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A little bit of history

Matrices appeared as a regular arrangement of numbers more than 2,000 years
ago. However, it was during the XVIIth, XVIIIth and XIXth centuries that they
developed in the way we know them now. Some important names in their modern
development are Seki Takakazu (1683), Gottfried Leibniz (1693), Gabriel Cramer
(1750), James Sylvester (1850), and Arthur Cayley (1858). They were applied in
all kind of mathematical problems as a way to organize calculations.

To know more about the history of matrix algebra visit
http://www-groups.dcs.st-and.ac.uk/~history/PrintHT/Matrices_
and_determinants.html

3. Matrix algebra December 3, 2013 4 / 114

https://en.wikipedia.org/wiki/Seki_Takakazu
http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
http://en.wikipedia.org/wiki/Gabriel_Cramer
http://en.wikipedia.org/wiki/James_Joseph_Sylvester
http://en.wikipedia.org/wiki/Arthur_Cayley
http://www-groups.dcs.st-and.ac.uk/~history/PrintHT/Matrices_and_determinants.html
http://www-groups.dcs.st-and.ac.uk/~history/PrintHT/Matrices_and_determinants.html


Applications

Finite elements has been one of the most successful approaches to
biomechanical modeling. In the figure we show one of such a model for the heart.
Using this model, all kind of local stresses can be calculated.

J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, M. Ganter. Banded Matrix Approach to Finite Element Modeling for Soft Tissue Simulation.
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Basic definitions

Definition 1.1 (Matrix)
Informally, we can define a matrix as a regular arrangement of numbers that are
laid out in a grid of m rows and n columns. More formally, we say that
A ∈Mm×n. We denote as aj as its j-th column, and aij the element in the i-th
row and the j-th column.

A =
(
a1 a2 ... an

)
=


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn


The main diagonal is the vector given by (a11, a22, ...). Two important special
matrices are the identity matrix (I ∈Mn×n) that is zero everywhere except the
main diagonal that is full of 1s; and the zero matrix (0 ∈Mm×n) that is zero
everywhere.

Example
MATLAB: A=[1 2 3; 4 5 6]
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Matrix operations

Definition 1.2 (Sum with a scalar)
We define the sum operator between a scalar and a matrix as:

+ : R×Mm×n → Mm×n
+(k,A) → B = k + A |bij = k + aij

We overload the notation to define the sum operator between a matrix and a
scalar as

+ : Mm×n × R → Mm×n
+(A, k) → B = A + k |bij = aij + k

Example

A =

(
1 2 3
−1 −2 −3

)
B = 1 + A =

(
2 3 4
0 −1 −2

)
MATLAB: B=1+A

Properties
k + A = A + k

(k1 + k2) + A = k1 + (k2 + A)
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Matrix operations

Definition 1.3 (Multiplication with a scalar)
We define the multiplication operator between a scalar and a matrix as:

· : R×Mm×n → Mm×n
·(k,A) → B = k + A |bij = kaij

We overload the notation to define the multiplication operator between a
matrix and a scalar as

· : Mm×n × R → Mm×n
·(A, k) → B = Ak |bij = aijk

Example

A =

(
1 2 3
−1 −2 −3

)
B = 2A =

(
2 4 6
−2 −4 −6

)
MATLAB: B=2*A

Properties
kA = Ak

(k1k2)A = k1(k2A)
(k1 + k2)A = k1A + k2A
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Matrix operations

Definition 1.4 (Sum of two matrices)
We define the sum operator between two matrices as:

+ : Mm×n ×Mm×n → Mm×n
+(A,B) → C = A + B |cij = aij + bij

Example

A =

(
1 2 3
−1 −2 −3

)
B =

(
4 5 6
0 1 1

)
C = A + B =

(
5 7 9
−1 −1 −2

)
MATLAB: C=A+B

Properties
A + B = B + A

A + (B + C) = (A + B) + C
A + 0 = A

k(A + B) = kA + kB
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Matrix operations

Proof of the properties
We are not proving all properties, although all of them follow the same strategy.
Let’s see an example

k(A + B) = kA + kB

Proof
Let us develop the left hand side

C = A + B cij = aij + bij
D = kC = k(A + B) dij = kcij = k(aij + bij) = kaij + kbij

Now, the right hand side

E = kA eij = kaij
F = kB fij = kbij

G = E + F = kA + kB gij = eij + fij = kaij + kbij

It is obvious that dij = gij , and consequently k(A + B) = kA + kB. (q.e.d.)
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Matrix operations

Definition 1.5 (Multiplication of two matrices)
We define the multiplication operator between two matrices as:

· : Mm×n ×Mn×p → Mm×p

·(A,B) → C = AB |cij =
n∑

k=1
aikbkj

If we consider the different columns of B, then we have

B =
(
b1 b2 ... bp

)
⇒ AB =

(
Ab1 Ab2 ... Abp

)
That can be interpreted as “the j-th column of AB is a weighted sum of the
columns of matrix A using the weights defined by the j-th column of B”.

Example
MATLAB: A*B
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Matrix operations

Example

Let A =

(
2 3
1 −5

)
and B =

(
4 3 6
1 −2 3

)
. Then,

Ab1 =

(
2 3
1 −5

)(
4
1

)
=

(
11
−1

)
Ab2 =

(
2 3
1 −5

)(
3
−2

)
=

(
0
13

)
Ab3 =

(
2 3
1 −5

)(
6
3

)
=

(
21
−9

)
AB =

(
Ab1 Ab2 Ab3

)
=

(
11 0 21
−1 13 −9

)
To directly compute a specific entry, for instance, (AB)23 we have to multiply the
2nd row of A and the third column of B

(AB)23 =

[(
2 3
1 −5

)(
4 3 6
1 −2 3

)]
= 1 · 6 + (−5) · 3 = −9
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Matrix operations

Geometrical interpretation
Consider the linear transformations

TA(x) = Ax
TB(x) = Bx

that map any input vector using the matrix A or B, respectively. Now consider the
sequential application of first TB , and then TA, as shown in the following figure:

Matrix multiplication helps us to define a single transformation such that we can
transform the original vectors in a single step:

TAB(x) = (AB)x = A(Bx) = TA(TB(x))
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Matrix operations

Property
rowi (AB) = rowi (A)B

Example (continued)

row1(AB) = row1(A)B =
(
2 3

)(4 3 6
1 −2 3

)
=
(
11 0 21

)
More properties

A(BC) = (AB)C Associativity
A(B + C) = AB + AC Left distributivity
(A + B)C = AC + BC Right distributivity
r(AB) = (rA)B = A(rB) For any scalar r

ImA = A = AIn For A ∈Mm×n
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Matrix operations

Proof A(BC) = (AB)C
Let us consider the column decomposition of matrix C .

C =
(
c1 c2 ... cp

)
⇒

BC =
(
Bc1 Bc2 ... Bcp

)
⇒

A(BC) =
(
A(Bc1) A(Bc2) ... A(Bcp)

)
But we have seen in the geometrical interpretation of matrix multiplication that
A(Bci ) = (AB)ci , therefore

A(BC) =
(
(AB)c1 (AB)c2 ... (AB)cp

)
= (AB)C

Warnings
AB 6= BA, matrix multiplication is not commutative.
AB = AC ; B = C .
AB = 0 ; B = 0 or C = 0.
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Matrix operations

Definition 1.6 (Power of a matrix)
If A ∈Mn×n, then the k-th power of the matrix is defined as

Ak = A · A · ... · A︸ ︷︷ ︸
k times

Note: A0 = In

Example
MATLAB: Aˆk
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Matrix operations

Definition 1.7 (Transpose)
If A ∈Mm×n, then the transpose of A (AT ) is a matrix inMn×m such that the
rows of A are the columns of AT , or more formally

(AT )ij = Aji

Example

A =

(
1 2 3
4 5 6

)
⇒ AT =

1 4
2 5
3 6


MATLAB: A’

Properties
(AT )T = A

(A + B)T = AT + BT

(rA)T = rAT

(AB)T = BTAT
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Matrix operations

Proof (AB)T = BTAT

Let A ∈Mm×n and B ∈Mn×p By the definition of matrix multiplication we
know that

(AB)ij =
n∑

k=1
aikbkj

Let B′ = BT and A′ = AT . For the same reason

(BTAT )ij = (B′A′)ij =
n∑

k=1
b′ika′kj

But b′ik = bki and a′kj = ajk , consequently

(BTAT )ij =
n∑

k=1
bkiajk =

n∑
k=1

ajkbki = (AB)ji

or what is the same

BTAT = (AB)T
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 1:

2.1.3
2.1.10
2.1.12
2.1.18
2.1.19
2.1.20
2.1.22

2.1.23
2.1.24
2.1.25
2.1.26
2.1.27
2.1.39 (bring computer)
2.1.40 (bring computer)
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Matrix inverse

Example
The inverse of a number is a clear concept

5 1
5 = 5 · 5−1 = 1 = 5−1 · 5

Definition 2.1 (Inverse of a matrix)
A matrix A ∈Mn×n is invertible (or non-singular) if there exists another matrix
C ∈Mn×n such that AC = In = CA. C is called the inverse of A and it is denoted
as A−1. If A is not invertible, it is said to be singular. (MATLAB: inv(A))

Properties
The inverse of a matrix is unique.
Proof
Let us assume that there exist two different inverses C1 and C2. Then,

C2 = C2I = C2(AC1) = (C2A)C1 = IC1 = C1

which is a contradiction and, therefore, the inverse must be unique. (q.e.d.)
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Matrix inverse

Example

Let A =

(
2 5
−3 −7

)
and A−1 =

(
−7 −5
3 2

)
It can easily be verified that

AA−1 = A−1A = I2 =

(
1 0
0 1

)

Theorem 2.1 (Inverse of a 2× 2 matrix)

Let A =

(
a b
c d

)
. If ad − bc 6= 0, then A is invertible and its inverse is

A−1 = 1
ad−bc

(
d −b
−c a

)
Proof
It is easy to verify that AA−1 = A−1A = I2.
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Matrix inverse

Theorem 2.2
If A ∈Mn×n is invertible, then for every b ∈ Rn, the equation Ax = b has a
unique solution that is x = A−1b.
Proof

Proof x = A−1b is a solution
If we substitute the solution in the equation we have

Ax = A(A−1b) = (AA−1)b = b (q.e.d.)

Proof x = A−1b is the unique solution
Let us assume that x′ 6= x is also a solution, then

Ax′ = b

If we multiply on the left by A−1, we have

A−1Ax′ = A−1b⇒ x′ = x

which is obviously a contradiction and, therefore, x = A−1b must be the
unique solution. (q.e.d.)
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Matrix inverse

Example
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Matrix inverse

Example (continued)

Consider the equation y = Df, D =

1 1
2

1
41

2 1 1
21

4
1
2 1

 and the fact that

D = DI =
(
De1 De2 De3

)
Therefore, the i-th column of D can be interpreted as the deflection at the
different points when a unit force (ei) is applied onto the i-th point. In our
example when we apply a unit force at point 1, the first column of D is (1, 1

2 ,
1
4 )

meaning that the first point displaces 1 m., the second point 1
2 m., and the third

point 1
4 m.
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Matrix inverse

Example (continued)

If we now consider that f = D−1y, D−1 =

 4
3 − 2

3 0
− 2

3
4
3 − 2

3
0 − 2

3
4
3

 and the fact that

D−1 = D−1I =
(
D−1e1 D−1e2 D−1e3

)
Therefore, the i-th column of D−1 can be interpreted as the forces needed to be
applied at the different points to produce a unit deformation (ei) at the i-th
point. In our example, to produce a displacement of 1 m. in the first point and
none at the other points (e1 = (1, 0, 0), we need to push point 1 with a force of 4

3
N., to pull point 2 with a force of − 2

3 N., and we do not need to apply any force
at point 3.
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Matrix inverse

Theorem 2.3
1 If A is invertible, then A−1 is also invertible and its inverse is A.
2 If A and B are invertible, then AB is also invertible and its inverse is B−1A−1

3 If A is invertible, then AT is also invertible and its inverse is (A−1)T .
Proof 1)
The definition of A−1 is that it is a matrix such that

AA−1 = A−1A = I

The inverse of A−1 must be a matrix C such that

CA−1 = A−1C = I

If we compare this equation with the previous one, we easily see that C = A is the
inverse of A−1.
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Matrix inverse

Proof 2)
Let us check that B−1A−1 is actually the inverse of AB

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Proof 3)
Let us check that (A−1)T is actually the inverse of AT

AT (A−1)T = [(AB)T = BTAT ] = (A−1A)T = IT = I
(A−1)TAT = [(AB)T = BTAT ] = (AA−1)T = IT = I

Theorem 2.4
We may generalize the previous theorem and state that

(A1A2...Ap)−1 = A−1
p A−1

p−1...A
−1
2 A−1

1
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Matrix inverse

Proof
Let’s prove it by weak induction. That is, we know that the statement is true for
p = 2 (by the previous theorem). Let us assume it is true for p − 1, that is

(A1A2...Ap−1)−1 = A−1
p−1...A

−1
2 A−1

1

We wonder if it is also true for p. Let us define B = A1A2...Ap−1. Then, we can
rewrite the left hand side of the theorem as

(A1A2...Ap)−1 = (BAp)−1

This is the inverse of the multiplication of two matrices. We know by the previous
theorem that (BAp)−1 = A−1

p B−1 But we presumed that

B−1 = (A1A2...Ap−1)−1 = A−1
p−1...A

−1
2 A−1

1

And consequently

(BAp)−1 = A−1
p A−1

p−1...A
−1
2 A−1

1 (q.e.d.)
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Elementary matrices

The elementary operations we can perform on the rows of a matrix are
1 Multiply by a scalar
2 Swap two rows
3 Replace a row by a linear combination of two or several rows

All these operations can be represented as matrix multiplications.

Example

Consider the matrix A =

a b c
d e f
g h i


1 We can multiply the third row by a scalar r by multiplying on the left by the

matrix

E1 =

1 0 0
0 1 0
0 0 r

⇒ E1A =

 a b c
d e f
rg rh ri


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Elementary matrices

Example (continued)
2 We can swap the first and second rows of the matrix by multiplying on the

left by the matrix

E2 =

0 1 0
1 0 0
0 0 1

⇒ E2A =

d e f
a b c
g h i


3 We can substitute the third row by r3 + k1r1 by multiplying on the left by the

matrix

E3 =

 1 0 0
0 1 0
k1 0 1

⇒ E3A =

 a b c
d e f

g + k1a h + k1b i + k1c


Definition 3.1 (Elementary matrix)
An elementary matrix is one that differs from the identity matrix by one single,
elementary row operation.
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Elementary matrices

Theorem 3.1
The inverse of an elementary matrix is another elementary matrix of the same
type. That is, row operations can be undone.

Example (continued)

1 E−1
1 =

1 0 0
0 1 0
0 0 1

r


2 E−1

2 =

0 1 0
1 0 0
0 0 1


3 E−1

3 =

 1 0 0
0 1 0
−k1 0 1

 MATLAB:
syms k1
E3=[1 0 0; 0 1 0; k1 0 1];
inv(E3)
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Elementary matrices

Theorem 3.2
A matrix A ∈Mn×n is invertible iff it is row-equivalent to In. In this case, the
sequence of operations that transforms A into In is also the one that transforms In
into A−1.

Proof ⇒
If A is invertible, then by theorem 2.2 we know that the equation system
Ax = b has a unique solution for every b. If it has a solution for every
b, then it must have a pivot in every row, that must be in the diagonal
and, consequently the reduced echelon form of A must be In.
Proof ⇐
If A is row-equivalent In, then there exists a sequence of elementary
matrices that transform A into In

A ∼ E1A ∼ E2E1A ∼ ... ∼ EnEn−1...E2E1A = In

E = EnEn−1...E2E1 is a candidate to be the inverse of A. Since each
of the elementary matrices is invertible, and the product of invertible
matrices is invertible, then E is invertible and A must be its (unique)
inverse. Conversely, E is the inverse of A and A is invertible.
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An algorithm to invert matrices

Algorithm
Algorithm: Reduce the augmented matrix

(
A I

)
If A is invertible, then

(
A I

)
∼
(
I A−1 ).

If A is not invertible, then we will not be able to reduce A into I.
This algorithm is very much used in practice because it is numerically stable and
rather efficient.

Example

Let A =

 0 1 2
1 0 3
4 −3 8

.

We construct the augmented matrix 0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1


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An algorithm to invert matrices

Example (continued)
And now we transform it  0 1 2 1 0 0

1 0 3 0 1 0
4 −3 8 0 0 1


r1 ↔ r2

 1 0 3 0 1 0
0 1 2 1 0 0
4 −3 8 0 0 1


r3 ← r3 − 4r1

 1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1


r3 ← r3 + 3r2

 1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1


r3 ← 1

2 r3

 1 0 3 0 1 0
0 1 2 1 0 0
0 0 1 3

2 −2 1
2


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An algorithm to invert matrices

Example (continued)  1 0 3 0 1 0
0 1 2 1 0 0
0 0 1 3

2 −2 1
2


r2 ← r2 − 2r3

 1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 1 3

2 −2 1
2


r1 ← r1 − 3r3

 1 0 0 − 9
2 7 − 3

2
0 1 0 −2 4 −1
0 0 1 3

2 −2 1
2


Since A is row-equivalent to I3, then A is invertible and its inverse is

A−1 =

− 9
2 7 − 3

2
−2 4 −1

3
2 −2 1

2

. To finalize the exercise we should check that

AA−1 = A−1A = I3
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An algorithm to invert matrices

A new interpretation of matrix inversion
By constructing the augmented matrix

(
A I

)
we are simultaneously solving

multiple equation systems

Ax = e1 Ax = e2 Ax = e3 ...

Example (continued) 0 1 2 1
1 0 3 0
4 −3 8 0

  0 1 2 0
1 0 3 1
4 −3 8 0

  0 1 2 0
1 0 3 0
4 −3 8 1


This note is important because if we want to compute only the i-th column of
A−1 it is enough to solve the equation system

Ax = ei
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 2:

2.2.7
2.2.11
2.2.13
2.2.17
2.2.19
2.2.21
2.2.25
2.2.36
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Characterization of invertible matrices

Theorem 5.1 (The invertible matrix theorem)
Let A ∈Mn×n. The following statements are equivalent (either they are all true
or they are all false):
i. A is invertible.
ii. A is row-equivalent to In.
iii. A has n pivot positions.
iv. Ax = 0 only has the trivial solution x = 0.
v. The columns of A are linearly independent.
vi. The transformation T (x) = Ax is injective.
vii. The equation Ax = b has at least one solution for every b ∈ Rn.
viii. The columns of A span Rn.
ix. The transformation T (x) = Ax maps Rn onto Rn.
x. There exists a matrix C ∈Mn×n such that CA = In.
xi. There exists a matrix D ∈Mn×n such that AD = In.
xii. AT is an invertible matrix
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Characterization of invertible matrices

To prove the theorem we will follow the reasoning scheme below:

Proof i ⇒ x
If i is true, then x is true simply by doing C = A−1.
Proof x ⇒ iv
See Exercise 2.1.23 in Lay.
Proof iv ⇒ iii
See Exercise 2.2.23 in Lay.
Proof iii ⇒ ii
If iii is true, then the n pivots have to be in the main diagonal and in this case,
the reduced echelon form must be In.
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Characterization of invertible matrices

Proof ii ⇒ i
If ii is true, then i is true thanks to Theorem 3.2.
Proof i ⇒ xi
If i is true, then xi is true simply by doing D = A−1.
Proof xi ⇒ vii
See Exercise 2.1.24 in Lay.
Proof vii ⇒ i
See Exercise 2.2.24 in Lay.
Proof vii ⇔ viii ⇔ ix
See Theorems 3.2 and 8.2 in Chapter 2.
Proof iv ⇔ v ⇔ vi
See Theorems 3.2, 5.1 and 8.1 in Chapter 2.
Proof i ⇒ xii
See Theorem 2.3.
Proof i ⇐ xii
See Theorem 2.3 interchanging the roles of A and AT .

The power of this theorem is that it connects equation systems to invertibility,
linear independence and subspace bases.
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Characterization of invertible matrices

Corollary
1 If A is invertible, then Ax = b has a unique solution for every b ∈ Rn.
2 If A,B ∈Mn×n and AB = In, then A and B are invertible and B = A−1 and

A = B−1.
Watch out that this corollary only applies to square matrices.
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Invertible linear transformations
Consider the linear transformation

T : Rn → Rn

x → Ax

Definition 6.1 (Inverse transformation)
T is invertible iff there exists S : Rn → Rn such that ∀x ∈ Rn:

S(T (x)) = x = T (S(x))

Example

T (x) =

(
−1 0
0 1

)
x is invertible and its inverse is S(x) =

(
−1 0
0 1

)
x.

Proof

S(T (x)) = S
((
−1 0
0 1

)
x
)

=

(
−1 0
0 1

)(
−1 0
0 1

)
x = x

T (S(x)) = T
((
−1 0
0 1

)
x
)

=

(
−1 0
0 1

)(
−1 0
0 1

)
x = x
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Invertible linear transformations

Example

T (x) =

(
1 0
0 0

)
x is not invertible because T ((1, 0)) = T ((1, 1)) = (1, 0), so

given the “output” (1,0), we cannot recover the input vector that originated this
output.

Theorem 6.1
If T is invertible, then it is surjective.
Proof
Consider any vector b ∈ Rn, we can always apply the transformation S to get a
new vector x = S(b). And then, recover b making use of the fact that T is the
inverse of S, that is, b = T (x). In other words, any vector b is in the range of T
and, therefore, T is surjective.
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Invertible linear transformations

Theorem 6.2
T is invertible iff A is invertible. If T is invertible, then the only function that
satisfies the previous definition is

S(x) = A−1x

Proof ⇒
If T is invertible, then it is surjective (see previous Theorem). Then, A is
invertible by Theorem 5.1 (items i and ix).
Proof ⇐
If A is invertible, then we may construct the linear transformation S = A−1x. S is
an inverse of T since

S(T (x)) = S(Ax) = A−1(Ax) = (A−1A)x = x
T (S(x)) = T (A−1x) = A(A−1x) = (AA−1)x = x
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Invertible linear transformations

Proof uniqueness
Let us assume that there are two inverses S1(x) = B1x and S2(x) = B2x with
B1 6= B2. Let v ∈ Rn and v = T (x) for some x ∈ Rn (since T is invertible and,
therefore, surjective, we are guaranteed that there exists at least one such x). Now

S1(v) = B1Ax = x = B1v
S2(v) = B2Ax = x = B2v

}
⇒ B1v = B2v [∀v ∈ Rn] ⇒ B1 = B2

which is a contradiction and, consequently, there exists only one inverse (q.e.d.)

Definition 6.2 (Ill-conditioned matrix)
Informally, we say that a matrix A is ill-conditioned if it is “nearly singular”. In
practice, this implies that the equation system Ax = b may have large variations
in the solution (x) when b varies slightly.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 3:

2.3.13
2.3.16
2.3.17
2.3.33
2.3.41
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Partitioned matrices
Partitioned matrices sometimes help us to gain insight into the structure of the
problem by identifying blocks within the matrix.

Example

A =

 3 0 −1 5 9 −2
−5 2 4 0 −3 1
−8 −6 3 1 7 −4

 =

(
A11 A12 A13
A21 A22 A23

)

A ∈M3×6,
A11 ∈M2×3, A12 ∈M2×2, A13 ∈M2×1,
A21 ∈M1×3, A22 ∈M1×2, A23 ∈M1×1.
MATLAB:
A=[3 0 -1 5 9 -2; -5 2 4 0 -3 1; -8 -6 3 1 7 -4];
A11=A(1:2,1:3)
A12=A(1:2,4:5)
A13=A(1:2,6)
A21=A(3,1:3)
A22=A(3,4:5)
A23=A(3,6)
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Partitioned matrices

Definition 7.1 (Sum of partitioned matrices)
Let A and B be two matrices partitioned in the same way. Then the blocks of
A + B are simply the sum of the corresponding blocks.

A + B =

 Aij

+

 Bij

 =

 Aij + Bij


Definition 7.2 (Multiplication by scalar)
The multiplication by a scalar simply multiplies each one of the blocks
independently

rA = r

 Aij

 =

 rAij


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Partitioned matrices

Definition 7.3 (Multiplication of partitioned matrices)
Multiply the different block as if they were scalars (but applying matrix
multiplication).

Example

Let A =

 2 −3 1 0 −4
1 5 −2 3 −1
0 −4 −2 7 −1

 =

(
A11 A12
A21 A22

)

and B =


6 4
−2 1
−3 7
−1 3
5 2

 =

(
B1
B2

)
.

Then, AB =

(
A11 A12
A21 A22

)(
B1
B2

)
=

(
A11B1 + A12B2
A21B1 + A22B2

)
=

 −5 4
−6 2
2 1


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Partitioned matrices

Theorem 7.1 (Multiplication of matrices)
Let A ∈Mm×n and B ∈Mn×p, then

AB =
n∑

k=1
columnk(A)rowk(B)

Proof
Let us analyze each one of the terms in the sum

columnk(A)rowk(B) =


a1k
a2k
...
amk

(bk1 bk2 ... bkp
)

=


a1kbk1 a1kbk2 ... a1kbkp
a2kbk1 a2kbk2 ... a2kbkp
... ... ... ...

amkbk1 amkbk2 ... amkbkp


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Partitioned matrices

In general, the ij-th term is

(columnk(A)rowk(B))ij = aikbkj

If we now analyze the ij-th element of the sum( n∑
k=1

columnk(A)rowk(B)

)
ij

=
n∑

k=1
(columnk(A)rowk(B))ij =

n∑
k=1

aikbkj

But this is the definition of matrix multiplication and, therefore,( n∑
k=1

columnk(A)rowk(B)

)
ij

= (AB)ij (q.e.d.)
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Partitioned matrices

Definition 7.4 (Transpose of partitioned matrices)
Transpose the partitioned matrix as if it were composed of scalars, and transpose
each one of the blocks.

Example

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

⇒ AT =

 AT
11 AT

21 AT
31

AT
12 AT

22 AT
32

AT
13 AT

23 AT
33


Example

A =

 2 −3 1 0 −4
1 5 −2 3 −1
0 −4 −2 7 −1

⇒ AT =


2 1 0
−3 5 −4
1 −2 −2
0 3 7
−4 −1 −1


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Partitioned matrices

Definition 7.5 (Inverse of partitioned matrices)
The formula for each one of the cases is worked out particularly for that case.
Here go a couple of examples.

Example

Let A =

 A11 0 0
0 A22 0
0 0 A33

.

A ∈Mn×n, A11 ∈Mp×p, A22 ∈Mq×q, A33 ∈Mr×r such that p + q + r = n.
We look for a matrix B such that A11 0 0

0 A22 0
0 0 A33

 B11 B12 B13
B21 B22 B23
B31 B32 B33

 =

 Ip 0 0
0 Iq 0
0 0 Ir

⇒ A11B11 A11B12 A11B13
A22B21 A22B22 A22B23
A33B31 A33B32 A33B33

 =

 Ip 0 0
0 Iq 0
0 0 Ir


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Partitioned matrices

Example (continued)
For each one of the entries we have a set of equations:

∀A11 ∈Mp×p A11B11 = Ip ⇒ B11 = A−1
11

∀A11 ∈Mp×p A11B12 = 0⇒ B12 = 0
∀A11 ∈Mp×p A11B13 = 0⇒ B13 = 0
∀A22 ∈Mq×q A22B21 = 0⇒ B21 = 0
∀A22 ∈Mq×q A22B22 = Iq ⇒ B22 = A−1

22
∀A22 ∈Mq×q A22B23 = 0⇒ B23 = 0
∀A33 ∈Mr×r A33B31 = 0⇒ B31 = 0
∀A33 ∈Mr×r A33B32 = 0⇒ B32 = 0
∀A33 ∈Mr×r A33B33 = Ir ⇒ B33 = A−1

33

Finally,

B =

 A−1
11 0 0
0 A−1

22 0
0 0 A−1

33


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Partitioned matrices

Example

Let A =

(
A11 A12
0 A22

)
.

A ∈Mn×n, A11 ∈Mp×p, A12 ∈Mp×q, A22 ∈Mq×q such that p + q = n.
We look for a matrix B such that

=

(
A11 A12
0 A22

)(
B11 B12
B21 B22

)
=

(
Ip 0
0 Iq

)
⇒(

A11B11 + A12B21 A11B12 + A12B22
A22B21 A22B22

)
=

(
Ip 0
0 Iq

)
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Partitioned matrices

Example (continued)
For each one of the entries we have a set of equations:

∀A22 ∈Mq×q A22B21 = 0⇒ B21 = 0
∀A22 ∈Mq×q A22B22 = Iq ⇒ B22 = A−1

22
∀A11 ∈Mq×q,A12 ∈Mp×q A11B11 + A12B21 = Ip ⇒ [B21 = 0]⇒

A11B11 = Ip ⇒ B11 = A−1
11

∀A11 ∈Mq×q,A12 ∈Mp×q A11B12 + A12B22 = 0⇒ [B22 = A−1
22 ]⇒

A11B12 + A12A−1
22 = 0⇒ A11B12 = −A12A−1

22 ⇒
B12 = −A−1

11 A12A−1
22

Finally,

B =

(
A−1

11 −A−1
11 A12A−1

22
0 A−1

22

)
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Partitioned matrices

Example
Computational Tomography (CT) with multiple rows gives a non-block structure
for the system matrix that forces the problem to be solved in 3D. However, with a
single row detector, the system matrix has a block structure so that the problem
can be solved as a series of 2D problems strongly accelerating the process (on the
other side the redundancy introduced by multiple row offers better resolution and
robustness to noise).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 4:

2.4.15
2.4.16
2.4.18
2.4.19
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LU factorization

Example
Let us presume that we have a collection of equation systems

Ax = b1
Ax = b2

...

and A is not invertible, which could be an efficient way of solving all of them
together? Factorize A as A = LU (see below) and solve the equation system in
two steps. In fact the method is so efficient it is even used to solve a single
equation system.
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LU factorization

Definition 8.1 (LU factorization)
Let A ∈Mm×n that can be reduced to a reduced echelon form without row
permutations. We can factorize A as A = LU, where L is an invertible, lower
triangular matrix (with 1s in the main diagonal) of size m ×m and U is an upper
triangular matrix of size m × n.
MATLAB: [L,U]=lu(A)

Example
Let A ∈M4×5. LU factorization will produce two matrices L and U may be of the
following structure

A = LU =


1 0 0 0
♥ 1 0 0
♥ ♥ 1 0
♥ ♥ ♥ 1



♦ ♥ ♥ ♥ ♥
0 ♦ ♥ ♥ ♥
0 0 0 ♦ ♥
0 0 0 0 0


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LU factorization

Solving a linear equation system using the LU decomposition
Consider the equation system Ax = b, and assume we have decomposed A as
A = LU. Then, we can solve the equation system in two steps:

Ax = b⇒ (LU)x = L(Ux) = b⇒
{

Ly = b
Ux = y
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LU factorization

Example
Consider

A =

(
3 −7 −2 2
−3 5 1 0

6 −4 0 −5
−9 5 −5 12

)
=

(
1 0 0 0
−1 1 0 0

2 −5 1 0
−3 8 3 1

)(
3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1

)
and b = (−9, 5, 7, 11). We first solve Ly = b(

1 0 0 0 −9
−1 1 0 0 5

2 −5 1 0 7
−3 8 3 1 11

)
∼

(
1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 0 1 1

)
and now we solve Ux = y(

3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1

)
∼

(
1 0 0 0 3
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1

)
The trick is that, thanks to the triangular structure, solving these two equation
systems is rather fast.
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An algorithm to simple LU factorizations

Algorithm
Let us assume that A is row-equivalent to U only using row replacement only with
the rows above the replaced row. Then, there must be a sequence of elementary
matrices such that

A ∼ U ⇒ Ep...E2E1A = U ⇒ A = (Ep...E2E1)−1U

By inspection, we note that L = (Ep...E2E1)−1.

In the previous algorithm we are making using of the following theorem:

Theorem 8.1
1 The product of two lower triangular matrices is lower triangular.
2 The inverse of a lower triangular matrix is lower triangular.

3. Matrix algebra December 3, 2013 71 / 114



An algorithm to simple LU factorizations

Example

A =

2 1 0
1 2 1
0 1 2


r2 ← r2 − 1

2 r1 E1 =

 1 0 0
− 1

2 1 0
0 0 1

 2 1 0
0 3

2 1
0 1 2


r3 ← r3 − 2

3 r2 E2 =

1 0 0
0 1 0
0 − 2

3 1

 U =

2 1 0
0 3

2 1
0 0 4

3


Now, we calculate L as

L = (E2E1)−1 = E−1
1 E−1

2 =

1 0 0
1
2 1 0
0 0 1

1 0 0
0 1 0
0 2

3 1

 =

1 0 0
1
2 1 0
0 2

3 1


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An algorithm to simple LU factorizations

Example

A =

2 1 0
1 2 1
0 1 2


r2 ← r2 − 1

2 r1 E1 =

 1 0 0
− 1

2 1 0
0 0 1

 2 1 0
0 3

2 1
0 1 2


r3 ← r3 − 2

3 r2 E2 =

1 0 0
0 1 0
0 − 2

3 1

 U =

2 1 0
0 3

2 1
0 0 4

3


Now, we calculate L as

L = (E2E1)−1 = E−1
1 E−1

2 =

1 0 0
1
2 1 0
0 0 1

1 0 0
0 1 0
0 2

3 1

 =

1 0 0
1
2 1 0
0 2

3 1


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LDU factorization

Example (continued)
Note that the L and U matrices found so far are assymetric in the sense that L
has 1s in its main diagonal, but U has not. We can extract the elements in the
main diagonal of U to a separate matrix D by simply dividing the corresponding
row of U by that element:

A = LU =

1 0 0
1
2 1 0
0 2

3 1

2 1 0
0 3

2 1
0 0 4

3


= LDU =

1 0 0
1
2 1 0
0 2

3 1

2 0 0
0 3

2 0
0 0 4

3

1 1
2 0

0 1 2
3

0 0 1

 where D is always a

diagonal matrix.
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Other factorization examples

Other factorizations
There are many other possibilities to factorize a matrix A ∈Mm×n. See
http://en.wikipedia.org/wiki/Matrix_decomposition. Among the most
important are:

QR: A = QR where Q ∈Mm×m is orthogonal (QtQ = D) and
R ∈Mm×n is upper triangular.

SVD: A = UDV t where U ∈Mm×m is unitary (U tU = Im), D ∈Mm×n
is diagonal, and V ∈Mn×n is also unitary (V tV = In).

Spectral: A = PDP−1 (only for square matrices) where P ∈Mn×n and
D ∈Mn×n is diagonal.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 5:

2.5.9
2.5.Practice problem
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An application to computer graphics and image processing

Example
In vectorial graphics, graphics are described as a set of connected points (whose
coordinates are known).

We may produce “italic” fonts by shearing the
standard coordinates T (x) = Ax where A =(
1 0.25
0 1

)
.
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An application to computer graphics and image processing

Example
Coordinate translations can be expressed as T (x) = x + x0. But this is not a
linear transformation:

T (u) = u + x0
T (v) = v + x0

T (u + v) = u + v + x0
T (u) + T (v) = (u + x0) + (v + x0) = u + v + 2x0

T (u + v) 6= T (u) + T (v)

We can solve this problem with homogeneous coordinates.
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An application to computer graphics and image processing

Definition 9.1 (Homogeneous coordinates)
Given a point with coordinates x we can construct its homogeneous coordinates
as

x̃ =

(
hx
h

)

Or in other words, given the homogeneous coordinates ũ =

(
u
h

)
, they represent

the point at u
h . It is customary to use h = 1 (but it is not compulsory, and in

certain applications it is better to use other h’s).

Example
The 2D point (1, 2) can be represented in homogeneous coordinates as (1, 2, 1),
as (2, 4, 2) and, even, as (−2,−4,−2). They all represent the same point.
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An application to computer graphics and image processing

Example
Now, coordinate translations in homogeneous coordinates is a linear
transformation. For instance, in 2D:

T (x̃) = Ax̃ =

1 0 ∆x
0 1 ∆y
0 0 1

x
y
1

 =

x + ∆x
y + ∆y

1


2D transformations in homogeneous coordinates
In general, any 2D transformation of the form T (x) = Ax can be represented in
homogeneous coordinates as

T (x̃) =

(
A 0
0 1

)
x̃
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An application to computer graphics and image processing

Example
An application in 3D graphics:
http://www.youtube.com/watch?v=EsNmiiKlRXQ

Example
Let’s say we want to

1
Rotate a point 30◦about the Y
axis.

2 then, translate by (−6, 4, 5)
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An application to computer graphics and image processing

Example (continued)
We need to use the transformation T (x̃) = Ãx̃ with

Ã =


1 0 0 −6
0 1 0 4
0 0 1 5
0 0 0 1




cos(30◦) 0 sin(30◦) 0
0 1 0 0

− sin(30◦) 0 cos(30◦) 0
0 0 0 1


and

x̃ =


x
y
z
1


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An application to computer graphics and image processing

Example
Let’s say we want to produce perspective projections. Let’s imagine that the
screen is on the XY plane and the viewer’s eye is at (0, 0, d) (the distance to the
screen is d). Any object between the viewer and the screen is projected onto the
screen as in the figure below

By similar triangles we have

tanα = x∗
d = x

d−z ⇒ x∗ = x
1− z

d
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An application to computer graphics and image processing

Example (continued)
Similarly, y∗ = y

1− z
d
. Using homogeneous coordinates we want that (x , y , z , 1)

maps onto
(

x
1− z

d
, y

1− z
d
, 0, 1

)
, or what is the same

(
x , y , 0, 1− z

d
)
. We can achieve

this with the perspective transformation:

P̃ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 − 1

d 1


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Exercises
From Lay (3rd ed.), Chapter 2, Section 7:

2.7.2
2.7.3
2.7.10
2.7.12
2.7.22
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An algorithm to invert matrices (b)
Characterization of invertible matrices (c)
Invertible linear transformations (c)
Partitioned matrices (c)
LU factorization (d)
An application to computer graphics and image processing (d)
Subspaces of Rn (e)
Dimension and rank (e)
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Subspace

Definition 10.1 (Subspace of Rn)
H ⊆ Rn is a subspace of Rn if:

1 0 ∈ H
2 ∀u, v ∈ H u + v ∈ H (H is closed under vector addition)
3 ∀u ∈ H ∀r ∈ R ru ∈ H (H is closed under multiplication by a scalar)

Example: Special subspaces
The following two sets are subspaces of Rn:

1 H = {0}
2 H = Rn
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Subspace

Example: Plane
A plane is defined as
H = Span {v1, v2} = {v ∈ Rn|v = λ1v1 + λ2v2}
This plane is a subspace of R3

Proof

1 Proof 0 ∈ H
If λ1 = λ2 = 0, then v = 0.

2 Proof u + v ∈ H
u ∈ H ⇒ u = λ1uv1 + λ2uv2
v ∈ H ⇒ v = λ1v v1 + λ2v v2
u + v = (λ1uv1 + λ2uv2) + (λ1v v1 + λ2v v2)

= (λ1u + λ1v )v1 + (λ2u + λ2v )v2 ∈ H
3 Proof ru ∈ H

u ∈ H ⇒ u = λ1uv1 + λ2uv2
ru = r(λ1uv1 + λ2uv2)

= rλ1uv1 + rλ2uv2 ∈ H
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Subspace

Example: Line not through the origin
A line (L) that does not pass through the origin is not a subspace, because

1 0 /∈ L
2 If we take two points belonging to the line (u and v), u + v /∈ L.
3 If we take a point belonging to the line (w), 2w /∈ L.
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Subspace

Example: Line through the origin
Consider v1 and v2 = kv1. Then,

H = Span {v1, v2} = Span {v1}

is a line. It is easy to prove that this line is a subspace of Rn.
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Column space

Definition 10.2 (Column space of a matrix)
Let A ∈Mm×n. Let ai ∈ Rm be the columns of A. The column space of A is
defined as

Col{A} = Span {a1, a2, ..., an} ⊆ Rm

Theorem 10.1
Col{A} is a subspace of Rm.
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Column space

Example

Let A =

 1 −3 −4
−4 6 −2
−3 7 6

 and b =

 3
3
−4

.

Determine if b belongs to Col{A}.
Solution
If b ∈ Col{A} there must be some coefficients x1, x2 and x3 such that

b = x1a1 + x2a2 + x3a3

To find these coefficients we simply have to solve the equation system Ax = b. 1 −3 −4 3
−4 6 −2 3
−3 7 6 −4

 ∼
 1 −3 −4 3

0 −6 −18 15
0 0 0 0


In fact, there are infinite solutions to the equation system and, consequently,
b ∈ Col{A}.
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Null space

Definition 10.3 (Null space of a matrix)
Let A ∈Mm×n. The null space of A is defined as

Nul{A} = {v ∈ Rn|Av = 0}

Theorem 10.2
Nul{A} is a subspace of Rn.
Proof

1 Proof 0 ∈ Nul{A}
A0 = 0⇒ 0 ∈ Nul{A} (q.e.d.)

2 Proof u + v ∈ Nul{A}
u ∈ Nul{A} ⇒ Au = 0
v ∈ Nul{A} ⇒ Av = 0
A(u + v) = Au + Av = 0 + 0 = 0⇒ u + v ∈ Nul{A} (q.e.d.)

3 Proof ru ∈ Nul{A}
u ∈ Nul{A} ⇒ Au = 0
A(ru) = rAu = r0 = 0⇒ ru ∈ Nul{A} (q.e.d.)
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Basis of a subspace

Definition 10.4 (Basis of a subspace)
Let H ⊆ Rn. The set of vectors B is a basis of H if:

1 All vectors in B are linearly independent
2 H = Span{B}

Standard basis of Rn

Let be the vectors

e1 =


1
0
0
...
0

 e2 =


0
1
0
...
0

 e3 =


0
0
1
...
0

 ... en =


0
0
0
...
1


The set B = {e1, e2, ..., en} is the standard basis of Rn.
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Basis of a subspace

Example

Find a basis for the null space of A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

.

Solution
The null space of A are all those vectors satisfying Ax = 0.

(
A 0

)
∼

 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


So the solution of the equation system is x1 = 2x2 + x4 − 3x5

x3 = −2x4 + 2x5

}
⇒

x =


2x2 + x4 − 3x5

x2
−2x4 + 2x5

x4
x5

 = x2


2
1
0
0
0

+ x4


1
0
−2
1
0

+ x5


−3
0
2
0
1


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Null space and equation systems

Example (continued)
The set B = {(2, 1, 0, 0, 0), (1, 0,−2, 1, 0), (−3, 0, 2, 0, 1)} is a basis of Nul{A}.
By construction, we have chosen them to be linearly independent.

Example: Null space and equation systems

Consider A =

1 0 0
0 1 0
0 0 0


{e3} is a basis for Nul{A}
Consider b = (7, 3, 0). The general solution of Ax = b is of the form

x = x0 + xNul

where x0 is a solution of Ax = b that does not belong to Nul{A} and xNul
belongs to Nul{A}. In this particular case,

x = (7, 3, 0) + x3e3
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Null space and equation systems

Example: Null space and equation systems (continued)
Let us prove that the general solution is actually a solution of Ax = b

Ax = A(x0 + xNul ) = Ax0 + AxNul = b + 0 = b

Intuititively we can say that the null space is the set of all solutions for which we
have no measurements. The equation system only impose some constraints on
those coefficients for which we have measurements. This is a problem in real
situations as shown in the following slide.
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Null space and equation systems

In this example, the authors describe how the exact location of a tooth fracture is
uncertain (Fig. C) due to the artifacts introduced by the null space of the
tomographic problem.

Mora, M. A.; Mol, A.; Tyndall, D. A., Rivera, E. M. In vitro assessment of local computed tomography for the detection of longitudinal tooth fractures.

Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103, 825-829.
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Basis of a subspace

Example

Find a basis for the column space of B =


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0

.

Solution
From the columns with non-pivot positions of matrix B we learn that

b3 = −3b1 + 2b2
b4 = 5b1 − b2

Then,

Col{B} =
{

v ∈ R4|v = x1b1 + x2b2 + x3b3 + x4b4 + x5b5
}

=

{
v ∈ R4

∣∣∣∣ v = x1b1 + x2b2 + x3(−3b1 + 2b2)+
x4(5b1 − b2) + x5b5

}
=

{
v ∈ R4|v = x ′1b1 + x ′2b2 + x5b5

}
And, consequently, Basis{Col{B}} = {b1,b2,b5}
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Basis of a subspace

Example

Find a basis for the column space of A =


1 3 3 2 −9
−2 −2 2 −8 2
2 3 0 7 1
3 4 −1 11 −8

.

Solution
It turns out that A ∼ B (B in the previous example). Since row operations do not
affect linear dependence relations among the columns of the matrix, we should
have

a3 = −3a1 + 2a2
a4 = 5a1 − a2

and Basis{Col{A}} = {a1, a2, a5}

Theorem 10.3
The pivot columns of A form a basis of Col{A}}.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 1:

2.8.1
2.8.2
2.8.5
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Outline

3 Matrix algebra
Matrix operations (a)
Inverse of a matrix (b)
Elementary matrices (b)
An algorithm to invert matrices (b)
Characterization of invertible matrices (c)
Invertible linear transformations (c)
Partitioned matrices (c)
LU factorization (d)
An application to computer graphics and image processing (d)
Subspaces of Rn (e)
Dimension and rank (e)
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Coordinate system

Definition 11.1 (Coordinates of a vector in the basis B)
Suppose B = {b1,b2, ...,bp} is a basis for the subspace H ⊆ Rn. For each x ∈ H,
the coordinates of x relative to the basis B are the weights ci such that

x = c1b1 + c2b2 + ...+ cpbp

The coordinates of x with respect to the basis B is the vector in Rp

[x]B =


c1
c2
...
cp


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Coordinate system

Example
Let x = (3, 12, 7), v1 = (3, 6, 2), v2 = (−1, 0, 1), B = {v1, v2}.

1 Show that B is a linearly independent set
2 Find the coordinates of x in the coordinate system B

Solution
1 We need to prove that the only solution of the equation system

c1v1 + c2v2 = 0 is c1 = c2 = 0. 3 −1 0
6 0 0
2 1 0

 ∼
 1 0 0

0 1 0
0 0 0


And, therefore, the unique solution is c1 = c2 = 0 (q.e.d.)

2 We need to find c1 and c2 such that c1v1 + c2v2 = x 3 −1 3
6 0 12
2 1 7

 ∼
 1 0 2

0 1 3
0 0 0


And, therefore, [x]B = (2, 3).
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Coordinate system

Example (continued)
The following figure shows how x is equal to 2v1 + 3v2
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Coordinate system

Theorem 11.1
The coordinates of a given vector with respect to a given basis are unique.
Proof
Let us assume they are not unique. Then, there must be two different sets of
coordinates such that

x = c1b1 + c2b2 + ...+ cpbp
x = c ′1b1 + c ′2b2 + ...+ c ′pbp

If we subtract both equations, we have

0 = (c1 − c ′1)b1 + (c2 − c ′2)b2 + ...+ (cp − c ′p)bp

But because the basis is a linearly independent set of vectors, it must be
c1 − c′1 = 0 ⇒ c1 = c′1
c2 − c′2 = 0 ⇒ c2 = c′2...
cp − c′p = 0 ⇒ cp = c′p

This is a contradiction with the hypothesis that there were two different sets of
coordinates, and therefore, the coordinates of the vector x must be unique.
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Subspace dimension

Isomorphism to Rp

For any given subspace H and its corresponding basis B, the mapping

T : H → Rp

x → [x]B

is a linear, injective transformation that makes H to behave as Rp.

Definition 11.2 (Dimension)
The dimension of a subspace H (dim{H}) is the number of vectors of any of its
basis.
The dimension of H = {0} is 0.

Example (continued)
In our previous example in which B = {v1, v2}, the dimension is 2, in fact H
behaves like a plane (see previous figure in the example).
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Rank of a matrix

Definition 11.3 (Rank of a matrix)
The rank of a matrix A is rank{A} = dim{Col{A}}, that is, the dimension of
the column space of the matrix.
MATLAB: rank(A)

Theorem 11.2
The rank of a matrix is the number of pivot columns it has.
Proof
Since the pivot columns form a basis of the column space of A, the number of
pivot columns is the rank of the matrix.

Example

A =


1 3 3 2 −9
−2 −2 2 −8 2
2 3 0 7 1
3 4 −1 11 −8

 ∼


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0


Therefore, the rank of A is 3.
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Rank of a matrix

Theorem 11.3 (Rank theorem)
If A has n columns, then

Rank{A}+ dim{Nul{A}} = n

Theorem 11.4 (Basis theorem)
Let H be a subspace of dimension p. Any linearly independent set of p vectors of
H is a basis of H. Any set of p vectors that span H is a basis of H.
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Characterization of invertible matrices (continued)

Theorem 11.5 (The invertible matrix theorem)
Let A ∈Mn×n. The following statements are equivalent (either they are all true
or they are all false):
xiii. The columns of A form a basis of Rn

xiv. Col{A} = Rn

xv. dim{Col{A}} = n
xvi. Rank{A} = n
xvii. Nul{A} = {0}
xviii. dim{Nul{A}} = 0
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Characterization of invertible matrices

Proof v ⇒ xiii
This is true by the basis theorem.
Proof xiii ⇒ xiv
By the definition of basis.
Proof xiii ⇒ xv
By the definition of dimension.
Proof xv ⇒ xvi
By the definition of rank.
Proof xvi ⇒ xviii
By the rank theorem.
Proof xvii ⇒ iv
By the definition of null space.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 2, Section 9:

2.9.1
2.9.3
2.9.9
2.9.19
2.9.27
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Outline

3 Matrix algebra
Matrix operations (a)
Inverse of a matrix (b)
Elementary matrices (b)
An algorithm to invert matrices (b)
Characterization of invertible matrices (c)
Invertible linear transformations (c)
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LU factorization (d)
An application to computer graphics and image processing (d)
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Dimension and rank (e)
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