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A little bit of history

Eigenvalues (or “proper values”) were first used in the study of the motion of rigid
bodies through the inertia matrix by Leonhard Euler and Joseph-Louis Lagrange in
the mid of XVIIIth century. Then Augustin-Louis Cauchy used it to analyze
quadratic surfaces and conic sections in the early XIXth. Since then, they have
found applications in most scientific problems.
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Applications

In this example eigenvalues are used to estimate the size of carotid in a volumetric
image.

Hameeteman, K.; Zuluaga, M. A.; et al. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal, 2011,
15, 477-488.
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Applications

In this example eigenvalues were used as a part of another technique (Principal
Component Analysis) to automatically analyze luminiscent images.

Spinelli, A.E., Boschi, F. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging. J Biomed Opt, 2011, 16, 120506
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Eigenvalues and eigenvectors

Example

Consider the linear transformation T (x) =
(
3 −2
1 0

)
x on the vectors u = (−1, 1)

and v = (2, 1)

T (u) =

(
3 −2
1 0

)(
−1
1

)
=

(
−5
−1

)
T (v) =

(
3 −2
1 0

)(
2
1

)
=

(
4
2

)

u is changing its direction and module, but v is only changing its module.
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Eigenvalues and eigenvectors

Definition 1.1 (Eigenvalue and eigenvector)
Given the matrix A ∈Mn×n, λ is an eigenvalue of A if there exists a non-trivial
solution v ∈ Rn of the equation

Av = λv

The solution v is the eigenvector associated to the eigenvalue λ.

Example (continued)
In the previous example, v was an eigenvector with eigenvalue 2 (because
(2, 1)→ (4, 2), while u was not an eigenvector.
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Eigenvalues and eigenvectors

Example

Show that λ = 7 is an eigenvalue of A =

(
1 6
5 2

)
.

Solution
We must find a solution of the equation Av = λv, or what is the same

Av− λv = 0⇒ (A− λI)v = 0((
1 6
5 2

)
− 7

(
1 0
0 1

))(
v1
v2

)
=

(
−6 6
5 −5

)(
v1
v2

)
=

(
0
0

)
Any vector of the form v = (v1, v1) satisfies the previous equation

Theorem 1.1
In general, eigenvectors are solution of the equation

(A− λI)v = 0

That is, all eigenvectors belong to Nul{A− λI}. This is called the eigenspace.
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Eigenvalues and eigenvectors

Example (continued)
We see that we have a whole set of vectors associated to λ = 7, this is a subspace
of the eigenspace:

Eigenspace{7} = {(v1, v1) ∀v1 ∈ R}

It is a line passing through the origin with the direction (1, 1).
The other eigenvalue of matrix A is λ = −4

Eigenspace{−4} = {(v1,− 5
6v1) ∀v1 ∈ R}
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Eigenvalues and eigenvectors

Example

Knowing that λ = 2 is an eigenvalue of A =

4 −1 6
2 1 6
2 −1 8

, find a basis of its

eigenspace.
Solution

A− 2I =

4 −1 6
2 1 6
2 −1 8

−
2 0 0
0 2 0
0 0 2

 =

2 −1 6
2 −1 6
2 −1 6

 ∼
2 −1 6
0 0 0
0 0 0


So any vector fulfilling this equation must satisfy

x1 = 1
2x2 − 3x3 ⇒ Eigenspace{2} 3 x = x2

 1
2
1
0

+ x3

−30
1


Finally the basis is formed by the vectors ( 1

2 , 1, 0) and (−3, 0, 1).
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Eigenvalues and eigenvectors

Example (continued)
Within the eigenspace, A acts as a dilation.
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Eigenvalues and eigenvectors

Theorem 1.2
The eigenvalues of a triangular matrix A are the elements of the main diagonal
(aii , i = 1, 2, ..., n).
Proof
Consider the matrix A− λI

a11 − λ a12 a13 ... a1n
0 a22 − λ a23 ... a2n
0 0 a33 − λ ... a3n
... ... ... ... ...
0 0 0 ... ann − λ


The equation system A− λI = 0 has a non-trivial solution if at least 1 of the
entries in the diagonal is 0. Therefore, it must be λ = aii for some i. Varying i
from 1 to n we obtain that all the elements in the main diagonal are the n
eigenvalues of the matrix A.
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Eigenvalues and eigenvectors

Example

The eigenvalues of A =

3 6 −8
0 0 6
0 0 2

 are λ = 3, 0, 2.

Theorem 1.3
Let v1, v2, ..., vr be r eigenvectors associated to r different eigenvalues. Then,
the set S = {v1, v2, ..., vr} is linearly independent.
Proof
Let us assume that S is linearly dependent. Without loss of generality, we may
assume that the first p (p < r ) are linearly independent, and that the p + 1-th
vector is dependent on the precedent vectors. Then, there must exist c1, c2, ..., cp
not all of them zero such that

vp+1 = c1v1 + c2v2 + ...+ cpvp (1)
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Eigenvalues and eigenvectors

If we multiply both sides of the equation by A, then we have

Avp+1 = c1Av1 + c2Av2 + ...+ cpAvp
λp+1vp+1 = c1λ1v1 + c2λ2v2 + ...+ cpλpvp

(2)

If we multiply Eq. (1) by λp+1 and subtract from Eq. (2), we have

0 = c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + ...+ cp(λp − λp+1)vp

Since the first p vectors are linearly independent it must be for i = 1, 2, ..., p

ci(λi − λp+1) = 0

Because all eigenvalues are different, then it must be ci = 0 (i = 1, 2, ..., p). But
this is a contradiction with the initial hypothesis that not all of them were 0.
Consequently, the set S must be linearly independent. (q.e.d.)
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Eigenvalues and eigenvectors

Difference equations
Let us assume we have two populations of cells: stem cells and mature cells.
Everyday we measure the number of them and we observe that:
Stem cells:

80% of them have remained as stem cells
15% of them have differentiated into
somatic cells
5% of them have died
There are 20% new stem cells.

Somatic cells:
95% of them have remained as
somatic cells
5% of them have died
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Eigenvalues and eigenvectors

Difference equations (continued)
If we call x (k)

stem the number of stem cells on the day k, and x (k)
somatic the number of

somatic cells the same day, then the following equation reflects the dynamics of
the system: (

x (k+1)
stem

x (k+1)
somatic

)
=

(
1 0

0.15 0.95

)(
x (k)

stem
x (k)

somatic

)
Let us assume that the day 0, there are 10, 000 stem cells, and 0 somatic cells.
Then, the evolution over time is(

x (1)
stem

x (1)
somatic

)
=

(
1 0

0.15 0.95

)(
x (0)

stem
x (0)

somatic

)
=

(
1 0

0.15 0.95

)(
10, 000

0

)
=

(
10, 000
1, 500

)
(

x (2)
stem

x (2)
somatic

)
=

(
1 0

0.15 0.95

)(
x (1)

stem
x (1)

somatic

)
=

(
1 0

0.15 0.95

)(
10, 000
1, 500

)
=

(
10, 000
2, 925

)
...
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Eigenvalues and eigenvectors

Difference equations
The previous model is of the form

x(k+1) = Ax(k)

The simplest way of constructing a solution of the previous equation is by taking
an eigenvector x1 and its corresponding eigenvalue, λ:

x(k) = λk
1x1

This is actually a solution because:

x(k+1) = Ax(k) = A(λk
1x1) = λk

1(Ax1) = λk
1(λ1x1) = λk+1

1 x1

It turns out that any linear combination of eigenvectors is also a solution

x(k) = c1λ
k
1x1 + c2λ

k
2x2 + ...+ cnλ

k
nxn
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 1:

5.1.1
5.1.3
5.1.9
5.1.17
5.1.19
5.1.23
5.1.25
5.1.26
5.1.27

6. Eigenvalues and eigenvectors December 3, 2013 20 / 70



Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)

6. Eigenvalues and eigenvectors December 3, 2013 21 / 70



Characteristic equation

Example

Find the eigenvalues of A =

(
2 3
3 −6

)
Solution
We need to find scalar values λ such that the equation

(A− λI)x = 0

has non-trivial solutions. By the Invertible Matrix theorem we know that this
problem is equivalent to that of finding λ values such that

|A− λI| = 0

In this case ∣∣∣∣(2 3
3 −6

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0∣∣∣∣ 2− λ 3
3 −6− λ

∣∣∣∣ = (2− λ)(−6− λ)− 9 = λ2 + 4λ− 21 = 0
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Characteristic equation

Example (continued)

λ2 + 4λ− 21 = 0⇒ λ =
−4±
√

42−4·1·(−21)
2·1 =

{
−7
3

Theorem 2.1 (The invertible matrix theorem (continued))
This theorem adds to the Theorems 5.1, 11.5 of Chapter 3 and 10.4 of Chapter 5.

xxv. |A| 6= 0.
xxvi. 0 is not an eigenvalue of A.

Definition 2.1 (Characteristic equation)
A scalar λ is an eigenvalue of a matrix A ∈Mn×n iff it is solution of the
characteristic equation

|A− λI| = 0

The determinant of A− λI is called the characteristic polynomial.
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Characteristic equation

Example

Let us calculate the eigenvalues of A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1

.

|A− λI| =

∣∣∣∣∣∣∣∣
5− λ −2 6 −1
0 3− λ −8 0
0 0 5− λ 4
0 0 0 1− λ

∣∣∣∣∣∣∣∣ = (5− λ)2, (3− λ)(1− λ) = 0

whose solutions are λ = 5 (with multiplicity 2), λ = 3, and λ = 1.

Example
Let us find the eigenvalues of a matrix whose characteristic polynomial is

|A− λI| = λ6 − 4λ5 − 12λ4 = λ4(λ2 − 4λ− 12) = λ4(λ− 6)(λ+ 2) = 0

whose solutions are λ = 0 (with multiplicity 4), λ = 6, and λ = −2.
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Characteristic equation

Definition 2.2 (Similarity between matrices)
Given two matrices A,B ∈Mn×n, A is similar to B iff there exists an invertible
matrix P ∈Mn×n such that

B = P−1AP

Watch out that similarity is not the same as row equivalence (A and B are row
equivalent if there exists a E such that B = EA being E invertible and the
product of row operation matrices).
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Characteristic equation

Theorem 2.2
If A is similar to B, then B is similar to A.
Proof
It suffices to take the definition of A similar to B and solve for B. If we multiply
by P on the right

B = P−1AP ⇒ PB = AP

Now, we multiply by P on the left (P−1 exists because P is invertible)

PB = AP ⇒ PBP−1 = A

and this is the definition of B being similar to A.
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Characteristic equation

Theorem 2.3
If A and B are similar matrices, then they have the same characteristic polynomial.
Proof
If A is similar to B, then there exists an invertible matrix P such that

B = P−1AP

If we subtract on both sides λI we have

B − λI = P−1AP − λI = P−1AP − λP−1P = P−1(A− λI)P

Now taking the determinant of both sides

|B − λI| = |P−1(A− λI)P| = |P−1||A− λI||P| = |P|−1|A− λI||P| = |A− λI|
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Characteristic equation

Theorem 2.4
If A and B are similar matrices, then they have the same characteristic polynomial.
Proof
If A is similar to B, then there exists an invertible matrix P such that

B = P−1AP

If we subtract on both sides λI we have

B − λI = P−1AP − λI = P−1AP − λP−1P = P−1(A− λI)P

Now taking the determinant of both sides

|B − λI| = |P−1(A− λI)P| = |P−1||A− λI||P| = |P|−1|A− λI||P| = |A− λI|
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 2:

5.2.1
5.2.9
5.2.18
5.2.19
5.2.20
5.2.23
5.2.24
5.2.28 (computer)
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Diagonalization

Definition 3.1 (Diagonalization)
A ∈Mn×n is diagonalizable if there exists P,D ∈Mn×n (with P invertible and
D diagonal) such that

A = PDP−1

Diagonalization simplifies the calculation of powers of A (Ak), is used to decouple
dynamic systems, and in multivariate statistics to produce uncorrelated random
variables.

Example

D =

(
5 0
0 3

)
D2 =

(
52 0
0 32

)
D3 =

(
53 0
0 33

)
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Diagonalization

Example
Let us assume that A = PDP−1. Let us calculate calculate now the different
powers of A

A2 = A · A = (PDP−1)(PDP−1) = (PD)(P−1P)(DP−1) = PDDP−1 = PD2P−1

A3 = A2 · A = (PD2P−1)(PDP−1) = PD3P−1

...
Ak = PDkP−1

Let us particularize this result for A =

(
7 2
−4 1

)
that can be factorized with

P =

(
1 1
−1 −2

)
and D =

(
5 0
0 3

)
as A = PDP−1.

Ak = PDkP−1 =

(
1 1
−1 −2

)(
5k 0
0 3k

)(
2 1
−1 −1

)
=(

2 · 5k − 3k 5k − 3k

2 · 3k − 2 · 5k 2 · 3k − 5k

)
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Diagonalization

Theorem 3.1 (Diagonalization theorem)
A ∈Mn×n is diagonalizable iff A has n linearly independent eigenvectors.
In this case, we may construct P by stacking the n eigenvectors, and D as a
diagonal matrix with the corresponding eigenvalues.
Proof

Consider the columns of P =
(
p1 p2 ... pn

)
and D =


d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn


Let us assume that A = PDP−1 and we multiply by P on the right

AP = PD

A
(
p1 p2 ... pn

)
=

(
p1 p2 ... pn

)
d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn

(
Ap1 Ap2 ... Apn

)
=

(
d1p1 d2p2 ... dnpn

)
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Diagonalization

This implies that

Ap1 = d1p1
Ap2 = d2p2

...
Apn = dnpn

But this is the definition of eigenvector, so the columns of P (pi) must be
eigenvectors of A and di its corresponding eigenvalue. Since P is invertible, its
columns must be linearly independent.
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Diagonalization

Example

Diagonalize A =

 1 3 3
−3 −5 −3
3 3 1

.

Step 1: Find the eigenvalues of A

|A− λI| = 0⇒ −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2 = 0

whose solutions are λ = 1 and λ = −2 (double).
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI =

 1 3 3
−3 −5 −3
3 3 1

−
1 0 0
0 1 0
0 0 1

 =

 0 3 3
−3 −6 −3
3 3 0

 ∼
0 1 1
0 0 0
1 1 0
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Diagonalization

Example (continued)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI ∼

0 1 1
0 0 0
1 1 0

⇒ x1 = −x2
x3 = −x2

⇒ v1 =

 1
−1
1


λ = −2

A− λI =

 1 3 3
−3 −5 −3
3 3 1

−
−2 0 0

0 −2 0
0 0 −2

 =

 3 3 3
−3 −3 −3
3 3 3

 ∼1 1 1
0 0 0
0 0 0

⇒ x1 = −x2 − x3 ⇒ v2 =

−11
0

 , v3 =

−10
1
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Diagonalization

Example (continued)
Step 3: Construct P and D

P =

 1 −1 −1
−1 1 0
1 0 1

 D =

1 0 0
0 −2 0
0 0 −2


Step 4: Check everything is correct

P is invertible |P| 6= 0

|P| = 1

A = PDP−1 ⇒ AP = PD

AP =

 1 2 2
−1 −2 0
1 0 −2

 PD =

 1 2 2
−1 −2 0
1 0 −2
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Diagonalization

Example (continued)
Step 4: Check everything is correct

P is invertible |P| 6= 0
MATLAB:
P=[1 -1 -1; -1 1 0; 1 0 1];

det(P)
A = PDP−1 ⇒ AP = PD

MATLAB:
A=[1 3 3; -3 -5 3; 3 3 1];

P=[1 -1 -1; -1 1 0; 1 0 1];
D=[1 0 0; 0 -2 0; 0 0 -2];
A*P
P*D
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Diagonalization

Example

Diagonalize A =

 2 4 3
−4 −6 −3
3 3 1

.

Step 1: Find the eigenvalues of A

|A− λI| = 0⇒ −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2 = 0

whose solutions are λ = 1 and λ = −2 (double). (Same eigenvalues as in the
previous example)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI =

 2 4 3
−4 −6 −3
3 3 1

−
1 0 0
0 1 0
0 0 1

 =

 1 4 3
−4 −7 −3
3 3 0

 ∼
1 0 −1
0 1 1
0 0 0
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Diagonalization

Example (continued)
Step 2: Find a linearly independent set of eigenvectors

λ = 1

A− λI ∼

1 0 −1
0 1 1
0 0 0

⇒ x1 = x3
x2 = −x3

⇒ v1 =

 1
−1
1


(The same eigenspace as in the previous example).

λ = −2

A− λI =

 2 4 3
−4 −6 −3
3 3 1

−
−2 0 0

0 −2 0
0 0 −2

 =

 4 4 3
−4 −4 −3
3 3 3

 ∼1 1 3
4

0 0 0
0 0 1

4

⇒ x1 = −x2 − 3
4x3

1
4x3 = 0 ⇒ v2 =

−11
0


(A cannot be diagonalized because there are not 3 linearly independent vectors)
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Diagonalization

Theorem 3.2
If a n × n matrix has n different eigenvalues, then it is diagonalizable.
Proof
Let v1, v2, ..., vn be the n eigenvectors corresponding to the n different
eigenvalues. The set

{v1, v2, ..., vn}

is linearly independent by Theorem 1.3 and A is diagonalizable by Theorem 3.1.

Example

Is A =

5 −8 1
0 0 7
0 0 −2

 diagonalizable?

Solution
A is a triangular matrix and its eigenvalues are 5, 0 and -2, all of them distinct,
and by the previous theorem A is diagonalizable.
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Diagonalization

Theorem 3.3
Let A ∈Mn×n with p ≤ n different eigenvalues. Let dk be the dimension
associated to the eigenvalue λk . Then,

1 dk is smaller or equal the multiplicity of λk .
2 A is diagonalizable iff dk is equal to the multiplicity of λk . In this case,

p∑
k=1

dk = n

3 If A is diagonalizable and Bk are the bases of each one of the eigenspaces,
then {B1,B2, ...,Bp} is a basis of Rn.
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Diagonalization

Example

Let A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 3

. Let’s factorize it as A = PDP−1. The eigenvalues

and associated eigenvectors are

λ1 = 5 ↔ v1 =


−8
4
1
0

 v2 =


−16
4
0
1


λ2 = −3 ↔ v3 =


0
0
1
0

 v4 =


0
0
0
1


⇒

P =


−8 −16 0 0
4 4 0 0
1 0 1 0
0 1 0 1


D =


5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 3:

5.3.1
5.3.23
5.3.27
5.3.28
5.3.29
5.3.31
5.3.32
5.3.33 (computer)
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The matrix of a linear transformation
The objective of this section is to show that if A is diagonalizable (A = PDP−1),
then the transformation TA(x) = Ax is essentially the same as TD(u) = Du.

Definition 4.1 (The matrix of a linear transformation)
Consider a linear transformation between two vectors spaces T : U → V . Let B
be a basis of V , and C be a basis of W . Let x ∈ V and consider its coordinates
[x]B = (r1, r2, ..., rn).
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The matrix of a linear transformations

Let’s analyze x and T (x)

x = r1b1 + r2b2 + ...+ rnbn ⇒
T (x) = T (r1b1 + r2b2 + ...+ rnbn) [T is linear]

= r1T (b1) + r2T (b2) + ...+ rnT (bn)

Now, let us consider the coordinates in C of the transformed vector

[T (x)]C = r1[T (b1)]C + r2[T (b2)]C + ...+ rn[T (bn)]C

We can write this equation in matrix form as

[T (x)]C = M[x]B

where M ∈Mm×n is a matrix formed by the transformations of each one of the
basis vectors in B

M =
(
[T (b1)]C [T (b2)]C ... [T (bn)]C

)
Matrix M is called the matrix of T relative to the bases B and C .
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The matrix of a linear transformations

Example
Let B = {b1,b2} and C = {c1, c2, c3} and

T (b1) = 3c1 − 2c2 + 5c3
T (b2) = 4c1 + 7c2 − c3

⇒ M =

 3 4
−2 7
5 −1
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Transformations from V into V

Definition 4.2 (B-matrix for T )
If T is a transformation from V into V and B is a basis of V , then the matrix M
is called the B-matrix of T.

Example
Consider in the vector space of polynomials of degree 2 (P2), the derivative
transformation

T : P2 → P2
T (a0 + a1t + a2t2) = a1 + 2a2t

Consider the standard basis of P2, B = {1, t, t2}.
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Transformations from V into V

Example (continued)
Which is the B-transformation matrix?
Solution

T (1) = 0 → [T (1)]B =

0
0
0


T (t) = 1 → [T (t)]B =

1
0
0


T (t2) = 2t → [T (t2)]B =

0
2
0


⇒ M =

0 1 0
0 0 2
0 0 0
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Transformations from V into V

Example (continued)
Verify that [T (x)]B = M[x]B
Solution
Given any polynomial p(t) = a0 + a1t + a2t2 its coordinates are
[p(t)]B = (a0, a1, a2). The derivative of p(t) is T (p(t)) = a1 + 2a2t, then

[T (p(t))]B =

 a1
2a2
0

 =

0 1 0
0 0 2
0 0 0

a0
a1
a2
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Transformations from Rn into Rn

Theorem 4.1 (Diagonal matrix representation)
Suppose matrix A is diagonalizable (A = PDP−1). If B is the basis of Rn formed
by the columns of P, then D is the B-matrix of the linear transformation
T (x) = Ax.
Proof
Let b1,b2, ...,bn be the columns of P so that B = {b1,b2, ...,bn} is a basis. We
know that for any basis in Rn

x = P[x]B ⇒ [x]B = P−1x

Let [T ]B be the transformation matrix in the basis B. We know that by definition

[T ]B =
(
[T (b1)]B [T (b2)]B ... [T (bn)]B

)
(T (x) = Ax)

=
(
[Ab1]B [Ab2]B ... [Abn]B

)
(change of coordinates)

=
(
P−1Ab1 P−1Ab2 ... P−1Abn

)
(matrix multiplication)

= P−1A
(
b1 b2 ... bn

)
(definition of P)

= P−1AP = D
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Transformations from Rn into Rn

Example

Let T (x) =
(

7 2
−4 1

)
x. Find a basis B in which the B-matrix of T is diagonal.

Solution

We diagonalize A as A = PDP−1, with P =

(
1 1
−1 −2

)
and D =

(
5 0
0 3

)
. We

may change vectors x to the basis B = {(1,−1), (1,−2)} by applying

u = P−1x

Then, in this new basis, T can be applied as

T (u) = Du = DP−1x

If we now, come back to the original basis

T (x) = PT (u) = PDP−1x = Ax

Understanding D as the transformation matrix in some basis gives us insight on its
effect (in this example, an anisotropic dilation).
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Similar matrices

Definition 4.3 (Similar matrices)
A and C are similar matrices iff there exists another matrix P such that
A = PCP−1. Given the transformation T (x) = Ax, C is the B-matrix of the
transformation T , when B is the basis defined by the columns of the matrix P.

Conversely, if B is any basis and P is the matrix formed by the vectors in the basis
B, then the B-matrix of the transformation T is P−1AP.
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Similar matrices

Example

Let A =

(
4 −9
4 8

)
, T (x) = Ax and b1 = (3, 2), b2 = (2, 1). A is not

diagonalizable but the basis B = {b1,b2} has the property that [T ]B is triangular
(it is said to be in Jordan form). According to the previous definition, the
B-matrix of the transformation T is

[T ]B = P−1AP =

(
−1 2
2 −3

)(
4 −9
4 8

)(
3 2
2 1

)
=

(
−2 1
0 −2

)

Numerical note
An easy way to compute P−1AP once we have AP is to find a row equivalent
matrix

( P AP ) ∼ ( I P−1AP )
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 4:

5.4.1
5.4.3
5.4.5
5.4.13
5.4.18
5.4.22
5.4.23
5.4.25
5.4.27 (computer)
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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Complex eigenvalues
Complex eigenvalues are always related to a rotation around a certain axis.

Example

Consider the linear transformation T (x) =
(
0 −1
1 0

)
x is a rotation of 90◦.

Obviously, there cannot be any real eigenvector since all the vectors are rotating.
All eigenvalues are complex:

|A− λI| = 0 = λ2 + 1 = (λ− i)(λ+ i)
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Complex eigenvalues

Example (continued)
Let’s see what happens if we allow applying the transformation on complex
vectors: (

0 −1
1 0

)(
1
−i

)
= i
(

1
−i

)
(
0 −1
1 0

)(
1
i

)
= −i

(
1
i

)
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Complex eigenvalues

Example

Find the eigenvalues and eigenvectors of A =

( 1
2 − 3

53
4

11
10

)
.

Solution
To find the eigenvalues we solve the characteristic equation:

0 = |A− λI| =
∣∣∣∣ 1

2 − λ − 3
53

4
11
10 − λ

∣∣∣∣ = λ2 − 8
5λ+ 1⇒ λ = 4

5 ±
3
5 i

MATLAB: A=[1/2 -3/5; 3/4 11/10]; l=eigs(A)
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Complex eigenvalues

Example (continued)
λ1 = 4

5 −
3
5 i

A− λ1I =

( 1
2 − ( 4

5 −
3
5 i) − 3

53
4

11
10 − ( 4

5 −
3
5 i)

)
=

(
− 3

10 + 3
5 i − 3

53
4

3
10 + 3

5 i

)
∼

(
1 2

5 + 4
5 i

0 0

)
⇒ x1 = −( 2

5 + 4
5 i)x2 ⇒ v1 =

(
−2− 4i

5

)
MATLAB:
A_lI=A-l(1)*eye(2);
A_lI(1,:)=A_lI(1,:)/A_lI(1,1)
A_lI(2,:)=A_lI(2,:)-A_lI(1,:)*A_lI(2,1)
λ2 = 4

5 + 3
5 i = λ∗

1

A− λ2I ∼
(

1 2
5 −

4
5 i

0 0

)
⇒ x1 = −( 2

5 −
4
5 i)x2 ⇒ v2 =

(
−2+ 4i

5

)
= v∗

1
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Complex eigenvalues

Example (continued)
The application of A on R2 is a rotation. To see this, we may start with
x0 = (2, 0) and calculate
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Complex eigenvalues

Definition 5.1 (Conjugate of a vector and matrix)
The conjugate of a vector is defined as

v =


v1
v2
...
vn

⇒ v∗ =


v∗

1
v∗

2
...
v∗

n


In the same way, the conjugate of a matrix is defined as

A =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn

⇒ A∗ =


a∗

11 a∗
12 ... a∗

1n
a∗

21 a∗
22 ... a∗

2n
... ... ... ...
a∗

m1 a∗
m2 ... a∗

mn


Theorem 5.1 (Properties)

(rv)∗ = r∗v∗

(Av)∗ = A∗v∗
(AB)∗ = A∗B∗

(rA)∗ = r∗A∗
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Eigenanalysis of a real matrix that acts on Cn

Theorem 5.2
Let A ∈Mn×n be a matrix with real coefficients. If λ is an eigenvalue of A, then
λ∗ is also an eigenvalue. If v is an eigenvector associated to λ, then v∗ is an
eigenvector associated to λ∗.
Proof
If λ is an eigenvalue and v one of its eigenvectors, then we know that

Av = λv

If we now conjugate both sides

(Av)∗ = (λv)∗ ⇒ Av∗ = λ∗v∗

(Remind that A has real coefficients and that’s why A∗ = A).
The previous equation means that v∗ is also an eigenvector of A and that λ∗ is its
eigenvalue.
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Eigenanalysis of a real matrix that acts on Cn

Example

Let A =

(
a −b
b a

)
. Its eigenvalues are λ = a ± bi and the corresponding

eigenvectors v =

(
1
±i

)
.

(
a −b
b a

)(
1
−i

)
=

(
a + bi
b − ai

)
= (a + bi)

(
1
−i

)
(
a −b
b a

)(
1
i

)
=

(
a − bi
b + ai

)
= (a − bi)

(
1
i

)
In particular if a = cos(φ) and b = sin(φ), then we have a rotation matrix whose
eigenvalues are(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
⇒ λ = cos(φ)± sin(φ)i = e±iφ
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Eigenanalysis of a real matrix that acts on Cn

Example on Slide 60 (continued)

Let A =

( 1
2 − 3

53
4

11
10

)
. Consider λ1 = 4

5 −
3
5 i and its corresponding eigenvector

v1 = (−2− 4i , 5). Now, we construct the matrix

P =
(
Re{v1} Im{v1}

)
=

(
−2 −4
5 0

)
and make a change of basis to the basis whose vectors are the columns of P:

C = P−1AP =

( 4
5 − 3

53
5

4
5

)
=

(
cos(36.87◦) − sin(36.87◦)
sin(36.87◦) cos(36.87◦)

)
That is, C is a pure rotation and thanks to the change of basis we obtain an
elliptical rotation as shown in Slide 62.
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Eigenanalysis of a real matrix that acts on Cn

Theorem 5.3
Let A be a real, 2× 2 matrix with complex eigenvalue λ = a − bi (b 6= 0) and an
associated eigenvector in C2. Then

A = PCP−1

where

P =
(
Re{v} Im{v}

)
and

C =

(
a −b
b a

)
Proof
It makes use of

Re{Av} = ARe{v}
Im{Av} = AIm{v}

6. Eigenvalues and eigenvectors December 3, 2013 67 / 70



Eigenanalysis of a real matrix that acts on Cn

Example: Rotations extend to higher dimensions

Consider A =

 4
5 − 3

5 0
3
5

4
5 0

0 0 1.07

. This is the rotation previously described in the

XY plane plus a scaling in the Z direction. Any point in the XY (for instance,
w0 = (2, 0, 0)) plane rotates within the plane. Any point outside the plane (for
instance, x0 = (2, 0, 1) rotates in XY and shifts along Z ). The following figure
shows the successive application of A on w0 and x0.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 5, Section 5:

5.5.1
5.5.7
5.5.13
5.5.23
5.5.24
5.5.25
5.5.26
5.5.27
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Outline

6 Eigenvalues and eigenvectors
Definition (a)
Characteristic equation (a)
Diagonalization (b)
Eigenvectors and linear transformations (b)
Complex eigenvalues (c)
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