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Sets

Definition 1.1 (Set)
A set is a well-defined collection of elements. We denote the different elements
as a ∈ S.

Definition 1.2 (Empty set)
The only set without any element is the empty set (∅).

Describing sets
We may provide the elements of a set:

Intensional definition: by giving a property they all meet
(e.g., even numbers from 1 to 10)
Extensional definition: by listing all the elements in the set
(e.g.,{2, 4, 6, 8, 10}). The order in which the different elements are written
has no meaning.
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Sets

Definition 1.3 (Subset and proper subset)
B is subset of A (denoted B ⊆ A or A ⊇ B) if all the elements of B are also
elements of A. B is a proper subset of A if B is a subset of A and B is different
from A (B ⊂ A or A ⊃ B).

Properties
A is an improper subset of A.
∅ is a proper subset of A.

Definition 1.4 (Power set (Partes de un conjunto))
The set of all subsets of a set A is called the power set of A.

Example
Let A = {1, 2, 3} the power set of A is

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Sets

Definition 1.5 (Cartesian product)
The cartesian product of the sets A and B is the set of all ordered pairs in which
the first element comes from A and the second element comes from B.

A× B = {(a, b)|a ∈ A, b ∈ B}

Note that because of the ordered nature of the pair A× B 6= B × A.

Example
Let A = {1, 2, 3} and B = {4, 5}.

A× B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

Definition 1.6 (Cardinality)
The cardinality of a set is the number of elements it has.
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Sets

Definition 1.7 (Disjoint sets)
Two sets are disjoint if they do not have any element in common.

Some useful sets
Integer numbers: Z = {...,−2,−1, 0, 1, 2, ...}, |Z| = ℵ0

Natural numbers, positive integers: N = Z+ = {1, 2, 3, ...}, |N| = ℵ0

Negative integers: Z− = {...,−3,−2,−1}, |Z−| = ℵ0

Non-null integers: Z∗ = Z− {0} = {...,−2,−1, 1, 2, ...}, |Z∗| = ℵ0

Rational numbers: Q, |Q| = ℵ0

Real numbers: R, |R| = ℵ1

Interval: [0, 1], |[0, 1]| = ℵ1

Complex numbers: C = {a + bi |a, b ∈ R}, |C| = ℵ1
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Relations

Definition 2.1 (Relation)
A relation aRb is a subset of the cartesian product A× B.

Example
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Functions

Definition 2.2 (Function)
A function f : X → Y is a relation between X and Y in which each x ∈ X
appears at most in one of the pairs (x , y). We may write

(x , y) ∈ f or f (x) = y

The domain of f is X , the codomain of f is Y . The support of f is the set of
all those values in X for which there exists a pair (x , y). The range of f are all
values in Y for which there exists at least one pair (x , y).

Example
f : R → R
f (x) = x3

(2, 8) ∈ f ⇔ f (2) = 8
+ : R× R → R

((2, 3), 5) ∈ +⇔ +((2, 3)) = 5⇔ 2 + 3 = 5
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Classification of functions

Definition 2.3
Functions can be classified as surjective, injective or bijective:
Surjective: A function is surjective if every point of the codomain has at least

one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.
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Inverse function

Definition 2.4 (Inverse function)
Consider an injective function f : X → Y . f −1 : Y → X is the inverse of f iff

(x , y) ∈ f ⇒ (y , x) ∈ f −1

Example
f (x) = x + 3⇒ f −1(y) = y − 3
f (x) = x3 ⇒ f −1(y) = y 1

3

f (x) = x2 is not invertible because it is not injective (f (−2) = f (2) = 4)
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Inverse function

Theorem 2.1
If f is invertible, its inverse is unique.
If f is bijective, so is f −1.
X and Y have the same cardinality if there exists a bijective function
between the two.

Example
Consider the following function f : Z→ N

0 −1 1 −2 2 −3 3 ...
0 1 2 3 4 5 6 ...

f = {(0, 0), (−1, 1), (1, 2), (−2, 3), (2, 4), (−3, 5), (3, 6), ...}

f is bijective. Consequently, Z has the same cardinality as N.
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Partition

Definition 3.1 (Partition)
A partition of a set S is a collection of non-empty subsets such that each element
of S belongs to one and only one subset (cell) of the partition. We denote as x̄
the subset that contains the element x. All cells in a partition are disjoint to any
other cell.

Examples
We may partition the set of natural numbers into the subset of even numbers
({2, 4, 6, ...}) and the subset of odd numbers ({1, 3, 5, ...}).
We may partition the set of integer numbers into the subset of all multiples
of 3 ({...,−6,−3, 0, 3, 6, ...}), the subset of all numbers whose remainder
after dividing by 3 is 1 ({...,−5,−2, 1, 4, 7, ...}), and the subset of all
numbers whose remainder after dividing by 3 is 2 ({...,−4,−1, 2, 5, 8, ...}).
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Equivalence relation

Definition 3.2 (Equivalence relation)
R is an equivalence relation in S if it verifies:

1 R is reflexive: xRx
2 R is symmetric: xRy ⇒ yRx
3 R is transitive: xRy , yRz ⇒ xRz

Examples
1 = is an equivalence relation.
2 Congruence modulo n is an equivalence relation (two numbers are related if

they have the same remainder after dividing by n)
Example: 1 and 4 have remainder 1 after dividing by 3. We write

1 ≡ 4(mod3)

3 ∀n,m ∈ Z nRm⇔ nm ≥ 0 is not an equivalence relationship because it is
not transitive (e.g., −3R0, 0R5 but −3�R5).
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Partition and equivalence relation

Theorem 3.1
Let S be a non-empty set, and R an equivalence relation defined on S. Then R
partitions S with the cells

ā = {x ∈ S|xRa}

Additionally, we may define another equivalence relation ∼

a ∼ b ⇔ ā = b̄
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Partition and equivalence relation

Example
Congruence modulo 3 is an equivalence relation in Z (two numbers are related if
they have the same remainder after dividing by 3)

0̄ = {...,−6,−3, 0, 3, 6, ...}
1̄ = {...,−5,−2, 1, 4, 7, ...}
2̄ = {...,−4,−1, 2, 5, 8, ...}

Additionally

... = 0̄ = 3̄ = 6̄ = ...⇒ 0 ∼ 3 ∼ 6 ∼ ...

... = 1̄ = 4̄ = 7̄ = ...⇒ 1 ∼ 4 ∼ 7 ∼ ...

... = 2̄ = 5̄ = 8̄ = ...⇒ 2 ∼ 5 ∼ 8 ∼ ...

and

Z = 0̄ ∪ 1̄ ∪ 2̄
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Partition and equivalence relation

Example
Consider the cartesian product Z× (Z− {0}). Let (m1, n1) and (m2, n2) be two
ordered sets of this cartesian product. Consider now the equivalence relation

(m1, n1) ∼ (m2, n2)⇔ m1n2 −m2n1 = 0

The set of rational numbers is formally defined Q as the set of equivalence classes
of Z× (Z− {0}) under the relation ∼.
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Binary operations

Introduction
What is addition?
Let us assume that we arrive to a classroom in Mars, and
that martians are learning to add. The teacher says

Gloop, poyt

and the students reply:

Bimt.

Then, the teacher says:

Ompt, gaft

and the students reply:

Poyt.
We don’t know what they do but it seems that when the teacher gives two
elements, students respond with another element.
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Binary operations

Introduction (continued)
What is addition?
This is what we do when we say “three plus four”, “seven”. And we may not use
any two elements (“three plus apples” is not defined). We can only use elements
on a given set. This is what we formally call a binary operation.

Definition 4.1 (Binary operation)
A binary operation on a set S is a function:

∗ : S × S → S
∗(a, b) = a ∗ b
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Binary operations

Examples
The following binary operations are all different:

+ : R× R→ R
+ : Z× Z→ Z
+ :Mm×n(R)×Mm×n(R)→Mm×n(R)

The following is not a binary operation because it is not well defined

+ :M(R)×M(R)→M(R)

we don’t know how to add a 2× 2 matrix with a 3× 3 one.
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Closed set

Definition 4.2
Let S be a set and H a subset of S. H is said to be closed with respect to the
operation ∗ defined in S iff

∀a, b ∈ H a ∗ b ∈ H

Then we may define the binary operation in H:

∗ : H × H → H
∗(a, b) = a ∗ b

which is called the binary operation induced in H.
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Closed set

Example
Let S = Z and H = {n2|n ∈ Z+} = {1, 4, 9, 16, 25, 36, ...}. H is not closed with
respect to addition. For example:

1 ∈ H
4 ∈ H but 1 + 4 /∈ H

Example
Let S = Z and H = {n2|n ∈ Z+} = {1, 4, 9, 16, 25, 36, ...}. H is closed with
respect to multiplication. For example:

n2 ∈ H
m2 ∈ H and n2 ·m2 = (nm)2 ∈ H
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Closed set

Example
Let S be the set of real-valued functions with a single real argument
S = {R→ R}. Let us define the addition of functions as

+ : (R→ R)× (R→ R) → R→ R
(f + g)(x) = f (x) + g(x)

Similarly for the multiplication and subtraction of functions. Let us define the
composition of functions as

◦ : (R→ R)× (R→ R) → R→ R
(f ◦ g)(x) = f (g(x))

S is closed with respect to addition, subtraction, multiplication and composition.
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Definition of a binary operation

Example
To define a binary operation either we give the full table (intensional definition)
as in

a ∗ b b = 0 b = 1 b = 2
a = 0 0 1 2
a = 1 1 2 0
a = 2 2 0 1

or

a4b b = 0 b = 1 b = 2
a = 0 1 2 0
a = 1 1 1 2
a = 2 0 0 2

or we give a rule to compute it (extensional definition) as in

a ∗ b = (a + b) mod 3
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Properties of a binary operation

Definition 4.3 (Commutativity)
A binary operation is commutative iff

a ∗ b = b ∗ a

Example
∗ is commutative because its definition table is symmetric with respect to the
main diagonal, but 4 is not commutative.
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Properties of a binary operation

Definition 4.4 (Associativity)
A binary operation is associative iff

(a ∗ b) ∗ c = a ∗ (b ∗ c)

Example
4 is not associative because

(040)40 = 140 = 1
04(040) = 041 = 2

But ∗ is associative

(0 ∗ 0) ∗ 0 = 0 ∗ 0 = 0
0 ∗ (0 ∗ 0) = 0 ∗ 0 = 0

We would have to test all possible triples, but after a a little bit of work we could
show that ∗ is associative.
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Properties of a binary operation

Example
Function composition is associative although not commutative.
Proof
Function composition is not commutative

(f ◦ g)(x) = f (g(x)) 6= g(f (x)) = (g ◦ f )(x)

Function composition is associative

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f (g(h(x))) = f ((g ◦ h)(x)) = (f ◦ (g ◦ h))(x)
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Properties of a binary operation

Example
A function may not be well defined. For instance,

/ : Q×Q → Q
a/b = a

b

is not well defined for b = 0 ∈ Q

Example
A function may not be closed in S. For instance,

/ : Z× Z → Z
a/b = a

b

is not closed because a = 1 ∈ Z, b = 3 ∈ Z but 1
3 /∈ Z.

10. Abstract algebra December 17, 2013 32 / 62



Properties of a binary operation

Definition 4.5 (Existence of a neutral element)
A binary operation has a neutral element, e, iff

∀a ∈ S a ∗ e = e ∗ a = a

Example
0 is the neutral element of addition in R because

∀r ∈ R r + 0 = 0 + r = r

1 is the neutral element of multiplication in R because

∀r ∈ R r · 1 = 1 · r = r

Addition in N has no neutral element since 0 /∈ N.
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Properties of a binary operation

Definition 4.6 (Existence of an inverse element)
A binary operation has an inverse element iff

∀a ∈ S ∃b ∈ S|a ∗ b = b ∗ a = e

being e the neutral element of ∗.

Example
The inverse element of 2 with respect to addition in R is -2 because

2 + (−2) = (−2) + 2 = 0

The inverse element of 2 with respect to multiplication in R is 1
2 because

2 · 1
2 = 1

2 · 2 = 1

Multiplication in N has no inverse element since ∀n ∈ N 1
n /∈ N.
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Groups and subgroups

Introduction
Groups and subgroups are algebraic structures. They are the ones that allow
solving equations like

x + x = a⇒ x = a
2

and that the equation

x · x = a

does not have a solution in R if a < 0.
We’ll see that defining a group amounts to define the elements belonging to the
group as well as the operations that can be used with them.
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Groups

Definition 5.1 (Group)
Given a set S and a binary operation ∗ defined on S, the pair (S, ∗) is a group if
G is closed under ∗ and

G1. ∗ is associative in S
G2. ∗ has a neutral element in S
G3. ∗ has an inverse element in S

Definition 5.2 (Abelian group)
(S, ∗) is an abelian group if (S, ∗) is a group and ∗ is commutative.

Definition 5.3 (Subgroup)
Let (S, ∗) be a group. Let H be a subset of S, H ⊆ S, and ∗H be the ∗ induced
operation in H. The pair (H, ∗H) is a subgroup of (S, ∗) if it verifies the
conditions to be a group.
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Groups

Example
Consider S = {z ∈ C|z = e iϕ ∀ϕ ∈ R}. (U, ·) is a group.

Proof
G1. · is associative in S

z1(z2z3) = e iϕ1 (e iϕ2e iϕ3 ) = e iϕ1 (e i(ϕ2+ϕ3)) = e i(ϕ1+ϕ2+ϕ3)

(z1z2)z3 = (e iϕ1e iϕ2 )e iϕ3 = (e iϕ1+ϕ2 )e iϕ3 = e i(ϕ1+ϕ2+ϕ3)
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Groups

Example (continued)
Proof

G2. · has a neutral element in S
1 = e i0 ∈ S

z · 1 = e iϕe i0 = e i(ϕ+0) = e iϕ = z
1 · z = e i0e iϕ = e i(0+ϕ) = e iϕ = z

G3. · has an inverse element in S
For each z = e iϕ, its inverse element with respect to · is
z−1 = e−iϕ

zz−1 = e iϕe−iϕ = e i(ϕ−ϕ) = e i0 = 1
z−1z = e−iϕe iϕ = e i(−ϕ+ϕ) = e i0 = 1
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Groups

Example
(N,+) is not a group because it has no neutral element.
(N ∪ {0},+) is not a group because it has no inverse element.
(Z,+), (Q,+), (R,+), (C,+) and (Rn,+) are abelian groups.
(Mm×n,+) is an abelian group.
(R, ·) is not a group because 0 has no inverse.

(Mn×n(R)), ·) is not a group because


0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

 has no inverse.

Let S ∈Mn×n(R) be the set of invertible matrices of size n × n. (S, ·) is a
group (although not abelian). It is called the General Linear Group of degree
n (GL(n,R)).
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Groups

Example
The existence of groups is what allows us to solve equations. For instance,
consider the equation

5 + x = 2

and its solution in the group (Z,+)

5 + x = 2 [Addition of the inverse of 5 with respect to + in both sides]
−5 + (5 + x) = −5 + 2 [Addition is associative ]
(−5 + 5) + x = −3 [Definition of inverse]

0 + x = −3 [Definition of neutral element]
x = −3
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Groups

Example
Consider the equation

2x = 3

and its solution in the group (Q, ·)

2x = 3 [Multiplication by the inverse of 2 in both sides]
1
2 (2x) = 1

23 [Multiplication is associative ]
( 1

22)x = 2
3 [Definition of inverse]

1x = 2
3 [Definition of neutral element]

x = 2
3
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Groups

Theorem 5.1 (Cancellation laws)
Given any group (S, ∗), ∀a, b, c ∈ S it is verified

Left cancellation: a ∗ b = a ∗ c ⇒ b = c
Right cancellation: b ∗ a = c ∗ a⇒ b = c

Theorem 5.2 (Existance of a unique solution of linear equations)
Given any group (S, ∗), ∀a, b ∈ S the linear equations

a ∗ x = b and y ∗ a = b

always have a unique solution in S.

Theorem 5.3 (Properties of the inverse)
Given any group (S, ∗), ∀a ∈ S its inverse is unique and ∀a, b ∈ S

(a ∗ b)−1 = (b−1) ∗ (a−1)
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Homomorphisms

Example
Consider the sets S = {a, b, c} and S ′ = {A,B,C} with the operations
∗ : S × S → S and ∗′ : S ′ × S ′ → S ′

x ∗ y y = a y = b y = c
x = a a b c
x = b b c a
x = c c a b

and

x ∗′ y y = A y = B y = C
x = A A B C
x = B B C A
x = C C A B

We may construct a function that “translates” elements in S into elements in S ′
with the “same properties”.

φ : S → S ′
φ(a) = A
φ(b) = B
φ(c) = C

We note that

b ∗ c = a⇒ φ(b) ∗′ φ(c) = φ(a)⇒ B ∗′ C = A
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Homomorphisms

Definition 6.1 (Group homomorphism)
Given two groups (S, ∗) and (S ′, ∗′), the function φ : S → S ′ is a group
homomorphism iff ∀a, b ∈ S

φ(a ∗ b) = φ(a) ∗′ φ(b)

Definition 6.2 (Group isomorphism)
Given two groups (S, ∗) and (S ′, ∗′), the function φ : S → S ′ is a group
isomorphism iff it is a group homomorphism and it is bijective.
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Homomorphisms

Example
Consider the two groups (Rn,+) and (Rm,+) and a matrix A ∈Mm×n(R). The
application

φ : Rn → Rm

φ(x) = Ax

is a group homomorphism because

φ(u + v) = A(u + v) = Au + Av = φ(u) + φ(v)

Example
Consider the two groups (GL(n,R), ·) and (R, ·). The application

φ : GL(n,R) → R
φ(A) = det{A}

is a group homomorphism because

φ(AB) = det{AB} = det{A} det{B} = φ(A) · φ(B)
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Homomorphisms

Theorem 6.1
Let φ : S → S ′ be a group homomogrphism between two groups. Then,

φ(e) = e′

φ(a−1) = (φ(a))−1

Definition 6.3 (Kernel of a group homomorphism)
Let φ : S → S ′ be a group homomogrphism between two groups. Then, the kernel
of φ is the set

Ker{φ} = {x ∈ S|φ(x) = e′}

Example
Let φ(x) = Ax. Then,

Ker{φ} = {x ∈ Rn|Ax = 0} = Nul{A}
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Isomorphisms

Theorem 6.2 (Isomorphisms and cardinality)
If two groups (S, ∗) and (S ′, ∗′) are isomorph (i.e., there exists an isomorphism
between the two groups), then S and S ′ have the same cardinality.
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Isomorphisms

Example
Q and R cannot be isomorph because the cardinality of Q is ℵ0 and the
cardinality of R is ℵ1.
There are as many natural numbers as natural even numbers. In other words,
the cardinality of N and 2N are the same. The reason is that the function
φ(n) = 2n is an isomorphism between N and 2N.

Example
Consider the set Rc = [0, c) ∈ R and the operation x +c y = (x + y) mod c. The
pair (Rc ,+c) is a group. Consider now the two particular cases (R2π,+2π) and
(R1,+1) and the mapping

φ : R2π → R1
φ(x) = x

2π

φ is an isomorphism between (R2π,+2π) and (R1,+1). In fact, all (Rc ,+c)
groups are isomorph to any other (Rc′ ,+c′ ) group.
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Isomorphisms

Cardinality is a group property. The nice things about isomorphisms is that they
preserve group properties.

Theorem 6.3
If two groups (S, ∗) and (S ′, ∗′) are isomorph, then

If ∗ is commutative, so is ∗′.
If there is an order relation in S, it can be “translated” into an order relation
in S ′.
If ∀s ∈ S there exists a solution in S of the equation x ∗ x = s, then ∀s ′ ∈ S ′
there exists a solution in S ′ of the equation x ′ ∗′ x ′ = s ′.
If ∀a, b ∈ S there exists a solution in S of the equation a ∗ x = b, then
∀a′, b′ ∈ S ′ there exists a solution in S ′ of the equation a′ ∗′ x ′ = b′.
The kernel of any isomorphism φ between (S, ∗) and (S ′, ∗′) is
Ker{φ} = {e} being e the neutral element of ∗ in S.
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Isomorphisms

Example
((Z ),+) is not isomorph to ((Q),+) because the equation

x + x = s

has a solution in Q for any s ∈ Q (that is x = s
2 ), but it does not have a solution

in Z for any s ∈ Z (it only has a solution in Z if s is an even number).

Example
((R), ·) is not isomorph to ((C), ·) because the equation

x · x = z

has two solution in C for any z ∈ C (if z = re iθ, then x = ±re i θ
2 are the two

solutions) , but it does not have a solution in R for any z ∈ R (it only has a
solution in R if z is a non-negative number).
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Algebraic structures

Algebraic structures
Algebraic structures are tools that help us to define operate on numbers and
elements within a set, solve equations, etc.
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Algebraic structures

Definition 7.1 (Ring)
The tuple (S, ∗, ◦) is a ring iff

R1. (S, ∗) is an abelian group.
R2. ◦ is associative.
R3. ◦ is distributive with respect to ∗, i.e., ∀a, b, c ∈ S

Left-distributive: a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c)
Right-distributive: (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c)

Example
(Z,+, ·), (Q,+, ·), (R,+, ·), (C,+, ·) are rings.
(Mm×n(R),+, ·) is a ring.
(R→ R,+, ·) is a ring.
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Algebraic structures

Theorem 7.1 (Properties of rings)
Let (S, ∗, ◦) be a ring and let e be the neutral element of ∗ in S. For any a ∈ S,
let a′ be the inverse of a with respect to the operation ∗. Then ∀a, b ∈ S

a ◦ e = e ◦ a = e.
a ◦ b′ = a′ ◦ b = (a ◦ b)′

a′ ◦ b′ = a ◦ b

Example
Consider the ring (R,+, ·). We are used to the properties ∀a, b ∈ R

a · 0 = 0 · a = 0.
a · (−b) = (−a) · b = −(a · b)

(−a) · (−b) = a · b
But, as stated by the previous theorem, these are properties of all rings.
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Definition 7.2 (Kinds of rings)
A ring (S, ∗, ◦) is

commutative iff ◦ is commutative.
unitary iff ◦ has a neutral element (referred as 1).
divisive if it is unitary and

∀a ∈ S − {e} ∃!a−1 ∈ S, |a ◦ a−1 = a−1 ◦ a = 1
That is each element has a multiplicative inverse.

Example
(P,+, ·) the set of polynomials with coefficients from a ring is a ring.
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Definition 7.3 (Field (cuerpo))
A divisive, commutative ring is called a field.

Example
(Q,+, ·), (R,+, ·), and (C,+, ·) are fields.
(Z,+, ·) is not a field because multiplication has not an inverse in Z.
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Definition 7.4 (Vector space over a field)
Consider a field (K, ∗, ◦). A vector space over this field is a tuple (V ,+, ·) so
that V is a set whose elements are called vectors, and + : V × V → V is a binary
operation under which V is closed, · : K× V → V is an operation between scalars
in the field (K) and vectors in the vector space (V ) such that ∀a, b ∈ K,∀u, v ∈ V

V1. (V ,+) is an abelian group.
V2. (a · u) ∈ V
V3. a · (b · u) = (a ◦ b) · u
V4. (a ∗ b) · u = a · u + b · u
V5. a · (u + v) = a · u + a · v
V6. 1 · u = u
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Examples
(Rn,+, ·) and (Cn,+, ·).
(Mm×n(R),+, ·): the set of matrices of a given size with coefficients in a
field.
(P,+, ·): the set of polynomials with coefficients in a field.
({X → V },+, ·): the set of all functions from an arbitrary set X onto an
arbitrary vector space V .
The set of all continuous functions is a vector space.
The set of all linear maps between two vector spaces is also a vector space.
The set of all infinite sequences of values from a field is also a vector space.
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Definition 7.5 (Algebra)
Consider a vector space (V ,+, ·) over a field (K, ∗, ◦) and a binary operation
• : V × V → V . (V ,+, ·, •) is an algebra iff ∀a, b ∈ K,∀u, v,w ∈ V

A1. Left distributivity: (u + v) •w = u •w + v •w
A2. Right distributivity: u • (v + w) = u • v + u •w
A3. Compatibility with scalars: (a · u) • (b · v) = (a ◦ b) · (u • v)

Examples
Real numbers (R) are an algebra (“1D”).
Complex numbers (C) are an algebra (“2D”).
Quaternions are an algebra (“4D”).
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10 Abstract algebra
Sets
Relations and functions
Partitions and equivalence relationships
Binary operations
Groups and subgroups
Homomorphisms and isomorphisms
Algebraic structures
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