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Importance of the sample size 

Clinical trials need careful planning, which is summarized in a trial protocol. This includes details such as the 

hypothesis, the trial’s objective, the design, data collection methods, criteria for selecting participants, 

scientifically justified sample size, procedures and intervention, data handling procedures, primary and 

secondary outcome definition, statistical analysis plan and assumptions. Among this information, we will focus 

on sample size estimation, which is one of the pivotal aspects in the design of a clinical study.  

Despite awareness of the significance of biostatistics in preclinical and clinical research, many researchers have 

insufficient statistics knowledge. Consequently, unintentionally they often draw unsupported conclusions 

leading to numerous statistical errors that impact research outcomes. These errors range from flawed hypotheses 

and improper study design to issues like inadequate sample size, circular analysis, p-hacking and inappropriate 

presentation of results. 

In clinical trials, it is neither reasonable nor possible to study the whole population, researchers typically select 

a sample, a smaller group of participants that is thought to be representative of the population. This sample is 

then used to draw inferences about the whole population. It is crucial to choose an appropriate sample size 

estimation to avoid over-estimation and under-estimation consequences on trial’s outcomes. Any negligence in 

this calculation can result in different types of errors, including approval of false results (type I errors) or 

rejection of true findings (type II errors). 

Too small sample sizes may make the results unrepresentative and not generalizable to the whole population, 

as well as may not allow to identify clinically significant differences when they exist. In this case, even though 

there is a therapeutic effect observed, it could be caused by random variations. Alternatively, too large sample 

sizes result in wastage of researcher’s time and valuable resources, and the exposure of a greater portion of the 

population to the potential risks associated with the intervention, thereby raising ethical concerns. In addition, 

not meaningful changes could produce statistically significant differences. 

From an economic point of view, both overestimating and underestimating the sample size can result in 

increased costs of the studies. Overestimation leads to higher sampling costs, as analyzing more samples implies 

additional expenses in terms of money, time and resources. On the other hand, underestimation contributes to 

increase costs arising from incorrect decisions, as fewer samples may lead to a higher likelihood of errors and 

their associated consequences. Considering all these aspects, in the approval or rejection of clinical trials the 

sample size plays a crucial role. 

Factors influencing the sample size calculation 

Main parameters that determine the required sample size 

The calculation of sample size depends on different components, such as type I errors (p-value), type II errors 

(power), effect size and variability. Evaluating these errors involves considering the results in the context of its 

statistical initial hypothesis. In significance studies researchers compare two groups, usually the experimental 

group that receives the tested treatment and the control group that receives placebo, to try to find statistically 

significant differences associated to the treatment. Commonly used hypotheses are null hypothesis (H0), 



suggesting no difference between groups, which means no therapeutical effect of the drug, and alternative 

hypothesis (H1), expressing the prediction of the experimental group’s outcome after the treatment. 

Type I error occurs when a true null hypothesis is incorrectly rejected. It happens when the statistical test 

indicates a significant result (rejecting the null hypothesis) when, in reality, there is no true effect or difference 

in the population. The probability of committing such error is denoted as alpha (α). Type I errors are determined 

by the p-value, which represents the probability of obtaining the observed results (or more extreme) if the null 

hypothesis is true. On the other hand, the confidence level (1 – α) represents the probability that the true value 

falls within the confidence interval. 

Type II error occurs when a false null hypothesis is not rejected, meaning that the study fails to detect a true 

difference or effect that actually exists in the population, leading to a false negative result. The probability of 

committing such error is denoted as beta (β). On the other hand, power (1 – β) is the probability of correctly 

rejecting a false null hypothesis, that is, to detect a difference between two groups when it truly exists. A higher 

power reduces the risk of committing this type of error. 

Before conducting the study, researchers must establish a balance between type I and II errors. To this end, they 

must set the acceptable limit for p-value, (α, the level of significance), and for the false negative rate (β), to 

determine the threshold to reject the null hypothesis. A common α level is 0.05, indicating a 5% chance of such 

an error. However, α levels can vary based on study goals. Lower α levels minimize the risk of declaring an 

ineffective treatment as effective, decreasing the chance of making a Type I error but may increase the likelihood 

of Type II errors. Clinical trials often aim for a power of 80%, meaning there is a 20% chance of missing a real 

difference (the maximum acceptable value for β is often set at 0.20). 

Both types of errors are highly dependent on the sample size. First, type I and II error probability is inversely 

proportional to the sample size, so larger sample sizes generally enhance the power of study and reduce the 

likelihood of false negatives and positives. On the other side, increasing the sample size may have ethical 

considerations, as well as rise the cost and time required for the study. For this reason, researchers need to 

consider all these practical and ethical constraints when determining the optimal sample size. 

Variability refers to the dispersion or spread of data points in a sample, which is the extent to which individual 

data points in a dataset differ from the mean. Researchers need to anticipate the population variance of an 

Figure 1: Illustration of Type I and Type II errors [4] 



outcome variable, typically estimated by the standard deviation (SD). As variance is usually unknown, an 

estimate must be employed instead. Investigators often rely on estimates from previous studies or from pilot 

studies in the population of interest. Variability depends on the homogeneity of the sample, as the more 

homogeneous the population is, the smaller its variance. This influences the required sample size required to 

achieve statistical significance, which is larger the higher the variance of the measurements. 

Another aspect that influences the sample size is the effect size, a parameter that measures the minimal 

magnitude of the difference that investigators aim to detect between study groups, which is usually the minimal 

clinically important difference (MCID). To determine the most appropriate effect size there are different 

approaches. Some experts in the field are often consulted to determine the smallest difference that would be 

beneficial in view of its costs and risks. Effect size has a relevant statistical impact, as it is crucial for calculating 

the required sample size in study design. Sample size is inversely proportional to the square of the effect size, 

so even small changes in the expected difference have a significant effect on the estimated sample size. Larger 

effect sizes allow for the detection of effects with smaller sample size, as a fairly wide probability distribution 

may be acceptable. On the other hand, if small differences want to be detected, great precision and small 

probability distributions are required, which can be achieved with higher sample sizes. 

In Figure 2 there is a practical example of the influence of the effect size in the sample size. For a constant pre-

stablished power of 0.8, as the effect size decreases, the required sample size increases. Case 1 (where an effect 

size of 0.2 required a sample size of 778), is common in epidemiological or meta-analysis studies, where smaller 

effects are important and sample sizes are very large. On the other side, Case 2 (where an effect size of 1 required 

a sample size of 34), is common in clinical studies and Case 3 (where an effect size of 2.5 required a sample 

size of 8), is more common in pre-clinical studies with cell cultures or animals, where samples are usually small 

(5-10). 

Other considerations 

The calculation of sample size is also influenced by the drop-out rate, which refers to the estimated number of 

subjects who may exit the study for various reasons. While the sample size calculation provides the number of 

subjects needed to achieve a specified level of statistical significance for a given hypothesis, the reality of 

clinical practice may require enrolling additional subjects to compensate these potential drop-outs. The adjusted 

sample size (Nd) taking this into account can be calculated as: 

Figure 2: Relationship between effect size and sample size. P – power, ES – effect size, SS – sample size [4] 



Nd  =
n

(1 − d)
 

, where n represents the initially calculated sample size and d is the expected drop-out rate. For example, if the 

necessary sample size is n = 90 and the expected drop-out rate (d) is 0.1, then the sample size considering drop-

out will be  Nd  =
90

(1−0.1)
= 100. 

On the other hand, in some clinical trials, it is ethically desirable to perform an unequal treatment allocation, 

with more subjects in one arm compared to the other. This situation arises in placebo-controlled trials with very 

ill subjects, where it might be more ethical to assign more patients to the treatment group than to placebo group. 

The sample size for each arm (n1 and n2) can be calculated using the following formulas: 

n1  =  0.5 · n · (1 + k)    n2  =  0.5 · n · (1 +
1

k
) 

,where n is sample size required for the clinical trial in each arm (if both arms were equal) and k is the desired 

ratio for the sample size of test group and the placebo group (k = n1/n2). For instance, if the necessary sample 

size is n = 80 and the desired ratio between test (n1) and placebo (n2) is 2:1 (k = 2), then n1 = 0.5 · 140 · (1+2) 

= 120 and n2 = 0.5 · 140 · [1+(1/2)] = 60. 

Finally, the prevalence rate of the condition in the population is also a critical factor in the process of calculating 

the required sample size, because it influences the statistical power of the study. It is typically estimated from 

previous literature. However, researchers must be prepared to readjust the sample size if the observed event rate 

during the trial differs significantly from initial expectations. This adaptability is crucial for maintaining the 

robustness and reliability of the study. 

How to calculate the sample size 

There are different methods to determine the most adequate sample size depending on the specific study design, 

the hypothesis testing and the statistical analysis planned to use. In each case, different formulas are used. Two 

main examples are the comparison of two proportions and the comparison of two means. 

Simple size calculation in the comparison of two means 

For the comparison of two means, the formula is n =
(Zα 2⁄ +Z1−β)

2
2σ2

(μ1+μ2)2 , where 

• n: sample size required in each group 

• σ: standard deviation 

• μ1 and μ2: mean of group 1 and 2 

• μ 1 − μ 2: clinically significant difference of means of both groups (effect size) 

• Z1-β: Z-score for the desired power 

• Zα/2: Z-score for the desired level of significance 

Z values depend on the desired power and level of significance. Values for conventional values of α and β are 

shown in Table 1. 



Table 1. Showing constant values for conventional values of α and β [3] 

Z-values for conventional values of α Zα/2 

α 
0.05 1.96 

0.01 2.58 

Z-values for conventional values of β Z1-β 

β 

0.20 0.84 

0.1 1.28 

0.05 1.64 

0.01 2.33 
 

For example, a placebo-controlled randomized trial aims to compare the effectiveness of Drug A in preventing 

the stress response to laryngoscopy, by studying the difference in mean systolic blood pressure between two 

groups. Considering that it is set a level of significance (α) of 5% and a power (1− β) of 90%, and that previous 

studies showed that during laryngoscopy there is an average rise of 20 mm Hg in systolic blood pressure, with 

a standard deviation of 15 mm Hg, sample size can be obtained by substituting in the formula. 

• σ = 15 mm Hg 

• μ 1 − μ 2 = 20 mm Hg 

• Z1-β = 1.28 (1− β = 0.90) 

• Zα/2 = 1.96 (α = 0.05) 

In this case, a sample size of 24 individuals, 12 in each arm, is sufficient to detect a clinically relevant difference 

of 20 mm Hg between groups in systolic blood pressure with 90% power and a 5% level of significance. 

Sample size calculation for the comparison of two proportions 

For the comparison of two proportions, the formula is n =
(Zα 2⁄ +Z1−β)

2
[p1(1−p1)+p2(1−p2)2]

(p1−p2)2 , where 

• n: sample size required in each group 

• Z1-β: Z-score for the desired power 

• Zα/2: Z-score for the desired level of significance 

• p1 and p2: proportion of event of interest (outcome) for group 1 and group 2 

• p1 − p2: clinically significant difference of proportions of both groups 

For example, a placebo-controlled randomized trial aims to compare the effectiveness of Drug A in curing 

infants suffering from sepsis, by studying the difference in the incidence between two groups. Considering that 

it is set a level of significance (α) of 5% and a power (1− β) of 80%, and that previous studies showed that Drug 

A could cure 50% of subjects, and a clinically important difference of 16% as compared to placebo is acceptable, 

sample size can be obtained by substituting in the formula. 

• p 1 = 50% = 0.5 (proportion of subjects cured in drug A group) 

• p 2 = (50 – 16) % = 34 % = 0.34 (proportion of subjects cured in placebo group) 

• p1 − p2 = 16% = 0.16 (effect size: clinically significant difference) 

n =
(1.96 + 1.28)2 · 2 · 152

202
= 11.81 ≈ 12 

 



• Z1-β = 0.84 (1− β = 0.80) 

• Zα/2 = 1.96 (α = 0.05) 

In this case, a sample size of 292 infants, 146 in each arm, is sufficient to detect a clinically relevant difference 

of 16% between groups in curing sepsis with 80% power and a 5% level of significance. 

Nonograms for sample size calculation 

Besides the formulas, there are available different nonograms of software to estimate the most adequate sample 

size. Figure 3 illustrates one of the most commonly used nonograms, developed by Gore and Altman, which 

allows to estimate the most adequate sample size initially selecting the effect size (standardized difference) and 

aimed power for the study. It assumes Gaussian distributions. To obtain the sample size, a straight line must be 

drawn connecting the two values, which will cross the significance level region. Choosing the desired 

significance level, the intercept allows to obtain the required sample size.  

For example, for an effect size of 1, a power of 0.8 (80%) and a significance level of 0.05, the determined sample 

size is 30 (Figure 3).  

Software for the sample size calculation 

In many cases, manual calculation of the sample size is too complex and difficult, specially for researchers that 

are not statisticians. For this reason, recently there has been a development of different software and websites 

that aim to effectively determine sample sizes for a variety of study types. Some tools that are free-to-use and 

don’t require payment are G-Power, R and Piface. For example, R can be customized to meet individual 

statistical requirements, as it has specific program modules called packages that can be added to a base program. 

n =
(1.96 + 0.84)2[0.5(1 − 0.5) + 0.34(1 − 0.34)2]

0.162
= 145.29 ≈ 146 

Figure 3: Nonogram for the calculation of sample size, in the comparison of two groups of equal size [4] 



On the other hand, Piface is a Java application designed specifically for sample size estimation and post-hoc 

power analysis. The most professional software is PASS (Power Analysis and Sample Size), which is not freely 

available, but offers the possibility to analyze approximately 200 different study types.  

G-power, which can be downloaded for free at www.psycho.uni-duesseldorf.de/abteilun-gen/aap/gpower3, is 

capable of calculating statistical power and sample size for various types of statistical tests, including t-tests, F-

tests, χ2 tests, Z-tests and some exact tests. To this end, first researchers need to establish the objective and 

hypotheses of the study and choose the most appropriate statistical test. Then, they can select between five 

possible power analysis methods (summarized in Table 2), depending on the variables to be calculated and the 

given variables. A priori analysis are conducted before conducting the study, and the aim is to determine the 

required sample size for a specific desired effect size, confidence level and power. On the other hand, post-hoc 

analysis are performed after the completion of the study, and the aim is to calculate the power of the study for 

the sample size, effect size and confidence level used in the study. To obtain the desired variable, researchers 

need to input the required variables for analysis and select the “calculate” button. 

Table 2. Power analysis methods in G-power [6] 

 

Reporting of the sample size 

As per the CONSORT statement guidelines, it is imperative for all published randomized controlled trials to 

report and justify their sample size calculations. This report has greatly increased in the past decades, but only 

about a third perform it adequately. These calculations are commonly reported in a deficient way, only 

mentioning the confidence level and the power, but not specifying essential parameters such as the effect of 

interest and variability. Despite the recommendation from the CONSORT group to disclose details about sample 

size determination, researchers and reviewers often do not take this seriously, so there is a need to enhance 

transparency in this aspect. 
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