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A little bit of history

Least squares was first used to solve problems in geodesy (Andrien-Marie
Legendre, 1805) and astronomy (Carl Friedrich Gauss, 1809). Gauss made the
connection of this method to the distribution of measurement errors. Currently it
is one of the best understood and most widely spread methods.
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Applications

In this example Least Squares are used to plan a radiation therapy.

Bedford, J. L. Sinogram analysis of aperture optimization by iterative least-squares in volumetric modulated arc therapy. Physics in Medicine and Biology,

2013, 58, 1235-1250
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Applications

Traditionally, control applications were formulated in a least-squares setup.
Currently, they have found more sophisticated goal functions that can be regarded
as evolved versions of least squares.
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Inner product

Definition 1.1 (Inner product or dot product)
Let u, v ∈ Rn be two vectors. The inner product or dot product between these
two vectors is defined as

u · v = 〈u, v〉 ,
n∑

i=1
uivi

Theorem 1.1
If we considered u and v to be column vectors (∈Mn×1), then

u · v = uTv

Example
Let u = (2,−5,−1) and v = (3, 2,−3).

u · v = 2 · 3 + (−5) · 2 + 1 · (−3) = −1
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Inner product

Theorem 1.2
For any three vectors u, v,w ∈ Rn and any scalar r ∈ R it is verified that

1 u · v = v · u
2 (u + v) ·w = u ·w + v ·w
3 (ru) · v = r(u · v) = u · (rv)

4 u · u ≥ 0
5 u · u = 0⇔ u = 0

Corollary
(r1u1 + r2u2 + ...+ rpup) · v = r1(u1 · v) + r2(u2 · v) + ...+ rp(up · v)
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Length

Definition 1.2 (Length of a vector)
Given any vector v, its length is defined as

‖v‖ ,
√
v · v

Theorem 1.3
Given any vector v ∈ Rn

‖v‖ =
√
v21 + v22 + ...+ v2n

Example
The length of v = (1,−2, 2, 0) is

‖v‖ =
√
12 + (−2)2 + 22 + 02 = 3
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Length

Theorem 1.4
For any vector v and any scalar r it is verified that

‖rv‖ = |r |‖v‖

Proof
It will be given only for v ∈ Rn:

‖rv‖ =
√

(rv1)2 + (rv2)2 + ...+ (rvn)2 =
√
r2(v21 + v22 + ...+ v2n )

=
√
r2
√
v21 + v22 + ...+ v2n = |r |‖v‖

(q.e.d.)

Example (continued)
Find a vector of unit length that has the same direction as v = (1,−2, 2, 0).
Solution

uv = v
‖v‖ =

( 1
3 ,−

2
3 ,

2
3 , 0
)
⇒ ‖uv‖ =

√
1
9 + 4

9 + 4
9 + 0 = 1
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Distance

Definition 1.3 (Distance in R)
The distance between any two numbers a, b ∈ R can be defined as

d(a, b) = |a − b|

Example
Calculate the distance between 2 and 8 as well as between -3 and 4.

7. Orthogonality and least squares December 3, 2013 12 / 119



Distance

Definition 1.4 (Distance in Rn)
The distance between any two vectors u, v ∈ Rn can be defined as

d(u, v) = ‖u− v‖

Example
Calculate the distance between u = (7, 1) and v = (3, 2)

d(u, v) = ‖(7, 1)− (3, 2)‖ = ‖(4,−1)‖ =
√
42 + 12 =

√
17
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Distance

Example
For any two vectors in R3, u and v, the distance can be calculated through

d(u, v) = ‖u− v‖ = ‖(u1 − v1, u2 − v2, u3 − v3)‖ =√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2
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Orthogonality

Example
Any two vectors in R2, u and v, are orthogonal if d(u, v) = d(u,−v)

d2(u, v) = ‖u− v‖2 = (u− v) · (u− v) = u ·u+ v · v− 2u · v = ‖u‖2 + ‖v‖2− 2u · v
d2(u,−v) = ‖u+v‖2 = (u+v) · (u+v) = u ·u+v ·v+2u ·v = ‖u‖2 +‖v‖2 +2u ·v

d2(u, v) = d2(u,−v)⇒ −2u · v = 2u · v⇒ u · v = 0
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Orthogonality

Definition 1.5 (Orthogonality between two vectors)
Any two different vectors, u and v, in a vector space V are orthogonal iff

u · v = 0

Corollary
0 is orthogonal to any other vector.

Theorem 1.5 (Pythagorean theorem)
Any two vectors, u and v, in a vector space V are orthogonal iff

‖u + v‖2 = ‖u‖2 + ‖v‖2

7. Orthogonality and least squares December 3, 2013 16 / 119



Orthogonality

Definition 1.6 (Orthogonality between vector and vector space)
Let u be a vector in a vector space V and W a vector subspace of V . u is
orthogonal to W if u is orthogonal to all vectors in W . The set of all vectors
orthogonal to W is denoted as W⊥ (the orthogonal complement of W ).

Example
Let W be a plane in R3 passing through the origin and L be a line, passing
through the origin and perpendicular to W . For any vector w ∈W and any vector
z ∈ L we have

w · z = 0

Therefore,

L = W⊥ ⇔W = L⊥
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Orthogonality

Theorem 1.6
Let W be a vector subspace of a vector space V .

1 x ∈W⊥ iff x is orthogonal to every vector in a set that spans W .
2 W⊥ is a vector subspace of V .

Theorem 1.7

Let A ∈Mm×n, then
1 (Row{A})⊥ = Nul{A}
2 (Col{A})⊥ = Nul{AT}
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Orthogonality

Proof Nul{A} ⊆ (Row{A})⊥
Consider the rows of A, ai (i = 1, 2, ...,m) as column vectors, then for any vector
x ∈ Nul{A} we know

Ax = 0⇒


aT1
aT2
...
aTm

 x =


aT1 x
aT2 x
...
aTmx

 =


a1 · x
a2 · x
...

am · x

 =


0
0
...
0


Consequently, x is orthogonal to all the rows of A, which span Row{A} and by
the previous theorem, x ∈ (Row{A})⊥
Proof Nul{A} ⊇ (Row{A})⊥

Conversely, let x ∈ (Row{A})⊥, then by the previous theorem we know that

ai · x for i = 1, 2, ...,m⇒ Ax = 0

So, x ∈ Nul{A}
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Orthogonality

Proof (Col{A})⊥ = Nul{AT}
Let’s define B = AT . By the first part of this theorem, we know

(Row{B})⊥ = Nul{B} ⇒ (Row{AT})⊥ = Nul{AT} ⇒ (Col{A})⊥ = Nul{AT}

Theorem 1.8
For any two vectors u and v in a vector space V , the angle between the two can
be measured through the dot product:

u · v = ‖u‖‖v‖ cos θ
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 1:

6.1.15
6.1.22
6.1.24
6.1.26
6.1.28
6.1.30
6.1.32 (computer)
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Orthogonal sets

Definition 2.1 (Orthogonal set)
Let S = {u1,u2, ...,up} be a set of vectors. S is an orthogonal set iff

ui · uj = 0 ∀i , j ∈ {1, 2, ..., p} i 6= j

Example
Let u1 = (3, 1, 1), u2 = (−1, 2, 1), u3 = (− 1

2 ,−2,
7
2 ). Check whether the set

S = {u1,u2,u3} is orthogonal.
Solution

u1 · u2 = 3 · (−1) + 1 · 2 + 1 · 1 = 0
u1 · u3 = 3 · (− 1

2 ) + 1 · (−2) + 1 · ( 72 ) = 0
u2 · u3 = (−1) · (− 1

2 ) + 2 · (−2) + 1 · ( 72 ) = 0
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Orthogonal sets

Theorem 2.1
If S is an orthogonal set of non-null vectors, then S is linearly independent and,
consequently, it is a basis of the subspace spanned by S.
Proof
Let ui (i = 1, 2, ..., p) be the elements of S. Let us assume that S is linearly
dependent. Then, there exists coefficients c1, c2, ..., cp not all of them null such
that

0 = c1u1 + c2u2 + ...+ cpup

Now, we compute the inner product with u1

0 · u1 = (c1u1 + c2u2 + ...+ cpup) · u1
0 = c1(u1 · u1) + c2(u2 · u1) + ...+ cp(up · u1) = c1‖u1‖2 ⇒ c1 = 0

Multiplying by ui (i = 2, 3, ..., p) we can show that all ci ’s are 0, and, therefore,
the set S is linearly independent.
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Orthogonal basis

Definition 2.2 (Orthogonal basis)
A set of vectors B is an ortohogonal basis of a vector space V if it is an
ortohogonal set and it is a basis of V .

Theorem 2.2
Let {u1,u2, ...,up} be an orthogonal basis for a vector space V , for each x ∈ V
we have

x = x·u1
‖u1‖2 u1 + x·u2

‖u2‖2 u2 + ...+
x·up
‖up‖2 up

Proof
If x is in V , then it can be expressed as a linear combination of the vectors in a
basis of V

x = c1u1 + c2u2 + ...+ cpup

Now, we calculate the dot product with u1

x · u1 = (c1u1 + c2u2 + ...+ cpup) · u1 = c1‖u1‖2 ⇒ c1 = x·u1
‖u1‖2
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Orthogonal basis

Example
Let u1 = (3, 1, 1), u2 = (−1, 2, 1), u3 = (− 1

2 ,−2,
7
2 ), and B = {u1,u2,u3} be an

orthogonal basis of R3. Let x = (6, 1,−8). The coordinates of x in B are given by

x · u1 = 11 x · u2 = −12 x · u1 = −33
‖u1‖2 = 11 ‖u2‖2 = 6 ‖u3‖2 = 33

2

x = 11
11u1 + −12

6 u2 + −33
33
2
u3

= u1 − 2u2 − 2u3

The coordinates of x in the basis B are

[x]B = (1,−2,−2)

7. Orthogonality and least squares December 3, 2013 26 / 119



Orthogonal projections

Orthogonal projection onto a vector
Consider a vector y and another one u. Let us assume we want to decompose y as
the sum of two orthogonal vectors ŷ (along the direction of u) and another vector
z (orthogonal to u):

y = ŷ + z = αu + z⇒
z = y− ŷ

We need to find α that makes u and z orthogonal.

0 = z · u = (y− αu) · u = y · u− α‖u‖2 ⇒ α = y·u
‖u‖2

ŷ is the orthogonal projection of y onto u.
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Orthogonal projections

Example
Let y = (7, 6) and u = (4, 2). Then,

y · u = 40
‖u‖2 = 20

}
⇒

ŷ = y·u
‖u‖2 u = 40

20u = 2u =

(
8
4

)
z = y− ŷ =

(
7
6

)
−
(
8
4

)
=

(
−1
2

)
d(y, ŷ) = ‖y− ŷ‖ = ‖z‖ =

√
(−1)2 + 22 =

√
5
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Orthonormal set

Definition 2.3 (Orthonormal set)
{u1,u2, ...,up} is an orthonormal set if it is an orthogonal set and all ui vectors
have unit length.

Example
Show that the set {u1,u2,u3} is orthonormal, with

u1 = 1√
11

3
1
1

 u2 = 1√
6

−12
1

 u3 = 1√
66

−1−4
7


Solution
Let’s check that they are orthogonal:

u1 · u2 = 1√
11

1√
6 (3 · (−1) + 1 · 2 + 1 · 1) = 0

u1 · u3 = 1√
11

1√
66 (3 · (−1) + 1 · (−4) + 1 · 7) = 0

u2 · u3 = 1√
6

1√
66 ((−1) · (−1) + (2) · (−4) + (1) · 7) = 0
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Orthonormal set

Example (continued)
Now, let’s check that they have unit length:

‖u1‖ =

√(
1√
11

)2
(32 + 12 + 12) =

√
9+1+1

11 = 1

‖u2‖ =

√(
1√
6

)2
((−1)2 + 22 + 12) =

√
1+4+1

6 = 1

‖u3‖ =

√(
1√
66

)2
((−1)2 + (−4)2 + 72) =

√
1+16+49

66 = 1

Theorem 2.3
If S = {u1,u2, ...,un} is an orthonormal set, then it is an orthonormal basis of
Span{S}.

Example
{e1, e2, ..., en} is an orthonormal basis of Rn.
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Orthonormal basis

Theorem 2.4
Let S = {u1,u2, ...,un} is an orthogonal set of vectors, then the set
S ′ = {u′1,u′2, ...,u′n} where

u′i = ui
‖ui‖

is a orthonormal set (this operation is called vector normalization).
Proof
Let’s check that the u′i vectors are orthogonal:

u′i · u′j = ui
‖ui‖ ·

uj
‖uj‖ = 1

‖ui‖‖uj‖ui · uj

But this product is obviusly 0 because the ui vectors are orthogonal. Let’s check
now that the u′i vectors have unit length:

‖u′i‖ =
∥∥∥ ui
‖ui‖

∥∥∥ = ‖ui‖
‖ui‖ = 1

7. Orthogonality and least squares December 3, 2013 31 / 119



Orthonormal matrix

Theorem 2.5
Let U ∈Mm×n be a square matrix. The columns of U form an orthonormal set iff

UTU = In

It is said that U is an orthonormal matrix.
Proof
Let’s consider the columns of U

U =
(
u1 u2 ... un

)
Let’s calculate now UTU

UTU =


uT1
uT2
...
uTn

(u1 u2 ... un
)

=


uT1 u1 uT1 u2 ... uT1 un
uT2 u1 uT2 u2 ... uT2 un
... ... ... ...

uTn u1 uTn u2 ... uTn un


The condition UTU = In simply states

{
uTi uj = 0 i 6= j
uTi uj = 1 i = j , which is the

definition of an orthonormal set.
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Orthonormal matrix

Theorem 2.6
Let U ∈Mn×n be an orthonormal matrix and ∀x, y ∈ Rn, then

1 ‖Ux‖ = ‖x‖
2 (Ux) · (Uy) = x · y
3 (Ux) · (Uy) = 0⇔ x · y = 0

Example

Let U =


1√
2

2
3

1√
2 − 2

3
0 1

3

 and x =

(√
2
3

)
.

U is an orthonormal matrix because

UTU =

 1√
2

1√
2 0

2
3
− 2

3
1
3




1√
2

2
3

1√
2 − 2

3
0 1

3

 =

(
1 0
0 1

)
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Orthonormal matrix

Example (continued)
Let’s calculate now Ux

Ux =


1√
2

2
3

1√
2 − 2

3
0 1

3

(√23
)

=

 3
−1
1


Let’s check now that ‖Ux‖ = ‖x‖

‖Ux‖ = ‖(3,−1, 1)‖ =
√
32 + (−1)2 + 12 =

√
11

‖x‖ =
∥∥(
√
2, 3)

∥∥ =
√

(
√
2)2 + 32 =

√
11

Theorem 2.7
Let U be an orthonormal and square matrix. Then,

1 U−1 = UT

2 UT is also an orthonormal matrix (i.e., the rows of U also form an
orthonormal set of vectors).
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 2:

6.2.1
6.2.10
6.2.15
6.2.25
6.2.26
6.2.29
6.2.35 (computer)
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Orthogonal projections

Definition 3.1 (Orthogonal projection)
The orthogonal projection of a point y onto a vector subspace W is a point
ŷ ∈W such that

z = y− ŷ
z ⊥W
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Orthogonal projections

Example
Let {u1,u2, ...,u5} be an orthogonal basis of R5. Consider the subspace
W = Span{u1,u2}. Given any vector y ∈ R5, we can decompose it as the sum of
a vector in W and a vector perpendicular to W

y = ŷ + z

Solution
If {u1,u2, ...,u5} is a basis of R5, then any vector y ∈ R5 can be written as

y = c1u1 + c2u2 + ...+ c5u5

We may decompose this sum as

ŷ = c1u1 + c2u2
z = c3u3 + c4u4 + c5u5
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Orthogonal projections

Example (continued)
It is obvious that ŷ ∈W . Now we need to show that z ∈W⊥. For doing so, we
will show that

z · u1 = 0
z · u2 = 0

To show the first equation we note that

z · u1 = (c3u3 + c4u4 + c5u5) · u1
= c3(u3 · u1) + c4(u4 · u1) + c5(u5 · u1)
= c3 · 0 + c4 · 0 + c5 · 0
= 0

We would proceed analogously for z · u2 = 0.
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Orthogonal projections

Theorem 3.1 (Orthogonal Decomposition Theorem)
Let W be a vector subspace of a vector space V . Then, any vector y ∈ V can be
written uniquely as

y = ŷ + z

with ŷ ∈W and z ∈W⊥. In fact, if {u1,u2, ...,up} is an orthogonal basis of W ,
then

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up

7. Orthogonality and least squares December 3, 2013 40 / 119



Orthogonal projections

Proof
ŷ is obviously in W since it has been written as a linear combination of vectors in
a basis of W . z is perpendicular to W because

z · u1 =
(
y−

(
y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up

))
· u1

= y · u1 − y·u1
‖u1‖2 (u1 · u1)− y·u2

‖u2‖2 (u2 · u1)− ...− y·up
‖up‖2 (up · u1)

[{ui} is an orthogonal set]
= y · u1 − y·u1

‖u1‖2 (u1 · u1)

= y · u1 − y·u1
‖u1‖2 ‖u1‖

2

= y · u1 − y · u1
= 0

We could proceed analogously for all elements in the basis of W .
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Orthogonal projections

We need to show now that the decomposition is unique. Let us assume that it is
not unique. Consequently, there exist different vectors such that

y = ŷ + z
y = ŷ′ + z′

We subtract both equations

0 = (ŷ− ŷ′) + (z− z′)⇒ ŷ− ŷ′ = z′ − z

Let v = ŷ− ŷ′. It is obvious that v ∈W because it is written as a linear
combination of vectors in W . On the other side, v = z′ − z, i.e., it is a linear
combination of vectors in W⊥, so v ∈W⊥. The only vector that belongs to W
and W⊥ at the same time is

v = 0⇒
{

ŷ = ŷ′
z = z′ .

and consequently, the orthogonal decomposition is unique. Additionally, the
uniqueness of the decomposition depends only on W and not on the particular
basis chosen for W .
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Orthogonal projections

Example
Let u1 = (2, 5,−1) and u2 = (−2, 1, 1). Let W be the subspace spanned by u1
and u2. Let y = (1, 2, 3) ∈ R3. The orthogonal projection of y onto W is

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2

= 1·2+2·5+3·(−1)
22+52+(−1)2

 2
5
−1

+ 1·(−2)+2·1+3·1
(−2)2+12+12

−21
1


= 9

30

 2
5
−1

+ 15
30

−21
1

 =

− 2
5
2
1
5


z = y− ŷ =

1
2
3

−
− 2

5
2
1
5

 =

 7
5
0
14
5
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Orthogonal projections

Geometrical interpretation
ŷ can be understood as the sum of the orthogonal projection of y onto each one
of the elements of the basis of W .

Theorem 3.2
If y belongs to W , then the orthogonal projection of y onto W is itself:

ŷ = y
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Properties of orthogonal projections

Theorem 3.3 (Best approximation theorem)
The orthogonal projection of y onto W is the point in W with minimum distance
to y, i.e.,

‖y− ŷ‖ ≤ ‖y− v‖

for all v ∈W , v 6= ŷ.
Proof
We know that y− ŷ is orthogonal to W . For any vector v ∈W , v 6= ŷ, we have
that ŷ− v is in W . Now consider the orthogonal decomposition of the vector y− v

y− v = (y− ŷ) + (ŷ− v)
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Properties of orthogonal projections

Due to the orthogonal decomposition theorem (Theorem 3.1), this decomposition
is unique and due to the Pythagorean theorem (Theorem 1.5) we have

‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2

Since v 6= ŷ we have ‖ŷ− v‖2 > 0 and consequently

‖y− v‖2 > ‖y− ŷ‖2
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Properties of orthogonal projections

Theorem 3.4
If {u1,u2, ...,up} is an orthonormal basis of W , then the orthogonal projection of
y onto W is

ŷ = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up

If we construct the orthonormal matrix U =
(
u1 u2 ... up

)
, then

ŷ = UUTy

Proof
By Theorem 3.1 we know that for all orthogonal bases it is verified

ŷ = y·u1
‖u1‖2 u1 + y·u2

‖u2‖2 u2 + ...+
y·up
‖up‖2 up

Since the basis is in this case orthonormal, then ‖u‖ = 1 and consequently

ŷ = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up
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Properties of orthogonal projections

On the other side we have

UTy =


uT1
uT2
...
uTp

 y =


uT1 y
uT2 y
...
uTp y

 =


〈u1, y〉
〈u2, y〉
...
〈up, y〉


Then,

UUTy =
(
u1 u2 ... up

)
〈u1, y〉
〈u2, y〉
...
〈up, y〉

 = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,up〉up

(q.e.d.)
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Properties of orthogonal projections

Corollary
Let U =

(
u1 u2 ... up

)
be a n × p matrix with orthonormal columns and

W = Col{U} its column space. Then,

∀x ∈ Rp UTUx = x No effect
∀y ∈ Rn UUTy = ŷ Orthogonal projection of y onto W

If U is a n × n, then W = Rn and the projection has no effect

∀y ∈ Rn UUTy = ŷ = y No effect
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 3:

6.3.1
6.3.7
6.3.15
6.3.23
6.3.24
6.3.25 (computer)
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Gram-Schmidt orthogonalization
Gram-Schmidt orthogonalization is a procedure aimed at producing an orthogonal
basis of any subspace W .

Example
Let W = Span{x1, x2} with x1 = (3, 6, 0) and x2 = (1, 2, 2). Let’s look for an
orthogonal basis of W .
Solution
We may keep the first vector for the basis

v1 = x1 = (3, 6, 0)

For the second vector in the basis, we need to keep the component of x2 that is
orthogonal to x1. For doing so we calculate the projection of x2 onto x1 (p), and
we decompose x2 as

x2 = p + (x2 − p) = (1, 2, 0) + (0, 0, 2)

We, then, keep the orthogonal part of x2

v2 = x2 − p = (0, 0, 2)
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Gram-Schmidt orthogonalization

Example (continued)
The set {v1, v2} is an orthogonal basis of W .
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Gram-Schmidt orthogonalization

Example
Let W = Span{x1, x2, x3} with x1 = (1, 1, 1, 1), x2 = (0, 1, 1, 1) and
x3 = (0, 0, 1, 1). Let’s look for an orthogonal basis of W .
Solution
We may keep the first vector for the basis. Then we construct a subspace (W1)
with a single element in its basis

v1 = x1 = (1, 1, 1, 1) W1 = Span{v1}

For the second vector in the basis, we need to keep the component of x2 that is
orthogonal to W1. With the already computed basis vectors, we construct a new
subspace (W2) with two elements in its basis

v2 = x2 − ProjW1(x2) = (− 3
4 ,

1
4 ,

1
4 ,

1
4 ) W2 = Span{v1, v2}

For the third vector in the basis, we repeat the same procedure

v3 = x3 − ProjW2(x3) = (0,− 2
3 ,

1
3 ,

1
3 ) W3 = Span{v1, v2, v3}
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Gram-Schmidt orthogonalization

Theorem 4.1 (Gram-Schmidt orthogonalization)
Given a basis {x1, x2, ..., xp} for a vector subspace W . Define

v1 = x1 W1 = Span{v1}
v2 = x2 − ProjW1(x2) W2 = Span{v1, v2}

...
vp = xp − ProjWp−1(xp) Wp = Span{v1, v2, ..., vp} = W

Then {v1, v2, ..., vp} is an orthogonal basis of W .
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Gram-Schmidt orthogonalization

Proof
Consider Wk = Span{v1, v2, ..., vk} and let us assume that {v1, v2, ..., vk} is a
basis of Wk . Now we construct

vk+1 = xk+1 − ProjWk
(xk+1) Wk+1 = Span{v1, v2, ..., vk+1}

By the orthogonal decomposition theorem (Theorem 3.1), we know that vk+1 is
orthogonal to Wk . Because xk+1 is an element of a basis, we know that
xk+1 /∈Wk . Therefore, vk+1 is not null and xk+1 ∈Wk+1. Finally, the set
{v1, v2, ..., vk+1} is a set of orthogonal, non-null vectors in the
(k + 1)-dimensional space Wk+1. Consequently, by Theorem 9.4 in Chapter 5, it
must be a basis of Wk+1. This process can be iterated till k = p.
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Gram-Schmidt orthogonalization

Orthonormal basis
Once we have an orthogonal basis, we simply have to normalize each vector to
have an orthonormal basis.

Example
Let W = Span{x1, x2} with x1 = (3, 6, 0) and x2 = (1, 2, 2). Let’s look for an
orthonormal basis of W .
Solution
In Slide 52 we learned that an orthogonal basis was given by

v1 = (3, 6, 0)
v2 = (0, 0, 2)

Now, we normalize these two vectors to obtain an orthonormal basis

v′1 = v1
‖v1‖ = 1√

45 (3, 6, 0) = ( 1√
5 ,

2√
5 , 0)

v′2 = v2
‖v2‖ = 1

2 (0, 0, 2) = (0, 0, 1)
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QR factorization of matrices
If we apply the Gram-Schmidt factorization to the columns of a matrix, we have
the following factorization scheme. This factorization is used in practice to find
eigenvalues and eigenvectors as well as to solve linear equation systems.

Theorem 4.2 (QR factorization)
Let A ∈Mm×n with linearly independent columns. Then, A can be factored as

A = QR

where Q ∈Mm×n is a matrix whose columns form an orthonormal basis of
Col{A} and R ∈Mn×n is an upper triangular invertible matrix with positive
entries on its diagonal.
Proof
Let’s orthogonalize the columns of A following the Gram-Schmidt procedure and
construct the orthonormal basis of Col{A}. Let {u1,u2, ...,un} be such a basis.
Let us construct the matrix

Q =
(
u1 u2 ... un

)
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QR factorization of matrices

Let us call ai (i = 1, 2, ..., n) to the columns of A. By the Gram-Schmidt
orthogonalization, we know that for any k between 1 and n we have

Span{a1, a2, ..., ak} = Span{u1,u2, ...,uk}

Consequently, we can express each column of A in the orthonormal basis:

ak = r1ku1 + r2ku2 + ...+ rkkuk + 0 · uk+1 + ...+ 0 · un

If rkk is negative, we can multiply both rkk and uk by -1. We now collect all these
coefficients in a vector rk = (r1k , r2k , ..., rkk , 0, 0, ..., 0) to have

ak = Qrk

By gathering all these vectors in a matrix, we have the triangular matrix R

R =
(
r1 r2 ... rn

)
R is invertible because the columns of A are linearly independent.
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QR factorization of matrices

Example

Let’s calculate the QR factorization of A =


1 0 0
1 1 0
1 1 1
1 1 1

. From Slide 54 we know

that the vectors

v1 = (1, 1, 1, 1)
v2 = (− 3

4 ,
1
4 ,

1
4 ,

1
4 )

v3 = (0,− 2
3 ,

1
3 ,

1
3 )

Is an orthogonal basis of the column space of A. We now normalize these vectors
to obtain the orthonormal basis in Q

Q =


1
2 − 3√

12 0
1
2

1√
12 − 2√

6
1
2

1√
12

1√
6

1
2

1√
12

1√
6
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QR factorization of matrices

Example (continued)
To find R we multiply on both sides of the factorization by QT

A = QR ⇒ QTA = QTQR = R

R = QTA =


1
2

1
2

1
2

1
2

− 3√
12

1√
12

1√
12

1√
12

0 − 2√
6

1√
6

1√
6



1 0 0
1 1 0
1 1 1
1 1 1


=

2 3
2 1

0 3√
12

2√
12

0 0 1√
6
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 4:

6.4.7
6.4.13
6.4.19
6.4.22
6.4.24
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Least squares

Let’s assume we want to solve the equation system Ax = b, but, due to noise,
there is no solution. We may still look for a solution such that Ax ≈ b. In fact the
goal will be to minimize d(Ax,b).

Definition 5.1 (Least squares solution)
Let A be a m × n matrix and b ∈ Rm. ˆx ∈ Rn is a least squares solution of the
equation system Ax = b iff

∀x ∈ Rn ‖b− Ax̂‖ ≤ ‖b− Ax‖
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Least squares

Solution of the general least squares problem
Applying the Best Approximation Theorem (Theorem 3.3), we may project b onto
the column space of A

b̂ = ProjCol{A}{b}

Then, we solve the equation
system

Ax = b̂

that has at least one solution.
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Least squares

Theorem 5.1
The set of least-squares solutions of Ax = b is the same as the set of solutions of
the normal equations

ATAx = ATb

Proof: least-squares solutions ⊂ normal equations solutions
Let us assume that x̂ is a least-squares solution. Then, b− Ax̂ is orthogonal to
Col{A}, and in particular, to each one of the columns of A (ai , i = 1, 2, ..., n):

ai · (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n} ⇒
aTi (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n} ⇒

AT (b− Ax̂) = 0⇒
ATb = ATAx̂

That is, every least-squares solution is also a solution of the normal equations.
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Least squares

Proof: least-squares solutions ⊃ normal equations solutions
Let us assume that x̂ is solution of the normal equations. Then,

ATb = ATAx̂⇒
AT (b− Ax̂) = 0⇒

aTi (b− Ax̂) = 0 ∀i ∈ {1, 2, ..., n}

That is, b− Ax̂ is orthogonal to the columns of A and, consequently, to Col{A}.
Hence, the equation

b = Ax̂ + (b− Ax̂)

is the orthogonal decomposition of b as a vector in Col{A} and a vector
orthogonal to Col{A}. By the uniqueness of the orthogonal decomposition, Ax̂
must be the orthogonal projection of b onto Col{A} so that

Ax̂ = b̂

and, therefore, x̂ is a least-squares solution.
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Least squares

Example

Find a least-squares solution to Ax = b with A =

4 0
0 2
1 1

 and b =

 2
0
11

.

Solution
Let’s solve the normal equations ATAx̂ = ATb

ATA =

(
17 1
1 5

)
ATb =

(
19
11

)
(
17 1
1 5

)
x̂ =

(
19
11

)
⇒ x̂ =

(
17 1
1 5

)−1(19
11

)
=

(
1
2

)
Let’s check that x̂ is not a solution of the original equation system but a
least-squares solution

Ax̂ =

4 0
0 2
1 1

(1
2

)
=

4
4
3

 = b̂ 6= b =

 2
0
11
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Least squares

Definition 5.2 (Least-squares error)
The least-squares error is defined as

σ2ε , ‖Ax̂− b‖2 = ‖b̂− b‖2

Example (continued)
In this case:

σ2ε = ‖(4, 4, 3)− (2, 0, 11)‖ = ‖(2, 4,−8)‖ ≈ 9.165
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Least squares

Example
Unfortunately, the least-squares solution may not be unique as shown in the next
example (arising in ANOVA). Find a least-squares solution to Ax = b with

A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 and b =


−3
−1
0
2
5
1

.

Solution

ATA =


6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2

 ATb =


4
−4
2
6
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Least squares

Example (continued)
The augmented matrix is

6 2 2 2 4
2 2 0 0 −4
2 0 2 0 2
2 0 0 2 6

 ∼


1 0 0 1 3
0 1 0 −1 −5
0 0 1 −1 −2
0 0 0 0 0


Any point of the form

x̂ =


3
−5
−2
0

+ x4


−1
1
1
1

 ∀x4 ∈ R

is a least-squares solution of the problem.
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Least squares

Theorem 5.2
The matrix ATA is invertible iff the columns of A are linearly independent. In this
case, the equation system Ax = b has a unique least-squares solution given by

x̂ = A+b

where A+ is the Moore-Penrose pseudoinverse

A+ = (ATA)−1AT
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Least squares and QR decomposition
Sometimes ATA is ill-conditioned, this means that small perturbations in b
translate into large perturbations in x̂. The QR decomposition offers a numerically
more stable way of finding the least-squares solution.

Theorem 5.3
Let there be A ∈Mm×n with linearly independent columns. Consider its QR
decomposition (A = QR). Then, for each b ∈ Rm there is a unique least-squares
solution of Ax = b given by

x̂ = R−1QTb

Proof
If we substitute x̂ = R−1QTb into Ax we have

Ax̂ = AR−1QTb = QRR−1QTb = QQTb.

But Q is an orthonormal basis of Col{A} (Theorem 4.2 and Corollary in Slide 49)
and consequently QQTb is the orthogonal projection of b onto Col{A}, that is, b̂.
So, x̂ = R−1QTb is a least-squares solution of Ax = b. Additionally, since the
columns of A are linearly independent, by Theorem 5.2, this solution is unique.
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Least squares and QR decomposition

Remind that numerically it is easier to solve R x̂ = QTb than x̂ = R−1QTb

L

et A =


1 3 5
1 1 0
1 1 2
1 3 3

 and b =


3
5
7
−3

. Its QR decomposition is

A = QR =


1
2

1
2

1
21

2 − 1
2 − 1

21
2 − 1

2
1
21

2
1
2 − 1

2


2 4 5
0 2 3
0 0 2


QTb =

 6
−6
4

⇒
2 4 5
0 2 3
0 0 2

 x̂ =

 6
−6
4

⇒ x̂ =

 10
−6
2
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 5:

6.5.1
6.5.19
6.5.20
6.5.21
6.5.24
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7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Least-squares linear regression

Example
In many scientific and engineering problems, it is needed to explain some
observations y as a linear function of an independent variable x. For instance, we
may try to explain the weight of a person as a linear function of its height

Weight = β0 + β1Height

A. Schneider, G. Hommel, M. Blettner. Linear Regression Analysis. Dtsch Arztebl Int. 2010 November; 107(44): 776–782.
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Least-squares linear regression

Example (continued)
For each observation we have an equation

Height (m.) Weight (kg.)
1.70 57
1.53 43
1.90 94
... ...

57 = β0 + 1.70β1
43 = β0 + 1.53β1
94 = β0 + 1.90β1
...


1 1.70
1 1.53
1 1.90
... ...

(β0β1
)

=


57
43
94
...


which is of the form

Xβ = y
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Least-squares linear regression

Least-squares regression
Each one of the observed data points (xj , yj) gives an equation. All together
provide an equation system

Xβ = y

that is an overdetermined, linear equation system of the form Ax = b. The matrix
X is called the system matrix and it is related to the independent (predictor)
variables (the height in this case). The vector y is called the observation vector
and collects the values of the dependent (predicted) variable (the weight in this
case). The model

y = β0 + β1x + ε

is called the linear regression of y on x . β0 and β1 are called the regression
coefficients. The difference between the predicted value and the observed value
for a particular observation (ε) is called the residual of that observation.
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Least-squares linear regression

The residual of the j-th observation is defined as

εj = yj − (β0 + β1xj)
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Least-squares linear regression

The goal of least-squares regression is to minimize
n∑

j=1
ε2j = ‖y− Xβ‖2

Let’s analyze this term

Xβ =


1 x1
1 x2
... ...
1 xn

(β0β1
)

=


β0 + β1x1
β0 + β2x2

...
β0 + βnxn

 =


ŷ1
ŷ2
...
ŷn


Then

‖y− Xβ‖2 =

∥∥∥∥∥∥∥∥

y1 − ŷ1
y2 − ŷ2
...

yn − ŷn


∥∥∥∥∥∥∥∥
2

=
n∑

j=1
(yj − ŷj)2 =

n∑
j=1

ε2j
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Least-squares linear regression

Example
Suppose we have observed the following values of height and weight (1.70,57),

(1.53,43), (1.90,94). We construct the system matrix X =

1 1.70
1 1.53
1 1.90

 and the

observation vector y =

57
43
94

. Now we look the normal equations

Xβ = y⇒ XTXβ = XTy

XTX =

(
3.00 5.13
5.13 8.84

)
XTy =

(
194.00
341.29

)
β̂ = (XTX )−1XTy =

(
−173.14
137.90

)
Weight = −173.39 + 139.21Height
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Least-squares linear regression

Example

1.5 1.6 1.7 1.8 1.9 2
30

40

50

60

70

80

90

100

110

Height (m)

W
ei

gh
t (

kg
)

MATLAB:
X=[1 1.70; 1 1.53; 1 1.90];

y=[57; 43; 94];
beta=inv(X’*X)*X’*y
x=1.5:0.01:2.00;
yp=beta(1)+beta(2)*x;
plot(x,yp,X(:,1),y,’o’)
xlabel(’Height (m)’)
ylabel(’Weight (kg)’)
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Least-squares linear regression

The general linear model
The linear model is not restricted to straight lines. We can use it to fit any kind of
curves:

y = β0f0(x) + β1f1(x) + β2f2(x) + ...

Fitting a parabola

f0(x) = 1
f1(x) = x
f2(x) = x2

⇒

y1 = f0(x1) + β1f1(x1) + β2f2(x1)
y2 = f0(x2) + β1f1(x2) + β2f2(x2)
...
yn = f0(xn) + β1f1(xn) + β2f2(xn)

y1
y2
...
yn

 =


1 x1 x21
1 x2 x22
... ... ...
1 xn x2n


β0β1
β2

+


ε1
ε2
...
εn

 ⇒ y = Xβ + ε
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Least-squares linear regression

Fitting a parabola
In this example they model the deformation of the wall of the zebra fish embryo as
a function of strain.

Z. Lua, P. C.Y. Chen, H. Luo, J. Nam, R. Ge, W. Lin. Models of maximum stress and strain of zebrafish embryos under indentation. J. Biomechanics 42

(5): 620–625 (2009)
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Least-squares linear regression

Multivariate linear regression
The linear model is not restricted to one variable. By fitting several variables we
may fit surfaces and hypersurfaces

y = β0f0(x1, x2) + β1f1(x1, x2) + β2f2(x1, x2) + ...

Fitting a parabolic surface
f0(x1, x2) = 1
f1(x1, x2) = x1
f2(x1, x2) = x2
f3(x1, x2) = x21
f4(x1, x2) = x22
f5(x1, x2) = x1x2

⇒ X =


1 x11 x12 x211 x212 x11x12
1 x21 x22 x221 x222 x21x22
... ... ... ... ... ...
1 xn1 xn2 x2n1 x2n2 xn1xn2
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Least-squares linear regression

Fitting a parabolic surface
In this example they model the shape of cornea using videokeratoscopic images.

http://www.fhp.tu-darmstadt.de/nt/index.php?id=531&L=1Signal Processing Group, Technische Universitat Darmstadt7. Orthogonality and least squares December 3, 2013 87 / 119
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 6:

6.6.1
6.6.5
6.6.9
6.6.12 (computer)
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Inner product spaces
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Inner product spaces

Definition 7.1 (Inner product)
An inner product in a vector space V is a function that assigns a real number to
every pair of vectors u and v, 〈u, v〉 and that satisfies the following axioms for all
u, v,w ∈ V and all scalars c:

1 〈u, v〉 = 〈v,u〉
2 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
3 〈cu, v〉 = c 〈u, v〉
4 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0.

Example
For instance in Weighted Least Squares (WLS) we may use an inner product in
R2 defined as:

〈u, v〉 = 4u1v1 + 5u2v2

In this way we give less weight to distances in the first component with respect to
distances in the second component.
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Inner product spaces

Now we have to prove that this function is effectively an inner product:
1 〈u, v〉 = 〈v,u〉

〈u, v〉 = 4u1v1 + 5u2v2 [by definition]
= 4v1u1 + 5v2u2 [commutativity of scalar multiplication]
= 〈v,u〉 [by definition]

2 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

〈u + v,w〉 = 4(u1 + v1)w1 + 5(u2 + v2)w2 [by definition]
= 4u1w1 + 4v1w1 + 5u2w2 + 5v2w2 [distributivity of scalar]

[multiplication/addition]
= 4u1w1 + 5u2w2 + 4v1w1 + 5v2w2 [commutativity]

[of scalar addition]
= 〈u,w〉+ 〈v,w〉 [by definition]
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Inner product spaces

3 〈cu, v〉 = c 〈u, v〉
〈cu, v〉 = 4cu1v1 + 5cu2v2 [by definition]

= c4v1u1 + c5v2u2 [commutativity of scalar multiplication]
= c(4v1u1 + 5v2u2) [distributivity of scalar multiplication]
= c 〈u, v〉 [by definition]

4 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0.
1 〈u, u〉 ≥ 0

〈u, u〉 = 4u2
1 + 5u2

2 [by definition]
which is obviously larger than 0.

2 〈u, u〉 = 0 iff u = 0.
〈u, u〉 = 0⇔ 4u2

1 + 5u2
2 = 0⇔ u1 = u2 = 0
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Inner product spaces

Example
Consider two vectors p and q the vector space of polynomials of degree n (Pn).
Let t0, t1, ..., tn be n distinct real numbers and K any scalar. The inner product
between p and q is defined as

〈p, q〉 = K (p(t0)q(t0) + p(t1)q(t1) + ...+ p(tn)q(tn))

Axioms 1-3 are easy to check. Let’s prove Axiom 4
4 〈p, p〉 ≥ 0 and 〈p, p〉 = 0 iff p = 0.

1 〈p, p〉 ≥ 0
〈p, p〉 = K

(
p2(t0) + p2(t1) + ... + p2(tn)

)
[by definition]

which is obviously larger than 0.
2 〈p, p〉 = 0 iff p = 0.

〈p, p〉 = 0⇔ K
(
p2(t0) + p2(t1) + ... + p2(tn)

)
⇔

p(t0) = p(t1) = ... = p(tn) = 0
But p is a polynomial of degree n so, at most, it can have n zeros. However,
the previous condition requires the polynomial to vanish at n + 1 points. This
is impossible unless p = 0.
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Inner product spaces

Example
Consider two vectors p and q the vector space of polynomials of degree n (Pn).
Assume that we regularly space the n + 1 points in the interval [−1, 1]

and set K = ∆T , then the inner product between the two polynomials becomes

〈p, q〉 = (p(t0)q(t0) + p(t1)q(t1) + ...+ p(tn)q(tn)) ∆T =
n∑

i=0
p(ti)q(ti)∆T

Making ∆T tend to 0, the inner product becomes

〈p, q〉 =
∫ 1
−1 p(t)q(t)dt
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Inner product spaces

Legendre polynomials are orthogonal polynomials in the interval [−1, 1]

Legendre polynomials are very useful for regression of high-order polynomials as
shown in next slide.
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Inner product spaces
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Length, distance and orthogonality

Length, distance and orthogonality
The length of a vector u in an inner product space is defined in the standard way

‖u‖ =
√
〈u,u〉

Similarly, the distance between two vectors u and v is defined as

d(u, v) = ‖u− v‖

Finally, two vectors u and v are said to be orthogonal iff

〈u, v〉 = 0
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Length, distance and orthogonality

Example
In the vector space of polynomials in the interval [0, 1], P[0, 1], let’s define the
inner product

〈p, q〉 =
∫ 1
0 p(t)q(t)dt

What is the length of the vector p(t) = 3t2?
Solution

‖p‖ =
√
〈p, p〉 =

√∫ 1
0 p2(t)dt =

√∫ 1
0 (3t2)2dt =

√∫ 1
0 9t4dt

=

√
9 t5

5

∣∣∣1
0

=
√
9
( 1
5 − 0

)
= 3√

5
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Gram-Schmidt orthogonalization

Example
Gram-Schmidt is applied in the standard way. For instance, find an orthogonal
basis of P2[−1, 1]. A basis that spans this space is

{1, t, t2}

Let’s orthogonalize it

p0(t) = 1

p1(t) = t − 〈t,p0(t)〉‖p0‖2 p0(t) = t −
∫ 1

−1
tdt∫ 1

−1
dt
1 = t − 0

21 = t

p2(t) = t2 − 〈t
2,p0(t)〉
‖p0‖2 p0(t)− 〈t

2,p1(t)〉
‖p1‖2 p1(t)

= t2 −
∫ 1

−1
t2dt∫ 1

−1
dt
−
∫ 1

−1
t2tdt∫ 1

−1
t2dt

t = t2 −
2
3
2 = t2 − 1

3

In Slide 97 we proposed the Legendre polynomial of degree 2 to be
P2(t) = 1

2 (3t2 − 1), we can easily show that P2(t) = 3
2p2(t). Consequently, if

p2(t) is orthogonal to p0(t) and p1(t) so is P2(t).
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Best approximation

Example
What is the best approximation in P2[−1, 1] of p(t) = t3?
Solution
We know the answer is the orthogonal projection of p(t) onto P2[−1, 1]. An
orthogonal basis of P2[−1, 1] is {1, t, t2 − 1

3}. Therefore, this projection can be
calculated as

p̂(t) = ProjP2[−1,1]{p(t)} = 〈p,p0〉
‖p0‖2 p0(t) + 〈p,p1〉

‖p1‖2 p1(t) + 〈p,p2〉
‖p2‖2 p2(t)

Let’s perform these calculations:

〈p, p0(t)〉 =
∫ 1
−1 t

3dt = 0 ‖p0‖2 =
∫ 1
−1 dt = 2

〈p, p1(t)〉 =
∫ 1
−1 t

3tdt = 2
5 ‖p1‖2 =

∫ 1
−1 t

2dt = 2
3

〈p, p2(t)〉 =
∫ 1
−1 t

3(t2 − 1
3 )dt = 0 ‖p2‖2 =

∫ 1
−1 (t2 − 1

3 )2dt = 8
45

p̂(t) = 0
2 +

2
5
2
3
t + 0

8
45

(t2 − 1
3 ) = 3

5 t
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Best approximation
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Best approximation

Example
In this example we exploited the best approximation property of orthogonal
wavelets to speed-up and make more robust angular alignments of projections in
3D Electron Microscopy.

C.O.S.Sorzano, S. Jonic, C. El-Bez, J.M. Carazo, S. De Carlo, P. Thévenaz, M. Unser. A multiresolution approach to orientation assignment in 3-D

electron microscopy of single particles. Journal of Structural Biology 146(3): 381-392 (2004, cover article)
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Pythagorean theorem

Theorem 7.1 (Pythagorean theorem)
Given any vector v in an inner product space V and a subspace of it W ⊆ V we
have

‖v‖2 = ‖ProjW {v}‖2 + ‖v− ProjW {v}‖2
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The Cauchy-Schwarz inequality

Theorem 7.2 (The Cauchy-Schwarz inequality)
For all u, v ∈ V it is verified

| 〈u, v〉 | ≤ ‖u‖‖v‖

Proof
If u = 0, then

| 〈0, v〉 | = 0 and ‖0‖‖v‖ = 0‖v‖ = 0

So the inequality becomes an equality.
If u 6= 0, then consider W = Span{u} and

‖ProjW {v}‖ =
∥∥∥ 〈v,u〉‖u‖2 u

∥∥∥ = |〈v,u〉|
‖u‖2 ‖u‖ = |〈v,u〉|

‖u‖

But by the Pythagorean Theorem (Theorem 7.1) we have ‖ProjW {v}‖ ≤ ‖v‖.
Consequently,

|〈v,u〉|
‖u‖ ≤ ‖v‖ ⇒ | 〈v,u〉 | ≤ ‖u‖‖v‖ (q.e.d.)

7. Orthogonality and least squares December 3, 2013 105 / 119



The Triangle inequality

Theorem 7.3 (The Triangle inequality)
For all u, v ∈ V it is verified

‖u + v‖ ≤ ‖u‖+ ‖v‖

Proof

‖u + v‖2 = 〈u + v,u + v〉 [By definition]
= 〈u,u〉+ 〈v, v〉+ 2 〈u, v〉 [Properties of inner product]
≤ ‖u‖2 + ‖v‖2 + 2| 〈u, v〉 | 〈u, v〉 ≤ | 〈u, v〉 |
≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ Cauchy-Schwarz
= (‖u‖+ ‖v‖)2
⇒

‖u + v‖ ≤ ‖u‖+ ‖v‖ [Taking square root]

(q.e.d.)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 7:

6.7.1
6.7.13
6.7.16
6.7.18
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Weighted Least Squares

Weighted Least Squares
Let us assume we have a table of collected data and we want to fit a least squares
model. However, we want to give more importance to some observations because
we are more confident about them or they are more important. We encode the
importance as a weight value (the larger the weight, the more importance the
observation has)

X Y W
x1 y1 w1
x2 y2 w2
x3 y3 w3
... ... ...

Let us call ŷj the prediction of the model for the j-th observation and εj the
committed error

yj = ŷj + εj
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Weighted Least Squares

The goal is now to minimize the weighted sum of square errors
n∑

j=1
(wjεj)

2 =
n∑

j=1
(wj(yj − ŷj))2 =

n∑
j=1

(wjyj − wj ŷj)2

Let us collect all observed values into a vector y and do analogously with the
predictions ŷ. Let us define the diagonal matrix

W =


w1 0 0 ... 0
0 w2 0 ... 0
0 0 w3 ... 0
... ... ... ... ...
0 0 0 ... wn


Then, the previous objective function becomes

n∑
j=1

(wjyj − wj ŷj)2 = ‖W y−W ŷ‖2
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Weighted Least Squares

Now, suppose that ŷ is calculated from the columns of a matrix A, that is,
ŷ = Ax. The objective function becomes

n∑
j=1

(wjyj − wj ŷj)2 = ‖W y−WAx‖2

The minimum of this objective function is attained for x̂ that is the least-squares
solution of the equation system

WAx = W y

The normal equations of the problem are

(WA)TWAx = (WA)TW y
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Weighted Least Squares

Example
In this work they used Weighted Least Squares to calibrate a digital system to
measure maximum respiratory pressures.

J.L. Ferreira, F.H. Vasconcelos, C.J. Tierra-Criollo. A Case Study of Applying Weighted Least Squares to Calibrate a Digital Maximum Respiratory

Pressures Measuring System. Applied Biomedical Engineering, Chapter 18 (2011)
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Fourier Series

Example

Fourier tools are, maybe, the
most widespread tool to analyze
signals and its frequency
components. Fourier
decomposition states that any
signal can be obtained by
summing sine waves of different
amplitude, phase and frequency.
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Fourier Series

Theorem 8.1
Consider the vector space of continuous functions in the interval [0, 2π], C [0, 2π].
The set

S = {1, cos(t), sin(t), cos(2t), sin(2t), ..., cos(Nt), sin(Nt)}

is orthogonal with respect to the inner product defined as

〈f (t), g(t)〉 =
∫ 2π
0 f (t)g(t)dt

Proof

〈cos(nt), cos(mt)〉 =
∫ 2π
0 cos(nt) cos(mt)dt

=
∫ 2π
0

1
2 (cos((n + m)t) + cos((n −m)t))dt

= 1
2

(
sin((n+m)t)

n+m + sin((n−m)t)
n−m

)∣∣∣2∗π
0

= 0

where we have used cos(A) cos(B) = 1
2 (cos(A + B) + cos(A− B)).
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Fourier Series

Analogously we could prove that

〈cos(nt), sin(mt)〉 = 0
〈cos(nt), 1〉 = 0
〈sin(nt), 1〉 = 0
‖ cos(nt)‖2 = π
‖ sin(nt)‖2 = π

‖1‖2 = 2π
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Fourier Series

Theorem 8.2 (Fourier series)
Given any function f (t) ∈ C [0, 2π], f (t) can be approximated as closely as desired
by a sum of the form simply by orthogonally projecting it onto W = Span{S}

f (t) ≈ ProjW {f (t)} = 〈f (t),1〉
‖1‖2 +

N∑
n=1

(
〈f (t),cos(nt)〉
‖ cos(nt)‖2 cos(nt) + 〈f (t),sin(nt)〉

‖ sin(nt)‖2 sin(nt)
)
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Fourier Series

Example
In this work we used Fourier space to simulate and to align electron microscopy
images

S. Jonic, C.O.S.Sorzano, P. Thévenaz, C. El-Bez, S. De Carlo, M. Unser. Spline-Based image-to-volume registration for three-dimensional electron

microscopy. Ultramicroscopy, 103: 303-317 (2005)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 8:

6.8.1
6.8.6
6.8.8
6.8.11
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Outline

7 Orthogonality and least squares
Inner product, length and orthogonality (a)
Orthogonal sets, bases and matrices (a)
Orthogonal projections (b)
Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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