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A little bit of history
Vectors were developed during the XIXth century by mathematicians and
physicists like Carl Friedrich Gauss (1799), William Rowan Hamilton (1837), and
James Clerk Maxwell (1873), mostly as a tool to represent complex numbers, and
later as a tool to perform geometrical reasoning. Their modern algebra was
formalized by Josiah Willard Gibbs (1901), a university professor at Yale.

To know more about the history of vectors visit
http:
//www.math.mcgill.ca/labute/courses/133f03/VectorHistory.html
https://www.math.ucdavis.edu/~temple/MAT21D/
SUPPLEMENTARY-ARTICLES/Crowe_History-of-Vectors.pdf
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What is a vector?

Definition 1.1
Informally, a vector is a collection of n numbers of the same type. We say it has
n components (1,2,...,n)

We’ll see that this definition is terribly simplistic since many other things (like
functions, infinite sequences, etc.) can be vectors. But, for the time being, let’s
stick to this simple definition.

Example −10
1

 ∈ Z3 is a collection of 3 integer numbers(
−1.1
1.1

)
∈ Q2 is a collection of 2 rational numbers(

−1.1√
2

)
∈ R2 is a collection of 2 real numbers

Matlab:
[-1.1; sqrt(2)]
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Transpose
We distinguish between column vectors (for instance v below) and row vectors
(w). In the first case, we say v is a n × 1 vector, while in the second, we say w is
a 1× n vector.

v =


v1
v2
...
vn

 and w = (w1w2...wn).

Definition 1.2
The transpose is the operation that transforms a column vector into a row vector
and viceversa.

Example

(−1 1)T =

(
−1
1

)
Matlab:
[-1 1]’
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Addition of vectors

Definition 1.3

Given two vectors v =


v1
v2
...
vn

 and w =


w1
w2
...
wn

 the sum of these two vectors

is another vector defined as v + w =


v1 + w1
v2 + w2
...

vn + wn

. Note that you can only add

two column vectors or two row vectors, but not a column and a row vector.

Example(
−1.1
1.1

)
+

(
−1.1√

2

)
=

(
−2.2

1.1 +
√
2

)
Matlab:
[-1.1; 1.1]+[-1.1; sqrt(2)]

Properties 1.1
Commutativity:
v + w = w + v
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Addition of vectors

Example (
4
2

)
+

(
−1
2

)
=

(
3
4

)

−2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

v
w

v+w

x
1

x 2
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Product by scalar

Definition 1.4
Given a vector v and a scalar c, the multiplication of c and v is defined as

cv =


cv1
cv2
...
cvn


Example

2
(
−1.1
1.1

)
=

(
−2.2
2.2

)
−
(
−1.1
1.1

)
=

(
1.1
−1.1

)
Matlab:
2*[-1.1; 1.1] -[1.1; 1.1]
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Product by scalar

Example

w =

(
−1
2

)

What is the shape of all scaled
vectors of the form cw?
If w = 0, then it is a single
point (0). If w 6= 0, then it
is the straight line that passes
through 0 and w.

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

5

w

2w

−w

x
1

x 2
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Properties
For simplification we will present them as properties for Rn, but they apply to all
vector spaces. Given any three vectors u, v,w ∈ Rn and any two scalars c, d ∈ R,
we have

Vector operation properties
Regarding the sum of vectors:

1 u + v = v + u Commutativity
2 (u + v) + w = u + (v + w) Associativity
3 u + 0 = 0 + u = u Existence of neutral element
4 u +−u = −u + u = 0 Existence of symmetric element

Regarding the sum of vectors and scalar product:
5 c(u + v) = cv + cu Distributivity with respect to the sum of vectors
6 (c+d)u = cu + du Distributivity with respect to the sum of scalars

Regarding the scalar product:
7 c(du) = (cd)u Associativity
8 1u = u Existence of neutral element
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Linear combination

Definition 2.1
Given a collection of p scalars (xi , i = 1, 2, ..., p) and p vectors (vi), the linear
combination of the p vectors using the weights given by the p scalars is defined
as

p∑
i=1

xivi = x1v1 + x2v2 + ...+ xpvp

Example
1
2

(
−1
1

)
− 2

3

(
2
2

)
=

(
− 5

6
− 11

6

)
Matlab:

format rational
-1/2*[-1; 1]-2/3*[2; 2]
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Linear combination

Example
A very basic model of the activity of neurons is

output = f (
∑

i
weighti inputi )

where f (x) is a non-linear function. In fact, this is the model used in artificial
neuron networks.

The human brain has in the order of 1011 neurons and about 1018 connections.
See https://www.youtube.com/watch?v=zLp-edwiGUU.
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Linear combination

Example

v =

(
4
2

)
w =

(
−1
2

)

We may think of the weight coefficients as the “travelling” instructions. For
instance, for the figure in the right, the instructions say: “Travel 1

3 of v along v,
then travel 1

2 of w along w”.
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Linear combination

What is the shape of all linear combinations of the form cv + dw
If the two vectors are not collinear (i.e., w 6= kv), then it is the whole plane
passing by 0, v and w. We can think of it as the sum of all vectors belonging to
the line 0v and 0w.

The plane generated by v and w is
the set of all vectors that can be
generated as a linear combination
of both vectors.
Π = {r|r = cv + dw ∀c, d ∈ R}

1. Vectors December 3, 2013 18 / 49



Linear combination

The previous example prompts the following definition:

Definition 2.2 (Spanned subspace)
The subspace spanned by the vectors vi , i = 1, 2, ..., p, is the set of all vectors
that can be expressed as the linear combination of them. Formally,

〈v1, v2, ..., vp〉 = Span {v1, v2, ..., vp} , {v ∈ Rn|v = x1v1 + x2v2 + ...+ xpvp}

Example
Assuming all vectors below are linearly
independent:
Span {v1} is a straight line.
Span {v1, v2} is a plane.
Span {v1, v2, ..., vn−1} is a hyperplane.

Properties
0 ∈ Span {·}
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Linear combination

Outside the plane
Let v = (1, 1, 0) and w = (0, 1, 1). The linear combinations of v and w fill a plane
in 3D. All points belonging to this plane are of the form

Π = {r|r = c(1, 1, 0) + d(0, 1, 1) ∀c, d ∈ R} = {r = (c, c + d , d) ∀c, d ∈ R}

It is clear that the vector r′ = (0, 1, 0) /∈ Π, therefore, it is outside the plane.
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Linear combination

Sets of points
Let v = (1, 0).

1 S1 = {r = cv ∀c ∈ Z} is a set of points
2 S2 = {r = cv ∀c ∈ R+} is a semiline
3 S3 = {r = cv ∀c ∈ R} is a line
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Linear combination

Sets of points
Let v = (1, 0) and w = (0, 1).

1 S1 = {r = cv + dw ∀c ∈ Z,∀d ∈ R} is a set of lines
2 S2 = {r = cv + dw ∀c ∈ R+,∀d ∈ R} is a semiplane
3 S3 = {r = cv + dw ∀c, d ∈ R} is a plane
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Linear combination

Combination coefficients
Let v = (2,−1), w = (−1, 2) and b = (1, 0). Find c and d such that
b = cv + dw.
Solution
We need to find c and d such that(

1
0

)
= c

(
2
−1

)
+ d

(
−1
2

)
=

(
2c − d
2d − c

)
This gives a simple equation system

2c − d = 1
2d − c = 0

whose solution is c = 2
3 and d = 1

3 . We can easily check it with Matlab:
2/3*[2 -1]’+1/3*[-1 2]’
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 3:

1.3.1
1.3.3
1.3.6
1.3.7
1.3.25
1.3.27
1.3.29
1.3.31

1. Vectors December 3, 2013 24 / 49



Outline

1 Vectors
Vectors and basic operations (a)
Linear combination (a)
Inner product or dot product (b)
Norm, vector length and unit vectors (b)
Distances and angles (b)
Multiplication by matrices (b)

1. Vectors December 3, 2013 25 / 49



Inner product

Definition 3.1
Given two vectors v and w the inner or dot product between v and w is defined
as

〈v,w〉 = v ·w , vT w =
n∑

i=1
viwi = v1w1 + v2w2 + ...+ vnwn

Mathematically, the concept of inner product is much more general, and this
operational definition is just a particularization for vectors in Rn. Although, the
introduced inner product is the most common, it is not the only one that can be
defined in Rn. But, let’s leave these generalization for the moment.

Example(
4
2

)
·
(
−1
2

)
= 4 · (−1) + 2 · 2 = 0

Matlab:
dot([4; 2],[-1; 2])

Properties 3.1
Commutativity:

v ·w = w · v
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Vector norm and vector length

Definition 4.1
Given a vector v, its length or norm is defined as

‖v‖ ,
√
〈v, v〉

In the particular case of working with the previously introduced inner product, this
definition boils down to

‖v‖ ,
√

vT v =

√
n∑

i=1
v2

i

that is known as the Euclidean norm of vector v.

Properties 4.1
‖ − v‖ = ‖v‖
‖cv‖ = |c|‖v‖

1. Vectors December 3, 2013 28 / 49



Vector norm and vector length

Example

‖(−1, 0, 1)‖ =
√

(−1)2 + 02 + 12 =
√
2

Matlab:
norm([-1;0;1])

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

vvv

||v||

v

||v||

x
1

x 3
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Unit vectors

Definition 4.2
v is unitary iff ‖v‖ = 1.

Example

e1 = (1, 0)
e2 = (0, 1)
eθ = (cos(θ), sin(θ))
Matlab:

theta=pi/4;
e_theta=[cos(theta);sin(theta)];
norm(e_theta)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v

x
1

x 2

θ
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Unit vectors

Definition 4.3 (Construction of a unit vector)
Given any vector v (whose norm is not null), we can always construct a unitary
vector with the same direction of v as uv = v

‖v‖ .

Example

v = (1, 1)

uv = v
‖v‖ = (1,1)√

2 =
(

1√
2 ,

1√
2

)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v

u
v

x
1

x 2
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Distance and angle between two vectors

Definition 5.1

Given two vectors v and w, the distance be-
tween both is defined as

d(v,w) , ‖v−w‖

and their angle is

∠(v,w) , acos v·w
‖v‖‖w‖ = θ

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v
w

||v−w||

x
1

x 2

θ

Definition 5.2
Two vectors are orthogonal (perpendicular) iff their inner product is 0. We then
write v ⊥ w. In this case, ∠(v,w) = π

2 .
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Distance and angle between two vectors

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). The angle between these two vectors can be
calculated as

v ·w = (− 2
5 )1 + 2

3
2
3 = 2

45

‖v‖ =
√

(− 2
5 )2 + ( 2

3 )2 =
√

136
15

‖w‖ =
√

(1)2 + ( 2
3 )2 =

√
13
3

∠(v,w) = acos
2
45√

136
15

√
13

3
= 87.27◦

v and w are almost orthogonal.
−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

v w

θ

x
1

x 2

Example
Let v = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1) and w = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0). These two
vectors in a 10-dimensional space are orthogonal because
v ·w = 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 + 0 · 1 + 0 · 1 + 1 · 0 = 0

1. Vectors December 3, 2013 34 / 49



Distance and angle between two vectors

Example
Search for a vector that is orthogonal to v = (− 2

5 ,
2
3 )

Solution
Let the vector w = (w1,w2) be such a vector. Since it is orthogonal to v it must
meet

〈v,w〉 = 0 = (− 2
5 )w1 + 2

3w2 ⇒ w2 = 3
5w1

That is, any vector of the form w = (w1,
3
5w1) = w1(1, 3

5 ) is perpendicular to v.
This is the line passing by the origin and with direction (1, 3

5 ). In particular, for
w1 = 2

3 we have that w = ( 2
3 ,

2
5 ) and for w1 = − 2

3 we have w = (− 2
3 ,−

2
5 ).

This is a general rule in 2D. Given a vector v = (a, b), the vectors w = (b,−a)
and w = (−b, a) are orthogonal to v.

(a, b) ⊥ (b,−a) and (a, b) ⊥ (−b, a)
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Distance and angle between two vectors

Theorem 5.1 (Pythagorean theorem)
If v ⊥ w, then ‖v−w‖2 = ‖v‖2 + ‖w‖2.
Proof
‖v−w‖2 = (v−w)T (v−w) = vT v−vT w−wT v+wT w = ‖v‖2 +‖w‖2−2 〈v,w〉

But, because v ⊥ w, we have 〈v,w〉 = 0, and consequently

‖v−w‖2 = ‖v‖2 + ‖w‖2 (q.e.d.)

Corollary 5.1
If 〈v,w〉 < 0, then π

2 < θ ≤ π.
If 〈v,w〉 > 0, then 0 ≤ θ < π

2 .
For two unit vectors, u1 and u2, we have cos θ = 〈u1,u2〉, and as a
consequence −1 ≤ 〈u1,u2〉 ≤ 1.
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Distance and angle between two vectors

Theorem 5.2 (Cosine formula)
For any two vectors, v and w, such that ‖v‖ 6= 0 and ‖w‖ 6= 0, we have

〈v,w〉 = ‖v‖‖w‖ cos θ

Proof
By use of Definition 4.3, we can construct the unit vectors associated to v and w,
that is uv and uw. Then by Corollary 5.1 we know that

cos θ = 〈uv,uw〉 =
(

v
‖v‖

)T (
w
‖w‖

)
= 1
‖u‖‖w‖u

T w = 〈v,w〉
‖u‖‖w‖

From this point it is trivial to deduce that 〈v,w〉 = ‖v‖‖w‖ cos θ (q.e.d.)

1. Vectors December 3, 2013 37 / 49



Distance and angle between two vectors

Example
To compute the knee flexion angle, we need to calculate the dot product between
the vectors aligned with the leg before and after the knee.
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Distance and angle between two vectors

Theorem 5.3 (Cauchy-Schwarz inequality)
For any two vectors, v and w, it is verified that

| 〈v,w〉 | < ‖v‖‖w‖

Proof
From the cosine formula (Theorem 5.2), we know that

〈v,w〉 = ‖v‖‖w‖ cos θ ⇒
| 〈v,w〉 | = |‖v‖‖w‖ cos θ| = ‖v‖‖w‖ |cos θ| ≤ ‖v‖‖w‖

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). We already know that v ·w = 2
45 , ‖v‖ =

√
136
15 ,

and ‖w‖ =
√

13
3 . Let us check Cauchy-Schwarz inequality

| 2
45 | <

√
136
15

√
13
3 ⇔ 0.0444 < 0.9344
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Distance and angle between two vectors

Example
Show that for any two positive numbers, x and y , the geometric mean (√xy) is
always smaller or equal than the arithmetic mean ( x+y

2 ). For instance, the
statement is verified for x = 2 and y = 3:

√
6 ≤ 5

2 ⇔ 2.4495 ≤ 2.5.
Proof
Let there be vectors v = (a, b) and w = (b, a). Then, by Cauchy-Schwarz
inequality we know that

| 〈v,w〉 | < ‖v‖‖w‖ ⇒ |2ab| ≤ a2 + b2

Since x and y are positive numbers, we may consider them to be x = a2 and
y = b2. Consequently, we can rewrite the previous expression as

2
√
x√y ≤ x + y ⇒ √xy ≤ x+y

2 (q.e.d.)

In fact, the geometric mean is nothing more than the arithmetic mean in
logarithmic units

log(
√xy) = log(xy)

1
2 = 1

2 (log x + log y) = log x+log y
2
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Distance and angle between two vectors

Theorem 5.4 (Triangular inequality)
For any two vectors, v and w, it is verified that

‖v + w‖ ≤ ‖v‖+ ‖w‖

Proof
By definition we know that

‖v + w‖2 = (v + w)T (v + w) = ‖v‖2 + ‖w‖2 + 2 〈v,w〉

Applying the Cauchy-Schwarz inequality (Theorem 5.3), we have

‖v + w‖2 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖+ ‖w‖)2

Taking the square root we have

‖v + w‖ ≤ ‖v‖+ ‖w‖
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Distance and angle between two vectors

Example
Let v = (− 2

5 ,
2
3 ) and w = (1, 2

3 ). We already know that ‖v‖ =
√

136
15 and

‖w‖ =
√

13
3 . Let us check the triangular inequality

v + w = ( 3
5 ,

4
3 )⇒ ‖v + w‖ =

√
481
15√

481
15 ≤

√
136
15 +

√
13
3 ⇔ 1.4621 ≤ 1.9793
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Distance and angle between two vectors

Orthogonal projections
Let us consider the orthogonal projection of v onto w.

v′ = 〈v,w〉 w
‖w‖2 = 〈v,w〉

‖w‖
w
‖w‖

The length of this vector is 〈v,w〉‖w‖

−1 0 1 2 3 4
−0.5

0

0.5

1

1.5

x
1

x 2

v

w

v’

Example
Let v = ( 5

2 , 1) and w = (3, 0). Then, v′ =
5
2 3+1·0

3 (1, 0) = ( 5
2 , 0). See the figure

above.
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Multiplication by matrices

Example
Let’s consider three vectors v1 =

(
1
−1
0

)
, v2 =

(
0
1
−1

)
and v3 =

(
0
0
1

)
. Let’s

consider the linear combination

y = x1v1 + x2v2 + x3v3 = x1

(
1
−1
0

)
+ x2

(
0
1
−1

)
+ x3

(
0
0
1

)
=
(

x1
x2 − x1
x3 − x2

)
I can obtain the same result by constructing a matrix

A = (v1 v2 v3) =
(

1 0 0
−1 1 0
0 −1 1

)
.

And making the multiplication

y = A
(

x1
x2
x3

)
= (v1 v2 v3)

 x1
x2
x3

 =

 1 0 0
−1 1 0
0 −1 1

 x1
x2
x3

 = x1
x2 − x1
x3 − x2


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Multiplication by matrices

Example
We can also achieve the same result by calculating y as the inner product of the
rows of the matrix A and the weight vector.

y =

 〈
(1, 0, 0), (x1, x2, x3)

〉〈
(−1, 1, 0), (x1, x2, x3)

〉〈
(0,−1, 1), (x1, x2, x3)

〉
 =

(
x1

x2 − x1
x3 − x2

)
Matlab:
syms x1 x2 x3

x=[x1; x2; x3]
A=[1 0 0; -1 1 0; 0 -1 1];
y=A*x
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Multiplication by matrices

Matrix multiplication as a linear combination
This is a general rule: a matrix multiplication can be seen as the linear
combination of the columns of the matrix.

A = (c1 c2 ...cp)⇒ y = Ax =
p∑

i=1
xici

Matrix multiplication as inner products
Also, a matrix multiplication can be seen as the dot product of the weight vector
with the rows of the matrix.

A =


rT
1

rT
2
...
rT
n

⇒ y = Ax =


〈r1, x〉
〈r2, x〉
...
〈rn, x〉



1. Vectors December 3, 2013 47 / 49



Multiplication by matrices

Properties of multiplication by matrices
A(u + v) = Au + Av

A(cu) = c(Au)
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