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Introduction to Bayes Theorem 

Bayes Theorem is a mathematical formula that accounts for the concept of conditional probability. A conditional 

probability is the likelihood or probability of an outcome occurring based on a previous outcome having already 

occurred. This means that both events are dependent from each other.  

 

In short, Bayes Theorem uses prior probability distributions in order to generate posterior probabilities: 

a) Prior probability: probability of an event to occur before new data is collected.  For example, the probability 

of having liver disease in a specific population.  

b) Posterior probability: updated probability of an event to occur after new data is collected. For example, the 

probability of having liver disease if the patient is an alcoholic. As it includes more information, it is a better 

reflection of the underlying truth.  

 

Inferring Bayes Theorem formula: now, we will try to infer the Bayes formula from simple examples. 

Independent events: suppose a situation in which we want to calculate the probability of two independent events, 

A and B, happening. The probability of both events happening P(A ∩ B) can be calculated as the multiplication 

of the probability two events P(A) and P(B): 

 

P(A ∩ B) = P(A) · P(B) 

 

For example, imagine that we want to compute the probability of obtaining a head and a tail in two coin tosses. 

The probability of obtaining either face of the coin is 0.5, and thus that probability can be represented as: 

   

P(head ∩ tail) = P(head) · P(tail) = 0.5 · 0.5 = 0.25 

 

Therefore, there is a 25% chance of obtaining a head after a tail, as both tosses are independent.  

 

Dependent events: however, in some situations, the second event is dependent on what happened before. When 

A and B are dependent, we cannot assume that P(A ∩ B) = P(A) · P(B), but we need to compute that probability 

in other way. For example, imagine that we want to calculate the probability of picking a king and an ace from a 

card deck. Both events are dependent as there is a limited number of cards in a deck and that number is reduced 

every time, we pick a card.  

 

In this case, we can compute the probability of picking an ace and a king, P(ace ∩ king), as the probability of 

picking an ace, P(ace), multiplied by the probability of picking and king provided that an ace was already picked, 

P(king|ace): 

 

P(ace ∩ king) = P(ace) · P(king|ace) 

 

Note that if the two events are independent, then P(king|ace) = P(king) and we are in the previous situation. 

This will be the case if we return the ace to the deck.  

 

In any case, the probability of picking an ace if no other card has been picked from a card deck is: 

 

P(ace) =
4 aces

40 cards
= 0.1 

 

After picking the ace, the probability of picking a king is influenced by the previous event, as now there are fewer 

cards in the deck from which we can pick, and is computed as: 

 



P(king|ace) =
4 kings

39 cards
= 0.103 

 

Here, the probability of choosing a king after a card has already been picked slightly higher that picking a king 

form a new deck (P(king) = 0.1), as there are fewer cards to choose from. At the end, the probability of picking 

and ace and a king is:  

 

P(ace ∩ king) = 0.1 · 0.103 = 0.0103 

 

However, we can also compute the probability of picking a king and an ace, P(king ∩ ace), as the probability of 

picking an ace after a king has already been picked. This is the same probability as before: P(ace ∩ king) =

 P(king ∩ ace), and is the step needed to reach the Bayes Theorem formula. In this case, we can calculate the 

probability as before: 

 

P(king ∩ ace) = P(king) · P(ace|king) 

 

P(king) =
4 kings

40 cards
= 0.1 

 

P(king|ace) =
4 aces

39 cards
= 0.103 

 

P(king ∩ ace) = 0.1 · 0.103 = 0.0103 

 

Important: this does NOT mean that P(ace|king) is equal to P(king|ace), but in this toy example it does. For 

example, it is not the same probability of having cough provided that the subject smokes P(cough|smoker) and 

the probability of being a smoker provided that the subject has cough P(smoker|cough). In reality, it is much 

more probable the first situation.  

 

What this dissertation tries to explain is that: P(ace ∩ king) = P(king ∩ ace). This means that both equations can 

be bound as: 

 

P(ace) · P(king|ace) = P(king) · P(ace|king) 

 

Moving some terms, we reach the Bayes theorem and can calculate the conditional probability of picking a king 

after an ace has been picked as: 

 

P(king|ace) =
P(king) · P(ace|king)

P(ace)
 

 

 

We can generalize the formula as: 

 

P(A|B) =
P(A) · P(B|A)

P(B)
 

 

where:  

P(A): probability of A. 

P(B): probability of B.  

P(A|B): probability of A happening, provided that B has occurred. What we are trying to calculate.  

P(B|A): probability of B happening, provided that A has occurred.  

 



Clinical example: imagine we are in a specific hospital, and we are trying to calculate the probability of a patient 

having a liver disease if he is an alcoholic. This can help to decide recommendations for patients in certain 

circumstances. Therefore, we can mathematically represent the information as: 

P(A) = P(liver disease): probability of having liver disease. This is the prevalence of the disease in a certain 

population.  

P(B) = P(alcoholism): probability of being an alcoholic. 

P(A|B) = P(liver disease|alcoholism): probability of having liver disease, provided that the patient is an 

alcoholic. What we are trying to determine here. 

P(B|A) = P(alcoholism|liver disease): probability of being an alcoholic provided that the patient has a liver 

disease. 

 

Introducing this data in the Bayes formula, we obtain: 

 

P(liver disease|alcoholism) =
P(liver disease) · P(alcoholism|liver disease)

P(alcoholism)
 

 

Knowing the prevalence of liver diseases, P(liver disease), the prevalence of alcoholism in patients with liver 

disease, P(alcoholism|liver disease), and the prevalence of alcoholism, P(alcoholism), we can compute the 

probability of an alcoholic patient to develop liver disease.  

 

For instance, given a prevalence of liver disease P(liver disease) = 0.1% = 0.001; prevalence of alcoholism 

P(alcoholism) = 2% = 0.02; and prevalence alcoholism in patients with liver diseases 

P(alcoholism|liver disease) = 3.5% = 0.035; then the probability of developing liver disease provided that 

they are an alcoholic would be: 

 

P(liver disease|alcoholism) =
0.001 · 0.035

0.02
= 0.7 = 70% 

 

Clinical tests 

In the clinical practice, the Bayes theorem is used to determine the conditional probability of having the suggested 

condition after performing a test. For example, the probability of having HIV after a positive result in a blood test. 

These calculations take into account the prevalence of the disease and the specificity and sensibility of the test to 

determine the real probability of a patient to have the disease. Therefore, we must first define the discriminatory 

capacity of a test by defining specificity and sensibility. 

 

Specificity and sensibility: tests are not completely infallible as the values of a certain biomarker between the 

healthy and sick populations usually overlap. Therefore, for each test implemented in the clinical practice, we 

must determine its discriminatory capacity. For that, we can construct a contingency table of the four possible 

outcomes:  

 

 Sick Healthy 

Positive Test True Positive (TP) False Positive (FP) 

Negative Test False Negative (FN) True Negative (TN) 

 

Taking into account this information, we can mathematically define: 

a) Specificity = P(test − |healthy) =
+,

+,-.,
 or the rate of correctly identified healthy individuals.  

b) Sensibility = P(test + |sick) =
+1

+1-.1
 or the rate of correctly identified patients. 

c) False Positive rate = P(test + |healthy) = 1 − specificity or not correctly identifying a healthy subject.  



d) False Negative rate = P(test − |sick) = 1 − sensibility or not correctly identifying a sick subject.  

 

With these parameters we are trying to calculate the probability of a positive or negative result provided that we 

know if the subject is healthy or not. However, in the real clinical practice we don’t know the real condition of 

the patient and that is why we use the predictive values. 

Predictive values: the predictive values apply the Bayes theorem to determine the real probability of having a 

condition provided a specific test result. In this situation we are reversing the previous question, we don’t ask 

ourselves the probability of a test result provided a subject condition (that is for checking the test parameters), as 

in the clinical practice we do not know the subject’s condition, but rather the probability of the subject being 

healthy, or sick provided a test result.  

 

The predictive values gather the information provided by the specificity, sensibility, and the prevalence of the 

disease. As before, we can construct a contingency table as: 

 

 Sick (prevalence) Healthy (1-prevalence) 

Positive 

Test 

TP: probability of disease and a 

positive test: P(+ ∩ sick) = 

P(+|sick) · P(sick) = 

Sensibility · Prevalence  

FP: probability of healthy and 

positive test: P(+ ∩ healthy) = 

P(+|healthy) · P(healthy) = 

(1 − Specificity) · (1 − Prevalence) 

Negative 

Test 

FN: probability of disease and 

negative test: P(− ∩ sick) = 

P(−|sick) · P(sick) = 

(1 − Sensibility) · Prevalence  

TN: probability of healthy and 

negative test: P(− ∩ healthy) = 

P(−|healthy) · P(healthy) = 

Specificity · (1 − Prevalence)  

 

 

Positive predictive value (PPV): the probability of having the disease provided that the test was positive. We just 

apply Bayes Theorem: 

 

PPV = P(sick| +) =
P(+|sick) · P(sick)

P(+)
 

 

The probability of a positive result is both, the probability of having a positive result and the subject being sick 

and the probability of having a positive result and the subject being healthy: 

 

PPV =
P(+|sick) · P(sick)

P(+ ∩ sick) + P(+ ∩ healthy)
=

P(+|sick) · P(sick)

P(+|sick) · P(sick) + P(+|healthy) · P(healthy)
 

 

 

In other terms: 

 

PPV =
sensibility · prevalence

sensibility · prevalence + (1 − specificity) · (1 − prevalence) 
 

 

 

https://www.youtube.com/watch?v=JX4Je4bO4Zw&ab_channel=MichelvanBiezen 

 

Negative predictive value (NPV): the probability of being healthy provided that the test was negative. Again, we 

apply Bayes Theorem: 

 

NPV = P(healthy| −) =
P(−|healthy) · P(healthy)

P(−)
 

 



The probability of a negative result is both, the probability of having a negative result and the subject being healthy 

and the probability of having a negative result and the subject being sick: 

 

NPV =
P(−|healthy) · P(healthy)

P(− ∩ healthy) + P(− ∩ sick)
=

P(−|healthy) · P(healthy)

P(−|healthy) · P(healthy) + P(−|sick) · P(sick)
 

 

 

In other terms: 

 

NPV =
specificity · (1 − prevalence)

specificity · (1 − prevalence) + (1 − sensibility) · prevalence 
 

 

 

In conclusion, with the predictive values we can estimate the probability of the subject’s condition based on the 

probability of a test being positive if the subject is sick (sensibility), the probability of the test being negative if 

the subject is healthy (specificity) and the probability of the disease (prevalence).  

 

Clinical examples 

We are going to analyse two possible situations, one in which the test has a high specificity and low sensibility, 

and the other in which the test has a low specificity and high sensibility provided a constant disease prevalence. 

We normally want a test to present high specificity and sensibility, but in reality, if there is some overlapping 

between the distribution of the values of a biomarker, increasing one will decrease the other.  

 

Test with high specificity and low sensibility: the prevalence is 100/1100 = 0.09 

 

 Sick Healthy Total 

Positive 

Test 
68 20 88 

Negative 

Test 
32 980 1012 

Total 100 1000 1100 

 

 

In this case, we can calculate the specificity and sensibility as: 

 

a) Specificity =
+,

+,-.,
=

567

567-87
= 0.98 or 98%  

 

b) Sensibility =
+1

+1-.1
=

:6

:6-;8
= 0.68 or 68% 

 

With that we may ask ourselves if a patient has a positive result, what is the probability of them being actually 

sick. For that we calculate the positive predictive value as: 

 

PPV =
sensibility · prevalence

sensibility · prevalence + (1 − specificity) · (1 − prevalence) 
=

0.68 · 0.09

0.68 · 0.09 + (1 − 0.98) · (1 − 0.09)
 

 

 

PPV = 0.77 or 77% 

 

This means that there is a chance in four that the patient is actually healthy after a positive test result. In the same 

manner, we can calculate the probability of the patient being healthy after a negative test. For that we calculate 

the negative predictive value as: 

 



NPV =
specificity · (1 − prevalence)

specificity · (1 − prevalence) + (1 − sensibility) · prevalence 
=

0.98 · (1 − 0.09)

0.98 · (1 − 0.09) + (1 − 0.98) · 0.09
 

 

 

NPV = 0.97 or 97% 

 

Consequently, with high specificity and low sensibility we have more confidence in predicting a subject to be 

healthy than to be sick after a test result.  

https://www.youtube.com/watch?v=QFScbw9WKpM&ab_channel=MichelvanBiezen 

 

Test with low specificity and high sensibility: the same prevalence as before, 100/1100 = 0.09 

 

 Sick Healthy Total 

Positive 

Test 
98 320 418 

Negative 

Test 
2 680 682 

Total 100 1000 1100 

 

In this case, we can calculate the specificity and sensibility as: 

a) Specificity =
+,

+,-.,
=

:67

:67-;87
= 0.68 or 68%  

 

b) Sensibility =
+1

+1-.1
=

56

56-8
= 0.98 or 98% 

 

With that we may ask ourselves if a patient has a positive result, what is the probability of them being actually 

sick. For that we calculate the positive predictive value as: 

 

PPV =
sensibility · prevalence

sensibility · prevalence + (1 − specificity) · (1 − prevalence) 
=

0.98 · 0.09

0.98 · 0.09 + (1 − 0.68) · (1 − 0.09)
 

 

 

PPV = 0.23 or 23% 

 

This means that there is a four in five chance that the patient is actually healthy after a positive test result. In the 

same manner, we can calculate the probability of the patient being healthy after a negative test. For that we 

calculate the negative predictive value as: 

 

NPV =
specificity · (1 − prevalence)

specificity · (1 − prevalence) + (1 − sensibility) · prevalence 
=

0.68 · (1 − 0.09)

0.68 · (1 − 0.09) + (1 − 0.98) · 0.09
 

 

 

NPV = 0.099 or 9.9% 

 

Consequently, with high sensibility and low specificity we have more confidence in predicting a subject to be sick 

than to be healthy after a test result. Although the reduction in specificity greatly diminishes the discriminatory 

capacity of the test, as small percentages changes in specificity translates in great change in absolute values 

because in a normal population, the prevalence of the disease is usually very small.  

 

For further reading: 

Prior and posterior probability 

https://www.investopedia.com/terms/p/prior_probability.asp 

https://www.investopedia.com/terms/p/posterior-probability.asp 

 

Bayes theorem:  



https://www.investopedia.com/terms/b/bayes-theorem.asp 

https://towardsdatascience.com/bayes-theorem-the-idea-behind-naive-bayes-algoritm-f7068834a4d7 

https://www.statisticshowto.com/probability-and-statistics/probability-main-index/bayes-theorem-problems/ 

https://towardsdatascience.com/bayes-theorem-for-medical-test-f1fb12b579c6 

 

Predictive values 

https://www.jclinepi.com/article/S0895-4356(20)31225-7/fulltext 


