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1. Introduction: 

 

1.1. Research today and the need to do quality science without bias. 

Biomedical research is a field of study that focuses on the application of scientific principles and research 
methods to understand, diagnose, treat and prevent diseases in. The fundamental objective of biomedical 
research is to improve human health and advance knowledge of the biological processes that underlie 
diseases. In addition, they have to comply with intrinsic scientific and ethical protocols in clinical studies 
carried out on human beings. This compliance ensures that the rights and well-being of those who participate 
are respected. 

We could divide this discipline into 4 research subgroups: basic or preclinical research (related to studies in 
cells, tissues and animal models), clinical research (focused on the safety of medical interventions and 
treatments), translational research (which combines the basic research with the clinic), and epidemiological 
research (which studies particular phenomena by studying a certain group of people). 

Each group has specific characteristics that mean that each subdiscipline has its own methodologies and 
analyses, but what they all have in common is the large volume of results obtained from each of them. We 
must keep in mind that thousands and thousands of articles indexed in Scopus and Web Science are 
published each year , growing at an exorbitant rate, causing the total number of articles in 2022 to be 47% 
higher than in 2016. This existing publication speed generated by the great growth of publications can 
compromise the ability of scientists to be rigorous when analyzing information. If scientific rigor declines, the 
term “science” is devalued, so the objective must be to combat biases in publication (Hanson et al. , 2023) 
(Picture 1). 

 

 

 

 

 

 

 

 

 

 

 

Picture 1: Gráfico en el que se representa el incremento de la publicación de artículos en revistas 
indexadas 

 

Due to the enormous amount of results that are produced, we must develop statistical methodologies that 
allow us to compare the information and decide if the results are reliable or not. In this way, the results must 
be verifiable, consistent, reproducible and must be able to be subjected to reliability filters as a fundamental 
principle of the precision of the study. 
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1.2 Application of confidence and validation in biomedical studies 

In any research process, given the large number of sources of potential errors, it is necessary for 
researchers to try to reduce those related to the measurement of the variables to provide greater confidence 
in the results and conclusions of their study. In other words, an instrument is reliable, precise or reproducible 
when the measurements made with it generate the same results at different times, scenarios and 
populations if applied under the same conditions. 

However, it must be assumed that in everyday clinical practice, reliability is combined with another concept, 
which is validity, giving rise to various scenarios, from valid and reliable measurements to those that lack 
validity and reliability, as in the case of observations or observers who agree only due to the effect of chance, 
in such a way that the greater the precision of a measurement, the greater statistical power there will be in 
the sample under study (Picture 2) (Manterola, C. et al . , 2018 ) . 

 

 

 

 

 

 

 

Picture 2. Possible validity and reliability scenarios. 1). All measurements are similar, but they are far from 
reality. 2). The measurements capture the entire spectrum of the phenomenon, but they are very different 
from each other. 3). The entire phenomenon is not captured and the measurements are very different from 
one another. 4). All measurements are similar and adjust to the reality of what is being measured 

 

Before considering whether the instrument measures what we want to measure, we must ensure that the 
instrument measures "something" in a reproducible way: if the measuring instrument does not offer 
reproducible results, then the measuring instrument is not reliable, and it is pointless to ask ourselves. the 
problem of validity. 

If we want to apply these 2 concepts to biomedical research and clinical studies, reliability refers to the ability 
to repeat measurements and obtain similar results. Validity, on the other hand, ensures that measurements 
actually measure what they are intended to measure. Both are key to making informed decisions and 
effectively applying the results in medical practice. These principles ensure the quality and reliability of 
results, which is essential to advance scientific knowledge and to translate discoveries into effective clinical 
applications. Reproducibility not only implies the repetition of the results, but also the consistency in 
obtaining them under different conditions and by different researchers. 

In biomedical studies, the lack of reproducibility can undermine confidence in the results, generating 
erroneous conclusions and making it difficult for the finding to be applied to clinical practice, in such a way 
that its implementation in medical use generates ineffective or even harmful treatments or interventions. 
Reproducibility is essential for building a robust body of scientific knowledge and ensuring that findings can 
be reliably applied in clinical practice. 
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2. Numerical analysis of the reliability of quantitative measurements 

 

2.2 Reliability study: 

In clinical measurements, it is often necessary to compare a new measurement technique with an 
established one to see if they agree sufficiently, or for example to corroborate that measurements made by 
two measuring instruments offer results that match them for the new one to replace the old one. old, or if an 
observational study carried out by two researchers following the same analysis methodology offers the same 
results. To evaluate all this, there are different tests and methods to corroborate how reliable the different 
measurements are. We are going to break down some of these in this work. ( Bland , J.M & Altman, D., 
1986) 

The concept of reliability and the various indices used to estimate it are better understood if the 
measurement model used is made explicit. For a random variable the simplest model is: 

� = � +  � 

X= Measurement result 

Y= Magnitude to measure 

ɛ = Measurement error 

The magnitude to measure (Y) of the model can be decomposed into the sum of its mean µ (the mean of the 
measurements is a constant) and the variable ε Y that contains all the variability of Y around the mean. 

� =  µ +  ε 	  +  � 

Although both ε Y and ε are random variables, ε Y represents the variability of the variable to be measured (in 
our case the variability of the biomedical parameter that we are going to measure), while ε represents the 
measurement error. 

If we try to calculate the expected value of the model, assuming independence between ε and and ε , we 
obtain: 


��� =  µ + E�ε�  

The variable E( ε ) is called systematic error or bias. Therefore, from this expression it follows that a measure 
of validity is: 

E�ε� = 
��� −  µ 

We can also calculate the model variance Var( ε ), which tells us the random error (due to the need to 
conserve units, the random error is defined as the standard deviation of ε . 

��� ��� = ��� �ε	� + ��� �ε� 

The measurement variance has two components: one is the variance of the variable itself and the other is 
that of the measuring instrument. Measurement variance is therefore not a good indicator of measurement 
stability. However, if the magnitude to be measured were constant, it would be a good indicator of the 
stability of the measurement, that is, if the variance of εY were zero, as would be the case if one were trying 
to estimate the precision of a balance using some standard weights. 

We can summarize all this in that to evaluate the reliability or reproducibility coefficient, a series of formulas 
can be used, which, for their calculation, include the variability of the subject and the measurement error, 
being able to generate a generalized equation that would be: 

� =
������� �����������

������� ����������� + ������� �!� ���"� 
=  

����ε	�
����ε	� + ����ε�

=  
#$

%&

#$
%& + #$

%
 

 

(Latour, J. et al ., 1997; Manterola, C. et al ., 2018 ) 
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3. Methods to evaluate reliability in quantitative measurements: 

 

3.1. Intraclass correlation coefficient (ICC) 

The intraclass correlation coefficient allows measuring the general agreement between two or more 
measurements that involve quantitative variables, obtained with different measuring instruments or 
evaluators. When it is measured, there will always be a certain error that will depend randomly on variables 
such as the instrument, the manipulation, the subject evaluated, etc. Any measurement is the result of 
adding the real value of what we want to measure and a random error. A reliable instrument will be one 
whose random error is small enough to allow us to consider that the result obtained is not attributable to 
measurement errors (Picture 3). 

It is based on an analysis of variance model with repeated measures. Its use is only possible if there is 
normality of the distributions of the variables, equality of variances and independence between the errors 
produced by the observers. This coefficient measures the agreement between different observers or 
repeated measurements. We can say that a high ICC indicates good reproducibility. 

Although it is considered a type of correlation, unlike most other correlation measures, it operates on data 
structured in groups, rather than data structured as paired observations. 

 

 

 

 

Picture 3: The dashed line represents a perfect 
association with little agreement between observers; 

and the solid line represents a perfect association and 
agreement between observers. Picture designed by 
my own by Graph Pad Prism 8. 

 

In order for the ICC to be used, the following conditions must be met that there is normality in the 
distributions of the variables, homocestacy (equality of variances) and independence between the errors 
produced by the observers. 

A limitation of the CCI is that it depends on the variability of the observed values. If patients vary little in their 
measurements (homogeneous sample), the ICC tends to be low, since it compares the variance between 
patients with the total observed variance. If the sample is heterogeneous, the ICC tends to be higher. 

The equation to obtain the CIC would be: 

�'� =  
�σ)

$�
�σ)

$� + *σ+
$, + �σ-

$�
 

• Intersubject variability due to the differences between them ( σ 2 
s ). 

• Intrasubject variability, due to differences in measurements from the same subject (σ 2 
e ). 

• Residual variability, it is inexplicable (random), it is linked to measurement errors (σ 2 
j ). 

 

By applying the method, values between 0 and 1 can be obtained, where 0 means lack of agreement and 1, 
agreement or absolute reliability. Conventionally, the following values are accepted: 

• < 0.40 �Poor. 
• 0.40-0.59 �Enough. 
• 0.60-0.74 �Good. 
• 0.75-1� Excellent 
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3.2. Intraclass correlation coefficient applied to a real clinical case 

As we have already mentioned, in the clinical setting, it is sometimes necessary to assess the reliability of 
the measurements or observations made, so we are going to see a numerical example of two consecutive 
measurements of systolic blood pressure, which requires carrying out this method to study the correlation, 
since that the measurement data are quantitative continuous variables (Table 1). 

 

Patient Doctor measuring A ( mmHg ) Doctor measuring B ( mmHg ) 
1 135 140 
2 140 145 
3 130 135 
4 145 150 
5 140 145 
6 150 160 
7 140 145 
8 135 140 
9 140 145 
10 135 145 

 

Table 1: Consecutive measurements of systolic blood pressure in 10 patients, performed by two doctors with 
the same sphygmomanometer. Data obtained from (Prieto, L., 1998). 
 

If we try to graphically represent the data obtained we see that the measurements in the two measurements 
are very similar (Picture 4) but if we modify the Y axis and zoom in on the graphs we see that there is a 
considerable difference, it seems that the measurement A has tended to measure more towards smaller data 
and measurement B has tended to give larger results (Picture 5). But what level of agreement has this ? 

                        

 

 

                         Picture 4 

 

 

 

 

 

 

                     

                         Picture 5                                               

 

 

 

 

Picture 4 and 5: Graphs representing patients' blood pressure measurements in mmHg. In green the 
measurement A and in blue the measurement B. Pictures designed by my own by GraphPad Prism 8. 
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To calculate the CIC in IBM SPSS Statistics we follow the following command from the application's drop-
down menu. The Spanish version would be the following “path” to obtain the CIC: 

Analyze → Scale → Reliability analysis → (here we choose the variables that we are going to evaluate) → 
Statistics → Intraclass correlation coefficient → Model & Type → Continue → Accept: obtaining the values of 
the intraclass correlation coefficient (Picture 6). 

 

 

 

 

 

 

 

 

 

 

 

Picture 6: One of the drop-down menus that appears while we try to obtain the CIC using the IBM SPSS 
Statistics application ( Pérez, JM, & Martin, PP, 2023). 

 

We have commented that when the CIC is in the interval between 0.75 and 1, it is considered an excellent 
correlation, therefore, we can say that both measurements are valid and correlate (Picture 7). 

 

 

Picture 7: Results obtained in the reliability analysis in IBM SPSS Statistics ( Pérez, JM, & Martin, PP, 2023). 

. 
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3.3. Bland and Altman method 

Bland and Altman method can be used, which consists of graphically representing, in a scatter diagram, the 
mean of the two measurements as the best estimate of the true value, against the absolute difference 
between the two values . The graph provides a visual representation of the difference between two 
measurements on the x-axis and the average of the two measurements on the x-axis. 

The graph includes a horizontal line at the mean difference and two lines, called limits of agreement, at a 
distance of 1.96 standard deviations above and below the first. If the differences between pairs of 
observations follow approximately a normal distribution and the values tend to be stable over the entire 
measurement range, 95% of those differences are expected to fall within the limits of agreement. This allows 
the degree of agreement between the two methods to be assessed graphically, in a simple way (Picture 8). 

  

 

 

 

 

 

 

 

 

 

Picture 8: Bland and Altman graph taken as an example of how the results obtained by two meters would be 
represented by these methods. Image obtained from DataTab (https://datatab.es/tutorial/bland-altman-plot ). 

 

As I have already mentioned, this method is very useful to measure the agreement between measurements 
regardless of the scale of the measurements. But it is also a very useful method since it allows us to know 
more information while at the same time obtaining the agreement. We can stand out : 

• Identify any systematic bias: The graph can be used to identify any systematic bias or random error in 
the data. For example, if the mean difference between the two measurements is consistently positive or 
negative, it may indicate a systematic bias in one of the measurement techniques. Additionally, if the 
spread of the points on the graph is greater than the standard deviation, this may indicate the presence 
of random error in the data. 

 
• Finding outliers in data: Another important aspect of Bland -Altman plots is that they can be used to 

identify outliers in data. Outliers can have a significant impact on the results of a study, and it is important 
to identify them to understand the overall agreement between the two measurement techniques. Outliers 
can be identified by looking for points that fall outside the lines that represent the standard deviation of 
the mean difference. 

Something that is important to keep in mind when carrying out this method is that the degree of dispersion 
must be uniform. It may happen that the agreement is acceptable in a certain range of values, but not in 
another (for example, very high or low values), in which the dispersion is unacceptable. This effect can 
sometimes be corrected by transforming the data (for example, logarithmic transformation), although the 
usefulness of the measurement in that interval must always be considered. 
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3.4 Bland and Altman method applied to a real case 

Suppose we want to assess the reliability of a new wrist blood pressure monitor to measure blood pressure. 
We took a sample of 300 healthy schoolchildren and measured their pressure twice. The first with a 
conventional arm cuff, obtaining an average systolic pressure of 120 mmHg. and a standard deviation of 15 
mmHg. The second, with a new wrist blood pressure monitor, with which we obtained an average of 119.5 
mmHg. and a standard deviation of 23.6 mmHg. The question we ask ourselves is the following: considering 
the arm cuff as a reference standard, is the determination of blood pressure with the wrist blood pressure 
monitor reliable? 

The logical thing is to think that the two methods will not always coincide, so the first thing we must ask 
ourselves is how much it is reasonable for them to differ to give validity to the results. This difference must be 
defined before comparing the two methods and establishing the sample size necessary to make the 
comparison. In our case we are going to consider that the difference should not be greater than one standard 
deviation of what was obtained with the reference method, which is 15 mmHg. 

The first step we can take is to examine the data. To do this, we make a dot diagram representing the results 
obtained with the two methods (Picture 9). It seems that there is a certain relationship between the two 
variables since we observe that the cloud of points is very close to having a correct proportion that the data 
on the Y axis is the same or very similar to the X axis (For example X= 120, Y=120), so that the 
measurements increase and decrease in the same direction. 

 

 

 

 

 

 

 

 

Picture 9: Point cloud representation of the biceps cuff measurements of the 300 schoolchildren. Y-axis is 
one of the sphygmomanometers and X-axis is another sphygmomanometer. 

 

Another possibility is to examine what the differences are like. If there was good agreement, the differences 
between the two methods would still be normally distributed around zero. We can check this by making the 
histogram with the differences of the two measurements (measurement 1 – measurement 2). Indeed, it 
seems that its distribution conforms quite well to a normal one (Picture 9). 

 

 

 

 

 

 

 

 

Picture 9: Histogram representing the differences in measurements between the two sphygmometers . 
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What will give us more information will be to represent the average of each pair of measurements against 
their difference. In this representation, the Y axis corresponds to the differences between the paired values of 
the measurement of the reference sphingometer and the new sphingometer , that is, the subtraction of both 
values, that is, the measurement of the student minus the measurement with the other sphygmometer in the 
same school (measurement A – measurement B). In this way when the result of the difference is 0 

� �.�� =  �/ℎ�1 ���� 2 −  �/ℎ�1 ���� 3   

 

While the X axis represents the respective value of the average of both (A+ B)/ 2). 

� �.�� =  
 �/ℎ�1 ���� 2 +  �/ℎ�1 ���� 3 

 2
  

 

As can be seen, the points are grouped, more or less, around a line (at zero) with a degree of dispersion that 
will be determined by the extent of the differences in results between the two methods. The greater this 
degree of dispersion, the worse the agreement between the two methods. In our case, we have drawn the 
lines that coincide with one standard deviation below and above the zero mean, which were the limits that 
we considered acceptable between the two methods to consider a good agreement. We can see that there 
are quite a few points that fall outside the limits, so we would have to assess whether the new method 
reproduces the results reliably (Picture 10) (Molina, M, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 10: Bland -Altman graph representing the measurements of the schoolchildren with the two 
sphygmometers following the previously mentioned formulas. 
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4. Articles to expand information 

In my opinion, the most advisable thing is to read clinical and biomedical cases and see what statistical 
analysis methodology researchers follow in their research to carry out the correct reliability and validation 
study. I am attaching in this way several papers that I think could be of interest and the reason for their 
choice. 

To explore more applications of CIC in biomedicine. An example could be the following: 

• Fernández, MG, & Escobar, JZ (2012). Reliability and correlation in the evaluation of knee mobility 
using goniometer and inclinometer. Physiotherapy , 34 (2), 73-78. 
 

We can also study how the CIC could be applied in clinical trials. 

• Thompson, D.M., Fernald, D.H., & Mold, J.W. (2012). Intraclass correlation coefficients typical of 
cluster-randomized studies: estimates from the Robert Wood Johnson Prescription for Health 
projects. The Annals of Family Medicine , 10 (3), 235-240. 
 

• Brewer, BW, Van Raalte, JL, Petitpas, AJ, Sklar, JH, Pohlman, MH, Krushell , RJ, ... & Weinstock, J. 
(2000). Preliminary psychometric evaluation of a measure of adherence to clinic-based sport injury 
rehabilitation. Physical Therapy in Sport , 1 (3), 68-74. 
 

To learn more about the CIC and to see another analysis, Person 's correlation , to study to what extent the 
CIC is better or worse than other methods, comparing it in a clinical case. 

• Molina, CGE, Rodríguez, VMV, de Celis, EMR, Rodríguez, EB, Ávila, GG, & Ruiz, CEC (2006). 
Intraclass correlation coefficient vs. Pearson correlation of capillary glycemia by reflectometry and 
plasma glycemia. Internal Medicine of Mexico, 22(3), 165-171. 

 

To expand information about the Bland and Altman method we could explore: 

• Mantha, S., Roizen, M.F., Fleisher, L.A., Thisted, R., & Foss, J. (2000). Comparing methods of 
clinical measurement: reporting standards for Bland and Altman analysis. Anesthesia & Analgesia , 
90 (3), 593-602. 
 

• Taffe , P. (2021). When can the Bland & Altman limits of agreement method be used and when it 
should not be used. Journal of clinical epidemiology , 137 , 176-181. 

 

It should be noted that there are more analyses, for example, when you want to do a validation study of 
qualitative measures, a study that is often done to study the correlation of qualitative measures is the kappa 
index . To learn more we could explore: 

• by Ullibarri Galparsoro, L., & Pita Fernández, S. (1999). Agreement measures: the Kappa index. Cad 
Aten Primary, 6, 169-171. 

And to see a practical example in the clinic about the Kappa index we could explore: 

• Bes-Rastrollo , M., Pérez Valdivieso, JR, Sánchez-Villegas, A., Alonso, AMGM, & Martínez-
González, MA (2005). Validation of participants' self-reported weight and body mass index from a 
cohort of college graduates. Rev Esp Obes , 3(6), 183-9. 
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