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A little bit of history

Modern logic is based on precise calculus rules and was born in the middle of the
XIXth century with Gottfried Leibniz (1847), George Boole (1847), Augustus de
Morgan (1847) and Bertrand Russell (1910).

To know more about the history of logic visit
http://individual.utoronto.ca/pking/miscellaneous/
history-of-logic.pdf

http://en.wikipedia.org/wiki/History_of_logic
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Axioms, postulates and propositions

Axioms, postulates and propositions
Mathematical language has to be uniform (everybody must use it in the same
way) and univocal (i.e., without any kind of ambiguity). We start from some
initial statements called axioms, postulates and definitions. These elements are
not questioned, they are not true or false, they simply are, and they serve to build
a logical reasoning.

Example
Axiom If A and B are equal to C, then A is equal to B.

Postulate For any two points, there is a unique straight line that joins them.
Definition A prime number is a natural number that can only be divided by 1

and itself.
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Propositions

Propositions
Based on axioms, postulates and definitions, we can construct propositions that
are statements that refer to already introduced objects. Propositions can be true
or false. They are named with capital letters A, B, C, ...

Example
2+3 (is not a proposition)

A: 2+3=5 (is a true proposition)
B: 2+3=7 (is a false proposition)
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Construction of new propositions

We can construct new propositions using already existing ones and logical
operators

Example
A: 2+2=4 (true)
B: 2+3=5 (true)
C: 2+3=7 (false)
D: A y B (true)
E: A o C (true)

and quantifiers

Example
A: Some numbers are prime (true)
B: All even numbers can be divided by 2 (true)
C: None of odd numbers can be divided by 2 (true)
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A (not A)

Definition
A is true if A is false, and A is false if A is true.

Example
A: 3+2=5 (true)
B: ¬A ≡ 3+ 2 6= 5 (false)
C: 3+2=6 (false)
D: ¬C ≡ 3+ 2 6= 6 (true)

Truth table
A A
F T
T F

Properties
A = A
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A (not A)

A double negation is a positive statement.

Example
A: 3+2=5 (true)
B: A ≡ 3+ 2 6= 5 (false)
C: B ≡ 3+ 2 = 5 (true)

Example
It is not true that John is not at home.

A: John is at home
B: A ≡ Not (John is at home) ≡ John is not at home
C: B ≡ Not (John is not at home) ≡ John is at home ≡ A

If C is true, then A is true. Therefore, John is at home.
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A ∩ B (A and B)

Truth table
A B A ∩ B
F F F
F T F
T F F
T T T

Properties
A ∩ B = B ∩ A

Example
A: 3+2=5 (true)
B: 2+2=4 (true)
C: A ∩ B ≡ 3+2=5 and 2+2=4 (true)
D: 3+2=6 (false)
E: D ∩ B ≡ 3+2=6 and 2+2=4 (false)
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A ∩ B (A and B)

The common language AND is sometimes equivalent to the mathematical AND

Example
Triangle ABC and triangle A’B’C’ are equilateral ⇒

A: ABC is equilateral
B: A’B’C’ is equilateral
C: A ∩ B ≡ Triangle ABC is equilateral AND Triangle A’B’C’ is

equilateral

and sometimes not

Example
Triangle ABC and triangle A’B’C’ are similar ;

A: ABC is similar
B: A’B’C’ is similar
C: A ∩ B ≡ Triangle ABC is similar AND Triangle A’B’C’ is similar
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A ∪ B (A or B; A and/or B)
15% discounts for customers having a student card or university card. Of course,
people with both cards have a 15% discount. Inclusive OR.

Truth table
A B A ∪ B
F F F
F T T
T F T
T T T

Properties
A ∪ B = B ∪ A

Example
A: 3+2=5 (true)
B: 2+2=4 (true)
C: A ∪ B ≡ 3+2=5 or 2+2=4 (true)
D: 3+2=6 (false)
E: D ∪ B ≡ 3+2=6 or 2+2=4 (true)
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A ⊕ B (either A or B; A xor B (eXclusive or))

We’ll go to Paris or Berlin. Either Paris or Berlin, we cannot go to both places at
the same time. Exclusive OR.

Truth table
A B A⊕ B
F F F
F T T
T F T
T T F

Properties
A⊕ B = B ⊕ A

Example
A: a<5
B: a=5
C: A⊕ B ≡ a ≤ 5

If a = 3, then C is true. If a = 6, then C is false.
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Negation of and

A ∩ B = A ∪ B
This is one of Morgan’s laws.

A B A ∩ B A ∩ B A B A ∪ B
F F F T T T T
F T F T T F T
T F F T F T T
T T T F F F F

Example
A: It rained on Monday
B: It rained on Tuesday
C: A ∩ B ≡ It is not true that it rained on both days ≡ Either it did

not rain on Monday or it did not rain on Tuesday.
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Negation of or

Inclusive OR: A ∪ B = A ∩ B
This is another Morgan’s law.

A B A ∪ B A ∪ B A B A ∩ B
F F F T T T T
F T T F T F F
T F T F F T F
T T T F F F F

Exclusive OR: A⊕ B = (A ∩ B) ∪ (A ∩ B)

A B A⊕ B A⊕ B A B A ∩ B A ∩ B (A ∩ B) ∪ (A ∩ B)
F F F T T T F F T
F T T F T F T F F
T F T F F T F T F
T T F T F F F F T
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A ⇒ B (A implies B)

Natural language
A implies B
A is sufficient for B
A guarantees B
B is necessary for A
If A, then B
If not B, then not A

Truth table
A B A⇒ B
F F T
F T T
T F F
T T T
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A ⇒ B (A implies B)

In natural language “If ..., then ...” is not used in the mathematical sense.

Example
If it rains, I’ll stay at home.

If he is at home, is it raining?
We don’t know, he didn’t say what he would do if it was not raining.

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

If he is back with 1000 euros, is the bank open?
We don’t know, maybe a very good friend of his gave him 1000 euros.
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A ⇒ B (If not B, then not A)

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

If I’m back without 1000 euros, is the bank open?
No, let’s see why

A: Bank is open
B: I bring 1000 euros

A B A⇒ B Why
F F T The bank was closed
F T T A friend gave me
T F F I lied
T T T I withdrew 1000 euros from bank

There is only one situation in which my statement is true (I did not lie) and in
which I do not bring 1000 euros (B is false) that is when the bank is closed (A is
also false).
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A ⇒ B (If not B, then not A)

We can generally formulate this analysis as

Properties
A⇒ B = B ⇒ A

A B A⇒ B B A B ⇒ A
F F T T T T
F T T F T T
T F F T F F
T T T F F T
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A ⇒ B (Not (A and not B))

Another interesting property

Properties
A⇒ B = A ∩ B
A⇒ B = A ∩ B

The proof of these properties is left to the reader.

Example
I’m going to the bank. If it is open, I’ll bring 1000 euros.

It is equivalent to:

It will not be the case that (the bank is open (A) and I don’t bring 1000
euros (not B)).
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A ⇔ B (A if and only if B)

Truth table
A B A⇔ B
F F T
F T F
T F F
T T T

Properties
A⇔ B = (A⇒ B) ∩ (B ⇒ A)

In plain language, we say:
A is necessary and sufficient for B
B is necessary and sufficient for A
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Qualifiers

Example
There might be a person that reads all newspapers every day.
Every day, there might be a person that reads all newspapers.
Every one reads a newspaper every day.
Every day, there is a newspaper that everybody reads.

Example
We say that the limit of the function f (x) when x goes to x0 is y if and only if for
all positive numbers (ε), there exists another positive number (δ) such that if
the distance between x and x0 is smaller than δ, then the distance between f (x)
and y is smaller than ε.

lim
x→x0

f (x) = y ⇔ ∀ε > 0 ∃δ > 0 | |x − x0| < δ ⇒ |f (x)− y | < ε
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∀ (for all), ∃ (exists) and ∃! (exists only one)

For all x in P ∀x , x ∈ P; ∀x ∈ P
For any x in P ∀x , x ∈ P; ∀x ∈ P
For each x with the property P ∀x ,P(x)
There exists at least one x in P ∃x , x ∈ P; ∃x ∈ P
For at least one x in P ∃x , x ∈ P; ∃x ∈ P
There exists at least one x with the property P ∃x ,P(x)
There exists exactly one x in P ∃!x , x ∈ P; ∃!x ∈ P

Example
For all real numbers ∀x ∈ R
For all real numbers smaller than 4 ∀x ∈ R, x < 4
There exists at least one real number ∃x ∈ R
There exists at least one real number greater than 2 ∃x ∈ R, x > 2
There exists a single real number such that ... ∃!x ∈ R| ...
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| (such that, it is verified, verifying)

Example
There must be people that read all newspapers everyday. Let P be the set
of all persons, let N be the set of all newspapers, and let D be the set of all days.
Then, the previous sentence is formalized as

∃p ∈ P|∀d ∈ D|∀n ∈ N| p reads n on d.

Literal reading: There exist at least one person such that for all days and for all
newspapers it is verified that p reads n on d.

Example
Every day, there must be someone that reads all newspapers.

∀d ∈ D|∃p ∈ P|∀n ∈ N| p reads n on d.

Literal reading: For all days it is verified that there exists at least one person
verifying that for all newspapers it is verified that p reads n on d.
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| (such that, it is verified, verifying)

Example
lim

x→x0
f (x) = y ⇔ ∀ε > 0 ∃δ > 0 | |x − x0| < δ ⇒ |f (x)− y | < ε

Literal reading: the limit of f (x) when x goes to x0 is y if and only if for any ε
greater than 0, there exists δ greater than 0 such that if |x − x0| < δ is true, then
|f (x)− y | < ε is also true.

Example
Fermat-Wiles Theorem:
∀n ∈ Z, n > 2|∀(x , y , z) ∈ R3, xn + yn = zn|xyz = 0

Literal reading: For all integer numbers it is verified that for any real numbers x ,
y z with the property xn + yn = zn it is verified that at least one of the three
numbers is 0.

0. Mathematical method September 7, 2013 28 / 63



Negation of qualifiers

Let’s say we state that all elements in a given set S has a certain property (
∀x ∈ S|P(x)). The negation of this statement is that there exists at least one
element of S that does not have that property (∃x ∈ S|P(x)).

Similarly, if we state that there exists at least one element in a given set S that
has a certain property ( ∃x ∈ S|P(x)). The negation of this statement is that
none of the elements of S have that property (∀x ∈ S|P(x)).
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Negation of qualifiers

Example
In a previous example we had: There must be people that read all
newspapers everyday. Its negation is

∃p ∈ P|∀d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∀d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∀n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∃n ∈ N|p reads n on d. =
∀p ∈ P|∃d ∈ D|∃n ∈ N|p does not read n on d.

That is, For everybody, there is at least one day and one paper, such that p
did not read n on d .
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Modus ponens

The following proofs follow a reasoning model called Modus ponens which is
formally written as

(A ∩ (A⇒ B))⇒ B.

The intuitive meaning is that if A is true and A⇒ B, then B is also true. Most
proofs follow this way of reasoning. They can be performed in a forward way

A⇒ B1 ⇒ B2 ⇒ ...⇒ B

or in a backward way

B ⇐ Bn ⇐ Bn−1 ⇐ ...⇐ A.
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Forward proofs (A⇒ B; B is necessary for A)

Example
Prove that the third power of an odd number is odd.
Proof
Let there be the following propositions:

A: x is odd.
B: x3 is odd.

We need to prove that A⇒ B (B is necessary for A).
Proof A⇒ B
Since x is an odd number we can write x = 2k + 1 for some integer
number k. Then,
x3 = (2k+1)3 = 8k3+12k2+6k+1 = 2(4k3+6k2+3k)+1 = 2k ′+1.
For k ′ = 4k3 + 6k2 + 3k, which is another integer number. Therefore,
x3 is odd.
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Forward proofs (A⇒ B; B is necessary for A)

Example
A necessary condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120.
Proof
Let there be the following propositions:

A: To be multiple of 360
B: To be multiple of 3 and 120

We need to prove that A⇒ B (B is necessary for A).
Proof A⇒ B
Let x be a multiple of 360 (A) ⇒ There exists a natural number k such
that x = 360 · k ⇒ x = 120 · 3 · k. From this factorization, it is obvious
that x is a multiple of 120 and a multiple of 3 (B).
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Forward proofs (A⇐ B; B is sufficient for A)

Example
A sufficient condition for a natural number to be a multiple of 360 is that it is a
multiple of 3 and 120. Proof
Let there be the following propositions:

A: To be multiple of 360
B1: To be multiple of 3
B2: To be multiple of 120
B: B1 ∩ B2

We need to prove that B ⇒ A (B is sufficient for A).
Proof B ⇒ A
We can easily prove that B ; A with a counterexample. Let us consider
x = 240. It is a multiple of 3 (B1). It is a multiple of 120 (B2). Therefore,
B is true. However, 240 is not a multiple of 360 (A is false). Therefore, we
have proved that B ; A.
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Forward proofs (A⇒ B)

Example

Show that x =
−b+
√

b2−4ac
2a is solution of the equation ax2 + bx + c = 0

Proof
Let there be the following propositions:

A: x =
−b+
√

b2−4ac
2a

B: ax2 + bx + c = 0
We need to prove that A⇒ B.

If A⇒ B is true, then it must also be true that A⇒ B1

B1: a
(
−b+
√

b2−4ac
2a

)2
+ b−b+

√
b2−4ac

2a + c = 0

that we can rewrite as

B1: a
(

b2

4a2 +
b2−4ac

4a2 − 2b
√

b2−4ac
4a2

)
+ b−b+

√
b2−4ac

2a + c = 0
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Forward proofs (A⇒ B)

Example (continued)
that we can simplify to

B1: b2

4a + b2

4a − c − b
√

b2−4ac
2a + −b2

2a +
b
√

b2−4ac
2a + c = 0

B1: ��
b2

4a +�
�b
2

4a − �c −���
��b

√
b2−4ac
2a +

�
�−b2

2a +
���

��b
√

b2−4ac
2a + �c = 0

B1: 0 = 0
Since B1 is always true (a statement that is always true is called a tautology),
then A⇒ B1 is true, as we wanted.
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Forward proofs (A⇔ B)

In this case we have to prove both directions: A⇒ B and B ⇒ A.

Example
A necessary and sufficient condition for a natural number to be a multiple of 360
is that it is a multiple of 5 and 72.
Proof
Let there be the following propositions:

A: To be multiple of 360
B1: To be multiple of 5
B2: To be multiple of 72
B: B1 ∩ B2

We need to prove that A⇔ B, that is, A⇒ B and B ⇒ A
Proof A⇒ B
Let x be a multiple of 360 (A)⇒ There exists a natural number k such that
x = 360 · k ⇒ x = 72 · 5 · k. From this factorization, it is obvious that x is
a multiple of 72 and a multiple of 5 (B).
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Forward proofs (A⇔ B)

Example (continued)
Proof B ⇒ A
B1⇒ There is a natural number k1 such that x = 5 · k1
B2⇒ There is a natural number k2 such that x = 72 · k2
Therefore, 5k1 = 72k2 ⇒ k1 = 72

5 k2. But k1 is a natural number not a
rational number, therefore, k2 needs to be a multiple of 5, i.e., there exists
a natural number k3 such that k2 = 5 · k3. Consequently, considering B2,
we have x = 72 · 5 · k3 = 360 · k3. That is x is a multiple of 360. Therefore,
we have proved that A⇒ B.
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More forward proofs

If I want to prove that A does not imply B (A⇒ B is false), I have to prove that
B is false, but A is true.

Example
In our example, I have to prove that you did not bring 1000 euros (B is false), but
the bank is open (A is true). I don’t have to prove that

B is false (you did not bring 1000 euros)
A is false (the bank is closed)
B is true but A is false (you brought 1000 euros, but the bank is closed)
A and B are false (you did not bring 1000 euros, and the bank is closed)
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More forward proofs

If I know that B is false, and I want to proof that A implies B (A⇒ B is true),
then I have to prove that A is also false.

A B A⇒ B
F F T
F T T
T F F
T T T

Example
If I know that you did not bring 1000 euros (B is false), all I have to prove to
show that A⇒ B is true, is that the bank is closed (A is false).
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More forward proofs

If I want to proof that A implies B or C (A⇒ B ∪ C is true), and I prove that it is
false that A⇒ B ∩ C , have I finished? No,let’s see why

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
F F F F T F T
F F T T T F T
F T F T T F T
F T T T T T T
T F F F F F F
T F T T T F F
T T F T T F F
T T T T T T T
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More forward proofs

If I prove that A⇒ B ∩ C is false, that amounts to selecting the following rows
from the table

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
T F F F F F F
T F T T T F F
T T F T T F F

In those lines, A⇒ B ∪ C is true for two of the A,B,C combinations (that’s
good), but false for the other (that’s bad). Therefore, we have not finished yet
and we have to prove that either B or C is true, so that we can finally reduce the
table to

A B C B ∪ C A⇒ B ∪ C B ∩ C A⇒ B ∩ C
T F T T T F F
T T F T T F F

in which A⇒ B ∪ C is true, and consequently, we have proved that A⇒ B ∪ C .
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Backward proofs (A⇒ B)

Example
Show that if x > 0, then x + 1

x ≥ 2.
Proof
Let there be the following propositions:

A: x > 0
B: x + 1

x ≥ 2
It is obvious that C1 ⇒ B, C2 ⇒ C1, C3 ⇒ C2 being

C1: x + 1
x − 2 ≥ 0

C2: x2+1−2x
x ≥ 0

C3: (x−1)2

x ≥ 0
It is also obvious that A⇒ C3 and, in this way, we have proved that A⇒ B. We
can simplify the writing of this proof as:
x + 1

x ≥ 2⇐ x + 1
x − 2 ≥ 0⇐ x2+1−2x

x ≥ 0⇐ (x−1)2

x ≥ 0⇐ x > 0
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Backward proofs (A⇒ B)

Example
If x , y ∈ R, x , y > 0, then √xy ≤ x+y

2
Proof√xy ≤ x+y

2 ⇐
√xy − x+y

2 ≤ 0⇐ x+y
2 −

√xy ≥ 0
Since x and y are positive numbers, we can write them as x = a2 and y = b2.
Then, x+y

2 −
√xy ≥ 0⇐ a2+b2

2 − ab ≥ 0⇐ a2 + b2 − 2ab ≥ 0⇐ (a − b)2 ≥ 0
This last proposition is always true, therefore √xy ≤ x+y

2 is also true.
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Modus tollens

The following proofs follow a reasoning model called Modus tollens which is
formally written as(
B ∩ (A⇒ B)

)
⇒ A.

The intuitive meaning is that if A⇒ B is true and B is false, then A must also be
false. Another way of writing this reasoning is

(A⇒ B)⇔ (B ⇒ A).

That is if we want to prove A⇒ B, it is enough to prove B ⇒ A.
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Modus tollens

Example
Show that if x3 is even, then x is even.
Proof
Let there be the following propositions:

A: x3 is even
B: x is even

We want to prove that A⇒ B. Instead, we’ll prove that B ⇒ A, with
B: x is odd
A: x3 is odd

But we already proved this in a previous example. Therefore, A⇒ B is true.
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Modus tollens

Example
Show that if c is odd, then the equation n2 + n − c = 0 has no integer solution.
Proof
Let there be the following propositions:

A: c is odd
B: n2 + n − c = 0 has no integer solution

We want to prove that A⇒ B. Instead, we’ll prove that B ⇒ A, with
B: n2 + n − c = 0 has an integer solution
A: c is even

Proof B ⇒ A
Let’s assume that n ∈ Z is solution of n2 + n − c = 0.
If n is even, then c is even because c = n2+n = (2k)2+2k = 2(2k2+k).
If n is odd, then c is also even because c = n2+n = (2k+1)2+(2k+1) =
2(2k2 + 3k + 1).
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Reductio ad absurdum

The following proofs follow a reasoning model called Reductio ad absurdum which
is formally written as

A⇒ B ⇔ (A ∩ B ⇒ absurdum).

Absurdum is a statement that is always false, like P ∩ P. Let’s analyze the truth
table for this proposition

Truth table
A B A⇒ B A ∩ B P ∩ P A ∩ B ⇒ (P ∩ P)
F F T F F T
F T T F F T
T F F T F F
T T T F F T

We see that the third and sixth columns are identical.
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Reductio ad absurdum

Example
Show that

√
2 is irrational.

Proof
It does not appear in the form A⇒ B but it can be put with

A: All facts we know about numbers
B:
√
2 is irrational

Let’s assume that
√
2 is rational (B), that is ∃p, q ∈ Z|

√
2 = p

q and p, q are
irreducible (they don’t have any common factor). If this is true, then 2q2 = p2,
i.e., 2 must be a factor of p and consequently p must be p = 2r . Substituting this
knowledge into 2q2 = p2 we obtain 2q2 = (2r)2 ⇒ q2 = 2r2. Consequently, 2 is
another factor of q. But we presumed that

P: p and q were irreducible
So, if

√
2 is rational, then we have P and P at the same time, which is a

contradiction, and therefore
√
2 cannot be rational.
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Reductio ad absurdum

Example
Show that there are infinite prime numbers.
Proof
Let’s presume they is a finite list of prime numbers (in ascending order):

2, 3, 5, 7, ...,P

Now we construct the number M = 2 · 3 · 5 · 7 · ... · P + 1.
If M is prime, then we have a contradiction is M is prime and is larger than P.
If M is not prime, then it has as a factor at least one of the prime numbers in the
list. Let’s assume it is 3, that is

M = 3H = 2 · 3 · 5 · 7 · ... · P + 1⇒ 1 = 3(H − 2 · 5 · 7 · ... · P)

that means that 3 is a factor of 1, which is an absurdum.
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Weak induction
This is a strategy to prove a property of a natural number, P(n). We follow the
strategy below:

1 Prove that P(k) is true.
2 Prove that if P(n − 1) is true, then P(n) is also true

Example

Show that Sn =
n∑

i=1
i = n(n+1)

2

Proof

1 S1 =
1∑

i=1
i = 1(1+1)

2 = 1, which is obviusly true.

2 Let’s assume that Sn−1 =
n−1∑
i=1

i = (n−1)n
2 . Then, we need to prove that

Sn =
n∑

i=1
i = n(n+1)

2 . But

Sn = Sn−1 + n = (n−1)n
2 + n = n

( n−1
2 + 1

)
= n(n+1)

2 . q.e.d.
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Strong induction

The goal is similar to the previous method, but now in the second step we assume
that the property is true for all previous integers

1 Prove that P(k) is true.
2 Prove that if P(k) is true and P(k + 1) is true and ... P(n − 1) is true, then

P(n) is also true

Example: Fundamental theorem of arithmetics
Show that for all natural numbers larger than 1 either it is prime or it is the
product of prime numbers
Proof

1 The property is true for 2.
2 Let’s assume that it is true for 2, 3, 4, ..., n − 1.

If n is prime, then the property is also true for n.
If n is not prime, then it can be written as the product of several numbers
between 2 and n − 1. But the property is true for all these numbers, and
therefore, the property is also true for n.
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Case distinction

For each case we follow a different strategy.

Example: Triangular inequality
Show that ∀a, b ∈ R||a + b| ≤ |a|+ |b|
Proof
We remind that the absolute value is a function defined by parts:

|x | =
{

x x ≥ 0
−x x < 0

Case a + b ≥ 0: a + b ≤ |a|+ |b|
For all real numbers it is obvious that x ≤ |x |. Therefore, we have
a ≤ |a| and b ≤ |b|. Consequently, a + b ≤ |a|+ |b|.
Case a + b < 0: −(a + b) ≤ |a|+ |b|
For all real numbers it is also true that −x ≤ |x |. Therefore, we have
−a ≤ |a| and −b ≤ |b|. Consequently, −(a + b) = −a − b ≤ |a|+ |b|.
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Counterexample

To prove that something is not true, it is enough to show that it is not true for
one example. This example is called a counterexample.

Example
Show that ∀x , y , z ∈ R+ and ∀n ∈ Z, n ≥ 2 it is verified that xn + yn 6= zn

Proof
The proposition is false because, for instance, for x = 3, y = 4, z = 5 and n = 2
we have

32 + 42 = 52
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Common math mistakes

Avoid some common mathematical mistakes (many of them, algebraic):
Common math mistakes Video 1:
http://www.youtube.com/watch?v=VHo_sfVdieM

Common math mistakes PDF:
http://tutorial.math.lamar.edu/pdf/Common_Math_Errors.pdf

Common math mistakes Video 2:
http://www.youtube.com/watch?v=qHSUU_q_2wA

Common math mistakes Video 3:
http://www.youtube.com/watch?v=cTiuocJfyCs

Common math mistakes Video 4:
http://www.youtube.com/watch?v=r5Yro2GdJ6w
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