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Applications

In this example of particle picking in Single Particles, one of the features we
analyze is the autocorrelation function at different subbands. The autocorrelation
is a symmetric matrix.
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Applications

In one of the steps, we construct a basis that spans the set of rotations of the
particle template. For doing so, perform a Principal Component Analysis that
diagonalizes the covariance matrix (which is again a symmetric matrix).

V. Abrishami, A. Zaldívar-Peraza, J.M. de la Rosa-Trevín, J. Vargas, J. Otón, R. Marabini, Y. Shkolnisky, J.M. Carazo, C.O.S. Sorzano. A pattern

matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics (2013)
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Diagonalization of symmetric matrices

Definition 1.1 (Symmetric matrix)
A ∈Mn×n is a symmetric matrix iff A = AT .

Example
The following two matrices are symmetric(

1 0
0 −3

)  0 −1 0
−1 5 8
0 8 −7


Example

Let’s diagonalize the matrix A =

 6 −2 −1
−2 6 −1
−1 −1 5

 The characteristic equation is

|A− λI| = 0 = −λ3 + 17λ2 − 90λ+ 144 = −(λ− 8)(λ− 6)(λ− 3)
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Diagonalization of symmetric matrices

The associated eigenvectors are

λ = 8 v1 = (−1, 1, 0)→ u1 = (− 1√
2 ,

1√
2 , 0)

λ = 6 v2 = (−1,−1, 2)→ u2 = (− 1√
6 ,−

1√
6 ,

2√
6 )

λ = 3 v3 = (1, 1, 1)→ u3 = ( 1√
3 ,

1√
3 ,

1√
3 )

The v vectors constitute an orthogonal basis of R3 and after normalizing them
(ui = vi

‖vi‖ ), we have an orthonormal basis Thus, we can factorize A as
A = PDP−1 with

P =

−
1√
2 − 1√

6
1√
3

1√
2 − 1√

6
1√
3

0 2√
6

1√
3

 D =

8 0 0
0 6 0
0 0 3


Exploiting the fact that P is orthonormal, then P−1 = PT and A = PDPT .
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Diagonalization of symmetric matrices

Theorem 1.1
If A is symmetric, then any two eigenvectors from different eigenspaces are
orthogonal.
Proof
Let v1 and v2 be two eigenvectors from two different eigenvalues λ1 and λ2. Let’s
show that v1 · v2 = 0

λ1(v1 · v2) = (λ1v1)T v2 [By definition]
= (Av1)T v2 [Definition of eigenvector]
= vT

1 AT v2 [Transpose of product]
= vT

1 (Av2) [A is symmetric]
= vT

1 (λ2v2) [Definition of eigenvector]
= λ2(v1 · v2) [By definition]

Hence (λ1 − λ2)(v1 · v2) = 0 but λ1 − λ2 6= 0 because the two eigenvalues are
different. Consequently, v1 · v2 = 0 (q.e.d.)
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Diagonalization of symmetric matrices

Definition 1.2 (Orthogonal diagonalization)
A is orthogonally diagonalizable iff A = PDPT being P an orthogonal (i.e.,
P−1 = PT ).

Theorem 1.2
A is orthogonally diagonalizable iff A is symmetric.
Proof orthogonally diagonalizable ⇒ symmetric
Let us assume that A = PDPT , then

AT = (PDPT )T = (PT )TDTPT = PDTPT = PDPT = A

Proof orthogonally diagonalizable ⇐ symmetric
We omit this proof since it is more difficult.
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Diagonalization of symmetric matrices

Example

Let’s orthogonally diagonalize A =

 3 −2 4
−2 6 2
4 2 3

.

Solution
The characteristic equation is

|A− λI| = 0 = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ+ 2)

Its associated eigenvectors are

λ = 7 v1 = (1, 0, 1)→ u1 = ( 1√
2 , 0,

1√
2 )

v2 = (− 1
2 , 1, 2)→ u2 = (− 1√

5 ,
2√
5 , 0)

λ = −2 v3 = (−1,− 1
2 , 1)→ u3 = (− 2

3 ,−
1
3 ,

2
3 )

u1 and u2 are unitary and linearly independent, but they are not orthogonal. u3 is
orthogonal to the other two vectors because it belongs to a different eigenspace
(see Theorem 1.1).
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Diagonalization of symmetric matrices

We can orthogonalize u1 and u2 following the Gram-Schmidt procedure:

w1 = v1 = ( 1√
2 , 0,

1√
2 )

w′2 = v2 − 〈v2,w1〉w1 = (− 1√
5 ,

2√
5 , 0)−

(
− 1√

10

)
( 1√

2 , 0,
1√
2 ) = (− 1

2
√

5 ,
2√
5 ,

1
2
√

5 )

w2 =
w′

2
‖w′

2‖
= (− 1

3
√

2 ,
2
√

2
3 , 1

3
√

2 )

w3 = v3 = (− 2
3 ,−

1
3 ,

2
3 )

So A = PDPT with

P =


1√
2 − 1

3
√

2 − 2
3

0 2
√

2
3 − 1

31√
2

1
3
√

2
2
3

 D =

7 0 0
0 7 0
0 0 −2
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Diagonalization of symmetric matrices

Definition 1.3 (Spectrum of a matrix)
The set of eigenvalues of a matrix is called the spectrum of that matrix.

Theorem 1.3 (Spectral theorem for symmetric matrices)
An n × n symmetric matrix has the following properties:

1 A has n real eigenvalues (including multiplicities).
2 The dimension of each eigenspace is the multiplicity of the corresponding

eigenvalue as root of the characteristic equation.
3 Eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.
4 A is orthogonally diagonalizable.
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Diagonalization of symmetric matrices

Definition 1.4 (Spectral decomposition of symmetric matrices)
Let A = PDPT with P =

(
u1 u2 ... un

)
. Then

A =
(
u1 u2 ... un

)λ1 0 ... 0
0 λ2 ... 0
0 0 ... λn




uT
1

uT
2
...
uT

n


=

(
λ1u1 λ2u2 ... λnun

)
uT

1
uT

2
...
uT

n


= λ1u1uT

1 + λ2u2uT
2 + ...+ λnunuT

n

The latest equation is the spectral decomposition of A. Each one of the terms
λiuiuT

i is an n × n matrix of rank 1 (since all the columns are multiples of ui .
Additionally, uiuT

i x is the orthogonal projection of any vector onto the subspace
generated by ui .
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Diagonalization of symmetric matrices

Example
Write the spectral decomposition of

A =

(
2√
5 − 1√

5
1√
5

2√
5

)(
8 0
0 3

)( 2√
5

1√
5

− 1√
5

2√
5

)
Solution
Consider u1 = ( 2√

5 ,
1√
5 ) be the first column of P and u2 = (− 1√

5 ,
2√
5 ). Then

u1uT
1 =

( 4
5

2
52

5
1
5

)
u2uT

2 =

( 1
5 − 2

5
− 2

5
4
5

)
The spectral decomposition is therefore

A = λ1u1uT
1 + λ2u2uT

2 = 8
( 4

5
2
52

5
1
5

)
+ 3

( 1
5 − 2

5
− 2

5
4
5

)
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 1:

7.1.6
7.1.7
7.1.13
7.1.23
7.1.27
7.1.29
7.1.35
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Quadratic forms

Introduction
Most expressions appearing so far are linear: Ax, 〈w, x〉, xT , that is, if we
construct an operator T (x) with them (e.g., T (x) = Ax, T (x) = 〈w, x〉,
T (x) = xT ), it meets

T (ax1 + bx2) = aT (x1) + bT (x2)

However, there are nonlinear expressions like xT x. Particularly, this one is said to
be quadratic and they normally appear in applications of linear algebra to
engineering (like optimization) and signal processing (like signal power). They also
arise in physics (as potential and kinetic energy), differential geometry (as the
normal curvature of surfaces) and statistics (as confidence ellipsoids).
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Quadratic forms

Definition 2.1 (Quadratic forms)
A quadratic form in Rn is a function Q(x) : Rn → R that can be computed as

Q(x) = xTAx

being A ∈Mn×n a symmetric matrix.

Example

1 Q(x) = xT Ix =
(
x1 x2

)(1 0
0 1

)(
x1
x2

)
= x2

1 + x2
2

2 Q(x) = xT
(
4 0
0 3

)
x = 4x2

1 + 3x2
2

3 Q(x) = xT
(

3 −2
−2 7

)
x = 3x2

1 + 7x2
2 − 4x1x2

4 Q(x) = xT

 5 − 1
2 0

− 1
2 3 4
0 4 2

 x = 5x2
1 + 3x2

2 + 2x2
3 − x1x2 + 8x2x3

8. Symmetric matrices and quadratic forms December 3, 2013 19 / 73



Change of variables in quadratic forms

Change of variables
A change of variables is an equation of the form x = Py or equivalently P−1x = y,
where P is an invertible matrix. Exploiting the fact that, in a quadratic form, A is
symmetric, then we have A = PDPT . We perform the change of variables

x = Py

to obtain

Q(x) = (Py)TA(Py) = yTPTAPy = Q(y)

But we know

A = PDPT ⇒ D = PTAP

Consequently

Q(y) = yTDy

That is, there is a basis, in which the matrix of the quadratic form is diagonal.
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Change of variables in quadratic forms

Example
Consider Q(x) = xTAx with

A =

(
1 −4
−4 −5

)
=

(
2√
5

1√
5

− 1√
5

2√
5

)(
3 0
0 −7

)( 2√
5 − 1√

5
1√
5

2√
5

)
That is

Q(x) = x2
1 − 5x2

2 − 8x1x2

If we make the change of variable

y = PT x =

(
2√
5x1 − 1√

5x2
1√
5x1 + 2√

5x2

)
then

Q(y) = yTDy = 3y2
1 − 7y2

2
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Change of variables in quadratic forms

Let’s check that effectively both ways of calculating the quadratic form are
equivalent. For doing so, we’ll calculate the value of Q(x) for x = (2,−2):

Q(x) = xTAx = 22 − 5 · (−2)2 − 8 · 2 · (−2) = 4− 20 + 32 = 16

If we make the change of variable

y =

(
2√
52−

1√
5 (−2)

1√
52 + 2√

5 (−2)

)
=

(
6√
5

− 2√
5

)
then

Q(y) = yTDy = 3
(

6√
5

)2
− 7

(
− 2√

5

)2
= 3 36

5 − 7 4
5 = 80

5 = 16
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Change of variables in quadratic forms

Theorem 2.1 (Principal axes theorem)
Let A ∈Mn×n be a symmetric matrix. Then, there exists a change of variable
x = Py such that the quadratic form xTAx becomes yTDy with D an n × n
diagonal matrix. The columns of P are the principal axes.
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Principal axes

A geometric view of the principal axes
Consider the quadratic form Q(x) = xTAx with x ∈ R2 and the isocurve
Q(x) = c. The isocurve is either an ellipse, a circle, a hyperbola, two intersecting
lines, a point, or contains no points at all. If A is diagonal, then

Q(x) = a11x2
1 + a22x2

2 = c

The equation of an ellipse is

x2
1

a2 +
x2

2
b2 = 1

with a, b > 0. Therefore

a =
√

c
a11

b =
√

c
a22
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Principal axes

The equation of a hyperbola is

x2
1

a2 − x2
2

b2 = 1

with a, b > 0
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Principal axes

If A is not diagonal, then the ellipse or the hyperbola are rotated
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Principal axes

Example
Let’s analyze the rotated ellipse

5x2
1 − 4x1x2 + 5x2

2 = 48

The corresponding matrix is

A =

(
5 −2
−2 5

)
=

(
1√
2 − 1√

2
1√
2

1√
2

)(
3 0
0 7

)( 1√
2

1√
2

− 1√
2

1√
2

)
So,

a =
√

c
a11

=
√

48
3 = 3 b =

√
c

a22
=
√

48
7 ≈ 2.65

The change of variable x =

(
1√
2 − 1√

2
1√
2

1√
2

)
y diagonalizes the quadratic form (see

the new axes in the previous slide).
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Classification of quadratic forms

Example
Look at the following surfaces defined as z = Q(x)

The curves seen in R2 are the cut of these surfaces with the plane z = c. It is
obvious that some of the surfaces are always above z = 0 (a and b), others are
always below z = 0 (d), and still other are sometimes below and sometimes above
z = 0 (c).
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Classification of quadratic forms

Definition 2.2 (Classification of quadratic forms)

We say Q(x) is
positive definite if
Q(x) > 0 ∀x ∈ Rn, x 6= 0
negative definite if
Q(x) < 0 ∀x ∈ Rn, x 6= 0
indefinite if Q(x) assumes both positive
and negative values
positive semidefinite if
Q(x) ≥ 0 ∀x ∈ Rn, x 6= 0
negative semidefinite if
Q(x) ≤ 0 ∀x ∈ Rn, x 6= 0
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Classification of quadratic forms

Theorem 2.2 (Classification of quadratic forms and quadratic forms)
Let Q(x) = xTAx with A ∈Mn×n and symmetric. Let λi be the eigenvalues of A.
Q(x) is

positive definite iff λi > 0 ∀i
negative definite iff λi < 0 ∀i
indefinite iff there are positive and negative eigenvalues
positive semidefinite iff λi ≥ 0 ∀i
negative semidefinite iff λi ≤ 0 ∀i

Proof
By the Theorem of Principal Axes (Theorem 2.1), there is a change of variable
such that

Q(y) = yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

where λi is the i-th eigenvalue. The values of Q depend on λi in the way that the
theorem states (e.g., ∀y 6= 0 Q(y) > 0 iff λi > 0 ∀i , etc.)

8. Symmetric matrices and quadratic forms December 3, 2013 30 / 73



Classification of quadratic forms

Examples
Q(x) = 3x2

1 + 7x2
2 is positive definite because its eigenvalues are 3 and 7

(both larger than 0).
Q(x) = 3x2

1 is positive semidefinite because its eigenvalues are 3 and 0 (both
larger or equal than 0).
Q(x) = 3x2

1 − 7x2
2 is indefinite because its eigenvalues are 3 and -7 (one

positive and another negative).
Q(x) = −3x2

1 − 7x2
2 is negative definite because its eigenvalues are -3 and -7

(both smaller than 0).

Definition 2.3 (Classification of symmetric matrices)
A symmetric matrix is positive definite if its corresponding quadratic form is
positive definite. Analogously for the rest of the classification.
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Classification of quadratic forms

Cholesky factorization
Cholesky factorization factorizes a symmetric matrix A as

A = RTR

being R an upper triangular matrix. A is positive definite if all entries in the
diagonal of R are positive.
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 2:
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7.2.27
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Constrained optimization

Introduction
Many problems in engineering or physics are of the form

min Q(x)
subject to ‖x‖2 = 1 or max Q(x)

subject to ‖x‖2 = 1

Example
Calculate the minimum and maximum of Q(x) = 9x2

1 + 4x2
2 + 3x2

3 subject to
‖x‖2 = 1. Solution
By taking the minimum and maximum coefficient in Q(x) we have

3x2
1 + 3x2

2 + 3x2
3 ≤ Q(x) ≤ 9x2

1 + 9x2
2 + 9x2

3
3(x2

1 + x2
2 + x2

3 ) ≤ Q(x) ≤ 9(x2
1 + x2

2 + x2
3 )

3 ≤ Q(x) ≤ 9

The minimum value Q(x) = 3 is attained for x = (0, 0, 1), while the maximum
value Q(x) = 9 is attained for x = (1, 0, 0). In fact the minimum and maximum
values that the constrained quadratic form can take are λmin and λmax .
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Constrained optimization

Example
Calculate the minimum and maximum of Q(x) = 3x2

1 + 7x2
2 subject to ‖x‖2 = 1.

Solution
‖x‖2 = 1 is a cylinder in R3 while z = Q(x) is a parabolic surface. The minimum
and maximum of the constrained problem are attained among those points
belonging to the curve that is the intersection of both surfaces.
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Constrained optimization

Theorem 3.1
Let A be a symmetric matrix and let

m = min
{

xTAx
∣∣‖x‖2 = 1

}
M = max

{
xTAx

∣∣‖x‖2 = 1
}

Then, M = λmax and m = λmin. M is attained for x = umax (the eigenvector
associated to λmax ) and m is attained for x = umin (the eigenvector associated to
λmin).
Proof
Let’s orthogonally diagonalize A as A = PDPT and we make the change variables
y = PT x. We already know that

Q(x) = xTAx = yTDy

Additionally ‖y‖2 = ‖x‖2 because

‖y‖2 = yT y = (PT x)T (PT x) = xTPPT x = xT x = ‖x‖2

In particular ‖y‖ = 1⇔ ‖x‖ = 1.
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Constrained optimization

Then,

m = min
{

yTDy
∣∣‖y‖2 = 1

}
M = max

{
yTDy

∣∣‖y‖2 = 1
}

Since D is diagonal we have

yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

Let’s look for the maximum of these values subject to ‖y‖ = 1. Consider the
maximum eigenvalue, λmax , then

yTDy = λ1y2
1 + λ2y2

2 + ...+ λny2
n

≤ λmaxy2
1 + λmaxy2

2 + ...+ λmaxy2
n

= λmax (y2
1 + y2

2 + ...+ y2
n )

= λmax‖y‖ = λmax
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Constrained optimization

In fact the value λmax is attained for ymax =
(
0 0 ... 0 1 0 ... 0

)
, where

the 1 is at the location corresponding to λmax . The corresponding x is

x = Py =
(
u1 u2 ... umax−1 umax umax+1 ... un

)


0
0
...
0
1
0
...
0


= umax

We could reason analogously for the minimum.
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Constrained optimization

Example

Let A =

3 2 1
2 3 1
1 1 4

. Solve the following optimization problem

max Q(x) = xTAx
subject to ‖x‖2 = 1

Solution
The characteristic equation is

|A− λI| = 0 = −(λ− 6)(λ− 3)(λ− 1)

The maximum eigenvalue is λ = 6 and its corresponding eigenvector is
u = ( 1√

3 ,
1√
3 ,

1√
3 ). Therefore, the maximum of Q(x) is 6 that is attained for

x = ( 1√
3 ,

1√
3 ,

1√
3 ).
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Constrained optimization

Theorem 3.2
Let A, λmax and umax be defined as in the previous theorem. Then the solution of

max Q(x) = xTAx
subject to ‖x‖2 = 1

x · umax = 0

is given by the second largest eigenvalue λmax−1 that is attained for its associated
eigenvector (umax−1).
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Exercises
From Lay (3rd ed.), Chapter 7, Section 3:

7.3.1
7.3.3
7.3.13
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Singular Value Decomposition (SVD)

Introduction
Unfortunately, not all matrices can be diagonalized and factorized as

A = PDP−1

However, all of them (even rectangular matrices) can be factorized as

A = QDP−1

This is called the Singular Value Decomposition. It imitates the property of
stretching/shrinking of eigenvalues and eigenvectors. For instance, assume u is an
eigenvector, then

Au = λu⇒ ‖Au‖ = |λ|‖u‖

If |λ| > 1, then the transformed vector Au is stretched with respect to u. On the
contrary, if |λ| < 1, then the transformed vector Au is shrinked with respect to u.
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Singular Value Decomposition (SVD)

Example

Consider A =

(
4 11 14
8 7 −2

)
and the linear transformation T (x) = Ax. It

transforms the unit sphere in R3 onto an ellipse of R2

Look for the direction that maximizes ‖Ax‖ subject to ‖x‖ = 1.
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Singular Value Decomposition (SVD)

Solution
We may maximize ‖Ax‖2 because ‖Ax‖ is maximum iff ‖Ax‖2 is maximum.

‖Ax‖2 = (Ax)T (Ax) = xTATAx

which is a quadratic form since ATA is symmetric:

ATA =

 80 100 40
100 170 140
40 140 200


By Theorem 3.1, the maximum eigenvalue is max ‖Ax‖2 = λmax = 360 and its
associated eigenvector umax = ( 1

3 ,
2
3 ,

2
3 ). Consequently max ‖Ax‖ =

√
360 = 6

√
10

that is attained for

Aumax =

(
18
6

)
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Singular Value Decomposition (SVD)

Definition 4.1
Singular Values of a matrix Let A ∈Mm×n. ATA can always be orthogonally
diagonalized. Let {v1, v2, ..., vn} a base of Rn formed by the eigenvectors of ATA
and let λ1, λ2, ..., λn be its corresponding eigenvalues. Then

‖Avi‖2 = (Avi )
T (Avi ) = vT

i ATAvi = vT
i (λivi ) = λi‖vi‖2

If we take the square root

‖Avi‖ =
√
λi‖vi‖

That is,
√
λi reflects the amount by which vi is stretched or shrinked.

√
λi is

called a singular value and it is denoted as σi .
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Singular Value Decomposition (SVD)

Example (continued)

In the example of Slide 45, the singular values are the lengths of the ellipse in R2

and they are 6
√
10, 3

√
10 and 0. From the singular values we learn that the unit

sphere in R3 (there are 3 singular values) is collapsed in 2D (one of the singular
values is 0) onto an ellipse (the remaining two singular values are different from
each other).
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Singular Value Decomposition (SVD)

Theorem 4.1
Let {v1, v2, ..., vn} a basis of Rn formed by the eigenvectors of ATA sorted in
descending order and let λ1, λ2, ..., λn be its corresponding eigenvalues. Let us
assume that A has r non-null singular values. Then

S = {Av1,Av2, ...,Avr}

is a basis of Col{A} and

Rank{A} = r

Proof
By Theorem 1.1, any two eigenvectors are orthogonal to each other if they
correspond to different eigenvalues, that is, vi · vj = 0. Then,

(Avi ) · (Avj) = vT
i ATAvj = vT

i (λjvj) = λj(vT
i vj) = λj(vi · vj) = 0

That is Avi and Avj are also orthogonal.
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Singular Value Decomposition (SVD)

Additionally, if the eigenvectors vi are unitary, then (see Definition 4.1)

σi = ‖Avi‖

Since there are r non-null singular values, Avi 6= 0 only for i = 1, 2, ..., r . So the
set S is a set of non-null, orthogonal vectors. To show it is a basis of Col{A} we
still need to show that any vector in Col{A} can be expressed as a linear
combination of the vectors in S. We know that the eigenvalues of ATA is a basis
of Rn. Then for any vector x ∈ Rn there exist coefficients c1, c2, ..., cn not all of
them zero such that

x = c1v1 + c2v2 + ...+ cnvn

If we transform this vector

Ax = A(c1v1 + c2v2 + ...+ cnvn) [Linear transformation]
= c1Av1 + c2Av2 + ...+ cnAvn [non-null singular values]
= c1Av1 + c2Av2 + ...+ crAvr
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Singular Value Decomposition (SVD)

That is any transformed vector Ax can be expressed as a linear combination of the
elements in S. Consequently, S is a basis of Col{A}.
Finally, Rank{A} is nothing more than the dimension of Col{A}. Since A is a
basis of Col{A} and it has r vectors, then Rank{A} = r .
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Singular Value Decomposition (SVD)

Theorem 4.2 (The Singular Value Decomposition)
Let A ∈Mm×n be a matrix with rank r . Then, there exists a matrix Σ ∈Mm×n
whose diagonal entries are the first r singular values of A sorted in descending
order (σ1 ≥ σ2 ≥ ... ≥ σr > 0) and there exist orthogonal matrices U ∈Mm×m
and V ∈Mn×n such that

A = UΣV T

Σ is unique but U and V are not. The columns of U are called the left singular
vectors, and the columns of V are the right singular vectors.

Example

(
a11 a12 a13 a14
a21 a22 a23 a24

)
=

(
u11 u12
u21 u22

)(
σ1 0 0 0
0 σ2 0 0

)
v11 v21 v31 v41
v12 v22 v32 v42
v13 v23 v33 v43
v14 v24 v34 v44
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Singular Value Decomposition (SVD)

Proof
Let λi and vi (i = 1, 2, ..., n) be the eigenvalues and eigenvectors of ATA. By
Theorem 4.1 we know that S = {Av1,Av2, ...,Avr} is an orthogonal basis of
Col{A}. Let’s normalize these vectors

ui = Avi
σi

i = 1, 2, ..., r

and we extend the set {u1,u2, ...,ur} to be an orthogonal basis of Rm. Let us
construct the matrices

U =
(
u1 u2 ... um

)
V =

(
v1 v2 ... vn

)
By construction U and V are orthogonal, and

AV =
(
Av1 Av2 ... Avr 0 ... 0

)
=

(
σ1u1 σ2u2 ... σr ur 0 ... 0

)
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Singular Value Decomposition (SVD)

Proof (continued)
On the other side, let

D =


σ1 0 ... 0
0 σ2 ... 0
.. ... ... ...
0 0 ... σr

 Σ =

(
D 0
0 0

)

Then,

UΣ =
(
u1 u2 ... um

)(D 0
0 0

)
=
(
σ1u1 σ2u2 ... σr ur 0 ... 0

)
Therefore,

UΣ = AV ⇒ A = UΣV T

since V is orthogonal.
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Singular Value Decomposition (SVD)

Theorem 4.3 (Properties of the SVD decomposition)
In a SVD decomposition

The left singular vectors of A are eigenvectors of AAT .
The right singular vectors of A are eigenvectors of ATA.
The singular values are the square root of the eigenvalues of both AAT and
ATA.
The singular values are the length of the semiaxes of the mapping of the unit
hypersphere in Rn onto Rm.
The columns of U form an orthogonal basis of Rm.
The columns of V form an orthogonal basis of Rn.
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Singular Value Decomposition (SVD)

Example

Let’s calculate the SVD decomposition of A =

(
4 11 14
8 7 −2

)
.

Step 1 : Orthogonally diagonalize ATA

ATA =

 80 100 40
100 170 140
40 140 200


Its eigenvalues and eigenvectors are

λ1 = 360 v1 = ( 1
3 ,

2
3 ,

2
3 )

λ2 = 90 v2 = (− 2
3 ,−

1
3 ,

2
3 )

λ3 = 0 v3 = ( 2
3 ,−

2
3 ,

1
3 )

8. Symmetric matrices and quadratic forms December 3, 2013 56 / 73



Singular Value Decomposition (SVD)

Step 2 : Construct V and Σ

V =
(
v1 v2 v3

)
=

 1
3 − 2

3
2
32

3 − 1
3 − 2

32
3

2
3

1
3


Σ =

(√
λ1 0 0
0

√
λ2 0

)
=

(
6
√
10 0 0
0 3

√
10 0

)
Step 3 : Construct U

u1 = Av1
σ1

= ( 3√
10 ,

1√
10 )

u2 = Av2
σ2

= ( 1√
10 ,−

3√
10 )

The set {u1,u2} is already a basis of R2, so there is no need to extend it.
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Singular Value Decomposition (SVD)

Finally we have

A = UΣV T(
4 11 14
8 7 −2

)
=

(
3√
10

1√
10

1√
10 − 3√

10

)(
6
√
10 0 0
0 3

√
10 0

) 1
3

2
3

2
3

− 2
3 − 1

3
2
32

3 − 2
3

1
3


MATLAB: [U,S,V]=svd([4 11 14; 8 7 -2])
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Singular Value Decomposition (SVD)

Example

Let’s calculate the SVD decomposition of A =

 1 −1
−2 2
2 −2

.

Step 1 : Orthogonally diagonalize ATA

ATA =

(
9 −9
−9 9

)
Its eigenvalues and eigenvectors are

λ1 = 18 v1 = ( 1√
2 ,−

1√
2 )

λ2 = 0 v2 = ( 1√
2 ,

1√
2 )
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Singular Value Decomposition (SVD)

Step 2 : Construct V and Σ

V =
(
v1 v2

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)

Σ =

√λ1 0
0

√
λ2

0 0

 =

3
√
2 0

0 0
0 0


Step 3 : Construct U

u1 = Av1
σ1

= ( 1
3 ,−

2
3 ,

2
3 )

The set {u1} is not yet a basis of R3, so we need to extend it with orthogonal
vectors. All vectors orthogonal to u1 fulfill

u1 · u = 0 = 1
3x1 − 2

3x2 + 2
3x3 ⇒ x1 = 2x2 − 2x3
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Singular Value Decomposition (SVD)

Step 3 : Construct U (continued)
A basis of this space is w2 = (2, 1, 0) and w3 = (−2, 0, 1). But this basis is not
orthogonal. Let’s make it orthogonal following Gram-Schmidt procedure

u2 = w2
‖w2‖ = ( 2√

5 ,
1√
5 , 0)

w′3 = w3− < w3, v2 > v2 = (− 2
5 ,

4
5 , 1)

u3 = w3
‖w3

= (− 2
3
√

5 ,
4

3
√

5 ,
√

5
3 )

In fact, SVD does not require the u vectors to be unitary, but it is simply
convenient. We can make u2 and u3 unitary because they are “free” (we are
constructing them simply to extend the set of u vectors to be a basis of R3), but
not u1 because it is “bound” to the singular value.
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Singular Value Decomposition (SVD)

Finally we have

A = UΣV T 1 −1
−2 2
2 −2

 =


1
3

2√
5 − 2

3
√

5
− 2

3
1√
5

4
3
√

5
2
3 0

√
5

3


3
√
2 0

0 0
0 0

( 1√
2 − 1√

2
1√
2

1√
2

)
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Algebraic applications of SVD

Matrix condition number
Let σ1 and σr be the largest and smallest singular values of a matrix A. The
condition number of the matrix is defined as

κ(A) = σ1
σr

If this condition number is very large, the equations system Ax = b is ill-posed
and small perturbations in b translate into large perturbations in x. As a rule of
thumb, if κ(A) = 10k , then you may lose up to k digits of accuracy.
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Algebraic applications of SVD

Bases for fundamental spaces
The U and V matrices provide bases for Row{A}, Col{A} = Row{AT}, Nul{A}
and Nul{AT}
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Algebraic applications of SVD

Theorem 4.4 (The Invertible Matrix Theorem (continued))
The Invertible Matrix Theorem has been developed in Theorems 5.1 and 11.5 of
Chapter 3, Theorem 10.5 of Chapter 5, Theorem 2.1 of Chapter 6. Here, we give
an extension if A is invertible, then the following statements are equivalent to the
previous statements:

xxvii. (Col{A})⊥ = {0}.
xxviii. (Nul{A})⊥ = Rn.
xxix. (Row{A}) = Rn.
xxx. A has n non-null singular values.
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Algebraic applications of SVD

Reduced SVD and pseudoinverse of A
If within U and V we distinguish two submatrices, each one with r columns we
have

U =
(
UrUm−r

)
and V =

(
VrVn−r

)
Then,

A = UΣV T =
(
UrUm−r

)(D 0
0 0

)(
V T

r
V T

n−r

)
= UrDV T

r

Despite the fact that we may have removed many columns of U and V , we have
not lost any information and the recovery of A is exact. The Moore-Penrose
pseudoinverse is defined as

A+ = VrD−1UT
r

that is a n ×m matrix such that

A+AA+ = A+ AA+A = A
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Algebraic applications of SVD

Pseudoinverse of A and Least Squares
It can be shown that the least-squares solution of the equation system Ax = b is
given by

x̂ = A+b

Matrix approximation
If instead of taking r components in the split of U and V (see previous slide) we
take only k (assuming singular values have been ordered in descending order), and
we reconstruct Ak

Ak = UkDkV T
k

This matrix is the matrix of rank k that minimizes the Frobenius norm of the
difference

Ak = min
Rank{B}=k

‖A− B‖2
F = min

Rank{B}=k

n∑
i,j=1

(aij − bij)
2
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Exercises

Exercises
From Lay (3rd ed.), Chapter 7, Section 4:

7.4.3
7.4.11
7.4.15
7.4.17
7.4.18
7.4.19
7.4.20
7.4.23
7.4.24
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Applications of SVD

Eigengenes and eigenassays
SVD is very much used to analyze the response of different genes to different
assays or conditions.
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Applications of SVD

Eigengenes and eigenassays
SVD is very much used to analyze the response of different genes to different
assays or conditions.

Alter, O., Brown, P. O. and Botstein, D. (2000) Proc. Natl. Acad. Sci. USA 97, 10101
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Applications of SVD

Eigenfaces
In this example we see the effect of matrix approximation by the reduced SVD.
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Applications of SVD

Eigenfaces
We can also use SVD to automatically analyze documents.

P. Marksberry, D. Parsley. Managing the IE (Industrial Engineering) Mindset: A quantitative investigation of Toyota’s practical thinking shared among

employees. J. Industrial Engineering and Manegement, 4: 771-799 (2011)
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Outline

8 Symmetric matrices and quadratic forms
Diagonalization of symmetric matrices (a)
Quadratic forms (b)
Constrained optimization (b)
Singular Value Decomposition (SVD) (c)
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