d.)
2 T (c1x1 + c2x2) =[(1), Def. 7.3]= T (c1x1) + T (c2x2) =[(2), Def. 7.3]

c1T (x1) + c2T (x2) (q.e.d.)
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Linear transformations

Theorem 7.2
If ∀x1, x2 ∈ Dom(T ), ∀c1, c2 ∈ R it is verified that
T (c1x1 + c2x2) = c1T (x1) + c2T (x2), then T (x) is a linear transformation.
Proof

1 Let us consider the case c1 = c2 = 1, then according to the assumption of the
theorem we have T (x1 + x2) = T (x1) +T (x2), which implies (1) in Def. 7.3.

2 Let us consider the case c2 = 0, then according to the assumption of the
theorem we have T (c1x1) = c1T (x1), which implies (2) in Def. 7.3.

(q.e.d.)
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Linear transformations

Corollary: Principle of superposition

If ∀xi ∈ Dom(T ), ∀ci ∈ R it is verified that T
(∑

i
cixi

)
=
∑

i
ciT (xi).

Proof
Apply the previous theorem multiple times. (q.e.d.)
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Linear transformations

Example

Show that T (x) =
(
1 0
0 −1

)(
x1
x2

)
is a linear transformation.

Proof
1 Show that T (x1 + x2) = T (x1) + T (x2)

On one side we have T (x1 + x2) =

(
1 0
0 −1

)(
x11 + x21
x12 + x22

)
=

(
x11 + x21
−x12 − x22

)
On the other side we have T (x1) + T (x2) =(
1 0
0 −1

)(
x11
x12

)
+

(
1 0
0 −1

)(
x21
x22

)
=

(
x11
−x12

)
+

(
x21
−x22

)
=

(
x11 + x21
−x12 − x22

)
Obviously, these two calculations give the same result.

2 Show that T (c1x1) = c1T (x1)

T (c1x1) =

(
1 0
0 −1

)(
c1x11
c1x12

)
=

(
c1x11
−c1x12

)
= c1

(
x11
−x12

)
= c1

(
1 0
0 −1

)(
x11
x12

)
= c1T (x1)
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Linear transformations

Theorem 7.3
Any matrix transformation is a linear transformation.
Proof

1 Show that T (x1 + x2) = T (x1) + T (x2)
T (x1 + x2) = A(x1 + x2) = Ax1 + Ax2 = T (x1) + T (x2) (q.e.d.)

2 Show that T (c1x1) = c1T (x1)
T (c1x1) = A(c1x1) = c1(Ax1) = c1T (x1) (q.e.d.)
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Reinterpreting the columns of a matrix

Example

Consider T (x) = Ax with A =

(
4 −3 1 3
2 0 5 1

)
. Consider the standard canonical

basis of R4 formed by the vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0),
e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1). Let us consider the transformation of each
one of these vectors
T (e1) =

(
4
2

)
T (e2) =

(
−3
0

)
T (e3) =

(
1
5

)
T (e4) =

(
3
1

)
In general, we note that the transformation of ei is the i-th column of matrix A.

Corollary
The columns of the matrix A ∈Mm×n can be understood as the transformations
of the canonical basis of Rn:

A =
(
a1 a2 ... an

)
=
(
T (e1) T (e2) ... T (en)

)
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Reinterpreting the columns of a matrix

Example (continued)
In the previous example consider transforming the vector x = (1,−2, 3, 5). This
vector is equal to

x = e1 − 2e2 + 3e3 + 5e4

Then, we have

T (x) = T (e1 − 2e2 + 3e3 + 5e4) = T (e1)− 2T (e2) + 3T (e3) + 5T (e4)

=

(
4
2

)
− 2

(
−3
0

)
+ 3

(
1
5

)
+ 5

(
3
1

)
=

(
28
22

)
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 8:

1.8.23
1.8.25
1.8.26
1.8.30
1.8.34
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Outline

2 Linear equation system
Introduction (a)
Gauss-Jordan algorithm (b)
Interpretation as a subspace (b)
Existence and uniqueness of solutions (c)
Applications (c)
Linear independence (c)
Linear transformations (d)
Geometrical transformations (e)
Classification of functions (e)
More applications (e)
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Geometrical transformations

Certain matrix transformations are used to transform the unit square into different
shapes. The following table shows some of such transformations.
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Classification of functions

Definition 9.1
Functions can be classified as surjective, injective or bijective:
Surjective: A function is surjective if every point of the codomain has at least

one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.
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Classification of functions

Example
Here we have some examples of the classification of functions applied to linear
transformations
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Classification of functions

Example

Consider T (x) = Ax with A =

1 −4 8 1
0 2 −1 3
0 0 0 5

. This is a transformation from

R4 onto R3. The columns of A a1, a2, and a4 are linearly independent and span
R3 (that is, the function is surjective). Therefore, there must be points in R3 that
come from several points in R4 (the function is not injective). Let us find some of
these points. 1 −4 8 1 y1

0 2 −1 3 y2
0 0 0 5 y3

 ∼
 1 0 6 0 y1 − 2y2 − 4

5y3
0 1 − 1

2 0 1
2y2 − 3

10y3
0 0 0 1 1

5y3

⇒
x1 = y1 − 2y2 − 4

5y3 − 6x3
x2 = 1

2y2 − 3
10y3 +

1
2x3

x4 = 1
5y3

Since x3 is a free variable, we have that for each point in the codomain, there is a
straight line that maps onto it (the equation of the line is the one given above).
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Classification of functions

Theorem 9.1
Let T (x) be a linear transformation. T (x) is an injective function iff T (x) = 0
has only the trivial solution x = 0.
Proof

Proof ⇒
If T is injective, then, by definition, every point of the codomain, in
particular 0 is the mapping of at most one point in the domain. We
already know that for any linear transformation T (0) = 0, therefore,
x = 0 must be the unique solution of the equation T (x) = 0.
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Classification of functions

Proof ⇐
For any linear transformation we know that T (0) = 0. Let us assume
that the statement is false, that is T (x) = 0 has only the trivial solution,
but T is not injective. IF T is not injective there exist a point y in the
codomain that is the image of two points in the domain

T (x1) = y
T (x2) = y

If we know subtract the two equations we have

T (x1)− T (x2) = 0
T (x1 − x2) = 0 T is linear
x1 − x2 = 0 There is only one solution of T (x) = 0
x1 = x2 contradiction (q.e.d.)
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Classification of functions

Theorem 9.2
Let T (x) = Ax be a linear transformation. Then:

1 Range(T ) = Rm iff Span(a1, a2, ..., an) = Rm.
2 T is injective iff all columns of A are linearly independent.

Proof
1 According to Theorem 3.2, the columns of A span Rm if for each b ∈ Rm, the

equation Ax = b is consistent, that is, if there exists at least one solution of
T (x) = b. If this is true, then Range(T ) = Rm.

2 According to Theorem 9.1, T is injective iff T (x) = 0 has only the trivial
solution, or what is the same iff Ax = 0 has only the trivial solution. This
happens only if the columns of A are linearly independent as stated by
Theorem 6.1.
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Classification of functions

Example

Let T (x) =

 3x1 + x2
5x1 + 7x2
x1 + 3x2

:

1 Show that it is a linear transformation
2 Does it map R2 onto R3?

Solution

1 The transformation is of the form T (x) = Ax with A =

3 1
5 7
1 3

 and,

therefore, the transformation is linear.
2 The columns of A are linearly independent (because they are not multiples of

each other), then, by the previous theorem, the transformation is injective.
However, they do not span all R3 (since they are only two vectors and for
spanning all R3 we need at least 3 vectors). Consequently, the transformation
is not surjective, and it does not map R2 onto R3.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 9:

1.9.1
1.9.3
1.9.17
1.9.33
1.9.36
1.9.37
1.9.39
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More applications

Construction of a diet
Given the following nutritional information:

What is the amount of nonfat milk, soy flour and whey needed to provide the
protein carbohydrate and fat planned for one day?
Solution 36 51 13 33

52 34 74 45
0 7 11 3

 ∼
 1 0 0 0.277

0 1 0 0.392
0 0 1 0.233


That is, we need x1 = 0.277 · 100g= 277g of non-fat milk, x2 = 392g of soy flour
and x3 = 233 g of whey.
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More applications

Dynamic systems: difference equations
In a simplistic model red blood cells (erythrocytes) are created in the bone
marrow, then some of them pass to the blood. After some time, old red blood
cells are destroyed in the spleen (bazo).
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More applications

Dynamic systems: difference equations (continued)
Let’s say that at every time interval:

5% of the erythrocytes in the marrow leave to the blood stream.
2% of the erythrocytes in the blood stream are destroyed by the spleen.
1M new red blood cells are created at the marrow.

The following equation can be used to determine the amount of erythrocytes at
any moment (

x (k+1)
marrow

x (k+1)
blood

)
=

(
0.95 0
0.05 0.98

)(
x (k)

marrow

x (k)
blood

)
+

(
106

0

)
This kind of models is called difference equations.
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A little bit of history

Matrices appeared as a regular arrangement of numbers more than 2,000 years
ago. However, it was during the XVIIth, XVIIIth and XIXth centuries that they
developed in the way we know them now. Some important names in their modern
development are Seki Takakazu (1683), Gottfried Leibniz (1693), Gabriel Cramer
(1750), James Sylvester (1850), and Arthur Cayley (1858). They were applied in
all kind of mathematical problems as a way to organize calculations.

To know more about the history of matrix algebra visit
http://www-groups.dcs.st-and.ac.uk/~history/PrintHT/Matrices_
and_determinants.html
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Applications

Finite elements has been one of the most successful approaches to
biomechanical modeling. In the figure we show one of such a model for the heart.
Using this model, all kind of local stresses can be calculated.

J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, M. Ganter. Banded Matrix Approach to Finite Element Modeling for Soft Tissue Simulation.
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Basic definitions

Definition 1.1 (Matrix)
Informally, we can define a matrix as a regular arrangement of numbers that are
laid out in a grid of m rows and n columns. More formally, we say that
A ∈Mm×n. We denote as aj as its j-th column, and aij the element in the i-th
row and the j-th column.

A =
(
a1 a2 ... an

)
=


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn


The main diagonal is the vector given by (a11, a22, ...). Two important special
matrices are the identity matrix (I ∈Mn×n) that is zero everywhere except the
main diagonal that is full of 1s; and the zero matrix (0 ∈Mm×n) that is zero
everywhere.

Example
MATLAB: A=[1 2 3; 4 5 6]
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Matrix operations

Definition 1.2 (Sum with a scalar)
We define the sum operator between a scalar and a matrix as:

+ : R×Mm×n → Mm×n
+(k,A) → B = k + A |bij = k + aij

We overload the notation to define the sum operator between a matrix and a
scalar as

+ : Mm×n × R → Mm×n
+(A, k) → B = A + k |bij = aij + k

Example

A =

(
1 2 3
−1 −2 −3

)
B = 1 + A =

(
2 3 4
0 −1 −2

)
MATLAB: B=1+A

Properties
k + A = A + k

(k1 + k2) + A = k1 + (k2 + A)

3. Matrix algebra December 3, 2013 8 / 114



Matrix operations

Definition 1.3 (Multiplication with a scalar)
We define the multiplication operator between a scalar and a matrix as:

· : R×Mm×n → Mm×n
·(k,A) → B = k + A |bij = kaij

We overload the notation to define the multiplication operator between a
matrix and a scalar as

· : Mm×n × R → Mm×n
·(A, k) → B = Ak |bij = aijk

Example

A =

(
1 2 3
−1 −2 −3

)
B = 2A =

(
2 4 6
−2 −4 −6

)
MATLAB: B=2*A

Properties
kA = Ak

(k1k2)A = k1(k2A)
(k1 + k2)A = k1A + k2A
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Matrix operations

Definition 1.4 (Sum of two matrices)
We define the sum operator between two matrices as:

+ : Mm×n ×Mm×n → Mm×n
+(A,B) → C = A + B |cij = aij + bij

Example

A =

(
1 2 3
−1 −2 −3

)
B =

(
4 5 6
0 1 1

)
C = A + B =

(
5 7 9
−1 −1 −2

)
MATLAB: C=A+B

Properties
A + B = B + A

A + (B + C) = (A + B) + C
A + 0 = A

k(A + B) = kA + kB
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Matrix operations

Proof of the properties
We are not proving all properties, although all of them follow the same strategy.
Let’s see an example

k(A + B) = kA + kB

Proof
Let us develop the left hand side

C = A + B cij = aij + bij
D = kC = k(A + B) dij = kcij = k(aij + bij) = kaij + kbij

Now, the right hand side

E = kA eij = kaij
F = kB fij = kbij

G = E + F = kA + kB gij = eij + fij = kaij + kbij

It is obvious that dij = gij , and consequently k(A + B) = kA + kB. (q.e.d.)
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Matrix operations

Definition 1.5 (Multiplication of two matrices)
We define the multiplication operator between two matrices as:

· : Mm×n ×Mn×p → Mm×p

·(A,B) → C = AB |cij =
n∑

k=1
aikbkj

If we consider the different columns of B, then we have

B =
(
b1 b2 ... bp

)
⇒ AB =

(
Ab1 Ab2 ... Abp

)
That can be interpreted as “the j-th column of AB is a weighted sum of the
columns of matrix A using the weights defined by the j-th column of B”.

Example
MATLAB: A*B
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Matrix operations

Example

Let A =

(
2 3
1 −5

)
and B =

(
4 3 6
1 −2 3

)
. Then,

Ab1 =

(
2 3
1 −5

)(
4
1

)
=

(
11
−1

)
Ab2 =

(
2 3
1 −5

)(
3
−2

)
=

(
0
13

)
Ab3 =

(
2 3
1 −5

)(
6
3

)
=

(
21
−9

)
AB =

(
Ab1 Ab2 Ab3

)
=

(
11 0 21
−1 13 −9

)
To directly compute a specific entry, for instance, (AB)23 we have to multiply the
2nd row of A and the third column of B

(AB)23 =

[(
2 3
1 −5

)(
4 3 6
1 −2 3

)]
= 1 · 6 + (−5) · 3 = −9
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Matrix operations

Geometrical interpretation
Consider the linear transformations

TA(x) = Ax
TB(x) = Bx

that map any input vector using the matrix A or B, respectively. Now consider the
sequential application of first TB , and then TA, as shown in the following figure:

Matrix multiplication helps us to define a single transformation such that we can
transform the original vectors in a single step:

TAB(x) = (AB)x = A(Bx) = TA(TB(x))
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Matrix operations

Property
rowi (AB) = rowi (A)B

Example (continued)

row1(AB) = row1(A)B =
(
2 3

)(4 3 6
1 −2 3

)
=
(
11 0 21

)
More properties

A(BC) = (AB)C Associativity
A(B + C) = AB + AC Left distributivity
(A + B)C = AC + BC Right distributivity
r(AB) = (rA)B = A(rB) For any scalar r

ImA = A = AIn For A ∈Mm×n
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Matrix operations

Proof A(BC) = (AB)C
Let us consider the column decomposition of matrix C .

C =
(
c1 c2 ... cp

)
⇒

BC =
(
Bc1 Bc2 ... Bcp

)
⇒

A(BC) =
(
A(Bc1) A(Bc2) ... A(Bcp)

)
But we have seen in the geometrical interpretation of matrix multiplication that
A(Bci ) = (AB)ci , therefore

A(BC) =
(
(AB)c1 (AB)c2 ... (AB)cp

)
= (AB)C

Warnings
AB 6= BA, matrix multiplication is not commutative.
AB = AC ; B = C .
AB = 0 ; B = 0 or C = 0.
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Matrix operations

Definition 1.6 (Power of a matrix)
If A ∈Mn×n, then the k-th power of the matrix is defined as

Ak = A · A · ... · A︸ ︷︷ ︸
k times

Note: A0 = In

Example
MATLAB: Aˆk
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Matrix operations

Definition 1.7 (Transpose)
If A ∈Mm×n, then the transpose of A (AT ) is a matrix inMn×m such that the
rows of A are the columns of AT , or more formally

(AT )ij = Aji

Example

A =

(
1 2 3
4 5 6

)
⇒ AT =

1 4
2 5
3 6


MATLAB: A’

Properties
(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT

3. Matrix algebra December 3, 2013 18 / 114



Matrix operations

Proof (AB)T = BTAT

Let A ∈Mm×n and B ∈Mn×p By the definition of matrix multiplication we
know that

(AB)ij =
n∑

k=1
aikbkj

Let B′ = BT and A′ = AT . For the same reason

(BTAT )ij = (B′A′)ij =
n∑

k=1
b′ika′kj

But b′ik = bki and a′kj = ajk , consequently

(BTAT )ij =
n∑

k=1
bkiajk =

n∑
k=1

ajkbki = (AB)ji

or what is the same

BTAT = (AB)T

3. Matrix algebra December 3, 2013 19 / 114



Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 1:

2.1.3
2.1.10
2.1.12
2.1.18
2.1.19
2.1.20
2.1.22

2.1.23
2.1.24
2.1.25
2.1.26
2.1.27
2.1.39 (bring computer)
2.1.40 (bring computer)
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Invertible linear transformations (c)
Partitioned matrices (c)
LU factorization (d)
An application to computer graphics and image processing (d)
Subspaces of Rn (e)
Dimension and rank (e)
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Matrix inverse

Example
The inverse of a number is a clear concept

5 1
5 = 5 · 5−1 = 1 = 5−1 · 5

Definition 2.1 (Inverse of a matrix)
A matrix A ∈Mn×n is invertible (or non-singular) if there exists another matrix
C ∈Mn×n such that AC = In = CA. C is called the inverse of A and it is denoted
as A−1. If A is not invertible, it is said to be singular. (MATLAB: inv(A))

Properties
The inverse of a matrix is unique.
Proof
Let us assume that there exist two different inverses C1 and C2. Then,

C2 = C2I = C2(AC1) = (C2A)C1 = IC1 = C1

which is a contradiction and, therefore, the inverse must be unique. (q.e.d.)
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Matrix inverse

Example

Let A =

(
2 5
−3 −7

)
and A−1 =

(
−7 −5
3 2

)
It can easily be verified that

AA−1 = A−1A = I2 =

(
1 0
0 1

)

Theorem 2.1 (Inverse of a 2× 2 matrix)

Let A =

(
a b
c d

)
. If ad − bc 6= 0, then A is invertible and its inverse is

A−1 = 1
ad−bc

(
d −b
−c a

)
Proof
It is easy to verify that AA−1 = A−1A = I2.
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Matrix inverse

Theorem 2.2
If A ∈Mn×n is invertible, then for every b ∈ Rn, the equation Ax = b has a
unique solution that is x = A−1b.
Proof

Proof x = A−1b is a solution
If we substitute the solution in the equation we have

Ax = A(A−1b) = (AA−1)b = b (q.e.d.)

Proof x = A−1b is the unique solution
Let us assume that x′ 6= x is also a solution, then

Ax′ = b

If we multiply on the left by A−1, we have

A−1Ax′ = A−1b⇒ x′ = x

which is obviously a contradiction and, therefore, x = A−1b must be the
unique solution. (q.e.d.)
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Matrix inverse

Example

3. Matrix algebra December 3, 2013 25 / 114



Matrix inverse

Example (continued)

Consider the equation y = Df, D =

1 1
2

1
41

2 1 1
21

4
1
2 1

 and the fact that

D = DI =
(
De1 De2 De3

)
Therefore, the i-th column of D can be interpreted as the deflection at the
different points when a unit force (ei) is applied onto the i-th point. In our
example when we apply a unit force at point 1, the first column of D is (1, 1

2 ,
1
4 )

meaning that the first point displaces 1 m., the second point 1
2 m., and the third

point 1
4 m.
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Matrix inverse

Example (continued)

If we now consider that f = D−1y, D−1 =

 4
3 − 2

3 0
− 2

3
4
3 − 2

3
0 − 2

3
4
3

 and the fact that

D−1 = D−1I =
(
D−1e1 D−1e2 D−1e3

)
Therefore, the i-th column of D−1 can be interpreted as the forces needed to be
applied at the different points to produce a unit deformation (ei) at the i-th
point. In our example, to produce a displacement of 1 m. in the first point and
none at the other points (e1 = (1, 0, 0), we need to push point 1 with a force of 4

3
N., to pull point 2 with a force of − 2

3 N., and we do not need to apply any force
at point 3.
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Matrix inverse

Theorem 2.3
1 If A is invertible, then A−1 is also invertible and its inverse is A.
2 If A and B are invertible, then AB is also invertible and its inverse is B−1A−1

3 If A is invertible, then AT is also invertible and its inverse is (A−1)T .
Proof 1)
The definition of A−1 is that it is a matrix such that

AA−1 = A−1A = I

The inverse of A−1 must be a matrix C such that

CA−1 = A−1C = I

If we compare this equation with the previous one, we easily see that C = A is the
inverse of A−1.
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Matrix inverse

Proof 2)
Let us check that B−1A−1 is actually the inverse of AB

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Proof 3)
Let us check that (A−1)T is actually the inverse of AT

AT (A−1)T = [(AB)T = BTAT ] = (A−1A)T = IT = I
(A−1)TAT = [(AB)T = BTAT ] = (AA−1)T = IT = I

Theorem 2.4
We may generalize the previous theorem and state that

(A1A2...Ap)−1 = A−1
p A−1

p−1...A
−1
2 A−1

1
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Matrix inverse

Proof
Let’s prove it by weak induction. That is, we know that the statement is true for
p = 2 (by the previous theorem). Let us assume it is true for p − 1, that is

(A1A2...Ap−1)−1 = A−1
p−1...A

−1
2 A−1

1

We wonder if it is also true for p. Let us define B = A1A2...Ap−1. Then, we can
rewrite the left hand side of the theorem as

(A1A2...Ap)−1 = (BAp)−1

This is the inverse of the multiplication of two matrices. We know by the previous
theorem that (BAp)−1 = A−1

p B−1 But we presumed that

B−1 = (A1A2...Ap−1)−1 = A−1
p−1...A

−1
2 A−1

1

And consequently

(BAp)−1 = A−1
p A−1

p−1...A
−1
2 A−1

1 (q.e.d.)
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Elementary matrices

The elementary operations we can perform on the rows of a matrix are
1 Multiply by a scalar
2 Swap two rows
3 Replace a row by a linear combination of two or several rows

All these operations can be represented as matrix multiplications.

Example

Consider the matrix A =

a b c
d e f
g h i


1 We can multiply the third row by a scalar r by multiplying on the left by the

matrix

E1 =

1 0 0
0 1 0
0 0 r

⇒ E1A =

 a b c
d e f
rg rh ri
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Elementary matrices

Example (continued)
2 We can swap the first and second rows of the matrix by multiplying on the

left by the matrix

E2 =

0 1 0
1 0 0
0 0 1

⇒ E2A =

d e f
a b c
g h i


3 We can substitute the third row by r3 + k1r1 by multiplying on the left by the

matrix

E3 =

 1 0 0
0 1 0
k1 0 1

⇒ E3A =

 a b c
d e f

g + k1a h + k1b i + k1c


Definition 3.1 (Elementary matrix)
An elementary matrix is one that differs from the identity matrix by one single,
elementary row operation.
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Elementary matrices

Theorem 3.1
The inverse of an elementary matrix is another elementary matrix of the same
type. That is, row operations can be undone.

Example (continued)

1 E−1
1 =

1 0 0
0 1 0
0 0 1

r


2 E−1

2 =

0 1 0
1 0 0
0 0 1


3 E−1

3 =

 1 0 0
0 1 0
−k1 0 1

 MATLAB:
syms k1
E3=[1 0 0; 0 1 0; k1 0 1];
inv(E3)
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Elementary matrices

Theorem 3.2
A matrix A ∈Mn×n is invertible iff it is row-equivalent to In. In this case, the
sequence of operations that transforms A into In is also the one that transforms In
into A−1.

Proof ⇒
If A is invertible, then by theorem 2.2 we know that the equation system
Ax = b has a unique solution for every b. If it has a solution for every
b, then it must have a pivot in every row, that must be in the diagonal
and, consequently the reduced echelon form of A must be In.
Proof ⇐
If A is row-equivalent In, then there exists a sequence of elementary
matrices that transform A into In

A ∼ E1A ∼ E2E1A ∼ ... ∼ EnEn−1...E2E1A = In

E = EnEn−1...E2E1 is a candidate to be the inverse of A. Since each
of the elementary matrices is invertible, and the product of invertible
matrices is invertible, then E is invertible and A must be its (unique)
inverse. Conversely, E is the inverse of A and A is invertible.
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An algorithm to invert matrices

Algorithm
Algorithm: Reduce the augmented matrix

(
A I

)
If A is invertible, then

(
A I

)
∼
(
I A−1 ).

If A is not invertible, then we will not be able to reduce A into I.
This algorithm is very much used in practice because it is numerically stable and
rather efficient.

Example

Let A =

 0 1 2
1 0 3
4 −3 8

.

We construct the augmented matrix 0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1
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An algorithm to invert matrices

Example (continued)
And now we transform it  0 1 2 1 0 0

1 0 3 0 1 0
4 −3 8 0 0 1


r1 ↔ r2

 1 0 3 0 1 0
0 1 2 1 0 0
4 −3 8 0 0 1


r3 ← r3 − 4r1

 1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1


r3 ← r3 + 3r2

 1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1


r3 ← 1

2 r3

 1 0 3 0 1 0
0 1 2 1 0 0
0 0 1 3

2 −2 1
2
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An algorithm to invert matrices

Example (continued)  1 0 3 0 1 0
0 1 2 1 0 0
0 0 1 3

2 −2 1
2


r2 ← r2 − 2r3

 1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 1 3

2 −2 1
2


r1 ← r1 − 3r3

 1 0 0 − 9
2 7 − 3

2
0 1 0 −2 4 −1
0 0 1 3

2 −2 1
2


Since A is row-equivalent to I3, then A is invertible and its inverse is

A−1 =

− 9
2 7 − 3

2
−2 4 −1

3
2 −2 1

2

. To finalize the exercise we should check that

AA−1 = A−1A = I3
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An algorithm to invert matrices

A new interpretation of matrix inversion
By constructing the augmented matrix

(
A I

)
we are simultaneously solving

multiple equation systems

Ax = e1 Ax = e2 Ax = e3 ...

Example (continued) 0 1 2 1
1 0 3 0
4 −3 8 0

  0 1 2 0
1 0 3 1
4 −3 8 0

  0 1 2 0
1 0 3 0
4 −3 8 1


This note is important because if we want to compute only the i-th column of
A−1 it is enough to solve the equation system

Ax = ei
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Characterization of invertible matrices

Theorem 5.1 (The invertible matrix theorem)
Let A ∈Mn×n. The following statements are equivalent (either they are all true
or they are all false):
i. A is invertible.
ii. A is row-equivalent to In.
iii. A has n pivot positions.
iv. Ax = 0 only has the trivial solution x = 0.
v. The columns of A are linearly independent.
vi. The transformation T (x) = Ax is injective.
vii. The equation Ax = b has at least one solution for every b ∈ Rn.
viii. The columns of A span Rn.
ix. The transformation T (x) = Ax maps Rn onto Rn.
x. There exists a matrix C ∈Mn×n such that CA = In.
xi. There exists a matrix D ∈Mn×n such that AD = In.
xii. AT is an invertible matrix
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Characterization of invertible matrices

To prove the theorem we will follow the reasoning scheme below:

Proof i ⇒ x
If i is true, then x is true simply by doing C = A−1.
Proof x ⇒ iv
See Exercise 2.1.23 in Lay.
Proof iv ⇒ iii
See Exercise 2.2.23 in Lay.
Proof iii ⇒ ii
If iii is true, then the n pivots have to be in the main diagonal and in this case,
the reduced echelon form must be In.
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Characterization of invertible matrices

Proof ii ⇒ i
If ii is true, then i is true thanks to Theorem 3.2.
Proof i ⇒ xi
If i is true, then xi is true simply by doing D = A−1.
Proof xi ⇒ vii
See Exercise 2.1.24 in Lay.
Proof vii ⇒ i
See Exercise 2.2.24 in Lay.
Proof vii ⇔ viii ⇔ ix
See Theorems 3.2 and 8.2 in Chapter 2.
Proof iv ⇔ v ⇔ vi
See Theorems 3.2, 5.1 and 8.1 in Chapter 2.
Proof i ⇒ xii
See Theorem 2.3.
Proof i ⇐ xii
See Theorem 2.3 interchanging the roles of A and AT .

The power of this theorem is that it connects equation systems to invertibility,
linear independence and subspace bases.
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Characterization of invertible matrices

Corollary
1 If A is invertible, then Ax = b has a unique solution for every b ∈ Rn.
2 If A,B ∈Mn×n and AB = In, then A and B are invertible and B = A−1 and

A = B−1.
Watch out that this corollary only applies to square matrices.
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Invertible linear transformations
Consider the linear transformation

T : Rn → Rn

x → Ax

Definition 6.1 (Inverse transformation)
T is invertible iff there exists S : Rn → Rn such that ∀x ∈ Rn:

S(T (x)) = x = T (S(x))

Example

T (x) =

(
−1 0
0 1

)
x is invertible and its inverse is S(x) =

(
−1 0
0 1

)
x.

Proof

S(T (x)) = S
((
−1 0
0 1

)
x
)

=

(
−1 0
0 1

)(
−1 0
0 1

)
x = x

T (S(x)) = T
((
−1 0
0 1

)
x
)

=

(
−1 0
0 1

)(
−1 0
0 1

)
x = x
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Invertible linear transformations

Example

T (x) =

(
1 0
0 0

)
x is not invertible because T ((1, 0)) = T ((1, 1)) = (1, 0), so

given the “output” (1,0), we cannot recover the input vector that originated this
output.

Theorem 6.1
If T is invertible, then it is surjective.
Proof
Consider any vector b ∈ Rn, we can always apply the transformation S to get a
new vector x = S(b). And then, recover b making use of the fact that T is the
inverse of S, that is, b = T (x). In other words, any vector b is in the range of T
and, therefore, T is surjective.
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Invertible linear transformations

Theorem 6.2
T is invertible iff A is invertible. If T is invertible, then the only function that
satisfies the previous definition is

S(x) = A−1x

Proof ⇒
If T is invertible, then it is surjective (see previous Theorem). Then, A is
invertible by Theorem 5.1 (items i and ix).
Proof ⇐
If A is invertible, then we may construct the linear transformation S = A−1x. S is
an inverse of T since

S(T (x)) = S(Ax) = A−1(Ax) = (A−1A)x = x
T (S(x)) = T (A−1x) = A(A−1x) = (AA−1)x = x
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Invertible linear transformations

Proof uniqueness
Let us assume that there are two inverses S1(x) = B1x and S2(x) = B2x with
B1 6= B2. Let v ∈ Rn and v = T (x) for some x ∈ Rn (since T is invertible and,
therefore, surjective, we are guaranteed that there exists at least one such x). Now

S1(v) = B1Ax = x = B1v
S2(v) = B2Ax = x = B2v

}
⇒ B1v = B2v [∀v ∈ Rn] ⇒ B1 = B2

which is a contradiction and, consequently, there exists only one inverse (q.e.d.)

Definition 6.2 (Ill-conditioned matrix)
Informally, we say that a matrix A is ill-conditioned if it is “nearly singular”. In
practice, this implies that the equation system Ax = b may have large variations
in the solution (x) when b varies slightly.
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Partitioned matrices
Partitioned matrices sometimes help us to gain insight into the structure of the
problem by identifying blocks within the matrix.

Example

A =

 3 0 −1 5 9 −2
−5 2 4 0 −3 1
−8 −6 3 1 7 −4

 =

(
A11 A12 A13
A21 A22 A23

)

A ∈M3×6,
A11 ∈M2×3, A12 ∈M2×2, A13 ∈M2×1,
A21 ∈M1×3, A22 ∈M1×2, A23 ∈M1×1.
MATLAB:
A=[3 0 -1 5 9 -2; -5 2 4 0 -3 1; -8 -6 3 1 7 -4];
A11=A(1:2,1:3)
A12=A(1:2,4:5)
A13=A(1:2,6)
A21=A(3,1:3)
A22=A(3,4:5)
A23=A(3,6)
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Partitioned matrices

Definition 7.1 (Sum of partitioned matrices)
Let A and B be two matrices partitioned in the same way. Then the blocks of
A + B are simply the sum of the corresponding blocks.

A + B =

 Aij

+

 Bij

 =

 Aij + Bij


Definition 7.2 (Multiplication by scalar)
The multiplication by a scalar simply multiplies each one of the blocks
independently

rA = r

 Aij

 =

 rAij
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Partitioned matrices

Definition 7.3 (Multiplication of partitioned matrices)
Multiply the different block as if they were scalars (but applying matrix
multiplication).

Example

Let A =

 2 −3 1 0 −4
1 5 −2 3 −1
0 −4 −2 7 −1

 =

(
A11 A12
A21 A22

)

and B =


6 4
−2 1
−3 7
−1 3
5 2

 =

(
B1
B2

)
.

Then, AB =

(
A11 A12
A21 A22

)(
B1
B2

)
=

(
A11B1 + A12B2
A21B1 + A22B2

)
=

 −5 4
−6 2
2 1
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Partitioned matrices

Theorem 7.1 (Multiplication of matrices)
Let A ∈Mm×n and B ∈Mn×p, then

AB =
n∑

k=1
columnk(A)rowk(B)

Proof
Let us analyze each one of the terms in the sum

columnk(A)rowk(B) =


a1k
a2k
...
amk

(bk1 bk2 ... bkp
)

=


a1kbk1 a1kbk2 ... a1kbkp
a2kbk1 a2kbk2 ... a2kbkp
... ... ... ...

amkbk1 amkbk2 ... amkbkp
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Partitioned matrices

In general, the ij-th term is

(columnk(A)rowk(B))ij = aikbkj

If we now analyze the ij-th element of the sum( n∑
k=1

columnk(A)rowk(B)

)
ij

=
n∑

k=1
(columnk(A)rowk(B))ij =

n∑
k=1

aikbkj

But this is the definition of matrix multiplication and, therefore,( n∑
k=1

columnk(A)rowk(B)

)
ij

= (AB)ij (q.e.d.)
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Partitioned matrices

Definition 7.4 (Transpose of partitioned matrices)
Transpose the partitioned matrix as if it were composed of scalars, and transpose
each one of the blocks.

Example

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

⇒ AT =

 AT
11 AT

21 AT
31

AT
12 AT

22 AT
32

AT
13 AT

23 AT
33


Example

A =

 2 −3 1 0 −4
1 5 −2 3 −1
0 −4 −2 7 −1

⇒ AT =


2 1 0
−3 5 −4
1 −2 −2
0 3 7
−4 −1 −1
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Partitioned matrices

Definition 7.5 (Inverse of partitioned matrices)
The formula for each one of the cases is worked out particularly for that case.
Here go a couple of examples.

Example

Let A =

 A11 0 0
0 A22 0
0 0 A33

.

A ∈Mn×n, A11 ∈Mp×p, A22 ∈Mq×q, A33 ∈Mr×r such that p + q + r = n.
We look for a matrix B such that A11 0 0

0 A22 0
0 0 A33

 B11 B12 B13
B21 B22 B23
B31 B32 B33

 =

 Ip 0 0
0 Iq 0
0 0 Ir

⇒ A11B11 A11B12 A11B13
A22B21 A22B22 A22B23
A33B31 A33B32 A33B33

 =

 Ip 0 0
0 Iq 0
0 0 Ir
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Partitioned matrices

Example (continued)
For each one of the entries we have a set of equations:

∀A11 ∈Mp×p A11B11 = Ip ⇒ B11 = A−1
11

∀A11 ∈Mp×p A11B12 = 0⇒ B12 = 0
∀A11 ∈Mp×p A11B13 = 0⇒ B13 = 0
∀A22 ∈Mq×q A22B21 = 0⇒ B21 = 0
∀A22 ∈Mq×q A22B22 = Iq ⇒ B22 = A−1

22
∀A22 ∈Mq×q A22B23 = 0⇒ B23 = 0
∀A33 ∈Mr×r A33B31 = 0⇒ B31 = 0
∀A33 ∈Mr×r A33B32 = 0⇒ B32 = 0
∀A33 ∈Mr×r A33B33 = Ir ⇒ B33 = A−1

33

Finally,

B =

 A−1
11 0 0
0 A−1

22 0
0 0 A−1

33


3. Matrix algebra December 3, 2013 61 / 114



Partitioned matrices

Example

Let A =

(
A11 A12
0 A22

)
.

A ∈Mn×n, A11 ∈Mp×p, A12 ∈Mp×q, A22 ∈Mq×q such that p + q = n.
We look for a matrix B such that

=

(
A11 A12
0 A22

)(
B11 B12
B21 B22

)
=

(
Ip 0
0 Iq

)
⇒(

A11B11 + A12B21 A11B12 + A12B22
A22B21 A22B22

)
=

(
Ip 0
0 Iq

)
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Partitioned matrices

Example (continued)
For each one of the entries we have a set of equations:

∀A22 ∈Mq×q A22B21 = 0⇒ B21 = 0
∀A22 ∈Mq×q A22B22 = Iq ⇒ B22 = A−1

22
∀A11 ∈Mq×q,A12 ∈Mp×q A11B11 + A12B21 = Ip ⇒ [B21 = 0]⇒

A11B11 = Ip ⇒ B11 = A−1
11

∀A11 ∈Mq×q,A12 ∈Mp×q A11B12 + A12B22 = 0⇒ [B22 = A−1
22 ]⇒

A11B12 + A12A−1
22 = 0⇒ A11B12 = −A12A−1

22 ⇒
B12 = −A−1

11 A12A−1
22

Finally,

B =

(
A−1

11 −A−1
11 A12A−1

22
0 A−1

22

)
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Partitioned matrices

Example
Computational Tomography (CT) with multiple rows gives a non-block structure
for the system matrix that forces the problem to be solved in 3D. However, with a
single row detector, the system matrix has a block structure so that the problem
can be solved as a series of 2D problems strongly accelerating the process (on the
other side the redundancy introduced by multiple row offers better resolution and
robustness to noise).
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LU factorization

Example
Let us presume that we have a collection of equation systems

Ax = b1
Ax = b2

...

and A is not invertible, which could be an efficient way of solving all of them
together? Factorize A as A = LU (see below) and solve the equation system in
two steps. In fact the method is so efficient it is even used to solve a single
equation system.

3. Matrix algebra December 3, 2013 67 / 114



LU factorization

Definition 8.1 (LU factorization)
Let A ∈Mm×n that can be reduced to a reduced echelon form without row
permutations. We can factorize A as A = LU, where L is an invertible, lower
triangular matrix (with 1s in the main diagonal) of size m ×m and U is an upper
triangular matrix of size m × n.
MATLAB: [L,U]=lu(A)

Example
Let A ∈M4×5. LU factorization will produce two matrices L and U may be of the
following structure

A = LU =


1 0 0 0
♥ 1 0 0
♥ ♥ 1 0
♥ ♥ ♥ 1



♦ ♥ ♥ ♥ ♥
0 ♦ ♥ ♥ ♥
0 0 0 ♦ ♥
0 0 0 0 0
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LU factorization

Solving a linear equation system using the LU decomposition
Consider the equation system Ax = b, and assume we have decomposed A as
A = LU. Then, we can solve the equation system in two steps:

Ax = b⇒ (LU)x = L(Ux) = b⇒
{

Ly = b
Ux = y
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LU factorization

Example
Consider

A =

(
3 −7 −2 2
−3 5 1 0

6 −4 0 −5
−9 5 −5 12

)
=

(
1 0 0 0
−1 1 0 0

2 −5 1 0
−3 8 3 1

)(
3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1

)
and b = (−9, 5, 7, 11). We first solve Ly = b(

1 0 0 0 −9
−1 1 0 0 5

2 −5 1 0 7
−3 8 3 1 11

)
∼

(
1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 0 1 1

)
and now we solve Ux = y(

3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1

)
∼

(
1 0 0 0 3
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1

)
The trick is that, thanks to the triangular structure, solving these two equation
systems is rather fast.
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An algorithm to simple LU factorizations

Algorithm
Let us assume that A is row-equivalent to U only using row replacement only with
the rows above the replaced row. Then, there must be a sequence of elementary
matrices such that

A ∼ U ⇒ Ep...E2E1A = U ⇒ A = (Ep...E2E1)−1U

By inspection, we note that L = (Ep...E2E1)−1.

In the previous algorithm we are making using of the following theorem:

Theorem 8.1
1 The product of two lower triangular matrices is lower triangular.
2 The inverse of a lower triangular matrix is lower triangular.
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An algorithm to simple LU factorizations

Example

A =

2 1 0
1 2 1
0 1 2


r2 ← r2 − 1

2 r1 E1 =

 1 0 0
− 1

2 1 0
0 0 1

 2 1 0
0 3

2 1
0 1 2


r3 ← r3 − 2

3 r2 E2 =

1 0 0
0 1 0
0 − 2

3 1

 U =

2 1 0
0 3

2 1
0 0 4

3


Now, we calculate L as

L = (E2E1)−1 = E−1
1 E−1

2 =

1 0 0
1
2 1 0
0 0 1

1 0 0
0 1 0
0 2

3 1

 =

1 0 0
1
2 1 0
0 2

3 1
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An algorithm to simple LU factorizations

Example

A =

2 1 0
1 2 1
0 1 2


r2 ← r2 − 1

2 r1 E1 =

 1 0 0
− 1

2 1 0
0 0 1

 2 1 0
0 3

2 1
0 1 2


r3 ← r3 − 2

3 r2 E2 =

1 0 0
0 1 0
0 − 2

3 1

 U =

2 1 0
0 3

2 1
0 0 4

3


Now, we calculate L as

L = (E2E1)−1 = E−1
1 E−1

2 =

1 0 0
1
2 1 0
0 0 1

1 0 0
0 1 0
0 2

3 1

 =

1 0 0
1
2 1 0
0 2

3 1



3. Matrix algebra December 3, 2013 73 / 114



LDU factorization

Example (continued)
Note that the L and U matrices found so far are assymetric in the sense that L
has 1s in its main diagonal, but U has not. We can extract the elements in the
main diagonal of U to a separate matrix D by simply dividing the corresponding
row of U by that element:

A = LU =

1 0 0
1
2 1 0
0 2

3 1

2 1 0
0 3

2 1
0 0 4

3


= LDU =

1 0 0
1
2 1 0
0 2

3 1

2 0 0
0 3

2 0
0 0 4

3

1 1
2 0

0 1 2
3

0 0 1

 where D is always a

diagonal matrix.
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Other factorization examples

Other factorizations
There are many other possibilities to factorize a matrix A ∈Mm×n. See
http://en.wikipedia.org/wiki/Matrix_decomposition. Among the most
important are:

QR: A = QR where Q ∈Mm×m is orthogonal (QtQ = D) and
R ∈Mm×n is upper triangular.

SVD: A = UDV t where U ∈Mm×m is unitary (U tU = Im), D ∈Mm×n
is diagonal, and V ∈Mn×n is also unitary (V tV = In).

Spectral: A = PDP−1 (only for square matrices) where P ∈Mn×n and
D ∈Mn×n is diagonal.
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An application to computer graphics and image processing

Example
In vectorial graphics, graphics are described as a set of connected points (whose
coordinates are known).

We may produce “italic” fonts by shearing the
standard coordinates T (x) = Ax where A =(
1 0.25
0 1

)
.
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An application to computer graphics and image processing

Example
Coordinate translations can be expressed as T (x) = x + x0. But this is not a
linear transformation:

T (u) = u + x0
T (v) = v + x0

T (u + v) = u + v + x0
T (u) + T (v) = (u + x0) + (v + x0) = u + v + 2x0

T (u + v) 6= T (u) + T (v)

We can solve this problem with homogeneous coordinates.

3. Matrix algebra December 3, 2013 79 / 114



An application to computer graphics and image processing

Definition 9.1 (Homogeneous coordinates)
Given a point with coordinates x we can construct its homogeneous coordinates
as

x̃ =

(
hx
h

)

Or in other words, given the homogeneous coordinates ũ =

(
u
h

)
, they represent

the point at u
h . It is customary to use h = 1 (but it is not compulsory, and in

certain applications it is better to use other h’s).

Example
The 2D point (1, 2) can be represented in homogeneous coordinates as (1, 2, 1),
as (2, 4, 2) and, even, as (−2,−4,−2). They all represent the same point.
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An application to computer graphics and image processing

Example
Now, coordinate translations in homogeneous coordinates is a linear
transformation. For instance, in 2D:

T (x̃) = Ax̃ =

1 0 ∆x
0 1 ∆y
0 0 1

x
y
1

 =

x + ∆x
y + ∆y

1


2D transformations in homogeneous coordinates
In general, any 2D transformation of the form T (x) = Ax can be represented in
homogeneous coordinates as

T (x̃) =

(
A 0
0 1

)
x̃
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An application to computer graphics and image processing

Example
An application in 3D graphics:
http://www.youtube.com/watch?v=EsNmiiKlRXQ

Example
Let’s say we want to

1
Rotate a point 30◦about the Y
axis.

2 then, translate by (−6, 4, 5)
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An application to computer graphics and image processing

Example (continued)
We need to use the transformation T (x̃) = Ãx̃ with

Ã =


1 0 0 −6
0 1 0 4
0 0 1 5
0 0 0 1




cos(30◦) 0 sin(30◦) 0
0 1 0 0

− sin(30◦) 0 cos(30◦) 0
0 0 0 1


and

x̃ =


x
y
z
1
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An application to computer graphics and image processing

Example
Let’s say we want to produce perspective projections. Let’s imagine that the
screen is on the XY plane and the viewer’s eye is at (0, 0, d) (the distance to the
screen is d). Any object between the viewer and the screen is projected onto the
screen as in the figure below

By similar triangles we have

tanα = x∗
d = x

d−z ⇒ x∗ = x
1− z

d
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An application to computer graphics and image processing

Example (continued)
Similarly, y∗ = y

1− z
d
. Using homogeneous coordinates we want that (x , y , z , 1)

maps onto
(

x
1− z

d
, y

1− z
d
, 0, 1

)
, or what is the same

(
x , y , 0, 1− z

d
)
. We can achieve

this with the perspective transformation:

P̃ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 − 1

d 1



3. Matrix algebra December 3, 2013 85 / 114



Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 7:

2.7.2
2.7.3
2.7.10
2.7.12
2.7.22
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Subspace

Definition 10.1 (Subspace of Rn)
H ⊆ Rn is a subspace of Rn if:

1 0 ∈ H
2 ∀u, v ∈ H u + v ∈ H (H is closed under vector addition)
3 ∀u ∈ H ∀r ∈ R ru ∈ H (H is closed under multiplication by a scalar)

Example: Special subspaces
The following two sets are subspaces of Rn:

1 H = {0}
2 H = Rn
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Subspace

Example: Plane
A plane is defined as
H = Span {v1, v2} = {v ∈ Rn|v = λ1v1 + λ2v2}
This plane is a subspace of R3

Proof

1 Proof 0 ∈ H
If λ1 = λ2 = 0, then v = 0.

2 Proof u + v ∈ H
u ∈ H ⇒ u = λ1uv1 + λ2uv2
v ∈ H ⇒ v = λ1v v1 + λ2v v2
u + v = (λ1uv1 + λ2uv2) + (λ1v v1 + λ2v v2)

= (λ1u + λ1v )v1 + (λ2u + λ2v )v2 ∈ H
3 Proof ru ∈ H

u ∈ H ⇒ u = λ1uv1 + λ2uv2
ru = r(λ1uv1 + λ2uv2)

= rλ1uv1 + rλ2uv2 ∈ H
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Subspace

Example: Line not through the origin
A line (L) that does not pass through the origin is not a subspace, because

1 0 /∈ L
2 If we take two points belonging to the line (u and v), u + v /∈ L.
3 If we take a point belonging to the line (w), 2w /∈ L.
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Subspace

Example: Line through the origin
Consider v1 and v2 = kv1. Then,

H = Span {v1, v2} = Span {v1}

is a line. It is easy to prove that this line is a subspace of Rn.
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Column space

Definition 10.2 (Column space of a matrix)
Let A ∈Mm×n. Let ai ∈ Rm be the columns of A. The column space of A is
defined as

Col{A} = Span {a1, a2, ..., an} ⊆ Rm

Theorem 10.1
Col{A} is a subspace of Rm.
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Column space

Example

Let A =

 1 −3 −4
−4 6 −2
−3 7 6

 and b =

 3
3
−4

.

Determine if b belongs to Col{A}.
Solution
If b ∈ Col{A} there must be some coefficients x1, x2 and x3 such that

b = x1a1 + x2a2 + x3a3

To find these coefficients we simply have to solve the equation system Ax = b. 1 −3 −4 3
−4 6 −2 3
−3 7 6 −4

 ∼
 1 −3 −4 3

0 −6 −18 15
0 0 0 0


In fact, there are infinite solutions to the equation system and, consequently,
b ∈ Col{A}.
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Null space

Definition 10.3 (Null space of a matrix)
Let A ∈Mm×n. The null space of A is defined as

Nul{A} = {v ∈ Rn|Av = 0}

Theorem 10.2
Nul{A} is a subspace of Rn.
Proof

1 Proof 0 ∈ Nul{A}
A0 = 0⇒ 0 ∈ Nul{A} (q.e.d.)

2 Proof u + v ∈ Nul{A}
u ∈ Nul{A} ⇒ Au = 0
v ∈ Nul{A} ⇒ Av = 0
A(u + v) = Au + Av = 0 + 0 = 0⇒ u + v ∈ Nul{A} (q.e.d.)

3 Proof ru ∈ Nul{A}
u ∈ Nul{A} ⇒ Au = 0
A(ru) = rAu = r0 = 0⇒ ru ∈ Nul{A} (q.e.d.)
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Basis of a subspace

Definition 10.4 (Basis of a subspace)
Let H ⊆ Rn. The set of vectors B is a basis of H if:

1 All vectors in B are linearly independent
2 H = Span{B}

Standard basis of Rn

Let be the vectors

e1 =


1
0
0
...
0

 e2 =


0
1
0
...
0

 e3 =


0
0
1
...
0

 ... en =


0
0
0
...
1


The set B = {e1, e2, ..., en} is the standard basis of Rn.
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Basis of a subspace

Example

Find a basis for the null space of A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

.

Solution
The null space of A are all those vectors satisfying Ax = 0.

(
A 0

)
∼

 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


So the solution of the equation system is x1 = 2x2 + x4 − 3x5

x3 = −2x4 + 2x5

}
⇒

x =


2x2 + x4 − 3x5

x2
−2x4 + 2x5

x4
x5

 = x2


2
1
0
0
0

+ x4


1
0
−2
1
0

+ x5


−3
0
2
0
1
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Null space and equation systems

Example (continued)
The set B = {(2, 1, 0, 0, 0), (1, 0,−2, 1, 0), (−3, 0, 2, 0, 1)} is a basis of Nul{A}.
By construction, we have chosen them to be linearly independent.

Example: Null space and equation systems

Consider A =

1 0 0
0 1 0
0 0 0


{e3} is a basis for Nul{A}
Consider b = (7, 3, 0). The general solution of Ax = b is of the form

x = x0 + xNul

where x0 is a solution of Ax = b that does not belong to Nul{A} and xNul
belongs to Nul{A}. In this particular case,

x = (7, 3, 0) + x3e3
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Null space and equation systems

Example: Null space and equation systems (continued)
Let us prove that the general solution is actually a solution of Ax = b

Ax = A(x0 + xNul ) = Ax0 + AxNul = b + 0 = b

Intuititively we can say that the null space is the set of all solutions for which we
have no measurements. The equation system only impose some constraints on
those coefficients for which we have measurements. This is a problem in real
situations as shown in the following slide.
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Null space and equation systems

In this example, the authors describe how the exact location of a tooth fracture is
uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A.; Mol, A.; Tyndall, D. A., Rivera, E. M. In vitro assessment of local computed tomography for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Basis of a subspace

Example

Find a basis for the column space of B =


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0

.

Solution
From the columns with non-pivot positions of matrix B we learn that

b3 = −3b1 + 2b2
b4 = 5b1 − b2

Then,

Col{B} =
{

v ∈ R4|v = x1b1 + x2b2 + x3b3 + x4b4 + x5b5
}

=

{
v ∈ R4

∣∣∣∣ v = x1b1 + x2b2 + x3(−3b1 + 2b2)+
x4(5b1 − b2) + x5b5

}
=

{
v ∈ R4|v = x ′1b1 + x ′2b2 + x5b5

}
And, consequently, Basis{Col{B}} = {b1,b2,b5}
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Basis of a subspace

Example

Find a basis for the column space of A =


1 3 3 2 −9
−2 −2 2 −8 2
2 3 0 7 1
3 4 −1 11 −8

.

Solution
It turns out that A ∼ B (B in the previous example). Since row operations do not
affect linear dependence relations among the columns of the matrix, we should
have

a3 = −3a1 + 2a2
a4 = 5a1 − a2

and Basis{Col{A}} = {a1, a2, a5}

Theorem 10.3
The pivot columns of A form a basis of Col{A}}.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 1:

2.8.1
2.8.2
2.8.5
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Matrix operations (a)
Inverse of a matrix (b)
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Invertible linear transformations (c)
Partitioned matrices (c)
LU factorization (d)
An application to computer graphics and image processing (d)
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Dimension and rank (e)
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Coordinate system

Definition 11.1 (Coordinates of a vector in the basis B)
Suppose B = {b1,b2, ...,bp} is a basis for the subspace H ⊆ Rn. For each x ∈ H,
the coordinates of x relative to the basis B are the weights ci such that

x = c1b1 + c2b2 + ...+ cpbp

The coordinates of x with respect to the basis B is the vector in Rp

[x]B =


c1
c2
...
cp
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Coordinate system

Example
Let x = (3, 12, 7), v1 = (3, 6, 2), v2 = (−1, 0, 1), B = {v1, v2}.

1 Show that B is a linearly independent set
2 Find the coordinates of x in the coordinate system B

Solution
1 We need to prove that the only solution of the equation system

c1v1 + c2v2 = 0 is c1 = c2 = 0. 3 −1 0
6 0 0
2 1 0

 ∼
 1 0 0

0 1 0
0 0 0


And, therefore, the unique solution is c1 = c2 = 0 (q.e.d.)

2 We need to find c1 and c2 such that c1v1 + c2v2 = x 3 −1 3
6 0 12
2 1 7

 ∼
 1 0 2

0 1 3
0 0 0


And, therefore, [x]B = (2, 3).
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Coordinate system

Example (continued)
The following figure shows how x is equal to 2v1 + 3v2
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Coordinate system

Theorem 11.1
The coordinates of a given vector with respect to a given basis are unique.
Proof
Let us assume they are not unique. Then, there must be two different sets of
coordinates such that

x = c1b1 + c2b2 + ...+ cpbp
x = c ′1b1 + c ′2b2 + ...+ c ′pbp

If we subtract both equations, we have

0 = (c1 − c ′1)b1 + (c2 − c ′2)b2 + ...+ (cp − c ′p)bp

But because the basis is a linearly independent set of vectors, it must be
c1 − c′1 = 0 ⇒ c1 = c′1
c2 − c′2 = 0 ⇒ c2 = c′2...
cp − c′p = 0 ⇒ cp = c′p

This is a contradiction with the hypothesis that there were two different sets of
coordinates, and therefore, the coordinates of the vector x must be unique.
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Subspace dimension

Isomorphism to Rp

For any given subspace H and its corresponding basis B, the mapping

T : H → Rp

x → [x]B

is a linear, injective transformation that makes H to behave as Rp.

Definition 11.2 (Dimension)
The dimension of a subspace H (dim{H}) is the number of vectors of any of its
basis.
The dimension of H = {0} is 0.

Example (continued)
In our previous example in which B = {v1, v2}, the dimension is 2, in fact H
behaves like a plane (see previous figure in the example).
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Rank of a matrix

Definition 11.3 (Rank of a matrix)
The rank of a matrix A is rank{A} = dim{Col{A}}, that is, the dimension of
the column space of the matrix.
MATLAB: rank(A)

Theorem 11.2
The rank of a matrix is the number of pivot columns it has.
Proof
Since the pivot columns form a basis of the column space of A, the number of
pivot columns is the rank of the matrix.

Example

A =


1 3 3 2 −9
−2 −2 2 −8 2
2 3 0 7 1
3 4 −1 11 −8

 ∼


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0


Therefore, the rank of A is 3.
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Rank of a matrix

Theorem 11.3 (Rank theorem)
If A has n columns, then

Rank{A}+ dim{Nul{A}} = n

Theorem 11.4 (Basis theorem)
Let H be a subspace of dimension p. Any linearly independent set of p vectors of
H is a basis of H. Any set of p vectors that span H is a basis of H.
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Characterization of invertible matrices (continued)

Theorem 11.5 (The invertible matrix theorem)
Let A ∈Mn×n. The following statements are equivalent (either they are all true
or they are all false):
xiii. The columns of A form a basis of Rn

xiv. Col{A} = Rn

xv. dim{Col{A}} = n
xvi. Rank{A} = n
xvii. Nul{A} = {0}
xviii. dim{Nul{A}} = 0
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Characterization of invertible matrices

Proof v ⇒ xiii
This is true by the basis theorem.
Proof xiii ⇒ xiv
By the definition of basis.
Proof xiii ⇒ xv
By the definition of dimension.
Proof xv ⇒ xvi
By the definition of rank.
Proof xvi ⇒ xviii
By the rank theorem.
Proof xvii ⇒ iv
By the definition of null space.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 9:

2.9.1
2.9.3
2.9.9
2.9.19
2.9.27
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A little bit of history

The determinant of a matrix was first proposed by Seki Takakazu (1683) and
Gottfried Leibniz (1693). Then Gabriel Cramer (1750) and Augustin Cauchy
(1812) used them to solve problems in analytical geometry. Currently, they are
not so much used in computational algebra, but they give important insights into
the structure of a matrix.
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Applications

The determinant plays an important role in the analysis of Brownian motion. It
was first described by Robert Brown in 1827 (looking at pollen grains in water).
Albert Einstein published in 1905 a paper in which he explained brownian motion
as the result of the hitting molecules to bigger particles. This served as a
theoretical basis for a posterior experiment by Jean Perrin that confirmed the
existence of atoms. Jean Perrin was Nobel Prize in 1926.

See video at https://www.youtube.com/watch?v=hy-clLi8gHg
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Cofactor

Definition 1.1 (Cofactor)
The cofactor of the ij-th element of the matrix A is

Cij = (−1)i+j |Aij |

where Aij is the matrix that results after eliminating the i-th row and the j-th
column from matrix A.

Example
In the following example we calculate A32
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Determinant of a matrix

Definition 1.2 (Determinant of a matrix)
The determinant of a square n × n matrix A (|A| or det{A}) is a mapping from
Mn×n onto R such that

|A| =
{

A n = 1
a11C11 + a12C12 + ...+ a1nC1n n ≥ 2

where aij is the ij-th element of matrix A.
MATLAB: det(A)

Example
det

{(
1 5 0
2 4 −1
0 −2 0

)}
= 1det

{(
4 −1
−2 0

)}
− 5det

{(
2 −1
0 0

)}
+ 0det

{(
2 4
0 −2

)}
= 1 · (−2) − 5 · 0 + 0 · (−4) = −2

det
{(

4 −1
−2 0

)}
= 4det{0} − (−1)4det{−2} = 4 · 0 − (−1) · (−2) = −2

det
{(

2 −1
0 0

)}
= 2det{0} − (−1)det{0} = 2 · 0 − (−1) · 0 = 0

det
{(

2 4
0 −2

)}
= 2det{−2} − 4det{0} = 2 · (−2) − 4 · 0 = −4
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Determinant of a matrix

Theorem 1.1
For n ≥ 2, the determinant can be computed as a weighted sum of the cofactors
along any row or column

|A| =
n∑

j=1
aijCij =

n∑
i=1

aijCij

Example (continued)

det


 1 5 0

2 4 −1
0 −2 0

 = 0 · C13 − 1 · C23 + 0 · C33 = −2

C23 = (−1)2+3
∣∣∣∣ 1 5
0 −2

∣∣∣∣ = −(1|(−2)| − 5|(0)|) = 2
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Determinant of a matrix

Theorem 1.2 (Useful particular cases)
For n = 2,
|A| = a11a22 − a12a21

For n = 3,
|A| = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31
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Determinant of a matrix

Theorem 1.3 (Useful particular cases (continued))
For triangular matrices,
|A| =

n∏
i=1

aii

Example∣∣∣∣∣∣∣∣
1 4 3

5 2
0 1 2 −10
0 0 1 12
0 0 0 1

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
1 2 −10
0 1 12
0 0 1

∣∣∣∣∣∣ = 1 · 1
∣∣∣∣ 1 12
0 1

∣∣∣∣ = 1 · 1 · 1 |1| = 1

Computing the determinant requires O(n!) operations if we do it through the
cofactor expansion. There are much faster algorithms (O(n3)) that look for
triangular matrices that have the same determinant as the original matrix and,
then, they use this theorem that makes a much faster calculation.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 3, Section 1:

3.1.42
3.1.43 (with computer; MATLAB: A=rand(4))
3.1.44 (with computer)
3.1.45 (with computer)
3.1.46 (with computer)
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Properties of determinants

Theorem 2.1 (Determinant of the multiplication)
det{AB} = det{A}det{B}
det{kA} = kndet{A}

Note: In general, det{A+ B} 6= det{A}+ det{B}

Theorem 2.2 (Determinant of row operations)
1 If a multiple of one row of a matrix A is added to another row to obtain a

matrix B, then det{B} = det{A}.
2 If two rows of a matrix A are interchanged to obtain a matrix B, then

det{B} = −det{A}.
3 If a row of a matrix A is multiplied by k to obtain a matrix B, then

det{B} = kdet{A}.
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Properties of determinants

Example
Consider the following transformations that are of the form B = EA

1 B =


1 0 0 0
k 1 0 0
0 0 1 0
0 0 0 1

A⇒ |B| = |E ||A| = 1|A|

2 B =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

A⇒ |B| = |E ||A| = −1|A|

3 B =


k 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A⇒ |B| = |E ||A| = k|A|
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Properties of determinants

Example

A =

 2 4 6
3 5 7
1 2 3

 |A|

r1 ← 1
2 r1 B1 =

 1 2 3
3 5 7
1 2 3

 |B1| = 1
2 |A| ⇒ |A| = 2|B1|

r2 ← r2 − 3r1
r2 ← r2 − r1

B2 =

 1 2 3
0 −1 −2
0 0 0

 |B2| = |B1| ⇒
|A| = 2|B2| = 2(1 · (−1) · 0) = 0
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Properties of determinants

Theorem 2.3
A is invertible iff |A| 6= 0. In that case, |A−1| = |A|−1.

Corollary
If |A| = 0, then the columns of A are not linearly independent.

Theorem 2.4
For any matrix A ∈Mn×n, it is verified that |A| = |AT |.

Corollary
The effect of column operations on the determinant is the same as the effect of
row operations.

4. Determinant of a matrix September 30, 2013 17 / 34



Exercises

Exercises
From Lay (3rd ed.), Chapter 3, Section 2:

3.2.14
3.2.15
3.2.18
3.2.19
3.2.24
3.2.31
3.2.32
3.2.33
3.2.45 (computer)
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Cramer’s rule
Cramer’s rule is useful for a theoretical comprehension of what the determinant is
and its properties, but it is not so useful for computational calculations.

Theorem 3.1 (Cramer’s rule)
Let A ∈Mn×n be an invertible matrix. For every b ∈ Rn the i-th entry of the
unique solution x of Ax = b is

xi =
det{Ai (b)}

det{A}

where Ai(b) is the A matrix in which the i-th column has been substituted by b,
that is,

Ai(b) =
(
a1 a2 ... ai−1 b ai+1 ... an

)
Proof
Let ei (i = 1, 2, ..., n) be the columns of the identity matrix In. Consider the
product

AIi(x) =
(
Ae1 Ae2 ... Aei−1 Ax Aei+1 ... Aen

)
=

=
(
a1 a2 ... ai−1 b ai+1 ... an

)
= Ai(b)
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Cramer’s rule

Now we take the determinant on both sides

|Ai(b)| = |AIi(x)| = |A||Ii(x)| = |A|xi ⇒ xi =
|Ai (b)|
|A|

Example

Consider the equation system
(
3s −2
−6 s

)(
x1
x2

)
=

(
4
1

)
. Its solution is given by

x1 =

∣∣∣∣ 4 −2
1 s

∣∣∣∣∣∣∣∣ 3s −2
−6 s

∣∣∣∣ =
4s+2

3s2−12 =
4(s+ 1

2 )

3(s−2)(s+2)

x2 =

∣∣∣∣ 3s 4
−6 1

∣∣∣∣∣∣∣∣ 3s −2
−6 s

∣∣∣∣ =
3s+24
3s2−12 = s+8

(s−2)(s+2)
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Matrix inversion

Algorithm to invert a matrix
We know that the inverse is a matrix such that AA−1 = In. If we call xi to the
i-th column of A−1, then we have

AA−1 = A
(
x1 x2 ... xn

)
=
(
e1 e2 ... en

)
i.e., we are solving simultaneously n equation systems of the form Axj = ej . The
i-th entry of these columns is

xij =
|Ai (ej )|
|A|

If we now calculate the determinant in the numerator by expanding by the j-th
column, we have |Ai(ej)| = (−1)i+j |Aji |, where Aji is the submatrix that results
after eliminating the j-th row and the i-th column (or, what is the same, the
cofactor of the ji-th element).

xij =
(−1)i+j |Aji |
|A| =

Cji
|A|
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Matrix inversion

Definition 4.1 (Adjoint (adjugate, adjunta) of a matrix)
Let A ∈Mn×n be a square matrix. The adjoint of A is another n × n matrix,
denoted by A∗ such that

A∗ij = Cij

Algorithm to invert a matrix (continued)
Finally we have

A−1 = 1
|A|


C11 C21 ... Cn1
C12 C22 ... Cn2
... ... ... ...
C1n C2n ... Cnn


Watch out that the indexes of the cofactors are transposed with respect to the
standard order. Consequently

A−1 = 1
|A| (A

T )∗
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Matrix inversion

Theorem 4.1
(AT )∗ = (A∗)T

Example

A =

2 1 0
1 1 0
0 0 1

⇒
|A| = 1

C11 = (−1)1+1
∣∣ 1 0

0 1

∣∣ = 1 C12 = (−1)1+2
∣∣ 1 0

0 1

∣∣ = −1 C13 = (−1)1+3
∣∣ 1 1

0 0

∣∣ = 0

C21 = (−1)2+1
∣∣ 1 0

0 1

∣∣ = −1 C22 = (−1)2+2
∣∣ 2 0

0 1

∣∣ = 2 C23 = (−1)2+3
∣∣ 2 1

0 0

∣∣ = 0

C31 = (−1)3+1
∣∣ 1 0

1 0

∣∣ = 0 C32 = (−1)3+2
∣∣ 2 0

1 0

∣∣ = 0 C33 = (−1)3+3
∣∣ 2 1

1 1

∣∣ = 1

A∗ =

(
1 −1 0
−1 2 0
0 0 1

)
⇒ A−1 = 1

|A| (A
∗)T =

(
1 −1 0
−1 2 0
0 0 1

)T
=

(
1 −1 0
−1 2 0
0 0 1

)
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Areas and volumes

Theorem 5.1 (Area of a parallelogram, Volume of a parallelepiped)
If A is a 2× 2 matrix, then | det{A}| is the area of the parallelogram formed by
the columns of A. If A is a 3× 3 matrix, then | det{A}| is the volume of the
parallelepiped formed by the columns of A.

Example
Let be the parallelogram ABCD (A = (−2,−2), B = (0, 3), C = (4,−1),
D = (6, 4)).

−2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

x
1

x 2

A

B

C

D The area can be calculated as∣∣det ( B− A C− A
)∣∣ =∣∣∣∣det( (

0
3

)
−
(
−2
−2

) (
4
−1

)
−
(
−2
−2

) )∣∣∣∣ =∣∣∣∣det( 2 6
5 1

)∣∣∣∣ = | − 28| = 28
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Areas and volumes

Theorem 5.2 (Area after a linear transformation)
Consider the transformation T (x) = Ax.
If A ∈M2×2 and S is a parallelogram in R2, then

Area{T (S)} = | detA|Area{S}

If A ∈M3×3 and S is a parallelepiped in R3, then the volume of T (S) is

Volume{T (S)} = | detA|Volume{S}

Proof
Let’s prove it for the 2D case (the 3D one is analogous).
Consider the columns of A, A =

(
a1 a2

)
. Without loss of generality we may

consider S to be at the origin with sides given by b1 and b2:

S =
{

x ∈ R2|x = s1b1 + s2b2 ∀s1, s2 ∈ [0, 1]
}
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Areas and volumes

The image of S by T is

T (S) =
{

y ∈ R2|y = Ax = s1Ab1 + s2Ab2 ∀s1, s2 ∈ [0, 1]
}

which is another parallelogram. Therefore, the area of T (S) is

Area{T (S)} =
∣∣det (Ab1 Ab2

)∣∣ = ∣∣det{A (b1 b2
)}∣∣ = |det {AB}|

= | detA|| detB| = | detA|Area{S}

(q.e.d.)
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Areas and volumes

Theorem 5.3
The previous theorem is valid for any closed region in R2 or R3 with finite area or
volume.
Proof (hint)
We only need to divide the region into very small (infinitely small) parallelograms
(or parallelepipeds) and apply the previous theorem to each one of the pieces.
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Areas and volumes

Example
Suppose that the unit disk defined as

D =
{

u ∈ R2|u2
1 + u2

2 ≤ 1
}

is transformed with the transformation

T (u) =
(
a 0
0 b

)
u

to produce

E ≡ T (D) =

{
x ∈ R2

∣∣∣∣x =

(
a 0
0 b

)
u =

(
au1
bu2

)}
Exploiting the facts that x1 = au1 ⇒ u1 = x1

a , x2 = bu2 ⇒ u2 = x2
b we may also

characterize the transformed region as

E =
{

x ∈ R2
∣∣∣( x1

a
)2

+
( x2

b
)2 ≤ 1

}
that is a solid ellipse.
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Areas and volumes

Example (continued)

Area{E} = | detA|Area{D} = (ab)(π(1)2)
= πab
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Exercises
From Lay (3rd ed.), Chapter 3, Section 3:

3.3.1
3.3.7
3.3.11
3.3.21
3.3.25
3.3.26
3.3.29
3.3.32
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A little bit of history

Vectors were first used about 1636 in 2D and 3D to describe geometrical
operations by René Descartes and Pierre de Fermat. In 1857 the notation of
vectors and matrices was unified by Arthur Cayley. Giuseppe Peano was the firsst
to give the modern definition of vector space in 1888, and Henri Lebesgue (about
1900) applied this theory to describe functional spaces as vector spaces.
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Applications
It is difficult to think a mathematical tool with more applications than vector
spaces. Thanks to them we may sum forces, control devices, model complex
systems, denoise images, ... They underlie all these processes and it is thank to
them that we can “nicely” operate with vectors. They are a mathemtical structure
that generalizes many other useful structures.
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Vector space

Definition 1.1 (Vector space)
A vector space is a non-empty set, V , of objects (called vectors) in which we
define two operations: the sum among vectors and the multiplication by a scalar
(an element of any field, K), and that ∀u, v,w ∈ V and ∀c, d ∈ K it is verified
that

1 u + v ∈ V
2 u + v = v + u
3 (u + v) + w = u + (v + w)

4 ∃0 ∈ V |u + 0 = u
5 ∀u ∈ V ∃!w ∈ V |u + w = 0 (we normally write w = −u)
6 cv ∈ V
7 c(u + v) = cu + cv
8 (c + d)u = cu + du
9 c(du) = (cd)u
10 1u = u
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Vector space

Theorem 1.1 (Other properties)
11 0u = 0
12 c0 = 0
13 −u = (−1)u

Watch out that 0 and 1 refer respectively to the neutral elements of the sum and
multiplication in the field K. −1 is the opposite number in K of 1 with respect to
the sum of scalars.

Example: Rn

Rn is a vector space of finite dimension
for any n. As well as Cn.
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Vector space

Example: Force fields in Physics
Consider V to be the set of all arrows (directed line segments) in 3D. Two arrows
are regarded as equal if they have the same length and direction. Define the sum
of arrows and the multiplication by a scalar as shown below:
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Vector space

Example: Force fields in Physics (continued)
Here is an example of the application of some of the properties of vector spaces

With a force field we may define at every point in 3D space, which is the force
that is applied.

Conservative force field
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Vector space

Example: Infinite sequences
Let S be the set of all infinite sequences of numbers

u = (..., u−2, u−1, u0, u1, u2, ...)

Define the sum among two vectors and the multiplication by a scalar as

u + v = (..., u−2 + v−2, u−1 + v−1, u0 + v0, u1 + v1, u2 + v2, ...)
cu = (..., cu−2, cu−1, cu0, cu1, cu2, ...)

Digital Signal
Processing
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Vector space

Example: Polynomials of degree n (Pn)
Let Pn be the set of all polynomials of degree n

u(x) = u0 + u1x + u2x2 + ...+ unxn

Define the sum among two vectors and the multiplication by a scalar as

(u + v)(x) = (u0 + v0) + (u1 + v1)x + (u2 + v2)x2 + ...+ (un + vn)xn

(cu)(x) = cu0 + cu1x + cu2x2 + ...+ cunxn

Legendre
polynomials
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Vector space

Example: Set of real functions defined in some domain
Let F be the set of all real valued functions defined in some domain (f : D → R)
Define the sum among two vectors and the multiplication by a scalar as

(u + v)(x) = u(x) + v(x)
(cu)(x) = cu(x)

Ex: u(x) = 3+ x
Ex: v(x) = sin x
Ex: Zernike polynomials
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Vector subspace

Sometimes we don’t need to deal with the whole vector space, but only a part of
it. It would be nice if it also has the space properties.

Definition 2.1 (Vector subspace)
Let V be a vector space, and H ⊆ V a part of it. H is vector subspace iff
a) 0 ∈ H
b) ∀u, v ∈ H u + v ∈ H (H is closed with respect to sum)
c) ∀u ∈ H, ∀c ∈ K cu ∈ H (H is closed with respect to scalar multiplication)

Example
H = {0} is a subspace.

Example
The vector space of polynomials (of any degree), P ∈ F(R), is a vector subspace
of the vector space of real valued functions defined over R (F(R) = {f : R→ R}).
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Vector subspace

Example
H = R2 is not a subspace of R3 because R2 6⊂ R3, for instance, the vector

u =

(
1
2

)
∈ R2, but u /∈ R3.

Example
H = R2 × {0} is a subspace of R3 because all vectors of H are of the form

u =

x1
x2
0

 ∈ R3. It is obvious that H “looks like” R2. This resemblance is

mathematically called isomorphism.

Example
Any plane in 3D passing through the origin is a subspace of R3.
Any plane in 3D not passing through the origin is not a subspace of R3, because 0
does not belong to the plane.
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Vector subspace

Theorem 2.1
If H is a vector subspace, then H is a vector space.
Proof

a) ⇒ 4
a ≡ 0 ∈ H
4 ≡ ∃0 ∈ V |u + 0 = u

b) ⇒ 1
b ≡ ∀u, v ∈ H u + v ∈ H
1 ≡ u + v ∈ V

Since H ⊂ V and thanks to b) ⇒ 2,3,7,8,9,10
2 ≡ u + v = v + u
3 ≡ (u + v) + w = u + (v + w)
7 ≡ c(u + v) = cu + cv
8 ≡ (c + d)u = cu + du
9 ≡ c(du) = (cd)u
10 ≡ 1u = u
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Vector subspace

Proof (continued)
c) ⇒ 6

c ≡ ∀u ∈ H, ∀c ∈ K cu ∈ H
6 ≡ cv ∈ V

Proof of 5
Since H is a subset of V , we know that for every u ∈ H there exists
a unique w ∈ V |u + w = 0. The problem is whether
or not w is in H. We also know that w = (−1)v, and
by c), w ∈ H.

(q.e.d.)
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Subspace spanned by a set of vectors

Example
Let v1, v2 ∈ V be two vectors of a vector space, V . The subset

H = Span{v1, v2}

is a subspace of V .
Proof
Any vector of H is of the form v = λ1v1 + λ2v2 for some λ1, λ2 ∈ K.

Proof a) 0 ∈ H
Simply by setting λ1 = λ2 = 0, we get 0 ∈ H
Proof b) u + v ∈ H

Let u, v ∈ H ⇒ u = λ1uv1 + λ2uv2
v = λ1v v1 + λ2v v2

}
⇒

u + v = (λ1uv1 + λ2uv2) + (λ1v v1 + λ2v v2)
= (λ1u + λ1v )v1 + (λ2u + λ2v )v2 ∈ H
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Subspace spanned by a set of vectors

Proof c) cu ∈ H
Let u ∈ H ⇒

u = λ1v1 + λ2v2 ⇒ cu = c(λuv1 + λ2v2) = cλuv1 + cλ2v2 ∈ H

Theorem 3.1
Let v1, v2, ..., vp ∈ V be p vectors of a vector space, V . The subset

H = Span{v1, v2, ..., vp}

is a subspace of V .
Proof
Analogous to the previous example.
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Subspace spanned by a set of vectors

Example
Consider the set of vectors R4 ⊃ H = {(a − 3b, b − a, a, b) ∀a, b ∈ R}. Is it a
vector subspace?
Solution
All vectors of H can be written as

H 3 u =


a − 3b
b − a
a
b

 = a


1
−1
1
0

+ b


−3
1
0
1


Therefore, H = Span{(1,−1, 1, 0), (−3, 1, 0, 1)} and by the previous theorem, it is
a vector subspace.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 1:

4.1.1
4.1.4
4.1.5
4.1.6
4.1.19
4.1.32
4.1.37 (computer)
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Null space of a matrix

Example
Consider the matrix (

1 −3 −2
−5 9 1

)
The point x = (5, 3,−2) has the property that Ax = 0.

Definition 4.1 (Null space)
The null space of a matrix A ∈Mm×n is the set of vectors

Nul{A} = {x ∈ Rn|Ax = 0}
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Null space of a matrix

Example (continued)(
1 −3 −2 0
−5 9 1 0

)
∼
(

1 0 5
2 0

0 1 3
2 0

)
Therefore

Nul{A} = {(− 5
2x3,− 3

2x3, x3)∀x3 ∈ R}

The previous example (x = (5, 3,−2)) is the point we obtain for x3 = −2.
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Null space of a matrix

Theorem 4.1
Nul{A} is a vector subspace of Rn.
Proof
It is obvious that Nul{A} ⊆ Rn because A has n columns

Proof a) 0 ∈ Nul{A}
A0n = 0m ⇒ 0n ∈ Nul{A}
Proof b) u + v ∈ Nul{A}

Let u, v ∈ Nul{A} ⇒ Au = 0
Av = 0

}
⇒

A(u + v) = Au + Av = 0 + 0 = 0⇒ u + v ∈ Nul{A}

Proof c) cu ∈ Nul{A}
Let u ∈ H ⇒

Au = 0⇒ A(cu) = c(Au) = c0 = 0⇒ cu ∈ Nul{A}
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Null space of a matrix

Example

Let H =

{
(a, b, c, d) ∈ R4

∣∣∣∣ a − 2b + 5c = d
c − a = b

}
. Is H a vector subspace of R4?

Solution
We may rewrite the conditions of belonging to H as

a − 2b + 5c = d
c − a = b ⇒

(
1 −2 5 −1
−1 −1 1 0

)
a
b
c
d

 = 0

and, thanks to the previous theorem, H is a vector subspace of R4.
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Null space of a matrix

Example (continued)
We can even provide a basis for H(

1 −2 5 −1
−1 −1 1 0

)
∼
(

1 0 1 −1
0 1 0 0

)
The solution of Ax = 0 are all points of the form

a
b
c
d

 =


−c + d

0
c
d

 = c


−1
0
1
0

+ d


1
0
0
1


Consequently H = Span{(−1, 0, 1, 0), (1, 0, 0, 1)}.
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Column space of a matrix

Definition 4.2 (Column space)
Let A ∈Mm×n a matrix and ai ∈ Rm (i = 1, 2, ...n) its columns. The column
space of the matrix A is defined as

Col{A} = Span{a1, a2, ...an} = {b ∈ Rm|Ax = b for some x ∈ Rn}

Theorem 4.2
The column space of a matrix is a subspace of Rm Proof
Col{A} is a set generated by a number of vectors and by Theorem 3.1 it is a
subspace of Rm.
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Column space of a matrix

Example
Find a matrix A such that Col{A} = {(6a − b, a + b,−7a)∀a, b ∈ R}
Solution We can express the points in Col{A} as

Col{A} 3 x =

6a − b
a + b
−7a

 = a

 6
1
−7

+ b

−11
0


Therefore, Col{A} = Span{(6, 1,−7), (−1, 1, 0)}. That is, these must be the two
columns of A

A =

 6 −1
1 1
−7 0
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Comparison between the Null and the Column spaces
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Linear transformation

We have said that T (x) = Ax is a linear transformation, but it is not the only one.

Definition 5.1 (Linear transformation)
The transformation T : V →W between two vectors spaces V and W is a rule
that for each vector v ∈ V assigns a unique vector w = T (v) ∈W, such that

1 T (v1 + v2) = T (v1) + T (v2) ∀v1, v2 ∈ V
2 T (cv) = cT (v) ∀v ∈ V ,∀c ∈ K

Example
For a matrix A ∈Mm×n, we have that

T : Rn → Rm

x → Ax

is a linear transformation (we can easily verify that T meets the two required
conditions).
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Linear transformation

Example
Consider the space of all continuous, real-valued functions defined over R whose
all derivatives are also continuous. We will refer to this space as C∞(R). For
instance, all polynomials belong to this space, as well as any sin, cos function. It
can be proved that C∞(R) is a vector space.
Consider the transformation that assigns to each function in C∞(R) its derivative

D : C∞(R) → C∞(R)
f → D(f )

is a linear transformation.
Proof

1 D(f + g) = D(f ) + D(g)
2 D(cf ) = cD(f )
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Kernel and range of transformation

Definition 5.2 (Kernel (Núcleo))
The kernel of a transformation T is the set of all vectors such that

Ker{T} = {v ∈ V |T (v) = 0}

Definition 5.3 (Range (Imagen))
The range of a transformation T is the set of all vectors such that

Range{T} = {w ∈W |∃v ∈ V T (v) = w}
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Kernel and range of transformation

Example (continued)
Ker{T} = Nul{A}
Ker{D} = {f (x) = c} because D(c) = 0

Theorem 5.1
If T (x) = Ax, then

Ker{T} = Nul{A}
Range{T} = Col{A}
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 2:

4.2.3
4.2.9
4.2.11
4.2.30
4.2.31
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Outline

5 Vector spaces
Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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Linear independence

Definition 6.1 (Linear independence)
A set of vectors {v1, v2, ..., vp} is linearly independent iff the only solution to the
equation

c1v1 + c2v2 + ...+ cpvp = 0

is the trivial solution (c1 = c2 = ... = cp = 0). The set is linearly dependent if
there exists another solution to the equation.

Watch out that we cannot simply put all vectors as columns of a matrix A and
solve Ac = 0 because this is only valid for vectors in Rn, but it is not valid for any
vector space.
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Linear independence

Example
{v1} is linearly dependent if v1 = 0.
{v1, v2} is linearly dependent if v2 = cv1.
{0, v1, v2, ..., vp} is linearly dependent.

Example
In the vector space of continuous functions over R, C(R), the vectors
f1(x) = sin x and f2(x) = cos x are independent because

f2(x) 6= cf1(x)
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Linear independence

Theorem 6.1
A set of vectors {v1, v2, ..., vp}, with v1 6= 0 is linearly dependent if any of the
vectors vj (j > 1) is linearly dependent on the previous ones {v1, v2, ..., vj−1}.

Example
In the vector space of polynomials, consider the vectors p0(x) = 1, p1(x) = x ,
p2(x) = 4− x . The set {p0(x), p1(x), p2(x)} is linearly dependent because

p2(x) = 4p0(x)− p1(x)⇒ p1(x)− 4p0(x) + p2(x) = 0
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Linear independence

Example
In the vector space of continuous functions, consider the vectors
f1(x) = sin(x) cos(x) and f2(x) = sin(2x). The set {f1(x), f2(x)} is linearly
dependent because f2(x) = 2f1(x)

MATLAB:
x=[-pi:0.001:pi]
f1=sin(x).*cos(x);
f2=sin(2*x);
plot(x,f1,x,f2)

5. Vector spaces December 3, 2013 43 / 102



Basis of a subspace

Definition 6.2 (Basis of a subspace)
A set of vectors B = {v1, v2, ..., vp} is a basis of the vector subspace H iff

1 B is a linearly independent set of vectors
2 H = Span{B}

In other words, a basis is a non-redundant set of vectors that span H.

Example
Let A be an invertible matrix. By Theorem 5.1 and 11.5 of Chapter 3 (the
invertible matrix theorem), we know that the columns of A span Rn and that they
are linearly independent. Consequently, the columns of A are a basis of Rn.
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Basis of a subspace

Example
The standard basis of Rn are the columns of In

e1 =


1
0
...
0

 e2 =


0
1
...
0

 ... en =


0
0
...
1


Example
Let v1 = (3, 0,−6), v2 = (−4, 1, 7), v3 = (−2, 1, 5). Is {v1, v2, v3} a basis of R3?
Solution
This question is the same as whether A is invertible with

A =

 3 −4 −2
0 1 1
−6 7 5

⇒ |A| = 6⇒ ∃A−1

Because A is invertible, we have that {v1, v2, v3} is a basis of R3.
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Basis of a subspace

Example: DNA Structure
In 1953, Rosalind Franklin, James Watson and Francis Crick determined the 3D
structure of DNA using data coming from X-ray diffraction of crystallized DNA.
Watson and Crick received the Nobel prize in physiology and medicine in 1962
(Franklin died 1958).
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Basis of a subspace

Example: DNA Structure (continued)
Three-dimensional crystals repeat a certain motif all over the space following a
crystal lattice. The vectors that define the crystal lattice are a basis of R3
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Basis of a subspace

Example
B = {1, x , x2, x3, ...} is the standard basis of the vector space of polynomials P.
Proof

1 B is linearly independent:
∀x ∈ R c01+ c1x + c2x2 + c3x3 + ... = 0⇒ c0 = c1 = c2 = ... = 0

The only way that a polynomial of degree whichever is 0 for all values of x is
that the coefficients of the polynomial are all 0.

2 P = Span{B}:
It is obvious that any polynomial can be written as a linear combination of
elements of B (in fact, this is they way we normally do).
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Basis of a subspace

Example
H = Span{v1, v2, v3} with v1 = (0, 2,−1), v2 = (2, 2, 0), v3 = (6, 16,−5). Find a
basis of H
Solution
All vectors in H are of the form:

H 3 x = c1v1 + c2v2 + c3v3

We realize that v3 = 5v1 + 3v2, therefore, v3 is redundant:

H 3 x = c1v1 + c2v2 + c3(5v1 + 3v2)
= (c1 + 5c3)v1 + (c2 + 3c3)v2
= c ′1v1 + c ′2v2

It suffices to construct our basis with v1 and v2.

5. Vector spaces December 3, 2013 49 / 102



Basis of a subspace

Theorem 6.2 (Spanning set theorem (conjunto generador))
Let S = {v1, v2, ..., vp} be a set of vectors and H = Span{S}. Then,

1 If vk is a linear combination of the rest, then the set S − {vk} still generates
H.

2 If H 6= {0}, then some subset of S is a basis of H.
Proof

1 Assume that the linear combination that explains vk is
vk = a1v1 + ...+ ak−1vk−1 + ak+1vk+1 + ...+ apvp

Consider any vector in H
x = c1v1 + c2v2 + ...+ cpvp

= (c1 + a1)v1 + ...+ (ck−1 + ak−1)vk−1+
(ck+1 + ak+1)vk+1 + ...+ (cp + ap)vp

That is we can express x not using vk .
2 Step 1: If S is a linearly independent set, then S is the basis of H.

Step 2: If S is not, using the previous point we can remove a vector to
produce S ′ that still generates H (go to Step 1).
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Outline

5 Vector spaces
Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)

5. Vector spaces December 3, 2013 51 / 102



Basis for Nul{A}

Example

Let A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4


We solve the equation system Ax = 0 to find

(A|0) ∼

 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


we have coloured the pivot columns from which learn

x1 = 2x2 + x4 − 3x5
x3 = −2x4 + 2x5

⇒ Nul{A} 3 x =


2x2 + x4 − 3x5

x2
−2x4 + 2x5

x4
x5
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Basis for Nul{A}

Example (continued)

Nul{A} 3 x =


2x2 + x4 − 3x5

x2
−2x4 + 2x5

x4
x5

 = x2


2
1
0
0
0

+ x4


1
0
−2
1
0

+ x5


−3
0
2
0
1


Finally the basis for Nul{A} is

Nul{A} = Span




2
1
0
0
0

 ,


1
0
−2
1
0

 ,


−3
0
2
0
1
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Basis for Col{A}

Example
Consider A as in the previous example. We had

A ∼

 1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 = B

Let’s call this latter matrix B. Non-pivot columns of B can be written as a linear
combination of the pivot columns:

b2 = −2b1
b4 = −b1 + 2b3
b5 = 3b1 − 2b3
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Basis for Col{A}

Example (continued)
Since row operations do not change the linear dependences among matrix
columns, we can derive the same relationships for matrix A

a2 = −2a1
a4 = −a1 + 2a3
a5 = 3a1 − 2a3

Finally, the basis of Col{A} is {a1, a3}.

Col{A} = Span {a1, a3} = Span


−31

2

 ,

−12
5
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Basis for Col{A}

Theorem 7.1
The pivot columns of A constitute a basis for Col{A}.
Proof
Let B the reduced echelon form of A.

1 The pivot columns of B form a linearly independent set because none of its
elements can be expressed as a linear combination of the elements before
each one of them.

2 The dependence relationships among columns are not affected by row
operations. Therefore, the corresponding pivot columns of A are also linearly
independent and, consequently, a basis of Col{A}.
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Two views of a basis

As small as possible, as large as possible
1 The Spanning Set Theorem states that the basis is as small as possible as

long as it spans the required subspace.
2 The basis has the maximum amount of vectors spanning the required

subspace. If we add one more, the new set is not linearly independent.

Example
{(1, 0, 0), (2, 3, 0)} is a set of 2 linearly independent vectors. But it cannot
span R3 because for this we need 3 vectors.
{(1, 0, 0), (2, 3, 0), (4, 5, 6)} is a set of 3 linearly independent vectors that
spans R3, so it is a basis of R3.
{(1, 0, 0), (2, 3, 0), (4, 5, 6), (7, 8, 9)} is a set of 4 linearly dependent vectors
that spans R3, so it cannot be a basis.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 3:

4.3.1
4.3.2
4.3.8
4.3.12
4.3.24
4.3.31
4.3.32
4.3.33
4.3.37 (computer)

5. Vector spaces December 3, 2013 58 / 102



Outline

5 Vector spaces
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Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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Coordinate system
An important reason to assign a basis to a vector space V is that it makes V to
“behave” as Rn through, what is called, a coordinate system.

Theorem 8.1 (The unique representation theorem)
Let B = {b1,b2, ...,bn} a basis of the vector space V , and consider any vector
v ∈ V . There exists a unique set of scalars such that

v = c1b1 + c2b2 + ...+ cnbn

Proof
Let assume that there exists another set of scalars such that

v = c ′1b1 + c ′2b2 + ...+ c ′nbn

Subtracting both equations we have

0 = (c1 − c ′1)b1 + (c2 − c ′2)b2 + ...+ (cn − c ′n)bn

But since the vectors bi form a basis and are linearly independent, it must be

(c1 − c ′1) = (c2 − c ′2) = (cn − c ′n) = 0
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Coordinate system

Proof (continued)
Finally, c1 = c ′1, c2 = c ′2, ..., cn = c ′n which is a contradiction with the hypothesis
that there were two different sets of scalars representing the vector. Consequently,
the set of scalars must be unique.

Definition 8.1 (Coordinates)
Let B = {b1,b2, ...,bn} a basis of the vector space V , and consider any vector
v ∈ V . The coordinates of v in B are the ci coefficients such that

v = c1b1 + c2b2 + ...+ cnbn ⇒ [v]B =


c1
c2
...
cn


The transformation T : V → Rn such that T (x) = [x]B is called the coordinate
mapping.
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Coordinate system

Example
Let B = {(1, 0), (1, 2)} be a basis of R2 and [x]B = (−2, 3), then

x = −2b1 + 3b2 = −2
(
1
0

)
+ 3

(
1
2

)
=

(
1
6

)
In fact (1, 6) are the coordinates of x in the standard basis {e1, e2}

x = 1e1 + 6e2 = 1
(
1
0

)
+ 6

(
0
1

)
=

(
1
6

)
That is, the point x does not change, but depending on the coordinate system
employed, we “see” it with different coordinates.
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Coordinate system

Example (continued)
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Coordinate system

Example: X-ray diffraction
In ths figure we see how a X-ray diffraction pattern of a crystal is “indexed”.
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Coordinates in Rn

If we have a point x in R we can easily find its coordinates in any basis, as in the
following example.

Example
Let x = (4, 5) and the basis B = {(2, 1), (−1, 1)}. We need to find c1 and c2 such
that

x = c1b1 + c2b2 ⇒
(
4
5

)
= c1

(
2
1

)
+ c2

(
−1
1

)
=

(
2 −1
1 1

)(
c1
c2

)

From which we can easily derive
that c1 = 3 and c2 = 2.
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Change of basis

Change from the standard basis to an arbitrary basis
Note that the previous equation system is of the form

x = PB[x]B

where PB is called the change-of-coordinates matrix and its columns are the
vectors of the basis B (consequently, it is invertible). We find the coordinates of
the vector x in the basis B as

[x]B = P−1
B x

Change between two arbitrary bases
Let’s say we know the coordinates of a point in some basis, B1, and we want to
know its coordinates in some other basis, B2. We may use

x = PB1 [x]B1 = PB2 [x]B2 ⇒ [x]B2 = P−1
B2

PB1 [x]B1
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Coordinate mapping

Theorem 8.2 (The coordinate mapping is an isomorphism between V
and Rn)
The coordinate mapping is a bijective, linear transformation.

Corollary
Since the coordinate mapping is a linear transformation it extends to linear
combinations

[a1u1 + a2u2 + ...+ apup]B = a1[u1]B + a2[u2]B + ...+ ap[up]B
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Coordinate mapping

Consequences
Any operation in V can be performed in Rn and then go back to V .
For spaces of functions, this opens a new door to analyze functions (signals,
images, ...) in Rn using the appropriate basis: Fourier transform, wavelet
transform, Discrete Cosine Transform, ...
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Coordinate mapping

Example
Consider the space of polynomials of degree 2, P2. any polynomial in this space is
of the form

p(t) = a0 + a1t + a2t2

If we choose the standard basis in P2 that is

B = {1, t, t2}

Then, we have the coordinate mapping

T (p(t)) = [p]B =

a0
a1
a2


that is an isomorphism from P2 onto R3.
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Coordinate mapping

Example (continued)
Now we can perform any reasoning in P2 by studying an analogous problem in R3.
For instance, let’s study if the following polynomials are linearly independent

p1(t) = 1+ 2t2 ⇒ [p1(t)]B = (1, 0, 2)
p2(t) = 4+ t + 5t2 ⇒ [p2(t)]B = (4, 1, 5)
p3(t) = 3+ 2t ⇒ [p3(t)]B = (3, 2, 0)

We simply need to see if the corresponding coordinates in R3 are linearly
independent 1 4 3

0 1 2
2 5 0

 ∼
1 0 −5
0 1 2
0 0 0


Looking at the non-pivot columns we learn that

p3(t) = −5p1(t) + 2p2(t)

Finally, we conclude that the 3 polynomials are not linearly independent.
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Coordinate mapping

Example
Consider v1 = (3, 6, 2), v2 = (−1, 0, 1), B = {v1, v2}, and H = Span{B}. H is
isomorphic to R2 (because its points have only 2 coordinates). For instance, the
coordinates of x = (3, 12, 7) ∈ H are [x]B = (2, 3).
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Coordinate mapping

Example
Consider v1 = (3, 6, 2), v2 = (−1, 0, 1), B = {v1, v2}, and H = Span{B}. H is
isomorphic to R2 (because its points have only 2 coordinates). For instance, the
coordinates of x = (3, 12, 7) ∈ H are [x]B = (2, 3).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 4:

4.4.3
4.4.8
4.4.9
4.4.13
4.4.17
4.4.19
4.4.22
4.4.24
4.4.25
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Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)

5. Vector spaces December 3, 2013 74 / 102



Dimension of a vector space

We have just said that if the basis of a vector space V has n elements, then V is
isomorphic to Rn. n is a characteristic number of each space called the dimension.

Theorem 9.1
Let V be a vector space with a basis given by B = {b1,b2, ...,bn}. Then, any
subset of V with more than n elements is linearly dependent.
Proof
Let S be a subset of V with p > n vectors

S = {v1, v2, ..., vp}

We now consider the set of coordinates of these vectors.

{[v1]B , [v2]B , ..., [vp]B}

They are p > n vectors in Rn and, therefore, necessarily linearly dependent. That
is, there exist c1, c2, ..., cp, not all of them 0, such that

c1[v1]B + c2[v2]B + cp[vp]B = 0 ∈ Rn
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Dimension of a vector space

Proof (continued)
If we now exploit the fact that the coordinate mapping is linear, then we have

[c1v1 + c2v2 + cpvp]B = 0 ∈ Rn

Finally, we make use of the fact that the coordinate mapping is bijective

c1v1 + c2v2 + cpvp = 0 ∈ V

And, consequently, we have shown that the p vectors in S are linearly dependent.

Theorem 9.2
If a basis of a vector space has n vectors, then all other bases also have n vectors.
Proof
Let B1 be a basis with n vectors of a vector space V . Let B2 another basis of V .
By the previous theorem, B2 has at most n vectors. Let us assume now that B2
has less than n vectors, then by the previous theorem B1 would not be a basis.
This is a contradiction with the fact that B1 is a basis and, consequently, B2
cannot have less than n vectors.
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Dimension of a vector space

Definition 9.1
If the vector space V is spanned by a finite set of vectors, then V is
finite-dimensional and its dimension (dim{V }) is the number of elements of
any of its bases. The dimension of V = {0} is 0. If V is not generated by a finite
set of vectors, then it is infinite-dimensional.

Example
dim{Rn} = n
dim{P2} = 3 because one of its bases is {1, t, t2}
dim{P} =∞
dim{Span{v1, v2}} = 2
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Dimension of a vector space

Example: in R3

There is a single subspace of dimension 0 ({0})
There are infinite subspaces of dimension 1 (all lines going through the origin)
There are infinite subspaces of dimension 2 (all planes going through the origin)
There is a single subspace of dimension 3 (R3)
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Dimension of a vector space

Theorem 9.3
Let H ⊆ V be a vector subspace of a vector space V . Then,

dim{H} ≤ dim{V }

Theorem 9.4
Let V a n-dimensional vector space (n ≥ 1).

Any linearly independent subset of V with n elements is a basis.
Any subset of V with n elements that span V is a basis.
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Dimension of a vector space

Theorem 9.5
Consider any matrix A ∈Mm×n.

dim{Nul{A}} is the number of free variables in the equation Ax = 0.
dim{Col{A}} is the number of pivot columns of A.

Example

A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 ∼
 1 −2 0 −1 3

0 0 1 2 −2
0 0 0 0 0


The number of pivot columns of A is 2 = dim{Col{A}} (in blue), while the
number of free variables is 3 = dim{Nul{A}} (the free variables are x2, x4 and
x5).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 5:

4.5.1
4.5.13
4.5.21
4.5.25
4.5.26
4.5.27
4.5.28
4.5.31
4.5.32
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Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)

5. Vector spaces December 3, 2013 82 / 102



Rank of a matrix

The rank of a matrix is the number of linearly independent rows of that matrix.
It can also be defined as the number of linearly independent columns of that
matrix because both definitions yield the same number. We’ll see a more formal
definition below.

Definition 10.1 (Row space of a matrix)
Given a matrix A ∈Mm×n, the row space of A is the space spanned by all rows
of A (Row{A} ⊆ Rn).

Theorem 10.1
Row{A} = Col{AT}
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Rank of a matrix

Theorem 10.2
If a matrix A is row equivalent to another matrix B, then Row{A} = Row{B}.
If B is in a reduced echelon form, then the non-null rows of B form a basis of
Row{A}
Proof

Proof Row{A} ⊇ Row{B}
Since the rows of B are obtained by row operations on the rows of A,
then any linear combination of the rows of B can be obtained as linear
combinations of the rows of A.
Proof Row{A} ⊆ Row{B}
Since the row operations are reversible, then any linear combination of
the rows of A can be obtained as linear combinations of the rows of B.
Proof non-null rows of B form a basis
They are linearly independent because any non-null row of B cannot
be obtained as a linear combination of the rows below (because it is in
echelon form and there are numbers in early columns that have 0s below)
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Rank of a matrix

Example

A =


−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 ∼ B =


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0


Pivot columns have been highlighted in blue. At this point we can already
construct a basis for the row and column spaces of A

R5 ⊃ Row{A} = Span{(1, 3,−5, 1, 5), (0, 1,−2, 2,−7), (0, 0, 0,−4, 20)}
R4 ⊃ Col{A} = Span{(−2, 1, 3, 1), (−5, 3, 11, 7), (0, 1, 7, 5)}

To calculate the null space of A we need the reduced echelon form

A ∼


1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0
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Rank of a matrix

Example (continued)

A ∼


1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0

⇒
x1 = −x3 − x5
x2 = 2x3 − 3x5
x4 = 5x5

⇒ Nul{A} 3 x = x3


−1
2
1
0
0

+ x5


−1
−3
0
5
1


Finally,

R5 ⊃ Nul{A} = Span{(−1, 2, 1, 0, 0), (−1,−3, 0, 5, 1)}
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Rank of a matrix

Definition 10.2 (Rank of a matrix)
Rank{A} = dim{Col{A}}

That is, by definition, Rank{A} is the number of pivot columns of A.
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Rank of a matrix

Theorem 10.3 (Rank theorem)
For any matrix A ∈Mm×n

1 dim{Row{A}} = dim{Col{A}}
2 Rank{A}+ dim{Nul{A}} = n

Proof
1 Let B be the reduced echelon form of A. By definition Rank{A} is the

number of pivot columns in A (that is the same as the number of pivot
columns in B). Since B is in reduced echelon form, each of its non-zero rows
has a column pivot and, consequently, the number of non-zero rows coincides
with the number of pivot columns. The basis of Row{B} = Row{A} must
have as many elements as pivot columns.

2 From Theorem 9.5 we know that Null{A} is the number of free variables in
Ax = 0, that is, the number of non-pivot columns of B. Consequently, we
have

dim{Col{A}}+ dim{Nul{A}} = n
But by definition, Rank{A} = dim{Col{A}}, which proves the theorem.
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Rank of a matrix

Example
Let A ∈M7×9. We know dim{Nul{A}} = 2. What is Rank{A}?
According to the previous theorem

Rank{A} = n − dim{Nul{A}} = 9− 2 = 7

Example
Let A ∈M6×9. Can it be dim{Nul{A}} = 2?
Let us presume that it can be dim{Nul{A}} = 2, then

Rank{A} = n − dim{Nul{A}} = 9− 2 = 7

But since A has only 6 rows, the maximum rank can only be 6 (not 7), and
therefore, it must be dim{Nul{A}} ≥ 3.
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Rank of a matrix

Example

A =

 3 0 −1
3 0 −1
4 0 5

⇒ Nul{A} = {(0, x2, 0) ∀x2 ∈ R}
Row{A} = {(x1, 0, x3) ∀x1, x3 ∈ R}
Col{A} = {(x2, x2, x3) ∀x2, x3 ∈ R}
Nul{AT} = {(x1,−x1, 0) ∀x1 ∈ R}
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Rank of a matrix

Theorem 10.4 (The invertible matrix theorem (continued))
The following statements are equivalent to those in Theorems 5.1 and 11.5 of
Chapter 3 (the invertible matrix theorem). Let A ∈Mn×n

xix. The columns of A form a basis of Rn.
xx. Col{A} = Rn.
xxi. dim{Col{A}} = n
xxii. Rank{A} = n
xxiii. Nul{A} = {0}.
xxiv. dim{Nul{A}} = 0.
Proof vii ⇔ xx
vii≡The equation Ax = b has at least one solution for every b ∈ Rn.
But Col{A} is the set of all b’s for which Ax = b has a solution. Therefore, vii ⇒
xx.
Proof xx ⇔ xxi ⇔ xxii
Because of the definition of rank.
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Rank of a matrix

Proof v,viii ⇔ xix
v≡The columns of A are linearly independent.
viii≡The columns of A span Rn.
But both together are the definition of a basis for Rn.
Proof xxi ⇔ xxiv
Knowing xxi and thanks to the rank theorem 10.3, we can infer that
dim{Nul{A}} = n − n = 0
Proof xxiv ⇔ xxiii
The only subset with null dimension is {0}.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 6:

4.6.1
4.6.13
4.6.15
4.6.19
4.6.26
4.6.28
4.6.29
4.6.33
4.6.35
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Outline

5 Vector spaces
Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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Change of basis

Example
Let us assume we have a vector x that has two different coordinates in two
different coordinate systems B and C .

[x]B = (3, 1) and [x]C = (6, 4)
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Change of basis

Example (continued)
Presume that for our example

b1 = 4c1 + c2
b2 = −6c1 + c2

We can calculate the coordinates of the basis vectors B in the C coordinate
system as

[b1]C = (4, 1)
[b2]C = (−6, 1)

The coordinates of x in the basis B tell us

x = 3b1 + b2

If we now apply the coordinate mapping transformation we have

[x]C = 3[b1]C + [b2]C = 3
(

4
1

)
+

(
−6
1

)
=

(
4 −6
1 1

)(
3
1

)
=

(
6
4

)
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Change of basis

Example (continued)
Note that the columns of the matrix(

4 −6
1 1

)
are the coordinates of each one of the elements of the basis B expressed in the
coordinate system C , and that the overall change of coordinates has the form

[x]C =

(
4 −6
1 1

)
[x]B

5. Vector spaces December 3, 2013 97 / 102



Change of basis

Theorem 11.1 (Change of basis)
Let B = {b1,b2, ...,bn} and C = {c1, c2, ..., cn} be two bases of the vector space
V . We can transform coordinates from one coordinate system to the other by
multiplying by a single, invertible n × n matrix, called PC←B whose columns are
the coordinates of the vectors of B in the basis C.

[x]C = PC←B[x]B
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Change of basis

Corollary
To convert from C coordinates back to B coordinates we simply have to invert the
transformation.

PB←C = P−1
C←B

Corollary
Consider the standard base in V given by E = {e1, e2, ..., en}. The matrix to
convert the coordinates from B to E is simply

PE←B =
(
b1 b2 ... bn

)
Consequently, we have that for two different bases

x = PE←B[x]B = PE←C [x]C

Finally,

[x]C = P−1
E←CPE←B[x]B
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Change of basis

Numerical trick
Given the two basis B and C we can easily find the coordinates of B in the basis
C in the following way. Let us define two matrices B and C whose columns are the
elements of the basis. Then

(C|B) ∼ (In|PC←B)

Example
Let’s say we are given b1 = (−9, 1), b2 = (−5,−1), c1 = (1,−4), c2 = (3,−5).(

1 3 −9 5
−4 −5 1 −1

)
∼
(

1 0 6 4
0 1 −5 3

)

Then, PC←B =

(
6 4
−5 3

)
.

5. Vector spaces December 3, 2013 100 / 102



Exercises

Exercises
From Lay (3rd ed.), Chapter 4, Section 7:

4.7.1
4.7.9
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Outline

5 Vector spaces
Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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A little bit of history

Eigenvalues (or “proper values”) were first used in the study of the motion of rigid
bodies through the inertia matrix by Leonhard Euler and Joseph-Louis Lagrange in
the mid of XVIIIth century. Then Augustin-Louis Cauchy used it to analyze
quadratic surfaces and conic sections in the early XIXth. Since then, they have
found applications in most scientific problems.
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Applications

In this example eigenvalues are used to estimate the size of carotid in a volumetric
image.

Hameeteman, K.; Zuluaga, M. A.; et al. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal, 2011,
15, 477-488.
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Applications

In this example eigenvalues were used as a part of another technique (Principal
Component Analysis) to automatically analyze luminiscent images.

Spinelli, A.E., Boschi, F. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging. J Biomed Opt, 2011, 16, 120506
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Eigenvalues and eigenvectors

Example

Consider the linear transformation T (x) =
(
3 −2
1 0

)
x on the vectors u = (−1, 1)

and v = (2, 1)

T (u) =

(
3 −2
1 0

)(
−1
1

)
=

(
−5
−1

)
T (v) =

(
3 −2
1 0

)(
2
1

)
=

(
4
2

)

u is changing its direction and module, but v is only changing its module.
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Eigenvalues and eigenvectors

Definition 1.1 (Eigenvalue and eigenvector)
Given the matrix A ∈Mn×n, λ is an eigenvalue of A if there exists a non-trivial
solution v ∈ Rn of the equation

Av = λv

The solution v is the eigenvector associated to the eigenvalue λ.

Example (continued)
In the previous example, v was an eigenvector with eigenvalue 2 (because
(2, 1)→ (4, 2), while u was not an eigenvector.
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Eigenvalues and eigenvectors

Example

Show that λ = 7 is an eigenvalue of A =

(
1 6
5 2

)
.

Solution
We must find a solution of the equation Av = λv, or what is the same

Av− λv = 0⇒ (A− λI)v = 0((
1 6
5 2

)
− 7

(
1 0
0 1

))(
v1
v2

)
=

(
−6 6
5 −5

)(
v1
v2

)
=

(
0
0

)
Any vector of the form v = (v1, v1) satisfies the previous equation

Theorem 1.1
In general, eigenvectors are solution of the equation

(A− λI)v = 0

That is, all eigenvectors belong to Nul{A− λI}. This is called the eigenspace.
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Eigenvalues and eigenvectors

Example (continued)
We see that we have a whole set of vectors associated to λ = 7, this is a subspace
of the eigenspace:

Eigenspace{7} = {(v1, v1) ∀v1 ∈ R}

It is a line passing through the origin with the direction (1, 1).
The other eigenvalue of matrix A is λ = −4

Eigenspace{−4} = {(v1,− 5
6v1) ∀v1 ∈ R}
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Eigenvalues and eigenvectors

Example

Knowing that λ = 2 is an eigenvalue of A =

4 −1 6
2 1 6
2 −1 8

, find a basis of its

eigenspace.
Solution

A− 2I =

4 −1 6
2 1 6
2 −1 8

−
2 0 0
0 2 0
0 0 2

 =

2 −1 6
2 −1 6
2 −1 6

 ∼
2 −1 6
0 0 0
0 0 0


So any vector fulfilling this equation must satisfy

x1 = 1
2x2 − 3x3 ⇒ Eigenspace{2} 3 x = x2

 1
2
1
0

+ x3

−30
1


Finally the basis is formed by the vectors ( 1

2 , 1, 0) and (−3, 0, 1).
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Eigenvalues and eigenvectors

Example (continued)
Within the eigenspace, A acts as a dilation.

6. Eigenvalues and eigenvectors December 3, 2013 13 / 70



Eigenvalues and eigenvectors

Theorem 1.2
The eigenvalues of a triangular matrix A are the elements of the main diagonal
(aii , i = 1, 2, ..., n).
Proof
Consider the matrix A− λI

a11 − λ a12 a13 ... a1n
0 a22 − λ a23 ... a2n
0 0 a33 − λ ... a3n
... ... ... ... ...
0 0 0 ... ann − λ


The equation system A− λI = 0 has a non-trivial solution if at least 1 of the
entries in the diagonal is 0. Therefore, it must be λ = aii for some i. Varying i
from 1 to n we obtain that all the elements in the main diagonal are the n
eigenvalues of the matrix A.
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Eigenvalues and eigenvectors

Example

The eigenvalues of A =

3 6 −8
0 0 6
0 0 2

 are λ = 3, 0, 2.

Theorem 1.3
Let v1, v2, ..., vr be r eigenvectors associated to r different eigenvalues. Then,
the set S = {v1, v2, ..., vr} is linearly independent.
Proof
Let us assume that S is linearly dependent. Without loss of generality, we may
assume that the first p (p < r ) are linearly independent, and that the p + 1-th
vector is dependent on the precedent vectors. Then, there must exist c1, c2, ..., cp
not all of them zero such that

vp+1 = c1v1 + c2v2 + ...+ cpvp (1)
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Eigenvalues and eigenvectors

If we multiply both sides of the equation by A, then we have

Avp+1 = c1Av1 + c2Av2 + ...+ cpAvp
λp+1vp+1 = c1λ1v1 + c2λ2v2 + ...+ cpλpvp

(2)

If we multiply Eq. (1) by λp+1 and subtract from Eq. (2), we have

0 = c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + ...+ cp(λp − λp+1)vp

Since the first p vectors are linearly independent it must be for i = 1, 2, ..., p

ci(λi − λp+1) = 0

Because all eigenvalues are different, then it must be ci = 0 (i = 1, 2, ..., p). But
this is a contradiction with the initial hypothesis that not all of them were 0.
Consequently, the set S must be linearly independent. (q.e.d.)
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Eigenvalues and eigenvectors

Difference equations
Let us assume we have two populations of cells: stem cells and mature cells.
Everyday we measure the number of them and we observe that:
Stem cells:

80% of them have remained as stem cells
15% of them have differentiated into
somatic cells
5% of them have died
There are 20% new stem cells.

Somatic cells:
95% of them have remained as
somatic cells
5% of them have died
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Eigenvalues and eigenvectors

Difference equations (continued)
If we call x (k)

stem the number of stem cells on the day k, and x (k)
somatic the number of

somatic cells the same day, then the following equation reflects the dynamics of
the system: (

x (k+1)
stem

x (k+1)
somatic

)
=

(
1 0

0.15 0.95

)(
x (k)

stem
x (k)

somatic

)
Let us assume that the day 0, there are 10, 000 stem cells, and 0 somatic cells.
Then, the evolution over time is(

x (1)
stem

x (1)
somatic

)
=

(
1 0

0.15 0.95

)(
x (0)

stem
x (0)

somatic

)
=

(
1 0

0.15 0.95

)(
10, 000

0

)
=

(
10, 000
1, 500

)
(

x (2)
stem

x (2)
somatic

)
=

(
1 0

0.15 0.95

)(
x (1)

stem
x (1)

somatic

)
=

(
1 0

0.15 0.95

)(
10, 000
1, 500

)
=

(
10, 000
2, 925

)
...
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Eigenvalues and eigenvectors

Difference equations
The previous model is of the form

x(k+1) = Ax(k)

The simplest way of constructing a solution of the previous equation is by taking
an eigenvector x1 and its corresponding eigenvalue, λ:

x(k) = λk
1x1

This is actually a solution because:

x(k+1) = Ax(k) = A(λk
1x1) = λk

1(Ax1) = λk
1(λ1x1) = λk+1

1 x1

It turns out that any linear combination of eigenvectors is also a solution

x(k) = c1λ
k
1x1 + c2λ

k
2x2 + ...+ cnλ

k
nxn
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 1:

5.1.1
5.1.3
5.1.9
5.1.17
5.1.19
5.1.23
5.1.25
5.1.26
5.1.27

6. Eigenvalues and eigenvectors December 3, 2013 20 / 70



Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Characteristic equation

Example

Find the eigenvalues of A =

(
2 3
3 −6

)
Solution
We need to find scalar values λ such that the equation

(A− λI)x = 0

has non-trivial solutions. By the Invertible Matrix theorem we know that this
problem is equivalent to that of finding λ values such that

|A− λI| = 0

In this case ∣∣∣∣(2 3
3 −6

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0∣∣∣∣ 2− λ 3
3 −6− λ

∣∣∣∣ = (2− λ)(−6− λ)− 9 = λ2 + 4λ− 21 = 0
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Characteristic equation

Example (continued)

λ2 + 4λ− 21 = 0⇒ λ =
−4±
√

42−4·1·(−21)
2·1 =

{
−7
3

Theorem 2.1 (The invertible matrix theorem (continued))
This theorem adds to the Theorems 5.1, 11.5 of Chapter 3 and 10.4 of Chapter 5.

xxv. |A| 6= 0.
xxvi. 0 is not an eigenvalue of A.

Definition 2.1 (Characteristic equation)
A scalar λ is an eigenvalue of a matrix A ∈Mn×n iff it is solution of the
characteristic equation

|A− λI| = 0

The determinant of A− λI is called the characteristic polynomial.
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Characteristic equation

Example

Let us calculate the eigenvalues of A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1

.

|A− λI| =

∣∣∣∣∣∣∣∣
5− λ −2 6 −1
0 3− λ −8 0
0 0 5− λ 4
0 0 0 1− λ

∣∣∣∣∣∣∣∣ = (5− λ)2, (3− λ)(1− λ) = 0

whose solutions are λ = 5 (with multiplicity 2), λ = 3, and λ = 1.

Example
Let us find the eigenvalues of a matrix whose characteristic polynomial is

|A− λI| = λ6 − 4λ5 − 12λ4 = λ4(λ2 − 4λ− 12) = λ4(λ− 6)(λ+ 2) = 0

whose solutions are λ = 0 (with multiplicity 4), λ = 6, and λ = −2.
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Characteristic equation

Definition 2.2 (Similarity between matrices)
Given two matrices A,B ∈Mn×n, A is similar to B iff there exists an invertible
matrix P ∈Mn×n such that

B = P−1AP

Watch out that similarity is not the same as row equivalence (A and B are row
equivalent if there exists a E such that B = EA being E invertible and the
product of row operation matrices).
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Characteristic equation

Theorem 2.2
If A is similar to B, then B is similar to A.
Proof
It suffices to take the definition of A similar to B and solve for B. If we multiply
by P on the right

B = P−1AP ⇒ PB = AP

Now, we multiply by P on the left (P−1 exists because P is invertible)

PB = AP ⇒ PBP−1 = A

and this is the definition of B being similar to A.
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Characteristic equation

Theorem 2.3
If A and B are similar matrices, then they have the same characteristic polynomial.
Proof
If A is similar to B, then there exists an invertible matrix P such that

B = P−1AP

If we subtract on both sides λI we have

B − λI = P−1AP − λI = P−1AP − λP−1P = P−1(A− λI)P

Now taking the determinant of both sides

|B − λI| = |P−1(A− λI)P| = |P−1||A− λI||P| = |P|−1|A− λI||P| = |A− λI|
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Characteristic equation

Theorem 2.4
If A and B are similar matrices, then they have the same characteristic polynomial.
Proof
If A is similar to B, then there exists an invertible matrix P such that

B = P−1AP

If we subtract on both sides λI we have

B − λI = P−1AP − λI = P−1AP − λP−1P = P−1(A− λI)P

Now taking the determinant of both sides

|B − λI| = |P−1(A− λI)P| = |P−1||A− λI||P| = |P|−1|A− λI||P| = |A− λI|
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 2:

5.2.1
5.2.9
5.2.18
5.2.19
5.2.20
5.2.23
5.2.24
5.2.28 (computer)
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Diagonalization

Definition 3.1 (Diagonalization)
A ∈Mn×n is diagonalizable if there exists P,D ∈Mn×n (with P invertible and
D diagonal) such that

A = PDP−1

Diagonalization simplifies the calculation of powers of A (Ak), is used to decouple
dynamic systems, and in multivariate statistics to produce uncorrelated random
variables.

Example

D =

(
5 0
0 3

)
D2 =

(
52 0
0 32

)
D3 =

(
53 0
0 33

)
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Diagonalization

Example
Let us assume that A = PDP−1. Let us calculate calculate now the different
powers of A

A2 = A · A = (PDP−1)(PDP−1) = (PD)(P−1P)(DP−1) = PDDP−1 = PD2P−1

A3 = A2 · A = (PD2P−1)(PDP−1) = PD3P−1

...
Ak = PDkP−1

Let us particularize this result for A =

(
7 2
−4 1

)
that can be factorized with

P =

(
1 1
−1 −2

)
and D =

(
5 0
0 3

)
as A = PDP−1.

Ak = PDkP−1 =

(
1 1
−1 −2

)(
5k 0
0 3k

)(
2 1
−1 −1

)
=(

2 · 5k − 3k 5k − 3k

2 · 3k − 2 · 5k 2 · 3k − 5k

)
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Diagonalization

Theorem 3.1 (Diagonalization theorem)
A ∈Mn×n is diagonalizable iff A has n linearly independent eigenvectors.
In this case, we may construct P by stacking the n eigenvectors, and D as a
diagonal matrix with the corresponding eigenvalues.
Proof

Consider the columns of P =
(
p1 p2 ... pn

)
and D =


d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn


Let us assume that A = PDP−1 and we multiply by P on the right

AP = PD

A
(
p1 p2 ... pn

)
=

(
p1 p2 ... pn

)
d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn

(
Ap1 Ap2 ... Apn

)
=

(
d1p1 d2p2 ... dnpn

)
6. Eigenvalues and eigenvectors December 3, 2013 33 / 70



Diagonalization

This implies that

Ap1 = d1p1
Ap2 = d2p2

...
Apn = dnpn

But this is the definition of eigenvector, so the columns of P (pi) must be
eigenvectors of A and di its corresponding eigenvalue. Since P is invertible, its
columns must be linearly independent.
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Diagonalization

Example

Diagonalize A =

 1 3 3
−3 −5 −3
3 3 1

.

Step 1: Find the eigenvalues of A

|A− λI| = 0⇒ −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2 = 0

whose solutions are λ = 1 and λ = −2 (double).
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI =

 1 3 3
−3 −5 −3
3 3 1

−
1 0 0
0 1 0
0 0 1

 =

 0 3 3
−3 −6 −3
3 3 0

 ∼
0 1 1
0 0 0
1 1 0
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Diagonalization

Example (continued)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI ∼

0 1 1
0 0 0
1 1 0

⇒ x1 = −x2
x3 = −x2

⇒ v1 =

 1
−1
1


λ = −2

A− λI =

 1 3 3
−3 −5 −3
3 3 1

−
−2 0 0

0 −2 0
0 0 −2

 =

 3 3 3
−3 −3 −3
3 3 3

 ∼1 1 1
0 0 0
0 0 0

⇒ x1 = −x2 − x3 ⇒ v2 =

−11
0

 , v3 =

−10
1
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Diagonalization

Example (continued)
Step 3: Construct P and D

P =

 1 −1 −1
−1 1 0
1 0 1

 D =

1 0 0
0 −2 0
0 0 −2


Step 4: Check everything is correct

P is invertible |P| 6= 0

|P| = 1

A = PDP−1 ⇒ AP = PD

AP =

 1 2 2
−1 −2 0
1 0 −2

 PD =

 1 2 2
−1 −2 0
1 0 −2
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Diagonalization

Example (continued)
Step 4: Check everything is correct

P is invertible |P| 6= 0
MATLAB:
P=[1 -1 -1; -1 1 0; 1 0 1];

det(P)
A = PDP−1 ⇒ AP = PD

MATLAB:
A=[1 3 3; -3 -5 3; 3 3 1];

P=[1 -1 -1; -1 1 0; 1 0 1];
D=[1 0 0; 0 -2 0; 0 0 -2];
A*P
P*D
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Diagonalization

Example

Diagonalize A =

 2 4 3
−4 −6 −3
3 3 1

.

Step 1: Find the eigenvalues of A

|A− λI| = 0⇒ −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2 = 0

whose solutions are λ = 1 and λ = −2 (double). (Same eigenvalues as in the
previous example)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI =

 2 4 3
−4 −6 −3
3 3 1

−
1 0 0
0 1 0
0 0 1

 =

 1 4 3
−4 −7 −3
3 3 0

 ∼
1 0 −1
0 1 1
0 0 0
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Diagonalization

Example (continued)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI ∼

1 0 −1
0 1 1
0 0 0

⇒ x1 = x3
x2 = −x3

⇒ v1 =

 1
−1
1


(The same eigenspace as in the previous example).

λ = −2

A− λI =

 2 4 3
−4 −6 −3
3 3 1

−
−2 0 0

0 −2 0
0 0 −2

 =

 4 4 3
−4 −4 −3
3 3 3

 ∼1 1 3
4

0 0 0
0 0 1

4

⇒ x1 = −x2 − 3
4x3

1
4x3 = 0 ⇒ v2 =

−11
0


(A cannot be diagonalized because there are not 3 linearly independent vectors)
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Diagonalization

Theorem 3.2
If a n × n matrix has n different eigenvalues, then it is diagonalizable.
Proof
Let v1, v2, ..., vn be the n eigenvectors corresponding to the n different
eigenvalues. The set

{v1, v2, ..., vn}

is linearly independent by Theorem 1.3 and A is diagonalizable by Theorem 3.1.

Example

Is A =

5 −8 1
0 0 7
0 0 −2

 diagonalizable?

Solution
A is a triangular matrix and its eigenvalues are 5, 0 and -2, all of them distinct,
and by the previous theorem A is diagonalizable.
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Diagonalization

Theorem 3.3
Let A ∈Mn×n with p ≤ n different eigenvalues. Let dk be the dimension
associated to the eigenvalue λk . Then,

1 dk is smaller or equal the multiplicity of λk .
2 A is diagonalizable iff dk is equal to the multiplicity of λk . In this case,

p∑
k=1

dk = n

3 If A is diagonalizable and Bk are the bases of each one of the eigenspaces,
then {B1,B2, ...,Bp} is a basis of Rn.
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Diagonalization

Example

Let A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 3

. Let’s factorize it as A = PDP−1. The eigenvalues

and associated eigenvectors are

λ1 = 5 ↔ v1 =


−8
4
1
0

 v2 =


−16
4
0
1


λ2 = −3 ↔ v3 =


0
0
1
0

 v4 =


0
0
0
1


⇒

P =


−8 −16 0 0
4 4 0 0
1 0 1 0
0 1 0 1


D =


5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 3:

5.3.1
5.3.23
5.3.27
5.3.28
5.3.29
5.3.31
5.3.32
5.3.33 (computer)
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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The matrix of a linear transformation
The objective of this section is to show that if A is diagonalizable (A = PDP−1),
then the transformation TA(x) = Ax is essentially the same as TD(u) = Du.

Definition 4.1 (The matrix of a linear transformation)
Consider a linear transformation between two vectors spaces T : U → V . Let B
be a basis of V , and C be a basis of W . Let x ∈ V and consider its coordinates
[x]B = (r1, r2, ..., rn).
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The matrix of a linear transformations

Let’s analyze x and T (x)

x = r1b1 + r2b2 + ...+ rnbn ⇒
T (x) = T (r1b1 + r2b2 + ...+ rnbn) [T is linear]

= r1T (b1) + r2T (b2) + ...+ rnT (bn)

Now, let us consider the coordinates in C of the transformed vector

[T (x)]C = r1[T (b1)]C + r2[T (b2)]C + ...+ rn[T (bn)]C

We can write this equation in matrix form as

[T (x)]C = M[x]B

where M ∈Mm×n is a matrix formed by the transformations of each one of the
basis vectors in B

M =
(
[T (b1)]C [T (b2)]C ... [T (bn)]C

)
Matrix M is called the matrix of T relative to the bases B and C .
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The matrix of a linear transformations

Example
Let B = {b1,b2} and C = {c1, c2, c3} and

T (b1) = 3c1 − 2c2 + 5c3
T (b2) = 4c1 + 7c2 − c3

⇒ M =

 3 4
−2 7
5 −1
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Transformations from V into V

Definition 4.2 (B-matrix for T )
If T is a transformation from V into V and B is a basis of V , then the matrix M
is called the B-matrix of T.

Example
Consider in the vector space of polynomials of degree 2 (P2), the derivative
transformation

T : P2 → P2
T (a0 + a1t + a2t2) = a1 + 2a2t

Consider the standard basis of P2, B = {1, t, t2}.
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Transformations from V into V

Example (continued)
Which is the B-transformation matrix?
Solution

T (1) = 0 → [T (1)]B =

0
0
0


T (t) = 1 → [T (t)]B =

1
0
0


T (t2) = 2t → [T (t2)]B =

0
2
0


⇒ M =

0 1 0
0 0 2
0 0 0
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Transformations from V into V

Example (continued)
Verify that [T (x)]B = M[x]B
Solution
Given any polynomial p(t) = a0 + a1t + a2t2 its coordinates are
[p(t)]B = (a0, a1, a2). The derivative of p(t) is T (p(t)) = a1 + 2a2t, then

[T (p(t))]B =

 a1
2a2
0

 =

0 1 0
0 0 2
0 0 0

a0
a1
a2
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Transformations from Rn into Rn

Theorem 4.1 (Diagonal matrix representation)
Suppose matrix A is diagonalizable (A = PDP−1). If B is the basis of Rn formed
by the columns of P, then D is the B-matrix of the linear transformation
T (x) = Ax.
Proof
Let b1,b2, ...,bn be the columns of P so that B = {b1,b2, ...,bn} is a basis. We
know that for any basis in Rn

x = P[x]B ⇒ [x]B = P−1x

Let [T ]B be the transformation matrix in the basis B. We know that by definition

[T ]B =
(
[T (b1)]B [T (b2)]B ... [T (bn)]B

)
(T (x) = Ax)

=
(
[Ab1]B [Ab2]B ... [Abn]B

)
(change of coordinates)

=
(
P−1Ab1 P−1Ab2 ... P−1Abn

)
(matrix multiplication)

= P−1A
(
b1 b2 ... bn

)
(definition of P)

= P−1AP = D
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Transformations from Rn into Rn

Example

Let T (x) =
(

7 2
−4 1

)
x. Find a basis B in which the B-matrix of T is diagonal.

Solution

We diagonalize A as A = PDP−1, with P =

(
1 1
−1 −2

)
and D =

(
5 0
0 3

)
. We

may change vectors x to the basis B = {(1,−1), (1,−2)} by applying

u = P−1x

Then, in this new basis, T can be applied as

T (u) = Du = DP−1x

If we now, come back to the original basis

T (x) = PT (u) = PDP−1x = Ax

Understanding D as the transformation matrix in some basis gives us insight on its
effect (in this example, an anisotropic dilation).
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Similar matrices

Definition 4.3 (Similar matrices)
A and C are similar matrices iff there exists another matrix P such that
A = PCP−1. Given the transformation T (x) = Ax, C is the B-matrix of the
transformation T , when B is the basis defined by the columns of the matrix P.

Conversely, if B is any basis and P is the matrix formed by the vectors in the basis
B, then the B-matrix of the transformation T is P−1AP.

6. Eigenvalues and eigenvectors December 3, 2013 54 / 70



Similar matrices

Example

Let A =

(
4 −9
4 8

)
, T (x) = Ax and b1 = (3, 2), b2 = (2, 1). A is not

diagonalizable but the basis B = {b1,b2} has the property that [T ]B is triangular
(it is said to be in Jordan form). According to the previous definition, the
B-matrix of the transformation T is

[T ]B = P−1AP =

(
−1 2
2 −3

)(
4 −9
4 8

)(
3 2
2 1

)
=

(
−2 1
0 −2

)

Numerical note
An easy way to compute P−1AP once we have AP is to find a row equivalent
matrix

( P AP ) ∼ ( I P−1AP )
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 4:

5.4.1
5.4.3
5.4.5
5.4.13
5.4.18
5.4.22
5.4.23
5.4.25
5.4.27 (computer)
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Complex eigenvalues
Complex eigenvalues are always related to a rotation around a certain axis.

Example

Consider the linear transformation T (x) =
(
0 −1
1 0

)
x is a rotation of 90◦.

Obviously, there cannot be any real eigenvector since all the vectors are rotating.
All eigenvalues are complex:

|A− λI| = 0 = λ2 + 1 = (λ− i)(λ+ i)
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Complex eigenvalues

Example (continued)
Let’s see what happens if we allow applying the transformation on complex
vectors: (

0 −1
1 0

)(
1
−i

)
= i
(

1
−i

)
(
0 −1
1 0

)(
1
i

)
= −i

(
1
i

)
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Complex eigenvalues

Example

Find the eigenvalues and eigenvectors of A =

( 1
2 − 3

53
4

11
10

)
.

Solution
To find the eigenvalues we solve the characteristic equation:

0 = |A− λI| =
∣∣∣∣ 1

2 − λ − 3
53

4
11
10 − λ

∣∣∣∣ = λ2 − 8
5λ+ 1⇒ λ = 4

5 ±
3
5 i

MATLAB: A=[1/2 -3/5; 3/4 11/10]; l=eigs(A)
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Complex eigenvalues

Example (continued)
λ1 = 4

5 −
3
5 i

A− λ1I =

( 1
2 − ( 4

5 −
3
5 i) − 3

53
4

11
10 − ( 4

5 −
3
5 i)

)
=

(
− 3

10 + 3
5 i − 3

53
4

3
10 + 3

5 i

)
∼

(
1 2

5 + 4
5 i

0 0

)
⇒ x1 = −( 2

5 + 4
5 i)x2 ⇒ v1 =

(
−2− 4i

5

)
MATLAB:
A_lI=A-l(1)*eye(2);
A_lI(1,:)=A_lI(1,:)/A_lI(1,1)
A_lI(2,:)=A_lI(2,:)-A_lI(1,:)*A_lI(2,1)
λ2 = 4

5 + 3
5 i = λ∗

1

A− λ2I ∼
(

1 2
5 −

4
5 i

0 0

)
⇒ x1 = −( 2

5 −
4
5 i)x2 ⇒ v2 =

(
−2+ 4i

5

)
= v∗

1

6. Eigenvalues and eigenvectors December 3, 2013 61 / 70



Complex eigenvalues

Example (continued)
The application of A on R2 is a rotation. To see this, we may start with
x0 = (2, 0) and calculate
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Complex eigenvalues

Definition 5.1 (Conjugate of a vector and matrix)
The conjugate of a vector is defined as

v =


v1
v2
...
vn

⇒ v∗ =


v∗

1
v∗

2
...
v∗

n


In the same way, the conjugate of a matrix is defined as

A =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn

⇒ A∗ =


a∗

11 a∗
12 ... a∗

1n
a∗

21 a∗
22 ... a∗

2n
... ... ... ...
a∗

m1 a∗
m2 ... a∗

mn


Theorem 5.1 (Properties)

(rv)∗ = r∗v∗

(Av)∗ = A∗v∗
(AB)∗ = A∗B∗

(rA)∗ = r∗A∗
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Eigenanalysis of a real matrix that acts on Cn

Theorem 5.2
Let A ∈Mn×n be a matrix with real coefficients. If λ is an eigenvalue of A, then
λ∗ is also an eigenvalue. If v is an eigenvector associated to λ, then v∗ is an
eigenvector associated to λ∗.
Proof
If λ is an eigenvalue and v one of its eigenvectors, then we know that

Av = λv

If we now conjugate both sides

(Av)∗ = (λv)∗ ⇒ Av∗ = λ∗v∗

(Remind that A has real coefficients and that’s why A∗ = A).
The previous equation means that v∗ is also an eigenvector of A and that λ∗ is its
eigenvalue.
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Eigenanalysis of a real matrix that acts on Cn

Example

Let A =

(
a −b
b a

)
. Its eigenvalues are λ = a ± bi and the corresponding

eigenvectors v =

(
1
±i

)
.

(
a −b
b a

)(
1
−i

)
=

(
a + bi
b − ai

)
= (a + bi)

(
1
−i

)
(
a −b
b a

)(
1
i

)
=

(
a − bi
b + ai

)
= (a − bi)

(
1
i

)
In particular if a = cos(φ) and b = sin(φ), then we have a rotation matrix whose
eigenvalues are(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
⇒ λ = cos(φ)± sin(φ)i = e±iφ
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Eigenanalysis of a real matrix that acts on Cn

Example on Slide 60 (continued)

Let A =

( 1
2 − 3

53
4

11
10

)
. Consider λ1 = 4

5 −
3
5 i and its corresponding eigenvector

v1 = (−2− 4i , 5). Now, we construct the matrix

P =
(
Re{v1} Im{v1}

)
=

(
−2 −4
5 0

)
and make a change of basis to the basis whose vectors are the columns of P:

C = P−1AP =

( 4
5 − 3

53
5

4
5

)
=

(
cos(36.87◦) − sin(36.87◦)
sin(36.87◦) cos(36.87◦)

)
That is, C is a pure rotation and thanks to the change of basis we obtain an
elliptical rotation as shown in Slide 62.
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Eigenanalysis of a real matrix that acts on Cn

Theorem 5.3
Let A be a real, 2× 2 matrix with complex eigenvalue λ = a − bi (b 6= 0) and an
associated eigenvector in C2. Then

A = PCP−1

where

P =
(
Re{v} Im{v}

)
and

C =

(
a −b
b a

)
Proof
It makes use of

Re{Av} = ARe{v}
Im{Av} = AIm{v}
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Eigenanalysis of a real matrix that acts on Cn

Example: Rotations extend to higher dimensions

Consider A =

 4
5 − 3

5 0
3
5

4
5 0

0 0 1.07

. This is the rotation previously described in the

XY plane plus a scaling in the Z direction. Any point in the XY (for instance,
w0 = (2, 0, 0)) plane rotates within the plane. Any point outside the plane (for
instance, x0 = (2, 0, 1) rotates in XY and shifts along Z ). The following figure
shows the successive application of A on w0 and x0.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 5:

5.5.1
5.5.7
5.5.13
5.5.23
5.5.24
5.5.25
5.5.26
5.5.27
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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A little bit of history

Least squares was first used to solve problems in geodesy (Andrien-Marie
Legendre, 1805) and astronomy (Carl Friedrich Gauss, 1809). Gauss made the
connection of this method to the distribution of measurement errors. Currently it
is one of the best understood and most widely spread methods.
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Applications

In this example Least Squares are used to plan a radiation therapy.

Bedford, J. L. Sinogram analysis of aperture optimization by iterative least-squares in volumetric modulated arc therapy. Physics in Medicine and Biology,

2013, 58, 1235-1250
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Applications

Traditionally, control applications were formulated in a least-squares setup.
Currently, they have found more sophisticated goal functions that can be regarded
as evolved versions of least squares.
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
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7. Orthogonality and least squares December 3, 2013 7 / 119



Inner product

Definition 1.1 (Inner product or dot product)
Let u, v ∈ Rn be two vectors. The inner product or dot product between these
two vectors is defined as

u · v = 〈u, v〉 ,
n∑

i=1
uivi

Theorem 1.1
If we considered u and v to be column vectors (∈Mn×1), then

u · v = uTv

Example
Let u = (2,−5,−1) and v = (3, 2,−3).

u · v = 2 · 3 + (−5) · 2 + 1 · (−3) = −1
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Inner product

Theorem 1.2
For any three vectors u, v,w ∈ Rn and any scalar r ∈ R it is verified that

1 u · v = v · u
2 (u + v) ·w = u ·w + v ·w
3 (ru) · v = r(u · v) = u · (rv)

4 u · u ≥ 0
5 u · u = 0⇔ u = 0

Corollary
(r1u1 + r2u2 + ...+ rpup) · v = r1(u1 · v) + r2(u2 · v) + ...+ rp(up · v)
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Length

Definition 1.2 (Length of a vector)
Given any vector v, its length is defined as

‖v‖ ,
√
v · v

Theorem 1.3
Given any vector v ∈ Rn

‖v‖ =
√
v21 + v22 + ...+ v2n

Example
The length of v = (1,−2, 2, 0) is

‖v‖ =
√
12 + (−2)2 + 22 + 02 = 3
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Length

Theorem 1.4
For any vector v and any scalar r it is verified that

‖rv‖ = |r |‖v‖

Proof
It will be given only for v ∈ Rn:

‖rv‖ =
√

(rv1)2 + (rv2)2 + ...+ (rvn)2 =
√
r2(v21 + v22 + ...+ v2n )

=
√
r2
√
v21 + v22 + ...+ v2n = |r |‖v‖

(q.e.d.)

Example (continued)
Find a vector of unit length that has the same direction as v = (1,−2, 2, 0).
Solution

uv = v
‖v‖ =

( 1
3 ,−

2
3 ,

2
3 , 0
)
⇒ ‖uv‖ =

√
1
9 + 4

9 + 4
9 + 0 = 1
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Distance

Definition 1.3 (Distance in R)
The distance between any two numbers a, b ∈ R can be defined as

d(a, b) = |a − b|

Example
Calculate the distance between 2 and 8 as well as between -3 and 4.
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Distance

Definition 1.4 (Distance in Rn)
The distance between any two vectors u, v ∈ Rn can be defined as

d(u, v) = ‖u− v‖

Example
Calculate the distance between u = (7, 1) and v = (3, 2)

d(u, v) = ‖(7, 1)− (3, 2)‖ = ‖(4,−1)‖ =
√
42 + 12 =

√
17
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Distance

Example
For any two vectors in R3, u and v, the distance can be calculated through

d(u, v) = ‖u− v‖ = ‖(u1 − v1, u2 − v2, u3 − v3)‖ =√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2
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Orthogonality

Example
Any two vectors in R2, u and v, are orthogonal if d(u, v) = d(u,−v)

d2(u, v) = ‖u− v‖2 = (u− v) · (u− v) = u ·u+ v · v− 2u · v = ‖u‖2 + ‖v‖2− 2u · v
d2(u,−v) = ‖u+v‖2 = (u+v) · (u+v) = u ·u+v ·v+2u ·v = ‖u‖2 +‖v‖2 +2u ·v

d2(u, v) = d2(u,−v)⇒ −2u · v = 2u · v⇒ u · v = 0
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Orthogonality

Definition 1.5 (Orthogonality between two vectors)
Any two different vectors, u and v, in a vector space V are orthogonal iff

u · v = 0

Corollary
0 is orthogonal to any other vector.

Theorem 1.5 (Pythagorean theorem)
Any two vectors, u and v, in a vector space V are orthogonal iff

‖u + v‖2 = ‖u‖2 + ‖v‖2
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Orthogonality

Definition 1.6 (Orthogonality between vector and vector space)
Let u be a vector in a vector space V and W a vector subspace of V . u is
orthogonal to W if u is orthogonal to all vectors in W . The set of all vectors
orthogonal to W is denoted as W⊥ (the orthogonal complement of W ).

Example
Let W be a plane in R3 passing through the origin and L be a line, passing
through the origin and perpendicular to W . For any vector w ∈W and any vector
z ∈ L we have

w · z = 0

Therefore,

L = W⊥ ⇔W = L⊥
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Orthogonality

Theorem 1.6
Let W be a vector subspace of a vector space V .

1 x ∈W⊥ iff x is orthogonal to every vector in a set that spans W .
2 W⊥ is a vector subspace of V .

Theorem 1.7

Let A ∈Mm×n, then
1 (Row{A})⊥ = Nul{A}
2 (Col{A})⊥ = Nul{AT}
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Orthogonality

Proof Nul{A} ⊆ (Row{A})⊥
Consider the rows of A, ai (i = 1, 2, ...,m) as column vectors, then for any vector
x ∈ Nul{A} we know

Ax = 0⇒


aT1
aT2
...
aTm

 x =


aT1 x
aT2 x
...
aTmx

 =


a1 · x
a2 · x
...

am · x

 =


0
0
...
0


Consequently, x is orthogonal to all the rows of A, which span Row{A} and by
the previous theorem, x ∈ (Row{A})⊥
Proof Nul{A} ⊇ (Row{A})⊥

Conversely, let x ∈ (Row{A})⊥, then by the previous theorem we know that

ai · x for i = 1, 2, ...,m⇒ Ax = 0

So, x ∈ Nul{A}
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Orthogonality

Proof (Col{A})⊥ = Nul{AT}
Let’s define B = AT . By the first part of this theorem, we know

(Row{B})⊥ = Nul{B} ⇒ (Row{AT})⊥ = Nul{AT} ⇒ (Col{A})⊥ = Nul{AT}

Theorem 1.8
For any two vectors u and v in a vector space V , the angle between the two can
be measured through the dot product:

u · v = ‖u‖‖v‖ cos θ
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 1:

6.1.15
6.1.22
6.1.24
6.1.26
6.1.28
6.1.30
6.1.32 (computer)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Orthogonal sets

Definition 2.1 (Orthogonal set)
Let S = {u1,u2, ...,up} be a set of vectors. S is an orthogonal set iff

ui · uj = 0 ∀i , j ∈ {1, 2, ..., p} i 6= j

Example
Let u1 = (3, 1, 1), u2 = (−1, 2, 1), u3 = (− 1

2 ,−2,
7
2 ). Check whether the set

S = {u1,u2,u3} is orthogonal.
Solution

u1 · u2 = 3 · (−1) + 1 · 2 + 1 · 1 = 0
u1 · u3 = 3 · (− 1

2 ) + 1 · (−2) + 1 · ( 72 ) = 0
u2 · u3 = (−1) · (− 1

2 ) + 2 · (−2) + 1 · ( 72 ) = 0
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Orthogonal sets

Theorem 2.1
If S is an orthogonal set of non-null vectors, then S is linearly independent and,
consequently, it is a basis of the subspace spanned by S.
Proof
Let ui (i = 1, 2, ..., p) be the elements of S. Let us assume that S is linearly
dependent. Then, there exists coefficients c1, c2, ..., cp not all of them null such
that

0 = c1u1 + c2u2 + ...+ cpup

Now, we compute the inner product with u1

0 · u1 = (c1u1 + c2u2 + ...+ cpup) · u1
0 = c1(u1 · u1) + c2(u2 · u1) + ...+ cp(up · u1) = c1‖u1‖2 ⇒ c1 = 0

Multiplying by ui (i = 2, 3, ..., p) we can show that all ci ’s are 0, and, therefore,
the set S is linearly independent.
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Orthogonal basis

Definition 2.2 (Orthogonal basis)
A set of vectors B is an ortohogonal basis of a vector space V if it is an
ortohogonal set and it is a basis of V .

Theorem 2.2
Let {u1,u2, ...,up} be an orthogonal basis for a vector space V , for each x ∈ V
we have

x = x·u1
‖u1‖2 u1 + x·u2

‖u2‖2 u2 + ...+
x·up
‖up‖2 up

Proof
If x is in V , then it can be expressed as a linear combination of the vectors in a
basis of V

x = c1u1 + c2u2 + ...+ cpup

Now, we calculate the dot product with u1

x · u1 = (c1u1 + c2u2 + ...+ cpup) · u1 = c1‖u1‖2 ⇒ c1 = x·u1
‖u1‖2
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Orthogonal basis

Example
Let u1 = (3, 1, 1), u2 = (−1, 2, 1), u3 = (− 1

2 ,−2,
7
2 ), and B = {u1,u2,u3} be an

orthogonal basis of R3. Let x = (6, 1,−8). The coordinates of x in B are given by

x · u1 = 11 x · u2 = −12 x · u1 = −33
‖u1‖2 = 11 ‖u2‖2 = 6 ‖u3‖2 = 33

2

x = 11
11u1 + −12

6 u2 + −33
33
2
u3

= u1 − 2u2 − 2u3

The coordinates of x in the basis B are

[x]B = (1,−2,−2)
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Orthogonal projections

Orthogonal projection onto a vector
Consider a vector y and another one u. Let us assume we want to decompose y as
the sum of two orthogonal vectors ŷ (along the direction of u) and another vector
z (orthogonal to u):

y = ŷ + z = αu + z⇒
z = y− ŷ

We need to find α that makes u and z orthogonal.

0 = z · u = (y− αu) · u = y · u− α‖u‖2 ⇒ α = y·u
‖u‖2

ŷ is the orthogonal projection of y onto u.
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Orthogonal projections

Example
Let y = (7, 6) and u = (4, 2). Then,

y · u = 40
‖u‖2 = 20

}
⇒

ŷ = y·u
‖u‖2 u = 40

20u = 2u =

(
8
4

)
z = y− ŷ =

(
7
6

)
−
(
8
4

)
=

(
−1
2

)
d(y, ŷ) = ‖y− ŷ‖ = ‖z‖ =

√
(−1)2 + 22 =

√
5
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Orthonormal set

Definition 2.3 (Orthonormal set)
{u1,u2, ...,up} is an orthonormal set if it is an orthogonal set and all ui vectors
have unit length.

Example
Show that the set {u1,u2,u3} is orthonormal, with

u1 = 1√
11

3
1
1

 u2 = 1√
6

−12
1

 u3 = 1√
66

−1−4
7


Solution
Let’s check that they are orthogonal:

u1 · u2 = 1√
11

1√
6 (3 · (−1) + 1 · 2 + 1 · 1) = 0

u1 · u3 = 1√
11

1√
66 (3 · (−1) + 1 · (−4) + 1 · 7) = 0

u2 · u3 = 1√
6

1√
66 ((−1) · (−1) + (2) · (−4) + (1) · 7) = 0
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Orthonormal set

Example (continued)
Now, let’s check that they have unit length:

‖u1‖ =

√(
1√
11

)2
(32 + 12 + 12) =

√
9+1+1

11 = 1

‖u2‖ =

√(
1√
6

)2
((−1)2 + 22 + 12) =

√
1+4+1

6 = 1

‖u3‖ =

√(
1√
66

)2
((−1)2 + (−4)2 + 72) =

√
1+16+49

66 = 1

Theorem 2.3
If S = {u1,u2, ...,un} is an orthonormal set, then it is an orthonormal basis of
Span{S}.

Example
{e1, e2, ..., en} is an orthonormal basis of Rn.
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Orthonormal basis

Theorem 2.4
Let S = {u1,u2, ...,un} is an orthogonal set of vectors, then the set
S ′ = {u′1,u′2, ...,u′n} where

u′i = ui
‖ui‖

is a orthonormal set (this operation is called vector normalization).
Proof
Let’s check that the u′i vectors are orthogonal:

u′i · u′j = ui
‖ui‖ ·

uj
‖uj‖ = 1

‖ui‖‖uj‖ui · uj

But this product is obviusly 0 because the ui vectors are orthogonal. Let’s check
now that the u′i vectors have unit length:

‖u′i‖ =
∥∥∥ ui
‖ui‖

∥∥∥ = ‖ui‖
‖ui‖ = 1
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Orthonormal matrix

Theorem 2.5
Let U ∈Mm×n be a square matrix. The columns of U form an orthonormal set iff

UTU = In

It is said that U is an orthonormal matrix.
Proof
Let’s consider the columns of U

U =
(
u1 u2 ... un

)
Let’s calculate now UTU

UTU =


uT1
uT2
...
uTn

(u1 u2 ... un
)

=


uT1 u1 uT1 u2 ... uT1 un
uT2 u1 uT2 u2 ... uT2 un
... ... ... ...

uTn u1 uTn u2 ... uTn un


The condition UTU = In simply states

{
uTi uj = 0 i 6= j
uTi uj = 1 i = j , which is the

definition of an orthonormal set.
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Orthonormal matrix

Theorem 2.6
Let U ∈Mn×n be an orthonormal matrix and ∀x, y ∈ Rn, then

1 ‖Ux‖ = ‖x‖
2 (Ux) · (Uy) = x · y
3 (Ux) · (Uy) = 0⇔ x · y = 0

Example

Let U =


1√
2

2
3

1√
2 − 2

3
0 1

3

 and x =

(√
2
3

)
.

U is an orthonormal matrix because

UTU =

 1√
2

1√
2 0

2
3
− 2

3
1
3




1√
2

2
3

1√
2 − 2

3
0 1

3

 =

(
1 0
0 1

)
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Orthonormal matrix

Example (continued)
Let’s calculate now Ux

Ux =


1√
2

2
3

1√
2 − 2

3
0 1

3

(√23
)

=

 3
−1
1


Let’s check now that ‖Ux‖ = ‖x‖

‖Ux‖ = ‖(3,−1, 1)‖ =
√
32 + (−1)2 + 12 =

√
11

‖x‖ =
∥∥(
√
2, 3)

∥∥ =
√

(
√
2)2 + 32 =

√
11

Theorem 2.7
Let U be an orthonormal and square matrix. Then,

1 U−1 = UT

2 UT is also an orthonormal matrix (i.e., the rows of U also form an
orthonormal set of vectors).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 2:

6.2.1
6.2.10
6.2.15
6.2.25
6.2.26
6.2.29
6.2.35 (computer)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Orthogonal projections

Definition 3.1 (Orthogonal projection)
The orthogonal projection of a point y onto a vector subspace W is a point
ŷ ∈W such that

z = y− ŷ
z ⊥W
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Orthogonal projections

Example
Let {u1,u2, ...,u5} be an orthogonal basis of R5. Consider the subspace
W = Span{u1,u2}. Given any vector y ∈ R5, we can decompose it as the sum of
a vector in W and a vector perpendicular to W

y = ŷ + z

Solution
If {u1,u2, ...,u5} is a basis of R5, then any vector y ∈ R5 can be written as

y = c1u1 + c2u2 + ...+ c5u5

We may decompose this sum as

ŷ = c1u1 + c2u2
z = c3u3 + c4u4 + c5u5
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Orthogonal projections

Example (continued)
It is obvious that ŷ ∈W . Now we need to show that z ∈W⊥. For doing so, we
will show that

z · u1 = 0
z · u2 = 0

To show the first equation we note that

z · u1 = (c3u3 + c4u4 + c5u5) · u1
= c3(u3 · u1) + c4(u4 · u1) + c5(u5 · u1)
= c3 · 0 + c4 · 0 + c5 · 0
= 0

We would proceed analogously for z · u2 = 0.
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Orthogonal projections

Theorem 3.1 (Orthogonal Decomposition Theorem)
Let W be a vector subspace of a vector space V . Then, any vector y ∈ V can be
written uniquely as

y = ŷ + z

with ŷ ∈W and z ∈W⊥. In fact, if {u1,u2, ...,up} is an orthogonal basis of W ,
then

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up
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Orthogonal projections

Proof
ŷ is obviously in W since it has been written as a linear combination of vectors in
a basis of W . z is perpendicular to W because

z · u1 =
(
y−

(
y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up

))
· u1

= y · u1 − y·u1
‖u1‖2 (u1 · u1)− y·u2

‖u2‖2 (u2 · u1)− ...− y·up
‖up‖2 (up · u1)

[{ui} is an orthogonal set]
= y · u1 − y·u1

‖u1‖2 (u1 · u1)

= y · u1 − y·u1
‖u1‖2 ‖u1‖

2

= y · u1 − y · u1
= 0

We could proceed analogously for all elements in the basis of W .
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Orthogonal projections

We need to show now that the decomposition is unique. Let us assume that it is
not unique. Consequently, there exist different vectors such that

y = ŷ + z
y = ŷ′ + z′

We subtract both equations

0 = (ŷ− ŷ′) + (z− z′)⇒ ŷ− ŷ′ = z′ − z

Let v = ŷ− ŷ′. It is obvious that v ∈W because it is written as a linear
combination of vectors in W . On the other side, v = z′ − z, i.e., it is a linear
combination of vectors in W⊥, so v ∈W⊥. The only vector that belongs to W
and W⊥ at the same time is

v = 0⇒
{

ŷ = ŷ′
z = z′ .

and consequently, the orthogonal decomposition is unique. Additionally, the
uniqueness of the decomposition depends only on W and not on the particular
basis chosen for W .
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Orthogonal projections

Example
Let u1 = (2, 5,−1) and u2 = (−2, 1, 1). Let W be the subspace spanned by u1
and u2. Let y = (1, 2, 3) ∈ R3. The orthogonal projection of y onto W is

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2

= 1·2+2·5+3·(−1)
22+52+(−1)2

 2
5
−1

+ 1·(−2)+2·1+3·1
(−2)2+12+12

−21
1


= 9

30

 2
5
−1

+ 15
30

−21
1

 =

− 2
5
2
1
5


z = y− ŷ =

1
2
3

−
− 2

5
2
1
5

 =

 7
5
0
14
5
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Orthogonal projections

Geometrical interpretation
ŷ can be understood as the sum of the orthogonal projection of y onto each one
of the elements of the basis of W .

Theorem 3.2
If y belongs to W , then the orthogonal projection of y onto W is itself:

ŷ = y
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Properties of orthogonal projections

Theorem 3.3 (Best approximation theorem)
The orthogonal projection of y onto W is the point in W with minimum distance
to y, i.e.,

‖y− ŷ‖ ≤ ‖y− v‖

for all v ∈W , v 6= ŷ.
Proof
We know that y− ŷ is orthogonal to W . For any vector v ∈W , v 6= ŷ, we have
that ŷ− v is in W . Now consider the orthogonal decomposition of the vector y− v

y− v = (y− ŷ) + (ŷ− v)
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Properties of orthogonal projections

Due to the orthogonal decomposition theorem (Theorem 3.1), this decomposition
is unique and due to the Pythagorean theorem (Theorem 1.5) we have

‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2

Since v 6= ŷ we have ‖ŷ− v‖2 > 0 and consequently

‖y− v‖2 > ‖y− ŷ‖2
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Properties of orthogonal projections

Theorem 3.4
If {u1,u2, ...,up} is an orthonormal basis of W , then the orthogonal projection of
y onto W is

ŷ = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up

If we construct the orthonormal matrix U =
(
u1 u2 ... up

)
, then

ŷ = UUTy

Proof
By Theorem 3.1 we know that for all orthogonal bases it is verified

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up

Since the basis is in this case orthonormal, then ‖u‖ = 1 and consequently

ŷ = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up
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Properties of orthogonal projections

On the other side we have

UTy =


uT1
uT2
...
uTp

 y =


uT1 y
uT2 y
...
uTp y

 =


〈u1, y〉
〈u2, y〉
...
〈up, y〉


Then,

UUTy =
(
u1 u2 ... up

)
〈u1, y〉
〈u2, y〉
...
〈up, y〉

 = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up

(q.e.d.)
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Properties of orthogonal projections

Corollary
Let U =

(
u1 u2 ... up

)
be a n × p matrix with orthonormal columns and

W = Col{U} its column space. Then,

∀x ∈ Rp UTUx = x No effect
∀y ∈ Rn UUTy = ŷ Orthogonal projection of y onto W

If U is a n × n, then W = Rn and the projection has no effect

∀y ∈ Rn UUTy = ŷ = y No effect
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 3:

6.3.1
6.3.7
6.3.15
6.3.23
6.3.24
6.3.25 (computer)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Gram-Schmidt orthogonalization
Gram-Schmidt orthogonalization is a procedure aimed at producing an orthogonal
basis of any subspace W .

Example
Let W = Span{x1, x2} with x1 = (3, 6, 0) and x2 = (1, 2, 2). Let’s look for an
orthogonal basis of W .
Solution
We may keep the first vector for the basis

v1 = x1 = (3, 6, 0)

For the second vector in the basis, we need to keep the component of x2 that is
orthogonal to x1. For doing so we calculate the projection of x2 onto x1 (p), and
we decompose x2 as

x2 = p + (x2 − p) = (1, 2, 0) + (0, 0, 2)

We, then, keep the orthogonal part of x2

v2 = x2 − p = (0, 0, 2)
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Gram-Schmidt orthogonalization

Example (continued)
The set {v1, v2} is an orthogonal basis of W .
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Gram-Schmidt orthogonalization

Example
Let W = Span{x1, x2, x3} with x1 = (1, 1, 1, 1), x2 = (0, 1, 1, 1) and
x3 = (0, 0, 1, 1). Let’s look for an orthogonal basis of W .
Solution
We may keep the first vector for the basis. Then we construct a subspace (W1)
with a single element in its basis

v1 = x1 = (1, 1, 1, 1) W1 = Span{v1}

For the second vector in the basis, we need to keep the component of x2 that is
orthogonal to W1. With the already computed basis vectors, we construct a new
subspace (W2) with two elements in its basis

v2 = x2 − ProjW1(x2) = (− 3
4 ,

1
4 ,

1
4 ,

1
4 ) W2 = Span{v1, v2}

For the third vector in the basis, we repeat the same procedure

v3 = x3 − ProjW2(x3) = (0,− 2
3 ,

1
3 ,

1
3 ) W3 = Span{v1, v2, v3}
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Gram-Schmidt orthogonalization

Theorem 4.1 (Gram-Schmidt orthogonalization)
Given a basis {x1, x2, ..., xp} for a vector subspace W . Define

v1 = x1 W1 = Span{v1}
v2 = x2 − ProjW1(x2) W2 = Span{v1, v2}

...
vp = xp − ProjWp−1(xp) Wp = Span{v1, v2, ..., vp} = W

Then {v1, v2, ..., vp} is an orthogonal basis of W .
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Gram-Schmidt orthogonalization

Proof
Consider Wk = Span{v1, v2, ..., vk} and let us assume that {v1, v2, ..., vk} is a
basis of Wk . Now we construct

vk+1 = xk+1 − ProjWk
(xk+1) Wk+1 = Span{v1, v2, ..., vk+1}

By the orthogonal decomposition theorem (Theorem 3.1), we know that vk+1 is
orthogonal to Wk . Because xk+1 is an element of a basis, we know that
xk+1 /∈Wk . Therefore, vk+1 is not null and xk+1 ∈Wk+1. Finally, the set
{v1, v2, ..., vk+1} is a set of orthogonal, non-null vectors in the
(k + 1)-dimensional space Wk+1. Consequently, by Theorem 9.4 in Chapter 5, it
must be a basis of Wk+1. This process can be iterated till k = p.
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Gram-Schmidt orthogonalization

Orthonormal basis
Once we have an orthogonal basis, we simply have to normalize each vector to
have an orthonormal basis.

Example
Let W = Span{x1, x2} with x1 = (3, 6, 0) and x2 = (1, 2, 2). Let’s look for an
orthonormal basis of W .
Solution
In Slide 52 we learned that an orthogonal basis was given by

v1 = (3, 6, 0)
v2 = (0, 0, 2)

Now, we normalize these two vectors to obtain an orthonormal basis

v′1 = v1
‖v1‖ = 1√

45 (3, 6, 0) = ( 1√
5 ,

2√
5 , 0)

v′2 = v2
‖v2‖ = 1

2 (0, 0, 2) = (0, 0, 1)

7. Orthogonality and least squares December 3, 2013 57 / 119



QR factorization of matrices
If we apply the Gram-Schmidt factorization to the columns of a matrix, we have
the following factorization scheme. This factorization is used in practice to find
eigenvalues and eigenvectors as well as to solve linear equation systems.

Theorem 4.2 (QR factorization)
Let A ∈Mm×n with linearly independent columns. Then, A can be factored as

A = QR

where Q ∈Mm×n is a matrix whose columns form an orthonormal basis of
Col{A} and R ∈Mn×n is an upper triangular invertible matrix with positive
entries on its diagonal.
Proof
Let’s orthogonalize the columns of A following the Gram-Schmidt procedure and
construct the orthonormal basis of Col{A}. Let {u1,u2, ...,un} be such a basis.
Let us construct the matrix

Q =
(
u1 u2 ... un

)
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QR factorization of matrices

Let us call ai (i = 1, 2, ..., n) to the columns of A. By the Gram-Schmidt
orthogonalization, we know that for any k between 1 and n we have

Span{a1, a2, ..., ak} = Span{u1,u2, ...,uk}

Consequently, we can express each column of A in the orthonormal basis:

ak = r1ku1 + r2ku2 + ...+ rkkuk + 0 · uk+1 + ...+ 0 · un

If rkk is negative, we can multiply both rkk and uk by -1. We now collect all these
coefficients in a vector rk = (r1k , r2k , ..., rkk , 0, 0, ..., 0) to have

ak = Qrk

By gathering all these vectors in a matrix, we have the triangular matrix R

R =
(
r1 r2 ... rn

)
R is invertible because the columns of A are linearly independent.
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QR factorization of matrices

Example

Let’s calculate the QR factorization of A =


1 0 0
1 1 0
1 1 1
1 1 1

. From Slide 54 we know

that the vectors

v1 = (1, 1, 1, 1)
v2 = (− 3

4 ,
1
4 ,

1
4 ,

1
4 )

v3 = (0,− 2
3 ,

1
3 ,

1
3 )

Is an orthogonal basis of the column space of A. We now normalize these vectors
to obtain the orthonormal basis in Q

Q =


1
2 − 3√

12 0
1
2

1√
12 − 2√

6
1
2

1√
12

1√
6

1
2

1√
12

1√
6
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QR factorization of matrices

Example (continued)
To find R we multiply on both sides of the factorization by QT

A = QR ⇒ QTA = QTQR = R

R = QTA =


1
2

1
2

1
2

1
2

− 3√
12

1√
12

1√
12

1√
12

0 − 2√
6

1√
6

1√
6



1 0 0
1 1 0
1 1 1
1 1 1


=

2 3
2 1

0 3√
12

2√
12

0 0 1√
6
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 4:

6.4.7
6.4.13
6.4.19
6.4.22
6.4.24
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Least squares

Let’s assume we want to solve the equation system Ax = b, but, due to noise,
there is no solution. We may still look for a solution such that Ax ≈ b. In fact the
goal will be to minimize d(Ax,b).

Definition 5.1 (Least squares solution)
Let A be a m × n matrix and b ∈ Rm. ˆx ∈ Rn is a least squares solution of the
equation system Ax = b iff

∀x ∈ Rn ‖b− Ax̂‖ ≤ ‖b− Ax‖

7. Orthogonality and least squares December 3, 2013 64 / 119



Least squares

Solution of the general least squares problem
Applying the Best Approximation Theorem (Theorem 3.3), we may project b onto
the column space of A

b̂ = ProjCol{A}{b}

Then, we solve the equation
system

Ax = b̂

that has at least one solution.
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Least squares

Theorem 5.1
The set of least-squares solutions of Ax = b is the same as the set of solutions of
the normal equations

ATAx = ATb

Proof: least-squares solutions ⊂ normal equations solutions
Let us assume that x̂ is a least-squares solution. Then, b− Ax̂ is orthogonal to
Col{A}, and in particular, to each one of the columns of A (ai , i = 1, 2, ..., n):

ai · (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n} ⇒
aTi (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n} ⇒

AT (b− Ax̂) = 0⇒
ATb = ATAx̂

That is, every least-squares solution is also a solution of the normal equations.
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Least squares

Proof: least-squares solutions ⊃ normal equations solutions
Let us assume that x̂ is solution of the normal equations. Then,

ATb = ATAx̂⇒
AT (b− Ax̂) = 0⇒

aTi (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n}

That is, b− Ax̂ is orthogonal to the columns of A and, consequently, to Col{A}.
Hence, the equation

b = Ax̂ + (b− Ax̂)

is the orthogonal decomposition of b as a vector in Col{A} and a vector
orthogonal to Col{A}. By the uniqueness of the orthogonal decomposition, Ax̂
must be the orthogonal projection of b onto Col{A} so that

Ax̂ = b̂

and, therefore, x̂ is a least-squares solution.
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Least squares

Example

Find a least-squares solution to Ax = b with A =

4 0
0 2
1 1

 and b =

 2
0
11

.

Solution
Let’s solve the normal equations ATAx̂ = ATb

ATA =

(
17 1
1 5

)
ATb =

(
19
11

)
(
17 1
1 5

)
x̂ =

(
19
11

)
⇒ x̂ =

(
17 1
1 5

)−1(19
11

)
=

(
1
2

)
Let’s check that x̂ is not a solution of the original equation system but a
least-squares solution

Ax̂ =

4 0
0 2
1 1

(1
2

)
=

4
4
3

 = b̂ 6= b =

 2
0
11
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Least squares

Definition 5.2 (Least-squares error)
The least-squares error is defined as

σ2ε , ‖Ax̂− b‖2 = ‖b̂− b‖2

Example (continued)
In this case:

σ2ε = ‖(4, 4, 3)− (2, 0, 11)‖ = ‖(2, 4,−8)‖ ≈ 9.165
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Least squares

Example
Unfortunately, the least-squares solution may not be unique as shown in the next
example (arising in ANOVA). Find a least-squares solution to Ax = b with

A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 and b =


−3
−1
0
2
5
1

.

Solution

ATA =


6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2

 ATb =


4
−4
2
6
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Least squares

Example (continued)
The augmented matrix is

6 2 2 2 4
2 2 0 0 −4
2 0 2 0 2
2 0 0 2 6

 ∼


1 0 0 1 3
0 1 0 −1 −5
0 0 1 −1 −2
0 0 0 0 0


Any point of the form

x̂ =


3
−5
−2
0

+ x4


−1
1
1
1

 ∀x4 ∈ R

is a least-squares solution of the problem.
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Least squares

Theorem 5.2
The matrix ATA is invertible iff the columns of A are linearly independent. In this
case, the equation system Ax = b has a unique least-squares solution given by

x̂ = A+b

where A+ is the Moore-Penrose pseudoinverse

A+ = (ATA)−1AT
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Least squares and QR decomposition
Sometimes ATA is ill-conditioned, this means that small perturbations in b
translate into large perturbations in x̂. The QR decomposition offers a numerically
more stable way of finding the least-squares solution.

Theorem 5.3
Let there be A ∈Mm×n with linearly independent columns. Consider its QR
decomposition (A = QR). Then, for each b ∈ Rm there is a unique least-squares
solution of Ax = b given by

x̂ = R−1QTb

Proof
If we substitute x̂ = R−1QTb into Ax we have

Ax̂ = AR−1QTb = QRR−1QTb = QQTb.

But Q is an orthonormal basis of Col{A} (Theorem 4.2 and Corollary in Slide 49)
and consequently QQTb is the orthogonal projection of b onto Col{A}, that is, b̂.
So, x̂ = R−1QTb is a least-squares solution of Ax = b. Additionally, since the
columns of A are linearly independent, by Theorem 5.2, this solution is unique.
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Least squares and QR decomposition

Remind that numerically it is easier to solve R x̂ = QTb than x̂ = R−1QTb

L

et A =


1 3 5
1 1 0
1 1 2
1 3 3

 and b =


3
5
7
−3

. Its QR decomposition is

A = QR =


1
2

1
2

1
21

2 − 1
2 − 1

21
2 − 1

2
1
21

2
1
2 − 1

2


2 4 5
0 2 3
0 0 2


QTb =

 6
−6
4

⇒
2 4 5
0 2 3
0 0 2

 x̂ =

 6
−6
4

⇒ x̂ =

 10
−6
2
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 5:

6.5.1
6.5.19
6.5.20
6.5.21
6.5.24
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Least-squares linear regression

Example
In many scientific and engineering problems, it is needed to explain some
observations y as a linear function of an independent variable x. For instance, we
may try to explain the weight of a person as a linear function of its height

Weight = β0 + β1Height

A. Schneider, G. Hommel, M. Blettner. Linear Regression Analysis. Dtsch Arztebl Int. 2010 November; 107(44): 776–782.
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Least-squares linear regression

Example (continued)
For each observation we have an equation

Height (m.) Weight (kg.)
1.70 57
1.53 43
1.90 94
... ...

57 = β0 + 1.70β1
43 = β0 + 1.53β1
94 = β0 + 1.90β1
...


1 1.70
1 1.53
1 1.90
... ...

(β0β1
)

=


57
43
94
...


which is of the form

Xβ = y
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Least-squares linear regression

Least-squares regression
Each one of the observed data points (xj , yj) gives an equation. All together
provide an equation system

Xβ = y

that is an overdetermined, linear equation system of the form Ax = b. The matrix
X is called the system matrix and it is related to the independent (predictor)
variables (the height in this case). The vector y is called the observation vector
and collects the values of the dependent (predicted) variable (the weight in this
case). The model

y = β0 + β1x + ε

is called the linear regression of y on x . β0 and β1 are called the regression
coefficients. The difference between the predicted value and the observed value
for a particular observation (ε) is called the residual of that observation.
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Least-squares linear regression

The residual of the j-th observation is defined as

εj = yj − (β0 + β1xj)
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Least-squares linear regression

The goal of least-squares regression is to minimize
n∑

j=1
ε2j = ‖y− Xβ‖2

Let’s analyze this term

Xβ =


1 x1
1 x2
... ...
1 xn

(β0β1
)

=


β0 + β1x1
β0 + β2x2

...
β0 + βnxn

 =


ŷ1
ŷ2
...
ŷn


Then

‖y− Xβ‖2 =

∥∥∥∥∥∥∥∥

y1 − ŷ1
y2 − ŷ2
...

yn − ŷn


∥∥∥∥∥∥∥∥
2

=
n∑

j=1
(yj − ŷj)2 =

n∑
j=1

ε2j
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Least-squares linear regression

Example
Suppose we have observed the following values of height and weight (1.70,57),

(1.53,43), (1.90,94). We construct the system matrix X =

1 1.70
1 1.53
1 1.90

 and the

observation vector y =

57
43
94

. Now we look the normal equations

Xβ = y⇒ XTXβ = XTy

XTX =

(
3.00 5.13
5.13 8.84

)
XTy =

(
194.00
341.29

)
β̂ = (XTX )−1XTy =

(
−173.14
137.90

)
Weight = −173.39 + 139.21Height
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Least-squares linear regression

Example

1.5 1.6 1.7 1.8 1.9 2
30

40

50

60

70

80

90

100

110

Height (m)

W
ei

gh
t (

kg
)

MATLAB:
X=[1 1.70; 1 1.53; 1 1.90];

y=[57; 43; 94];
beta=inv(X’*X)*X’*y
x=1.5:0.01:2.00;
yp=beta(1)+beta(2)*x;
plot(x,yp,X(:,1),y,’o’)
xlabel(’Height (m)’)
ylabel(’Weight (kg)’)
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Least-squares linear regression

The general linear model
The linear model is not restricted to straight lines. We can use it to fit any kind of
curves:

y = β0f0(x) + β1f1(x) + β2f2(x) + ...

Fitting a parabola

f0(x) = 1
f1(x) = x
f2(x) = x2

⇒

y1 = f0(x1) + β1f1(x1) + β2f2(x1)
y2 = f0(x2) + β1f1(x2) + β2f2(x2)
...
yn = f0(xn) + β1f1(xn) + β2f2(xn)

y1
y2
...
yn

 =


1 x1 x21
1 x2 x22
... ... ...
1 xn x2n


β0β1
β2

+


ε1
ε2
...
εn

 ⇒ y = Xβ + ε
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Least-squares linear regression

Fitting a parabola
In this example they model the deformation of the wall of the zebra fish embryo as
a function of strain.

Z. Lua, P. C.Y. Chen, H. Luo, J. Nam, R. Ge, W. Lin. Models of maximum stress and strain of zebrafish embryos under indentation. J. Biomechanics 42

(5): 620–625 (2009)
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Least-squares linear regression

Multivariate linear regression
The linear model is not restricted to one variable. By fitting several variables we
may fit surfaces and hypersurfaces

y = β0f0(x1, x2) + β1f1(x1, x2) + β2f2(x1, x2) + ...

Fitting a parabolic surface
f0(x1, x2) = 1
f1(x1, x2) = x1
f2(x1, x2) = x2
f3(x1, x2) = x21
f4(x1, x2) = x22
f5(x1, x2) = x1x2

⇒ X =


1 x11 x12 x211 x212 x11x12
1 x21 x22 x221 x222 x21x22
... ... ... ... ... ...
1 xn1 xn2 x2n1 x2n2 xn1xn2
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Least-squares linear regression

Fitting a parabolic surface
In this example they model the shape of cornea using videokeratoscopic images.

http://www.fhp.tu-darmstadt.de/nt/index.php?id=531&L=1Signal Processing Group, Technische Universitat Darmstadt7. Orthogonality and least squares December 3, 2013 87 / 119
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 6:

6.6.1
6.6.5
6.6.9
6.6.12 (computer)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Inner product spaces
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Inner product spaces

Definition 7.1 (Inner product)
An inner product in a vector space V is a function that assigns a real number to
every pair of vectors u and v, 〈u, v〉 and that satisfies the following axioms for all
u, v,w ∈ V and all scalars c:

1 〈u, v〉 = 〈v,u〉
2 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
3 〈cu, v〉 = c 〈u, v〉
4 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0.

Example
For instance in Weighted Least Squares (WLS) we may use an inner product in
R2 defined as:

〈u, v〉 = 4u1v1 + 5u2v2

In this way we give less weight to distances in the first component with respect to
distances in the second component.
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Inner product spaces

Now we have to prove that this function is effectively an inner product:
1 〈u, v〉 = 〈v,u〉

〈u, v〉 = 4u1v1 + 5u2v2 [by definition]
= 4v1u1 + 5v2u2 [commutativity of scalar multiplication]
= 〈v,u〉 [by definition]

2 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

〈u + v,w〉 = 4(u1 + v1)w1 + 5(u2 + v2)w2 [by definition]
= 4u1w1 + 4v1w1 + 5u2w2 + 5v2w2 [distributivity of scalar]

[multiplication/addition]
= 4u1w1 + 5u2w2 + 4v1w1 + 5v2w2 [commutativity]

[of scalar addition]
= 〈u,w〉+ 〈v,w〉 [by definition]
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Inner product spaces

3 〈cu, v〉 = c 〈u, v〉
〈cu, v〉 = 4cu1v1 + 5cu2v2 [by definition]

= c4v1u1 + c5v2u2 [commutativity of scalar multiplication]
= c(4v1u1 + 5v2u2) [distributivity of scalar multiplication]
= c 〈u, v〉 [by definition]

4 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0.
1 〈u, u〉 ≥ 0

〈u, u〉 = 4u2
1 + 5u2

2 [by definition]
which is obviously larger than 0.

2 〈u, u〉 = 0 iff u = 0.
〈u, u〉 = 0⇔ 4u2

1 + 5u2
2 = 0⇔ u1 = u2 = 0
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Inner product spaces

Example
Consider two vectors p and q the vector space of polynomials of degree n (Pn).
Let t0, t1, ..., tn be n distinct real numbers and K any scalar. The inner product
between p and q is defined as

〈p, q〉 = K (p(t0)q(t0) + p(t1)q(t1) + ...+ p(tn)q(tn))

Axioms 1-3 are easy to check. Let’s prove Axiom 4
4 〈p, p〉 ≥ 0 and 〈p, p〉 = 0 iff p = 0.

1 〈p, p〉 ≥ 0
〈p, p〉 = K

(
p2(t0) + p2(t1) + ... + p2(tn)

)
[by definition]

which is obviously larger than 0.
2 〈p, p〉 = 0 iff p = 0.

〈p, p〉 = 0⇔ K
(
p2(t0) + p2(t1) + ... + p2(tn)

)
⇔

p(t0) = p(t1) = ... = p(tn) = 0
But p is a polynomial of degree n so, at most, it can have n zeros. However,
the previous condition requires the polynomial to vanish at n + 1 points. This
is impossible unless p = 0.
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Inner product spaces

Example
Consider two vectors p and q the vector space of polynomials of degree n (Pn).
Assume that we regularly space the n + 1 points in the interval [−1, 1]

and set K = ∆T , then the inner product between the two polynomials becomes

〈p, q〉 = (p(t0)q(t0) + p(t1)q(t1) + ...+ p(tn)q(tn)) ∆T =
n∑

i=0
p(ti)q(ti)∆T

Making ∆T tend to 0, the inner product becomes

〈p, q〉 =
∫ 1
−1 p(t)q(t)dt
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Inner product spaces

Legendre polynomials are orthogonal polynomials in the interval [−1, 1]

Legendre polynomials are very useful for regression of high-order polynomials as
shown in next slide.
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Inner product spaces
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Length, distance and orthogonality

Length, distance and orthogonality
The length of a vector u in an inner product space is defined in the standard way

‖u‖ =
√
〈u,u〉

Similarly, the distance between two vectors u and v is defined as

d(u, v) = ‖u− v‖

Finally, two vectors u and v are said to be orthogonal iff

〈u, v〉 = 0
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Length, distance and orthogonality

Example
In the vector space of polynomials in the interval [0, 1], P[0, 1], let’s define the
inner product

〈p, q〉 =
∫ 1
0 p(t)q(t)dt

What is the length of the vector p(t) = 3t2?
Solution

‖p‖ =
√
〈p, p〉 =

√∫ 1
0 p2(t)dt =

√∫ 1
0 (3t2)2dt =

√∫ 1
0 9t4dt

=

√
9 t5

5

∣∣∣1
0

=
√
9
( 1
5 − 0

)
= 3√

5
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Gram-Schmidt orthogonalization

Example
Gram-Schmidt is applied in the standard way. For instance, find an orthogonal
basis of P2[−1, 1]. A basis that spans this space is

{1, t, t2}

Let’s orthogonalize it

p0(t) = 1

p1(t) = t − 〈t,p0(t)〉‖p0‖2 p0(t) = t −
∫ 1

−1
tdt∫ 1

−1
dt
1 = t − 0

21 = t

p2(t) = t2 − 〈t
2,p0(t)〉
‖p0‖2 p0(t)− 〈t

2,p1(t)〉
‖p1‖2 p1(t)

= t2 −
∫ 1

−1
t2dt∫ 1

−1
dt
−
∫ 1

−1
t2tdt∫ 1

−1
t2dt

t = t2 −
2
3
2 = t2 − 1

3

In Slide 97 we proposed the Legendre polynomial of degree 2 to be
P2(t) = 1

2 (3t2 − 1), we can easily show that P2(t) = 3
2p2(t). Consequently, if

p2(t) is orthogonal to p0(t) and p1(t) so is P2(t).
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Best approximation

Example
What is the best approximation in P2[−1, 1] of p(t) = t3?
Solution
We know the answer is the orthogonal projection of p(t) onto P2[−1, 1]. An
orthogonal basis of P2[−1, 1] is {1, t, t2 − 1

3}. Therefore, this projection can be
calculated as

p̂(t) = ProjP2[−1,1]{p(t)} = 〈p,p0〉
‖p0‖2 p0(t) + 〈p,p1〉

‖p1‖2 p1(t) + 〈p,p2〉
‖p2‖2 p2(t)

Let’s perform these calculations:

〈p, p0(t)〉 =
∫ 1
−1 t

3dt = 0 ‖p0‖2 =
∫ 1
−1 dt = 2

〈p, p1(t)〉 =
∫ 1
−1 t

3tdt = 2
5 ‖p1‖2 =

∫ 1
−1 t

2dt = 2
3

〈p, p2(t)〉 =
∫ 1
−1 t

3(t2 − 1
3 )dt = 0 ‖p2‖2 =

∫ 1
−1 (t2 − 1

3 )2dt = 8
45

p̂(t) = 0
2 +

2
5
2
3
t + 0

8
45

(t2 − 1
3 ) = 3

5 t
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Best approximation
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Best approximation

Example
In this example we exploited the best approximation property of orthogonal
wavelets to speed-up and make more robust angular alignments of projections in
3D Electron Microscopy.

C.O.S.Sorzano, S. Jonic, C. El-Bez, J.M. Carazo, S. De Carlo, P. Thévenaz, M. Unser. A multiresolution approach to orientation assignment in 3-D

electron microscopy of single particles. Journal of Structural Biology 146(3): 381-392 (2004, cover article)
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Pythagorean theorem

Theorem 7.1 (Pythagorean theorem)
Given any vector v in an inner product space V and a subspace of it W ⊆ V we
have

‖v‖2 = ‖ProjW {v}‖2 + ‖v− ProjW {v}‖2
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The Cauchy-Schwarz inequality

Theorem 7.2 (The Cauchy-Schwarz inequality)
For all u, v ∈ V it is verified

| 〈u, v〉 | ≤ ‖u‖‖v‖

Proof
If u = 0, then

| 〈0, v〉 | = 0 and ‖0‖‖v‖ = 0‖v‖ = 0

So the inequality becomes an equality.
If u 6= 0, then consider W = Span{u} and

‖ProjW {v}‖ =
∥∥∥ 〈v,u〉‖u‖2 u

∥∥∥ = |〈v,u〉|
‖u‖2 ‖u‖ = |〈v,u〉|

‖u‖

But by the Pythagorean Theorem (Theorem 7.1) we have ‖ProjW {v}‖ ≤ ‖v‖.
Consequently,

|〈v,u〉|
‖u‖ ≤ ‖v‖ ⇒ | 〈v,u〉 | ≤ ‖u‖‖v‖ (q.e.d.)
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The Triangle inequality

Theorem 7.3 (The Triangle inequality)
For all u, v ∈ V it is verified

‖u + v‖ ≤ ‖u‖+ ‖v‖

Proof

‖u + v‖2 = 〈u + v,u + v〉 [By definition]
= 〈u,u〉+ 〈v, v〉+ 2 〈u, v〉 [Properties of inner product]
≤ ‖u‖2 + ‖v‖2 + 2| 〈u, v〉 | 〈u, v〉 ≤ | 〈u, v〉 |
≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ Cauchy-Schwarz
= (‖u‖+ ‖v‖)2
⇒

‖u + v‖ ≤ ‖u‖+ ‖v‖ [Taking square root]

(q.e.d.)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 7:

6.7.1
6.7.13
6.7.16
6.7.18
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Weighted Least Squares

Weighted Least Squares
Let us assume we have a table of collected data and we want to fit a least squares
model. However, we want to give more importance to some observations because
we are more confident about them or they are more important. We encode the
importance as a weight value (the larger the weight, the more importance the
observation has)

X Y W
x1 y1 w1
x2 y2 w2
x3 y3 w3
... ... ...

Let us call ŷj the prediction of the model for the j-th observation and εj the
committed error

yj = ŷj + εj
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Weighted Least Squares

The goal is now to minimize the weighted sum of square errors
n∑

j=1
(wjεj)

2 =
n∑

j=1
(wj(yj − ŷj))2 =

n∑
j=1

(wjyj − wj ŷj)2

Let us collect all observed values into a vector y and do analogously with the
predictions ŷ. Let us define the diagonal matrix

W =


w1 0 0 ... 0
0 w2 0 ... 0
0 0 w3 ... 0
... ... ... ... ...
0 0 0 ... wn


Then, the previous objective function becomes

n∑
j=1

(wjyj − wj ŷj)2 = ‖W y−W ŷ‖2
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Weighted Least Squares

Now, suppose that ŷ is calculated from the columns of a matrix A, that is,
ŷ = Ax. The objective function becomes

n∑
j=1

(wjyj − wj ŷj)2 = ‖W y−WAx‖2

The minimum of this objective function is attained for x̂ that is the least-squares
solution of the equation system

WAx = W y

The normal equations of the problem are

(WA)TWAx = (WA)TW y
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Weighted Least Squares

Example
In this work they used Weighted Least Squares to calibrate a digital system to
measure maximum respiratory pressures.

J.L. Ferreira, F.H. Vasconcelos, C.J. Tierra-Criollo. A Case Study of Applying Weighted Least Squares to Calibrate a Digital Maximum Respiratory

Pressures Measuring System. Applied Biomedical Engineering, Chapter 18 (2011)
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Fourier Series

Example

Fourier tools are, maybe, the
most widespread tool to analyze
signals and its frequency
components. Fourier
decomposition states that any
signal can be obtained by
summing sine waves of different
amplitude, phase and frequency.
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Fourier Series

Theorem 8.1
Consider the vector space of continuous functions in the interval [0, 2π], C [0, 2π].
The set

S = {1, cos(t), sin(t), cos(2t), sin(2t), ..., cos(Nt), sin(Nt)}

is orthogonal with respect to the inner product defined as

〈f (t), g(t)〉 =
∫ 2π
0 f (t)g(t)dt

Proof

〈cos(nt), cos(mt)〉 =
∫ 2π
0 cos(nt) cos(mt)dt

=
∫ 2π
0

1
2 (cos((n + m)t) + cos((n −m)t))dt

= 1
2

(
sin((n+m)t)

n+m + sin((n−m)t)
n−m

)∣∣∣2∗π
0

= 0

where we have used cos(A) cos(B) = 1
2 (cos(A + B) + cos(A− B)).

7. Orthogonality and least squares December 3, 2013 114 / 119



Fourier Series

Analogously we could prove that

〈cos(nt), sin(mt)〉 = 0
〈cos(nt), 1〉 = 0
〈sin(nt), 1〉 = 0
‖ cos(nt)‖2 = π
‖ sin(nt)‖2 = π

‖1‖2 = 2π
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Fourier Series

Theorem 8.2 (Fourier series)
Given any function f (t) ∈ C [0, 2π], f (t) can be approximated as closely as desired
by a sum of the form simply by orthogonally projecting it onto W = Span{S}

f (t) ≈ ProjW {f (t)} = 〈f (t),1〉
‖1‖2 +

N∑
n=1

(
〈f (t),cos(nt)〉
‖ cos(nt)‖2 cos(nt) + 〈f (t),sin(nt)〉

‖ sin(nt)‖2 sin(nt)
)
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Fourier Series

Example
In this work we used Fourier space to simulate and to align electron microscopy
images

S. Jonic, C.O.S.Sorzano, P. Thévenaz, C. El-Bez, S. De Carlo, M. Unser. Spline-Based image-to-volume registration for three-dimensional electron

microscopy. Ultramicroscopy, 103: 303-317 (2005)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 8:

6.8.1
6.8.6
6.8.8
6.8.11
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7 Orthogonality and least squares
Inner product, length and orthogonality (a)
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Applications of inner product spaces (d)
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Applications

In this example of particle picking in Single Particles, one of the features we
analyze is the autocorrelation function at different subbands. The autocorrelation
is a symmetric matrix.

V. Abrishami, A. Zaldívar-Peraza, J.M. de la Rosa-Trevín, J. Vargas, J. Otón, R. Marabini, Y. Shkolnisky, J.M. Carazo, C.O.S. Sorzano. A pattern

matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics (2013)
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Applications

In one of the steps, we construct a basis that spans the set of rotations of the
particle template. For doing so, perform a Principal Component Analysis that
diagonalizes the covariance matrix (which is again a symmetric matrix).

V. Abrishami, A. Zaldívar-Peraza, J.M. de la Rosa-Trevín, J. Vargas, J. Otón, R. Marabini, Y. Shkolnisky, J.M. Carazo, C.O.S. Sorzano. A pattern

matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics (2013)
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Diagonalization of symmetric matrices

Definition 1.1 (Symmetric matrix)
A ∈Mn×n is a symmetric matrix iff A = AT .

Example
The following two matrices are symmetric(

1 0
0 −3

)  0 −1 0
−1 5 8
0 8 −7


Example

Let’s diagonalize the matrix A =

 6 −2 −1
−2 6 −1
−1 −1 5

 The characteristic equation is

|A− λI| = 0 = −λ3 + 17λ2 − 90λ+ 144 = −(λ− 8)(λ− 6)(λ− 3)
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Diagonalization of symmetric matrices

The associated eigenvectors are

λ = 8 v1 = (−1, 1, 0)→ u1 = (− 1√
2 ,

1√
2 , 0)

λ = 6 v2 = (−1,−1, 2)→ u2 = (− 1√
6 ,−

1√
6 ,

2√
6 )

λ = 3 v3 = (1, 1, 1)→ u3 = ( 1√
3 ,

1√
3 ,

1√
3 )

The v vectors constitute an orthogonal basis of R3 and after normalizing them
(ui = vi

‖vi‖ ), we have an orthonormal basis Thus, we can factorize A as
A = PDP−1 with

P =

−
1√
2 − 1√

6
1√
3

1√
2 − 1√

6
1√
3

0 2√
6

1√
3

 D =

8 0 0
0 6 0
0 0 3


Exploiting the fact that P is orthonormal, then P−1 = PT and A = PDPT .
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Diagonalization of symmetric matrices

Theorem 1.1
If A is symmetric, then any two eigenvectors from different eigenspaces are
orthogonal.
Proof
Let v1 and v2 be two eigenvectors from two different eigenvalues λ1 and λ2. Let’s
show that v1 · v2 = 0

λ1(v1 · v2) = (λ1v1)T v2 [By definition]
= (Av1)T v2 [Definition of eigenvector]
= vT

1 AT v2 [Transpose of product]
= vT

1 (Av2) [A is symmetric]
= vT

1 (λ2v2) [Definition of eigenvector]
= λ2(v1 · v2) [By definition]

Hence (λ1 − λ2)(v1 · v2) = 0 but λ1 − λ2 6= 0 because the two eigenvalues are
different. Consequently, v1 · v2 = 0 (q.e.d.)
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Diagonalization of symmetric matrices

Definition 1.2 (Orthogonal diagonalization)
A is orthogonally diagonalizable iff A = PDPT being P an orthogonal (i.e.,
P−1 = PT ).

Theorem 1.2
A is orthogonally diagonalizable iff A is symmetric.
Proof orthogonally diagonalizable ⇒ symmetric
Let us assume that A = PDPT , then

AT = (PDPT )T = (PT )TDTPT = PDTPT = PDPT = A

Proof orthogonally diagonalizable ⇐ symmetric
We omit this proof since it is more difficult.
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Diagonalization of symmetric matrices

Example

Let’s orthogonally diagonalize A =

 3 −2 4
−2 6 2
4 2 3

.

Solution
The characteristic equation is

|A− λI| = 0 = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ+ 2)

Its associated eigenvectors are

λ = 7 v1 = (1, 0, 1)→ u1 = ( 1√
2 , 0,

1√
2 )

v2 = (− 1
2 , 1, 2)→ u2 = (− 1√

5 ,
2√
5 , 0)

λ = −2 v3 = (−1,− 1
2 , 1)→ u3 = (− 2

3 ,−
1
3 ,

2
3 )

u1 and u2 are unitary and linearly independent, but they are not orthogonal. u3 is
orthogonal to the other two vectors because it belongs to a different eigenspace
(see Theorem 1.1).
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Diagonalization of symmetric matrices

We can orthogonalize u1 and u2 following the Gram-Schmidt procedure:

w1 = v1 = ( 1√
2 , 0,

1√
2 )

w′2 = v2 − 〈v2,w1〉w1 = (− 1√
5 ,

2√
5 , 0)−

(
− 1√

10

)
( 1√

2 , 0,
1√
2 ) = (− 1

2
√

5 ,
2√
5 ,

1
2
√

5 )

w2 =
w′

2
‖w′

2‖
= (− 1

3
√

2 ,
2
√

2
3 , 1

3
√

2 )

w3 = v3 = (− 2
3 ,−

1
3 ,

2
3 )

So A = PDPT with

P =


1√
2 − 1

3
√

2 − 2
3

0 2
√

2
3 − 1

31√
2

1
3
√

2
2
3

 D =

7 0 0
0 7 0
0 0 −2
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Diagonalization of symmetric matrices

Definition 1.3 (Spectrum of a matrix)
The set of eigenvalues of a matrix is called the spectrum of that matrix.

Theorem 1.3 (Spectral theorem for symmetric matrices)
An n × n symmetric matrix has the following properties:

1 A has n real eigenvalues (including multiplicities).
2 The dimension of each eigenspace is the multiplicity of the corresponding

eigenvalue as root of the characteristic equation.
3 Eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.
4 A is orthogonally diagonalizable.
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Diagonalization of symmetric matrices

Definition 1.4 (Spectral decomposition of symmetric matrices)
Let A = PDPT with P =

(
u1 u2 ... un

)
. Then

A =
(
u1 u2 ... un

)λ1 0 ... 0
0 λ2 ... 0
0 0 ... λn




uT
1

uT
2
...
uT

n


=

(
λ1u1 λ2u2 ... λnun

)
uT

1
uT

2
...
uT

n


= λ1u1uT

1 + λ2u2uT
2 + ...+ λnunuT

n

The latest equation is the spectral decomposition of A. Each one of the terms
λiuiuT

i is an n × n matrix of rank 1 (since all the columns are multiples of ui .
Additionally, uiuT

i x is the orthogonal projection of any vector onto the subspace
generated by ui .
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Diagonalization of symmetric matrices

Example
Write the spectral decomposition of

A =

(
2√
5 − 1√

5
1√
5

2√
5

)(
8 0
0 3

)( 2√
5

1√
5

− 1√
5

2√
5

)
Solution
Consider u1 = ( 2√

5 ,
1√
5 ) be the first column of P and u2 = (− 1√

5 ,
2√
5 ). Then

u1uT
1 =

( 4
5

2
52

5
1
5

)
u2uT

2 =

( 1
5 − 2

5
− 2

5
4
5

)
The spectral decomposition is therefore

A = λ1u1uT
1 + λ2u2uT

2 = 8
( 4

5
2
52

5
1
5

)
+ 3

( 1
5 − 2

5
− 2

5
4
5

)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 1:

7.1.6
7.1.7
7.1.13
7.1.23
7.1.27
7.1.29
7.1.35
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Diagonalization of symmetric matrices (a)
Quadratic forms (b)
Constrained optimization (b)
Singular Value Decomposition (SVD) (c)

8. Symmetric matrices and quadratic forms December 3, 2013 17 / 73



Quadratic forms

Introduction
Most expressions appearing so far are linear: Ax, 〈w, x〉, xT , that is, if we
construct an operator T (x) with them (e.g., T (x) = Ax, T (x) = 〈w, x〉,
T (x) = xT ), it meets

T (ax1 + bx2) = aT (x1) + bT (x2)

However, there are nonlinear expressions like xT x. Particularly, this one is said to
be quadratic and they normally appear in applications of linear algebra to
engineering (like optimization) and signal processing (like signal power). They also
arise in physics (as potential and kinetic energy), differential geometry (as the
normal curvature of surfaces) and statistics (as confidence ellipsoids).
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Quadratic forms

Definition 2.1 (Quadratic forms)
A quadratic form in Rn is a function Q(x) : Rn → R that can be computed as

Q(x) = xTAx

being A ∈Mn×n a symmetric matrix.

Example

1 Q(x) = xT Ix =
(
x1 x2

)(1 0
0 1

)(
x1
x2

)
= x2

1 + x2
2

2 Q(x) = xT
(
4 0
0 3

)
x = 4x2

1 + 3x2
2

3 Q(x) = xT
(

3 −2
−2 7

)
x = 3x2

1 + 7x2
2 − 4x1x2

4 Q(x) = xT

 5 − 1
2 0

− 1
2 3 4
0 4 2

 x = 5x2
1 + 3x2

2 + 2x2
3 − x1x2 + 8x2x3
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Change of variables in quadratic forms

Change of variables
A change of variables is an equation of the form x = Py or equivalently P−1x = y,
where P is an invertible matrix. Exploiting the fact that, in a quadratic form, A is
symmetric, then we have A = PDPT . We perform the change of variables

x = Py

to obtain

Q(x) = (Py)TA(Py) = yTPTAPy = Q(y)

But we know

A = PDPT ⇒ D = PTAP

Consequently

Q(y) = yTDy

That is, there is a basis, in which the matrix of the quadratic form is diagonal.
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Change of variables in quadratic forms

Example
Consider Q(x) = xTAx with

A =

(
1 −4
−4 −5

)
=

(
2√
5

1√
5

− 1√
5

2√
5

)(
3 0
0 −7

)( 2√
5 − 1√

5
1√
5

2√
5

)
That is

Q(x) = x2
1 − 5x2

2 − 8x1x2

If we make the change of variable

y = PT x =

(
2√
5x1 − 1√

5x2
1√
5x1 + 2√

5x2

)
then

Q(y) = yTDy = 3y2
1 − 7y2

2
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Change of variables in quadratic forms

Let’s check that effectively both ways of calculating the quadratic form are
equivalent. For doing so, we’ll calculate the value of Q(x) for x = (2,−2):

Q(x) = xTAx = 22 − 5 · (−2)2 − 8 · 2 · (−2) = 4− 20 + 32 = 16

If we make the change of variable

y =

(
2√
52−

1√
5 (−2)

1√
52 + 2√

5 (−2)

)
=

(
6√
5

− 2√
5

)
then

Q(y) = yTDy = 3
(

6√
5

)2
− 7

(
− 2√

5

)2
= 3 36

5 − 7 4
5 = 80

5 = 16
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Change of variables in quadratic forms

Theorem 2.1 (Principal axes theorem)
Let A ∈Mn×n be a symmetric matrix. Then, there exists a change of variable
x = Py such that the quadratic form xTAx becomes yTDy with D an n × n
diagonal matrix. The columns of P are the principal axes.
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Principal axes

A geometric view of the principal axes
Consider the quadratic form Q(x) = xTAx with x ∈ R2 and the isocurve
Q(x) = c. The isocurve is either an ellipse, a circle, a hyperbola, two intersecting
lines, a point, or contains no points at all. If A is diagonal, then

Q(x) = a11x2
1 + a22x2

2 = c

The equation of an ellipse is

x2
1

a2 +
x2

2
b2 = 1

with a, b > 0. Therefore

a =
√

c
a11

b =
√

c
a22
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Principal axes

The equation of a hyperbola is

x2
1

a2 − x2
2

b2 = 1

with a, b > 0
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Principal axes

If A is not diagonal, then the ellipse or the hyperbola are rotated
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Principal axes

Example
Let’s analyze the rotated ellipse

5x2
1 − 4x1x2 + 5x2

2 = 48

The corresponding matrix is

A =

(
5 −2
−2 5

)
=

(
1√
2 − 1√

2
1√
2

1√
2

)(
3 0
0 7

)( 1√
2

1√
2

− 1√
2

1√
2

)
So,

a =
√

c
a11

=
√

48
3 = 3 b =

√
c

a22
=
√

48
7 ≈ 2.65

The change of variable x =

(
1√
2 − 1√

2
1√
2

1√
2

)
y diagonalizes the quadratic form (see

the new axes in the previous slide).

8. Symmetric matrices and quadratic forms December 3, 2013 27 / 73



Classification of quadratic forms

Example
Look at the following surfaces defined as z = Q(x)

The curves seen in R2 are the cut of these surfaces with the plane z = c. It is
obvious that some of the surfaces are always above z = 0 (a and b), others are
always below z = 0 (d), and still other are sometimes below and sometimes above
z = 0 (c).

8. Symmetric matrices and quadratic forms December 3, 2013 28 / 73



Classification of quadratic forms

Definition 2.2 (Classification of quadratic forms)

We say Q(x) is
positive definite if
Q(x) > 0 ∀x ∈ Rn, x 6= 0
negative definite if
Q(x) < 0 ∀x ∈ Rn, x 6= 0
indefinite if Q(x) assumes both positive
and negative values
positive semidefinite if
Q(x) ≥ 0 ∀x ∈ Rn, x 6= 0
negative semidefinite if
Q(x) ≤ 0 ∀x ∈ Rn, x 6= 0
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Classification of quadratic forms

Theorem 2.2 (Classification of quadratic forms and quadratic forms)
Let Q(x) = xTAx with A ∈Mn×n and symmetric. Let λi be the eigenvalues of A.
Q(x) is

positive definite iff λi > 0 ∀i
negative definite iff λi < 0 ∀i
indefinite iff there are positive and negative eigenvalues
positive semidefinite iff λi ≥ 0 ∀i
negative semidefinite iff λi ≤ 0 ∀i

Proof
By the Theorem of Principal Axes (Theorem 2.1), there is a change of variable
such that

Q(y) = yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

where λi is the i-th eigenvalue. The values of Q depend on λi in the way that the
theorem states (e.g., ∀y 6= 0 Q(y) > 0 iff λi > 0 ∀i , etc.)
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Classification of quadratic forms

Examples
Q(x) = 3x2

1 + 7x2
2 is positive definite because its eigenvalues are 3 and 7

(both larger than 0).
Q(x) = 3x2

1 is positive semidefinite because its eigenvalues are 3 and 0 (both
larger or equal than 0).
Q(x) = 3x2

1 − 7x2
2 is indefinite because its eigenvalues are 3 and -7 (one

positive and another negative).
Q(x) = −3x2

1 − 7x2
2 is negative definite because its eigenvalues are -3 and -7

(both smaller than 0).

Definition 2.3 (Classification of symmetric matrices)
A symmetric matrix is positive definite if its corresponding quadratic form is
positive definite. Analogously for the rest of the classification.
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Classification of quadratic forms

Cholesky factorization
Cholesky factorization factorizes a symmetric matrix A as

A = RTR

being R an upper triangular matrix. A is positive definite if all entries in the
diagonal of R are positive.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 2:

7.2.1
7.2.3
7.2.5
7.2.7
7.2.19
7.2.23
7.2.24
7.2.26
7.2.27
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Outline

8 Symmetric matrices and quadratic forms
Diagonalization of symmetric matrices (a)
Quadratic forms (b)
Constrained optimization (b)
Singular Value Decomposition (SVD) (c)
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Constrained optimization

Introduction
Many problems in engineering or physics are of the form

min Q(x)
subject to ‖x‖2 = 1 or max Q(x)

subject to ‖x‖2 = 1

Example
Calculate the minimum and maximum of Q(x) = 9x2

1 + 4x2
2 + 3x2

3 subject to
‖x‖2 = 1. Solution
By taking the minimum and maximum coefficient in Q(x) we have

3x2
1 + 3x2

2 + 3x2
3 ≤ Q(x) ≤ 9x2

1 + 9x2
2 + 9x2

3
3(x2

1 + x2
2 + x2

3 ) ≤ Q(x) ≤ 9(x2
1 + x2

2 + x2
3 )

3 ≤ Q(x) ≤ 9

The minimum value Q(x) = 3 is attained for x = (0, 0, 1), while the maximum
value Q(x) = 9 is attained for x = (1, 0, 0). In fact the minimum and maximum
values that the constrained quadratic form can take are λmin and λmax .
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Constrained optimization

Example
Calculate the minimum and maximum of Q(x) = 3x2

1 + 7x2
2 subject to ‖x‖2 = 1.

Solution
‖x‖2 = 1 is a cylinder in R3 while z = Q(x) is a parabolic surface. The minimum
and maximum of the constrained problem are attained among those points
belonging to the curve that is the intersection of both surfaces.
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Constrained optimization

Theorem 3.1
Let A be a symmetric matrix and let

m = min
{

xTAx
∣∣‖x‖2 = 1

}
M = max

{
xTAx

∣∣‖x‖2 = 1
}

Then, M = λmax and m = λmin. M is attained for x = umax (the eigenvector
associated to λmax ) and m is attained for x = umin (the eigenvector associated to
λmin).
Proof
Let’s orthogonally diagonalize A as A = PDPT and we make the change variables
y = PT x. We already know that

Q(x) = xTAx = yTDy

Additionally ‖y‖2 = ‖x‖2 because

‖y‖2 = yT y = (PT x)T (PT x) = xTPPT x = xT x = ‖x‖2

In particular ‖y‖ = 1⇔ ‖x‖ = 1.
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Constrained optimization

Then,

m = min
{

yTDy
∣∣‖y‖2 = 1

}
M = max

{
yTDy

∣∣‖y‖2 = 1
}

Since D is diagonal we have

yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

Let’s look for the maximum of these values subject to ‖y‖ = 1. Consider the
maximum eigenvalue, λmax , then

yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

≤ λmaxy2
1 + λmaxy2

2 + ...+ λmaxy2
n

= λmax (y2
1 + y2

2 + ...+ y2
n )

= λmax‖y‖ = λmax
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Constrained optimization

In fact the value λmax is attained for ymax =
(
0 0 ... 0 1 0 ... 0

)
, where

the 1 is at the location corresponding to λmax . The corresponding x is

x = Py =
(
u1 u2 ... umax−1 umax umax+1 ... un

)


0
0
...
0
1
0
...
0


= umax

We could reason analogously for the minimum.
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Constrained optimization

Example

Let A =

3 2 1
2 3 1
1 1 4

. Solve the following optimization problem

max Q(x) = xTAx
subject to ‖x‖2 = 1

Solution
The characteristic equation is

|A− λI| = 0 = −(λ− 6)(λ− 3)(λ− 1)

The maximum eigenvalue is λ = 6 and its corresponding eigenvector is
u = ( 1√

3 ,
1√
3 ,

1√
3 ). Therefore, the maximum of Q(x) is 6 that is attained for

x = ( 1√
3 ,

1√
3 ,

1√
3 ).
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Constrained optimization

Theorem 3.2
Let A, λmax and umax be defined as in the previous theorem. Then the solution of

max Q(x) = xTAx
subject to ‖x‖2 = 1

x · umax = 0

is given by the second largest eigenvalue λmax−1 that is attained for its associated
eigenvector (umax−1).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 3:

7.3.1
7.3.3
7.3.13
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Outline

8 Symmetric matrices and quadratic forms
Diagonalization of symmetric matrices (a)
Quadratic forms (b)
Constrained optimization (b)
Singular Value Decomposition (SVD) (c)
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Singular Value Decomposition (SVD)

Introduction
Unfortunately, not all matrices can be diagonalized and factorized as

A = PDP−1

However, all of them (even rectangular matrices) can be factorized as

A = QDP−1

This is called the Singular Value Decomposition. It imitates the property of
stretching/shrinking of eigenvalues and eigenvectors. For instance, assume u is an
eigenvector, then

Au = λu⇒ ‖Au‖ = |λ|‖u‖

If |λ| > 1, then the transformed vector Au is stretched with respect to u. On the
contrary, if |λ| < 1, then the transformed vector Au is shrinked with respect to u.
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Singular Value Decomposition (SVD)

Example

Consider A =

(
4 11 14
8 7 −2

)
and the linear transformation T (x) = Ax. It

transforms the unit sphere in R3 onto an ellipse of R2

Look for the direction that maximizes ‖Ax‖ subject to ‖x‖ = 1.

8. Symmetric matrices and quadratic forms December 3, 2013 45 / 73



Singular Value Decomposition (SVD)

Solution
We may maximize ‖Ax‖2 because ‖Ax‖ is maximum iff ‖Ax‖2 is maximum.

‖Ax‖2 = (Ax)T (Ax) = xTATAx

which is a quadratic form since ATA is symmetric:

ATA =

 80 100 40
100 170 140
40 140 200


By Theorem 3.1, the maximum eigenvalue is max ‖Ax‖2 = λmax = 360 and its
associated eigenvector umax = ( 1

3 ,
2
3 ,

2
3 ). Consequently max ‖Ax‖ =

√
360 = 6

√
10

that is attained for

Aumax =

(
18
6

)
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Singular Value Decomposition (SVD)

Definition 4.1
Singular Values of a matrix Let A ∈Mm×n. ATA can always be orthogonally
diagonalized. Let {v1, v2, ..., vn} a base of Rn formed by the eigenvectors of ATA
and let λ1, λ2, ..., λn be its corresponding eigenvalues. Then

‖Avi‖2 = (Avi )
T (Avi ) = vT

i ATAvi = vT
i (λivi ) = λi‖vi‖2

If we take the square root

‖Avi‖ =
√
λi‖vi‖

That is,
√
λi reflects the amount by which vi is stretched or shrinked.

√
λi is

called a singular value and it is denoted as σi .
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Singular Value Decomposition (SVD)

Example (continued)

In the example of Slide 45, the singular values are the lengths of the ellipse in R2

and they are 6
√
10, 3

√
10 and 0. From the singular values we learn that the unit

sphere in R3 (there are 3 singular values) is collapsed in 2D (one of the singular
values is 0) onto an ellipse (the remaining two singular values are different from
each other).
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Singular Value Decomposition (SVD)

Theorem 4.1
Let {v1, v2, ..., vn} a basis of Rn formed by the eigenvectors of ATA sorted in
descending order and let λ1, λ2, ..., λn be its corresponding eigenvalues. Let us
assume that A has r non-null singular values. Then

S = {Av1,Av2, ...,Avr}

is a basis of Col{A} and

Rank{A} = r

Proof
By Theorem 1.1, any two eigenvectors are orthogonal to each other if they
correspond to different eigenvalues, that is, vi · vj = 0. Then,

(Avi ) · (Avj) = vT
i ATAvj = vT

i (λjvj) = λj(vT
i vj) = λj(vi · vj) = 0

That is Avi and Avj are also orthogonal.
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Singular Value Decomposition (SVD)

Additionally, if the eigenvectors vi are unitary, then (see Definition 4.1)

σi = ‖Avi‖

Since there are r non-null singular values, Avi 6= 0 only for i = 1, 2, ..., r . So the
set S is a set of non-null, orthogonal vectors. To show it is a basis of Col{A} we
still need to show that any vector in Col{A} can be expressed as a linear
combination of the vectors in S. We know that the eigenvalues of ATA is a basis
of Rn. Then for any vector x ∈ Rn there exist coefficients c1, c2, ..., cn not all of
them zero such that

x = c1v1 + c2v2 + ...+ cnvn

If we transform this vector

Ax = A(c1v1 + c2v2 + ...+ cnvn) [Linear transformation]
= c1Av1 + c2Av2 + ...+ cnAvn [non-null singular values]
= c1Av1 + c2Av2 + ...+ crAvr
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Singular Value Decomposition (SVD)

That is any transformed vector Ax can be expressed as a linear combination of the
elements in S. Consequently, S is a basis of Col{A}.
Finally, Rank{A} is nothing more than the dimension of Col{A}. Since A is a
basis of Col{A} and it has r vectors, then Rank{A} = r .
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Singular Value Decomposition (SVD)

Theorem 4.2 (The Singular Value Decomposition)
Let A ∈Mm×n be a matrix with rank r . Then, there exists a matrix Σ ∈Mm×n
whose diagonal entries are the first r singular values of A sorted in descending
order (σ1 ≥ σ2 ≥ ... ≥ σr > 0) and there exist orthogonal matrices U ∈Mm×m
and V ∈Mn×n such that

A = UΣV T

Σ is unique but U and V are not. The columns of U are called the left singular
vectors, and the columns of V are the right singular vectors.

Example

(
a11 a12 a13 a14
a21 a22 a23 a24

)
=

(
u11 u12
u21 u22

)(
σ1 0 0 0
0 σ2 0 0

)
v11 v21 v31 v41
v12 v22 v32 v42
v13 v23 v33 v43
v14 v24 v34 v44
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Singular Value Decomposition (SVD)

Proof
Let λi and vi (i = 1, 2, ..., n) be the eigenvalues and eigenvectors of ATA. By
Theorem 4.1 we know that S = {Av1,Av2, ...,Avr} is an orthogonal basis of
Col{A}. Let’s normalize these vectors

ui = Avi
σi

i = 1, 2, ..., r

and we extend the set {u1,u2, ...,ur} to be an orthogonal basis of Rm. Let us
construct the matrices

U =
(
u1 u2 ... um

)
V =

(
v1 v2 ... vn

)
By construction U and V are orthogonal, and

AV =
(
Av1 Av2 ... Avr 0 ... 0

)
=

(
σ1u1 σ2u2 ... σr ur 0 ... 0

)
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Singular Value Decomposition (SVD)

Proof (continued)
On the other side, let

D =


σ1 0 ... 0
0 σ2 ... 0
.. ... ... ...
0 0 ... σr

 Σ =

(
D 0
0 0

)

Then,

UΣ =
(
u1 u2 ... um

)(D 0
0 0

)
=
(
σ1u1 σ2u2 ... σr ur 0 ... 0

)
Therefore,

UΣ = AV ⇒ A = UΣV T

since V is orthogonal.
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Singular Value Decomposition (SVD)

Theorem 4.3 (Properties of the SVD decomposition)
In a SVD decomposition

The left singular vectors of A are eigenvectors of AAT .
The right singular vectors of A are eigenvectors of ATA.
The singular values are the square root of the eigenvalues of both AAT and
ATA.
The singular values are the length of the semiaxes of the mapping of the unit
hypersphere in Rn onto Rm.
The columns of U form an orthogonal basis of Rm.
The columns of V form an orthogonal basis of Rn.
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Singular Value Decomposition (SVD)

Example

Let’s calculate the SVD decomposition of A =

(
4 11 14
8 7 −2

)
.

Step 1 : Orthogonally diagonalize ATA

ATA =

 80 100 40
100 170 140
40 140 200


Its eigenvalues and eigenvectors are

λ1 = 360 v1 = ( 1
3 ,

2
3 ,

2
3 )

λ2 = 90 v2 = (− 2
3 ,−

1
3 ,

2
3 )

λ3 = 0 v3 = ( 2
3 ,−

2
3 ,

1
3 )
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Singular Value Decomposition (SVD)

Step 2 : Construct V and Σ

V =
(
v1 v2 v3

)
=

 1
3 − 2

3
2
32

3 − 1
3 − 2

32
3

2
3

1
3


Σ =

(√
λ1 0 0
0

√
λ2 0

)
=

(
6
√
10 0 0
0 3

√
10 0

)
Step 3 : Construct U

u1 = Av1
σ1

= ( 3√
10 ,

1√
10 )

u2 = Av2
σ2

= ( 1√
10 ,−

3√
10 )

The set {u1,u2} is already a basis of R2, so there is no need to extend it.
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Singular Value Decomposition (SVD)

Finally we have

A = UΣV T(
4 11 14
8 7 −2

)
=

(
3√
10

1√
10

1√
10 − 3√

10

)(
6
√
10 0 0
0 3

√
10 0

) 1
3

2
3

2
3

− 2
3 − 1

3
2
32

3 − 2
3

1
3


MATLAB: [U,S,V]=svd([4 11 14; 8 7 -2])
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Singular Value Decomposition (SVD)

Example

Let’s calculate the SVD decomposition of A =

 1 −1
−2 2
2 −2

.

Step 1 : Orthogonally diagonalize ATA

ATA =

(
9 −9
−9 9

)
Its eigenvalues and eigenvectors are

λ1 = 18 v1 = ( 1√
2 ,−

1√
2 )

λ2 = 0 v2 = ( 1√
2 ,

1√
2 )
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Singular Value Decomposition (SVD)

Step 2 : Construct V and Σ

V =
(
v1 v2

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)

Σ =

√λ1 0
0

√
λ2

0 0

 =

3
√
2 0

0 0
0 0


Step 3 : Construct U

u1 = Av1
σ1

= ( 1
3 ,−

2
3 ,

2
3 )

The set {u1} is not yet a basis of R3, so we need to extend it with orthogonal
vectors. All vectors orthogonal to u1 fulfill

u1 · u = 0 = 1
3x1 − 2

3x2 + 2
3x3 ⇒ x1 = 2x2 − 2x3
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Singular Value Decomposition (SVD)

Step 3 : Construct U (continued)
A basis of this space is w2 = (2, 1, 0) and w3 = (−2, 0, 1). But this basis is not
orthogonal. Let’s make it orthogonal following Gram-Schmidt procedure

u2 = w2
‖w2‖ = ( 2√

5 ,
1√
5 , 0)

w′3 = w3− < w3, v2 > v2 = (− 2
5 ,

4
5 , 1)

u3 = w3
‖w3

= (− 2
3
√

5 ,
4

3
√

5 ,
√

5
3 )

In fact, SVD does not require the u vectors to be unitary, but it is simply
convenient. We can make u2 and u3 unitary because they are “free” (we are
constructing them simply to extend the set of u vectors to be a basis of R3), but
not u1 because it is “bound” to the singular value.
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Singular Value Decomposition (SVD)

Finally we have

A = UΣV T 1 −1
−2 2
2 −2

 =


1
3

2√
5 − 2

3
√

5
− 2

3
1√
5

4
3
√

5
2
3 0

√
5

3


3
√
2 0

0 0
0 0

( 1√
2 − 1√

2
1√
2

1√
2

)
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Algebraic applications of SVD

Matrix condition number
Let σ1 and σr be the largest and smallest singular values of a matrix A. The
condition number of the matrix is defined as

κ(A) = σ1
σr

If this condition number is very large, the equations system Ax = b is ill-posed
and small perturbations in b translate into large perturbations in x. As a rule of
thumb, if κ(A) = 10k , then you may lose up to k digits of accuracy.
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Algebraic applications of SVD

Bases for fundamental spaces
The U and V matrices provide bases for Row{A}, Col{A} = Row{AT}, Nul{A}
and Nul{AT}
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Algebraic applications of SVD

Theorem 4.4 (The Invertible Matrix Theorem (continued))
The Invertible Matrix Theorem has been developed in Theorems 5.1 and 11.5 of
Chapter 3, Theorem 10.5 of Chapter 5, Theorem 2.1 of Chapter 6. Here, we give
an extension if A is invertible, then the following statements are equivalent to the
previous statements:

xxvii. (Col{A})⊥ = {0}.
xxviii. (Nul{A})⊥ = Rn.
xxix. (Row{A}) = Rn.
xxx. A has n non-null singular values.
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Algebraic applications of SVD

Reduced SVD and pseudoinverse of A
If within U and V we distinguish two submatrices, each one with r columns we
have

U =
(
UrUm−r

)
and V =

(
VrVn−r

)
Then,

A = UΣV T =
(
UrUm−r

)(D 0
0 0

)(
V T

r
V T

n−r

)
= UrDV T

r

Despite the fact that we may have removed many columns of U and V , we have
not lost any information and the recovery of A is exact. The Moore-Penrose
pseudoinverse is defined as

A+ = VrD−1UT
r

that is a n ×m matrix such that

A+AA+ = A+ AA+A = A
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Algebraic applications of SVD

Pseudoinverse of A and Least Squares
It can be shown that the least-squares solution of the equation system Ax = b is
given by

x̂ = A+b

Matrix approximation
If instead of taking r components in the split of U and V (see previous slide) we
take only k (assuming singular values have been ordered in descending order), and
we reconstruct Ak

Ak = UkDkV T
k

This matrix is the matrix of rank k that minimizes the Frobenius norm of the
difference

Ak = min
Rank{B}=k

‖A− B‖2
F = min

Rank{B}=k

n∑
i,j=1

(aij − bij)
2
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 4:

7.4.3
7.4.11
7.4.15
7.4.17
7.4.18
7.4.19
7.4.20
7.4.23
7.4.24
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Applications of SVD

Eigengenes and eigenassays
SVD is very much used to analyze the response of different genes to different
assays or conditions.
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Applications of SVD

Eigengenes and eigenassays
SVD is very much used to analyze the response of different genes to different
assays or conditions.

Alter, O., Brown, P. O. and Botstein, D. (2000) Proc. Natl. Acad. Sci. USA 97, 10101

8. Symmetric matrices and quadratic forms December 3, 2013 70 / 73



Applications of SVD

Eigenfaces
In this example we see the effect of matrix approximation by the reduced SVD.
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Applications of SVD

Eigenfaces
We can also use SVD to automatically analyze documents.

P. Marksberry, D. Parsley. Managing the IE (Industrial Engineering) Mindset: A quantitative investigation of Toyota’s practical thinking shared among

employees. J. Industrial Engineering and Manegement, 4: 771-799 (2011)
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Outline

8 Symmetric matrices and quadratic forms
Diagonalization of symmetric matrices (a)
Quadratic forms (b)
Constrained optimization (b)
Singular Value Decomposition (SVD) (c)
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Outline

9 Linear algebra applications in geometry
Local and global coordinates
Points and vectors
Lines in 2D
Affine maps in 2D
Conic sections in 2D
3D Geometry
Quadrics in 3D
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Local and global coordinates

Reference
Farin and Hansford, Chapter 1

Local and global coordinates
In real applications we may need to distinguish between local and global
coordinates.

And we need some way of transforming one into the other. This is nothing more
than a change of basis.
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Local and global coordinates

Shift and scale

In Vector Graphics it is common to design
objects in a local coordinate system (d) and,
then, place, rotate and scale the object in the
global coordinate system (e). We need some
transformation to go from one space to the
other.

For the first component, d1, we note that we
go from a local interval [0, 1] to a global
interval [min1,max1]. We may easily perform
the transformation as

d1−0
1−0 = e1−min1

max1−min1
⇒

e1 = min1 + (max1 −min1)d1
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Local and global coordinates

Shift and scale
The more general transformation maps the local interval [mind1,maxd1] to the
global interval [mine1,maxe1]. This is achieved with transformation

e1 = mine1 + maxe1−mine1
maxd1−mind1

d1

The same kind of transformation is applied to the second component (d2 → e2).
Putting everything in matrix notation we have

e =

(
mine1
mine2

)
+

(maxe1−mine1
maxd1−mind1

0
0 maxe2−mine2

maxd2−mind2

)
d

This transformation is of the form

e = T (d) = emin + Ad

that is not a linear transformation because of the shift (e.g., show that
T (d1 + d2) 6= T (d1) + T (d2)).
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Points and vectors

Reference
Farin and Hansford, Chapter 2

Points and vectors

We also need to distinguish between points and
vectors. Both are represented as a list of
coordinates. Informally, a point indicates a
location in space, while a vector indicates a
direction (orientation+sense) in space. In this
example, we have two points, p and q, and a
vector v that goes from p to q. We may talk
about the length of a vector, but not of a point.
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Points and vectors

Points and vectors

In this example we have multiple copies of the
same vector (since they all have the same
direction and magnitude). In Physics, forces
are vectors that are applied to objects that are
located at points. In this figure we would see
the same force applied to different objects.
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Points and vectors

Points and vectors

More formally, points belong to an Euclidean
space while vectors belong to a vector space.

p,q ∈ E2

v ∈ R2

Although we may represent both spaces in the
same figure and we may define operations using
both kinds of spaces. The goal of distinguishing
between points and vectors is to distinguish
between operations that depend on the
coordinate system and operations that do not.
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Operations on points and vectors

Coordinate independent operations
− : E2 × E2 → R2 v = q− p
+ : E2 × R2 → E2 p = q + v
+ : R2 × R2 → R2 v = u + w
· : R× R2 → R2 v = ru

Coordinate dependent operations
+ : E2 × E2 → E2 t = p + q
· : R× E2 → E2 q = rp
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Vector fields

Vector fields
Any function that assigns a vector to a point f : E2 → R2 v = f (p)

Example

f (x , y) = (x , y) f (x , y) = (−y , x)
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Combinations of points

Barycentric combinations
A weighted sum of points where the weights add up to 1 is called a barycentric
combination

Example

r = (1− t)p + tq = p + t(q− p) s = t1r + t2p + t3q
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Lines in 2D

Reference
Farin and Hansford, Chapter 3

Parametric equation of a line

Given two points:
l(t) = p + t(q− p) t ∈ R
Given point and vector:
l(t) = p + tv t ∈ R
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Lines in 2D

Implicit equation of a line

Given a point and the normal direction:
a · (x− p) = 0

In 2D:

(a1, a2) · (x1 − p1, x2 − p2) = 0⇒
ax1 + bx2 + c = 0
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Lines in 2D

Explicit equation of a line

Given a point and slope:
In 2D:

x2 = p2 + m(x1 − p1)
x2 = mx1 + b

x2 = (tanΘ)x1 + b
But it is not a good representation for
vertical lines.
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Lines in 2D

Distance of a point to a line

Implicit line:
Line: a · (x− p) = 0
Point: r

Let w = r − p and calculate:
a ·w = ‖a‖‖w‖ cos(θ)

Analyzing the figure we note that
cos(θ) = d

‖w‖ . Then
a ·w = ‖a‖d ⇒ d = a·w

‖a‖
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Lines in 2D

Distance of a point to a line

Parametric line:
Line: l(t) = p + tv
Point: r

Let w = r − p and calculate:
v ·w = ‖v‖‖w‖ cos(α)

Analyzing the figure we note that
sin(α) = d

‖w‖ =
√
1− cos2(α). Then

d = ‖w‖
√
1−

(
v·w
‖v‖‖w‖

)2
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Lines in 2D

The foot of a point

Parametric line:
Line: l(t) = p + tv
Point: r

Let w = r − p. The closest point within
the line to r is

q = p + Projv{w} = p + v·w
‖v‖2 v
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Lines in 2D

The intersection of two lines

Parametric lines:
Line 1: l1(t) = p + tv
Line 2: l2(s) = q + sw

We need to solve the equation system
l1(t) = l2(s)

p + tv = q + sw(
v −w

)(t
s

)
= q− p
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Lines in 2D

The intersection of two lines

Implicit lines:
Line 1: a · (x− p) = 0
Line 1: a · (x− q) = 0

We need to find x satisfying both
equations at the same time

aT x− aT p = 0
aT x− aT q = 0(
aT

aT

)
x =

(
aT p
aT q

)
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Affine maps in 2D

Reference
Farin and Hansford, Chapter 6

Affine change of coordinates
We transform the point x into point x′. Note
that the matrix multiplication is performed on
vectors, not on points

v = x− o
v′ = Av

x′ = p + v′

In total

x′ = p + A(x− o)

We may go back by

x = o + A−1(x′ − p)
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Affine maps in 2D

Translations and rotations

Translation: x′ = p + (x− o)

Rotation: x′ − r = Rα(x− r)
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Affine maps in 2D

Mirrors and compositions

Mirror:
p = 1

2 (x + x′)
x′ = 2p− x

Compositions:

x′ = o′ + A(x− o)
x′′ = o′′ + A′(x′ − o′)
x′′ = o′′ + A′A(x− o)
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Conic sections

Reference
Juan de Buegos (2000), Capítulo 11

Conic sections
The circle, the ellipse, the parabola, and the hyperbola are all curves stemming
from a section of a cone.
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Conic sections

Conic sections
They are all second order curves

ax2
1 + bx2

2 + cx1x2︸ ︷︷ ︸
2nd order

+ dx1 + ex2︸ ︷︷ ︸
1st order

+ f︸︷︷︸
0th order

= 0

By renaming the coefficients, we may rewrite it as

a11x2
1 + a22x2

2 + 2a12x1x2 + 2b1x1 + 2b2x2 + c = 0(
x1 x2

)(a11 a12
a12 a22

)(
x1
x2

)
+ 2

(
b1 b2

)(x1
x2

)
+ c = 0

xTAx + 2Bx + c = 0

Compare this to the more widely known equation of the parabola
y = ax2 + bx + c. Finally, we can write it in a very compact form

x̃TM x̃ =
(
x1 x2 1

)a11 a12 b1
a12 a22 b2
b1 b2 c

x1
x2
1

 = 0

9. Linear algebra applications in geometry August 25, 2013 30 / 73



Conic sections

Definition 5.1 (Conic sections)
A conic section or conics is the locus (lugar geométrico) of all points satisfying

x̃TM x̃ = 0

Definition 5.2 (Conic equality)
Two conics x̃TM1x̃ = 0 and x̃TM2x̃ = 0 are the same if

M1 = kM2

for some real number k.

Definition 5.3 (Degenerate and ordinary conics)
A conic section is degenerate if

det{M} = 0

A conic section is ordinary, if it is not degenerate.
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Conic sections

Examples of ordinary conics
Circumphere x2

r2 + y2

r2 = 1
Ellipse x2

a2 + y2

b2 = 1
Hyperbola x2

a2 − y2

b2 = 1
Parabola y2 = 2px

Examples of degenerate conics
Two lines x2 − y2 = (x − y)(x + y) = 0
Two lines x2 − 4 = (x − 2)(x + 2) = 0
Two lines (superposed) x2 = 0
Two complex lines x2 + y2 = (x − iy)(x + iy) = 0
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Intersection of a conics and a line

Intersection of a conics and a line
Consider the parametric equation of a line in homogeneous coordinates

l̃(t) =

l1(t)
l2(t)
1

 =

p1 + tv1
p2 + tv2

1

 =

p1
p2
1

+ t

v1
v2
0

 = p̃ + t ṽ

We need to find a point in the line (i.e., t) such that

l̃(t)TM l̃(t) = 0
(p̃ + t ṽ)TM(p̃ + t ṽ) = 0

ṽTM ṽt2 + 2ṽTMp̃t + p̃TMp̃ = 0

This is a second order equation in t. If there is no solution, then the line does not
intersect the conics. If there is only 1 solution, then the line is tangent to the
conics. If there are 2 solutions, then the line intersects the conics (the line is
secant to the conics, secante).
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Reduced equation of a conics

Reduced equation of a conics

Let λ1 and λ2 be the eigenvalues of A =

(
a11 a12
a12 a22

)
. Then, there exists a basis

in which the conics can be expressed as

λ1 6= 0, λ2 6= 0 λ1x2 + λ2y2 + det{M}
det{A} = 0 Ellipses, hyperbolas,

pairs of intersecting lines.
λ1 = 0, λ2 6= 0
det{M} 6= 0 y2 = 2

√
− det{M}

λ3
2

x Parabolas

λ1 = 0, λ2 6= 0
det{M} = 0 y2 = k Pairs of parallel lines
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General classification of conics

Definition 5.4 (Signature of a quadratic form)
Consider a quadratic form Q(x) = xTAx and its diagonalization such that

Q(y) = λ1y2
1 + λ2y2

2 + ...+ λny2
n

The signature of Q(x) is (n0, n+, n−) where n0 is the number of null λ
coefficients, n+ the number of positve λ coefficients, and n− the number of
negative λ coefficients.

Theorem 5.1
The signature of a quadratic form is invariant to changes of basis, i.e., it only
depends on Q.

Definition 5.5 (Signature of a matrix)
The signature of a symmetric matrix is the signature of its associated quadratic
form.
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General classification of conics

General classification of conics
A M Conics

det{A} > 0
Sig{M} = (0, 1, 2) or (0, 2, 1) (Real) Ellipse
Sig{M} = (0, 3) or (0, 3, 0) Empty set (or imaginary ellipse)

Det{M} = 0 A point (or the intersection
of two imaginary lines)

det{A} < 0 det{M} 6= 0 Hyperbola
det{M} = 0 Two secant (real) lines

det{A} = 0 det{M} 6= 0 Parabola
det{M} = 0 Two parallel (real) lines
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Geometric transformations

Geometric transformations
Shift: Shift the center to ĉ = (c1, c2, 0)

(x̃− ĉ)TM1(x̃− ĉ) = 0
Rotate: Rotate the conics with a rotation matrix R:

(R x̃)TM1(R x̃) = 0
x̃T (RTM1R)x̃ = 0

with R =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

.
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Ellipse

Ellipse

Reduced equation: x2

a2 + y2

b2 = 1

Parametric equation: x = a cos t
y = b sin t

t ∈ [0, 2π)
Interfocal distance: d(F ,F ′) = 2c

where
a2 + b2 = c2
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Hyperbola

Hyperbola

Reduced equation: x2

a2 − y2

b2 = 1

Parametric equation: x = ±a cosh t
y = b sinh t

t ∈ R
Interfocal distance: d(F ,F ′) = 2c

where
a2 + b2 = c2

(Calculus note)
cos x = eix+e−ix

2 cosh x = ex+e−x

2
sin x = eix−e−ix

2 sinh x = ex−e−x

2
cos2 x + sin2 x = 1 cosh2 x − sinh2 x = 1
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Parabola

Parabola

Reduced equation: y2 = 2px

Parametric equation: x = t2

2p
y = t

t ∈ R
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Cross product

Reference
Farin and Hansford, Chapter 10

Cross product
The cross product is defined for 3D vectors as

u = v×w =

∣∣∣∣∣∣
e1 e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
Properties:

u ⊥ v and u ⊥ w
‖v×w‖2 = ‖v‖‖w‖ − (v ·w)2

v× (cv) = 0
v× (cw) = (cv)×w = c(v×w)
w× v = −v×w
u× (v + w) = u× v + u×w
u× (v×w) 6= (u× v)×w
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Cross product

Example

u = e1 × e2 =

∣∣∣∣∣∣
e1 e2 e3
1 0 0
0 1 0

∣∣∣∣∣∣ = e3

u = e2 × e1 =

∣∣∣∣∣∣
e1 e2 e3
0 1 0
1 0 0

∣∣∣∣∣∣ = −e3
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Cross product

Coordinate systems

Right-handed:
x× y = z
y× z = x
z× x = y
Left-handed:
x× y = −z
y× z = x
z× x = −y
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Cross product

Area of parallelogram

The norm of v×w is the area of the
parallelogram formed by u and v and is
equal to:

A = ‖v×w‖ = ‖v‖‖w‖ sin(θ)
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Lines

Parametric equation of a line
A line is defined in 3D (and nD) by two points or a point and a vector

Given two points:
l(t) = p + t(q− p) t ∈ R
Given point and vector:
l(t) = p + tv t ∈ R

Giving a point and a perpendicular vector does no longer work.
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Planes

Implicit equation of a planes
A plane is defined in 3D by a point and a perpendicular vector

Given a point and the normal direction:
n · (x− p) = 0

In 3D:

(n1, n2, n3)·(x1−p1, x2−p2, x3−p3) = 0⇒
Ax1 + Bx2 + Cx3 + D = 0

The absolute value of D in the implicit
equation is the distance of the plane to
the coordinate system origin.
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Hyperplanes

Hyperplanes
A hyperplane of Rn is an affine space of a dimension n − 1. For instance

Rn Dimension Dimension of hyperplane Hyperplane name
R2 2D 1 Line
R3 3D 2 Plane
Rn nD n-1 Hyperplane

All hyperplanes are defined by a point (p) and a normal vector (n)

n · (x− p) = 0

Distance of a point to a plane (hyperplane)
The distance between a point r and a plane (or hyperplane) is given by

d = n·(r−p)
‖n‖
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Planes

Parametric equation of a plane
A plane can also be defined in 3D (and nD) by a point and two in-plane vectors

Given a point and two in-plane vectors:
P(s, t) = p + sv + tw ∀s, t ∈ R
Given three points:
P(s, t) = p+s(q−p)+t(r−p) ∀s, t ∈ R
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Scalar triple product

Scalar triple product

The volume of a parallelepiped can be
measured with the scalar triple product

V = u · (v×w)

Properties:

u · (v×w) = v · (u×w) = w · (v× u)
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Distance between two lines

Distance between two lines
Given two lines in parametric form

l1(sc) = p0 + scu l2(tc) = q0 + tcv

The distance between the two lines is the
length of the vector wc that is perpendicular to
both lines. wc is defined by two points: one in
line 1 (x1) and another one in line 2 (x2):

wc = x2 − x1 = q0 + tcv− (p0 + scu)

The conditions on wc are:

wc · u = 0 and wc · v = 0

After reorganizing the terms(
‖u‖2 −u · v
u · v ‖v‖2

)(
sc
tc

)
=

(
(p0 − q0) · u
(p0 − q0) · v

)
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Intersection of two lines

Intersection of two lines
The two lines in the previous slide intersect if x1 = x2. We also note that the two
lines intersect if u, v and p0 − q0 are in the same plane, or what is the same they
are linearly dependent ∣∣(u v p0 − q0

)∣∣ = 0
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Intersection of a line and a plane

Intersection of a line and a plane

Parametric line, implicit plane:
l(t) = p + tv

n · (x− q) = 0
For the intersection we need to find
t such that

n · (p + tv− q) = 0
whose solution is

t = n·(q−p)
n·v

x = p + n·(q−p)
n·v v
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Intersection of a line and a plane

Intersection of a line and a plane

Parametric line, parametric plane:
l(t) = p + tv

P(t1, t2) = q + t1u + t2w
We need to find t, t1 and t2 such
that

p + tv = q + t1u + t2w
Reorganizing the terms:(

u w −v
)t1

t2
t

 = p− q

9. Linear algebra applications in geometry August 25, 2013 54 / 73



Intersection of a line and a triangle

Intersection of a line and a triangle

Parametric line, 3 points of a triangle:
l(t) = p + tv

P(t1, t2) = p1 + t1(p2 − p1) + t2(p3 − p1)
t1, t2 ∈ [0, 1], t1 + t2 ≤ 1

We need to find t, t1 and t2 such that
p + tv = p1 + t1(p2 − p1) + t2(p3 − p1)

Reorganizing the terms:(
p2 − p1 p3 − p1 −v

)t1
t2
t

 = p− p1

The intersection point is within the
triangle if t1, t2 ∈ [0, 1], t1 + t2 ≤ 1.
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Reflection

Reflection

Reflection:
This situation is encountered, for instance,
in reflected light rays. By inspecting the
figure we note that

n · v = −n · v′

On the other side, it must also be
cn = v′ − v

We have two unknowns c and v and two
equations. After some manipulation we
reach

v′ = v− 2(n · nT )v

9. Linear algebra applications in geometry August 25, 2013 56 / 73



Intersection of three planes

Intersection of three planes

Implicit equations:
For each of the planes, we have

n1 · (x− p1) = 0⇒ nT
1 x = nT

1 p1
n2 · (x− p2) = 0⇒ nT

2 x = nT
2 p2

n3 · (x− p3) = 0⇒ nT
3 x = nT

3 p3

Gathering all togethernT
1

nT
2

nT
3

 x =

nT
1 p1

nT
2 p2

nT
3 p3


In non-degenerate situations, this equation
system has a unique solution that is the
intersection point. Otherwise, the planes
may intersect in one line, two lines, three
lines, or even in a plane (if the three
planes are the same plane).
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Intersection of two planes

Intersection of two planes

Implicit equations:
For each of the planes, we have

n · (x− p1) = 0⇒ nT x = nT p1
m · (x− p2) = 0⇒ mT x = mT p2

The two planes intersect in a line of the
form

l(t) = p + t(n×m)

To find p we solve the equation system nT

mT

(n×m)T

 x =

nT p1
mT p2

0
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Quadrics

Reference
Juan de Buegos (2000), Capítulo 12

Quadrics
Quadrics are 3D surfaces that meet a second order equation.

Quadrics in the Wikipedia
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Ellipsoid

Ellipsoid

Reduced equation: x2

a2 + y2

b2 + z2

c2 = 1

Parametric equation:
x = a cos u sin v
y = b sin u sin v
z = c cos v

u, v ∈ [0, 2π)

Cuts along X , Y and Z are ellipses.
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Hyperboloid of one sheet

Hyperboloid of one sheet
Reduced equation: x2

a2 + y2

b2 − z2

c2 = 1

Parametric equation:
x = a

√
1 + u2 cos v

y = b
√
1 + u2 sin v

z = cu

Parametric equation:
x = a cosh u cos v
y = b cosh u sin v
z = c sinh u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.
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Hyperboloid of two sheets

Hyperboloid of two sheets

Reduced equation: x2

a2 + y2

b2 − z2

c2 = −1

Parametric equation:
x = a sinh u cos v
y = b sinh u sin v
z = c cosh u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.
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Elliptic paraboloid

Elliptic paraboloid
Reduced equation: x2

a2 + y2

b2 − z
c = 0

Parametric equation:
x = a

√
u cos v

y = b
√
u sin v

z = cu
v ∈ [0, 2π), u ∈ [0,∞)

Cuts along X and Y are parabolas.
Cuts along Z are ellipses.

9. Linear algebra applications in geometry August 25, 2013 64 / 73



Hyperbolic paraboloid

Hyperbolic paraboloid
Reduced equation: x2

a2 − y2

b2 − z
c = 0

Parametric equation:
x = a

√
u cosh v

y = b
√
u sinh v

z = cu
u, v ∈ R

Cuts along Y are parabolas.
Cuts along Z are hyperbolas.
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Cone

Cone

Reduced equation: x2

a2 + y2

b2 − z2

c2 = 0

Parametric equation:
x = au cos v
y = bu sin v
z = cu

v ∈ [0, 2π), u ∈ R

Cuts along Y are parabolas.
Cuts along Z are ellipses.
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Elliptic cylinder

Elliptic cylinder

Reduced equation: x2

a2 + y2

b2 = 1

Parametric equation:
x = a cos v
y = b sin v
z = u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are pairs of lines.
Cuts along Z are ellipses.
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Hyperbolic cylinder

Hyperbolic cylinder

Reduced equation: x2

a2 − y2

b2 = 1

Parametric equation:
x = a cosh v
y = b sinh v
z = u

u, v ∈ R

Cuts along X and Y are pairs of lines.
Cuts along Z are hyperbolas.
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Parabolic cylinder

Parabolic cylinder

Reduced equation: x2

a2 − y
b = 0

Parametric equation:
x = au
y = bu2

z = v
u, v ∈ R

Cuts along X and Y are pairs of lines or
single lines.
Cuts along Z are parabolas.
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Quadrics

Definition 7.1
Quadrics All quadrics can be written as

3∑
i,j=1

aijxixj + 2
3∑

i=1
bixi + c = 0

x̃TM x̃ = 0

with aij = aji and

M =


a11 a12 a13 b1
a12 a22 a23 b2
a13 a23 a33 b3
b1 b2 b3 c

 and x̃ =


x1
x2
x3
1
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Quadrics

Definition 7.2 (Quadrics equality)
Two quadrics x̃TM1x̃ = 0 and x̃TM2x̃ = 0 are the same if

M1 = kM2

for some real number k.

Definition 7.3 (Degenerate or ordinary quadrics)
A quadrics is degenerate if det{M} = 0 (e.g., cones, cylinders and pairs of
planes). It is ordinary if it is not degenerate (e.g., ellipsoids, paraboloids,
hyperboloids)

Examples of degenerate quadrics
x2 − y2 = 0 = (x − y)(x + y) A pair of planes
x2 + y2 = 0 = (x − iy)(x + iy) A pair of imaginary planes
x2 − 1 = 0 = (x − 1)(x + 1) A pair of planes
x2 + y2 − 25 = 0 Cylinder of radius 5
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General classification of quadrics

General classification of quadrics
Let λ1, λ2 and λ3 be the eigenvalues of A. Then, there exists a basis such that
the reduced equation of the quadrics is

Condition Quadrics
λ1 6= 0, λ2 6= 0, λ3 6= 0 λ1x2 + λ2y2 + λ3z2 + det{M}

det{A} = 0
Ellipsoids, hyperboloids and cones

λ1 6= 0, λ2 6= 0, λ3 = 0
det{M} 6= 0 λ1x2 + λ2y2 = 2

√
− det{M}

λ1λ2
z

Paraboloid
λ1 6= 0, λ2 6= 0, λ3 = 0

det{M} = 0 λ1x2 + λ2y2 = k

Elliptical cylinder
λ1 = 0, λ2 6= 0, λ3 = 0

Rank{M} = 3 y2 = 2qx Parabolic cylinder

λ1 = 0, λ2 6= 0, λ3 = 0
Rank{M} < 3 y2 = k Pair of planes
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Sets

Definition 1.1 (Set)
A set is a well-defined collection of elements. We denote the different elements
as a ∈ S.

Definition 1.2 (Empty set)
The only set without any element is the empty set (∅).

Describing sets
We may provide the elements of a set:

Intensional definition: by giving a property they all meet
(e.g., even numbers from 1 to 10)
Extensional definition: by listing all the elements in the set
(e.g.,{2, 4, 6, 8, 10}). The order in which the different elements are written
has no meaning.
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Sets

Definition 1.3 (Subset and proper subset)
B is subset of A (denoted B ⊆ A or A ⊇ B) if all the elements of B are also
elements of A. B is a proper subset of A if B is a subset of A and B is different
from A (B ⊂ A or A ⊃ B).

Properties
A is an improper subset of A.
∅ is a proper subset of A.

Definition 1.4 (Power set (Partes de un conjunto))
The set of all subsets of a set A is called the power set of A.

Example
Let A = {1, 2, 3} the power set of A is

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Sets

Definition 1.5 (Cartesian product)
The cartesian product of the sets A and B is the set of all ordered pairs in which
the first element comes from A and the second element comes from B.

A× B = {(a, b)|a ∈ A, b ∈ B}

Note that because of the ordered nature of the pair A× B 6= B × A.

Example
Let A = {1, 2, 3} and B = {4, 5}.

A× B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

Definition 1.6 (Cardinality)
The cardinality of a set is the number of elements it has.
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Sets

Definition 1.7 (Disjoint sets)
Two sets are disjoint if they do not have any element in common.

Some useful sets
Integer numbers: Z = {...,−2,−1, 0, 1, 2, ...}, |Z| = ℵ0

Natural numbers, positive integers: N = Z+ = {1, 2, 3, ...}, |N| = ℵ0

Negative integers: Z− = {...,−3,−2,−1}, |Z−| = ℵ0

Non-null integers: Z∗ = Z− {0} = {...,−2,−1, 1, 2, ...}, |Z∗| = ℵ0

Rational numbers: Q, |Q| = ℵ0

Real numbers: R, |R| = ℵ1

Interval: [0, 1], |[0, 1]| = ℵ1

Complex numbers: C = {a + bi |a, b ∈ R}, |C| = ℵ1
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Relations

Definition 2.1 (Relation)
A relation aRb is a subset of the cartesian product A× B.

Example
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Functions

Definition 2.2 (Function)
A function f : X → Y is a relation between X and Y in which each x ∈ X
appears at most in one of the pairs (x , y). We may write

(x , y) ∈ f or f (x) = y

The domain of f is X , the codomain of f is Y . The support of f is the set of
all those values in X for which there exists a pair (x , y). The range of f are all
values in Y for which there exists at least one pair (x , y).

Example
f : R → R
f (x) = x3

(2, 8) ∈ f ⇔ f (2) = 8
+ : R× R → R

((2, 3), 5) ∈ +⇔ +((2, 3)) = 5⇔ 2 + 3 = 5
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Classification of functions

Definition 2.3
Functions can be classified as surjective, injective or bijective:
Surjective: A function is surjective if every point of the codomain has at least

one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.
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Inverse function

Definition 2.4 (Inverse function)
Consider an injective function f : X → Y . f −1 : Y → X is the inverse of f iff

(x , y) ∈ f ⇒ (y , x) ∈ f −1

Example
f (x) = x + 3⇒ f −1(y) = y − 3
f (x) = x3 ⇒ f −1(y) = y 1

3

f (x) = x2 is not invertible because it is not injective (f (−2) = f (2) = 4)
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Inverse function

Theorem 2.1
If f is invertible, its inverse is unique.
If f is bijective, so is f −1.
X and Y have the same cardinality if there exists a bijective function
between the two.

Example
Consider the following function f : Z→ N

0 −1 1 −2 2 −3 3 ...
0 1 2 3 4 5 6 ...

f = {(0, 0), (−1, 1), (1, 2), (−2, 3), (2, 4), (−3, 5), (3, 6), ...}

f is bijective. Consequently, Z has the same cardinality as N.
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Partition

Definition 3.1 (Partition)
A partition of a set S is a collection of non-empty subsets such that each element
of S belongs to one and only one subset (cell) of the partition. We denote as x̄
the subset that contains the element x. All cells in a partition are disjoint to any
other cell.

Examples
We may partition the set of natural numbers into the subset of even numbers
({2, 4, 6, ...}) and the subset of odd numbers ({1, 3, 5, ...}).
We may partition the set of integer numbers into the subset of all multiples
of 3 ({...,−6,−3, 0, 3, 6, ...}), the subset of all numbers whose remainder
after dividing by 3 is 1 ({...,−5,−2, 1, 4, 7, ...}), and the subset of all
numbers whose remainder after dividing by 3 is 2 ({...,−4,−1, 2, 5, 8, ...}).
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Equivalence relation

Definition 3.2 (Equivalence relation)
R is an equivalence relation in S if it verifies:

1 R is reflexive: xRx
2 R is symmetric: xRy ⇒ yRx
3 R is transitive: xRy , yRz ⇒ xRz

Examples
1 = is an equivalence relation.
2 Congruence modulo n is an equivalence relation (two numbers are related if

they have the same remainder after dividing by n)
Example: 1 and 4 have remainder 1 after dividing by 3. We write

1 ≡ 4(mod3)

3 ∀n,m ∈ Z nRm⇔ nm ≥ 0 is not an equivalence relationship because it is
not transitive (e.g., −3R0, 0R5 but −3�R5).
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Partition and equivalence relation

Theorem 3.1
Let S be a non-empty set, and R an equivalence relation defined on S. Then R
partitions S with the cells

ā = {x ∈ S|xRa}

Additionally, we may define another equivalence relation ∼

a ∼ b ⇔ ā = b̄
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Partition and equivalence relation

Example
Congruence modulo 3 is an equivalence relation in Z (two numbers are related if
they have the same remainder after dividing by 3)

0̄ = {...,−6,−3, 0, 3, 6, ...}
1̄ = {...,−5,−2, 1, 4, 7, ...}
2̄ = {...,−4,−1, 2, 5, 8, ...}

Additionally

... = 0̄ = 3̄ = 6̄ = ...⇒ 0 ∼ 3 ∼ 6 ∼ ...

... = 1̄ = 4̄ = 7̄ = ...⇒ 1 ∼ 4 ∼ 7 ∼ ...

... = 2̄ = 5̄ = 8̄ = ...⇒ 2 ∼ 5 ∼ 8 ∼ ...

and

Z = 0̄ ∪ 1̄ ∪ 2̄
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Partition and equivalence relation

Example
Consider the cartesian product Z× (Z− {0}). Let (m1, n1) and (m2, n2) be two
ordered sets of this cartesian product. Consider now the equivalence relation

(m1, n1 ∼ (m2, n2)⇔ m1n2 −m2n1 = 0

The set of rational numbers is formally defined Q as the set of equivalence classes
of Z× (Z− {0}) under the relation ∼.
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Binary operations

Introduction
What is addition?
Let us assume that we arrive to a classroom in Mars, and
that martians are learning to add. The teacher says

Gloop, poyt

and the students reply:

Bimt.

Then, the teacher says:

Ompt, gaft

and the students reply:

Poyt.
We don’t know what they do but it seems that when the teacher gives two
elements, students respond with another element.
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Binary operations

Introduction (continued)
What is addition?
This is what we do when we say “three plus four”, “seven”. And we may not use
any two elements (“three plus apples” is not defined). We can only use elements
on a given set. This is what we formally call a binary operation.

Definition 4.1 (Binary operation)
A binary operation on a set S is a function:

∗ : S × S → S
∗(a, b) = a ∗ b
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Binary operations

Examples
The following binary operations are all different:

+ : R× R→ R
+ : Z× Z→ Z
+ :Mm×n(R)×Mm×n(R)→Mm×n(R)

The following is not a binary operation because it is not well defined

+ :M(R)×M(R)→M(R)

we don’t know how to add a 2× 2 matrix with a 3× 3 one.
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Closed set

Definition 4.2
Let S be a set and H a subset of S. H is said to be closed with respect to the
operation ∗ defined in S iff

∀a, b ∈ H a ∗ b ∈ H

Then we may define the binary operation in H:

∗ : H × H → H
∗(a, b) = a ∗ b

which is called the binary operation induced in H.
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Closed set

Example
Let S = Z and H = {n2|n ∈ Z+} = {1, 4, 9, 16, 25, 36, ...}. H is not closed with
respect to addition. For example:

1 ∈ H
4 ∈ H but 1 + 4 /∈ H

Example
Let S = Z and H = {n2|n ∈ Z+} = {1, 4, 9, 16, 25, 36, ...}. H is closed with
respect to multiplication. For example:

n2 ∈ H
m2 ∈ H and n2 ·m2 = (nm)2 ∈ H
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Closed set

Example
Let S be the set of real-valued functions with a single real argument
S = {R→ R}. Let us define the addition of functions as

+ : (R→ R)× (R→ R) → R→ R
(f + g)(x) = f (x) + g(x)

Similarly for the multiplication and subtraction of functions. Let us define the
composition of functions as

◦ : (R→ R)× (R→ R) → R→ R
(f ◦ g)(x) = f (g(x))

S is closed with respect to addition, subtraction, multiplication and composition.
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Definition of a binary operation

Example
To define a binary operation either we give the full table (intensional definition)
as in

a ∗ b b = 0 b = 1 b = 2
a = 0 0 1 2
a = 1 1 2 0
a = 2 2 0 1

or

a4b b = 0 b = 1 b = 2
a = 0 1 2 0
a = 1 1 1 2
a = 2 0 0 2

or we give a rule to compute it (extensional definition) as in

a ∗ b = (a + b) mod 3
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Properties of a binary operation

Definition 4.3 (Commutativity)
A binary operation is commutative iff

a ∗ b = b ∗ a

Example
∗ is commutative because its definition table is symmetric with respect to the
main diagonal, but 4 is not commutative.
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Properties of a binary operation

Definition 4.4 (Associativity)
A binary operation is associative iff

(a ∗ b) ∗ c = a ∗ (b ∗ c)

Example
4 is not associative because

(040)40 = 140 = 1
04(040) = 041 = 2

But ∗ is associative

(0 ∗ 0) ∗ 0 = 0 ∗ 0 = 0
0 ∗ (0 ∗ 0) = 0 ∗ 0 = 0

We would have to test all possible triples, but after a a little bit of work we could
show that ∗ is associative.
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Properties of a binary operation

Example
Function composition is associative although not commutative.
Proof
Function composition is not commutative

(f ◦ g)(x) = f (g(x)) 6= g(f (x)) = (g ◦ f )(x)

Function composition is associative

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f (g(h(x))) = f ((g ◦ h)(x)) = (f ◦ (g ◦ h))(x)
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Properties of a binary operation

Example
A function may not be well defined. For instance,

/ : Q×Q) → Q
a/b = a

b

is not well defined for b = 0 ∈ Q

Example
A function may not be closed in S. For instance,

/ : Z× Z) → Z
a/b = a

b

is not closed because a = 1 ∈ Z, b = 3 ∈ Z but 1
3 /∈ Z.
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Properties of a binary operation

Definition 4.5 (Existence of a neutral element)
A binary operation has a neutral element, e, iff

∀a ∈ S a ∗ e = e ∗ a = a

Example
0 is the neutral element of addition in R because

∀r ∈ R r + 0 = 0 + r = r

1 is the neutral element of multiplication in R because

∀r ∈ R r · 1 = 1 · r = r

Addition in N has no neutral element since 0 /∈ N.
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Properties of a binary operation

Definition 4.6 (Existence of an inverse element)
A binary operation has an inverse element iff

∀a ∈ S ∃b ∈ S|a ∗ b = b ∗ a = e

being e the neutral element of ∗.

Example
The inverse element of 2 with respect to addition in R is -2 because

2 + (−2) = (−2) + 2 = 0

The inverse element of 2 with respect to multiplication in R is 1
2 because

2 · 1
2 = 1

2 · 2 = 1

Multiplication in N has no inverse element since ∀n ∈ N 1
n /∈ N.
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Groups and subgroups

Introduction
Groups and subgroups are algebraic structures. They are the ones that allow
solving equations like

x + x = a⇒ x = a
2

and that the equation

x · x = a

does not have a solution in R if a < 0.
We’ll see that defining a group amounts to define the elements belonging to the
group as well as the operations that can be used with them.
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Groups

Definition 5.1 (Group)
Given a set S and a binary operation ∗ defined on S, the pair (S, ∗) is a group if
G is closed under ∗ and

G1. ∗ is associative in S
G2. ∗ has a neutral element in S
G3. ∗ has an inverse element in S

Definition 5.2 (Abelian group)
(S, ∗) is an abelian group if (S, ∗) is a group and ∗ is commutative.

Definition 5.3 (Subgroup)
Let (S, ∗) be a group. Let H be a subset of S, H ⊆ S, and ∗H be the ∗ induced
operation in H. The pair (H, ∗H) is a subgroup of (S, ∗) if it verifies the
conditions to be a group.
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Groups

Example
Consider S = {z ∈ C|z = e iϕ ∀ϕ ∈ R}. (U, ·) is a group.

Proof
G1. · is associative in S

z1(z2z3) = e iϕ1 (e iϕ2e iϕ3 ) = e iϕ1 (e i(ϕ2+ϕ3)) = e i(ϕ1+ϕ2+ϕ3)

(z1z2)z3 = (e iϕ1e iϕ2 )e iϕ3 = (e iϕ1+ϕ2 )e iϕ3 = e i(ϕ1+ϕ2+ϕ3)
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Groups

Example (continued)
Proof

G2. · has a neutral element in S
1 = e i0 ∈ S

z · 1 = e iϕe i0 = e i(ϕ+0) = e iϕ = z
1 · z = e i0e iϕ = e i(0+ϕ) = e iϕ = z

G3. · has an inverse element in S
For each z = e iϕ, its inverse element with respect to · is
z−1 = e−iϕ

zz−1 = e iϕe−iϕ = e i(ϕ−ϕ) = e i0 = 1
z−1z = e−iϕe iϕ = e i(−ϕ+ϕ) = e i0 = 1
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Groups

Example
(N,+) is not a group because it has no neutral element.
(N ∪ {0},+) is not a group because it has no inverse element.
(Z,+), (Q,+), (R,+), (C,+) and (Rn,+) are abelian groups.
(Mm×n,+) is an abelian group.
(R, ·) is not a group because 0 has no inverse.

(Mn×n(R)), ·) is not a group because


0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

 has no inverse.

Let S ∈Mn×n(R) be the set of invertible matrices of size n × n. (S, ·) is a
group (although not abelian). It is called the General Linear Group of degree
n (GL(n,R)).
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Groups

Example
The existence of groups is what allows us to solve equations. For instance,
consider the equation

5 + x = 2

and its solution in the group (Z,+)

5 + x = 2 [Addition of the inverse of 5 with respect to + in both sides]
−5 + (5 + x) = −5 + 2 [Addition is associative ]
(−5 + 5) + x = −3 [Definition of inverse]

0 + x = −3 [Definition of neutral element]
x = −3
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Groups

Example
Consider the equation

2x = 3

and its solution in the group (Q, ·)

2x = 3 [Multiplication by the inverse of 2 in both sides]
1
2 (2x) = 1

23 [Multiplication is associative ]
( 1

22)x = 2
3 [Definition of inverse]

1x = 2
3 [Definition of neutral element]

x = 2
3
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Groups

Theorem 5.1 (Cancellation laws)
Given any group (S, ∗), ∀a, b, c ∈ S it is verified

Left cancellation: a ∗ b = a ∗ c ⇒ b = c
Right cancellation: b ∗ a = c ∗ a⇒ b = c

Theorem 5.2 (Existance of a unique solution of linear equations)
Given any group (S, ∗), ∀a, b ∈ S the linear equations

a ∗ x = b and y ∗ a = b

always have a unique solution in S.

Theorem 5.3 (Properties of the inverse)
Given any group (S, ∗), ∀a ∈ S its inverse is unique and ∀a, b ∈ S

(a ∗ b)−1 = (b−1) ∗ (a−1)
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Homomorphisms

Example
Consider the sets S = {a, b, c} and S ′ = {A,B,C} with the operations
∗ : S × S → S and ∗′ : S ′ × S ′ → S ′

x ∗ y y = a y = b y = c
x = a a b c
x = b b c a
x = c c a b

and

x ∗′ y y = A y = B y = C
x = A A B C
x = B B C A
x = C C A B

We may construct a function that “translates” elements in S into elements in S ′
with the “same properties”.

φ : S → S ′
φ(a) = A
φ(b) = B
φ(c) = C

We note that

b ∗ c = a⇒ φ(b) ∗′ φ(c) = φ(a)⇒ B ∗′ C = A
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Homomorphisms

Definition 6.1 (Group homomorphism)
Given two groups (S, ∗) and (S ′, ∗′), the function φ : S → S ′ is a group
homomorphism iff ∀a, b ∈ S

φ(a ∗ b) = φ(a) ∗′ φ(b)

Definition 6.2 (Group isomorphism)
Given two groups (S, ∗) and (S ′, ∗′), the function φ : S → S ′ is a group
isomorphism iff it is a group homomorphism and it is bijective.
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Homomorphisms

Example
Consider the two groups (Rn,+) and (Rm,+) and a matrix A ∈Mm×n(R). The
application

φ : Rn → Rm

φ(x) = Ax

is a group homomorphism because

φ(u + v) = A(u + v) = Au + Av = φ(u) + φ(v)

Example
Consider the two groups (GL(n,R), ·) and (R, ·). The application

φ : GL(n,R) → R
φ(A) = det{A}

is a group homomorphism because

φ(AB) = det{AB} = det{A} det{B} = φ(A) · φ(B)
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Homomorphisms

Theorem 6.1
Let φ : S → S ′ be a group homomogrphism between two groups. Then,

φ(e) = e′

φ(a−1) = (φ(a))−1

Definition 6.3 (Kernel of a group homomorphism)
Let φ : S → S ′ be a group homomogrphism between two groups. Then, the kernel
of φ is the set

Ker{φ} = {x ∈ S|φ(x) = e′}

Example
Let φ(x) = Ax. Then,

Ker{φ} = {x ∈ Rn|Ax = 0} = Nul{A}
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Isomorphisms

Theorem 6.2 (Isomorphisms and cardinality)
If two groups (S, ∗) and (S ′, ∗′) are isomorph (i.e., there exists an isomorphism
between the two groups), then S and S ′ have the same cardinality.
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Isomorphisms

Example
Q and R cannot be isomorph because the cardinality of Q is ℵ0 and the
cardinality of R is ℵ1.
There are as many natural numbers as natural even numbers. In other words,
the cardinality of N and 2N are the same. The reason is that the function
φ(n) = 2n is an isomorphism between N and 2N.

Example
Consider the set Rc = [0, c) ∈ R and the operation x +c y = (x + y) mod c. The
pair (Rc ,+c) is a group. Consider now the two particular cases (R2π,+2π) and
(R1,+1) and the mapping

φ : R2π → R1
φ(x) = x

2π

φ is an isomorphism between (R2π,+2π) and (R1,+1). In fact, all (Rc ,+c)
groups are isomorph to any other (Rc′ ,+c′ ) group.
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Isomorphisms

Cardinality is a group property. The nice things about isomorphisms is that they
preserve group properties.

Theorem 6.3
If two groups (S, ∗) and (S ′, ∗′) are isomorph, then

If ∗ is commutative, so is ∗′.
If there is an order relation in S, it can be “translated” into an order relation
in S ′.
If ∀s ∈ S there exists a solution in S of the equation x ∗ x = s, then ∀s ′ ∈ S ′
there exists a solution in S ′ of the equation x ∗′ x = s ′.
If ∀a, b ∈ S there exists a solution in S of the equation a ∗ x = b, then
∀a′, b′ ∈ S ′ there exists a solution in S ′ of the equation a′ ∗′ x = b′.
The kernel of any isomorphism φ between (S, ∗) and (S ′, ∗′) is
Ker{φ} = {e} being e the neutral element of ∗ in S.
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Isomorphisms

Example
((Z ),+) is not isomorph to ((Q),+) because the equation

x + x = s

has a solution in Q for any s ∈ Q (that is x = s
2 ), but it does not have a solution

in Z for any s ∈ Z (it only has a solution in Z if s is an even number).

Example
((R), ·) is not isomorph to ((C), ·) because the equation

x · x = z

has two solution in C for any z ∈ C (in fact there are two solutions, if z = re iθ,
then x = ±re i θ

2 are the two solutions) , but it does not have a solution in R for
any z ∈ R (it only has a solution in R if z is a non-negative number).
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Algebraic structures

Algebraic structures
Algebraic structures are tools that help us to define operate on numbers and
elements within a set, solve equations, etc.
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Algebraic structures

Definition 7.1 (Ring)
The tuple (S, ∗, ◦) is a ring iff

R1. (S, ∗) is an abelian group.
R2. ◦ is associative.
R3. ◦ is distributive with respect to ∗, i.e., ∀a, b, c ∈ S

Left-distributive: a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c)
Right-distributive: (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c)

Example
(Z,+, ·), (Q,+, ·), (R,+, ·), (C,+, ·) are rings.
(Mm×n(R),+, ·) is a ring.
(R→ R,+, ·) is a ring.
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Algebraic structures

Theorem 7.1 (Properties of rings)
Let (S, ∗, ◦) be a ring and let e be the neutral element of ∗ in S. For any a ∈ S,
let a′ be the inverse of a with respect to the operation ∗. Then ∀a, b ∈ S

a ◦ e = e ◦ a = e.
a ◦ b′ = a′ ◦ b = (a ◦ b)′

a′ ◦ b′ = a ◦ b

Example
Consider the ring (R,+, ·). We are used to the properties ∀a, b ∈ R

a · 0 = 0 · a = 0.
a · (−b) = (−a) · b = −(a · b)

(−a) · (−b) = a · b
But, as stated by the previous theorem, these are properties of all rings.

10. Abstract algebra August 26, 2013 56 / 62



Algebraic structures

Definition 7.2 (Kinds of rings)
A ring (S, ∗, ◦) is

commutative iff ◦ is commutative.
unitary iff ◦ has a neutral element (referred as 1).
divisive if it is unitary and

∀a ∈ S − {e} ∃!a−1 ∈ S, |a ◦ a−1 = a−1 ◦ a = 1
That is each element has a multiplicative inverse.

Example
(P,+, ·) the set of polynomials with coefficients from a ring is a ring.
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Algebraic structures

Definition 7.3 (Field (cuerpo))
A divisive, commutative ring is called a field.

Example
(Q,+, ·), (R,+, ·), and (C,+, ·) are fields.
(Z,+, ·) is not a field because multiplication has not an inverse in Z.
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Algebraic structures

Definition 7.4 (Vector space over a field)
Consider a field (K, ∗, ◦). A vector space over this field is a tuple (V ,+, ·) so
that V is a set whose elements are called vectors, and + : V × V → V is a binary
operation under which V is closed, · : K× V → V is an operation between scalars
in the field (K) and vectors in the vector space (V ) such that ∀a, b ∈ K,∀u, v ∈ V

V1. (V ,+) is an abelian group.
V2. (a · u) ∈ V
V3. a · (b · u) = (a ◦ b) · u
V4. (a ∗ b) · u = a · u + b · u
V5. a · (u + v) = a · u + a · v
V6. 1 · u = u
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Algebraic structures

Examples
(Rn,+, ·) and (Cn,+, ·).
(Mm×n(R),+, ·): the set of matrices of a given size with coefficients in a
field.
(P,+, ·): the set of polynomials with coefficients in a field.
({X → V },+, ·): the set of all functions from an arbitrary set X onto an
arbitrary vector space V .
The set of all continuous functions is a vector space.
The set of all linear maps between two vector spaces is also a vector space.
The set of all infinite sequences of values from a field is also a vector space.
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Algebraic structures

Definition 7.5 (Algebra)
Consider a vector space (V ,+, ·) over a field (K, ∗, ◦) and a binary operation
• : V × V → V . (V ,+, ·, •) is an algebra iff ∀a, b ∈ K,∀u, v,w ∈ V

A1. Left distributivity: (u + v) •w = u •w + v •w
A2. Right distributivity: u • (v + w) = u • v + u •w
A3. Compatibility with scalars: (a · u) • (b · v) = (a ◦ b) · (u • v)

Examples
Real numbers (R) are an algebra (“1D”).
Complex numbers (C) are an algebra (“2D”).
Quaternions are an algebra (“4D”).
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