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A little bit of history

Vectors were first used about 1636 in 2D and 3D to describe geometrical
operations by René Descartes and Pierre de Fermat. In 1857 the notation of
vectors and matrices was unified by Arthur Cayley. Giuseppe Peano was the firsst
to give the modern definition of vector space in 1888, and Henri Lebesgue (about
1900) applied this theory to describe functional spaces as vector spaces.
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Applications

It is difficult to think a mathematical tool with more applications than vector
spaces. Thanks to them we may sum forces, control devices, model complex
systems, denoise images, ... They underlie all these processes and it is thank to
them that we can “nicely” operate with vectors. They are a mathemtical structure
that generalizes many other useful structures.

Vector Space

Algebra over a field
K-Algebra

Hypercomplex Numbers

Clifford
Algebras

Matrix

Cayley-
Dickson Algebras

Orthogonal
g double
complex  dual
quaternion double comple
octionion  double-

5. Vector spaces December 3, 2013 5/ 102



© Vector spaces

®© 6 6 6 6 6 6 6 6 o

Definition (a)

Vector subspace (a)

Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)

Dimension of a vector space (d)

Rank of a matrix (d)

Change of basis (d)



Vector space

Definition 1.1 (Vector space)

A vector space is a non-empty set, V, of objects (called vectors) in which we
define two operations: the sum among vectors and the multiplication by a scalar
(an element of any field, K), and that Yu,v,w € V and Vc,d € K it is verified
that

ut+veV

utv=v-+u

(u+v)+w=u+(v+w)

e Vju+0=u

Vue V 3w e Viju+w =0 (we normally write w = —u)
cveV

c(lu+v)=cu+cv

(c+d)u=cu+du

c(du) = (cd)u

lu=u

©6000000O0O0CO0C
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Vector space

Theorem 1.1 (Other properties)

@ 0u=0
@ c0=0
® —u=(—1u

Watch out that 0 and 1 refer respectively to the neutral elements of the sum and

multiplication in the field K. —1 is the opposite number in K of 1 with respect to
the sum of scalars.

R" is a vector space of finite dimension
for any n. As well as C".

V.
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Vector space

Consider V to be the set of all arrows (directed line segments) in 3D. Two arrows
are regarded as equal if they have the same length and direction. Define the sum
of arrows and the multiplication by a scalar as shown below:

X

aU+V

v ‘f 3v —v/
X

FIGURE 3 The parallelogram rule.

0
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Vector space

Here is an example of the application of some of the properties of vector spaces

u+v+w

FIGURE2 u+v=v+u FIGURE3 (u+v)+w=u+(v+w).

With a force field we may define at every point in 3D space, which is the force
that is applied.

Conservative force field

y
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Vector space

Let S be the set of all infinite sequences of numbers
u= (7 u_»,u_1, Up, Uy, Uz, )
Define the sum among two vectors and the multiplication by a scalar as

U+v=_(.,u_o+ Voo, u_1+v_i, U+ Vo, + vi,tp+ v,...)
cu = (..., cu_p, cu_q, cup, cuy, Cuy, ...)

i

~_

Digital Signal ' . !
Processing bt
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o
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Vector space

Let P, be the set of all polynomials of degree n
u(x) = up + upx + upx® + ... + upx"
Define the sum among two vectors and the multiplication by a scalar as

(u+ v)(x) = (o + vo) + (ur + vi)x + (2 + v2)x% + ... + (up + vy)x"
(cu)(x) = cup + curx + cupx® + ... + cu,x"

legendre polynomials

-

,,//

05 (-

Legendre
polynomials

Pa(x)
°
T
1

05 > Po(x) -
/' Pi(x)

Pa(x)

/ P
| Pa(x)
1 1 | P 7

-1 05 0 05 1

4
5. Vector spaces December 3, 2013 12 / 102



Vector space

Let I be the set of all real valued functions defined in some domain (f : D — R)
Define the sum among two vectors and the multiplication by a scalar as

(u+v)(x) = u(x) + v(x)
(cu)(x) = cu(x)

Ex: u(x)=3+x
Ex: v(x) =sinx
Ex: Zernike polynomials

o’
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Vector subspace

Sometimes we don't need to deal with the whole vector space, but only a part of
it. It would be nice if it also has the space properties.

Definition 2.1 (Vector subspace)

Let V' be a vector space, and H C V a part of it. H is vector subspace iff
a)0e H

b) Yuyve H u-+ve H (H is closed with respect to sum)
c) Yue H, Ve e K cu € H (H is closed with respect to scalar multiplication)

H = {0} is a subspace. I

The vector space of polynomials (of any degree), P € F(R), is a vector subspace
of the vector space of real valued functions defined over R (F(R) = {f : R — R}).
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Vector subspace

H = R? is not a subspace of R3 because R? ¢ R3, for instance, the vector
u— (;) € R?, but u ¢ R3.

H = R? x {0} is a subspace of R3 because all vectors of H are of the form
X1

u= | x2 | € R3. It is obvious that H “looks like” R2. This resemblance is
0

mathematically called isomorphism.

Any plane in 3D passing through the origin is a subspace of R3.
Any plane in 3D not passing through the origin is not a subspace of R3, because 0
does not belong to the plane.
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Vector subspace

Theorem 2.1

If H is a vector subspace, then H is a vector space.
Proof
a)=4
a=0eH
4=30€ Vju+0=u
b) =1
b=YuveH u+veH
l=u+veV
Since H C V and thanks to b) = 2,3,7,8,9,10
2=u+4+v=v+u
3=(ut+v)+w=u+(v+w)
7T=c(u+v)=cu+cv
8=(c+d)u=cu+du
9 = ¢(du) = (cd)u
10=1u=u
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Proof (continued)
c)=6
c=YueH VceK cueH
6=cveV
Proof of 5
Since H is a subset of V, we know that for every u € H there exists
a unique w € V|u+ w = 0. The problem is whether
or not w is in H. We also know that w = (—1)v, and
by c), w € H.
(q.e.d.)
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Subspace spanned by a set of vectors

Let vi,vy € V be two vectors of a vector space, V. The subset
H = Span{vy, vz}

is a subspace of V.
Proof

Any vector of H is of the form v = Ajv; + Ayv; for some Ap, Ap € K.
Proofa) 0 € H

Simply by setting Ay = A, =0, we get 0 € H
Proof b)u+v e H

u = Ap,vi + AguV2
vV = A1, V1 + Aoy Vo

Letu,ve H=

(A1uv1 + A2uv2) + (A1vva + Aoyvo)
= A+ Avi+ (Aow + Ao )ve € H

u-+v
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Subspace spanned by a set of vectors

Proof ¢) cu € H
Letue H=

u=X\v; + vy = cu=c(Avi + Xova) = cA\yvi + chovp € H

Theorem 3.1
Let vi,vo,...,v, € V be p vectors of a vector space, V. The subset
H = Span{vi, v, ...,v,}

is a subspace of V.
Proof

Analogous to the previous example.

5. Vector spaces December 3, 2013
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Subspace spanned by a set of vectors

Consider the set of vectors R* D H = {(a—3b,b — a,a,b) Va,b € R}. Isit a
vector subspace?

Solution
All vectors of H can be written as
a—3b 1 -3
b—a -1 1
H>u= R =al + b 0
b 0 1

Therefore, H = Span{(1,—1,1,0),(—3,1,0,1)} and by the previous theorem, it is
a vector subspace.

y
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 1:
e 411
0 414
@ 415

4.1.6

4.1.19

4.1.32

4.1.37 (computer)
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Null space of a matrix

Consider the matrix
1 -3 -2
-5 9 1

The point x = (5,3, —2) has the property that Ax = 0.

Definition 4.1 (Null space)

The null space of a matrix A € M+, is the set of vectors

Nul{A} = {x € R"|Ax = 0}

™

e |
e |
“ Nl

v
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Null space of a matrix

NjwNo

o O
N—

Therefore

Nul{A} = {(—2x3, —3x3,x3)Vx3 € R}

The previous example (x = (5,3, —2)) is the point we obtain for x3 = —2.
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Null space of a matrix

Theorem 4.1

Nul{A} is a vector subspace of R".

Proof

It is obvious that Nul{A} C R" because A has n columns
Proof a) 0 € Nul{A}
A0, =0, = 0, € Nul{A}
Proof b) u + v € Nul{A}

Let u,v € Nul{A} = Au=1 }:>

Av=10
Alu+v)=Au+Av=0+0=0= u+ve Nul{A}

Proof c) cu € Nul{A}
Letue H=

Au =0 = A(cu) = c(Au) = c0 = 0 = cu € Nul{A}

5. Vector spaces December 3, 2013
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Null space of a matrix

LetH:{(a,b,c,d)eR“ a=2b+5c=d
c—a=>»bt
Solution

We may rewrite the conditions of belonging to H as

a
a—2b+5c=d 1 25 —1\[b]|_
c—a=bh ;‘(—1 ~1 1 0) c| =0

d

and, thanks to the previous theorem, H is a vector subspace of R*.

}. Is H a vector subspace of R*?

5. Vector spaces December 3, 2013
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Null space of a matrix

We can even provide a basis for H

1 -2 5 -1 1 01 -1
-1 -1 1 0 01 0 O

The solution of Ax = 0 are all points of the form

a —c+d -1 1
b 0 0 0
c c 1 = 0
d d 0 1

Consequently H = Span{(—1,0,1,0),(1,0,0,1)}.

5. Vector spaces
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Let A€ Mxn, a matrix and a; € R™ (i =1,2,...n) its columns. The column
space of the matrix A is defined as

Col{A} = Span{aj, az, ...a,} = {b € R"|Ax = b for some x € R"}

The column space of a matrix is a subspace of R™ Proof
Col{A} is a set generated by a number of vectors and by Theorem 3.1 it is a
subspace of R™.




Column space of a matrix

Find a matrix A such that Col{A} = {(6a — b,a + b, —7a)Va,b € R}
Solution We can express the points in Col{A} as

6a—b 6 -1
Co{A}sx=|a+b|=a| 1l |+b| 1
—7a —7 0

Therefore, Col{A} = Span{(6,1,—7),(—1,1,0)}. That is, these must be the two
columns of A

6 -1
A=11 1
-7 0
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Comparison between the Null and the Column spaces

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A

Col A

h

. Nul A is a subspace of R".
. Nul A is implicitly defined; that is, you are

given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul 4. Row

operationson [ 4 0] are required.

. There is no obvious relation between Nul A

and the entries in A.

. A typical vector v in Nul 4 has the property

that Av = 0.

. Given a specific vector v, it is easy to tell if

v is in Nul A. Just compute Av.

. Nul A = {0} if and only if the equation

Ax = 0 has only the trivial solution.

. Nul A = {0} if and only if the linear trans-

formation x +> AX is one-to-one.

. Col A is a subspace of R™.
. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A. since each column of
Aisin Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[A ] are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in B™.

. Col A = R™ if and only if the linear trans-

formation x ++ Ax maps R" onte R™.
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Linear transformation

We have said that T(x) = Ax is a linear transformation, but it is not the only one.

Definition 5.1 (Linear transformation)
The transformation T : V — W between two vectors spaces V and W is a rule
that for each vector v € V assigns a unique vector w = T(v) € W, such that
Q@ T(vi+wvy)=T(v1)+ T(v2) Yvi,vp €V
Q@ T(cv)=cT(v) YWe V,VceK

4

For a matrix A € M,,,x,, we have that

T:R" — RM
x — Ax

is a linear transformation (we can easily verify that T meets the two required
conditions).
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Linear transformation

Consider the space of all continuous, real-valued functions defined over R whose
all derivatives are also continuous. We will refer to this space as C*°(R). For
instance, all polynomials belong to this space, as well as any sin, cos function. It
can be proved that C*°(R) is a vector space.

Consider the transformation that assigns to each function in C*°(R) its derivative

D:C=®R) — C=(R)
f — D(f)

is a linear transformation.
Proof

O D(f +¢g) = D(f) + D(g)
@ D(cf) = cD(f)
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The kernel of a transformation T is the set of all vectors such that

Ker{T}={ve V|T(v)=0}

The range of a transformation T is the set of all vectors such that

Range{T}={we W|ave V T(v)=w}

Kernel is a Range is a
subspace of V subspace of W




Ker{T} = Nul{A}
Ker{D} = {f(x) = c} because D(c) =0

If T(x) = Ax, then

Ker{T} = Nul{A}
Range{T} = Col{A}

By e D o e 8 {108



Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 2:
@ 423
@ 429
e 4211
e 4.2.30
e 4231
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Linear independence

Definition 6.1 (Linear independence)

A set of vectors {v1,Vs, ...,V } is linearly independent iff the only solution to the
equation

cavit+ovo+..+cv,=0

is the trivial solution (c; = ¢; = ... = ¢, = 0). The set is linearly dependent if
there exists another solution to the equation.

Watch out that we cannot simply put all vectors as columns of a matrix A and
solve Ac = 0 because this is only valid for vectors in R”, but it is not valid for any

vector space.
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Linear independence

@ {v;} is linearly dependent if v; = 0.

o {v1,vy} is linearly dependent if vp = cv;.
@ {0,vq,V2,...,v,} is linearly dependent.

In the vector space of continuous functions over R, C(R), the vectors
fi(x) = sinx and f(x) = cos x are independent because

fa(x) # chi(x)

S TS S

|
—

’
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Linear independence

Theorem 6.1

A set of vectors {v1,Va, ...,V }, with vi # 0 is linearly dependent if any of the
vectors vj (j > 1) is linearly dependent on the previous ones {vq,Va,...,vj_1}.

4

In the vector space of polynomials, consider the vectors po(x) = 1, p1(x) = x,
p2(x) =4 — x. The set {po(x), p1(x), p2(x)} is linearly dependent because

p2(x) = 4po(x) — p1(x) = p1(x) — 4po(x) + p2(x) =0
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Linear independence

In the vector space of continuous functions, consider the vectors
fi(x) = sin(x) cos(x) and f(x) = sin(2x). The set {f1(x), K(x)} is linearly
dependent because f>(x) = 2f1(x)
1
08
06
MATLAB: o4
x=[-pi:0.001:pi] %
f1=sin(x) .*cos(x); 0
£2=s5in(2*x) ; s
plot (x,f1,x,£2) s
—06
—08
B
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Basis of a subspace

Definition 6.2 (Basis of a subspace)

A set of vectors B = {v1,Va,...,V,} is a basis of the vector subspace H iff
© B is a linearly independent set of vectors
@ H = Span{B}

In other words, a basis is a non-redundant set of vectors that span H.

v

Let A be an invertible matrix. By Theorem 5.1 and 11.5 of Chapter 3 (the
invertible matrix theorem), we know that the columns of A span R” and that they
are linearly independent. Consequently, the columns of A are a basis of R”.

4
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Basis of a subspace

The standard basis of R" are the columns of /,

1 0 0

0 1 0
e; = e = .. €ep=

0 0 1

| A

Let vi = (3,0, —6), vo = (—4,1,7), v3 = (=2,1,5). Is {v1,v2,v3} a basis of R3?
Solution
This question is the same as whether A is invertible with

3 -4 -2
A= 0 1 1 |=A=6=3A"
—6 7 5

Because A is invertible, we have that {vi,v,v3} is a basis of R3.
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Basis of a subspace

In 1953, Rosalind Franklin, James Watson and Francis Crick determined the 3D
structure of DNA using data coming from X-ray diffraction of crystallized DNA.
Watson and Crick received the Nobel prize in physiology and medicine in 1962
(Franklin died 1958).

© Hydrogen
© Oxygen

@ Nitrogen

© Carbon

© Phosphorus

At
it

Pyrimidines Purines

Minor groove

Major groove

.
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Basis of a subspace

Three-dimensional crystals repeat a certain motif all over the space following a
crystal lattice. The vectors that define the crystal lattice are a basis of R3

i c
a il
3 ay az
aZ aZ y 1
1

a,-a,-a a-a,-azzC 8y=85¢C
allanghzs 90§ anglls alg to E : 90° all lnveg 90°
angles between a axes = 60°
ISOMETRIC HEXAGONAL TETRAGONAL
(CUBIC)
. " /A .
b b b
/ a
avbsc aubuc aybsc
all angles 90° angle between a&b all angles & 90°
and bac = 909
angle between c&a > 900
ORTHORHOMBIC MONOGCLINIC TRICLINIC

’
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Basis of a subspace

B = {1,x,x%,x3,...} is the standard basis of the vector space of polynomials P.
Proof

@ B is linearly independent:
Vx € R C01+C1X+C2X2+C3X3+...:0:>C02C1:CQI...:O

The only way that a polynomial of degree whichever is 0 for all values of x is
that the coefficients of the polynomial are all 0.

@ P = Span{B}:
It is obvious that any polynomial can be written as a linear combination of
elements of B (in fact, this is they way we normally do).
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Basis of a subspace

H = Span{vi, v, v3} with v; = (0,2, —1), vo = (2,2,0), vz = (6,16,—5). Find a

basis of H
Solution
All vectors in H are of the form:

H > x = cvi + cvy + c3vs
We realize that v3 = 5v; + 3vj,, therefore, v3 is redundant:

H>x = cvi+ cvs+ cs(5vi + 3va)
= (C1 4 5C3)V1 + (C2 + 3C3)V2
= cjvi + chvp

It suffices to construct our basis with v; and vs.
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Basis of a subspace

Theorem 6.2 (Spanning set theorem (conjunto generador))
Let S = {vi,vz,...,v,} be a set of vectors and H = Span{S}. Then,

@ Ifvy is a linear combination of the rest, then the set S — {v\} still generates

H.
@ If H # {0}, then some subset of S is a basis of H.
Proof
@ Assume that the linear combination that explains vy is
Vg = a1V1 + ... + ak—1Vk—1 + ak+1Vk+1 + --- + apVp
Consider any vector in H
X = QaVi+ova+t ...+ CpVp
= (C1 S+ al)vl TE oo AF (Ck71 S+ ak,l)kal—k
(Ckr1 4 aks1)Vis1 + - + (G + ap)vp
That is we can express x not using vy.

@ Step 1: If S is a linearly independent set, then S is the basis of H.
Step 2: If S is not, using the previous point we can remove a vector to
produce S’ that still generates H (go to Step 1).
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Basis for Nul{A}

-3 6 -1 1 -7
Let A= 1 -2 2 3 -1
2 -4 5 8 —4

We solve the equation system Ax = 0 to find

1 1 30
(Alo)~ | 0 0 1 2 =210
0 0 00
we have coloured the pivot columns from which learn

2x> + X4 — 3x5

X2
X1 = 2X> + X4 — 3x5 _ _
s = —2x3 1 2xs = Nul{A} 5 x = 2x4X~|— 2xs5
4

X5
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Basis for Nul{A}

2X2 + Xq — 3X5 2 1 -3
X2 1 0 0
Nul{A} 5 x = —2x4 + 2x5 =% 0] +x3| 2| +x5| 2
Xa 0 1 0
X5 0 0 1

Finally the basis for Nul{A} is

Nul{A} = Span

OO O LN
| —
N

= O N O

5. Vector spaces December 3, 2013 53 /102



Basis for Col{A}

Consider A as in the previous example. We had

1 -2 0 -1 3
A~ 0 0 1 2 -2 | =8B
0 00 0 0

Let’s call this latter matrix B. Non-pivot columns of B can be written as a linear
combination of the pivot columns:

b, = —2b;

b, = —b;+ 2b;
bs = 3b; —2bj
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Basis for Col{A}

Since row operations do not change the linear dependences among matrix

columns, we can derive the same relationships for matrix A

a = —281
a; = —a;+2a3
as = 3a; —2a3

Finally, the basis of Col{A} is {a1,as}.

Col{A} = Span {a;,a3} = Span 1],[ 2
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Basis for Col{ A}

Theorem 7.1

The pivot columns of A constitute a basis for Col{A}.
Proof
Let B the reduced echelon form of A.
© The pivot columns of B form a linearly independent set because none of its
elements can be expressed as a linear combination of the elements before
each one of them.
@ The dependence relationships among columns are not affected by row

operations. Therefore, the corresponding pivot columns of A are also linearly
independent and, consequently, a basis of Col{A}.
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Two views of a basis

As small as possible, as large as possible

@ The Spanning Set Theorem states that the basis is as small as possible as
long as it spans the required subspace.

@ The basis has the maximum amount of vectors spanning the required
subspace. If we add one more, the new set is not linearly independent.

V.

e {(1,0,0),(2,3,0)} is a set of 2 linearly independent vectors. But it cannot
span R3 because for this we need 3 vectors.

e {(1,0,0),(2,3,0),(4,5,6)} is a set of 3 linearly independent vectors that
spans R3, so it is a basis of R3.

e {(1,0,0),(2,3,0),(4,5,6),(7,8,9)} is a set of 4 linearly dependent vectors
that spans R3, so it cannot be a basis.
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 3:
e 43.1
@ 432
e 438

43.12

43.24

4.3.31

4.3.32

4.3.33

4.3.37 (computer)
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@ Definition (a)
Vector subspace (a)
Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
Bases for Nul{A} and Col{A} (c)
Coordinate system (c)
Dimension of a vector space (d)
Rank of a matrix (d)
Change of basis (d)
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Coordinate system

An important reason to assign a basis to a vector space V is that it makes V to
“behave” as R"” through, what is called, a coordinate system.

Theorem 8.1 (The unique representation theorem)

Let B ={by,by,...,b,} a basis of the vector space V, and consider any vector
v € V. There exists a unique set of scalars such that

v =cb; + by + ... + ¢c,b,

Proof
Let assume that there exists another set of scalars such that

v =cjby + ctby + ... + c/b,
Subtracting both equations we have
0= (c1 —cj)bs + (c2 — ch)ba + ... + (cn — ¢} )b,y
But since the vectors b; form a basis and are linearly independent, it must be

(a-a)=(e-g)=(cn—¢)=0
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Coordinate system

Proof (continued)

Finally, c1 = ¢{, 2 = ¢, ..., ¢, = ¢}, which is a contradiction with the hypothesis
that there were two different sets of scalars representing the vector. Consequently,
the set of scalars must be unique.

Definition 8.1 (Coordinates)

Let B={by,b,,...,b,} a basis of the vector space V, and consider any vector
v € V. The coordinates of v in B are the c; coefficients such that

(o]
v=cb + by +..+cb, = [v]g =
Cn

The transformation T : V — R" such that T(x) = [x|g is called the coordinate
mapping.
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Coordinate system

Let B = {(1,0),(1,2)} be a basis of R? and [x]z = (-2, 3), then

X = —2b; + 3by — —2 <c1)> i @) - @

In fact (1, 6) are the coordinates of x in the standard basis {e1,es}

=0 =1(8) v (%) = (2

That is, the point x does not change, but depending on the coordinate system
employed, we “see” it with different coordinates.
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Coordinate system

In ths figure we see how a X-ray diffraction pattern of a crystal is “indexed”.
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Coordinates in R”

If we have a point x in R we can easily find its coordinates in any basis, as in the

following example.

Let x = (4,5) and the basis B = {(2,1),(—1,1)}. We need to find ¢; and ¢, such

that

—abitab = (1) =a () e t) = (3
X = C1Db; +— C&2b2 5—C11 (&) 1]~ \1

From which we can easily derive
that ¢ =3 and ¢, = 2.

FIGURE 4

The B-coordinate vector of x is

(3.2).

+)(5)

4
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Change of basis

Change from the standard basis to an arbitrary basis

Note that the previous equation system is of the form
X = PB[X]B

where Pg is called the change-of-coordinates matrix and its columns are the
vectors of the basis B (consequently, it is invertible). We find the coordinates of
the vector x in the basis B as

x|z = P5'x

Change between two arbitrary bases

Let's say we know the coordinates of a point in some basis, Bj, and we want to
know its coordinates in some other basis, B,. We may use

x = Pg,[x]s, = Pg,[X|z, = [X|g, = Pg, Ps,[x]5,
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The coordinate mapping is a bijective, linear transformation.

[1s

x* 1 [xlg

I
— ‘7“@}7\__

(¥

FIGURE 5 The coordinate mapping from V onto R".

Since the coordinate mapping is a linear transformation it extends to linear
combinations

[au + a2uz + ... + apup] g = ai[ur]g + ax[uz]s + ... + ap[uy]s




Coordinate mapping

Consequences

Any operation in V can be performed in R” and then go back to V.

For spaces of functions, this opens a new door to analyze functions (signals,
images, ...) in R” using the appropriate basis: Fourier transform, wavelet
transform, Discrete Cosine Transform, ...

5. Vector spaces December 3, 2013 68 / 102



Coordinate mapping

Consider the space of polynomials of degree 2, P,. any polynomial in this space is
of the form

p(t) = ap + art + at?
If we choose the standard basis in P> that is
B={1,t,t%}
Then, we have the coordinate mapping

ao
T(p(t)) = [plz =

L
flary

a

that is an isomorphism from P, onto R3.
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Coordinate mapping

Now we can perform any reasoning in P, by studying an analogous problem in R3.
For instance, let's study if the following polynomials are linearly independent

p(t) = 1+2t2 = [;(t)]s=(1,0,2)
pa(t) = 4+t+5t2 = [pa(t)]s = (4,1,5)
p3(t) = 3+2t = [ps(t)ls = (3,2,0)

We simply need to see if the corresponding coordinates in R3 are linearly
independent

1 4 3 1 0 -5
01 2|~(0 1 2
2 50 0 0 O

Looking at the non-pivot columns we learn that

p3(t) = =5p1(t) + 2pa(t)

Finally, we conclude that the 3 polynomials are not linearly independent.

W
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Coordinate mapping

Consider vi = (3,6,2), vo = (—1,0,1), B = {vy,v2}, and H = Span{B}. H is
isomorphic to R? (because its points have only 2 coordinates). For instance, the
coordinates of x = (3,12,7) € H are [x]g = (2, 3).

FIGURE 7 A coordinate system on a plane f{ in

R

y
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Coordinate mapping

Consider vi = (3,6,2), vo = (—1,0,1), B = {vy,v2}, and H = Span{B}. H is
isomorphic to R? (because its points have only 2 coordinates). For instance, the
coordinates of x = (3,12,7) € H are [x]g = (2, 3).

FIGURE 7 A coordinate system on a plane f{ in

R

y
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 4:

0 443
4438
449
4413
4.4.17
4419
4.4.22
4.4.24
4.4.25
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Dimension of a vector space (d)

Rank of a matrix (d)

Change of basis (d)



Dimension of a vector space

We have just said that if the basis of a vector space V' has n elements, then V is
isomorphic to R". n is a characteristic number of each space called the dimension.

Theorem 9.1

Let V be a vector space with a basis given by B = {by,b,,...,b,}. Then, any
subset of V' with more than n elements is linearly dependent.
Proof

Let S be a subset of V with p > n vectors
S={vi,vo,...,vp}
We now consider the set of coordinates of these vectors.
{lvils [vols; -, [vplB}

They are p > n vectors in R" and, therefore, necessarily linearly dependent. That
is, there exist ci, ¢, ..., Cp, not all of them 0, such that

a[vilg + olva]g + cplvple =0 € R”
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Dimension of a vector space

Proof (continued)
If we now exploit the fact that the coordinate mapping is linear, then we have

[civi + V2 + V] =0 € R”
Finally, we make use of the fact that the coordinate mapping is bijective
avi+ o+ v, =0cV

And, consequently, we have shown that the p vectors in S are linearly dependent.

Theorem 9.2

If a basis of a vector space has n vectors, then all other bases also have n vectors.
Proof

Let B; be a basis with n vectors of a vector space V. Let B, another basis of V.
By the previous theorem, B, has at most n vectors. Let us assume now that B,
has less than n vectors, then by the previous theorem By would not be a basis.
This is a contradiction with the fact that B; is a basis and, consequently, B,
cannot have less than n vectors.
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Dimension of a vector space

Definition 9.1

If the vector space V' is spanned by a finite set of vectors, then V is
finite-dimensional and its dimension (dim{V'}) is the number of elements of
any of its bases. The dimension of V = {0} is 0. If V is not generated by a finite
set of vectors, then it is infinite-dimensional.

vy

dim{R"} = n
dim{P,} = 3 because one of its bases is {1, t, t*}
dim{P} = oo

dim{Span{vi,vp}} =2
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Dimension of a vector space

There is a single subspace of dimension 0 ({0})

There are infinite subspaces of dimension 1 (all lines going through the origin)
There are infinite subspaces of dimension 2 (all planes going through the origin)
There is a single subspace of dimension 3 (R?)

2-dim

x,

(b)
FIGURE 1 Sample subspaces of R

W
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Let H C V be a vector subspace of a vector space V. Then,

dim{H} < dim{V}

Let V' a n-dimensional vector space (n > 1).
@ Any linearly independent subset of VV with n elements is a basis.

o Any subset of V' with n elements that span V is a basis.




Dimension of a vector space

Theorem 9.5

Consider any matrix A € M s p.
o dim{Nul{A}} is the number of free variables in the equation Ax = 0.
o dim{Col{A}} is the number of pivot columns of A.

-3 6 -1 1 -7 1 -2 0 -1 3
A= 1 -2 23 -1 |~[0 01 2 =2
2 4 5 8 —4 0o 00 0 O

The number of pivot columns of A is 2 = dim{Col{A}} (in blue), while the
number of free variables is 3 = dim{Nul{A}} (the free variables are x, x4 and
X5).
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 5:
e 451
@ 4513
e 4521

45.25

4.5.26

4527

4528

4531

4532
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The rank of a matrix is the number of linearly independent rows of that matrix.
It can also be defined as the number of linearly independent columns of that

matrix because both definitions yield the same number. We'll see a more formal
definition below.

Given a matrix A € M ,xn, the row space of A is the space spanned by all rows
of A (Row{A} CR").

Row{A} = Col{AT} l




Rank of a matrix

Theorem 10.2

If a matrix A is row equivalent to another matrix B, then Row{A} = Row{B}.

If B is in a reduced echelon form, then the non-null rows of B form a basis of
Row{A}
Proof
Proof Row{A} 2 Row{B}
Since the rows of B are obtained by row operations on the rows of A,
then any linear combination of the rows of B can be obtained as linear

combinations of the rows of A.
Proof Row{A} C Row{B}

Since the row operations are reversible, then any linear combination of

the rows of A can be obtained as linear combinations of the rows of B.
Proof non-null rows of B form a basis

They are linearly independent because any non-null row of B cannot
be obtained as a linear combination of the rows below (because it is in
echelon form and there are numbers in early columns that have Os below)
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Rank of a matrix

-2 -5 8 0 17 1 3 -5 1 5

A— 1 3 51 5| . B— 01 -2 2 -7
3 11 -19 7 1 00 0 —4 20

1 7 —-13 5 -3 00 0 0 O

Pivot columns have been highlighted in blue. At this point we can already
construct a basis for the row and column spaces of A

R® > ROW{A} = Span{(la 35 _57 17 5)a (07 17 _2» 27 _7)a (07 Oa 07 _4v 20)}
R* = COI{A} = Spa‘n{(_271)37 1)5(_57371177))(0717775)}

To calculate the null space of A we need the reduced echelon form

10 10 1
01 -2 0 3
Al o0 01 -5
00 00 0

4
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Rank of a matrix

1 0 1 0 1
01 -2 0 3
A~loo 01 5|7

0 0 0 0 0
-1 -1
X1 = —X3— X 2 -3
X = 2x3— 3x3 :>N111{A}9X=X3 1 + X5 0
X4 = 5X5 0 5
0 1

Finally,

R5 D Nul{A} = Span{(-1,2,1,0,0),(-1,-3,0,5,1)}
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Rank{A} = dim{Col{A}}

That is, by definition, Rank{A} is the number of pivot columns of A.




Rank of a matrix

Theorem 10.3 (Rank theorem)
For any matrix A € Myxn
Q dim{Row{A}} = dim{Col{A}}
@ Rank{A} + dim{Nul{A}} =n
Proof
@ Let B be the reduced echelon form of A. By definition Rank{A} is the
number of pivot columns in A (that is the same as the number of pivot
columns in B). Since B is in reduced echelon form, each of its non-zero rows
has a column pivot and, consequently, the number of non-zero rows coincides

with the number of pivot columns. The basis of Row{B} = Row{A} must
have as many elements as pivot columns.

@ From Theorem 9.5 we know that Null{A} is the number of free variables in
Ax = 0, that is, the number of non-pivot columns of B. Consequently, we
have

dim{Col{A}} + dim{Nul{A}} = n
But by definition, Rank{A} = dim{Col{A}}, which proves the theorem.

A
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Rank of a matrix

Let A € Myyg. We know dim{Nul{A}} = 2. What is Rank{A}?
According to the previous theorem

Rank{A} = n — dim{Nul{A}} =9—-2=7
Let A € Mgyg. Can it be dim{Nul{A}} = 27
Let us presume that it can be dim{Nul{A}} = 2, then

Rank{A} = n — dim{Nul{A}} =9—-2=7

But since A has only 6 rows, the maximum rank can only be 6 (not 7), and
therefore, it must be dim{Nul{A}} > 3.
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Rank of a matrix

Nul{A} = {(O,XQ,O) Vxo € R}

A= g 8 :} Row{A} = {(x1,0,x3) Vxi,x3 € R}
- 4 0 5 Col{A} = {(>x2,x2,x3) Vx2,x3 € R}
NUI{AT} = {(Xl, —X1, 0) VX]_ € R}
.'-(3 13
A
_— /

~ / B -

0 —
0| A 1 Xy
I/\ \3\1”

Xy
o’ Souq
R3 X R3
FIGURE 1 Subspaces determined by a matrix A.
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Rank of a matrix

Theorem 10.4 (The invertible matrix theorem (continued))

The following statements are equivalent to those in Theorems 5.1 and 11.5 of
Chapter 3 (the invertible matrix theorem). Let A € Mpxn

xix. The columns of A form a basis of R".
xx. Col{A} =R".
xxi. dim{Col{A}} =n
xxii. Rank{A} =n
xxiii. Nul{A} = {0}.
xxiv. dim{Nul{A}} = 0.
Proof vii & xx
vii=The equation Ax = b has at least one solution for every b € R".

But Col{A} is the set of all b’s for which Ax = b has a solution. Therefore, vii =

XX.
Proof xx & xxi & xxii
Because of the definition of rank.
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Rank of a matrix

Proof v,viii < xix

v=The columns of A are linearly independent.

viii=The columns of A span R”.

But both together are the definition of a basis for R”.

Proof xxi < xxiv

Knowing xxi and thanks to the rank theorem 10.3, we can infer that
dim{Nul{A}} =n—n=0

Proof xxiv <> xxiii

The only subset with null dimension is {0}.
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Exercises

Exercises

From Lay (3rd ed.), Chapter 4, Section 6:
@ 46.1
@ 4.6.13
@ 4.6.15

4.6.19

4.6.26

4.6.28

4.6.29

4.6.33

4.6.35
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Change of basis

Let us assume we have a vector x that has two different coordinates in two
different coordinate systems B and C.

[x]z = (3,1) and [x]c = (6,4)

(a) (b)

FIGURE 1 Two coordinate systems for the same vector space.
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Change of basis

Presume that for our example

by = 4c+c
b, = —6c;+c

We can calculate the coordinates of the basis vectors B in the C coordinate
system as

[bi]lc = (41)
[bo]c = (=6,1)

The coordinates of x in the basis B tell us
x = 3b; + b,

If we now apply the coordinate mapping transformation we have

e-smicmics(£)+(4)- (8 £)(2)-(8)
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Change of basis

Note that the columns of the matrix

(171)

are the coordinates of each one of the elements of the basis B expressed in the
coordinate system C, and that the overall change of coordinates has the form

We= (5 77 ) e

5. Vector spaces December 3, 2013 97 / 102



Change of basis

Theorem 11.1 (Change of basis)

Let B={by,by,....b,} and C = {cy,cy,...,c,} be two bases of the vector space
V. We can transform coordinates from one coordinate system to the other by
multiplying by a single, invertible n X n matrix, called Pc.g whose columns are
the coordinates of the vectors of B in the basis C.

[X]c = Pcglx]s

v
O
[, [ 1,
. multiplication .
e by 2, s
R" R"
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Change of basis

Corollary

To convert from C coordinates back to B coordinates we simply have to invert the
transformation.

=1l
Pgic = 'DCHB

Corollary

Consider the standard base in V given by E = {ej, ey, ...,e,}. The matrix to
convert the coordinates from B to E is simply

Pecg= (b1 by .. by)
Consequently, we have that for two different bases
x = Pe.g[x]g = Pecc[x]|c
Finally,
[Xlc = Pel cPecslxls
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Change of basis

Numerical trick

Given the two basis B and C we can easily find the coordinates of B in the basis

C in the following way. Let us define two matrices B and C whose columns are the
elements of the basis. Then

(CIB) ~ (In|Pc+8)

4

Let's say we are given by = (—9,1), b, = (—5,-1), ¢; = (1, —4), c2 = (3, -5).
1 3| -9 5 N 1 0 6 4
—4 -5 1 -1 0 1|-5 3

Then, PCeB = < _g g )
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Exercises

From Lay (3rd ed.), Chapter 4, Section 7:
e 471

@ 479
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Outline

© Vector spaces

@ Definition (a)

@ Vector subspace (a)

@ Subspace spanned by a set of vectors (a)
Null space and column space of a matrix (b)
Kernel and range of a linear transformation (b)
Linearly independent sets and bases (b)
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