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A little bit of history

Least squares was first used to solve problems in geodesy (Andrien-Marie
Legendre, 1805) and astronomy (Carl Friedrich Gauss, 1809). Gauss made the
connection of this method to the distribution of measurement errors. Currently it
is one of the best understood and most widely spread methods.
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Applications

In this example Least Squares are used to plan a radiation therapy.

AutoBeam vs 2

o Optmse

Welcome to

AutoBeam

Bedford, J. L. Sinogram analysis of aperture optimization by iterative least-squares in volumetric modulated arc therapy. Physics in Medicine and Biology,

2013, 58, 1235-1250
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Applications

Traditionally, control applications were formulated in a least-squares setup.

Currently, they have found more sophisticated goal functions that can be regarded
as evolved versions of least squares.
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Inner product

Definition 1.1 (Inner product or dot product)

Let u,v € R" be two vectors. The inner product or dot product between these
two vectors is defined as

n
u-v=(uv) 2> yy
i=1

Theorem 1.1
If we considered u and v to be column vectors (€ M,x1), then

U'V:UTV

Let u=(2,-5,—1) and v = (3,2, -3).

u-v=2-3+(-5)-2+1-(-3)=-1
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For any three vectors u,v,w € R" and any scalar r € R it is verified that
Qu-v=v-u

Q@ (u+v) - w=u-w+v-w

Q (ru)-v=r(u-v)=u-(rv)

Qu-u>0

Qu u=0su=0

(nus + nua+ ...+ rpup) - v=r(ug - v) + r(uz - v) + ... + rp(up - v)




Given any vector v, its length is defined as

vl = Vv-v

Given any vector v € R"

vl =/VZ+vZ+ ...+ 2

The length of v = (1,—2,2,0) is
Ivll = T2+ (2 + Z + 07 =3

R, iy e .| D & e 10 10



Length

Theorem 1.4
For any vector v and any scalar r it is verified that
[[rv]| = [r[llv]

Proof
It will be given only forv € R":

Ivll = V()2 + () + o+ (ve)2 = V/r2(v + 5 + . +V)(q.e.d.)
= V2B +vi+ .+ v2=]r||v|

Find a vector of unit length that has the same direction as v = (1, —2,2,0).
Solution

w=py =330 = lwl =3+ 5+ +0=
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The distance between any two numbers a, b € R can be defined as

d(a,b) = |a— b

Calculate the distance between 2 and 8 as well as between -3 and 4.

b

b
T I T
4

a
I T T T T
1 2 3 4 5 6
6 units apart

7 8

12-8l=I-6l=6 or I18-2I=16l=6

FIGURE 3 Distances in R.

|

T T
9 -3 -2-1 0 1 2 3
T units apart |
I

=

I(=3)-4l=1-TI=7 or 14-(3)=171=7

R, iy e .| D 5, A0

12 /119



Distance

Definition 1.4 (Distance in R")

The distance between any two vectors u,v € R" can be defined as

d(u,v) = [lu—v]|

Calculate the distance between u = (7,1) and v = (3,2)

d(u,v) = [(7,1) ~ (3,2)]| = |4, ~1)|| = VA F 12 = VI7

FIGURE 4 The distance between u and v is
the length of u — v.

4
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For any two vectors in R3, u and v, the distance can be calculated through

d(u,v) = [lu —v|| = [[(1n = v1, 1y — vy, u3 — w3)[| =
(1 —vi)? + (U2 — v2)? + (u3 — v3)?

R, iy e .| D & e 10 {10



Orthogonality

Any two vectors in R?, u and v, are orthogonal if d(u,v) = d(u, —v)

llu—(= vl

d*(u,v) = lu—v|[?=(u—v) - (u—v)=u-u+v-v—2u-v=|ul]?+|v|]?>—2u-v
d?(u,—v) = [Ju+v|?2 = (u+v)-(u+v) =u-u+v-v+2u-v = |luf|>+|v[*+2u-v

d?*(u,v) = d*(u,—v) = 2u-v=2u-v=>u-v=0
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Any two different vectors, u and v, in a vector space V' are orthogonal iff

u-v=20

0 is orthogonal to any other vector.

Any two vectors, u and v, in a vector space V are orthogonal iff

lu+ vl = [lul|* + ]lv]?




Orthogonality

Definition 1.6 (Orthogonality between vector and vector space)

Let u be a vector in a vector space VV and W a vector subspace of V. u is
orthogonal to W if u is orthogonal to all vectors in W. The set of all vectors
orthogonal to W is denoted as W+ (the orthogonal complement of W ).

Let W be a plane in R3 passing through the origin and L be a line, passing

through the origin and perpendicular to W. For any vector w € W and any vector
z € L we have

w-z=0 ~
Therefore, 0 .

L=Wtesw=1L"
W

y
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Let W be a vector subspace of a vector space V.

Q xec Wt iffxis orthogonal to every vector in a set that spans W

@ W is a vector subspace of V.

N
Let A € Myxn, then ~ |-
Q (Row{A})* = Nul{A} 03\ /g.
Q (Col{A})* =Nul{AT} Yoy b
g Corg

FIGURE 8 The fundamental subspaces determined
by an /n x n matrix A.




Orthogonality

Proof Nul{A} C (Row{A})*
Consider the rows of A, a; (i = 1,2,...,m) as column vectors, then for any vector
x € Nul{A} we know

T T
alT alTx a; - X 0
a a, X a - X 0
Ax=0= |2 [x= "] =] =
T T
a,, a,x am - X 0

Consequently, x is orthogonal to all the rows of A, which span Row{A} and by
the previous theorem, x € (Row{A})*
Proof Nul{A} O (Row{A})*

Conversely, let x € (Row{A})", then by the previous theorem we know that

ai-x fori=1,2 .. m=Ax=0

So, x € Nul{A}
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Proof (Col{A})* = Nul{A"}
Let's define B = AT. By the first part of this theorem, we know

(Row{B})" = Nul{B} = (Row{AT})* = Nul{AT} = (Col{A})* = Nul{AT}

For any two vectors u and v in a vector space V, the angle between the two can
be measured through the dot product:

u - v = [|ufl[|v]| cos®




Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 1:
@ 6.1.15
e 6.1.22
@ 6.1.24

6.1.26

6.1.28

6.1.30

6.1.32 (computer)
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@ Orthogonal projections (b)
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Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)

Applications of inner product spaces (d)

® © 6 6 ¢



Orthogonal sets

Definition 2.1 (Orthogonal set)

Let S = {uy,uy,...,u,} be a set of vectors. S is an orthogonal set iff

ui-u =0 Vije{l,2,..,p}i#j

V.

Letu; = (3,1,1), up = (=1,2,1), us = (—3, -2, Z). Check whether the set
S = {uy1,uy,u3} is orthogonal.

Solution
up-u; = 3-(— 1)+1 2+1-1=0
wous = 3-(-1)+1-(-2)+1-(3)=0
u-uz = (=1)-(-3)+2-(-2)+1-(3)=0
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Orthogonal sets

Theorem 2.1

If' S is an orthogonal set of non-null vectors, then S is linearly independent and,
consequently, it is a basis of the subspace spanned by S.

Proof

Letu; (i=1,2,...,p) be the elements of S. Let us assume that S is linearly
dependent. Then, there exists coefficients c1, ¢, ..., ¢, not all of them null such
that

0=cu; +cuy+ ...+ cup
Now, we compute the inner product with u;

0 -u = (C1IJ1 + couy + ... + cpup) s Uy
0=ci(us-u1)+ c(uz-u) + ... + cp(up - u1) = ciflug]|? = 1 =0

Multiplying by u; (i = 2,3, ..., p) we can show that all ¢;’s are 0, and, therefore,
the set S is linearly independent.
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Orthogonal basis

Definition 2.2 (Orthogonal basis)

A set of vectors B is an ortohogonal basis of a vector space V if it is an
ortohogonal set and it is a basis of V.

Theorem 2.2

Let {uy,uy,...,u,} be an orthogonal basis for a vector space V/, for each x € V
we have

— Xu X-Up X-Up
X = +—5U —5 U u
TulZYL T+ a2 + - + T Ye

Proof

If x is in V/, then it can be expressed as a linear combination of the vectors in a
basis of V

X = Cju; + Qup + ... + CpUp
Now, we calculate the dot product with uy

x-up = (cus + ua + ...+ Goup) - U = aluil? = a = ﬁ
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Orthogonal basis

Let u; = (3,1,1), up = (-1,2,1), u3 = (—3, -2, 1), and B = {uy, up, u3} be an
orthogonal basis of R3. Let x = (6,1, —8). The coordinates of x in B are given by

X'U]_:]_]_ X'U2:—12 X'U1:—33
lmlP=11  fuaP=6 fus|?=2
x = fjut et P

u; — 2UQ — QU3
The coordinates of x in the basis B are

]z = (1,-2,-2)
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Orthogonal projections

Orthogonal projection onto a vector

Consider a vector y and another one u. Let us assume we want to decompose y as
the sum of two orthogonal vectors y (along the direction of u) and another vector

z (orthogonal to u):

y=y+z=au+z= I/':

® 0 .
z=y-Yy | ¥

FIGURE 2

Finding « to make

orthogonal to u.
We need to find a that makes u and z orthogonal.

0O=z-u=(y—au)-u=y-u—qaful?=a=

y is the orthogonal projection of y onto u.

y=¥

y-u
[lull?
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Orthogonal projections

Let y = (7,6) and u = (4,2). Then,

g — Yyu

40 Y= JupY =
y-u=

lul2 = 20 } -

20“

¥

& 7
-5

dy,9) =lly =9Il = llzll =

-

8
2u = 4

(6)=()

NG VRN

. L=Span{u}

4

7. Orthogonality and least squares

December 3, 2013

28 / 119



Orthonormal set

Definition 2.3 (Orthonormal set)

{u1,uy, ...,u,} is an orthonormal set if it is an orthogonal set and all u; vectors

have unit length.

Show that the set {uj,uy,us} is orthonormal, with

3 -1 1

1 1 1
U = — 1 U = —&— 2 us = — —4
1\ Vel vee \ ¢

Solution
Let's check that they are orthogonal:

up U= =3 (-1)+1:24+1-1)=0
upuz= =e(3-(-1)+1-(-4)+1:7)=0
upug = Z—=((-1) (1) +(2) - (-4) + (1) 7) =0

v
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Orthonormal set

Now, let's check that they have unit length:

lua || = \/(\%ﬁ) (32+12+12) = \/9+T+1:
Juz|| = \/(%5)2((—1)2+22+12 [1ra+1 _
Just = /() (202 + (o247 - \/? L

Theorem 2.3

If S = {uy,uy,...,u,} is an orthonormal set, then it is an orthonormal basis of
Span{S}.

{e1,es,...,e,} is an orthonormal basis of R". I
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Orthonormal basis

Theorem 2.4

Let S = {uy,uy,...,u,} is an orthogonal set of vectors, then the set
S ={uf,u), ..., u} where

is a orthonormal set (this operation is called vector normalization).
Proof

Let’s check that the u} vectors are orthogonal:

/ /U v 1
u.-u. = . = —UuU; - u;
7 Nl gl flui [ |

But this product is obviusly 0 because the u; vectors are orthogonal. Let’s check
now that the u! vectors have unit length:

il = |

u || =l g
nu,-uH lui
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Orthonormal matrix

Theorem 2.5
Let U € M« be a square matrix. The columns of U form an orthonormal set iff
utu =1,
It is said that U is an orthonormal matrix.
Proof
Let's consider the columns of U
U = (Ul u ... Un)
Let's calculate now UT U
u/ u/u; u/uy ... ulu,
T T T T
u Uu,u; U Uy ... UU
UTU=1]"2[(u u .. u,)=|["2 1o T2 25n
ul ulug uluy ... ulu,

T _ . .
The condition UT U = I, simply states { 3’7-3] (1) : #j. , which is the
i = =

definition of an orthonormal set.
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Orthonormal matrix

Theorem 2.6
Let U € Mpx, be an orthonormal matrix and Vx,y € R", then

0 [[Ux| =[]
Q@ (Ux)-(Uy)=x-y
Q (Ux)-(Uy)=0<x-y=0

1 2
V2 3 V2
1 2
Let U = 5 T3 andx:(3>.
0 s
3
U is an orthonormal matrix because
1 1 9 12
. 2 V2 23, 10
Uiu=1 3 Va2 3|7 \o 1
—2 1) \y 1
3 3 3

V.
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Orthonormal matrix

Let's calculate now Ux

12 3
Ux = f —32 v2) _ -1
=z 5 )= ;
0 3
Let's check now that ||Ux|| = |||
o = 5,1, 1 = VLI 7~

x| = [|(vV2,3)]| = v/ (V2)2 + 32 = \/_1

Theorem 2.7
Let U be an orthonormal and square matrix. Then,
Q U l=UT
@ U7 is also an orthonormal matrix (i.e., the rows of U also form an
orthonormal set of vectors).

4
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Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 2:
@ 6.2.1
@ 6.2.10
@ 6.2.15

6.2.25

6.2.26

6.2.29

6.2.35 (computer)
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)

Gram-Schmidt orthogonalization (b)

Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)

Applications of inner product spaces (d)
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The orthogonal projection of a point 'y onto a vector subspace W is a point

y € W such that

e




Orthogonal projections

Let {u1,uy,...,us} be an orthogonal basis of R®. Consider the subspace
W = Span{uy,u,}. Given any vector y € R®, we can decompose it as the sum of
a vector in W and a vector perpendicular to W

y=9y+z

Solution
If {u1,us,...,us} is a basis of R, then any vector y € R® can be written as

y = ciuj + cup + ... + Csus
We may decompose this sum as

y = cu + cup
Z = C3U3 + C4U4 + CsUs
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Orthogonal projections

It is obvious that § € W. Now we need to show that z € W. For doing so, we
will show that

z-u; =0
z-u, =0

To show the first equation we note that

z-u; = (cusz+ quy+ csus) - ug

c3(uz - ug) + c4(ug - ug) + cs(us - ug)
c3-04+c-0+c-0

= 0

We would proceed analogously for z - u, = 0.
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Orthogonal projections

Theorem 3.1 (Orthogonal Decomposition Theorem)

Let W be a vector subspace of a vector space V. Then, any vectory € V can be
written uniquely as

y=y+z

with§ € W and z € W, In fact, if {u1,uy, ...,u,} is an orthogonal basis of W,
then

y-u

¥ = Tafzu + fafzu2 + -+ 1ol

Z=y-¥ y

¥ =projyy
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Orthogonal projections

Proof
y is obviously in W since it has been written as a linear combination of vectors in
a basis of W. z is perpendicular to W because

z:th = (y* (Huuv“l + Roafzt2 -+ g uz"P)) it

Yy -up — ||U1H2(u1 u1) ||u2H2(UQ U1) 000 = ﬁ(up . u1)
[{u;} is an orthogonal set]

y-up— ﬁ(ul'ul)

y g — i fJug]?

= yuw—-y-u

=0

T

We could proceed analogously for all elements in the basis of W.
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Orthogonal projections

We need to show now that the decomposition is unique. Let us assume that it is
not unique. Consequently, there exist different vectors such that

y=9y+z
y=y+7

We subtract both equations

0=@-9)+G-2)=9-5 -2~z

Let v=y — ¥ It is obvious that v € W because it is written as a linear
combination of vectors in W. On the other side, v=2 —z, i.e., it is a linear
combination of vectors in W=, so v € W=. The only vector that belongs to W
and W+ at the same time is

v=0= {

and consequently, the orthogonal decomposition is unique. Additionally, the
uniqueness of the decomposition depends only on W and not on the particular
basis chosen for W'.

— 3/
=Yy
:zl

N <
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Orthogonal projections

Let u; = (2,5, —
and up. Lety =

A

y

1) and up = (—2,1,1). Let W be the subspace spanned by u;
(1,2,3) € R3. The orthogonal projection of y onto W is
= Tl el
2 _
1-242:543:(—1 1-(=2)42-143-1
= ot | 5| e 1
2 — _2
5
9
-1 1 l
2 7
1 -5 5
1 14
3 5 5
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y can be understood as the sum of the orthogonal projection of y onto each one
of the elements of the basis of W.

u,

y-uy 3 a
u+ u, =¥+
LR PR B e ] Nty

\:. i

If' y belongs to W, then the orthogonal projection of y onto W is itself:
y=y
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Properties of orthogonal projections

Theorem 3.3 (Best approximation theorem)
The orthogonal projection of y onto W is the point in W with minimum distance
toy, ie.,

ly =9I < lly — vl

for allv e W,v #y.
Proof

We know that 'y —y is orthogonal to W. For any vectorv € W v #£ §, we have
that y — v is in W. Now consider the orthogonal decomposition of the vectory —v

W ly — vl

FIGURE 4 The orthogonal projection of y
onto W is the closest point in W to y.
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Properties of orthogonal projections

Due to the orthogonal decomposition theorem (Theorem 3.1), this decomposition
is unique and due to the Pythagorean theorem (Theorem 1.5) we have

ly = vl = lly = 91> + Iy — v|?

Since v # § we have ||§ — v||?> > 0 and consequently

ly — vl > [ly — 9]
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Properties of orthogonal projections

Theorem 3.4
If {u1,uy,...,u,} is an orthonormal basis of W, then the orthogonal projection of
y onto W is
9 = <y7 U1> u; + <y7 U2> u + ...+ <y7 up> up
If we construct the orthonormal matrix U = (u1 u .. up), then
y=UuU"y
Proof

By Theorem 3.1 we know that for all orthogonal bases it is verified

O — Yyu y-u y-up
= u iz U — = U
Y= Qa2 ¥ fuppY2 e T g Ye

Since the basis is in this case orthonormal, then ||u|| =1 and consequently

¥ = (y,u1)u; + (y,up) uz + ... + (y,up) u,

7. Orthogonality and least squares December 3, 2013
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Properties of orthogonal projections

On the other side we have

uy ujy (u1,y)
UTy = u; y = uy _ (u2,y)
uy uyy (up,y)
Then,
(u1,y)
UUTy = (ul u ... up) <u.2.,.y> = (y,u)u; + (y,up) up + ... + (y, u,) u,
(up, y)
(q.ed.)
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Let U= (uy uz .. up) beanx p matrix with orthonormal columns and
W = Col{U} its column space. Then,

Vx € RP UTUx=x No effect
Yy € R” UUTy=9 Orthogonal projection of y onto W

If Uisanx n, then W =R" and the projection has no effect

Vy eR" UUTy=9=y No effect




Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 3:
@ 6.3.1
° 6.3.7
@ 6.3.15
@ 6.3.23
@ 6.3.24
@ 6.3.25 (computer)
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is a procedure aimed at producing an orthogonal
basis of any subspace W.

Let W = Span{xy, x2} with x; = (3,6,0) and xz = (1,2,2). Let’s look for an
orthogonal basis of W.

Solution

We may keep the first vector for the basis

Vi = X1 = (3,6,0)

For the second vector in the basis, we need to keep the component of x;, that is
orthogonal to x;. For doing so we calculate the projection of x, onto x; (p), and
we decompose x; as

X2 =Pp+ (X2 _p) = (1a2v0) +(Ov072)
We, then, keep the orthogonal part of x;
Vo) = Xo — P = (0,0,2)

y
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Gram-Schmidt orthogonalization

The set {v1, vz} is an orthogonal basis of W.

Xy

FIGURE 1

Construction of an orthogonal
basis {v;, v2}.

4
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Gram-Schmidt orthogonalization

Let W = Span{xy, X2, x3} with x; = (1,1,1,1), x, = (0,1,1,1) and

x3 = (0,0,1,1). Let's look for an orthogonal basis of W.

Solution

We may keep the first vector for the basis. Then we construct a subspace (W)
with a single element in its basis

Vi = X1 = (1, 17 ].7 1) W1 = Span{vl}

For the second vector in the basis, we need to keep the component of x; that is
orthogonal to W;. With the already computed basis vectors, we construct a new
subspace (W) with two elements in its basis

Vo :XQ—PI'ijl(Xz) = (—%7%,%7%) W2 :Span{vl,vQ}
For the third vector in the basis, we repeat the same procedure

v3 = X3 — Projy, (x3) = (0,—3,3,5) Wi =Span{vi, vy, v3}

y
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Given a basis {x1,%2,...,Xp} for a vector subspace W. Define

Vi =X W, = Span{v; }
Vo = X — PI‘Oj A (X2) W2 = Span{vl, V2}

Vp =xp, — Projy,_ (xp) W, =Span{vi, v, ...,vp} =W

Then {v1,v2,...,vp} is an orthogonal basis of W.




Gram-Schmidt orthogonalization

Proof

Consider Wy = Span{vy, v, ..., vk} and let us assume that {vy,vo, ..., v} is a
basis of W). Now we construct

Vii1 = Xkp1 — Projyy, (Xkg1)  Wigr = Span{vi,va, ..., Viy1}

By the orthogonal decomposition theorem (Theorem 3.1), we know that vy is
orthogonal to Wy. Because x,11 is an element of a basis, we know that

Xk+1 & Wk. Therefore, vy is not null and xx11 € Wii1. Finally, the set
{v1,V2,...,viy1} is a set of orthogonal, non-null vectors in the

(k + 1)-dimensional space Wy 1. Consequently, by Theorem 9.4 in Chapter 5, it
must be a basis of Wj.1. This process can be iterated till k = p.
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Gram-Schmidt orthogonalization

Orthonormal basis

Once we have an orthogonal basis, we simply have to normalize each vector to
have an orthonormal basis.

4

Let W = Span{xi, x2} with x; = (3,6,0) and xo = (1,2,2). Let’s look for an
orthonormal basis of W.
Solution

In Slide 52 we learned that an orthogonal basis was given by

vi = (3,6,0)
Vo = (Oa 072)

Now, we normalize these two vectors to obtain an orthonormal basis

y
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QR factorization of matrices

If we apply the Gram-Schmidt factorization to the columns of a matrix, we have
the following factorization scheme. This factorization is used in practice to find
eigenvalues and eigenvectors as well as to solve linear equation systems.

Theorem 4.2 (QR factorization)

Let A € M« with linearly independent columns. Then, A can be factored as
A= QR

where Q@ € M ,,«n is a matrix whose columns form an orthonormal basis of
Col{A} and R € M, is an upper triangular invertible matrix with positive
entries on its diagonal.

Proof

Let’s orthogonalize the columns of A following the Gram-Schmidt procedure and
construct the orthonormal basis of Col{A}. Let {uy,uy,...,u,} be such a basis.
Let us construct the matrix

Q: (Ul u ... u,,)
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QR factorization of matrices

Let us call a; (i = 1,2, ..., n) to the columns of A. By the Gram-Schmidt
orthogonalization, we know that for any k between 1 and n we have

Span{aj, ay,...,ax} = Span{uy,uy, ..., ux}
Consequently, we can express each column of A in the orthonormal basis:
ax = niuy + rguz 4+ o+ rgu +0-ugpg + ...+ 0 u,

If rx is negative, we can multiply both rx, and u, by -1. We now collect all these
coefficients in a vector ry = (rik, fak, -, fkk, 0,0, ..., 0) to have

ax = Qry
By gathering all these vectors in a matrix, we have the triangular matrix R

R:(r1 rno.. r,,)

R is invertible because the columns of A are linearly independent.
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QR factorization of matrices

Let’'s calculate the QR factorization of A = . From Slide 54 we know

e
=)
=)

that the vectors

vi=(1,1,1,1)

_ 3111
V2_(_Z g’]z_’ll_l)
v3:(07_§7§7§)

Is an orthogonal basis of the column space of A. We now normalize these vectors
to obtain the orthonormal basis in @

1 _3 9

i
=|] T

2 V12 Ve

v
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QR factorization of matrices

To find R we multiply on both sides of the factorization by @

A=QR=QTA=Q"QR=R
1 1 1 1 1 00
2 i it 1 110
3
R=QTA = (V& V& v& v2||1 11
o -2 at T
V6 V6 6 111
2 2 1
_ o & =2
= T
00%
6
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Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 4:
e 6.4.7
@ 6.4.13
e 6.4.19
@ 6.4.22
e 6.4.24

7. Orthogonality and least squares

December 3, 2013

62 /119



@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
Least squares (c)
Least-squares linear regression (c)
Inner product spaces (d)
Applications of inner product spaces (d)
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Least squares

Let's assume we want to solve the equation system Ax = b, but, due to noise,
there is no solution. We may still look for a solution such that Ax =~ b. In fact the
goal will be to minimize d(Ax,b).

Definition 5.1 (Least squares solution)

Let A be a m x n matrix and b € R™. x € R" is a least squares solution of the
equation system Ax = b iff

Vx € R” ||b— A%| < ||b— Ax]|

hy

0
Col A ‘Ax

FIGURE 1 The vector b is closer to A% than
to Ax for other x.
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Applying the Best Approximation Theorem (Theorem 3.3), we may project b onto
the column space of A

b= Projcoiray {b}

Then, we solve the equation
system

Ax=b

that has at least one solution.

FIGURE 2 The least-squares solution ¥ is in R".




Least squares

Theorem 5.1
The set of least-squares solutions of Ax = b is the same as the set of solutions of
the normal equations

ATAx=ATb

Proof: least-squares solutions C normal equations solutions
Let us assume that X is a least-squares solution. Then, b — Ax is orthogonal to
Col{A}, and in particular, to each one of the columns of A (a;, i =1,2,...,n):

ai-(b—AR) =0 Vie{l,2,..,n}=
al(b—AX) =0 Vie{l,2,...n} =
AT(b— AR) =0 =
ATb = AT A%

That is, every least-squares solution is also a solution of the normal equations.
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Least squares

Proof: least-squares solutions O normal equations solutions
Let us assume that X is solution of the normal equations. Then,

ATb = AT A% =
AT(b— A%) =0 =
al(b—A%)=0 Vie{1,2,.. n}

That is, b — A% is orthogonal to the columns of A and, consequently, to Col{A}.
Hence, the equation

b = A% + (b — A%)

is the orthogonal decomposition of b as a vector in Col{A} and a vector
orthogonal to Col{A}. By the uniqueness of the orthogonal decomposition, A%
must be the orthogonal projection of b onto Col{A} so that

A% = b

and, therefore, X is a least-squares solution.
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Least squares

4 0
Find a least-squares solution to Ax =b with A= |0 2| andb= | 0
11

Solution
Let’s solve the normal equations ATAXx = A™b

17 1 19
TaA_ Th —
AA_<1 5) Ab_(ll)
17 N\ (19) L4 17 1\ ' /19\ (1
1 5 T \11 ~\1 5 1) — \2
Let’'s check that X is not a solution of the original equation system but a

least-squares solution

2

1 4 0
()= (£) 6 5- s
3 11

4 0
Ax= |0 2
11

4
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The least-squares error is defined as

0? £ ||A% —b|]* = b — b||?

In this case:

o? = /(4,4,3) — (2,0,11)|| = [|(2,4, -8)|| ~ 9.165

R, iy e .| D & e 10



Least squares

Unfortunately, the least-squares solution may not be unique as shown in the next

example (arising in ANOVA). Find a least-squares solution to Ax = b with

1
1
1
S 1
1
1
Solution

1

O OO o

0

OO =M= O

o

== O OO

and b =

ATA =

NN DN O

-3
-1
0
2
5
1
2 2 2 4
2. 00 | -4
0o 20| AP=|2
00 2 6
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Least squares

The augmented matrix is
6 2 2 2| 4 1 00 1 3
22004 [01 0 -1 5
2 0 20 2 0 01 -1 2
2 0 0 2 6 0 00 O0f O
Any point of the form
3 -1
& —5 1
X = ) + Xxa 1 Vxq € R
0 1
is a least-squares solution of the problem.
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The matrix AT A is invertible iff the columns of A are linearly independent. In this
case, the equation system Ax = b has a unique least-squares solution given by

x=A"b
where AT is the Moore-Penrose pseudoinverse

At = (ATA)1AT




Least squares and QR decomposition

Sometimes AT A is ill-conditioned, this means that small perturbations in b
translate into large perturbations in X. The QR decomposition offers a numerically
more stable way of finding the least-squares solution.

Theorem 5.3
Let there be A € M« with linearly independent columns. Consider its QR
decomposition (A= QR). Then, for each b € R™ there is a unique least-squares
solution of Ax = b given by
Xx=R1'Q'b

Proof
If we substitute X = R~1QTb into Ax we have

Ax=AR1Q"b = QRR'Q"b = QQ"b.

But Q is an orthonormal basis of Col{A} (Theorem 4.2 and Corollary in Slide 49)
and consequently QQTb is the orthogonal projection of b onto Col{A}, that is, b.
So, 8 = R71Q"b is a least-squares solution of Ax = b. Additionally, since the
columns of A are linearly independent, by Theorem 5.2, this solution is unique.
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Least squares and QR decomposition

Remind that numerically it is easier to solve RXx = Qb than x = R71Q"b

1 3 5 3
et A= 1 1 g and b = ? . Its QR decomposition is
1 3 3 -3
1 1 1
2 2 g 2 4 5
A=QR=| %1 % % 023
i 1t J\0o2
2 2 2
6 2 4 5 6 10
Q™b=| 6 |=10 2 3|x=[ -6 |=x%x= 6
4 0 0 2 4 2
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Exercises

Exercises

From Lay (3rd ed.), Chapter 6, Section 5:

@ 6.5.1
@ 6.5.19
@ 6.5.20
@ 6.5.21
@ 6.5.24
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)



Least-squares linear regression

In many scientific and engineering problems, it is needed to explain some
observations y as a linear function of an independent variable x. For instance, we
may try to explain the weight of a person as a linear function of its height

Weight (kg)
90

80

Weight = 5y + (51 Height

¥=-133.18 + 115.91"X

40 ————r=0,886 —
% R-squared linear = 0.785
1.60 1.70 1.80 1.90
Height (m)

A. Schneider, G. Hommel, M. Blettner. Linear Regression Analysis. Dtsch Arztebl Int. 2010 November; 107(44): 776-782.

p
7. Orthogonality and least squares December 3, 2013 77 / 119




Least-squares linear regression

For each observation we have an equation

Height (m.) | Weight (kg.)

57 = By + 1.7053;

1;2 Z; 43 = By + 1.530;

100 o 94 = By + 1.90/3;
1 1.70 57

1 153 Bo) _ |43
1 1.90 B1) |94
which is of the form

XB=y
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Least-squares linear regression

Least-squares regression

Each one of the observed data points (x;, y;) gives an equation. All together
provide an equation system

XB=y

that is an overdetermined, linear equation system of the form Ax = b. The matrix
X is called the system matrix and it is related to the independent (predictor)
variables (the height in this case). The vector y is called the observation vector
and collects the values of the dependent (predicted) variable (the weight in this
case). The model

y=po+ Bix+e

is called the linear regression of y on x. g and (3; are called the regression
coefficients. The difference between the predicted value and the observed value
for a particular observation (¢) is called the residual of that observation.
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y .
Daapoint_ (x. y.)

(‘r'! ﬁ{] + ﬁ]xj)

. - /
Point on line Rl For
Residual — Residual

Y=By+Bx
I I I x

FIGURE 1 Fitting a line to experimental data.

The residual of the j-th observation is defined as

& =Y; — (Bo + B1x)




Least-squares linear regression

The goal of least-squares regression is to minimize
= 2
> =ly—XBl
Jj=1

Let's analyze this term

1 x Bo + Bixt N
1 x| (bo Bo + Baxo 72
X = = =
=1 2| (%
1 X 60+6nxn }I}n
Then
A 2
yi—n
ly=xslI2= ||| ||| =S0-mr=x4
= = =1
Yn — Yn
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Least-squares linear regression

Suppose we have observed the following values of height and weight (1.70,57),

1 1.70
(1.53,43), (1.90,94). We construct the system matrix X = [ 1 1.53 | and the
1 1.90
57
observation vector y = | 43 | . Now we look the normal equations
94

XB=y=XTXB=XTy
3.00 5.13 194.00\ 4 ~173.14
Ty — Ty — — Ty\-1yT, —
XX = (5.13 8.84) Xy = (341.29) f=XIX) Xy = ( 137.90 )
Weight = —173.39 + 139.21 Height
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Least-squares linear regression

110

MATLAB:

o X=[1 1.70; 1 1.53; 1 1.90];
y=[57; 43; 94];
beta=inv (X’ *X) *X’ *xy

100

90

80

3" x=1.5:0.01:2.00;
o0 R yp=beta(1l)+beta(2)*x;
50 plot(x,yp,X(:,1),y,%0°)
wf ° xlabel (*Height (m)’)
e - . - - | ylabel(’Weight (kg)’)
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Least-squares linear regression

The general linear model

The linear model is not restricted to straight lines. We can use it to fit any kind of
curves:

= Pofo(x) + 1fi(x) + Bafa(x) +

4

fo(x) = 1 y1 = fo(x1) + Bifi(x1) + Bafa(x1)
A =x = 2= h0e) + AifiCe) + failoe)
2
o= Yo =64+ i) + o)
1 X1 ﬁo €1
1 x Bl + | =y=XB+e¢
B> -
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Least-squares linear regression

In this example they model the deformation of the wall of the zebra fish embryo as
a function of strain.

Z. Lua, P. C.Y. Chen, H. Luo, J. Nam, R. Ge, W. Lin. Models of maximum stress and strain of zebrafish embryos under indentation. J. Biomechanics 42

(5): 620-625 (2009)
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Least-squares linear regression

Multivariate linear regression

The linear model is not restricted to one variable. By fitting several variables we
may fit surfaces and hypersurfaces

y = Bofo(x1, x2) + Br1hi(x1, x2) + Bafa(x1, x2) + ...

fo(xi,x) =1

f(x1, %) =x 1 xu1 x2 xi x5 xxa
h(x1, %) = X X = 1 X1 xo X4 X5 XX
f3(x1, x0) = x? -

fa(x1, x2) = x3 1 Xm Xm2 X3 X% XniXm
fs(x1, x2) = x1x2
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Least-squares linear regression

In this example they model the shape of cornea using videokeratoscopic images.

2-Axis [mm]

y-Axis [mm]
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 6:
@ 6.6.1
@ 6.6.5
@ 6.6.9
@ 6.6.12 (computer)
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)



Inner product spaces

Manifold ¢—mo——  R”

Banach space
(Norm and completeness)

-~

Hilbert space

€——— (Dot product and

completeness)

Normed vector space

v

(Norm)

l

Metric space

(Distance)
v
Topological space
(open set)

v

Inner product space
(Dot product)

Locally convex spaces
(Seminorm)

Vector space
(Linear combination)
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Inner product spaces

Definition 7.1 (Inner product)

An inner product in a vector space V is a function that assigns a real number to

every pair of vectors u and v, (u,v) and that satisfies the following axioms for all
u,v,w € V and all scalars c:

Q (u,v) =(v,u)
Q@ (u+v,w)= (u,w)+ (v,w)
Q (cu,v) =c(u,v)
Q@ (u,u) >0 and (u,u) =0 iffu=0. )

For instance in Weighted Least Squares (WLS) we may use an inner product in
R? defined as:

(u,v) = 4uyvy +5urvy

In this way we give less weight to distances in the first component with respect to
distances in the second component.

4
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Inner product spaces

Now we have to prove that this function is effectively an inner product:

Q (u,v) = (v,u)

(u,v)

4uivi + B vy [by definition]
4viuy + Bvoun [commutativity of scalar multiplication]
(v, u) [by definition]

Q@ (utv,w) = (u,w)+ (v,w)

(u+v,w)

4(U1 + V1)W1 + 5(U2 + V2)W2
= 4U1W1 aF 4-V1W1 a4 5UQW2 =F 5V2W2

Augwy + Suows + dviwy + Svoun

= {u,w) + (vw)

7. Orthogonality and least squares

[by definition]
[distributivity of scalar]
[multiplication/addition]
[commutativity]

[of scalar addition]

[by definition]
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Inner product spaces

Q (cu,v) =c(u,v)
(cu,v) = dcuyvs +5cuove [by definition]
= cdviu + Ao [commutativity of scalar multiplication]
= c(4viuy +5vu) [distributivity of scalar multiplication]
= c(u,v) [by definition]
Q (u,u) >0 and (u,u) =0 iffu=0.
@ (u,u) >0
(uyuy = 4uf+503 [by definition]
which is obviously larger than 0.
@ (u,u)=0iffu=0.
(Uu) =042 +53 =0 =w=0
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Inner product spaces

Consider two vectors p and g the vector space of polynomials of degree n (P,).
Let to, t1, ..., t, be n distinct real numbers and K any scalar. The inner product
between p and g is defined as

(p,q) = K(p(t0)q(to) + p(t1)q(tr) + ... + p(ts)q(tn))

Axioms 1-3 are easy to check. Let's prove Axiom 4

Q (p,p) >0and (p,p) =0iff p=0.
o (p,p) >0
p,p) = K (pz(to) + p%(t1) + ... + p2(t,,)) [by definition]

which is obviously larger than 0.

@ (p,p)=0iff p=0.

(p,p) =0 K (p°(to) + P°(tr) + ... + P*(ta)) &
p(to) = p(t1) = ... = p(tn) =0

But p is a polynomial of degree n so, at most, it can have n zeros. However,
the previous condition requires the polynomial to vanish at n+ 1 points. This
is impossible unless p = 0.

o’
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Inner product spaces

Consider two vectors p and g the vector space of polynomials of degree n (P,).
Assume that we regularly space the n+ 1 points in the interval [—1,1]

AT =

1
n

t, t ot ot oty ..t

1, =-1+iAT
and set K = AT, then the inner product between the two polynomials becomes

{p,q) = (p(to)q(to) + p(tr)q(tr) + ... + p(tn)q(tn)) AT = ;)P(ti)q(ti)AT
Making AT tend to O, the inner product becomes

(pya) = [, p(t)a(t)dt

.
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Inner product spaces

Legendre polynomials are orthogonal polynomials in the interval [—1,1]

P(x)=1

P(x)=x
P(x)=7(3x"-1)
Py(x) = +(5x" - 3x)

Pr(x)

P, (x)=+(35x" —=30x" +3)

Po(x) = £(63x° —70x° +15x)

P (x)=%(231x" = 315x* +105x* - 5)

P (x) =75 (429x7 - 693x” +315x° - 35x)

Legendre polynomials are very useful for regression of high-order polynomials as

shown in next slide.

-1
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Length, distance and orthogonality

Length, distance and orthogonality

The length of a vector u in an inner product space is defined in the standard way
Jull = v/{u, u)
Similarly, the distance between two vectors u and v is defined as
d(u,v) = [u—v||

Finally, two vectors u and v are said to be orthogonal iff

(u,v) =0
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Length, distance and orthogonality

In the vector space of polynomials in the interval [0, 1], P[0, 1], let's define the
inner product

(p.a) = Jy p(t)q(t)dt

What is the length of the vector p(t) = 3t2?
Solution

VI.P) =/ Jo pP()dt =/ 5 (3¢2)2dt =/ [ ottt

t5
9%

el
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Gram-Schmidt orthogonalization

Gram-Schmidt is applied in the standard way. For in
basis of P;[—1,1]. A basis that spans this space is

{1,¢t,t%}

Let's orthogonalize it

stance, find an orthogonal

po(t) = 1 .
tdt
pi(t) = t—EBDp(r) =t - —1—ff—‘ —l=t—fl=t
—1
t%,po(t) t2,p1(t)
pl) = &~ L0~ (e
1
_ 2 f_itzdt B f_lltztdt o % _ tz—%
f—ldt f_ltzdt

In Slide 97 we proposed the Legendre polynomial of

P,(t) = (3t — 1), we can easily show that P,(t) =

p2(t) is orthogonal to po(t) and pi(t) so is Pa(t).

degree 2 to be
%pg(t). Consequently, if

v
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Best approximation

What is the best approximation in Po[—1,1] of p(t) = t3?

Solution

We know the answer is the orthogonal projection of p(t) onto P;[—1,1]. An
orthogonal basis of Po[—1,1] is {1, ¢, — }. Therefore, this projection can be
calculated as

p(t) = Proje,_1 1 {p(t)} = &&hpo(t) + E2 py (1) + 24 ps (1)

Let's perform these calculations:

(p,polt)) = [, dt =0 Ipoll* = [ dt =2

(p,pu(t)) = J1, 3edt = 2 lpu2 = fﬁﬁ 2

(p.pa(t)) = 1, (22— D)dt =0 | |pafl? = 2, (2 =}t = &
ﬁ(t):%+§t+:§5—(t2—l :gt
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Best approximation

In this example we exploited the best approximation property of orthogonal
wavelets to speed-up and make more robust angular alignments of projections in
3D Electron Microscopy.

C.0.S.Sorzano, S. Jonic, C. El-Bez, J.M. Carazo, S. De Carlo, P. Thévenaz, M. Unser. A multiresolution approach to orientation assignment in 3-D

electron microscopy of single particles. Journal of Structural Biology 146(3): 381-392 (2004, cover article)
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Given any vector v in an inner product space V' and a subspace of it W C V we
have

Iv[I? = [[Projw{v}? + v — Projy, {v}||?

v

llv — proj wll

FIGURE 2
The hypotenuse is the longest side.




The Cauchy-Schwarz inequality

Theorem 7.2 (The Cauchy-Schwarz inequality)
For all u,v € V it is verified
[ (u,v) [ < luf{lv]]

Proof
Ifu=0, then

[(0,v)| =0 and [O]ffv]| = Ofv]| =0

So the inequality becomes an equality.
Ifu # 0, then consider W = Span{u} and

(vu) I [wvu)] v,u)

[Projy {v}|| = u”2uH = Tarz llull = lHUH

But by the Pythagorean Theorem (Theorem 7.1) we have ||Projy,, {v}| < ||v]|-
Consequently,

vl < ) = | (v,u)| < ullv] (g-e.d.)

v
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The Triangle inequality

Theorem 7.3 (The Triangle inequality)

For allu,v € V it is verified

lu+ ]| < flulf + [v]

Proof
lu+v|? = (u+v,u+v)
= (u,u) +(v,v) +2(u,v)
< HUH§+HV||§+2|<U,V>|
< Jull® + vl 2+ 2([uf{{|vl
= ([lull +{lv[})
=
utvl < o+ v
(9.ed.)

[By definition]

[Properties of inner product]

(u,v) < | (u,v) |

Cauchy-Schwarz

[Taking square root]
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 7:
@ 6.7.1
@ 6.7.13
@ 6.7.16
@ 6.7.18
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@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)

Gram-Schmidt orthogonalization (b)

Least squares (c)

Least-squares linear regression (c)

Inner product spaces (d)

Applications of inner product spaces (d)

® 6 6 6 ¢



Weighted Least Squares

Weighted Least Squares

Let us assume we have a table of collected data and we want to fit a least squares
model. However, we want to give more importance to some observations because
we are more confident about them or they are more important. We encode the
importance as a weight value (the larger the weight, the more importance the
observation has)

Let us call §; the prediction of the model for the j-th observation and ¢; the
committed error

Y=Y t€
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Weighted Least Squares

The goal is now to minimize the weighted sum of square errors

n n n

> (wie)? = 32 (wily; = 97)° = X (wyy; — wi;)°

j=1 j=1 j=1
Let us collect all observed values into a vector y and do analogously with the
predictions y. Let us define the diagonal matrix

wg 0 O ... O
0 w O 0
W=1]10 0 ws 0
0 0 O W

Then, the previous objective function becomes

> (wy; — wig)? = Wy — wy|]?

n
J=1
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Weighted Least Squares

Now, suppose that ¥ is calculated from the columns of a matrix A, that is,
y = Ax. The objective function becomes

n
> (wyy; = w;9;)? = Wy — WAx|]?
j:

The minimum of this objective function is attained for X that is the least-squares
solution of the equation system
WAx = Wy

The normal equations of the problem are

(WA)T WAx = (WA)T Wy
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Weighted Least Squares

In this work they used Weighted Least Squares to calibrate a digital system to
measure maximum respiratory pressures.

J.L. Ferreira, F.H. Vasconcelos, C.J. Tierra-Criollo. A Case Study of Applying Weighted Least Squares to Calibrate a Digital Maximum Respiratory

Pressures Measuring System. Applied Biomedical Engineering, Chapter 18 (2011)
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Fourier Series

Fourier tools are, maybe, the B ey
most widespread tool to analyze TN
signals and its frequency VA VAYE
components. Fourier AT LT AW H WL

decomposition states that any NN\

signal can be obtained by

summing sine waves of different f\[\/\/\/\/\/\/,
amplitude, phase and frequency. [\/\/\/V\/\/\/\f

I aSpectre
8

@
Harmoniques composantes

[ sonore

W
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Fourier Series

Theorem 8.1

Consider the vector space of continuous functions in the interval [0, 2x], C[0, 2x].

The set

S = {1, cos(t),sin(t), cos(2t), sin(2t), ..., cos(Nt), sin(Nt) }

is orthogonal with respect to the inner product defined as

(F(1).(t)) = [ F(t)g(t)dt

Proof

(cos(nt),cos(mt)) = fozﬂ cos(nt) cos(mt)dt
= 027r L(cos((n+ m)t) + cos((n — m)t))dt
. . 2%
_ % (Sm(s,’r_,:)t) + 5|n(E1l'L—’:1)t))

0

0

where we have used cos(A) cos(B) = %(cos(A + B) + cos(A — B)).
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Analogously we could prove that
(cos(nt),sin(mt)) = 0
(cos(nt),1) = 0
(sin(nt),1) = 0
|cos(nt)||? = =
|sin(nt)|? = =
1 = 2=




Fourier Series

Theorem 8.2 (Fourier series)
Given any function f(t) € C[0,2x], f(t) can be approximated as closely as desired
by a sum of the form simply by orthogonally projecting it onto W = Span{S}
N
F(t),si .
Z ( Hcoscc;st('hg)) cos(nt) + <|\(;)n?:t()'|7\g)> 5'”("t)>

f(t) ~ Proj, {f(t)} = <
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Fourier Series

In this work we used Fourier space to simulate and to align electron microscopy
images
Synthetic
cryo-EM
A\ Projection CTF image
-
! "
3D Object b Filter
n'a
S. Jonic, C.0.S.Sorzano, P. Thévenaz, C. El-Bez, S. De Carlo, M. Unser. Spline-Based image-t« I g ion for th di | electron
microscopy. Ultramicroscopy, 103: 303-317 (2005)
.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 6, Section 8:
@ 6.8.1
@ 6.8.6
@ 6.8.8
@ 6.8.11
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Outline

@ Orthogonality and least squares
@ Inner product, length and orthogonality (a)
@ Orthogonal sets, bases and matrices (a)
@ Orthogonal projections (b)
@ Gram-Schmidt orthogonalization (b)
@ Least squares (c)
@ Least-squares linear regression (c)
@ Inner product spaces (d)
@ Applications of inner product spaces (d)
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