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A little bit of history

Linear equations in their modern form are known since the middle of the XVIIIth
century and they were strongly developed during the XIXth century with important
contributions of people like Gabriel Cramer (1750), Carl Friedrich Gauss (1801),
Sir William Rowan Hamilton (1843) and Wilhelm Jordan (1873). They were
mostly developed to explain the mechanics of celestial objects.

To know more about the history of linear equations visit
http://hom.wikidot.com/cramer-s-method-and-cramer-s-paradox

2. Linear equation systems September 24, 2013 4 / 103

http://en.wikipedia.org/wiki/Gabriel_Cramer
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/William_Rowan_Hamilton
http://en.wikipedia.org/wiki/Wilhelm_Jordan_%28geodesist%29
http://hom.wikidot.com/cramer-s-method-and-cramer-s-paradox


A little bit of history

Wassily Leontief was a Russian-American economist that worked in Harvard. In
1949 he performed an analysis with the early computers at Harvard using data
from the U.S. Bureau of Labor Statistics to classify the U.S. economy into 500
sectors, that were later simplified to 42. He used linear equation systems to do so.
It took 56 hours in Mark II (one of the first computers) to solve it. He was
awarded the Nobel prize in 1970 for his work on input-output tables that analyze
how outputs from some industries are inputs to some other industries.
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A little bit of history
Currently, we need about two weeks in a supercomputer (128 cores) to solve the
structure of a macromolecular assembly (in the figure, the HIV virus capsid). We
have 1,000 million equations with about 3 million unknowns.
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What is a linear equation system?

Definition 1.1 (Linear equation system)
A linear equation is one that can be expressed in the form

n∑
i=1

aixi = b

a1x1 + a2x2 + ... + anxn = b
〈a, x〉 = b

The unknowns are xi (i = 1, 2, ..., n) while ai ’s and b are coefficients. When we
have several of these equations, we have a linear equation system.

Example
Examples of linear equations

7x1 − 2x2 = 4
7(x1 −

√
3x2) =

1√
2x1 ⇒

(7− 1√
2 )x1 − 7

√
3x2 = 0

Examples of non-linear equations

x1 + x2 + x1x2 = 1√x1 + x2 = 1
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Set of solutions of a linear equation

Definition 1.2 (Set of solutions of a linear equation system)
The set of solutions of a linear equation system S ⊆ Rn is the set of all those
values that we can assign to x1, x2, ..., xn such that the equation system is
fulfilled.

Example
Consider the following equation system

2x1 − x2 = 7
x1 + 2x2 = 11

x = (5, 3) is a solution to this equation system because

2 · 5− 3 = 7
5+ 2 · 3 = 11

In fact it is its unique solution and, therefore, S = {(5, 3)} ⊂ R2.
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Geometric interpretation

Example
l1: 2x1 − x2 = 7⇒ x2 = 2x1 − 7⇒ v1 = (1, 2)
l2: x1 + 2x2 = 11⇒ x2 = 11− 1

2x1 ⇒ v2 = (1,− 1
2 )

Each one of the equations is actually representing a line, and both lines, in this
case intersect at the point (5, 3), the unique solution of this equation system.
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Geometric interpretation

Example
There can be a single solution (left), no solution (middle), or infinite (l1 = l2;
right)

In general
With linear equations we can represent:
a line in 2D: a1x1 + a2x2 = b
a plane in 3D: a1x1 + a2x2 + a3x3 = b
a hyperplane in nD: a1x1 + a2x2 + ... + anxn = b
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Matrix notation

Example
The equation system

x1 −2x2 +x3 = 0
2x2 −8x3 = 8

−4x1 +5x2 +9x3 = −9

can be represented as  1 −2 1 0
0 2 −8 8
−4 5 9 −9

 [Ã]

or  1 −2 1
0 2 −8
−4 5 9

 x1
x2
x3

 =

 0
8
−9

 [Ax = b]
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Matrix notation

In general
A ∈Mm×n is called the system matrix of an equation system with m equations
and n unknowns.
Ã ∈Mm×(n+1) is called the augmented system matrix of an equation system
with m equations and n unknowns.

Basic row iterations
To solve the equation system with the augmented system matrix, we used the
so-called basic row operations:
Substitution: ri ← ki ri + kjrj : Row i is substituted by a linear combination of

rows i and j
Swapping: ri ↔ rj : Row i swapped with row j
Scaling: ri ← ki ri : Row i is multiplied by a scale factor

All these operations transform the equation system into an equivalent system
(with the same set of solutions). The two matrices (original and transformed) are
said to be row equivalent.
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Solving the equation system

Example
In the following example we will see how linear combinations are actually changing
the equation system to a different one, while scaling is not.

2x1 −x2 = 7
x1 +2x2 = 11

(
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Solving the equation system

Example
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Solving the equation system

Example
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Solving the equation system

Example
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Existence and uniqueness of solutions

Example
x1 −2x2 +x3 = 0

2x2 −8x3 = 8
−4x1 +5x2 +9x3 = −9

∼ ... ∼

 1 −2 1 0
0 1 −4 4
0 0 1 3


I can solve for x3 (x3 = 3), then use this value in the second equation to solve for
x2, and finally use these two values in the first equation to solve for x1. Thus, the
equation system has a solution and it is unique. We say the equation system is
compatible. The set of solutions is S = {(29, 16, 3)}.

Matlab:
A=[1 -2 1; 0 2 -8; -4 5 9];

b=[0; 8; -9];
x=A\b
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Existence and uniqueness of solutions

Example
x2 −4x3 = 8

2x1 −3x2 +2x3 = 1
5x1 −8x2 +7x3 = 1

∼ ... ∼

 2 −3 2 1
0 1 −4 8
0 0 0 5

2


Last equation implies 0 = 5

2 which is impossible. Consequently, there is no
solution and we say that the equation system is incompatible. The set of
solutions is S = ∅.

Example
x1 +x2 = 1
2x1 +2x2 = 2 ∼ ... ∼

(
1 1 1
0 0 0

)
There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S = {(x1, 1− x1)}.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 1:

1.1.11
1.1.4
1.1.15
1.1.18
1.1.25
1.1.26
1.1.33
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Echelon matrices

Example
The following matrices are echelon matrices:

A1 =

 ♦ ♥ ♥ ♥
0 ♦ ♥ ♥
0 0 0 0


A2 =

(
0 ♦ ♥ ♥
0 0 0 ♦

)
In the previous matrices we have marked with ♦ the leading elements (the first
ones different from 0 in their row), and with ♥ the rest of the elements different
from 0.
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Echelon matrices

Definition 2.1 (Echelon matrix)
A rectangular matrix has an echelon form iif:

1 Within each row, the first element different from zero (called the leading
entry) is in a column to the right of the leading entry of the previous row.

2 Within each column, all values below a leading entry are zero.
3 All rows without a leading entry (i.e., they only have zeros) are below all the

rows in which at least one element is not zero.

Definition 2.2 (Reduced echelon matrix)
A rectangular matrix has a reduced echelon form iif:

1 It is echelon.
2 The leading entry of each row is 1.
3 The leading entry is the only 1 in its column.
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Echelon matrices

Theorem 2.1
Each matrix is row equivalent to one and only one reduced echelon matrix.

Example  1 2 3
4 5 6
−1 −1 0


r2 ← r2 − 4r1
r3 ← r3 + r1

 1 2 3
0 −3 −6
0 1 3


r2 ↔ r3

 1 2 3
0 1 3
0 −3 −6


r3 ↔ r3 + 3r2

 1 2 3
0 1 3
0 0 3



r1 ← r1 − 2r2
r3 ← 1

3 r3

 1 0 −3
0 1 3
0 0 1


r1 ← r1 + 3r3
r2 ← r2 − 3r3

 1 0 0
0 1 0
0 0 1
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Echelon matrices

Example (continued)
Matlab:
A=[1 2 3; 4 5 6; -1 -1 0]

A(2,:)=A(2,:)-4*A(1,:)
A(3,:)=A(3,:)+A(1,:)
aux=A(2,:); A(2,:)=A(3,:); A(3,:)=aux
A(3,:)=A(3,:)+3*A(2,:)
A(1,:)=A(1,:)-2*A(2,:)
A(3,:)=1/3*A(3,:)
A(1,:)=A(1,:)+3*A(3,:)
A(2,:)=A(2,:)-3*A(3,:)
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Echelon matrices

Example
Now, we’ll repeat the same example using different row operations: 1 2 3

4 5 6
−1 −1 0


r1 ← r3

 −1 −1 0
4 5 6
1 2 3


r1 ← −r1

 1 1 0
4 5 6
1 2 3


r2 ← r2 − 4r1
r3 ← r3 − r1

 1 1 0
0 1 6
0 1 3



r1 ← r1 − r2
r3 ← r3 − r2

 1 0 −6
0 1 6
0 0 −3


r3 ← − 1

3 r3

 1 0 −6
0 1 6
0 0 1


r1 ← r1 + 6r3
r2 ← r2 − 6r3

 1 0 0
0 1 0
0 0 1
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Gauss-Jordan algorithm

Definition 2.3 (Pivot and pivot column)
A pivot element is the element of a matrix that is used to perform certain
calculations. For the Gauss-Jordan algorithm it corresponds to the first element
different from zero in a given row. A pivot column is a column that contains a
pivot.

Step 1
Choose the left-most pivot column. The pivot element (marked in red) is any
value within this column different from 0. Note: Normally, we should take the one
with maximum absolute value to avoid numerical errors.

Example  0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15
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Gauss-Jordan algorithm

Step 2
Sort rows if necessary so that the pivot is as high as possible.

Example

r3 ↔ r1

 3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5


Step 3
Use row operations to force the elements below the pivot to be 0.

Example

r2 ← r2 − r1

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5
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Gauss-Jordan algorithm

Step 4
Repeat Steps 1 to 3 with the rows below the pivot.

Example  3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 2 −4 4 2 −6


r3 ← r3 − 2

3 r2

 3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 − 2

3 − 8
3

 3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 − 2

3 − 8
3
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Gauss-Jordan algorithm

Step 5
Starting from the lowest and right-most pivot, force the elements above that pivot
to be zero. If the pivot is not 1, then rescale the row. Repeat with the next pivot
on the left.

Example
r3 ← −

3
2 r3

(
3 −9 12 −9 6 15
0 3 −6 6 4 −5
0 0 0 0 1 4

)
r2 ← r2 − 4r3
r1 ← r1 − 6r3

(
3 −9 12 −9 0 −9
0 3 −6 6 0 −21
0 0 0 0 1 4

)
r2 ←

1
3 r2

(
3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4

)
r1 ← r1 + 9r2

(
3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

)
r1 ←

1
3 r1

(
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

)
Computing the inverse of a n × n matrix costs in the order of n3 operations
(O(n3)). However, calculating the reduced echelon form is only in the order of n2

(O(n2)). This difference is more and more important as n grows.
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Existence and uniqueness of solutions (revisited)
We can now review the issue of existence and uniqueness under the light of the
reduced echelon matrix.
Example  1 0 0 1

0 1 0 4
0 0 1 0


The system is compatible and the set of solutions is formed by a single point
S = {(1, 4, 0)}.

Example  1 0 0 1
0 1 1 4
0 0 0 0


There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S =

{
(1, 4− x3, x3) ∀x3 ∈ R3}. Because the set of solutions

depends on a single variable, the set of solutions is a line.
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Existence and uniqueness of solutions (revisited)

Example  1 0 0 0 1
0 1 1 1 4
0 0 0 0 0


There are infinite solutions. The system is compatible indeterminate. The set
of solutions is S =

{
(1, 4− x3 − x4, x3, x4) ∀x3, x4 ∈ R3}. Now, the set of

solutions depends on 2 variables and, consequently, it is a plane.

Example  1 0 0 1
0 1 1 4
0 0 0 1


The system is incompatible since the last equation is 0 = 1. The set of solutions
is the empty set, S = ∅.

2. Linear equation systems September 24, 2013 32 / 103



Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 2:

1.2.2
1.2.8
1.2.19
1.2.33
1.2.34
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Interpretation as a subspace

Subspace spanned by columns
Consider the equation system given by the matricial equation Ax = b, where
A ∈Mn×p. Let us call the p columns of A as ci ∈ Rn. The previous equation can
be rewritten as

(c1 c2 ... cp)


x1
x2
...
xp

 = b⇒
p∑

i=1
xici = b

That is, Ax is the subspace spanned by the columns of matrix A.

Span {c1, c2, ..., cp} = {v ∈ Rn|v = Ax ∀x ∈ Rp}

The equation system Ax = b the poses the question: Find the weight
coefficients xi such that vector b belongs to Span {c1, c2, ..., cp}.
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Interpretation as a subspace

Example
The equation system

x1 +2x2 −x3 = 4
−5x2 +3x3 = 1

can be represented as (
1 2 −1
0 −5 3

) x1
x2
x3

 =

(
4
1

)
That is, which are the weight coefficients x1, x2 and x3 such that the vector (4, 1)
belongs to the subspace generated by the vectors (1, 0), (2,−5), and (−1, 3).
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Interpretation as a subspace

Theorem 3.1
The matrix equation Ax = b has the same solution as the vector equation
p∑

i=1
xici = b and as the equation system whose augmented matrix is Ã = (A|b).

Theorem 3.2
For any A ∈Mn×p and vector b ∈ Rn, the following four statements are
equivalent, that is, P1 ⇔ P2 ⇔ P3 ⇔ P4

P1: The equation Ax = b has a solution.
P2: b is a linear combination of the columns of A.
P3: The columns of A span all Rn, i.e., Span {ci} = Rn.
P4: A has a pivot in each row.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 4:

1.4.13
1.4.18
1.4.26
1.4.27
1.4.32
1.4.39
1.4.41 (bring computer)
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the homogeneous system Ax = 0. It obviously has the trivial
solution x = 0. Non-trivial solutions can be found through the echelon matrix

Example
3x1 +5x2 −4x3 = 0
−3x1 −2x2 +4x3 = 0
6x1 +x2 −8x3 = 0

⇒ ... ∼

 1 0 4
3 0

0 1 0 0
0 0 0 0


This is a compatible indeterminate system whose set of solutions is
S =

{
(− 4

3x3, 0, x3) ∀x3 ∈ R
}
, or what is the same

S = Span
{
(− 4

3 , 0, 1)
}
.

That is, any of the infinite points in the straight line whose director vector is
(− 4

3 , 0, 1) is a solution of the equation system.
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Existence and uniqueness of solutions (revisited once
again)

Let us consider the non-homogeneous system Ax = b.

Example
3x1 +5x2 −4x3 = 7
−3x1 −2x2 +4x3 = −1
6x1 +x2 −8x3 = −4

⇒ ... ∼

 1 0 4
3 0

0 1 0 2
0 0 0 0


This is a compatible indeterminate system whose set of solutions is
S =

{
(− 4

3x3, 2, x3) ∀x3 ∈ R
}
, or what is the same

S =
{
(0, 2, 0) + (− 4

3x3, 0, x3) ∀x3 ∈ R
}
= (0, 2, 0) + Span

{
(− 4

3 , 0, 1)
}
.

That is, any of the infinite points in the straight line whose director vector is
(− 4

3 , 0, 1) and passes through the point (0, 2, 0) is a solution of the equation
system.
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Existence and uniqueness of solutions (revisited once
again)

Consider the following homogeneous equation system

Example
10x1 −3x2 −2x3 = 0 ⇒ ... ∼

(
10 −3 −2 0

)
This is a compatible indeterminate system whose set of solutions is
S =

{
( 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
, or what is the same

S = Span
{
( 3

10 , 1, 0), ( 1
5 , 0, 1)

}
.

That is, any of the infinite points in the plane containing the vectors ( 3
10 , 1, 0) and

( 1
5 , 0, 1) is a solution of the equation system.
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Existence and uniqueness of solutions (revisited once
again)

Consider now the following non-homogeneous equation system

Example
10x1 −3x2 −2x3 = 10 ⇒ ... ∼

(
10 −3 −2 10

)
This is a compatible indeterminate system whose set of solutions is
S =

{
(1+ 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
, or what is the same

S =
{
(1, 0, 0) + ( 3

10x2 +
1
5x3, x2, x3) ∀x2, x3 ∈ R

}
=

(1, 0, 0) + Span
{
( 3

10 , 1, 0), ( 1
5 , 0, 1)

}
.
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Existence and uniqueness of solutions (revisited once
again)

Corollary 4.1
Consider the compatible, non-homogeneous equation system given by Ax = b and
its homogeneous counterpart Ax = 0. Let Sh be the set of solutions of the
homogeneous equation system. Then, the set of solutions of the
non-homogeneous equation system is of the form

Snh = x0 + Sh

For some x0 ∈ Rn.

Definition 4.1 (Null space of A)
Sh is called the null space of the matrix A. It has the property that given an
equation system Ax = b, if x0 is a solution of the equation system, then x0 + xh is
also a solution, for any xh ∈ Sh.
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Existence and uniqueness of solutions (revisited once
again)
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Existence and uniqueness of solutions (revisited once
again)

In this example, the authors describe how to solve a problem appearing in the
tomographic use of a certain microscope due to the absence of some
measurements (resulting in an important null space of the tomographic problem).
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Existence and uniqueness of solutions (revisited once
again)

In this example, the authors describe how the exact location of a tooth fracture is
uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A.; Mol, A.; Tyndall, D. A., Rivera, E. M. In vitro assessment of local computed tomography for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 5:

1.5.11
1.5.13
1.5.19
1.5.21
1.5.25
1.5.26
1.5.36
1.5.39
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Applications

In fluorescence microscopy, we can quantitatively measure the amount of
fluorescence coming from each source with a linear equation system.

C. Calabia-Linares, M. Pérez-Martínez, N. Martín-Cofreces, M. Alfonso-Pérez, C. Gutiérrez-Vázquez, M. Mittelbrunn, S. Ibiza, F.R. Urbano-Olmos, C.

Aguado-Ballano, C.O.S. Sorzano, F. Sánchez-Madrid, E. Veiga. Clathrin drives actin accumulation at the immunological synapse. J. Cell Science, 124:

820-830 (2011)
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Applications

In computed tomography, a simple model (but widely used) for data collection
states that the data observed is the sum of the values of the density found along
the X-ray path.
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Applications
In the blood system, at each node, the sum of output flows must be equal to the
sum of input flows.
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Applications

In a very simplified model, respiration is the burning of glucose that can be
written as

x1C6H12O6 + x2O2 → x3CO2 + x4H2O

C: 6x1 = x3

H: 6x1 = 2x4

O: 6x1 + 2x2 = 2x3 + x4
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 6:

1.6.5
1.6.7
1.6.12
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Linear independence

Definition 6.1 (Linear independence)
A set of vectors v1, v2, ..., vp is linearly independent if

x1v1 + x2v2 + ... + xpvp = 0⇒ x1 = x2 = ... = xp = 0

That is the only solution of the previous equation is the trivial solution x = 0.
The set is linearly dependent if at least two xi ’s are different from 0.
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Linear independence

Example
Determine if the vectors v1 = (1, 2, 3), v2 = (4, 5, 6), and v3 = (2, 1, 0) are
linearly independent.
Solution
The augmented matrix associated to the equation system in Definition 6.1 is 1 4 2 0

2 5 1 0
3 6 0 0

 ∼ ... ∼

 1 4 2 0
0 −3 −3 0
0 0 0 0


Since the system is compatible indeterminate, there exists a solution apart from
the trivial solution and, therefore, the vectors are linearly dependent.
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Linear independence

Example
If possible, find a linear relationship among the three vectors. Solution
We continue transforming the augmented matrix to its reduced echelon form 1 4 2 0

0 −3 −3 0
0 0 0 0

 ∼ ... ∼

 1 0 −2 0
0 1 1 0
0 0 0 0


From which x1 = 2x3 and x2 = −x3. Simply by choosing x3 = 1, we obtain have
that a possible solution to the equation system in Definition 6.1 is x1 = 2,
x2 = −1 and x3 = 1, consequently we have that

2v1 − v2 + v3 = 0
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Linear independence

Example
v1 = (3, 1) and v2 = (6, 2) are linearly dependent because

v2 = 2v1 ⇒ −2v1 + v2 = 0⇒ v1 = 1
2v2
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If two vectors are linearly dependent of each other, then any one of them is a
multiple of the other.
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Linear independence

Example
v1 = (3, 2) and v2 = (6, 2) are linearly independent
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Linear independence

Example
v1 = (1, 1, 0), v2 = (−1, 1, 0) and v3 = (0, 2, 0) are linearly dependent because

v3 = v1 + v2
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Linear independence

Example
v1 = (1, 1, 0), v2 = (−1, 1, 0) and v3 = (0, 2, 1) are linearly independent
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Linear independence

Theorem 6.1 (Linear independence of matrix columns)
The columns of the matrix A are linearly independent iff the only solution of
Ax = 0 is the trivial one.
Proof
Let A = [a1 a2 ... ap] so that the columns of the matrix A are the vectors ai .
According to Definition 6.1 these vectors are linearly independent iff

x1a1 + x2a2 + ... + xpap = 0⇒ x1 = x2 = ... = xp = 0

or what is the same

Ax = 0⇒ x1 = x2 = ... = xp = 0

as stated by the theorem (q.e.d.)
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Linear independence

Theorem 6.2
Any set {v1, v2, ..., vp} with vi ∈ Rn is linearly dependent if p > n.
Proof
Let A = [v1 v2 ... vp] and let us consider the equation system Ax = 0. If p > n
there are more unknowns than equations, and consequently, there are free
variables and the system is compatible indeterminate. Thus, there are more
solutions apart from the trivial one and the set of vectors is linearly dependent.

Theorem 6.3
If any set {v1, v2, ..., vp} with vi ∈ Rn contains the vector 0, then the set of
vectors is linearly dependent.
Proof
We can assume, without loss of generality, that v1 = 0. Then, we can set x1 = 1,
x2 = x3 = ... = xp = 0 so that the following equation is met:

1v1 + 0v2 + ... + 0vp = 0 (q.e.d.)
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Linear independence

Theorem 6.4
A set of vectors is linearly dependent iff at least 1 of the vectors is linearly
dependent on the rest
Proof

Proof ⇐
Let us assume that vj is a linear combination of the rest of the vectors,
that is,

vj =
∑
k 6=j

xkvk

Then, we can write vj −
∑
k 6=j

xkvk = 0⇒

−x1v1 − x2v2 − ...− xj−1vj−1 + vj − xj+1vj+1 − xpvp = 0

And consequently there exists a non-trivial solution of the equation of
Definition 6.1.
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Linear independence

Proof ⇒
If v1 = 0, then we have already a vector that is a trivial combination of
the rest (v1 = 0v2 + 0v3 + ... + 0vp).
If v1 6= 0, then there exist some coefficients such that

x1v1 + x2v2 + ... + xpvp = 0

Let j be the largest index for which xj 6= 0 (that is, xj+1 = xj+2 = ... =
xp = 0).
If j = 1, then x1v1 = 0, but this is not possible because v1 6= 0. Then,
j > 1 and consequently

x1v1 + x2v2 + ... + xjvj + 0vj+1 + ... + 0vp = 0⇒
xjvj = −x1v1 − x2v2 − ...− xj−1vj−1 ⇒

vj = − x1
xj
v1 − x2

xj
v2 − ...− xj−1

xj
vj−1 (q.e.d.)
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 7:

1.7.9
1.7.39
1.7.40
1.7.41 (bring computer)
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Linear transformations

Definition 7.1 (Transformation)
A transformation (or function or mapping), T , from Rn to Rm is a rule that
assigns to each vector of Rn a vector of Rm.

T : Rn → Rm

x → T (x)

Rn is called the domain of the transformation, and Rm its codomain. T (x) is the
image of vector x under the action of T . The set of all images is the range of T.
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Linear transformations

Definition 7.2 (Matrix transformation)
T is a matrix transformation iff T (x) = Ax for some matrix A ∈Mm×n.

Example

Let us consider A =

(
4 −3 1 3
2 0 5 1

)
and the matrix transformation y = Ax. For

instance, the image of x = (1, 1, 1, 1) is

y =

(
4 −3 1 3
2 0 5 1

)
1
1
1
1

 =

(
5
8

)

The equation system Ax =

(
5
8

)
looks for all those x, if any, such that

T (x) =
(
5
8

)
. The domain of this transformation is R4 and its codomain R2.
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Linear transformations

Example

Let us consider A =

1 0
0 1
0 0

 and the matrix transformation y = Ax. The domain

of this transformation is R2 and its codomain R3. However, not all points in R3

need to be an image of some point x ∈ R2, only a subset of them may be. In this
case,

R3 ⊃ Range(T ) = 〈(1, 0, 0), (0, 1, 0)〉

In general, the range of the transformation T is the subspace spanned by the
columns of the matrix A.
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Linear transformations

Example

Let us consider A =

 1 −3
3 5
−1 7

 and the matrix transformation y = Ax.

1 What is the image of u = (2,−1) under T?
T (u) = Au = (5, 1, 9)

2 Let b = (3, 2,−5). Which is x such that T (x) = b? 1 −3 3
3 5 2
−1 7 −5

 ∼
 1 0 3

2
0 1 − 1

2
0 0 0


From which we deduce x = ( 3

2 ,− 1
2 ).

3 Is there any other x such that T (x) = b?
No, the previous solution is unique because the equation system is definite
compatible.
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Linear transformations

Example
4 Does c = (3, 2, 5) belong to Range(T )? 1 −3 3

3 5 2
−1 7 5

 ∼
 1 0 3

2
0 1 − 1

2
0 0 −35


Since the system is incompatible, we deduce that there is no vector x whose
image is c and, consequently, c 6∈ Range(T ).

5 Which is the function y = T (x)?y1
y2
y3

 =

 1 −3
3 5
−1 7

(x1
x2

)
=

 x1 − 3x2
3x1 + 5x2
−x1 + 7x2


6 Which is Range(T )?

Range(T ) = 〈(1, 3,−1), (−3, 5, 7)〉 =y ∈ R3|y = x1

 1
3
−1

+ x2

−35
7

 ∀x1, x2 ∈ R


Because (1, 3,−1) and (−3, 5, 7) are linearly independent, Range(T ) is a
plane.
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Linear transformations

Example

Consider the transformation T (x) =

1 0 0
0 1 0
0 0 0

x1
x2
x3

 =

x1
x2
0

. This is a

projection transformation that projects any 3D point onto the XY plane.
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Linear transformations

Definition 7.3 (Linear transformation)
T is a linear transformation iff ∀x1, x2 ∈ Dom(T ), ∀c ∈ R

1 T (x1 + x2) = T (x1) + T (x2)

2 T (cx1) = cT (x1)

Theorem 7.1
If T (x) is a linear transformation, then

1 T (0) = 0
2 T (c1x1 + c2x2) = c1T (x1) + c2T (x2) ∀x1, x2 ∈ Dom(T ), ∀c1, c2 ∈ R

Proof
1 T (0) = T (0x1) =[(2), Def. 7.3]= 0T (x1) = 0 (q.e.d.)
2 T (c1x1 + c2x2) =[(1), Def. 7.3]= T (c1x1) + T (c2x2) =[(2), Def. 7.3]

c1T (x1) + c2T (x2) (q.e.d.)
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Linear transformations

Theorem 7.2
If ∀x1, x2 ∈ Dom(T ), ∀c1, c2 ∈ R it is verified that
T (c1x1 + c2x2) = c1T (x1) + c2T (x2), then T (x) is a linear transformation.
Proof

1 Let us consider the case c1 = c2 = 1, then according to the assumption of the
theorem we have T (x1 + x2) = T (x1) +T (x2), which implies (1) in Def. 7.3.

2 Let us consider the case c2 = 0, then according to the assumption of the
theorem we have T (c1x1) = c1T (x1), which implies (2) in Def. 7.3.

(q.e.d.)
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Linear transformations

Corollary: Principle of superposition

If ∀xi ∈ Dom(T ), ∀ci ∈ R it is verified that T
(∑

i
cixi

)
=
∑

i
ciT (xi).

Proof
Apply the previous theorem multiple times. (q.e.d.)
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Linear transformations

Example

Show that T (x) =
(
1 0
0 −1

)(
x1
x2

)
is a linear transformation.

Proof
1 Show that T (x1 + x2) = T (x1) + T (x2)

On one side we have T (x1 + x2) =

(
1 0
0 −1

)(
x11 + x21
x12 + x22

)
=

(
x11 + x21
−x12 − x22

)
On the other side we have T (x1) + T (x2) =(
1 0
0 −1

)(
x11
x12

)
+

(
1 0
0 −1

)(
x21
x22

)
=

(
x11
−x12

)
+

(
x21
−x22

)
=

(
x11 + x21
−x12 − x22

)
Obviously, these two calculations give the same result.

2 Show that T (c1x1) = c1T (x1)

T (c1x1) =

(
1 0
0 −1

)(
c1x11
c1x12

)
=

(
c1x11
−c1x12

)
= c1

(
x11
−x12

)
= c1

(
1 0
0 −1

)(
x11
x12

)
= c1T (x1)
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Linear transformations

Theorem 7.3
Any matrix transformation is a linear transformation.
Proof

1 Show that T (x1 + x2) = T (x1) + T (x2)
T (x1 + x2) = A(x1 + x2) = Ax1 + Ax2 = T (x1) + T (x2) (q.e.d.)

2 Show that T (c1x1) = c1T (x1)
T (c1x1) = A(c1x1) = c1(Ax1) = c1T (x1) (q.e.d.)
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Reinterpreting the columns of a matrix

Example

Consider T (x) = Ax with A =

(
4 −3 1 3
2 0 5 1

)
. Consider the standard canonical

basis of R4 formed by the vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0),
e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1). Let us consider the transformation of each
one of these vectors
T (e1) =

(
4
2

)
T (e2) =

(
−3
0

)
T (e3) =

(
1
5

)
T (e4) =

(
3
1

)
In general, we note that the transformation of ei is the i-th column of matrix A.

Corollary
The columns of the matrix A ∈Mm×n can be understood as the transformations
of the canonical basis of Rn:

A =
(
a1 a2 ... an

)
=
(
T (e1) T (e2) ... T (en)

)
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Reinterpreting the columns of a matrix

Example (continued)
In the previous example consider transforming the vector x = (1,−2, 3, 5). This
vector is equal to

x = e1 − 2e2 + 3e3 + 5e4

Then, we have

T (x) = T (e1 − 2e2 + 3e3 + 5e4) = T (e1)− 2T (e2) + 3T (e3) + 5T (e4)

=

(
4
2

)
− 2

(
−3
0

)
+ 3

(
1
5

)
+ 5

(
3
1

)
=

(
28
22

)
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 8:

1.8.23
1.8.25
1.8.26
1.8.30
1.8.34
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Geometrical transformations

Certain matrix transformations are used to transform the unit square into different
shapes. The following table shows some of such transformations.
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Geometrical transformations
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Classification of functions

Definition 9.1
Functions can be classified as surjective, injective or bijective:
Surjective: A function is surjective if every point of the codomain has at least

one point of the domain that maps onto it. They are also called
onto functions.

Injective: A function is injective if every point of the codomain has at most
one point in the domain that maps onto it. They are also called
one-to-one functions.

Bijective: A function is bijective if it is injective and surjective.
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Classification of functions

Example
Here we have some examples of the classification of functions applied to linear
transformations
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Classification of functions

Example

Consider T (x) = Ax with A =

1 −4 8 1
0 2 −1 3
0 0 0 5

. This is a transformation from

R4 onto R3. The columns of A a1, a2, and a4 are linearly independent and span
R3 (that is, the function is surjective). Therefore, there must be points in R3 that
come from several points in R4 (the function is not injective). Let us find some of
these points. 1 −4 8 1 y1

0 2 −1 3 y2
0 0 0 5 y3

 ∼
 1 0 6 0 y1 − 2y2 − 4

5y3
0 1 − 1

2 0 1
2y2 − 3

10y3
0 0 0 1 1

5y3

⇒
x1 = y1 − 2y2 − 4

5y3 − 6x3
x2 = 1

2y2 − 3
10y3 +

1
2x3

x4 = 1
5y3

Since x3 is a free variable, we have that for each point in the codomain, there is a
straight line that maps onto it (the equation of the line is the one given above).
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Classification of functions

Theorem 9.1
Let T (x) be a linear transformation. T (x) is an injective function iff T (x) = 0
has only the trivial solution x = 0.
Proof

Proof ⇒
If T is injective, then, by definition, every point of the codomain, in
particular 0 is the mapping of at most one point in the domain. We
already know that for any linear transformation T (0) = 0, therefore,
x = 0 must be the unique solution of the equation T (x) = 0.
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Classification of functions

Proof ⇐
For any linear transformation we know that T (0) = 0. Let us assume
that the statement is false, that is T (x) = 0 has only the trivial solution,
but T is not injective. IF T is not injective there exist a point y in the
codomain that is the image of two points in the domain

T (x1) = y
T (x2) = y

If we know subtract the two equations we have

T (x1)− T (x2) = 0
T (x1 − x2) = 0 T is linear
x1 − x2 = 0 There is only one solution of T (x) = 0
x1 = x2 contradiction (q.e.d.)
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Classification of functions

Theorem 9.2
Let T (x) = Ax be a linear transformation. Then:

1 Range(T ) = Rm iff Span(a1, a2, ..., an) = Rm.
2 T is injective iff all columns of A are linearly independent.

Proof
1 According to Theorem 3.2, the columns of A span Rm if for each b ∈ Rm, the

equation Ax = b is consistent, that is, if there exists at least one solution of
T (x) = b. If this is true, then Range(T ) = Rm.

2 According to Theorem 9.1, T is injective iff T (x) = 0 has only the trivial
solution, or what is the same iff Ax = 0 has only the trivial solution. This
happens only if the columns of A are linearly independent as stated by
Theorem 6.1.
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Classification of functions

Example

Let T (x) =

 3x1 + x2
5x1 + 7x2
x1 + 3x2

:

1 Show that it is a linear transformation
2 Does it map R2 onto R3?

Solution

1 The transformation is of the form T (x) = Ax with A =

3 1
5 7
1 3

 and,

therefore, the transformation is linear.
2 The columns of A are linearly independent (because they are not multiples of

each other), then, by the previous theorem, the transformation is injective.
However, they do not span all R3 (since they are only two vectors and for
spanning all R3 we need at least 3 vectors). Consequently, the transformation
is not surjective, and it does not map R2 onto R3.
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Exercises

Exercises
From Lay (4th ed.), Chapter 1, Section 9:

1.9.1
1.9.3
1.9.17
1.9.33
1.9.36
1.9.37
1.9.39
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More applications

Construction of a diet
Given the following nutritional information:

What is the amount of nonfat milk, soy flour and whey needed to provide the
protein carbohydrate and fat planned for one day?
Solution 36 51 13 33

52 34 74 45
0 7 11 3

 ∼
 1 0 0 0.277

0 1 0 0.392
0 0 1 0.233


That is, we need x1 = 0.277 · 100g= 277g of non-fat milk, x2 = 392g of soy flour
and x3 = 233 g of whey.
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More applications

Dynamic systems: difference equations
In a simplistic model red blood cells (erythrocytes) are created in the bone
marrow, then some of them pass to the blood. After some time, old red blood
cells are destroyed in the spleen (bazo).
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More applications

Dynamic systems: difference equations (continued)
Let’s say that at every time interval:

5% of the erythrocytes in the marrow leave to the blood stream.
2% of the erythrocytes in the blood stream are destroyed by the spleen.
1M new red blood cells are created at the marrow.

The following equation can be used to determine the amount of erythrocytes at
any moment (

x (k+1)
marrow

x (k+1)
blood

)
=

(
0.95 0
0.05 0.98

)(
x (k)

marrow

x (k)
blood

)
+

(
106

0

)
This kind of models is called difference equations.
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