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1. HYPOTHESIS TESTING 

Hypothesis testing is a crucial part of both empirical research and evidence-based medical practice. 

Therefore, proper formulation of the hypothesis is key to solving the research question. When talking about 

the scientific process, the first step is not the observation of the phenomenon, but rather creating a 

hypothesis that is subsequently verified through observations, experiments, and replications. A well-

formulated hypothesis should be simple (one predictor and one outcome), specific and stated in advance, 

which will help to focus the research on the main objective and establish a firmer basis for the interpretation 

of the results (Banerjee et al., 2009). 

Hypothesis testing serves as a statistical method offering a systematic approach for decision-making, 

utilizing a collection of probabilistic techniques instead of depending on personal judgment (Pereira & Leslie, 

2009). Within this framework, statistical tests can be classified as parametric tests (t-test, ANOVA...) or non-

parametric tests (Mann-Whitney U-test, Kruskal-Wallis test...). The choice of test depends on the study 

design and the nature of the data (Akobeng, 2016). 

Through hypothesis testing, researchers use their data to assess whether it supports or refutes the 

predictions made in their research. This is done by employing two types of hypotheses: the null hypothesis 

and the alternative hypothesis (Bhandari, 2023). The null hypothesis holds that there is no association 

between the predictor variables and the outcome variables within the studied population. In contrast, the 

alternative hypothesis proposes that such an association does exist. It's important to note that the 

alternative hypothesis cannot be directly tested; rather, it is inferred to be true when the null hypothesis is 

rejected through statistical tests (Banerjee et al., 2009; Pereira & Leslie, 2009).  

To illustrate these concepts, here is an example: 

Context: a medical research team is investigating whether a new dietary supplement, Supplement Z, 

improves memory function in older adults. 

Hypothesis: "Supplement Z enhances memory function in older adults". 

In this case: 

Null Hypothesis (H0): "Supplement Z has no effect on memory function in older adults". 

Alternative hypothesis (H1): "Supplement Z improves memory function in older adults". 

A hypothesis is either true or false (Banerjee et al., 2009) based on data from the results of a statistical test. 

As decisions are based on probabilities, there is always the possibility that the conclusion will be wrong. In 

this context, it is essential to understand the concepts of Type I and Type II errors (Table 1).  

A Type I error occurs when a true null hypothesis is incorrectly rejected, often referred to as a 'false positive' 

On the other hand, a Type II error happens when a false null hypothesis is erroneously accepted, known as 

a 'false negative' (Bhandari, 2023). These errors represent the two primary risks of misinterpretation in 

hypothesis testing, underscoring the importance of careful statistical analysis and decision-making in 

research. 

Table 1. Type I and type II error (Bhandari, 2023). 

The null hypothesis is… TRUE FALSE 

Rejected Type I error α (false positive) Correct decision (true positive) 

Not rejected Correct decision (true positive) Type II error β (false negative) 
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1.1. TYPE I ERROR 

A Type I error occurs when researchers mistakenly reject a null hypothesis that is actually true, believing 

there is a difference between treatment groups when there isn't (this is known as a false positive). 

Essentially, this means researchers incorrectly conclude one treatment is better than another when it's not. 

The chance of making this kind of error is the same as the significance level (alpha, α) set for the study 

(Akobeng, 2016).  

The significance level is the value established at the start of a study for evaluating the statistical likelihood 

of achieving the results, known as the p-value (Bhandari, 2023). So, if researchers choose a 5% (0.05) 

significance level, it indicates they're accepting a 5% risk of being wrong when they think they've found a 

significant result. While a 5% Type I error rate is commonly accepted as standard, researchers have the 

option to adopt more stringent criteria, like a 1% error rate (p value < 0,01), for their studies (Akobeng, 

2016). 

When the p-value of a test is lower than the predefined significance level, it signifies that the results are 

statistically significant, supporting the alternative hypothesis. On the other hand, if the p-value is higher than 

the significance level, the results are regarded as statistically non-significant (Bhandari, 2023). 

Example: Statistical Significance and Type I Error 

In a research study, scientists are evaluating the effect of a new dietary supplement on blood pressure 

reduction. They compare a group that received the supplement with a group given a placebo. After 

conducting an analysis using an ANOVA test, they find a p-value of .025. Since this p-value is below the set 

alpha level of .05, the results are deemed statistically significant, leading to the rejection of the null 

hypothesis. 

However, the p-value of .025 implies that there is a 2.5% probability that the observed results could occur 

even if the null hypothesis were true - that is, the supplement has no real effect on blood pressure. This 

indicates that while the findings are significant, there remains a 2.5% risk of committing a Type I error, where 

the null hypothesis is incorrectly rejected. 

The shaded area at the extreme end of the curve symbolizes alpha (α), also known in statistics as the 

critical region (Figure 1). This is the threshold set for determining statistical significance. If the results of a 

study fall within this critical region, they surpass the boundary of alpha, leading to the null hypothesis being 

rejected on the grounds of statistical significance. However, this rejection denotes a false positive - a Type 

I error - because, by the curve's definition, the null hypothesis is, in reality, correct (Bhandari, 2023). 

 

Figure 1. Probability of making a Type I error (Bhandari, 2023). 

There are several factors that can elevate the risk of a Type I error in research studies. This is often due to 

the issue of multiple testing, which happens when researchers examine various endpoints and conduct 
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numerous statistical tests on the same dataset. The likelihood of finding a 'statistically significant difference' 

by chance increases with the number of tests performed on a dataset. In order to reduce the risk of Type I 

errors, researchers have three main strategies: 

• Firstly, they can avoid multiple testing.  

• Secondly, they can opt for a stricter p-value, like 0.01 instead of 0.05, for determining statistical 

significance. However, this approach could raise the chances of a false-negative result, or a Type 

II error, unless the study's sample size is increased to compensate for the lower alpha level. A 

• Another method is to move away from labeling results as 'statistically significant' or 'not statistically 

significant.' Instead, researchers could describe their findings as estimates accompanied by 

confidence intervals (Akobeng, 2016). 

The false positive rate (FPR), which quantifies the frequency of type I errors, is directly tied to the 

calculation of Type I error. By measuring the proportion of false positives in a set of tests, the FPR provides 

a clear indication of the likelihood of committing a Type I error under specific testing conditions. This 

connection underscores the importance of accurately calculating and understanding the false positive rate, 

as it directly impacts the reliability and validity of statistical conclusions (Frost, 2023). 

To illustrate these concepts, here is an example of how to calculate the false positive rate (type I error) for 

a particular set of conditions: 1000 test will be done with prevalence of real effects = 0,1; significance level 

= 0,05 (5% will incorrectly be significant); power = 80% (which means that 80% of the tests will detect that 

they are true positives). 

 

Figure 2. Flowchart for calculation false positive rate (Frost, 2023). 

 

1.2. TYPE II ERROR 

A Type II error, or false negative, refers to the incorrect acceptance of a null hypothesis when it is false. 

This error occurs when a study fails to detect a real effect or difference due to insufficient power, variability 

in the data, or inadequate sample size. It results in a 'false negative' conclusion, where researchers 

erroneously determine that no difference or effect exists when, in reality, it does. The probability of 

committing a Type II error is represented by the symbol beta (β), which quantifies the risk of overlooking a 

true effect. The magnitude of β is inversely related to the power of the study; a higher statistical power 

reduces the likelihood of a Type II error (Bhandari, 2023).  

Conventionally, β is set at 20% (0.20), implying researchers are prepared to accept a 20% probability of 

inaccurately concluding no difference between groups. If the ramifications of a false-negative conclusion 

Prevalence of 
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1000 hypothesis

No effect in 
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45 tests

True 
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855 tests
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are significant, researchers might opt to lower the acceptable level of β to, for instance, 10% or 5%. 

Understanding Type II errors is crucial, particularly as numerous medical studies categorically state 'no 

difference' between interventions without adequately considering the potential for Type II errors.  

Statistical power, often simply termed 'power,' is the measure of a statistical test's capability to identify a 

genuine discrepancy between two distinct groups. The calculation of power is directly linked to the Type II 

error rate (β), and it is mathematically defined as the inverse of this rate (Equation 1). 

Equation 1. Statistical power equation (Akobeng, 2016). 

Power = 1 – β (Eq 1) 

Choosing the level of statistical significance (α), as well as β and consequently power (Eq 1), is a subjective 

decision that researchers must make before beginning a study. It is common practice to aim for a minimum 

power of 80% (0.8), which is typically recognized as sufficient for most research studies. 

The determinants of a study's power are multifaceted, encompassing the prevalence of the outcome under 

investigation, the size of the expected effect, the architecture of the study, and critically, the number of 

participants involved. To ensure a study has the potential to accurately answer its research question, it must 

have an adequate sample size to achieve the requisite power (Akobeng, 2016). 

Example: Statistical Power and Type II Error 

Imagine you are conducting a study to measure the impact of a new educational program on student test 

scores. You perform a power analysis and find that given your sample size, your study has an 80% 

probability (statistical power) of detecting a 10% increase in test scores due to the program. A 10% increase 

implies that students in the program score 10% higher on average compared to those not in the program. 

However, there is a risk of a Type II error if the program's true effect is less than a 10% increase. If the 

actual improvement is smaller, say 5%, your study might not have enough power to identify this smaller 

change. In this case, you could mistakenly conclude that the educational program has no effect, when it 

does have a modest one that your study wasn't able to detect due to insufficient statistical power. 

There are different factors that affect the statistical power and, in consequence, the type II error:  

• Effect Size: the larger the effect, the easier it is to detect. 

• Measurement Error: both random and systematic errors in data collection can lower the power. 

• Sample Size: bigger sample sizes decrease sampling error and enhance the power of the study. 

• Significance Level: a higher significance level can lead to an increase in the study's power 

(Bhandari, 2023). 

 

Figure 3. Probability of making a Type II error (Bhandari, 2023). 
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1.3. TYPE I ERROR VS TYPE II ERROR 

While Type I and Type II errors are distinct concepts, they are interconnected in the sense that a decrease 

in one often leads to an increase in the other. For instance, lowering the significance level (say from 0.05 to 

0.01) reduces the Type I error but makes it more challenging to refute the null hypothesis, thereby increasing 

the probability of a Type II error, where a real difference in the broader population might be overlooked. 

Conversely, raising the Type I error rate by increasing the level of significance (for example, from 0.05 to 

0.10) lessens the chances of wrongly rejecting the null hypothesis. This action, in turn, reduces the likelihood 

of making a Type II error, or failing to detect a true difference in the larger population (Kaur & Stoltzfus, 

2017). 

The graph accompanying this explanation, Figure 3, illustrates two curves: 

1. The distribution of the null hypothesis represents potential outcomes assuming the null hypothesis 

is correct. A proper interpretation of any result within this distribution is to maintain the null 

hypothesis. 

2. The distribution of the alternative hypothesis shows potential outcomes if the alternative hypothesis 

holds true. The correct interpretation here is to reject the null hypothesis. 

The areas where these two distributions intersect indicate where Type I and Type II errors can occur. The 

area on the left denotes alpha, the Type I error rate, while the area on the right signifies beta, the Type II 

error rate. 

 

Figure 4. Probability of making Type I and Type II errors (Bhandari, 2023). 

2. HYPHOTESIS TESTING APPLIED TO HEALTH STUDIES 

In the current era of health and medical research, characterized by the collection of extensive data, 

researchers frequently conduct numerous hypothesis tests to draw multiple inferential conclusions. This 

process, however, presents challenges in maintaining the reliability of these conclusions due to the potential 

for statistical errors, especially when multiple tests are conducted. The primary errors of concern are Type 

I (false positives, where a true null hypothesis is incorrectly rejected) and Type II (false negatives, where a 

false null hypothesis is not rejected). To address these issues and balance the probability of errors, it's 

recommended that researchers apply adjustments to the significance levels of their tests. These 

adjustments help regulate error rates, reduce the likelihood of mistakenly identifying false positives, and 
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prevent the dismissal of true null hypotheses, thereby enhancing the validity and accuracy of the study's 

findings (Banerjee et al., 2009; Glickman et al., 2014). 

To address these challenges, statistical methods like the Bonferroni correction and the false discovery 

rate have been developed. These methods are crucial tools in health studies, aiding researchers in adjusting 

their analyses to account for the risks of errors, especially in studies involving multiple comparisons. 

Understanding these concepts is essential for interpreting results accurately and ensuring that the 

conclusions drawn from medical research are both valid and reliable. 

2.1. BONFERRONI CORRECTION 

Consider a hypothetical 3-month study where two groups of patients are randomly assigned to receive either 

Drug A or Drug B (risperidone or haloperidol which are antipsychotic) to see which is better for certain mental 

health symptoms and brain functions. The study checks two types of mental health symptoms using two 

scales and examines five cognitive functions (attention and concentration, visual memory, verbal memory, 

working memory and ideational fluency), each with its own test. This makes seven different things to 

compare between the two drugs. 

When comparing these outcomes, if there's no actual difference, there's normally a 5% chance of obtaining 

a misleading result that appears significant but isn't, known as the "false positive" risk. This risk increases 

with more comparisons; for instance, comparing five aspects might lead to a 23% chance of a false positive. 

To mitigate this, methods like the Bonferroni correction are used (Andrade, 2019). 

The Bonferroni correction is a multiple-comparison correction method used in statistical analysis when 

conducting numerous related or unrelated tests at the same time. The adjustment is necessary because an 

alpha value that might be suitable for a single test may not be adequate when considering all tests together. 

To reduce the chance of false positive results the alpha threshold is lowered proportionally to the total 

number of comparisons (Wolfram, n.d.).  

In research, the Bonferroni correction is often employed to adjust p-values during numerous statistical tests 

across various contexts. This approach is commonly applied in diverse experimental scenarios, including 

(1) comparing different groups at the start of a study, (2) exploring the connections between various 

variables, and (3) assessing multiple outcomes or endpoints in clinical trials. This highlights its significance 

in modern experimental methodologies. 

The Bonferroni correction addresses the increased likelihood of a Type I error in multiple statistical tests. 

For example, using a p-value threshold of ≤ 0.05 across all tests might result in a false positive in 1 out of 

20 trials. However, with 20 tests and the null hypothesis (Ho) true for all, the chance of at least one test 

being significant is not 5% but about 64%. The general formula for this error rate, described in Equation 2, 

adjusts the significance level to alpha/T to maintain an overall alpha level of 0.05. 

Equation 2. Error rate (Armstrong, 2014). 

Error rate = 1 – (1 – α) / T (Eq 2) 

Despite its frequent use, the Bonferroni method has been debated. Some believe no correction is necessary, 

while others consider it essential. Criticisms include its potential to impede accurate statistical inference, its 

focus on the 'universal' null hypothesis, and its dependency on the number of tests. Additionally, reducing 

the probability of a Type I error increases the risk of a Type II error, possibly overlooking real differences. 

This becomes more significant with more tests, as the required p-value for significance decreases, reducing 

the test's power. Another debate is over the scope of tests for which the correction should apply, like whether 

it includes all tests in a report, a subset, or even tests from the same dataset in other reports (Armstrong, 

2014). 
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2.2. FALSE DISCOVERY RATE (FDR) 

In genome-wide studies, where typically thousands of hypothesis tests are performed at once, applying the 

traditional Bonferroni approach for multiple comparison correction can be overly stringent. This heightened 

caution against false positives often results in overlooking numerous significant findings. To maximize the 

detection of significant comparisons while still keeping a low rate of false positives, researchers increasingly 

rely on the False Discovery Rate (FDR). These method offer a more balanced approach to identifying 

meaningful results in large-scale data analysis (https://www.publichealth.columbia.edu/research/population-

health-methods/false-discovery-rate). 

The False Discovery Rate (FDR) is a statistical method applied in situations involving multiple hypothesis 

testing. Its primary function is to adjust for multiple comparisons (“Encyclopedia of Systems Biology,” 2013). 

The FDR (Equation 3) represents the expected fraction of tests where the null hypothesis is actually true. 

The primary aim of controlling the FDR is to establish significance levels for a group of tests in a manner 

that ensures the ratio of accurate null hypotheses among those deemed significant remains below a 

predetermined threshold (Glickman et al., 2014). 

Equation 3. Formula false discovery rate. The total count of null hypothesis rejections comprises both 

false positives (FP) and true positives (TP) (Benjaminit & Hochberg, 1995). 

��� =  
��

���	�
 (Eq 3) 

The FDR control method has become increasingly prominent in fields requiring extensive testing, such as 

genomic research and micro-array data analysis. Its adoption extends to healthcare, where it's applied in 

evaluating healthcare providers and assessing clinical adverse event rates. FDR control offers significant 

advantages over traditional Bonferroni-type adjustments, primarily due to its increased power in statistical 

testing. This method enables researchers to make more reliable and well-calibrated inferences from large 

datasets, particularly in health research that involves mining large databases and analysing detailed health 

information. 

Unlike the Bonferroni method, which can be overly conservative and thus limit the detection of true effects, 

FDR control is adept at identifying significant findings while maintaining a low rate of false positives. 

However, its application is not without challenges, especially in single test scenarios. Implementing FDR 

control in these contexts is complex, as it depends on the ability to estimate the probability of a null 

hypothesis being true before testing. While Bayes theorem could theoretically assist in applying FDR control 

by determining an appropriate significance level cutoff, in many single test scenarios where this assessment 

is difficult, not adjusting significance levels might be the most objective course of action. This underscores 

the need for careful consideration when applying FDR control to ensure its appropriate use in the specific 

context of the research design and objectives (Glickman et al., 2014). 

Question: Is the false positive rate the same as the false discovery rate? 

No, the false positive rate represents the likelihood of incorrectly rejecting a true null hypothesis, whereas 

the false discovery rate measures the chance that a null hypothesis is actually correct even after it has been 

rejected (Glickman et al., 2014). 

3. CONCLUSIONS 

In summary, this project has highlighted the crucial aspects of hypothesis testing in data analysis, 

particularly focusing on Type I and Type II errors and their implications in health studies. It underscored the 

delicate balance between these errors and the need for careful statistical decision-making. The introduction 

of methods like the Bonferroni correction and the False Discovery Rate (FDR) illustrated strategies to control 

error rates in multiple hypothesis testing scenarios, a common challenge in health research. While the 
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Bonferroni method is conservative, FDR provides a more nuanced approach, especially beneficial in large-

scale data analysis. This exploration reaffirms the necessity of understanding statistical errors in hypothesis 

testing, an essential component for advancing accurate and reliable scientific research, particularly in 

health-related fields. 
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