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Introduction  

 

Genome wide association studies (GWAS) are a method of identifying genetic variants statistically 

associated with a biological trait of interest. Humans share more than 99% of the genome, however 

0.1% of the genome will be different among humans as a consequence of genetic variants. The 

most common genetic variants causing these differences are called single nucleotide 

polymorphisms (SNPs), defined as a single nucleotide change that is present in more than 1% of 

the population. The majority of SNPs are responsible for the observed biological difference among 

humans, but others may don’t even affect the coding of a protein. However, in the minority of 

cases some SNPs may predispose individuals to develop certain illnesses (1). Therefore, the main 

goal of GWAS is identifying genetic variants (SNPs) that are more likely to be present in 

individuals who express a qualitative trait or a quantitative trait more strongly than would be 

anticipated from the population. 

 

GWAS test hundreds of thousands of genes using microarray technology in controls and in patients 

with the disease or the trait of interest. With this method an individual can be genotyped for 

between 500,000 and 4 million SNPs (2). The regions of the genome that are being studied are 

those that have the most variation and can provide enough data to infer the nucleotides found in 

other parts of the genome. This is possible due to a feature of the genome referred to as linkage 

disequilibrium (LD). LD is defined as the non-random assortment of alleles at different loci (3,4). 

This means that some portions of DNA are more likely to be passed on together during the process 

of meiosis than would be expected by chance. GWAS studies often identify several SNPs which 

are in LD with each other, and this creates a difficulty in identifying which is the truly causal SNP 

and which are the SNPs that are in LD with the causal one. Nonetheless, GWAS report blocks of 

correlated SNPs that show statistical association with the trait of interest, and therefore they are 

extremely useful providing hints into disease biology (5). 

 

p-values and multiple testing 

 

From a statistical point of view GWAS are hypothesis studies, in which the null hypothesis is that 

the marker (SNP) has no effect on the trait (disease), while the alternative hypothesis is that the 

marker does affect the trait because it is in LD with a quantitative trait locus (meaning they are 

associated) (6).  

 

The usual p-value for determining statistical significance in epidemiological studies is 0.05, 

however this applies when performing single comparisons. In GWAS we are testing millions of 

SNPs simultaneously making the possibility for false-positives very high. For these types of 

studies, the p value can be adjusted using some methods such as the Bonferroni correction. For 

this method, the correction for multiple, K, comparisons is: 
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However, the use of Bonferroni correction is widely criticized in these studies for not taking into 

account that the tests are not independent (the tests are correlated because of LD). Many 

modifications to the Bonferroni method have been proposed including methods that account for 

LD, false discovery rate, and false-positive probability (7). Essentially the current accepted 

genome wide significance threshold is 5x10-8 (2). 

 

Testing for associations: linear and logistic regression 

 

Commonly used tests of association between SNPs and phenotypic traits used in GWAS include 

linear and logistic regression models. Linear regression is used when analyzing continuous 

(quantitative) variables: 

 

Ŷ = α + βX + ε 

 

Where Ŷ is the score on the phenotype, X is the genetic variant or SNP and β is the effect of the 

SNP on that outcome. This would tell us if a genetic variant is associated with a continuous trait 

(phenotypic score). The genotype of the participants is plotted in the x axis depending on whether 

the patient is homozygote for the minor allele (TT or 2), heterozygote (TG or 1) and homozygote 

for the major allele (GG or 0). 

 

 

 
 

Figure 1. In this case there is a positive correlation between the genetic trait and the phenotype 

score. Image taken from: (8) 

 

 

Now, we can calculate the coefficient of determination (R2) in each model, which tells us the 

proportion of the variance in the dependent variable (phenotype) which can be explained by the 

independent variable (genotype). Therefore, the higher the R2 (meaning the closer to 1) the stronger 

the association. R2 can be calculated as follows in the case of linear regression: 
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Where SS error is the sum of squared distances from the fit (Ŷ), and SS total is the sum of SS 

distance from the mean (-,). Now, when performing a regression analysis, you can obtain another 

value termed the F-value (also called the F-statistic). The F value is used to check whether the 

variances of two populations are significantly different and can be expressed as:  

 

 

F = Mean sum of squares regression / Mean sum of squares error, 

 

= (SSR/DFssr) / (SSE/DFsse) 

 

 
Figure 2. Explanation of SSE, SST and SSR in a linear regression. Image taken from: (9) 

 

Where SSE is the sum of squares of the error, SSR is the sum squares of the regression, DFssr and 

DFsse are the degrees of freedom for the regression and for error respectively. The p-value can 

then be found from the F value by comparing the F-value calculated from your regression to a 

probability distribution of F-values assuming there is no relationship between the genotype and 

the phenotype (assuming the H0 is true). The p-value is therefore the probability that if the null 

hypothesis is true, we observe a value as extreme as the F we observed or even more extreme.  

 

On the other hand, when analyzing the association of genetic variants with dichotomous traits 

(absence or presence of disease, or cases and controls) a logistics regression model is more 

appropriate. This will tell us if the genetic variant increases or decreases the likelihood that an 

individual would possess the trait. In this way the logistic regression is: 

 

Ln (P/1-P) = α + βX + ε 

 

Where β is the log odds for cases compared to controls, and the e(β) gives us the odds ratio.  

 

Calculating R2 in the case of logistic regression can be done by different methods, one of them is 

by calculating the McFadden’s pseudo-R squared, expressed as: 

 



 
 

The p-value in the case of a logistic regression will be found by calculating a likelihood ratio Chi 

-squared test (LR chi2) (10) which is then compared to a probability distribution of chi squared 

values assuming no relationship between the genotype and the phenotype (assuming the H0 is true). 

Then the p-value would be the probability that if the null hypothesis is true, we observe a value as 

extreme as the chi-square value we observed or even more extreme. 

 

In GWAS the p-value is calculated for every SNP analyzed, which is then visualized in a 

Manhattan plot:  

 

 

 
 

Figure 3. Manhattan plot. Figure taken from: (11) 

 

In the Manhattan plot across the X axis, we can visualize the position of each SNP within the 

chromosome and the p-values for each SNP in the Y axis after being multiplied by -log10. The red 

dotted line represents the genome wide significance which as mentioned previously is generally 

considered to be 5x10-8.  

 

Example 

 

We are going to interpret the results of a GWAS used to determine genetic variants associated with 

obesity. Cotsapas et al carried out a GWAS of 775 bariatric surgery patients with a mean BMI of 

50.6 compared with 3197 controls. They analyzed 655 130 SNPs and after quality control data an 

association study was performed with 457 251 SNPs. The authors then used logistic regression to 

calculate association between the SNPs and extreme obesity and then performed a chi-squared test 

to obtain the p-value, obtaining the following results: 



 

 
 

Based on the previously explained concepts, here we can see they report the R2 obtained from the 

logistic regression. The R2 of some SNPs is 1, this means that there is a strong association between 

the SNP and obesity, however when we see the p-values for some of them we can conclude not all 

reach the threshold of genome-wide statistical significance. Indeed, the authors conclude that the 

variants near the FTO gene are associated with increased risk of extreme obesity, but that 12 others 

show nominal associations but don’t reach the threshold.  

 

Useful resources 

 

1. Introduction to GWAS statistics: https://www.youtube.com/watch?v=Hjv_otXAkh0 

2. Introduction to GWAS statistics part 2: 

https://www.youtube.com/watch?v=g1fQCC92WO0&t=511s 

3. Linkage disequilibrium: https://www.youtube.com/watch?v=_xbpGvQHQAA&t=11s 

4. F value: https://www.statisticshowto.com/probability-and-statistics/f-statistic-value-test/ 

5. Interpreting F statistics in linear regression: https://vitalflux.com/interpreting-f-statistics-

in-linear-regression-formula-examples/ 

6. Linear and logistics regression in GWAS: 

https://www.youtube.com/watch?v=Du2MNYZGCiA&t=188s 

7. McFadden’s pseudo-R squared: https://thestatsgeek.com/2014/02/08/r-squared-in-

logistic-regression/ 

8. Statistical methods for population association studies: 

https://www.nature.com/articles/nrg1916 
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