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Local and global coordinates

Reference
Farin and Hansford, Chapter 1

Local and global coordinates
In real applications we may need to distinguish between local and global
coordinates.

And we need some way of transforming one into the other. This is nothing more
than a change of basis.
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Local and global coordinates

Shift and scale

In Vector Graphics it is common to design
objects in a local coordinate system (d) and,
then, place, rotate and scale the object in the
global coordinate system (e). We need some
transformation to go from one space to the
other.

For the first component, d1, we note that we
go from a local interval [0, 1] to a global
interval [min1,max1]. We may easily perform
the transformation as

d1−0
1−0 = e1−min1

max1−min1
⇒

e1 = min1 + (max1 −min1)d1
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Local and global coordinates

Shift and scale
The more general transformation maps the local interval [mind1,maxd1] to the
global interval [mine1,maxe1]. This is achieved with transformation

e1 = mine1 + maxe1−mine1
maxd1−mind1

d1

The same kind of transformation is applied to the second component (d2 → e2).
Putting everything in matrix notation we have

e =

(
mine1
mine2

)
+

(maxe1−mine1
maxd1−mind1

0
0 maxe2−mine2

maxd2−mind2

)
d

This transformation is of the form

e = T (d) = emin + Ad

that is not a linear transformation because of the shift (e.g., show that
T (d1 + d2) 6= T (d1) + T (d2)).
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Points and vectors

Reference
Farin and Hansford, Chapter 2

Points and vectors

We also need to distinguish between points and
vectors. Both are represented as a list of
coordinates. Informally, a point indicates a
location in space, while a vector indicates a
direction (orientation+sense) in space. In this
example, we have two points, p and q, and a
vector v that goes from p to q. We may talk
about the length of a vector, but not of a point.
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Points and vectors

Points and vectors

In this example we have multiple copies of the
same vector (since they all have the same
direction and magnitude). In Physics, forces
are vectors that are applied to objects that are
located at points. In this figure we would see
the same force applied to different objects.
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Points and vectors

Points and vectors

More formally, points belong to an Euclidean
space while vectors belong to a vector space.

p,q ∈ E2

v ∈ R2

Although we may represent both spaces in the
same figure and we may define operations using
both kinds of spaces. The goal of distinguishing
between points and vectors is to distinguish
between operations that depend on the
coordinate system and operations that do not.
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Operations on points and vectors

Coordinate independent operations
− : E2 × E2 → R2 v = q− p
+ : E2 × R2 → E2 p = q + v
+ : R2 × R2 → R2 v = u + w
· : R× R2 → R2 v = ru

Coordinate dependent operations
+ : E2 × E2 → E2 t = p + q
· : R× E2 → E2 q = rp
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Vector fields

Vector fields
Any function that assigns a vector to a point f : E2 → R2 v = f (p)

Example

f (x , y) = (x , y) f (x , y) = (−y , x)
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Combinations of points

Barycentric combinations
A weighted sum of points where the weights add up to 1 is called a barycentric
combination

Example

r = (1− t)p + tq = p + t(q− p) s = t1r + t2p + t3q
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Lines in 2D

Reference
Farin and Hansford, Chapter 3

Parametric equation of a line

Given two points:
l(t) = p + t(q− p) t ∈ R
Given point and vector:
l(t) = p + tv t ∈ R
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Lines in 2D

Implicit equation of a line

Given a point and the normal direction:
a · (x− p) = 0

In 2D:

(a1, a2) · (x1 − p1, x2 − p2) = 0⇒
ax1 + bx2 + c = 0
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Lines in 2D

Explicit equation of a line

Given a point and slope:
In 2D:

x2 = p2 + m(x1 − p1)
x2 = mx1 + b

x2 = (tanΘ)x1 + b
But it is not a good representation for
vertical lines.
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Lines in 2D

Distance of a point to a line

Implicit line:
Line: a · (x− p) = 0
Point: r

Let w = r − p and calculate:
a ·w = ‖a‖‖w‖ cos(θ)

Analyzing the figure we note that
cos(θ) = d

‖w‖ . Then
a ·w = ‖a‖d ⇒ d = a·w

‖a‖
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Lines in 2D

Distance of a point to a line

Parametric line:
Line: l(t) = p + tv
Point: r

Let w = r − p and calculate:
v ·w = ‖v‖‖w‖ cos(α)

Analyzing the figure we note that
sin(α) = d

‖w‖ =
√
1− cos2(α). Then

d = ‖w‖
√
1−

(
v·w
‖v‖‖w‖

)2
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Lines in 2D

The foot of a point

Parametric line:
Line: l(t) = p + tv
Point: r

Let w = r − p. The closest point within
the line to r is

q = p + Projv{w} = p + v·w
‖v‖2 v
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Lines in 2D

The intersection of two lines

Parametric lines:
Line 1: l1(t) = p + tv
Line 2: l2(s) = q + sw

We need to solve the equation system
l1(t) = l2(s)

p + tv = q + sw(
v −w

)(t
s

)
= q− p
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Lines in 2D

The intersection of two lines

Implicit lines:
Line 1: a · (x− p) = 0
Line 1: a · (x− q) = 0

We need to find x satisfying both
equations at the same time

aT x− aT p = 0
aT x− aT q = 0(
aT

aT

)
x =

(
aT p
aT q

)
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Affine maps in 2D

Reference
Farin and Hansford, Chapter 6

Affine change of coordinates
We transform the point x into point x′. Note
that the matrix multiplication is performed on
vectors, not on points

v = x− o
v′ = Av

x′ = p + v′

In total

x′ = p + A(x− o)

We may go back by

x = o + A−1(x′ − p)
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Affine maps in 2D

Translations and rotations

Translation: x′ = p + (x− o)

Rotation: x′ − r = Rα(x− r)
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Affine maps in 2D

Mirrors and compositions

Mirror:
p = 1

2 (x + x′)
x′ = 2p− x

Compositions:

x′ = o′ + A(x− o)
x′′ = o′′ + A′(x′ − o′)
x′′ = o′′ + A′A(x− o)
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Conic sections

Reference
Juan de Buegos (2000), Capítulo 11

Conic sections
The circle, the ellipse, the parabola, and the hyperbola are all curves stemming
from a section of a cone.
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Conic sections

Conic sections
They are all second order curves

ax2
1 + bx2

2 + cx1x2︸ ︷︷ ︸
2nd order

+ dx1 + ex2︸ ︷︷ ︸
1st order

+ f︸︷︷︸
0th order

= 0

By renaming the coefficients, we may rewrite it as

a11x2
1 + a22x2

2 + 2a12x1x2 + 2b1x1 + 2b2x2 + c = 0(
x1 x2

)(a11 a12
a12 a22

)(
x1
x2

)
+ 2

(
b1 b2

)(x1
x2

)
+ c = 0

xTAx + 2Bx + c = 0

Compare this to the more widely known equation of the parabola
y = ax2 + bx + c. Finally, we can write it in a very compact form

x̃TM x̃ =
(
x1 x2 1

)a11 a12 b1
a12 a22 b2
b1 b2 c

x1
x2
1

 = 0
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Conic sections

Definition 5.1 (Conic sections)
A conic section or conics is the locus (lugar geométrico) of all points satisfying

x̃TM x̃ = 0

Definition 5.2 (Conic equality)
Two conics x̃TM1x̃ = 0 and x̃TM2x̃ = 0 are the same if

M1 = kM2

for some real number k.

Definition 5.3 (Degenerate and ordinary conics)
A conic section is degenerate if

det{M} = 0

A conic section is ordinary, if it is not degenerate.
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Conic sections

Examples of ordinary conics
Circumphere x2

r2 + y2

r2 = 1
Ellipse x2

a2 + y2

b2 = 1
Hyperbola x2

a2 − y2

b2 = 1
Parabola y2 = 2px

Examples of degenerate conics
Two lines x2 − y2 = (x − y)(x + y) = 0
Two lines x2 − 4 = (x − 2)(x + 2) = 0
Two lines (superposed) x2 = 0
Two complex lines x2 + y2 = (x − iy)(x + iy) = 0
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Intersection of a conics and a line

Intersection of a conics and a line
Consider the parametric equation of a line in homogeneous coordinates

l̃(t) =

l1(t)
l2(t)
1

 =

p1 + tv1
p2 + tv2

1

 =

p1
p2
1

+ t

v1
v2
0

 = p̃ + t ṽ

We need to find a point in the line (i.e., t) such that

l̃(t)TM l̃(t) = 0
(p̃ + t ṽ)TM(p̃ + t ṽ) = 0

ṽTM ṽt2 + 2ṽTMp̃t + p̃TMp̃ = 0

This is a second order equation in t. If there is no solution, then the line does not
intersect the conics. If there is only 1 solution, then the line is tangent to the
conics. If there are 2 solutions, then the line intersects the conics (the line is
secant to the conics, secante).
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Reduced equation of a conics

Reduced equation of a conics

Let λ1 and λ2 be the eigenvalues of A =

(
a11 a12
a12 a22

)
. Then, there exists a basis

in which the conics can be expressed as

λ1 6= 0, λ2 6= 0 λ1x2 + λ2y2 + det{M}
det{A} = 0 Ellipses, hyperbolas,

pairs of intersecting lines.
λ1 = 0, λ2 6= 0
det{M} 6= 0 y2 = 2

√
− det{M}

λ3
2

x Parabolas

λ1 = 0, λ2 6= 0
det{M} = 0 y2 = k Pairs of parallel lines
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General classification of conics

Definition 5.4 (Signature of a quadratic form)
Consider a quadratic form Q(x) = xTAx and its diagonalization such that

Q(y) = λ1y2
1 + λ2y2

2 + ...+ λny2
n

The signature of Q(x) is (n0, n+, n−) where n0 is the number of null λ
coefficients, n+ the number of positve λ coefficients, and n− the number of
negative λ coefficients.

Theorem 5.1
The signature of a quadratic form is invariant to changes of basis, i.e., it only
depends on Q.

Definition 5.5 (Signature of a matrix)
The signature of a symmetric matrix is the signature of its associated quadratic
form.
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General classification of conics

General classification of conics
A M Conics

det{A} > 0
Sig{M} = (0, 1, 2) or (0, 2, 1) (Real) Ellipse
Sig{M} = (0, 3) or (0, 3, 0) Empty set (or imaginary ellipse)

Det{M} = 0 A point (or the intersection
of two imaginary lines)

det{A} < 0 det{M} 6= 0 Hyperbola
det{M} = 0 Two secant (real) lines

det{A} = 0 det{M} 6= 0 Parabola
det{M} = 0 Two parallel (real) lines
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Geometric transformations

Geometric transformations
Shift: Shift the center to ĉ = (c1, c2, 0)

(x̃− ĉ)TM1(x̃− ĉ) = 0
Rotate: Rotate the conics with a rotation matrix R:

(R x̃)TM1(R x̃) = 0
x̃T (RTM1R)x̃ = 0

with R =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

.
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Ellipse

Ellipse

Reduced equation: x2

a2 + y2

b2 = 1

Parametric equation: x = a cos t
y = b sin t

t ∈ [0, 2π)
Interfocal distance: d(F ,F ′) = 2c

where
a2 + b2 = c2
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Hyperbola

Hyperbola

Reduced equation: x2

a2 − y2

b2 = 1

Parametric equation: x = ±a cosh t
y = b sinh t

t ∈ R
Interfocal distance: d(F ,F ′) = 2c

where
a2 + b2 = c2

(Calculus note)
cos x = eix+e−ix

2 cosh x = ex+e−x

2
sin x = eix−e−ix

2 sinh x = ex−e−x

2
cos2 x + sin2 x = 1 cosh2 x − sinh2 x = 1
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Parabola

Parabola

Reduced equation: y2 = 2px

Parametric equation: x = t2

2p
y = t

t ∈ R
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Cross product

Reference
Farin and Hansford, Chapter 10

Cross product
The cross product is defined for 3D vectors as

u = v×w =

∣∣∣∣∣∣
e1 e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
Properties:

u ⊥ v and u ⊥ w
‖v×w‖2 = ‖v‖‖w‖ − (v ·w)2

v× (cv) = 0
v× (cw) = (cv)×w = c(v×w)
w× v = −v×w
u× (v + w) = u× v + u×w
u× (v×w) 6= (u× v)×w
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Cross product

Example

u = e1 × e2 =

∣∣∣∣∣∣
e1 e2 e3
1 0 0
0 1 0

∣∣∣∣∣∣ = e3

u = e2 × e1 =

∣∣∣∣∣∣
e1 e2 e3
0 1 0
1 0 0

∣∣∣∣∣∣ = −e3
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Cross product

Coordinate systems

Right-handed:
x× y = z
y× z = x
z× x = y
Left-handed:
x× y = −z
y× z = x
z× x = −y
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Cross product

Area of parallelogram

The norm of v×w is the area of the
parallelogram formed by u and v and is
equal to:

A = ‖v×w‖ = ‖v‖‖w‖ sin(θ)
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Lines

Parametric equation of a line
A line is defined in 3D (and nD) by two points or a point and a vector

Given two points:
l(t) = p + t(q− p) t ∈ R
Given point and vector:
l(t) = p + tv t ∈ R

Giving a point and a perpendicular vector does no longer work.
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Planes

Implicit equation of a planes
A plane is defined in 3D by a point and a perpendicular vector

Given a point and the normal direction:
n · (x− p) = 0

In 3D:

(n1, n2, n3)·(x1−p1, x2−p2, x3−p3) = 0⇒
Ax1 + Bx2 + Cx3 + D = 0

The absolute value of D in the implicit
equation is the distance of the plane to
the coordinate system origin.
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Hyperplanes

Hyperplanes
A hyperplane of Rn is an affine space of a dimension n − 1. For instance

Rn Dimension Dimension of hyperplane Hyperplane name
R2 2D 1 Line
R3 3D 2 Plane
Rn nD n-1 Hyperplane

All hyperplanes are defined by a point (p) and a normal vector (n)

n · (x− p) = 0

Distance of a point to a plane (hyperplane)
The distance between a point r and a plane (or hyperplane) is given by

d = n·(r−p)
‖n‖
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Planes

Parametric equation of a plane
A plane can also be defined in 3D (and nD) by a point and two in-plane vectors

Given a point and two in-plane vectors:
P(s, t) = p + sv + tw ∀s, t ∈ R
Given three points:
P(s, t) = p+s(q−p)+t(r−p) ∀s, t ∈ R
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Scalar triple product

Scalar triple product

The volume of a parallelepiped can be
measured with the scalar triple product

V = u · (v×w)

Properties:

u · (v×w) = v · (u×w) = w · (v× u)
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Distance between two lines

Distance between two lines
Given two lines in parametric form

l1(sc) = p0 + scu l2(tc) = q0 + tcv

The distance between the two lines is the
length of the vector wc that is perpendicular to
both lines. wc is defined by two points: one in
line 1 (x1) and another one in line 2 (x2):

wc = x2 − x1 = q0 + tcv− (p0 + scu)

The conditions on wc are:

wc · u = 0 and wc · v = 0

After reorganizing the terms(
‖u‖2 −u · v
u · v ‖v‖2

)(
sc
tc

)
=

(
(p0 − q0) · u
(p0 − q0) · v

)
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Intersection of two lines

Intersection of two lines
The two lines in the previous slide intersect if x1 = x2. We also note that the two
lines intersect if u, v and p0 − q0 are in the same plane, or what is the same they
are linearly dependent ∣∣(u v p0 − q0

)∣∣ = 0
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Intersection of a line and a plane

Intersection of a line and a plane

Parametric line, implicit plane:
l(t) = p + tv

n · (x− q) = 0
For the intersection we need to find
t such that

n · (p + tv− q) = 0
whose solution is

t = n·(q−p)
n·v

x = p + n·(q−p)
n·v v
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Intersection of a line and a plane

Intersection of a line and a plane

Parametric line, parametric plane:
l(t) = p + tv

P(t1, t2) = q + t1u + t2w
We need to find t, t1 and t2 such
that

p + tv = q + t1u + t2w
Reorganizing the terms:(

u w −v
)t1

t2
t

 = p− q
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Intersection of a line and a triangle

Intersection of a line and a triangle

Parametric line, 3 points of a triangle:
l(t) = p + tv

P(t1, t2) = p1 + t1(p2 − p1) + t2(p3 − p1)
t1, t2 ∈ [0, 1], t1 + t2 ≤ 1

We need to find t, t1 and t2 such that
p + tv = p1 + t1(p2 − p1) + t2(p3 − p1)

Reorganizing the terms:(
p2 − p1 p3 − p1 −v

)t1
t2
t

 = p− p1

The intersection point is within the
triangle if t1, t2 ∈ [0, 1], t1 + t2 ≤ 1.
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Reflection

Reflection

Reflection:
This situation is encountered, for instance,
in reflected light rays. By inspecting the
figure we note that

n · v = −n · v′

On the other side, it must also be
cn = v′ − v

We have two unknowns c and v and two
equations. After some manipulation we
reach

v′ = v− 2(n · nT )v
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Intersection of three planes

Intersection of three planes

Implicit equations:
For each of the planes, we have

n1 · (x− p1) = 0⇒ nT
1 x = nT

1 p1
n2 · (x− p2) = 0⇒ nT

2 x = nT
2 p2

n3 · (x− p3) = 0⇒ nT
3 x = nT

3 p3

Gathering all togethernT
1

nT
2

nT
3

 x =

nT
1 p1

nT
2 p2

nT
3 p3


In non-degenerate situations, this equation
system has a unique solution that is the
intersection point. Otherwise, the planes
may intersect in one line, two lines, three
lines, or even in a plane (if the three
planes are the same plane).
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Intersection of two planes

Intersection of two planes

Implicit equations:
For each of the planes, we have

n · (x− p1) = 0⇒ nT x = nT p1
m · (x− p2) = 0⇒ mT x = mT p2

The two planes intersect in a line of the
form

l(t) = p + t(n×m)

To find p we solve the equation system nT

mT

(n×m)T

 x =

nT p1
mT p2

0
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Quadrics

Reference
Juan de Buegos (2000), Capítulo 12

Quadrics
Quadrics are 3D surfaces that meet a second order equation.

Quadrics in the Wikipedia
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Ellipsoid

Ellipsoid

Reduced equation: x2

a2 + y2

b2 + z2

c2 = 1

Parametric equation:
x = a cos u sin v
y = b sin u sin v
z = c cos v

u, v ∈ [0, 2π)

Cuts along X , Y and Z are ellipses.
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Hyperboloid of one sheet

Hyperboloid of one sheet
Reduced equation: x2

a2 + y2

b2 − z2

c2 = 1

Parametric equation:
x = a

√
1 + u2 cos v

y = b
√
1 + u2 sin v

z = cu

Parametric equation:
x = a cosh u cos v
y = b cosh u sin v
z = c sinh u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.
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Hyperboloid of two sheets

Hyperboloid of two sheets

Reduced equation: x2

a2 + y2

b2 − z2

c2 = −1

Parametric equation:
x = a sinh u cos v
y = b sinh u sin v
z = c cosh u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are hyperbolas.
Cuts along Z are ellipses.
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Elliptic paraboloid

Elliptic paraboloid
Reduced equation: x2

a2 + y2

b2 − z
c = 0

Parametric equation:
x = a

√
u cos v

y = b
√
u sin v

z = cu
v ∈ [0, 2π), u ∈ [0,∞)

Cuts along X and Y are parabolas.
Cuts along Z are ellipses.
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Hyperbolic paraboloid

Hyperbolic paraboloid
Reduced equation: x2

a2 − y2

b2 − z
c = 0

Parametric equation:
x = a

√
u cosh v

y = b
√
u sinh v

z = cu
u, v ∈ R

Cuts along Y are parabolas.
Cuts along Z are hyperbolas.
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Cone

Cone

Reduced equation: x2

a2 + y2

b2 − z2

c2 = 0

Parametric equation:
x = au cos v
y = bu sin v
z = cu

v ∈ [0, 2π), u ∈ R

Cuts along Y are parabolas.
Cuts along Z are ellipses.
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Elliptic cylinder

Elliptic cylinder

Reduced equation: x2

a2 + y2

b2 = 1

Parametric equation:
x = a cos v
y = b sin v
z = u

v ∈ [0, 2π), u ∈ R

Cuts along X and Y are pairs of lines.
Cuts along Z are ellipses.
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Hyperbolic cylinder

Hyperbolic cylinder

Reduced equation: x2

a2 − y2

b2 = 1

Parametric equation:
x = a cosh v
y = b sinh v
z = u

u, v ∈ R

Cuts along X and Y are pairs of lines.
Cuts along Z are hyperbolas.
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Parabolic cylinder

Parabolic cylinder

Reduced equation: x2

a2 − y
b = 0

Parametric equation:
x = au
y = bu2

z = v
u, v ∈ R

Cuts along X and Y are pairs of lines or
single lines.
Cuts along Z are parabolas.
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Quadrics

Definition 7.1
Quadrics All quadrics can be written as

3∑
i,j=1

aijxixj + 2
3∑

i=1
bixi + c = 0

x̃TM x̃ = 0

with aij = aji and

M =


a11 a12 a13 b1
a12 a22 a23 b2
a13 a23 a33 b3
b1 b2 b3 c

 and x̃ =


x1
x2
x3
1
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Quadrics

Definition 7.2 (Quadrics equality)
Two quadrics x̃TM1x̃ = 0 and x̃TM2x̃ = 0 are the same if

M1 = kM2

for some real number k.

Definition 7.3 (Degenerate or ordinary quadrics)
A quadrics is degenerate if det{M} = 0 (e.g., cones, cylinders and pairs of
planes). It is ordinary if it is not degenerate (e.g., ellipsoids, paraboloids,
hyperboloids)

Examples of degenerate quadrics
x2 − y2 = 0 = (x − y)(x + y) A pair of planes
x2 + y2 = 0 = (x − iy)(x + iy) A pair of imaginary planes
x2 − 1 = 0 = (x − 1)(x + 1) A pair of planes
x2 + y2 − 25 = 0 Cylinder of radius 5
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General classification of quadrics

General classification of quadrics
Let λ1, λ2 and λ3 be the eigenvalues of A. Then, there exists a basis such that
the reduced equation of the quadrics is

Condition Quadrics
λ1 6= 0, λ2 6= 0, λ3 6= 0 λ1x2 + λ2y2 + λ3z2 + det{M}

det{A} = 0
Ellipsoids, hyperboloids and cones

λ1 6= 0, λ2 6= 0, λ3 = 0
det{M} 6= 0 λ1x2 + λ2y2 = 2

√
− det{M}

λ1λ2
z

Paraboloid
λ1 6= 0, λ2 6= 0, λ3 = 0

det{M} = 0 λ1x2 + λ2y2 = k

Elliptical cylinder
λ1 = 0, λ2 6= 0, λ3 = 0

Rank{M} = 3 y2 = 2qx Parabolic cylinder

λ1 = 0, λ2 6= 0, λ3 = 0
Rank{M} < 3 y2 = k Pair of planes
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Outline

9 Linear algebra applications in geometry
Local and global coordinates
Points and vectors
Lines in 2D
Affine maps in 2D
Conic sections in 2D
3D Geometry
Quadrics in 3D
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