vcdm | Universidad Carlos Il de Madrid

Grado en Ingenieria Biomédica
2024-2025

Trabajo Fin de Grado

“Development of computational
workflows for the prediction of atomic
models of biological macromolecules

from their amino acid sequences.”

Estela Diez Garcia

Tutor/es
Arrate Munoz Barrutia
Carlos Oscar Sanchez Sorzano
Leganés, June 2025

(@0l

Esta obra se encuentra sujeta a la licencia Creative Commons Reconocimiento - No
Comercial - Sin Obra Derivada

ABSTRACT

In recent decades, biocomputational tools have become essential in researchers, particu-
larly in the field of protein structure prediction. Since the launch of AlphaFold2, these
tools have advanced significantly, offering increasingly accurate and sophisticated fun-
ctions. However, the lack of interoperability among them has hindered seamless integra-
tion, prompting the development of the Scipion framework to unify various tools under
a common interface. Despite its strengths, Scipion had yet to incorporate cutting-edge
protein structure prediction software.

This thesis aims to integrate three state-of-the-art tools: AlphaFold3, Boltz-1, and
Chai- 1, into the Scipion framework, adhering to the principles of traceability, repro-
ducibility, interoperability, and integration. Two plugins were developed from scratch for
Boltz-1 and Chai-1, while the existing ChimeraX plugin was extended to support Alpha-
Fold3. All plugins were implemented in Python, ensuring compatibility with the architec-
ture of Scipion and automated installation procedures.

The integrated tools were tested on four macromolecules. AlphaFold3 and Chai-1 pro-
vided the most comprehensive outputs, including five predicted models accompanied by
ranking scores. These two tools also demonstrated higher predictive accuracy than Boltz-
1, as assessed using Root Mean Square Deviation (RMSD) analysis. These results high-
light the feasibility and benefits of integrating advanced prediction tools into the Scipion
to support robust and reproducible structural biology workflows.

This work demonstrates the feasibility and relevance of integrating advanced predic-
tive tools into Scipion, setting the stage for future extensions of biocomputational work-
flows in structural biology.

Key words: Protein Structure Prediction, biocomputational tools, Scipion framework,
RMSD, macromolecules, Alphafold3, Chai-1 and Boltz-1

I

ACKNOWLEDGEMENTS

I would like to begin by expressing my thanks to both of my tutors. Without their gui-
dance and expertise, this thesis would not have been possible. Thank you, Arrate, for your
valuable advice and constant support. Thank you, Carlos, for giving me the opportunity
to develop this project at CNB, for welcoming me into your lab, and for being my guide
throughout these past months. I could not be more grateful.

My deepest thanks also go to my family, my greatest pillar. Thank you for always
believing in me, even in moments when I doubted myself.

To my friends, who have listened to my worries time and again, thank you for helping
me disconnect, making me smile, and reminding me to enjoy the journey.

To my classmates, thank you for these four unforgettable years. Some of you have
become more than classmates, you are family. I wouldn’t have made it through this degree
without you.

And finally, to my grandmother. She will not get to see me graduate, but she was my
greatest motivation to pursue this path. She has been my inspiration and role model since
I was a child, and she always will be, wherever I go.

INDICE GENERAL

1. INTRODUCTION. e e 1
L.1. Motivationo e e 1
1.2, Objectives. o o e e e 2
1.3. Content of the Document 3

2. THE COMPLEX STRUCTURE OF PROTEINS. 5
2.1. The Building Blocks. Amino Acids and Peptide Bonds 5
2.2. Local Folding Patterns in Proteins 6
2.3. a-Helix and B-Sheet Folding Patterns 8
2.4. Higher Levels of Protein Folding 9

3. STATEOF ART e 10
3.1. The Revolution of Protein Structure Prediction. AlphaFold2 10
3.2. Deep Learning Models for Protein Structure Prediction 11
3.3. Protein Structure Prediction in Scipion. o L. 14

4. MATERIALS e 16
4.1. Scipion Framework Analysis, 16

4.1.1. Plugin Architecture 19
4.1.2. Protocol Architecture 21
4.2. Analysis of the Software Selected for Integration. 22
4.3. Molecule Analysis e 24

5. METHODOLOGY e 27

5.1. Creating the Plugin. 27
5.1.1. Creating an automaticinstaller 28
5.2. Creating the Protocol 30
5.2.1. Protocol Parameters 30
5.2.2. Protocol Steps e 33
5.2.3. Protocol Output e 36
5.3. Create the Protocol Viewer 37

VII

6. RESULTS e 38

6.1. Chai-1 Plugin. e 38
6.2. AlphaFold3 Plugin. e 41
6.3. Boltz-1 Plugin e 44
6.4. Comparison Between Integrated Software using RMSD.. 45
7. DISCUSSION AND FUTURE OUTLOOK 48
8. CONCLUSIONS e s 50
9. REGULATORY FRAMEWORK 51
10. SOCIO-ECONOMICIMPACT. e 52
BIBLIOGRAFIA 54

VIII

2.1
2.2
2.3
24
2.5

3.1
32
33
34

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
54

5.5
5.6
5.7

6.1
6.2

INDICE DE FIGURAS

General structure of an aminoacid oL 5
Peptide bond formation between aminoacids 6
Steric limitations on the bond angles in a polypeptide chain 7
Types of noncovalent bonds involved in protein folding 7
General conformation of the polypeptide backbone observed in the a-

helix and the S-sheet structures 8
Alphafold2 model architecture 10
Alphafold3 model architecture 12
Chai-1 model architecture 13
Boltz-1 model architectureo 14
Scipion home screen interface 17
Pluginmanage 18
Scipion project window interface 19
Directory structure e 20
Heme group structure Lo 24
2,3-Bisphosphoglycerate structure L 25
Methodology diagram., 27
Chai-1 protocol interface within the Scipion framework. 31
Boltz-1 protocol interface integrated into the Scipion framework. 32

Alphafold3 protocol interface within the modified ChimeraX plugin in

Scipion. e e 33
TPZB fastafile 34
Example Chai-1’s FASTA file format. 34
Example Boltz-1 FASTA file format 34
Final results window. L. oL 38
Chai-1 predicted 1AN3 structure. 39

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Chai-1 predicted 2DN2 structure. 39
Chai-1 predicted 2DN1 structure. 40
Chai-1 predicted 1B86 structure. 41
Alphafold3 predicted 1AN3 structure. 42
Alphafold3 predicted 2DN2 structure. 42
Alphafold3 predicted 2DNI1 structure. 43
Alphafold3 predicted 1B86 structure. 43
Boltz-1 predicted structures. 44
1A3N RMSD comparison between software graphs. 45
2DN2 RMSD comparison between software graphs. 46
2DN1 RMSD comparison between software graphs. 46
1B86 RMSD comparison between software graphs. 47

XI

INDICE DE TABLAS

4.1 INPUT PARAMETERS OF THE SOFTWARE
42 OUTPUTOFTHE SOFTWARE

6.1 RANKING SCORES OF CHAI-1 PREDICTED MODELS 1A3N
6.2 RANKING SCORES OF CHAI-1 PREDICTED MODELS 2DN2
6.3 RANKING SCORES OF CHAI-1 PREDICTED MODELS 2DN1
6.4 RANKING SCORES OF CHAI-1 PREDICTED MODELS 1B86
6.5 RANKING SCORES OF ALPHAFOLD3 PREDICTED MODELS 1A3N
6.6 RANKING SCORES OF ALPHAFOLD3 PREDICTED MODELS 2DN2
6.7 RANKING SCORES OF ALPHAFOLD3 PREDICTED MODELS 2DN1
6.8 RANKING SCORES OF ALPHAFOLD3 PREDICTED MODELS 1B86 .

10.1 HUMAN RESOURCES COST BREAKDOWN
10.2 TECHNICAL EQUIPMENT COST BREAKDOWN
10.3 TOTALCOST e

XIII

1. INTRODUCTION

1.1. Motivation

Biocomputational tools aim to design advanced biological systems that tackle critical
challenges in biomedicine with machine-like precision [1].

One of the primary application areas of bioinformatics is protein structure prediction.
Understanding the three-dimensional structure of proteins is crucial because it provides
detailed insights into protein function. This structural knowledge is a powerful asset for
accelerating drug discovery, designing new pharmaceuticals, and exploring protein inter-
actions for a variety of biomedical and biotechnological applications [2].

Traditionally, determining the structure of a single protein experimentally could take
many years, which significantly slowed down the drug discovery and research processes
[3]. Although nowadays these experimental processes have been accelerated, they are still
tedious and can last several months.

However, the emergence of specialized biocomputational tools has revolutionized this
field by enabling researchers to predict accurate 3D protein models within minutes. This
rapid prediction facilitates the analysis of protein interactions with other proteins, ligands,
or small molecules, dramatically accelerating research and development cycles.

In most cases, researchers do not rely on just one program. Instead, they often com-
bine several tools to complete their analysis, since each one offers different features and
outputs. The problem is that switching between programs can be complicated. Many re-
searchers do not have the skills to switch to another program without starting over, and in
case they are able to make the switch, they face serious challenges like traceability, da-
ta, and metadata conversion, which will complicate their research and deflect their main
activity: investigating.

To address the lack of interoperability between independent biocomputational pro-
grams, which typically lack shared interfaces or communication protocols, Scipion was
developed. Scipion is a Python-based, open-source workflow engine that focuses on ima-
ge processing. It was designed to help users combine different software tools more easily,
and to ensure interoperability, traceability, reproducibility, and flexibility in their projects

[4].

Due to the rapid advancement and frequent updates of biocomputational tools, Scipion
must also evolve continuously to incorporate the latest software available in the field.
Currently, the limited availability of protein structure prediction tools within the Scipion
platform, despite their critical importance in modern research, represents a significant gap.
Addressing this limitation and integrating these essential tools into Scipion constitutes the
primary motivation of this thesis.

1.2. Objectives

The main objective of this thesis is to integrate into Scipion three programs dedicated
to the prediction of molecular structures: AlphaFold3, Chai-1, and Boltz-1. These are
all deep learning models capable of generating highly accurate predictions of the 3D
structures of biomolecular complexes, including proteins, ligands, and nucleic acids.

Additionally, using ChimeraX, a tool already implemented in Scipion, RMSD analysis
to compare the structures predicted by each program will be performed. This will allow
us to assess the similarity between models and, therefore, evaluate the accuracy of the
predictions.

As Scipion is built around the principles of traceability, reproducibility, interoperabi-
lity, and integration [4], the final protocol must respect and support all of these aspects.
The developed protocols should be user-friendly and easily combined with other tools
available in Scipion. Moreover, the code should be clear and well-documented to allow
future developers to understand, modify, or replicate it for new implementations.

Additionally, this thesis seeks to combine the technical integration of advanced mo-
lecular structure prediction tools within Scipion with a thorough exploration of protein
structure and its crucial role in biomedical research. By addressing both the practical
implementation and the scientific foundations of protein folding and function, this work
aims to provide a well-rounded perspective that connects computational methods with
their biological significance.

The project will be divided into three main phases, each of which must be completed
to achieve the final goal:

Installation and preliminary understanding

The first step involves installing Scipion and gaining a basic understanding of how
it works. Scipion requires some initial dependencies, such as Conda, and the installation
should follow the official documentation, explained in detail in the Annex Chapter.

Once Scipion is properly set up, two essential plugins must be installed: the ChimeraX
plugin and the Xmipp plugin.

After setting up the environment, the three prediction programs (AlphaFold3, Chai-1,
and Boltz-1) should be investigated independently, and their usage and functionality must
be understood in depth before attempting integration.

Any doubts, bugs, or issues should be addressed through the official repositories, and
a solid understanding of each tool is essential before moving on to protocol development.

Program integration

This phase is divided into two parts.

First, the protocol development, which involves designing and coding the integration
protocol for each tool according to Scipion’s architecture and coding standards. This pro-
cess is described in detail in Chapter 5. The protocol must be compatible with the Scipion
environment and should follow its workflow logic.

After the development, proceed with installation and debugging. After coding the pro-
tocol, it must be correctly installed and tested within Scipion. This includes solving any
errors, implementing graphical elements, and ensuring proper visualization through the
Scipion GUL

Protocol testing

Once a fully functional protocol is ready, it must be thoroughly tested. The results
obtained through Scipion should match those obtained when running each tool indepen-
dently (outside the Scipion environment). This step is essential to confirm the accuracy
and reliability of integration.

1.3. Content of the Document

This bachelor thesis is organized into eleven chapters. Following the introduction,
which presented the project’s motivation and objectives, the subsequent chapters provide
a concise and comprehensive overview of the work carried out.

Chapter 2, The Complex Structure of Proteins, delves into the complex structure of
proteins, explaining the hierarchical levels of folding and the fundamental chemical prin-
ciples underlying them.

Chapter 3, State of the Art, explores the evolution of protein structure prediction, from
traditional methods to the deep learning revolution led by AlphaFold2 and its influence on
the development of improved models such as AlphaFold3 and Chai-1, Boltz-1.

Chapter 4, Materials, introduces all the materials used during the thesis and analyzes
them. Including the Scipion framework, the three programs selected for integration, and
the molecules used for the results testing.

Chapter 5, Methodology, explains all the steps followed to complete the development
of the model.

Chapter 6, Results, presents the results of the validation of the model.

Chapter 7, Discussion and Future Outlook, analyzes the strengths and limitations of
the work, based on the results of the experiments carried out, and the future research

directions to follow.
Chapter 8, Conclusion, summarizes the key findings of the research.

Chapter 9, Regulatory Framework, outlines the relevant legislation applicable to the
work and explores the potential for patenting the proposed method.

Chapter 10, Socio-economic Impact, examines the broader effects of research on so-
ciety and the economy.

2. THE COMPLEX STRUCTURE OF PROTEINS

Since the latter half of the 20th century, many researchers in diverse fields have focu-
sed on the structure of proteins. This interest is driven by their complexity and functional
sophistication, which are among the most structurally intricate molecules in living orga-
nisms. Their diverse roles in biological processes stem from their highly specific three
dimensional conformations, making structural understanding essential for advancements
in fields such as molecular biology, biochemistry, and biomedical engineering [5].

As one of the objectives of this thesis is to gain a comprehensive understanding of
both the technical and biological aspects, this chapter provides an in-depth exploration of
protein structure.

2.1. The Building Blocks. Amino Acids and Peptide Bonds

Proteins, also known as polypeptides, are large, complex molecules composed of
amino acids linked together by covalent bonds to form long chains. There are only 20
standard amino acids involved in protein synthesis (even though more than 300 amino
acids have been identified), each with distinct chemical properties, yet they can be arran-
ged in countless combinations to produce a vast diversity of proteins [6]. Researchers have
identified tens of thousands of different proteins, each with a unique sequence of amino
acids and a specific function in the cell.

All amino acids share a common core structure, shown in Figure 2.1. At the center of
each amino acid is a central @ carbon atom, which is bonded to four different groups: a
hydrogen atom, an a-carboxyl group (-COOH), an @-amino group (-NH,), and a variable
R-group, also called a side chain. The R-group is what distinguishes one amino acid from
another, giving each its unique chemical and physical properties.

Hydrogen
Amino Carboxyl
H H o
TR W S
y a | No-
R
R-group

(variant)

Fig. 2.1. General structure of an amino acid. All amino acids share this basic backbone, which
consists of a central alpha carbon bonded to an amino group (NH3+), a carboxyl group
(COO-), a hydrogen atom, and a variable side chain or R-group [7].

The covalent bond that links two amino acids together is known as a peptide bond
as shown in Figure 2.2. This bond is formed through a condensation reaction, in which
the carboxyl group of one amino acid reacts with the amino group of another. During
this reaction, a molecule of water (H,O) is released, and the hydroxyl (-OH) from the
carboxyl group combines with a hydrogen (H) from the amino group. The resulting bond
is an amide linkage (C-N), specifically referred to as a peptide bond, which forms the
backbone of protein chains. However, it is the side chains that attach to this backbone
structure, which makes each protein and its structure different.

glycine

O,

alanine

PEPTIDE BOND ,.
FORMATION WITH q “ water
REMOVAL OF WATER

peptide bond in glycylalanine

Fig. 2.2. Peptide bond formation between amino acids. The image illustrates the condensation
reaction between glycine and alanine, resulting in the formation of a peptide bond and
the release of a water molecule. This process links the carboxyl group of one amino acid

to the amino group of another, forming a dipeptide (glycylalanine)[&].

2.2. Local Folding Patterns in Proteins

Proteins do not exist merely as simple, linear chains of polypeptides. Instead, these
chains can fold in a variety of ways, giving rise to specific structural motifs. Although
the number of possible conformations is vast, the folding is constrained by fundamental
physical limitations, primarily due to the phenomenon of steric hindrance represented
in Figure 2.3, two atoms cannot overlap. As a result, only certain folding patterns are
energetically and geometrically favorable.

{A) :
amino acid

peptide bonds

-180 id | S IR eI
-180 0 +180

Fig. 2.3. Steric limitations on the bond angles in a polypeptide chain. (A) Each amino acid contri-
butes three backbone bonds (red). The peptide bond is planar and rigid due to resonance
(gray planes). However, the bonds adjacent to the a-carbon (C,—C and N-C,) allow ro-
tation, defined by the psi () and phi (¢) torsion angles, respectively. These rotational
freedoms are influenced by the side chains (R groups) highlighted in green. (B) A Rama-
chandran plot shows the allowed combinations of ¢ and ¢ angles for residues in known
protein structures. Due to steric hindrance, most angle combinations are not permitted, as

evidenced by the clustering of observed points [&].

The folding process is further regulated by various noncovalent interactions. Although
these interactions are significantly weaker than covalent bonds (each being approximately
30 to 300 times weaker), they often operate in parallel, collectively stabilizing specific
regions of the polypeptide chain. There are three main types of noncovalent forces that
contribute to protein folding, Figure 2.4: hydrogen bonds, van der Waals attractions, or
ionic bonds.

v
van der Waals attractions

& between atoms (black)
in contact

Fig. 2.4. Types of noncovalent bonds involved in protein folding. The hydrogen bond is a hydrogen
atom that is weakly shared between two electronegative atoms. The ionic bond is a bond
formed by the electrostatic attraction of two oppositely charged ions. The Van der Waals
attractions are driven by induced electrical interactions between two or more atoms or

molecules that are very close to each other [8].

Another key factor determining the final structure of a protein is the distribution of
polar and non-polar amino acids. In most biological contexts, proteins exist in an aqueous
environment. Consequently, nonpolar (hydrophobic) amino acids tend to cluster within
the interior of the molecule to avoid contact with water, while polar (hydrophilic) amino
acids are more likely to be positioned on the outer surface and interact with the surroun-
ding solvent.

As a result of all these noncovalent interactions, each protein adopts a unique three-
dimensional conformation, dictated by the specific sequence and spatial arrangement of
its amino acids. Typically, the final folded structure corresponds to the lowest energy state
of the molecule. However, this conformation can undergo slight changes upon interaction
with other molecules, which in turn may influence the function of the protein.

2.3. a-Helix and -Sheet Folding Patterns

When the three-dimensional structures of many different protein molecules are com-
pared, it becomes clear that, although the overall conformation of each protein is unique,
two regular folding patterns are commonly observed in certain regions, these are a-helix
and the -sheet, as shown in Figure 2.5. These structures share a key feature: they arise
from hydrogen bonding between the N-H and C=0 groups of the polypeptide backbone,
without involving the side chains of the amino acids. As a result, a wide variety of amino
acid sequences can adopt these structural motifs.

Fig. 2.5. General conformation of the polypeptide backbone observed in a-helix and 8-sheet struc-
tures. (A), (B), and (C) show the a-helix, a coiled structure stabilized by hydrogen bonds
every fourth peptide bond, with one turn every 3.6 amino acids. (D), (E), and (F) show the
B-sheet, formed by parallel or antiparallel chains, both producing a stable, rigid structure
via hydrogen bonding [§8].

As mentioned before, these are the most common conformations observed in nature,
but many other structures are also possible, such as triple helices, turns, or random coils

[8].

2.4. Higher Levels of Protein Folding

Proteins exhibit four hierarchical levels of structural organization. The first level,
known as the primary structure, refers to the linear sequence of amino acids linked by
peptide bonds. The second level, or secondary structure, includes regular, repeating ele-
ments such as a-helices and S-sheets, stabilized by hydrogen bonds between backbone
atoms.

The tertiary structure describes the overall three-dimensional folding of a single poly-
peptide chain, driven by interactions among side chains (R-groups), including hydropho-
bic interactions, hydrogen bonds, charge-charge interactions, and disulfide bridges. Fi-
nally, the quaternary structure applies to proteins composed of multiple polypeptide chains,
where these subunits assemble into a functional complex through various intermolecular
forces, which are the same as the interactions that stabilize the tertiary structure.

Each of these structural levels contributes to the final shape and biological function of
the protein [9].

3. STATE OF ART

3.1. The Revolution of Protein Structure Prediction. AlphaFold2

The prediction of protein structures has evolved significantly over recent decades.
Early computational approaches, such as homology modeling, relied on the alignment of
protein sequences to known templates and performed well when suitable reference struc-
tures were available [1 0]. However, these methods struggled with novel protein folds. To
address these limitations, free modeling techniques emerged, including tools like Rosetta,
which used fragment assembly and energy minimization strategies. The real breakthrough
came with the application of deep learning, which led to remarkable improvements in pre-
diction accuracy, culminating in the development of AlphaFold2 [11].

Such was its importance that the developers of AlphaFold, David Baker, Demis Has-
sabis, and John Jumper, were awarded the Nobel Prize in Chemistry in 2024[12].

AlphaFold? revolutionized protein structure prediction by directly estimating the 3D
coordinates of all heavy atoms from a protein’s amino acid sequence, supported by mul-
tiple sequence alignments (MSAs).

Its architecture, visually represented in Figure 3.1, consists of two main components:
the Evoformer, which processes sequence and evolutionary data using novel attention-
based mechanisms to infer residue relationships, and the Structure Module, which refines
a spatial representation of the protein through iterative 3D modeling. This second pro-
cess includes rotation and translation operations for each residue and uses an innovative
recycling technique to enhance structural accuracy through repeated refinement [13].

frrect rertct . T High
- confidence
- e § G~
“Genetic representation —= —_
f_h database (5.1 g
_——r
RARY
brertrt Evoformer Sr::;::‘l‘: !
Input sequence (48 blocks)) ’%ﬁ)
Pair Pair i
— — g —_— — | representation s— 3D structure
< - 1) o
\ | Structure .
database
seen —

Templates

[+ Recycling (three times) J

Fig. 3.1. Alphafold2 model architecture. Arrows indicate the flow of information between com-
ponents of the AlphaFold2 pipeline, from input sequence through database searches, re-
presentation learning, and structure prediction. The model combines MSAs and template
information to build sequence and pair representations, which are iteratively refined and
used to predict the 3D structure. Array shapes are shown in parentheses, where s is the
number of sequences, r the number of residues, and ¢ the number of channels [13].

10

As with all neural networks, AlphaFold?2 has certain limitations. The capabilities and
constraints of neural networks are largely determined by the data used during training.
In the case of AlphaFold2, only the protein components of Protein Data Bank (PDB)
structures were included, omitting other biologically relevant molecules such as small
ligands, nucleic acids, and cofactors.

The original version of AlphaFold2 was specifically designed to predict the three-
dimensional structures of individual protein chains. This functionality was later expanded
with the development of AlphaFold-Multimer, an extension trained to predict the structu-
res of protein-protein complexes.

In particular, AlphaFold2 does not reproduce only known protein structures. Indepen-
dent research has shown that the model is capable of accurately predicting novel protein
folds, three-dimensional conformations not previously observed in the PDB.

Despite its remarkable performance, AlphaFold2 exhibits several limitations. It is rela-
tively insensitive to point mutations, where a single amino acid is altered due to a change
in the DNA sequence. It also performs poorly with so-called .°rphan"proteins, which lack
homologous sequences in existing databases. Moreover, the model does not account for
conformational changes that proteins may undergo as part of their functional mechanisms.

In addition, AlphaFold2 does not consider the presence or influence of non-protein
molecules that interact with proteins, such as nucleic acids, small molecules, ions, or
other cofactors, which may play crucial roles in protein structure and function [14].

3.2. Deep Learning Models for Protein Structure Prediction

Alphafold3

In May 2024, AlphaFold3 was released, representing a substantial advancement over
AlphaFold?2 in both accuracy and scope. While it continues to improve the prediction of
protein structures, its main strengths lie in the more precise modeling of protein comple-
xes and its expanded applicability to a wider range of biomolecules, encompassing nearly
all molecular entities found in the Protein Data Bank (PDB) [15].

AlphaFold3 also offers improved predictions of the structural impact of covalent mo-
difications, including bonded ligands, glycosylation, chemically modified residues, and
nucleic acid bases, across proteins, RNA, and DNA. Notably, the model shows significant
progress in predicting protein-protein interactions, particularly enhancing the accuracy of
antibody, antigen interface modeling when compared to AlphaFold-Multimer.

Unlike AlphaFold2, however, AlphaFold3 is not fully open source nor available for
commercial use, prompting criticism from the scientific community and sparking a global
race to develop a commercially accessible alternative[6].

As illustrated in Figure 3.2, AlphaFold3 retains a structural architecture similar to that

11

of AlphaFold?2, with several critical improvements. Template and genetic searches are still
employed, but the MSA module is reduced in size. The Evoformer has been replaced by
a Pairformer module, which processes only single- and pair-representations.

The structure module has been replaced with a generative diffusion model, which
predicts a distribution of structures rather than a single conformation. This approach
yields accurate results without requiring parametrization or physics-based minimization,
such as AMBER (Assisted Model Building with Energy Refinement). To prevent im-
plausible structures in disordered regions, the model incorporates cross-distillation using
AlphaFold-Multimer training data that includes flexible loop regions.Furthermore

Finally, a newly introduced confidence module provides error estimations at the ato-
mic and pairwise levels, improving the reliability of the predictions [17].

Template &
search = #

medule

Genetic

Sequences,
ligands,
covalent

bonds

search

Conformer ¢ %, embedder

generation

Input

(3 blocks)

Inputs l

4> module — module —

Pair

5

Single | A

Template

(2 blocks)

MSA

Pairformer
(48 blocks)

(4 blocks)

l

Diffusion
module
(3+ 24 + 3 blocks)

l Confidence

i (4 blocks)

Diffusion iterations

Recycling

Fig. 3.2. Alphafold3 model architecture. Its model architecture consists of a pipeline of embed-
ding, alignment (template and MSA), deep transformer processing (Pairformer), and ite-
rative 3D refinement via diffusion. Confidence scoring and recycling loops improve ac-
curacy [17].

Chai-1

The release of AlphaFold3 served as a starting point for the creation of new protein
structure prediction programs. One of these is Chai-1. In September 2024, Chai-1 was
introduced as an openly accessible foundation model, this means closed-sourced but pu-
blicly available, for the prediction of biomolecular structures. The model weights and in-
ference code are available for non-commercial use. Additionally, a web server is provided
to facilitate interaction with the model, which is accessible for commercial applications,
including drug discovery tasks.

Chai-1 enables unified prediction across a diverse range of biomolecules, including
proteins, small molecules, DNA, RNA, and covalently modified structures. Although
Chai-1 achieves its highest performance when supplied with multiple sequence align-
ments (MSA), it is also capable of generating strong predictions in single-sequence mode,
without relying on MSAs.

Despite its capabilities, Chai-1 presents two primary limitations. First, while it of-

12

ten predicts the structures of individual protein chains with high accuracy, it may fail to
assemble these chains correctly within a complex when additional inter-chain contact in-
formation is lacking. Second, Chai-1 displays high sensitivity to post-translational modi-
fications; modifications such as the removal or substitution of modified residues can lead
to significant deviations in the predicted structures. This sensitivity probably stems from
the dependence of Chai-1 on the presence of modifications during training to accurately
predict molecular structures [8].

3

Vs

~» MSAmodule

| 4 blocks

Optional
Input embedding |||

Language
model
(pair-bias attention)

\.__ DNA, RNA and protein sequences (multimeric chains) / | 48 blocks

Optional

Structural
templates

Optional

Genetic
search

e Optional ™ Structure prediction
Cross link Epitope Apo (diffusion)
mass spec mapping structure I 16 blacks

e
Covalent Pocket Pocket- x4 By VY
[bonds] |'conditioning] [Iigand pairs] ¢ ﬁw"z;g'":

\ Functional & structural prompting from wet lab data /’

{

™~ Confidence head
(pair-bias attention) |)
=Y
A J { J 4 blocks
) { i L/ Chai-1Lab
S = b
3::{ Conformer generation
_ Small molecules & modified residues J/

Fig. 3.3. Chai-1 model architecture. Chai-1 accepts DNA, RNA, and protein sequences, optio-
nally enhanced with language model embeddings, structural templates, genetic search,
and functional wet-lab data such as cross-linking or epitope mapping. The model incor-
porates residue-level embeddings to improve single-sequence performance and includes
constraint features to simulate experimental data, aiding complex assembly. Structure
prediction is performed through an MSA-based diffusion process with iterative refine-
ment and confidence estimation [8].

Boltz-1

Boltz-1, released in November 2024, represents a significant advancement in biomo-
lecular structure prediction, standing out as the first fully open-source and commercially
accessible model to achieve predictive accuracy on par with AlphaFold3. In contrast to
models with restricted access, Boltz-1 openly provides its training code, inference code,
model weights, and datasets under the permissive MIT license.

While AlphaFold3 leverages template structures to guide its predictions, Boltz-1 ope-
rates independently of such templates. Instead, it directly processes raw inputs consisting
of proteins, ligands, and nucleic acids. To enhance its predictive capabilities, Boltz-1 aug-
ments these inputs by integrating multiple sequence alignments (MSAs) and predicted

13

molecular conformations.

Architecturally, Boltz-1 draws conceptual inspiration from AlphaFold3 but introdu-
ces several novel innovations that collectively distinguish its design and performance. As
illustrated in Figure 3.4, one major innovation includes the development of more efficient
algorithms for MSA pairing and structure cropping during training, as well as the abi-
lity to condition predictions based on user-defined binding pockets. Furthermore, Boltz-
1 introduces substantial modifications to the internal flow of molecular representations
within the network, accompanied by improvements to its diffusion-based training and in-
ference processes. Another key advancement involves the redefinition of the confidence
estimation mechanism of the model, integrating architectural revisions that improve both
accuracy and robustness [19].

Recycling

Input
Sequence

PairFormer
Module

Confidence
Quitput

Confidence Model

((Reverse

ﬁ Denoising Denoising -Zf.':...m
Model Model

Random Input * *

Recursive Recursive | _ Recursive

Update Updats vpdate |

Fig. 3.4. Boltz-1 model architecture. Boltz-1 predicts molecular structures using a two-part archi-

tecture: a trunk model processes input sequences via attention, MSA, and PairFormer
modules; then, a denoising module performs reverse diffusion steps to generate 3D struc-
tures. A separate confidence model evaluates structureal reliability. Gradients are stopped
between the trunk and confidence outputs to stabilize learning [19].

3.3. Protein Structure Prediction in Scipion

Although Scipion was initially developed to support image processing in electron mi-
croscopy by integrating various 3DEM software packages under a unified interface for
both biologists and developers [4], it has gradually expanded to incorporate additional
functionalities. Among these, Scipion includes some protocols related to protein structure
prediction, notably through the integration of AlphaFold?2.

This functionality is currently available within the ChimeraX plugin, which enables
users to search and retrieve existing models from the AlphaFold Database, execute new
AlphaFold predictions using Google Colab, or run local AlphaFold2 predictions when the
necessary environment is configured.

14

However, the current implementation is limited to AlphaFold2, which, as previously
discussed, presents several constraints, such as difficulties handling non-protein compo-
nents. These limitations were addressed in the more advanced AlphaFold3 version, which
is not yet implemented in Scipion.

Furthermore, other promising tools for structure prediction, such as Chai-1, and Boltz-
1, have not been integrated either. This lack of diversity in predictive tools represents a
significant limitation for users seeking to perform flexible, up-to-date, and comprehensive
structural modeling workflows within the Scipion framework.

15

4. MATERIALS

This chapter outlines the materials required to successfully achieve the objectives of
this thesis. The main materials include the entire Scipion framework, the software used for
integration, and the molecules necessary for the analysis presented in the Results section.

In addition to these core components, two additional tools are introduced due to their
essential roles in the development and visualization processes: PyCharm and ChimeraX.

PyCharm is an integrated development environment (IDE) specifically designed for
Python programming. It plays a crucial role in this project as the development environ-
ment where all Python scripts, explained in detail in the Methodology chapter (Chapter
5), are created and edited to function within the Scipion framework. The use of PyCharm
ensures efficient code management, debugging, and testing throughout the development
process.

ChimeraX is a molecular visualization program developed by the Resource for Bio-
computing, Visualization, and Informatics (RBVI). It is integrated within the Scipion en-
vironment and plays a vital role during the visualization phase of this project. Beyond
visualization, ChimeraX’s powerful scripting capabilities allow it to execute multiple fun-
ctions that modify molecular structures, perform sequence alignments, and other speciali-
zed functions. In this thesis, particularly the alignment of molecular models will be used.

Together, these materials provide a comprehensive platform for the development and
analysis of the project.

4.1. Scipion Framework Analysis

As explained in Chapter 1, Scipion is a cryo-electron microscopy (cryo-EM) image
processing framework developed by the CNB-CSIC, designed to support and streamline
biological research.

After the installation of Scipion, the software can be launched by executing the com-
mand ./scipion3 in the Ubuntu terminal. Upon execution, the Scipion graphical user inter-
face (GUI) will open, represented in Figure 4.1, allowing the user to begin data processing
workflows.

16

™ Projects (ediez on dirichlet.cnb.csic.es) [=Elx]

File Configuration Help Others |

rR SCIPION v3,7.1 - Eugenius - 3,10,6 (core)

Create Project Inport project Filter:

Fig. 4.1. Scipion home screen interface. We can find several options on the home screen. Create
Project allows the user to start a new project from scratch, while Import Project enables
the import of an existing project file, allowing for further editing or additions. Additio-
nally, the Filter option allows users to search for a project simply by typing its name or
part of it. At the top of the Scipion window, there is a dropdown menu bar with several
sections. File allows access to the data folder; Configuration provides access to general,
host, and protocol settings; Help links to support info; and Others includes key tools like
the Plugin Manager, which is essential for installing additional plugins.

The Plugin Manager tab, visible in Figure 4.2, is a highly useful tool that allows for
the easy installation and uninstallation of plugins.

17

) Plugin manager ==
File Carfigwation Help Others

[N
tpoations | BELEILER]

or:! Wokber of procassors: ¢

Fig. 4.2. Plugin manager. On the left side, a list shows all available plugins, each marked with
a checkbox indicating whether it is installed. Plugins can be installed or uninstalled by
simply checking or unchecking the boxes, and clicking the Run button executes all pen-
ding tasks. On the right, the upper panel displays information about the selected plugin,
while the lower section contains two tabs: Operations, showing the task queue, and Out-
put Log, which records terminal output during execution.

Once a new project is created, the project window is displayed, shown in Figure 4.3,
providing access to all available plugins.

18

[m] structure prediction (esteladiez on LAPTOP-HQMHNS1A) (m[=1E3]
Fraject Help Otvers |

R SCIPION s tame - 5105 o

stricture prediction “rotocols | Tata

R =g, &
Wiev ALl fde Latels rel =

e}
rcanize Fefresh
E

FROECT

puen ~ inpert, volunes (end 10576) puen - cmport atam:c strusture (Btth)
Firished Finished

Comert szructure for
Tefire contact. struc
Tefire sequence ROls

n

puchen - Calculats SH50
Finished

Wport sex of sequent
Ligard fezching
Ligard paranstrizatis
Hap sequence FOIs
OBt

"™ Sumary | Hethads | Dutput Log| Froject Log

RISD dacking
Rank docking scere
Score correation
Shape Dissance filtet

AUMHERY

prot crossref

seed subset
£ Orig

g Lignmers
[—]

7|

Fig. 4.3. Scipion project window interface. This screen provides a schematic view of the launched
projects. With the main title ’PROJECT’, arrows organize the protocols followed. A green
box indicates that the protocol ran successfully without errors, while a red box signifies
that an error occurred. On the left side, there is a list of all available plugins in Scipion,
organized by function. At the bottom, four tabs provide detailed information about the
executed protocol. Summary offers a brief overview of the execution or possible errors;
Methods summarizes the protocols used and includes references if available; Output Log
includes two sub-tabs, run.stdout, which provides a detailed step-by-step execution log,
and run.stderr, which lists any detected errors and the corresponding algorithm lines (if
empty, no errors were found); and, finally, Project Log, which displays terminal output
from the task scheduler managing protocol execution.

4.1.1. Plugin Architecture

To have a better understanding of how Scipion works, it is important to know its plugin
architecture. Scipion’s developers have created a template plugin, that serves as a starting
point to create a new one. It contains the basic structure of a plugin, and in this section, it
will be analyzed and explained in detail.

19

v [scipion-em-template
> [.github
v [23 myplugin
> [ED protocols
> [Dtests
> [viewers
> [wizards

2 _init__py
2 bibtex.py
@ constants.py

-] icon.png

= protocols.conf
@ .gitignore
CHANGES.txt
LICENSE
MANIFEST.in
README.rst
requirements.txt
setup.py
> b External Libraries
> =¥ Scratches and Consoles

ot IIED N

Fig. 4.4. Directory structure. Directory structure of the scipion-em-template plugin, highlighting
key components such as the myplugin folder with its protocols, viewers, and wizards
subdirectories, as well as essential configuration files (constants.py, protocols.conf, re-
quirements.txt) required for integration within the Scipion framework.

Each Scipion plugin is customizable, and developers modify the files within the tem-
plate to adapt them to the specific functions required by their plugin. The core structure of
a plugin involves modifying key files to ensure that it correctly integrates into the Scipion
framework.

The file containing all the information about the plugin and its functionality is the
README.rst file. This file can be viewed on GitHub, not within Scipion, and is crucial
for users to understand. Any further questions can also be addressed through GitHub.

One important file is setup.py, traditionally used for packaging and distributing Python
projects. However, in the latest version of Scipion, the use of setup.py has led to integra-
tion issues. To address these challenges, Scipion now favors the use of pyproject.toml, a
more modern approach for configuring and managing Python projects. Therefore, when
creating new plugins for Scipion, pyproject.toml will be utilized instead of the older se-
tup.py.

Another key file is requirements.txt. This file outlines the external Python libraries,
packages, and pre-existing plugins required for the plugin’s functionality. By listing the-
se dependencies, the requirements.txt file ensures that all the necessary components are

20

available for the plugin to function properly within the Scipion environment.

Nevertheless, the core of the plugin is found within the myplugin folder: the protocol,
the viewers, the wizards, the tests, and the installer.

The __init__.py file contains all the installation information, creating the environment
within Scipion to activate while using the plugin, along with the programs installed within
it. This file utilizes constants set in the constants.py file, such as the plugin version, name,
environment name, and others.

Inside this folder, there are several subdirectories. First, and most importantly, is the
protocols directory, which contains all the plugin’s protocols (in our case, there will only
be one), as well as the __init__.py file, which imports the protocols. The structure of these
files will be analyzed in the next subsection.

There is also the wizards directory, which is used for creating wizards in the Scipion
interface. These wizards guide the user through specific tasks or workflows within the
plugin.

Additionally, the viewers directory determines how the “Analyze Results” tab in Sci-
pion will appear. This allows the output to be visualized in applications like ChimeraX or
PyMOL, for example. This directory also includes an __init__.py file for importing.

Lastly, the tests directory contains a file for each protocol with tests that perform runs
with example cases and check that the results are correct. This is done to confirm that the
installation has been completed successfully and that the installed plugin is ready for use.

To determine where the plugin will appear in the Scipion Project Window Interface
(Figure 4.3), the protocols.conf file must be modified to include data specifying where
the plugin should be categorized. In Scipion, it can be classified under categories such as:
Protocol SPA, Random Conical Tilt, Model Building, Virtual Screening, or Tomography.

4.1.2. Protocol Architecture

Every protocol follows a specific structure, which is organized as outlined below:

As with any Python script, the first step is to import the necessary Python libraries or
any functions and constants that might have been defined in other plugins.

Following this, some initial variables are defined at the beginning of the protocol, such
as _label, which is used to specify the protocol’s name.

The variables are defined within the _defineParams function. In this function, several
parameters from the pyworkflow library are imported, including EnumParam to accept
inputs from a predefined list, FileParam to accept a file as input, IntParam for defining
parameters that only accept integer values, StringParam to define text-based parameters,
BoolParam for accepting boolean inputs (True/False), and FloatParam, which works si-
milarly to IntParam, but for floating-point values.

21

Once the protocol’s parameters have been defined, the next step is to establish the
steps the protocol will follow, using function names. These steps are specified in the _in-
sertAllSteps function. The structure of this part can vary significantly from one protocol
to another, so there is no universal format that applies to all. In the Methods section, it
will be explained how this part was generated for each specific protocol, depending on
the parameters and functions involved.

Afterward, all functions defined within _insertAllSteps will be scheduled for execu-
tion. Additional functions, not defined in _insertAllSteps, can still be included and used
during the protocol. However, these functions will not be executed unless they are refe-
renced elsewhere within the protocol.

At the final stage, there is always a section dedicated to information functions. This
includes the _validate function, which checks that all necessary conditions are met befo-
re the protocol begins running. For example, if the protocol expects an input file in .cif
format and the file provided is in .pdb format, the protocol will not start. In addition,
the _summary function is included in this section. This function generates a brief sum-
mary of what happened during the protocol’s execution, which appears in Scipion; if any
errors occur, they will also be reported in this section. The _methods function explains
the methods used during the protocol, and finally, the _citations function is included to
reference any external programs used in the protocol. For example, if an external program
was installed in __init__.py, it should be cited here.

4.2. Analysis of the Software Selected for Integration

This section is crucial for the subsequent development of the protocols. In the State of
the Art section, it has already been discussed in detail the strengths and limitations of each
program, as well as their model architecture, providing a foundational understanding of
the internal workings of the software. While gaining a complete and in-depth knowledge
of their architectures could be extensive, this thesis is not focused on fully understanding
these models but rather on their implementation.

In this section, the main focus will be analyzing the servers of these programs to
understand their input requirements, which is essential to determine the parameters of
the protocol. In addition, their output will be examined, as it is crucial to define how the
protocol will interact with and process the results of each program.

After analyzing the servers of Chai-1 and Alphafold3, since Boltz-1 does not have a
web server and their GitHub repositories, Table 4.1. represents all the relevant information
regarding the input parameters.

22

TABLA 4.1. INPUT PARAMETERS OF THE SOFTWARE

Software

INPUT PARAMETER

Entity type

Input sequence

MSA

Input File

Alphafold3

Protein
DNA
RNA
Ligand
Ion

YES

NO

JSON File

Chai-1

Protein
DNA
RNA
Ligand
Ton

YES

YES

FASTA File
PDB id

Boltz-1

Protein
DNA
RNA
Ligand

Ion

NO

YES

FASTA File
PDB id

The table correlates each software with the types of parameters it uses. Entity type

refers to the type of molecules the program accepts for structure prediction. Input se-

quence indicates whether the program allows manual input of the sequence, in addition to

accepting it through an input file. MSA, Multiple Sequence Alignment, specify whether

the program supports their activation and use to enhance prediction accuracy. Finally, the

input file section lists the file formats accepted by the software, which will be the ones

that the created protocol will accept.

It is equally important to understand the output generated by each program based on

the inputs provided. This is explained and summarized in Table 4.2.

TABLA 4.2. OUTPUT OF THE SOFTWARE

Software OUTPUT OBTAINED
Alphafold3 | A .zip folder composed of 5 .CIF files and 10 .JSON files
Chai-1 A .zip folder composed of 5 .CIF files, 5 .JSON files and 5 .NPY files
Boltz-1 A folder composed of four folders: Lightning_Logs with a .YAML file (parame-

ters information), MSA with a .CSV file, Process folder with one .json and two
.NPZ files and the Predicitions folder, composed of one .CIF file (with the pre-
dicted structure information) one .son and one .NPZ file.

23

4.3. Molecule Analysis

In this section, the molecules used to test the integrated programs are introduced along
with their scientific background.

Although their scientific background is not the main focus of this thesis, it is important
to understand how the integration of protein structure prediction programs has significant
potential in research and how it can impact drug discovery and pharmacological outco-
mes.

The proteins analyzed during this thesis, and consequently in the Results section, are
hemoglobin, 2,3-bisphosphoglycerate (2,3-BPG), and sphingosine-1-phosphate.

Human hemoglobin molecules consist of closely related proteins formed by the sym-
metric pairing of two dimers of polypeptide chains, the structurally similar and similarly
sized globins, @ and S, into a tetrameric structural and functional unit. The two dimers,
referred to as @8, and a,f3,, are arranged around a two-fold axis of symmetry, resulting
in a large central water cavity in the T (tense) state and a narrower cavity in the R (re-
laxed) state. The a-cleft and S-cleft serve as the two entry points into this central water
cavity. Since the cavity is larger in the T state, these clefts are also larger compared to the
R state. Another significant difference is that the T state contains more salt bridges and
hydrogen-bond interactions than the R state.

The @ and S subunits each comprise 7 and 8 helices (named A through H), connected
by non-helical segments (corners). Each subunit contains a binding pocket for heme, for-
med by the E and F helices. The heme group, shown in Figure 4.5, consists of a ferrous
ion coordinated at the center of a porphyrin ring by its four nitrogen atoms. The iron ion
is covalently anchored to hemoglobin within the heme proximal pocket by the imidazole
group of a histidine residue located on the F helix (known as the proximal histidine or
His(F8)).

.
‘\L
.
L
<A

CHiCOOH CH,COOH
¥ %

Fig. 4.5. Heme group structure. On the left, the developed chemical formula is represented, while
on the right, the structure adopted by heme within the S-chain of hemoglobin is shown.
This figure was created using the RasMol program and data from Fermi and Perutz
(1984). Colors represent elements: yellow for Fe, red for O,, gray for carbon, and blue
for nitrogen [20].

24

This arrangement allows the iron (Fe) to bind oxygen (O,) via a covalent bond, com-
pleting an octahedral coordination with six ligands. The imidazole of a histidine residue
at the distal pocket (His E7) stabilizes the bound oxygen through hydrogen bonding. In
deoxygenated hemoglobin, this site is instead occupied by a weakly bound water mole-
cule, forming a distorted octahedron [21].

Hemoglobin’s primary function is to transport oxygen from the lungs to the tissues
by reversibly binding O,. It also specifically interacts with other biologically important
gases, including carbon monoxide (CO), nitric oxide (NO), and carbon dioxide (CO,)

[22].

The oxygen transport function of hemoglobin can be described in terms of an equi-
librium between two states: the tense (T) state and the relaxed (R) state. In the T state,
hemoglobin exhibits low oxygen affinity, whereas in the R state, affinity is high.

This equilibrium is modulated by endogenous heterotropic ligands, among which 2,3-
bisphosphoglycerate (2,3-BPG) plays a key role.

2,3-BPG is an allosteric effector that modulates hemoglobin’s oxygen-binding and
releasing properties by binding to the central cavity formed by the spatial arrangement
of the four globin subunits. Its binding decreases hemoglobin’s oxygen affinity because
2,3-BPG binds exclusively to deoxyhemoglobin [23].

il

Fig. 4.6. Structure of 2,3-bisphosphoglycerate (2,3-BPG). This compound is characterized by a
high negative charge density [20].

Abnormal concentrations of 2,3-BPG are linked to various inherited diseases and alte-
red oxygen transport. For example, increased levels of 2,3-BPG facilitate oxygen release
in patients suffering from anemia and hypoxemia. However, elevated 2,3-BPG levels can
be detrimental in conditions such as sickle cell anemia, where it promotes the polymeri-
zation of sickle hemoglobin and thus contributes to disease pathology [23].

Controlling the physiological concentration of 2,3-BPG is a promising therapeutic
target. Consequently, researchers are investigating drugs that modulate its levels. Unders-

25

tanding the three-dimensional structures of hemoglobin and 2,3-BPG is crucial for these
efforts.

This is where computational tools that enhance the prediction of macromolecular
structures become essential.

In this thesis, the accuracy of such tools in predicting these structures will be analyzed.

For this purpose, the Protein Data Bank will be used to obtain the amino acid sequen-
ces of the molecules studied.

The following structures will be analyzed:

1. TA3N: T state deoxy human hemoglobin [24].
2. 2DN2: R state deoxy human hemoglobin [25].
3. 2DNI: R state oxy human hemoglobin [26].

4. 1B86: Human deoxyhemoglobin—2,3-bisphosphoglycerate complex. [27].

26

5. METHODOLOGY

With all the necessary materials already introduced, this Methodology section will
detail how the plugins were developed and the specific steps followed throughout the
integration process.

A visual representation of the steps followed during this methodological process is
shown in Figure 5.1, starting from the creation of an empty plugin and culminating with
the predicted structure displayed in the ChimeraX window.

As explained in Chapter 4, Section 4.1.1, the structure followed by all the integrated
programs will be based on the scipion-em-template, which will guide the general structure
of all the plugins, although it must be completed with the corresponding commands to
enable their correct and specialized functioning.

LOCALLY INSTALLED CHIMERAX %

PROGRAM
CREATE AND INSTALL

THE PLUGIN ON THE
SCIPION FRAMEWORK

VIEWER
INPUT SEQUENCE
PROTOCOL STEPS

I NECESSARY TO OBTAIN
— T THE PREDICTIONS CREATING UTPUT Sgb} f};l; -
‘ = ’ T
- i /id u
X ¥

3

Fig. 5.1. Methodology diagram. Workflow diagram illustrating the integration of a protein struc-
ture prediction tool into the Scipion framework. The process begins with plugin creation
and installation, followed by input sequence processing through a locally installed pro-
gram. After executing the necessary protocol steps, the output is generated and visualized
using ChimeraX through a dedicated Scipion viewer.

5.1. Creating the Plugin

To create the plugin, the instructions described on GitHub will be followed. To access
and edit the plugin files, copy all the files included in the plugin folder to your device.

At this moment, the plugin name is assigned. In this thesis, two plugins are created
following the previously described steps, with the names: scipion-em-boltz1 and scipion-
em-chail. The alphafold3 protocol will be included in the scipion-em-chimerax plugin,
which already has a protocol named alphafold, including only the AlphaFold2 functions.

The plugin is already named, however it cannot function only with that, it has to be
modified and completed to assign all the parameter inputs, functions, outputs and viewers
and to be recognized by Scipion it must follow certain rules.

The pyproject.toml file, used to package and distribute Python projects, as mentioned

27

before-file, contains the plugin author names, plugin name, and provide a brief description
of the plugin’s function in one line. Additionally, the link where the plugin’s repository is
located is specified.

As explained in Chapter 4, the requirements.txt file establishes the prerequisites for
the program. It must include all the necessary programs to be installed via pip.

For the three created plugins, this file is exactly the same. It is only composed of two
prerequisites:

= scipion-pyworkflow
= scipion-em

These dependencies ensure that the necessary Scipion environment and related libra-
ries are available for the plugins to function properly. When the plugin is installed, these
dependencies will be automatically installed by pip to ensure compatibility with the Sci-
pion framework.

One of the key parts of this thesis is that every program will be installed locally on the
Scipion environment. To do this, an automatic installer must be created, together with an
environment to install al the dependencies.

5.1.1. Creating an automatic installer

The automatic installer is located in the protocol file, which is the most important file
of the plugin, as it contains all the necessary information for the plugin’s functionality.

To be more concrete, the installer is in the __init__.py file. This file is essential be-
cause it creates the environment and installs all the required software for the plugin to
operate. Since two programs will be locally installed, Boltz-1 and Chai-1, each used as
their respective plugins, this file plays a central role in ensuring everything is set up co-
rrectly.

The first step is to create the environment for these programs. This environment will
house all the necessary components and dependencies, ensuring that the plugins function
correctly within the overall system. Before creating this environment, some constants
must be set.

To ensure reproducibility and traceability, key objectives of this thesis, a separate file
named constants.py is created to store several parameters, such as the program name,
plugin environment name, and the versions. Two versions will be set, the plugin version
(for instance, version 0.0.1 for the initial release; future upgrades will require updating this
version) and the version of the program its being installed (which is determined from the
repository, and while it is not mandatory to install the latest version, it is recommended).

This approach simplifies the process of updating parameters since any changes can
be made in just one place, rather than having to modify every line where the parameter

28

is used. Thus, this file is created before starting to develop the functions for each plugin.
To use these constants in the __init__.py file (or any other Python file), they must be
imported, along with any libraries or parameters used during the program.

With this in place, the algorithm to install the program can be constructed.

First, the activation of the Conda environment is defined, ensuring that the environ-
ment is set up and ready to be used.

Next, set up the environment variables required for the program to run. It ensures that
Python virtual environments function properly by removing any existing Python path from
the environment. Additionally, it handles GPU settings if a gpulD is provided. This allows
for the use of GPU resources, if available, and ensures proper execution on compatible
hardware.

Once the environment is configured, the installation command for the program is gene-
rated. This function combines the Conda environment activation with the plugin-specific
environment activation and adds the program’s execution command, formatted correctly
for running within the Conda environment. This results in a single command that activates
both environments and runs the program. These commands include:

1. Creating a new Conda environment with the specified name and Python version.

2. Installing the program from the Conda repository, using the version specified in the
constants file.

3. Marking the installation as complete by creating a file named according to the user’s
specifications. The file naming convention typically follows the pattern of the plugin
name followed by installed (pluginname_installed).

Finally, a function is created to execute the program. This function will be impor-
ted into each protocol (or every time it wants to run locally the program) to execute the
installed program using the determined inputs.

Having already programmed the installer file for the plugin, additional files must be
edited to enable the installation and recognition of the plugin, such as the wizard and
protocol folders.

In this thesis, wizards are not created or used, as they are not necessary for the current
implementation. However, it is important to create and configure the wizard folder for
future development versions. Even though the wizard is not being utilized at this stage, it
is crucial for maintaining the structure of the plugin, as future developers may need to use
it. Therefore, the wizard folder must be created and assigned a name to it.

Additionally, an __init__.py file is created within this folder to define and name the
wizard properly. This file ensures that the wizard is recognized as part of the plugin struc-
ture, providing a foundation for future modifications or additions.

29

In this section, the protocol folder will not be explained in detail, as it consists of
several steps that together construct the full protocol. However, to create the plugin and
ensure it can be installed within the Scipion framework, a name has to be assigned to the
protocol and edit the __init__.py file, so that it can be properly recognized. The names
assigned to the protocols are ChailProtocol and BoltzProtocol, chosen according to the
program names for ease of recognition.

At this point, Scipion is capable of detecting and installing the protocol, but it still
needs to be classified under the correct group. As previously mentioned, there are four
major groups: Protocol SPA, Random Conical Tilt, Model Building, Virtual Screening,
and Tomography. Our three plugins are placed under the Model Building section.

To ensure the protocol appears in the correct section of Scipion, the protocols.conf file
is modified. In this file, the group name is specified (in this case, Model Building) and
the corresponding protocol class. The protocol class must match the one assigned in the
protocol’s algorithm (for example, ChailProtocol and BoltzProtocol). This configuration
allows Scipion to follow the instructions and display the plugin in the appropriate section.

5.2. Creating the Protocol

Although the plugin is already recognized by Scipion and can be installed, initially an
empty plugin without defined parameters or functions is installed. To complete the plugin,
the protocol file must be created and implemented by following the steps described in the
subsequent sections.

5.2.1. Protocol Parameters

Defining parameters is a fundamental part of the protocol creation process.

The construction of the parameter commands is based on the information presented in
Chapter 4.2.

The Chai-1 protocol includes two selection tabs to determine the Run Format: the first,
named ’Run locally installed Chai-1’, is selected by default; the second is called *Import
predictions run on Chai-1 Server’.

The ’Run locally installed Chai-1" option is used when the user wants to input only
the amino acid sequence (it can also accept nucleic acid or ligand sequences as input) and
receive predicted models as output. All processing occurs within the Scipion framework,
allowing users to avoid interacting directly with the Chai-1 server or understanding its
internal workings.

As represented in Table 4.1, the input must be either a PDB ID or a FASTA file. In the
Input File section, the user can select between ’PDB ID’ or ’TFASTA FILE’, depending on
the type of input they want to provide.

30

The PDB ID entered must be valid and exist in the Protein Data Bank (PDB); other-
wise, the protocol will not run.

Regarding FASTA files, Chai-1 requires a specific format to correctly read the se-
quence. If the file does not meet these criteria, the user will receive an error. However,
the protocol is designed to accept any FASTA file and adapt it into the format required by
Chai-1 , allowing the import of any FASTA sequence as input.

In contrast, the *Import predictions run on Chai-I Server’ option accepts only one
type of input: a .zip file downloaded from the Chai-1 server containing precomputed pre-
dictions. This parameter is important because researchers may already have predictions
generated on the Chai-1 server but want to import them into the Scipion framework to
continue their analyses using its capabilities. Providing this option ensures interoperabi-
lity between the stand alone Chai-1 1 server and the integrated Scipion environment.

™ Protocol Run: ChailProtocol =1
#helle chail - Chai-1 rite. @relr
Run name chail - Chai-1 (3) f Comment. f
Usze a queus engine? ez * Ho f @
Wait for @
Input
Run Format ™ Run locally installed Chai-1 Import predictions run on Chai-1 Server
Input fils |PDE ID =
Protein Data Bank(PDE) MAME/ID: @
Do you want to use msa for the predictionz? Yes Na @

¥ Close

E Save

Fig. 5.2. Chai-1 protocol interface within the Scipion framework. The user can select between run-
ning a locally installed Chai-1I instance or importing predictions from the Chai-1 server.
Input options include specifying a PDB ID or uploading a FASTA file. Additional para-
meters allow users to enable or disable the use of MSASs (multiple sequence alignments)
during prediction.

The next plugin integrates Boltz-1, which, unlike Chai-1, does not provide a web
server interface. Instead, it must be installed locally on the user’s computer and operated
through specific commands, which will be detailed in the following section. Therefore,
the input parameters for this plugin are designed exclusively for local execution, without
options for remote server use.

Similarly to Chai-1, the accepted input files for Boltz-1 include a valid PDB id or a

31

fasta file. Users can select between these two input types via a dedicated selection tab,
depending on their preferred method of providing the sequence.

As with Chai-1, the PDB id must correspond to an existing entry in the Protein Data
Bank (PDB); otherwise, the protocol will not proceed.

Regarding fasta files, Boltz-1 requires sequences to be in a specific format for proper
processing. If the input file does not meet these criteria, the protocol is designed to pre-

process and adapt most fasta files into a compatible format, facilitating their use as input
for the program.

™ Protocol Run: BoltzPlugin =13
>E§|]-]]% boltzl - Boltz-1 Finished &Cite (DHelp

Fun name boltzl - Baltz-1 (2] f Camment. /
Run mode ™ Continue Reztart @ ze & queus engine? ¥Yez ™ No f @
Wait for @
3,
Input]

.
Fazta File 1 PDE ID

Protein Data Bank({PDE) MAME/ID:

¥ Cloze

\

Fig. 5.3. Boltz-1 protocol interface integrated into the Scipion framework. The interfaceallows the
user to select the input format (either FASTA file or a PDB ID) to initiate structure pre-
diction. Additional options include setting the run mode and configuring queue execution
settings. Once configured, theprotocol can be launched by clicking the “Execute” button.

Finally, the parameters for AlphaFold3 are defined. As explained in previous sections,
AlphaFold3 cannot be installed locally, which presents a significant limitation. However,
due to its importance in protein structure prediction, it is essential to include it in this
thesis. Consequently, the only way to integrate AlphaFold3 into Scipion is by creating a
protocol that imports the results folder downloaded from the web server.

32

m| Protocol Run: ChimeralmportAtomStructAlphafold N=1E3

% chimerax - alphafold prediction C.")Clte H51P
Fun name chimerax - alphafold pred: f Comment. f
llse a queue engine? Yez Mo f @
Wait for @
Expert Level & nyenal fdvanced

Input

Source to retrieve the AlphaFold? modelt ~ FR[atahase {identical sequence) EBI Database (homwologous sequence) Google Colab " Lacal AlphaFold ™ AlphaFold3

Compressed Folder (,ZIP) B

[
I3

X Cloze E Save

Fig. 5.4. Alphafold3 protocol interface within the modified ChimeraX plugin in Scipion. Users can

specify the input source by selecting a prediction run previously performed on the Alpha-
Fold3 server and provide the corresponding .zip file for import. The interface enables
integration of AlphaFold3 predictions into the Scipion workflow for further visualization

and analysis.

5.2.2. Protocol Steps

Once all the necessary parameters for executing the protocol have been set, the se-
quence of internal steps the protocol will follow must be defined. This section explains
how, starting from a simple amino acid sequence or PDB id, a complex and accurate
three-dimensional structure is generated.

Both Chai-1 and Boltz-1 have the same input parameter types, namely "PDB ID’ or
"FASTA file’. Therefore, the initial steps for both programs will overlap. Depending on
the input format, the path followed will differ.

If a PDB id is provided, the program will download the corresponding fasta file from
the Protein Data Bank (PDB) for that specific ID. The obtained FASTA file will be saved
in a temporary directory within the project environment, and the path will be stored in a
variable.

In contrast, if the user provides a FASTA file, it will be directly saved in the project
directory.

In both cases, a file in FASTA format is obtained and stored in the project environment.
As discussed in previous sections, both Chai-1 and Boltz-1 are very selective regarding
the FASTA file format, and the content must comply with specific rules to be properly
read and processed by each program. Therefore, the next step is to read and adapt the file

33

according to the individual requirements of each program.

In the case of Chai-1, to fully understand why the FASTA file must be adapted, let us
consider an example FASTA file downloaded from the Protein Data Bank (PDB), shown

in Figure 5.4, and compare it with the example FASTA format provided in Chai-1’s repo-
sitory, represented in Figure 5.5.

>TPZE_1 | Chains A, B| Putative cAMP-binding protein-catabaolite gene activator | Sinorhizobium meliloti 1021 (266834)
MAEVIRESAPWRSFPIFEEFDSETLCELSGIASYREWSAGTVIFQRGDQGDY MIVWWEGRIKLELFTPQGRELMLRQHEAGALFGEMALLDGQPRSAD

ATAVTAAEGYVIGHK D FLALITQRPETAEAVIRFLCAQLRDTTDRLETIALYDLNARYARFFLATLRQIHGSEMPOQSAMLRLTLEQTDIASILGASRPENM
RAILSLEESGAIKRADGICCNVGRLLSIADPEEDLEHHHHHHHH

=7PZB_2 | Chains C, E| DNA [5'-D{* CP*TP*AP*GR*GR*TR* AP AR*C P+ AP*TR*TR*AP*CP*TP*(P*GP*P*G)-3') | Sinorhizobium
melilati {382)

CTAGGTAACATTACTCGES

>7PZB_2 | Chains D, F|DNA (5-D{*GP*CP*GD* AP+ GR*TP+AP* AD*TE* GR* TP+ TP*AP* (-2 | Sinorhizobium meliloti (382)
GLGAGTAATGTTAC

Fig. 5.5. 7PZB FASTA file. This is an exmple of a random protein’s FASTA file downloaded from
PDB.[28]

=protein| 101
THLCPRGEVFNATRFASVY AWNRKRISMO/ADY SWLYNSASFSTRRCYGVSPTELN DLCFT NVY ADSPYIRG DEVRQIAPGOTGRIADY NYKLPD DFTGC
WIAWMSNNLDSEVGGNY WY RYRLFRESMLEPFERDISTEN QAGSKPCNGYEGFN CYFRLOS Y GRQPTHNGYGY PRV LSFELLHAPATVCGPEKST
=protein| 102
EVQLVESGGGLIQPGGESLRLSCAASEFIVSRNYMSWAVROQAPGTGLEWVSN Y PGGSTRYADSVIKGRFTISRDMNSKNTLYLOMDSLEVED TAVY YCARDY

G FDYWEETLVTVSSASTKGPEY FPLAPS SKS TSG G TAAL GO VKDY FPERVTVSWN SGAL TSGYVHTFPAVLO SSGLY SLESWVVTWR SSELGTOTY]
CNVMHKPSNTEVDEEVEPESCDE

=protein| 103

ENMTOSPVS LSV PGERATLSCRASOQGEY ASMN LAWY QK AGQAPRLLIYGASTRATGIPARFSGSGEGTEFTLTISTLOSEDSAVYYCOOYNDRPRTFG
QGTKLEIKRT

Fig. 5.6. Example Chai-1’s FASTA file format. FASTA format example given in the Github repo-
sitory.[29]

To adapt the file to the correct format, certain information from the header lines must
be removed. Only the macromolecule type and its name should remain.

Regarding Boltz-1, using the same example macromolecule as in the previous case
(Figure 5.4), the fasta file format required is shown in Figure 5.7.

=A| protein | fexamples/msalseql1.a3m

MVTPEGMVSLVDESLLYGVYTD EDRAVRSAHQFYERLIGLYWAPAVMEAAH ELGVRAALAEAR ADSGELARRLDCDARAMRYLLDALYAYDVIDRIHDTN
GFRYLLSAEARECLLPGTLRSLYGHFMHDINY AWPAWRNLABVWRHGARD TS GAESPN GIAQEDYES LV GGINPWAPPNTTLSRKLRASGRSGDATAS
VLDVGOGTGLYSQLLLREFPRWTATGLOVERIATLANAQALRLGYEERFATRAGDPWRGEWGTGYDLVLFAMIFHLQTPASAVELMRHAAACL APDG
LVAWDONDADREPKTPQDRFALLFAASMTMNTGGEDAYTFQEYEEWFT AAGLORIETLDTPMHRILLARRATEPSAVPEGQASENLYFD

*B| protein | fexamples/msalseq1.a3m

MVTPEGMVSLVDESLLVGVYTD EDRAVRSAHGFYERLIGLWAPAVMEAAH ELGVFAALAEAP ADSGEL ARRLDCDARAMRYLLDALYAYDVIDRIHDTN
GFRYLLSAEARECLLPGTLRELVGHKFMHDINY AWPAWRNLABVRHGARDTSGAESPN GIAQEDYES LV GGINFWAPPNTTLSRKLRASGRSGDATAS
VLDVGCGTGLYSQLLLREFPRWTATGLOVERIAT LANAQALRLGYEERFATRAGDFWRGGEWGTGYDLVLFAMN IFHLQTPASAVELMRHAAACL APDG
LVaWDONDADREPKTPQDRFALLFAASMTMNTGGGEDAY TFQEYEEWFTAAGLORIETLDTPMHRILLARRATEPSAVPEGQASEMNLYFD

Fig. 5.7. Example of the FASTA file format required by Boltz-1, as provided in the GitHub repo-
sitory.[19]

34

This format is very similar to that of Chai-1; however, the header line in Boltz-1 in-
cludes three sections instead of two. The first section contains a letter used to enumerate
each molecule, starting from “A”.

Once the file is in the correct format, the predictions can be generated.

During the creation of the automatic installer, it was mentioned that a function to
execute the program was also developed. Now, it is time to use this function. This fun-
ction is coded to open the program environment directly in Conda and execute the speci-
fied commands. The commands required to run each program are listed in the respective
GitHub repositories.

For Chai-1, the command needed to run the program is as follows: chai-lab fold in-
put.fasta output_folder.

By default, the model generates five sample predictions and uses embeddings without
MSAs or templates.

If the user selects to use MSA in the input window, a different command will be
executed. This command, which is recommended for improved performance, is: chai-lab

fold —use-msa-server —use-templates-server input.fasta output_folder.

In all cases, the command must be adapted to include the corresponding FASTA file
(the one already modified to meet the program’s requirements) and specify the output
directory where the folder with the predictions will be saved. It is important to determine
this output directory, as it will be used for both the output and the viewers. [29]

For Boltz-1, the command specified in the repository to perform the predictions is:
boltz predict input_path —use_msa_server, where input_path refers to the path of the .fasta
file. In this case, the output directory is not specified, so it will be saved by default in the
protocol’s folder.

In contrast to Chai-1, and as shown in the command line to run the program, Boltz-1
automatically performs the prediction using MSA; there is no option to run it without
MSA. [19]

Once this step is completed, the predictions are generated and saved within the Scipion
environment, specifically in the project directory.

In cases where output predictions obtained from the Chai-1 or AlphaFold3 servers are
uploaded, the input folder (which must be a .zip file in both cases) is saved in the project
directory.

To summarize, regardless of the path followed or the type of input provided, whether a
direct amino acid sequence or a predictions folder, the files containing the three-dimensional
structure predictions are saved in the appropriate project directory.

In the case of Chai-1 and AlphaFold3, the workflow from this point onward is very
similar. Both programs generate five model predictions in .cif format, along with five
corresponding .json files (one per predicted model) that contain additional important in-

35

formation about the predictions, such as a ranking score indicating the accuracy of each
model.

The protocol selects the five .cif files. One of the objectives of this protocol is to auto-
matically align all the model predictions and produce an output containing the aligned .cif
files. To achieve this, the alignment is performed internally using the ChimeraX program,
and the resulting aligned .cif files are saved as the final prediction outputs.

To carry out this process, command lines are first written into a file with the .cxc
extension, which can be read by ChimeraX. This file is then executed within ChimeraX to
generate and save the aligned models.

The .cxc file contains the following commands (where input_file_path and output_file_path
are replaced with the actual paths of the predicted models):

1. open input_file_path
2. matchmaker #2-5 to #1

3. save output_file_path

Once the predicted models are aligned and saved, their file paths are stored in a varia-
ble, which is later passed to the output function. This output process will be detailed in
the following section.

Additionally, the protocol selects the .json files associated with each predicted model
and analyzes their contents to extract the ranking scores. These scores provide quantitative
measures of the confidence or accuracy of each prediction. The extracted information is
stored in a variable.

To enhance user interaction and facilitate decision-making, a print function is imple-
mented that displays the ranking scores for all predicted models. This feedback allows
users to quickly identify the most reliable models based on their confidence levels.

Boltz-1 does not present the output results in the same format as Chai-1 and Alpha-
Fold3. Instead, it consists on a single folder with all the information.

This folder is way more complex and organized than the other two. It consists of
a folder named Predictions that contains all the predictions information, together with
the predicted model in .cif format. As there is only one predicted model, the alignment
process is not necessary, as there are no structures to align it with. So, this .cif file is just
saved in a variable to introduce it in the output function.

5.2.3. Protocol Output

Scipion, in the project window interface, has a space to show the output of the protocol
to the user.

36

The output is later the one supposed to be shown when clicking the *Analyze Results’
tab, although this can be modified if correctly programmed.

To assign the .cif files as the output, a function must be created.

This function simply iterates over the resulting structure files and creates correspon-
ding Scipion objects that are linked to those files. Each object is then assigned a unique
keyword based on the filename, ensuring it can be properly registered within the Sci-
pion framework. These keyword-object pairs are collected into a dictionary and passed
as keyword arguments to the method self._defineOutputs(). This method is essential, as
it informs Scipion which objects should be considered outputs of the protocol. Once de-
fined, these outputs become accessible through the interface and can be reused as inputs
in subsequent steps of a workflow, ensuring interoperability and enabling researchers to
easily switch between programs or reuse the results obtained in one protocol with other
Scipion functions, a key objective of this thesis.

5.3. Create the Protocol Viewer

This is one of the most essential parts of the protocols developed in this thesis, as the
core function of the protocol is to enable the visualization of the three-dimensional pre-
dicted structures. The viewer is based on the creation of a ChimeraX .cxc file containing
the necessary commands for visualization.

Similar to the alignment process using ChimeraX, this step will follow a comparable
procedure.

The first task is to create the axis around which the structure will be centered. This
step is crucial to ensure the structure is correctly positioned when opened in the ChimeraX
environment. To do so, the axis in three-dimensional space and position the structure at
the coordinates (0, 0, 0) are defined.

Next, ChimeraX is instructed to open the five .cif files. The alignment method is no
longer necessary, as the alignment step has already been completed and the .cif files have
been modified to reflect the aligned structures. Therefore, when opening the .cif files, they
should appear already aligned.

The final step is to apply color coding, which will help the user visually identify which
parts of the predicted structure are most accurately predicted and which parts are less re-
liable. The viewer will be set up to color the regions that are more consistent across the
five models in blue, while regions that exhibit more variation will be colored red. Inter-
mediate colors, such as yellow or orange, will also be assigned to represent the degrees
of variation. This color scale will provide a clear visual representation of prediction con-
fidence.

37

6. RESULTS

After developing all the necessary plugins and successfully installing them within the
Scipion framework, the next step is to test their functionality.

As described in Chapter 4, the macromolecules used to test these plugins include
hemoglobin in both the T and R states, as well as hemoglobin bound to 2,3-BPG. These
selections represent a real-world scenario where the prediction of protein structures serves
as a powerful research tool.

After running all the plugins within Scipion, the results obtained are shown in Figure
6.1.

The results were tested using the PDB ID, rather than FASTA files (as the output
would be the same), and in the case of Chai-1, only the local run method was tested, not
the web server option.

In the following sections, the results of each plugin will be analyzed in detail, along
with a comparison between them using the RMSD concept.

FROJECT

* chimerax - alphafold prediction (3) * chimerax - alphafold prediction (2}

* chimerax - alphafold prediction (4)
finished

Finished finished
* chimerax - alphafold prediction *ohail - Chai-1 (4)paltzl - Bolt=-1 (2) * haltzl - Baltz-1 ¥3thail - Chai-1 (5} il - i=
finished Finished Finished [N iy finished * boltz%i;ig'o\lgz*l {4?ha1%1m§n:é 1 (8)
* boltzl - Boltz-y chail - Chai-1 (2} * chail - Chai=1 (B B .
finished finished finizhed * cha%_ _Enaé‘ 1 (7)
* chail — Chai-1 (3] inishes
¢ chail - Chai-1 wtiished
finished

: - - * chimerax - Find discrepancies (7) * chimerax - Find discrepancies (8)

* chimerax - Find discrepancies (6) Finished finizhed

* chin|

A e
finished

Fig. 6.1. Final results window . Scipion project workflow view showing the complete execution pi-
peline for protein structure prediction using AlphaFold3, Boltz-1, and Chai-1. Each green
box represents a successfully completed protocol, including sequence input, prediction
runs, and subsequent structure alignment using ChimeraX. The visual layout demonstra-
tes the interoperability of the integrated tools and the traceability of the analysis steps.

6.1. Chai-1 Plugin

The first test was conducted using the Chai-1 plugin with the T state deoxy human
hemoglobin (1A3N). Both methods were tested: one using MSA and the other without
MSA, to evaluate how the accuracy changes with the use of this tool.

38

Five model predictions were obtained for each protocol (one protocol using MSA and
the other without it).

The ranking scores of each predicted model are shown in Tables 6.1 - 6.4.

Fig. 6.2. Chai-1 predicted 1A3N structure. A) Structure computed without using MSA. B) Struc-
ture computed using MSA.

TABLA 6.1. RANKING SCORES OF CHAI-1 PREDICTED MODELS

1A3N
Input Parameter With MSA Without MSA
Model 0 0.9220 0.9056
Model 1 0.9212 0.9038
Model 2 0.9209 0.9042
Model 3 0.9210 0.9043
Model 4 0.9207 0.9043

Then with R state deoxy human hemoglobin (2DN2)

Fig. 6.3. Chai-1 predicted 2DN2 structure. A) Structure computed without using MSA. B) Struc-
ture computed using MSA.

39

TABLA 6.2. RANKING SCORES OF CHAI-1 PREDICTED MODELS

2DN2
Input Parameter With MSA Without MSA
Model 0 0.9207 0.9061
Model 1 0.9214 0.9045
Model 2 0.9225 0.9040
Model 3 0.9220 0.9045
Model 4 0.9214 0.9044

Then with R state oxy human hemoglobin (2DN1)

Fig. 6.4. Chai-1 predicted 2DN1 structure. A) Structure computed without using MSA. B) Struc-
ture computed using MSA.

TABLA 6.3. RANKING SCORES OF CHAI-1 PREDICTED MODELS

2DNI1
Input Parameter With MSA Without MSA
Model 0 0.9215 0.9037
Model 1 0.9212 0.9047
Model 2 0.9215 0.9037
Model 3 0.9220 0.9043
Model 4 0.9210 0.9040

Finally, with Human deoxyhemoglobin—2,3-bisphosphoglycerate complex (1B86).

40

Fig. 6.5. Chai-1 predicted 1B86 structure. A) Structure computed without using MSA. B) Struc-
ture computed using MSA.

TABLA 6.4. RANKING SCORES OF CHAI-1 PREDICTED MODELS

1B86
Input Parameter With MSA Without MSA
Model 0 0.9221 0.9044
Model 1 0.9220 0.954
Model 2 0.9223 0.9038
Model 3 0.9222 0.9055
Model 4 0.9218 0.9046

As shown in the images and explained in the Methodology chapter, the viewer window
displays the structures already aligned and color-coded based on the similarity of the
predictions.

Blue-colored regions of the structures indicate high similarity across the five models,
suggesting that these parts are more accurate and closely resemble the true structure.
Conversely, red and orange-colored regions represent areas with greater variability among
the models, implying that these parts are less accurately predicted, as they differ in their
structural conformation across the models.

6.2. AlphaFold3 Plugin

AlphaFold3 generates five predicted models, similar to the Chai-1 plugin; however,
unlike Chai-1, no MSA is used to perform the predictions in this program.

Each predicted structure and model of the macromolecules is accompanied by its ran-
king score information, which can be found in Tables 6.5 - 6.8.

The structures visualized in the ChimeraX framework are displayed alongside their
respective tables, which include the ranking score information.

41

higk

Fig. 6.6. Alphafold3 predicted 1A3N structure.

TABLA 6.5. RANKING SCORES OF ALPHAFOLD3 PREDICTED

MODELS 1A3N

Input Parameter Ranking Score
Model 0 0.91
Model 1 0.91
Model 2 0.91
Model 3 0.91
Model 4 0.90

Fig. 6.7. Alphafold3 predicted 2DN?2 structure.

TABLA 6.6. RANKING SCORES OF ALPHAFOLD3 PREDICTED

MODELS 2DN2

Input Parameter Ranking Score
Model 0 0.91
Model 1 0.91
Model 2 0.91
Model 3 0.91
Model 4 0.90

42

Fig. 6.8. Alphafold3 predicted 2DN1 structure.

TABLA 6.7. RANKING SCORES OF ALPHAFOLD3 PREDICTED

MODELS 2DN1

Input Parameter Ranking Score
Model 0 0.91
Model 1 0.91
Model 2 0.91
Model 3 0.91
Model 4 0.90

Fig. 6.9. Alphafold3 predicted 1B86 structure.

TABLA 6.8. RANKING SCORES OF ALPHAFOLD3 PREDICTED

MODELS 1B86

Input Parameter Ranking Score
Model 0 0.91
Model 1 0.91
Model 2 0.91
Model 3 0.91
Model 4 0.90

43

Same as what happened with Chai-1 results the viewer window displays the structures
already aligned and color-coded based on the similarity of the predictions.

Blue-colored regions of the structures indicate high similarity across the five models
and red or orange-colored regions represent areas with greater variability among the mo-
dels.

6.3. Boltz-1 Plugin

Boltz-1 produces a single predicted model as output, which is generated using MSA
data. Therefore, it is not possible to compare multiple model predictions, as only one
model is provided.

Additionally, unlike the other programs, Boltz-1 does not output a ranking score for
the predicted structure.

The results obtained from this program are visualized in the ChimeraX framework and
will be analyzed accordingly.

The predicted structures obtained are displayed in Figure 6.5, Figure 6.6, Figure 6.7,
and Figure 6.8.

Fig. 6.10. Boltz-1 predicted structures. A) Boltz-1 predicted 1A3N structure. B) Boltz-1 predicted
2DN2 structure. C) Boltz-1 predicted 2DN1 structure. D) Boltz-1 predicted 1B86 struc-

ture.

Unlike AlphaFold3 and Chai-1, Boltz-1 does not align multiple models, as it only
generates a single prediction. As a result, the color information in the image generated in

44

ChimeraX does not provide any comparative data, since no other models are available for
comparison.

6.4. Comparison Between Integrated Software using RMSD.

Root Mean Square Deviation (RMSD) is one of the most common methods to deter-
mine the accuracy of algorithms in charge of predicting structures.

There are two ways of calculating RMSD, absolute RMSD and relative RMSD. Abso-
lute RMSD, measures the distance between corresponding atom pairs of two conformers
without coordinate translation or rotation and is used mainly for docking evaluations.
Relative RMSD implies an additional alignment step of the molecules before the actual
RMSD calculation and is the one used to determine the accuracy of conformational model

generators, which is this thesis case [30].

A protocol already implemented in Scipion is used. These protocols have to be run
once per macromolecule, so in this thesis case, four times. Each run protocol contains all
the predicted structures created with the three programs for each macromolecule.

The output results obtained are the files containing all the RMSD value information
per atom of all the predicted models of each molecule, aligned.

With this information, three graphs per molecule are created to compare the software.

BOITZ-1 vs. ALPHAFOLD3 BOLTZ-1 vs. CHAI-1
6 6
5 5
4 | o
2 3 | @3
b | =
1 K A 1)* } 1
o WML A A A ine 0

CHAI-1 vs ALPHAFOLD3

(2]

RMSD
o = N oW Ao

Fig. 6.11. 1A3N RMSD comparison between software graphs.

45

4

. .

BOLTZ-1 vs. CHAI-1

BOLTZ-1 vs. ALPHAFOLD3

SFT
B6ET
EET
LTT
1243
113
60T
£0T

Arom
Atom

BOLTZ-1 vs. CHAI-1

Atom

ALPHAFOLD3 vs. CHAI-1
ALPHAFOLDD3 vs. CHAI-1

Atom
Atom

Fig. 6.12. 2DN2 RMSD comparison between software graphs.
BOLTZ-1 vs. ALPHAFOLD3

LI=R e L s R

asiy

Srl
6EL
€EL
Lzl
LZL
SLL
0L
€0l
L6
L6
58
6L
€L
L9
L9
1]
&
ey
LE
e
14
6l
el

46

Atom

Fig. 6.13. 2DN1 RMSD comparison between software graphs.

BOLTZ-1 vs. ALPHAFOLD3 BOLTZ-1 vs. CHAI-1

¢ I
5
DA .:.‘
(.03 A
Z §{
E o
2 II‘ s
1 | -'\
A D g £) e - 1 h A
o R Ay SR Y PR ,fh“ﬂ)‘ L ;_ __..—" \r\‘ o i
e P NEEYEEIrRESBERRAAT RS NEDOFRCRROoEoETrD L
rrrrrr - T I T R = e w
Atom L mHmmmEan

ALPHAFOLD3 vs. CHAI-1

RMSD
ST R S

iRl ol ol o

Fig. 6.14. 1B86 RMSD comparison between software graphs.

47

7. DISCUSSION AND FUTURE OUTLOOK

After computing the predicted structures for all the macromolecules and using the
three integrated programs, the results obtained provide valuable information regarding
their accuracy. However, to gain a deeper understanding and determine the best program,
the RMSD (Root Mean Square Deviation) comparison method is applied.

AlphaFold3 and Chai-1 offer more detailed information, as they both allow for the
extraction of ranking scores for each predicted model, along with a color-coded visuali-
zation.

For both programs, most regions of the predicted macromolecule structures are pri-
marily blue or yellow, with very few red areas. This is a positive indication of prediction
accuracy, as it suggests that most parts of the five predicted models are similar. In turn,
this high degree of similarity increases the likelihood that the structures are predicted
correctly.

Regarding the ranking scores, they are generally very high, around 90 %.

However, in the case of AlphaFold3, it is observed that the scores are identical for
all predictions and models. This could be due to the similarity between the predicted
structures, as all models correspond to hemoglobin in different states or when bound to a
ligand.

In the case of Chai-1, as expected, the ranking scores obtained using MSA are higher,
indicating that predictions made with MSA provide more accurate results compared to
those made without it.

On the other hand, the Boltz-1 plugin provides more limited information for each pre-
diction compared to the other two programs. While the core function, structure prediction,
is performed, the lack of additional data limits its overall utility for researchers. More in-
formation would enhance the tool’s capability and assist in providing deeper insights.

However, the ranking scores alone are not sufficient to determine the most accurate
predictive program. To achieve this, the RMSD comparison method was employed.

In general, lower RMSD values are associated with protein structure pairs that have
better resolution. The RMSD values tend to increase when comparing proteins refined at
different resolutions [3!]. This means that higher RMSD values, as seen in the graphs,
indicate worse alignment, with predicted structures being more distant from one another.

Upon analyzing the resulting graphs, no clear distinction emerges between the pro-
grams to decisively determine the best alignment. A common feature across all the graphs
is the high RMSD values observed in the last ten atoms. This region corresponds to the C-
terminal end, and, along with the N-terminal region (corresponding to the first few atoms),
it tends to be more disorganized and structurally flexible than the central region.

48

It is encouraging that most of the central regions present RMSD values between 2 and
0, with some occasional peaks in specific regions. This suggests that the three programs
generated highly accurate predictions overall.

However, in all three cases, the data comparing AlphaFold3 and Chai-1 models show
better results compared to comparisons with Boltz-1.

In the case of the 2DN2 molecule graph, this is the graph that reaches the lowest
RMSD values, not exceeding a value of 5, which is not observed in any of the other
graphs. Moreover, despite some occasional peaks, it is the graph that maintains values
close to 0 for most of the atoms, indicating less variability overall.

Based on these findings, we can conclude that Boltz-1 is the least accurate of the th-
ree programs, as it produces structures that are more distant from the other predictions.
Nevertheless, it is important to note that the results from all three programs were highly
accurate, with no significant discrepancies, and all produced consistent and reliable pre-
dictions.

This thesis highlights the importance of accurate predictive biocomputational tools
and the need to improve their accessibility for researchers. However, this is just the be-
ginning, marking a starting point for future advancements.

The application of bioinformatics to biology has reached a pivotal moment, greatly
facilitating the entire research process.

In the case of protein structure prediction, future approaches will expand to include
the prediction of protein-protein interactions, protein-macromolecule interactions (such
as those with lipids, nucleic acids, or polysaccharides), and protein-small molecule inter-
actions.

Moreover, the accuracy of these predictions will continue to improve over time, with
model architectures being refined to enable predictions that are even closer to real-life
scenarios. As technology advances and more data becomes available, these tools will
become essential for advancing not only structural biology but also drug discovery and
other fields within the life sciences.

Not only will the existing programs continue to improve, but new ones are already
emerging. Programs such as ABCFold and ProteniX are now available to further advance
the field. ABCFold simplifies the use of AlphaFold3, Boltz-1, and Chai-1 by providing a
standardized input format for predicting atomic structures, with Boltz-1 and Chai-1 being
installed during runtime [32]. ProteniX is a comprehensive implementation of Alpha-
Fold3, designed to push forward the field of biomolecular structure prediction [33]. This
programs, could also be implemented on Scipion, to enable researchers use their functio-
nalities.

49

8. CONCLUSIONS

This thesis has addressed the integration of cutting-edge protein structure prediction
tools, AlphaFold3, Chai-1, and Boltz-1, into the Scipion framework, a platform known for
its interoperability, reproducibility, and traceability. The work involved the development
of two plugins from scratch and the modification of an existing one, ensuring that each in-
tegrated program could be executed within Scipion with clear, adaptable, and user-friendly
protocols.

Through the development of automated installers, parameterized protocols, and Chi-
meraX-based specialized viewers, integration was not only technically successful but also
functionally robust. The output of each tool could be visualized and analyzed within the
same environment, facilitating comparative studies between predictive models.

The experimental validation of these integrations, using four different macromolecu-
les, confirmed the correct operation of the plugins and highlighted their predictive capabi-
lities. Chai-1 and AlphaFold3 were particularly effective, offering multiple model predic-
tions and confidence scores that allowed for a deeper understanding of the variability and
reliability of the results. Boltz-1, while functional and accurate, provided fewer outputs
and lacked scoring metrics, limiting its comparative analysis.

A detailed RMSD-based comparison showed that all three tools performed well, with
AlphaFold3 and Chai-1 producing more consistent and closely aligned structures. These
findings validate their potential for reliable and reproducible protein modeling.

Ultimately, this thesis demonstrates not only the feasibility, but also the value of ex-
panding Scipion capabilities in the domain of protein structure prediction. It sets the foun-
dation for future developments, including the integration of additional models such as
ABCFold or ProteniX, and reinforces the critical role of bioinformatics in the accelera-
tion of biomedical research. Integrating such tools into accessible platforms like Scipion
can democratize structural biology, streamline workflows, and enhance research impact
in both academic and clinical settings.

50

9. REGULATORY FRAMEWORK

The techniques introduced along this work are not regulated by any legislation or sub-
jected to any intellectual property and they do not break any code of professional ethics.
However, several packages and programming languages were used for the development
of the aforementioned techniques with their own regulations.

Scipion is under the GNU General Public License, which is a free, copyleft license
for software. Moreover, Scipion releases are distributed for Linux OS (Operative System)
which is also an open source software under the GNU license.

In the case of the programming languages used for the development of the scripts,
Python is open source, although the IDE (Integrated Development Environment) used
may be subject to regulatory frameworks. The IDE used is PyCharm, which has its own
agreement that approves its usage for academic research.

The molecules used during Chapter 6 were obtained from the Protein Data Bank
(PDB). PDB is an open-access repository governed by Worldwide Protein Data Bank
(wwPDB), data is freely available for academic research but it must always be properly
cited.

Regarding visualization tools, ChimeraX 1is licenced for non-commercial uses only,
such as academic or research ones. The Scipion framework incorporates ChimeraX as an
external tool, which means ChimeraX is independently installed and governed by its own
academic license.

Regarding the three softwares implementations, Alphafold3, Chai-1 and Boltz-1, as
happened with ChimeraX, are incorporated as external tools to the Scipion framework.

51

10. SOCIO-ECONOMIC IMPACT

The computational prediction of macromolecule structures has a profound impact on
both industry and research. It enables a better understanding of the human body and bio-
logical processes, which in turn enhances the pharmaceutical industry, drug discovery,
and scientific advancement.

In the case of drug discovery, survey data from 1983 to 2000 estimated that manu-
facturers’ costs for launching a new drug were approximately $802 million. More recent
estimates (1997-2001) suggest that the cost is closer to $1.7 billion [34]. This process
is divided into several phases, and understanding protein structures is crucial in the early
stages.

Since most drug targets are proteins, it is essential to know their three-dimensional
structures in detail.

Traditionally, solving protein structures was a process that involved experimental tech-
niques such as X-ray crystallography, nuclear magnetic resonance (NMR), and, more
recently, cryo-electron microscopy. These techniques are highly effective but are labor-
intensive and time-consuming [35].

The use of these time-consuming techniques results in long research periods, leading
to significantly higher research costs.

However, with the advent of biocomputational tools that can predict protein structures
within hours or even minutes, the process of drug discovery, such as finding potential
drugs that inhibit a specific protein, has been greatly accelerated. As a result, research
costs are often reduced.

Not only are costs reduced, but the efficiency and speed of these investigations allow
for the discovery and release of treatments to the market more quickly. This accelera-
ted timeline is particularly crucial in cases like the rapid development of the COVID-19
vaccine [36], where fast action was needed to address a global health crisis.

Despite the advantages, it is important to note that these biocomputational tools, like
all artificially created or computationally generated outputs, should always be experimen-
tally validated and monitored by human experts.

These tools are designed to enhance and support researchers, but they should never
replace the human aspect of research. Experimental research remains crucial, although
these computational tools can serve as valuable complements, providing insights and ac-
celerating the discovery process.

It is crucial to exercise caution when interpreting predicted structures, keeping in mind
that they may not be perfectly accurate. Traditional experimental techniques involve direct
testing of the protein to determine its structure, a step that does not occur in computational

52

predictions. Therefore, while computational tools offer valuable insights, they should be

used as a complement to, rather than a replacement for, experimental methods.

Project Budget

The costs associated with creating and using the model are divided into two categories:
human resources and technical support. The first category, human resources, includes the

salaries of the personnel involved in the project. The second category, technical support,

encompasses all the necessary equipment for developing and using the project.

The costs for human resources are detailed in Table 10.1, which includes the salaries

of the CNB and UC3M tutors, as well as the student researcher.

Position Wage/hour | Working time Cost
CSIC tutor 50 € 60 h 3,000 €
UC3M tutor 40 € 20 h 800 €
student researcher 15 € 450 h 6,750 €
Total cost 10,550 €

TABLA 10.1. HUMAN RESOURCES COST BREAKDOWN

For technical costs, shown in Table 10.2, this includes the student’s personal computer,
along with the CNB computer equipped with a GPU, which was used to run the programs

and obtain the results presented

in the Results section.

Equipment Price Usage time | Amortization Cost
CNB server virtual machine | 5,997.87 € | 6 months 36 months 999.65€
Student computer 900 € 6 months 36 months 150€
Total cost 1,149.65 €

TABLA 10.2. TECHNICAL EQUIPMENT COST BREAKDOWN

The total budget required for the project is summarized in Table 10.3.

Type of cost Cost
Human resources 10,550 €
Technical equipment 1,149.65 €
Total cost 11,699.65 €

TABLA 10.3. TOTAL COST

53

[9]
[10]

[11]

[12]

[13]

[14]

BIBLIOGRAFIA

Academia Lab. “Bioinformadtica estructural.” Revisado el 15 de mayo del 2025,
Enciclopedia. (2025), [En linea]. Disponible en: https://academia-1lab.com/
enciclopedia/bioinformatica-estructural/.

T. Ogunjobi et al., “Bioinformatics tools in protein analysis: Structure prediction,
interaction modelling, and function relationship,” European Journal of Sustainable
Development Research, vol. 8, n.° 1, 2024.

J. P. Hughes, S. Rees, S. B. Kalindjian y K. L. Philpott, “Principles of early drug
discovery,” British Journal of Pharmacology, vol. 162, n.° 6, pp. 1239-1249, 2011.

P. Conesa et al., “Scipion3: A workflow engine for cryo-electron microscopy image
processing and structural biology,” Biological Imaging, vol. 3, e13, 2023.

H. Deng, Y. Jia e Y. Zhang, “Protein structure prediction,” International Journal of
Modern Physics B, vol. 32, n.° 18, p. 1 840 009, 2018.

C. Kamble, R. Chavan y V. Kamble, “A Review on Amino Acids,” STM Journals,
vol. 8, p. 2021, ene. de 2022.

S. Aryal. “Amino Acids - Properties, Structure, Classification, Functions.” (jul. de
2022).

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts y P. Walter, Molecular Bio-
logy of the Cell, 4th. New York: Garland Science, 2002, cap. The Shape and Struc-
ture of Proteins, Available from: NCBI Bookshelf.

D. Whitford, Proteins: structure and function. John Wiley & Sons, 2013.
V. Vyas, R. Ukawala, M. Ghate y C. Chintha, “Homology modeling a fast tool for

drug discovery: current perspectives,’ Indian journal of pharmaceutical sciences,
vol. 74, n.° 1, p. 1, 2012.

N. Fatima, S. Khan y S. Zahid, “A critical address to advancements and challen-
ges in computational strategies for structural prediction of protein in recent past,”
Computational Biology and Chemistry, p. 108 430, 2025.

L. A. Abriata, “The Nobel Prize in Chemistry: past, present, and future of Al in
biology,” Communications Biology, vol. 7, n.° 1, p. 1409, 2024.

J. Jumper et al., “Highly accurate protein structure prediction with AlphaFold,”
nature, vol. 596, n.° 7873, pp. 583-589, 2021.

European Bioinformatics Institute (EMBL-EBI), Strengths and limitations of Alpha-
Fold, https://www.ebi.ac.uk/training/online/courses/alphafold/

an-introductory-guide-to-its-strengths-and-limitations/strengths-

and-limitations-of-alphafold/, 2024.

54

https://academia-lab.com/enciclopedia/bioinformatica-estructural/
https://academia-lab.com/enciclopedia/bioinformatica-estructural/
https://www.ebi.ac.uk/training/online/courses/alphafold/an-introductory-guide-to-its-strengths-and-limitations/strengths-and-limitations-of-alphafold/
https://www.ebi.ac.uk/training/online/courses/alphafold/an-introductory-guide-to-its-strengths-and-limitations/strengths-and-limitations-of-alphafold/
https://www.ebi.ac.uk/training/online/courses/alphafold/an-introductory-guide-to-its-strengths-and-limitations/strengths-and-limitations-of-alphafold/

[15] J. Abramson et al., “Accurate structure prediction of biomolecular interactions with
AlphaFold 3,” Nature, vol. 630, n.° 8016, pp. 493-500, 2024.

[16] N. Editorial, “AlphaFold3 improves protein structure prediction,” Nature, vol. 629,
p- 728, mayo de 2024.

[17] F. Hoffmann, AlphaFold3 and its improvements in comparison to AlphaFold2,https:
//medium. com/@falk_hoffmann/alphafold3-and-its-improvements-
in-comparison-to-alphafold2-96815ffbb044, 2024.

[18] Chai Assets Team, “Chai Technical Report Version 1,” Chai Assets, inf. téc., sep. de
2024.

[19] J. Wohlwend et al., “Boltz-1: Democratizing Biomolecular Interaction Modeling,”
bioRxiv, 2024. por: 10.1101/2024.11.19.624167.

[20] L. FE VERA, “La hemoglobina: una molécula prodigiosa,” Revista de la Real Aca-
demia de Ciencias Exactas Fisicas y Naturales, vol. 104, n.° 1, pp. 213-232, 2010.

[21] M. H. Ahmed, M. S. Ghatge y M. K. Safo, “Hemoglobin: structure, function and
allostery,” Vertebrate and invertebrate respiratory proteins, lipoproteins and other

body fluid proteins, pp. 345-382, 2020.

[22] A. N. Schechter, “Hemoglobin research and the origins of molecular medicine,”
Blood, The Journal of the American Society of Hematology, vol. 112,n.° 10, pp. 3927-3938,
2008.

[23] Z.Zhong y E. V. Anslyn, “Controlling the Oxygenation Level of Hemoglobin by
Using a Synthetic Receptor for 2, 3-Bisphosphoglycerate,” Angewandte Chemie
International Edition, vol. 42, n.° 26, pp. 3005-3008, 2003.

[24] J. Tame y B. Vallone, Deoxy human hemoglobin, Protein Data Bank entry 1A3N,
1998.

[25] S.-Y.Park, T. Yokoyama, N. Shibayama, Y. Shiro y J. Tame, 1.25 A resolution crys-
tal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms,
Protein Data Bank entry 2DN2, 2006.

[26] S.-Y. Park, T. Yokoyama, N. Shibayama, Y. Shiro y J. R. Tame, 7.25 A resolution
crystal structure of human hemoglobin in the oxy form, Protein Data Bank entry
2DNI1, 2006.

[27] V.Richard, G. G. Dodson e Y. Mauguen, Human deoxyhaemoglobin—2,3-diphosphoglycerate
complex, Protein Data Bank entry 1B86, 1999.

[28] L. Werel y L.-O. Essen, Structure of the Clr-cAMP-DNA complex, Protein Data
Bank entry 7PZB, 2022.

[29] Chai Discovery, “Chai-1: Decoding the molecular interactions of life,” bioRxiv,
2024. por: 10.1101/2024.10.10.615955. eprint: https://www.biorxiv.
org/content/early/2024/10/11/2024.10.10.615955. full. pdf. [En
linea]. Disponible en: https://www.biorxiv.org/content/early/2024/
10/11/2024.10.10.615955.

55

https://medium.com/@falk_hoffmann/alphafold3-and-its-improvements-in-comparison-to-alphafold2-96815ffbb044
https://medium.com/@falk_hoffmann/alphafold3-and-its-improvements-in-comparison-to-alphafold2-96815ffbb044
https://medium.com/@falk_hoffmann/alphafold3-and-its-improvements-in-comparison-to-alphafold2-96815ffbb044
https://doi.org/10.1101/2024.11.19.624167
https://doi.org/10.1101/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955.full.pdf
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955.full.pdf
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Kirchmair, P. Markt, S. Distinto, G. Wolber y T. Langer, “Evaluation of the per-
formance of 3D virtual screening protocols: RMSD comparisons, enrichment as-
sessments, and decoy selection—what can we learn from earlier mistakes?”” Jour-
nal of computer-aided molecular design, vol. 22, pp. 213-228, 2008.

O. Carugo, “How root-mean-square distance (rmsd) values depend on the reso-
lution of protein structures that are compared,” Applied Crystallography, vol. 36,
n.° 1, pp. 125-128, 2003.

L. G. Elliott, A. J. Simpkin y D. J. Rigden, “ABCFold: easier running and compa-
rison of AlphaFold 3, Boltz-1 and Chai-1,” bioRxiv, pp. 2025-03, 2025.

B. A. A. Team et al., “Protenix-advancing structure prediction through a com-
prehensive AlphaFold3 reproduction,” bioRxiv, pp. 2025-01, 2025.

J. Sollano, J. Kirsch, M. Bala, M. Chambers y L. Harpole, “The economics of drug
discovery and the ultimate valuation of pharmacotherapies in the marketplace,”
Clinical Pharmacology & Therapeutics, vol. 84, n.° 2, pp. 263-266, 2008.

R. P. Montfort, “Sobre el premio nobel de quimica 2024 en disefio y estructura de
las proteinas,” Revista de Educacion Bioquimica, vol. 43, n.° 4, pp. 210-212, 2025.

V. C. Osamor, E. Ikeakanam, J. U. Bishung, T. N. Abiodun y R. H. Ekpo, “COVID-
19 vaccines: computational tools and development,” Informatics in Medicine Un-
locked, vol. 37, p. 101 164, 2023.

56

Universidad

ucdm | Carlosllil
de Madrid

DECLARATION OF USE OF GENERATIVE IA IN BACHELOR THESIS (TFG)

| have used Generative Al in this work
Check all that apply:

YES [NO |

If you have ticked YES, please complete the following 3 parts of this document:

Part 1: Reflection on ethical and responsible behaviour

Please be aware that the use of Generative Al carries some risks and may generate a series

of consequences that affect the moral integrity of your performance with it. Therefore, we ask
you to answer the following questions honestly (please tick all that apply):

Question

1. In my interaction with Generative Al tools, | have submitted sensitive data with the
consent of the data subjects.

. NO, | have used this NO, | have not used
YES, | have used this . "
. o data without sensitive data
data with permission .
authorisation

2. In my interaction with Generative Al tools, | have submitted copyrighted materials
with the permission of those concerned.

YES, | have used these NO, | have used these NO, | have not used
materials with materials without protected materials
permission permission

3. In my interaction with Generative Al tools, | have submitted personal data with the
consent of the data subjects.

NO, | have used this NO, | have not used
data without personal data
authorisation

YES, | have used this
data with permission

4. My use of the Generative Al tool has respected its terms of use, as well as the
essential ethical principles, not being maliciously oriented to obtain an inappropriate
result for the work presented, that is to say, one that produces an impression or
knowledge contrary to the reality of the results obtained, that supplants my own work
or that could harm people.

YES
NO

If you did NOT have the permission of those concerned in any of questions 1, 2 or 3, briefly
explain why (e.g. "the materials were protected but permitted use for this purpose” or "the
terms of use, which can be found at this address (...), prevent the use | have made, but it was
essential given the nature of the work".

Part 2: Declaration of technical use
Use the following model statement as many times as necessary, in order to reflect all types of
iteration you have had with Generative Al tools. Include one example for each type of use

where indicated: [Add an example].

| declare that | have made use of the Generative Al system (Name of Al system/tool and
version: ChatGPT, Gemini, Copilot...) for:

Documentation and drafting:

e Revision or rewriting of previously drafted paragraphs

| have requested corrections for texts | have written, to ensure they were gramatically
correct.

| have also sought help from Al to paraphrase certain phrases that were very repetitive or
that | didn’t know how to write correctly.

Develop specific content

Generative Al has been used as a support tool for the development of the specific content of
the dissertation, including:

e Assistance in the development of lines of code (programming)

| have asked for help with programming in Python, mainly regarding the syntax, as | was
taught to program in Matlab, and there are some syntax differences between both
languages.

Part 3: Reflection on utility

Please provide a personal assessment (free format) of the strengths and weaknesses you
have identified in the use of Generative Al tools in the development of your work. Mention if it
has helped you in the learning process, or in the development or drawing conclusions from
your work.

The use of generative Al has allowed me to ensure that the text was well-written and free of
grammatical errors, facilitating the writing process and improving the flow of the text.

However, generative Al, although highly efficient in improving the writing, cannot replace the
critical thinking and creativity required to develop the main arguments or interpret the data
and results of the research. Throughout the work, | made sure to maintain strict control over
the direction and content of the text, and the Al was used only as a complementary tool to
refine style and formatting.

	INTRODUCTION
	Motivation
	Objectives
	Content of the Document

	THE COMPLEX STRUCTURE OF PROTEINS
	The Building Blocks. Amino Acids and Peptide Bonds
	Local Folding Patterns in Proteins
	α-Helix and β-Sheet Folding Patterns
	Higher Levels of Protein Folding

	STATE OF ART
	The Revolution of Protein Structure Prediction. AlphaFold2
	Deep Learning Models for Protein Structure Prediction
	Protein Structure Prediction in Scipion

	MATERIALS
	Scipion Framework Analysis
	Plugin Architecture
	Protocol Architecture

	Analysis of the Software Selected for Integration
	Molecule Analysis

	METHODOLOGY
	Creating the Plugin
	Creating an automatic installer

	Creating the Protocol
	Protocol Parameters
	Protocol Steps
	Protocol Output

	Create the Protocol Viewer

	RESULTS
	Chai-1 Plugin
	AlphaFold3 Plugin
	Boltz-1 Plugin
	Comparison Between Integrated Software using RMSD.

	DISCUSSION AND FUTURE OUTLOOK
	CONCLUSIONS
	REGULATORY FRAMEWORK
	SOCIO-ECONOMIC IMPACT
	Bibliografía

