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ABSTRACT 

Therapeutic antibodies are a central class of biopharmaceuticals used for the 

treatment of infectious diseases, cancer, and immune-related disorders. They usually 

require optimization to improve their affinity and stability. In this project, we developed 

a computational workflow in Scipion-Chem to analyze point mutations in antibodies. We 

tested our workflow with an antibody directed against the receptor-binding domain 

(RBD) of SARS-CoV-2. 

 The workflow included the import of the structure, the identification of paratope 

residues through a distance-based protocol, and the prediction of the energetic impact of 

mutations using two complementary tools: SAAMBE-3D (machine-learning model) and 

FoldX (empirical force field). Both tools generated independent ΔΔG predictions that 

were later integrated through the rank fusion protocol, using ZMUV normalization and 

the CombMED method to obtain a consensus ranking. The top-ranked mutations were 

A40F, A40D, A40K, A40Q and A59W, all of them located in key interfacial regions and 

predicted as stabilizing by both methods. 

Overall, the study demonstrates that Scipion-Chem enables the systematic 

identification of potentially beneficial mutations and provides a reproducible framework 

for the computational optimization of antibodies. 
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RESUMEN 

Los anticuerpos terapéuticos constituyen una clase central de biofármacos 

utilizados para el tratamiento de enfermedades infecciosas, cáncer y trastornos 

relacionados con el sistema inmunitario. Normalmente suelen requerir una optimización 

precisa de sus interfaces de unión para mejorar su afinidad y estabilidad. En este 

proyecto se desarrolló un flujo de trabajo computacional en Scipion-Chem para analizar 

mutaciones puntuales en anticuerpos. En particular, evaluamos un flujo de trabajo con 

un anticuerpo dirigido frente al dominio de unión al receptor (RBD) del SARS-CoV-2.  

El flujo de trabajo incluyó la importación de la estructura, la identificación de 

los residuos del paratopo mediante un protocolo basado en distancias y la predicción del 

impacto energético de las mutaciones mediante dos herramientas complementarias: 

SAAMBE-3D (modelo de aprendizaje automático) y FoldX (campo de fuerza empírico). 

Ambas herramientas generaron predicciones independientes de ΔΔG que posteriormente 

se integraron mediante el protocolo de rank fusion, utilizando normalización ZMUV y el 

método CombMED para obtener una clasificación consensuada. Las mutaciones mejor 

posicionadas fueron A40F, A40D, A40K, A40Q y A59W, todas ellas localizadas en 

regiones clave del interfaz y predichas como estabilizadoras por ambos métodos. 

En conjunto, el estudio demuestra que Scipion-Chem permite identificar de 

forma sistemática mutaciones potencialmente beneficiosas y proporciona un marco 

reproducible para la optimización computacional de anticuerpos. 

. 
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1 INTRODUCTION 

1.1 Therapeutic antibodies: biological relevance, challenges, 

and the need for optimization 

Nowadays in the biological drug development landscape, therapeutic antibodies 

have become a major player and a true growth engine for the pharmaceutical industry. 

Their biological effects are based on their ability to target specific molecular sites with 

impressive affinity and precision, allowing for incredibly accurate treatments across a 

range of diseases. Over the past three decades, antibodies have revolutionized how we 

approach inflammatory and infectious diseases, cancer, neurodegenerative disorders, and 

even metabolic syndromes. Their journey into clinical use has solidified their status as 

one of the most successful classes of biotherapeutics [1], [2], [3], [4]. 

Figure 1 illustrates the structural basis of antibody–antigen recognition, showing 

how the antigen binds specifically to the antibody paratope through a network of non-

covalent interactions that define both binding affinity and specificity. Figure 2 

complements this structural view by placing the interaction in a broader biological 

context, illustrating the role of antigens within the adaptive immune response. 

 

 

Figure 1 Structural representation of an antibody–antigen interaction. 
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Figure 2 Role of antigens in the adaptive immune response. 

The complementarity-determining regions of the variable domains are the site of 

a complex network of precisely calibrated molecular reactions that give rise to antibody 

function. These regions come together to form the so-called paratope, which is the part of 

the antibody that interacts with and binds to a specific area of an antigen known as the 

epitope. The underlying energetic and structural aspects of this interaction are quite 

intricate. Factors like hydrogen bonding, van der Waals forces, electrostatic interactions, 

hydrophobic packing, and the flexibility of the bound ligand all contribute uniquely to the 

overall affinity and specificity. Even a single amino acid can tip the scales significantly, 

meaning that even small changes can greatly affect stability, conformational dynamics, 

or how well an antigen is recognized [5], [6]. 

The immune system naturally produces antibodies, but these are not always 

perfect for therapeutic use. Most candidates need to demonstrate better affinity, reduced 

off-target binding, greater stability, or other improvements that make it easier to 

manufacture or formulate. The methods used to enhance the natural properties of these 

binding molecules are known as antibody optimization, and this process is crucial for 

transforming a natural binder into an effective therapeutic agent. 

For many years, optimization primarily relied on experimental techniques like 

directed evolution, phage display, and error-prone PCR, along with high-throughput 
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mutagenesis screens. These approaches generated numerous mutants and enabled the 

selection of superior molecules through multiple rounds of testing. While they have been 

effective, they come with significant downsides. These methods can be slow and tedious, 

often requiring researchers to sort through thousands or even millions of mutations each 

time to pinpoint candidates with the desired biochemical or biophysical traits [7]. There 

is a practical limit to how much of the mutational space we can explore. Typically, the 

variable region of an antibody is made up of around two hundred amino acids, but the 

number of possible point mutations already surpasses three thousand. Trying to fully 

search for this space is just not feasible in most experimental scenarios [8].  

A key challenge in antibody engineering is the vastness of the search space. 

Relying solely on brute-force experimentation to navigate these high-dimensional 

mutational landscapes just does not cut it. It also complicates our ability to predict how 

small changes can ripple through the protein structure or to pinpoint the role of individual 

residues at the interface. These limitations have led to a gradual shift towards methods 

that can guide experimental efforts with a solid understanding of structure, energy, and 

mechanics. As a result, computational antibody optimization has become an essential 

component of modern antibody design processes [9], [10]. 

1.2 Computational antibody engineering: principles, tools, and 

advantages 

In the world of designing therapeutic antibodies, computational methods are 

playing an increasingly vital role. They research into the antibody–antigen interface, 

examining how each residue contributes to binding and predicting how specific mutations 

could impact affinity, stability, and overall developability. By providing a structured and 

mechanistic approach, these techniques not only save time and reduce costs but also ease 

the experimental burden by pinpointing the most promising mutations before any lab 

work begins [11], [12], [13]. 

When it comes to designing antibodies using computational methods, 

researchers typically follow a well-defined process. It all starts with techniques like 

crystallography or computational modeling to build a three-dimensional model of the 

antibody-antigen complex. Once they have that structure, the next step is to figure out 
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which residues are most important for interaction. This means identifying specific areas 

that are key for binding, making them ideal candidates for mutagenesis, all based on 

distance thresholds or energetic criteria. 

The next step involves performing silico mutagenesis to determine the expected 

changes in binding free energy for each variant. These values, referred to as ΔΔG, give 

us insight into how a mutation might affect things. If the values come out positive, it 

indicates a negative impact, while negative values suggest that the mutation could 

stabilize or boost affinity. Once we crunch these numbers, we rank the mutations 

according to their anticipated energetic effects, which guides us in selecting the variants 

that are most likely to enhance the therapeutic properties of the antibody. 

Machine learning has been gaining a lot of traction lately, especially since it can 

reveal intricate relationships between sequences and structures by utilizing large datasets. 

Deep learning models are also stepping up, playing a crucial role in optimizing potential 

therapies and predicting how antigens will behave based solely on their sequences [14]. 

In this context, we must make sure that model predictions are generated under consistent 

and well-defined conditions, allowing reliable comparison across different computational 

approaches [15], [16]. When using purely physics-based methods, these models often 

catch tiny interaction patterns that might slip under the radar otherwise. 

When it comes to predicting ΔΔG, which is the change in binding free energy 

due to mutations at protein–protein interfaces, there is a whole range of tools designed 

for this crucial task. These tools are super helpful because they provide a clear idea of 

whether a mutation will boost or reduce binding. Some predictors rely on machine 

learning to estimate ΔΔG from structural or sequence data, while others take a more 

physics-based route, calculating energetic contributions directly from the structure itself. 

Often, using a mix of different predictors in a consensus approach yields more reliable 

estimates, since each method has its own unique strengths and weaknesses [6], [15], [16], 

[17]. 

The field of antibody engineering has really taken off thanks to the rise of 

computational techniques. Now, researchers can whip up a targeted list of candidates that 

are likely to boost performance, rather than shifting through thousands of variants in the 
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lab. This approach helps researchers focus on the designs that are most likely to lead to 

meaningful improvements. This is especially crucial when dealing with rapidly evolving 

pathogens like SARS-CoV-2, where quickly optimizing neutralizing antibodies can make 

all the difference in developing effective therapies. In these situations, computational pre-

screening becomes an invaluable tool. 

1.3 Workflow-based platforms for structural bioinformatics 

and the emergence of Scipion-Chem 

Virtual drug screening (VDS) enables a rapid evaluation of large numbers of 

molecular variants before experimental testing. By combining structural data with 

computational scoring functions, VDS can estimate how mutations affect stability, 

affinity, or specificity, reducing the need for extensive laboratory assays. In antibody 

engineering, this approach is especially valuable because it allows efficient exploration 

of the mutational landscape of paratope residues and the prioritization of candidates with 

the greatest potential to improve antigen binding. 

The landscape of tools for computational antibody design is still fragmented, 

despite its rapid evolution. Each software package has its own distinct data formats, 

dependencies, and methods of operation, whether that involves structural analysis, 

machine learning, or energy calculations. The end results depend not only on the 

algorithm itself but also on how it is set up, how files are managed, and the decisions 

made by the user. This diversity can make reproducing results quite challenging. 

Consequently, many computational pipelines feel like a black box, making it difficult to 

determine which software version was used, how intermediate files were handled, or how 

each result was derived [18]. 

In response to this fragmentation, workflow engines emerged to create unified 

frameworks that help organize diverse tools into coherent computational pipelines. One 

of the most recognized engines in structural biology is Scipion, which was originally 

designed to manage image-processing workflows for cryo-electron microscopy. With the 

addition of a graphical user interface and a modular plugin system, Scipion enables users 

with different levels of computational skills to run numerous interconnected protocols in 

a way that is both repeatable and traceable. It guarantees complete reproducibility and 
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auditability by automatically logging every action taken within Scipion, including the 

software versions, parameters used, and all intermediate outputs. 

To expand the platform's reach into chemical and structural bioinformatics, 

Scipion-Chem was developed on this existing infrastructure. It utilizes the same workflow 

system as cryo-EM, seamlessly integrating computational tools that are essential for 

virtual screening, protein engineering, and drug design. This integration brings a host of 

advantages. Researchers can handle structural imports, mutagenesis, ΔΔG predictions, 

ranking, and visualization all from a single interface, eliminating the need to switch 

between different programs. Every time a protocol is executed (whether it involves 

FoldX, SAAMBE-3D, docking modules, or scoring techniques) it is automatically logged. 

The platform is also designed to be easily expanded with new plugins, allowing for the 

incorporation of the latest algorithms as they emerge. By standardizing data formats and 

parameter structures, the graphical environment significantly reduces the chances of user 

errors. 

Scipion-Chem is the ideal environment for optimizing antibodies. It ensures 

complete traceability, streamlines the assessment of extensive mutational libraries, and 

allows for direct comparisons of different ΔΔG predictors (all crucial components of 

high-quality computational engineering workflows) [11]. 

Scipion-Chem is much more than just a collection of computational tools. It 

represents a workflow-driven approach that ensures the design of computational 

antibodies meets the same rigorous scientific standards as traditional experimental 

methods. 

In addition to Scipion-Chem, several other platforms have been developed to 

support computational studies in structural bioinformatics. General workflow managers 

like Galaxy and Nextflow allow users to connect different tools in a reproducible way. 

However, they are not specifically designed for structure-based analyses. Other platforms 

focused on molecular modeling, such as Rosetta and HADDOCK, and offer strong 

methods for protein design, docking, and energy evaluation. However, they often focus 

on specific tasks and may need custom scripting or manual coordination between tools. 

In this setting, Scipion-Chem stands out by combining workflow automation with a 
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design focused on structure. This makes it easier to systematically compare different 

prediction methods within one reproducible framework. 

1.4 Antibody optimization in the context of SARS-CoV-2 and 

the receptor-binding domain (RBD) 

             The swift advancement and fine-tuning of therapeutic antibodies have been 

essential, especially highlighted by the worldwide spread of SARS-CoV-2. The receptor-

binding domain of the spike protein, which helps the virus enter our cells, has a direct 

interaction with the human ACE2 receptor. Neutralizing antibodies, whether produced 

during a natural infection or after vaccination, mainly focus on this specific area. To block 

the virus from attaching, a variety of therapeutic monoclonal antibodies have been 

developed to target the RBD. 

On the other hand, SARS-CoV-2 changes remarkably quickly. Concerning 

variations like Alpha, Delta, Omicron, and their numerous sub lineages have accumulated 

many RBD mutations. A number of these modifications result in immune evasion with 

decreased neutralization potency and significantly altering antibody binding. Individual 

substitutions can alter the RBD surface, break hydrogen bond networks, or produce steric 

barriers that impair previously successful interactions with antibodies, according to 

structural and thermodynamic studies [19], [20]. 

SARS-CoV-2 serves as an excellent model for designing computational 

antibodies due to its rapid and ongoing evolution. We can pinpoint variants that are likely 

to maintain strong binding even as the virus diversifies by using predictive methods that 

assess the energetic effects of mutations. These tools can also help in the smart re-

engineering of existing antibodies by identifying stabilizing mutations that lessen the 

impact of antigenic drift. 

In this context, Scipion-Chem plays a vital role by offering an effective way to 

import the antibody (RBD complex, pinpoint energetic hotspots at the interface, and 

evaluate the thermodynamic effects of mutations through various ΔΔG predictors). In 

addition, users can easily select the variants that have the highest potential for improved 

stability or affinity by directly comparing the results on the platform. 
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The RBD serves as a robust benchmark for evaluating computational pipelines, 

thanks to its well-defined structure and the extensive research on its interactions with 

neutralizing antibodies. Insights gained from studying SARS-CoV-2 can be leveraged for 

any therapeutic antibody that requires affinity maturation, as well as for other rapidly 

changing viruses. 

1.5 Objectives of the project 

The main objective of this project is to computationally optimize an antibody 

targeting the receptor-binding domain (RBD) of SARS-CoV-2 by using Scipion-Chem as 

a workflow-based platform for structure-driven antibody engineering. 

To achieve this general goal, we defined the following subobjectives: 

• Import and prepare the antibody–antigen atomic structure within Scipion-

Chem, ensuring correct organization of the structural model and accurate 

identification of protein chains. 

• Identify the structural regions of interest (ROIs) corresponding to antibody 

paratope residues involved in the interaction with the antigen, using a distance-

based interface detection protocol. 

• Evaluate the energetic impact of single-point mutations at the antibody–

antigen interface by applying ΔΔG prediction protocols available in Scipion-

Chem. 

• Compare complementary prediction strategies, combining empirical force-

field calculations (FoldX) and machine-learning–based models (SAAMBE-3D) to 

assess mutation-induced stability changes. 

• Integrate and rank mutation predictions through a consensus-based rank 

fusion strategy, enabling the identification of mutations consistently predicted as 

stabilizing across different algorithms. 
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• Assess the suitability of Scipion-Chem as a reproducible and traceable 

platform for computational antibody optimization, highlighting the advantages 

of workflow-based approaches for systematic mutational analysis. 

Although the case study focuses on an antibody against SARS-CoV-2, the 

proposed methodology is designed to be transferable to other antibody–antigen systems. 
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2 MATERIAL AND METHODS 

2.1 Material 

2.1.1 Software 

The Scipion-Chem platform (version 3.8.3) was utilized for all analyses. This 

platform allows the integration of external programs into traceable workflows, enhancing 

the Scipion workflow engine for tasks like virtual drug screening and protein engineering. 

Scipion-Chem simplifies the entire process, making it easy to repeat and reuse by 

meticulously tracking all parameters and intermediate files within a project database. 

 In this work, we employed several Scipion-Chem plugins and protocols. The 

analysis made use of the Import Atomic Structure protocol for structural data handling, 

the Define Structural ROIs protocol for interface residue identification, the SAAMBE-3D 

protocol from the scipion-chem-alexov plugin for ΔΔG prediction, the FoldX protocol 

from the scipion-chem-foldxsuite plugin for empirical energy evaluation, and the rank 

fusion protocol included in Scipion-Chem for consensus-based ranking of mutations. 

2.1.2 Structural data 

The structural data used in this study correspond to an antibody–antigen complex 

obtained from the Protein Data Bank (PDB). The structure represents the interaction 

between an antibody (or nanobody) and its target antigen, the receptor-binding domain 

(RBD) of the SARS-CoV-2 spike protein. The atomic model includes full three-

dimensional coordinates for all residues involved in the interaction, providing a detailed 

description of the binding interface. 

The PDB structure contains experimentally determined atomic coordinates, 

chain identifiers, residue numbering, and spatial arrangements that define the geometry 

of the antibody–antigen interface. These data allow the identification of interface residues 

and the evaluation of local physicochemical environments relevant for mutational 

analysis. The availability of a high-resolution structural model is essential for structure-

based approaches, as ΔΔG prediction methods rely on accurate representations of residue 

contacts, distances, and interaction networks. 
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All analyses performed in this work were based on this single experimentally 

derived structure, which served as the structural reference for the study. Using a consistent 

atomic model ensures that energetic predictions and comparative analyses reflect 

differences arising from mutations rather than from variations in structural input, which 

is a standard practice in computational studies of protein–protein interactions. 

2.2 Methodology 

This project's computational workflow relies on the step-by-step execution of 

various Scipion-Chem protocols. It involves tasks like importing structures, defining 

interface residues, calculating ΔΔG values, and merging the resulting scores. The 

workflow transitioned fluently from structural preparation to the final energetic analysis, 

thanks to the fact that each step was carried out in a controlled and traceable way. All the 

phases of this workflow can be seen in Figure 3. 

 

 

Figure 3 Computational workflow used for antibody optimization in Scipion-Chem. 

 

2.2.1. Installation and preparation of the Scipion-Chem environment 

The Scipion platform (version 3.8.3) was installed on a Linux system and 

configured to support all the protocols needed for this investigation before starting the 

computational workflow. After completing the base installation, the necessary plugins 

were added through the Scipion plugin manager. To enable chemical and structural 

bioinformatics workflows, we installed the scipion-chem plugin, which included 
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integrating the SAAMBE-3D ΔΔG predictor with scipion-chem-alexov, as well as 

incorporating the FoldX modules into Scipion using scipion-chem-foldxsuite. 

Every plugin was carefully checked in the graphical user interface to make sure 

it was registered correctly and functioning properly. Once this verification was complete, 

the Scipion-Chem environment was fully equipped with all the necessary protocols for 

the workflow, covering everything from ΔΔG prediction and rank fusion to structure 

import and Region of Interest (ROI) definition. Thanks to Scipion's ability to manage 

internal dependencies, ensure protocol compatibility, and organize data automatically, 

there was no need for any extra scripting or handling of external files. 

2.2.2 Import of the atomic structure 

The first step in the workflow was to use the Import Atomic Structure protocol 

to load the antibody–antigen complex into the Scipion-Chem environment. This protocol 

is essential because it allows the software to manage the molecule internally in the later 

stages of the analysis. It is done by reading the coordinates from a PDB file and converting 

them into a Scipion atomic structure object. 

Scipion took care of identifying the protein chains in the file and neatly 

organized them in the workspace as it went along. The import protocol automatically 

managed file validation and formatting, which meant there was no need for any manual 

editing or preprocessing of the PDB file. After that, the workflow moved on to defining 

structural regions of interest and running the ΔΔG prediction procedures, all using the 

imported structure. 

2.2.3 Definition of structural ROIs 

The Define Structural ROIs procedure in Scipion-Chem was used to identify the 

regions directly involved in the antibody–antigen interaction after the structure had been 

imported. By examining the spatial proximity between the two chains in the complex, this 

protocol enables the automatic detection of interface residues. 

In this step, the antigen chain was identified as the key player, while the antibody 

or nanobody chain served as the reference point. Scipion took on the task of measuring 
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the distances between every atom in both chains and selected the residues whose atoms 

fell within a specific range. By employing this distance-based approach, the software 

successfully pinpointed the set of residues that were most likely to play a role in binding. 

In this step, we identified the antigen chain as the interacting partner, while the 

antibody or nanobody chain served as the reference. Scipion analyzed the Euclidean 

distance between every atom in both chains and selected the residues whose atoms fell 

within a specific range. By employing this distance-based approach, the software 

successfully pinpointed the set of residues that were most likely to play a role in binding. 

A list of interface residues that indicate the structural area where mutations are 

most likely to impact the interaction energy was the outcome of this analysis. All 

subsequent ΔΔG predictions made using the SAAMBE-3D and FoldX protocols were 

based on this list. 

2.2.4 Prediction of mutation-induced ΔΔG using SAAMBE-3D 

We used the SAAMBE-3D protocol, which is part of the scipion-chem-alexov 

plugin to carry out the initial evaluation of how mutations affect energy levels after 

identifying the interface residues. This protocol predicts the change in binding free energy 

(ΔΔG) associated with specific point mutations at the antibody-antigen interface. 

Scipion started automatically generating candidate mutations for evaluation, 

using the imported structure along with a list of interface residues as its starting point. To 

figure out if a substitution would either stabilize or destabilize the interaction, SAAMBE-

3D relied on its machine-learning model based on gradient boosting decision trees, trained 

on experimentally validated mutation datasets. The protocol then created a table with the 

expected ΔΔG values for all the mutations assessed. These results were saved in Scipion 

and later combined with the FoldX predictions during the consensus ranking phase of the 

rank fusion protocol. Additionally, we made a modification in the default output table of 

the SAAMBE-3D protocol to include an extra column containing the mutation identifier. 

This ensured that each ΔΔG value could be directly associated with its corresponding 

mutation during the downstream analysis. 
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Internally, SAAMBE-3D generates its predictions by extracting a wide set of 

structural, energetic and physicochemical descriptors from the three-dimensional 

geometry of the complex. For each mutation, the algorithm characterizes the local 

environment surrounding the substituted residue and quantifies variables such as solvent-

accessible surface area, residue depth, hydrogen-bond networks, electrostatic 

contributions and pairwise interaction potentials. These features are incorporated into a 

machine-learning regression model that has been trained on experimentally measured 

ΔΔG values from mutational datasets. Learning the nonlinear relationships between local 

structural changes and their energetic consequences allows SAAMBE-3D to estimate 

whether a mutation weakens, preserves or reinforces the antibody–antigen interface. This 

integrative, feature-based approach allows the method to capture effects that are often 

difficult to model with purely physics-driven techniques, which makes SAAMBE-3D a 

useful and complementary tool for assessing mutational stability within protein–protein 

complexes. 

2.2.5 Prediction of mutation-induced ΔΔG using FoldX 

We also used the scipion-chem-foldxsuite plugin with the FoldX ΔΔG protocol 

to perform a second energetic evaluation alongside the SAAMBE-3D analysis. FoldX 

employs an empirical force-field model to assess how single-point mutations influence 

the stability of protein–protein complexes. It was provided with the same set of interface 

residues and the same imported atomic structure as those used in the SAAMBE-3D 

protocol. The protocol generated the relevant mutations and calculated the ΔΔG value for 

each residue within the area of interest. Positive values indicate a destabilizing effect, 

while negative values suggest that the mutation enhances the stability of the interaction. 

Internally, FoldX predicts the ΔΔG values using a physics-based empirical force 

method that estimates the folding free energy (ΔG) as a weighted sum of different energy 

terms, as Equation 1 shows. 

ΔG = Wvdw·ΔGvdW + WsolvH·ΔGsolvH + WsolvP·ΔGsolvP + ΔGwb 

+ ΔGhbond + ΔGel + ΔGKon+Wmc·T·ΔSmc + Wsc·T·ΔSsc  (1) 
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These terms refer to the main contributions to protein stability: ΔGvdw covers 

van der Waals interactions (with a weight Wvdw usually set to 0.33 because of differences 

in the reference states), ΔGsolvH and ΔGsolvP handle solvation penalties or gains for 

hydrophobic and polar groups when the protein folds. WsolvH an WsolvP are their 

weights. ΔGwb adds the extra stabilization from water bridges, ΔGhbond captures the 

balance between intra-protein hydrogen bonds and those with solvent, ΔGel includes 

electrostatics like charged groups and helix dipoles, ΔGKon deals with electrostatic 

effects on binding in complexes, and the last two terms (ΔSmc and ΔSsc) represent the 

entropic costs of restricting backbone and side-chain flexibility (multiplied by 

temperature T and their respective weights Wmc and Wsc) [22]. 

When FoldX analyses a mutation, it builds a model of the mutant by introducing 

the new residue and then optimizes the local structure around it. It calculates ΔG for both 

the wild-type and the mutant, and the difference between them gives ΔΔG. Breaking 

down the energy into these individual terms it can be seen what is driving the change, 

which gives a nice insight into how the mutation affects the protein-protein interface. 

Since FoldX is based on this fixed, physics-inspired model rather than being 

trained on large datasets, it provides a different angle compared to machine learning tools 

like SAAMBE-3D, and combining both makes the predictions more robust. 

The FoldX protocol produces a structured table that outlines the ΔΔG predictions 

for each mutation we are evaluating. As in the previous case, we adapted the FoldX ΔΔG 

protocol so that the resulting table included a column with the mutation name. This 

modification allowed a clear correspondence between each mutation and its predicted 

ΔΔG value. 

2.2.6 Rank Fusion: consensus scoring of ΔΔG predictions 

The Rank Fusion protocol was used to integrate the ΔΔG predictions generated 

independently by SAAMBE-3D and FoldX. This approach allows Scipion-Chem to merge 

the heterogeneous scoring outputs produced by both methods into a single ranking that 

offers a consensus view of which mutations are most likely to stabilize or destabilize the 

antibody–antigen complex. The protocol begins by applying Z-score normalization 
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(ZMUV) to the ΔΔG values from each predictor so that the scores become comparable 

despite the different scales and statistical behaviours of the underlying algorithms, and its 

mathematical calculation is shown in Equation 2. This normalization scales the scores so 

that their mean becomes zero and their variance 1. 

    𝑍𝑀𝑈𝑉𝑁𝑜𝑟𝑚(𝑠) =
𝑠 −  𝑠𝑚𝑒𝑎𝑛

𝑠𝑠𝑡𝑑
  (2) 

 

where 𝑠 represents the original score assigned to a mutation by a given predictor, 

𝑠meancorresponds to the mean value of the score distribution, and 𝑠stddenotes its standard 

deviation [23]. 

After normalization, the rankings are combined using the CombMED rule, a 

fusion strategy that prioritizes mutations consistently ranked among the best candidates 

by multiple predictors while reducing the impact of outliers. In this approach, each 

predictor assigns a relative ranking position 𝑟𝑘(𝑚) to every mutation 𝑚 according to its 

predicted energetic impact. It can be seen in Equation 3. The CombMED strategy then 

computes the median of these ranking positions to obtain a consensus score, defined as: 

CombMED(𝑚) = median(𝑟1(𝑚), 𝑟2(𝑚), … , 𝑟𝐾(𝑚)) (3) 

 

where 𝐾represents the number of predictors considered. This rank-based fusion 

method emphasizes agreement between independent predictors and avoids direct 

comparison of energetic scales that may differ across models by relying on the median of 

rankings rather than on absolute ΔΔG values. As a result, mutations that are consistently 

ranked among the top candidates are prioritized, while the influence of method-specific 

outliers is reduced. 

The final ranking, therefore, highlights mutations for which both SAAMBE-3D 

and FoldX show strong agreement, increasing confidence in the stability-enhancing 

candidates identified through the workflow. The table produced by the Rank Fusion 

protocol represents the final output of the energetic analysis and serves as the basis for 

selecting the top-scoring mutations for downstream interpretation. 
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2.2.7 Adjustments required for Rank Fusion compatibility 

During workflow development, a problem occurred when merging predictions 

from SAAMBE-3D and FoldX using the Rank Fusion protocol. Although both tools 

successfully computed ΔΔG values for all target mutations, their default output tables did 

not include the mutation identifier next to each prediction. Instead of listing the mutations 

by name, such as A40F or A59W, the tables indexed the results numerically. This 

prevented Rank Fusion from matching the ΔΔG values from the two predictors to the 

correct mutation during the fusion step. 

To solve this issue, both protocols were adjusted so that their output tables 

included an additional column containing the mutation name. This modification created 

a direct link between each ΔΔG value and its corresponding mutation, allowing Rank 

Fusion to correctly align, normalize and combine the datasets. With this change in place, 

the consensus ranking was generated without errors, and the final list of stabilizing 

mutations became more accurate, reproducible and easier to interpret. 
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3 RESULTS 

3.1 Structural data import (Import Atomic Structure) 

Bringing the antibody-antigen complex into the Scipion-Chem environment 

kicked off our workflow. We started by loading the PDB file that holds the antibody and 

the SARS-CoV-2 RBD, transforming it into an atomic structure object that Scipion could 

work with using the Import Atomic Structure protocol. Scipion automatically identified 

the protein chains in the file and organized them within the project to make things easier 

for the following steps. 

The import protocol handles all the file validation and formatting, so there was 

no need for any manual adjustments to the structure. Thanks to the successful importation 

of the complex, we were able to visually examine the chains, confirming that the structure 

could indeed be used as a basis for defining ROI and predicting ΔΔG. Figure 4 illustrates 

the imported structure as seen in the Scipion viewer, showing the recognized chains of 

the complex. 

 

 

Figure 4 Imported antibody–antigen complex. 
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3.2 Definition of ROIs 

After importing the atomic structure, the next step was to identify the residues 

involved in the antibody-antigen interaction. For this, we utilized the Define Structural 

ROIs protocol available in Scipion-Chem. This handy tool automatically detects interface 

residues by examining the spatial relationships between the selected chains, all based on 

a set distance threshold. 

In this case, the antigen chain was identified as the interaction partner, while the 

antibody chain was selected as the reference chain. To compile the list of interface 

residues that form the structural region of interest, Scipion calculated the minimum 

distances between all atoms from both chains and picked the residues that fell within the 

specified cutoff. During the subsequent ΔΔG prediction protocols, these residues became 

the targets for mutation. The results from the Define Structural ROIs protocol, which 

includes the list of interface residues identified by Scipion-Chem, are shown in Figure 5. 

 

Figure 5 Residues identified at the antibody–antigen interface using the Define Structural 

ROIs protocol in Scipion-Chem. 
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3.3 Generation of mutant models 

Scipion-Chem created a complete set of single-point mutations that will be 

evaluated in the upcoming ΔΔG prediction steps, following the identification of interface 

residues through the ROI definition protocol. The workflow produced every possible 

amino acid substitution for each residue of interest. 

The output of this step was a well-organized list detailing each mutation created 

from the selected residues. Each entry in the list clearly indicates the location of the 

residue, the original amino acid, and the proposed substitution. This mutational library 

was then used as input for both SAAMBE-3D and FoldX, ensuring that all prediction tools 

evaluated the same set of variants consistently. Figure 6 displays an excerpt of the list of 

mutations generated in Scipion, which includes all the single-point variants derived from 

the residues located at the antibody–antigen interface. 

 

 

Figure 6 Mutational library generated from the ROI residues. 
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3.4 ΔΔG predictions obtained with SAAMBE-3D 

We used the SAAMBE-3D protocol integrated into Scipion-Chem to evaluate 

how single-point mutations affect energy levels after specifying the structural regions of 

interest. This method allows for an initial evaluation of how each residue change might 

influence the stability of the antibody-antigen interaction by generating predictions 

specific to each mutation regarding changes in binding free energy (ΔΔG). 

Additionally, we created a table displaying the predicted ΔΔG values for each 

mutation we evaluated using the protocol. Each row highlights a unique mutation at one 

of the interface residues, along with the numerical value assigned by the SAAMBE-3D 

model. If the ΔΔG value is negative, it suggests a stabilizing effect on the interaction, 

while positive values point to destabilizing mutations. We successfully generated results 

for every mutation listed in the ROI. 

The predicted ΔΔG values for the examined mutations are shown in an excerpt 

of the SAAMBE-3D output table in Figure 7. The first column shows the mutation name, 

the second one the ΔΔG values calculated with the protocol, and the last one the values 

normalized. 

 

Figure 7 SAAMBE-3D ΔΔG predictions. 
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3.5 ΔΔG predictions obtained with FoldX 

Using the FoldX ΔΔG protocol, which is integrated through the scipion-chem-

foldxsuite plugin, we conducted a second independent evaluation of how mutations affect 

the antibody–antigen interaction. This protocol utilized the empirical force-field model 

from FoldX to estimate the changes in binding free energy for each mutation within the 

designated area of interest. 

The protocol generated a result table listing all evaluated mutations and their 

corresponding ΔΔG values. Just like the output from SAAMBE-3D, positive values point 

to destabilizing mutations, while negative values indicate stabilizing effects on the 

interaction. This table provides the second independent ranking required for the upcoming 

fusion analysis and enables a direct comparison of FoldX predictions across all candidate 

mutations. 

An excerpt portion of the FoldX results table produced by Scipion-Chem, which 

lists the ΔΔG values connected to each mutation, is shown in Figure 8. 

 

Figure 8 ΔΔG values predicted by the FoldX protocol. 
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3.6 Consensus ranking with Rank Fusion 

Using the Rank Fusion protocol that is part of Scipion-Chem, we conducted a 

consensus analysis to merge the predictions from SAAMBE-3D and FoldX. This protocol 

employs normalization and aggregation techniques to bring together multiple ranked lists, 

ultimately producing a single ranking that reflects the consensus among the different ΔΔG 

predictors. 

The protocol started by applying a zero-mean, unit-variance transformation 

(ZMUV) to standardize the scores after it received the output tables from SAAMBE-3D 

and FoldX. This step ensured that both predictors were now aligned on a similar numerical 

scale. Once the normalization was complete, the individual rankings for each mutation 

were merged into a single consensus score using the CombMED aggregation rule. Both 

methods suggest that mutations with lower consensus values are likely to have a more 

significant stabilizing effect. 

The protocol produced a ranked list that featured every mutation evaluated, 

along with its final position in the combined ranking and consensus score. Figure 9 shows 

the table generated by the rank fusion protocol, which contains the total scores and the 

resulting order of mutations. 

 

Figure 9 Consensus ranking obtained with the Rank Fusion protocol. 
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3.7 Global analysis of mutational effects 

We evaluated a total of 940 single-point mutations for each predictor, 

corresponding to the complete set of variants generated from the residues selected in the 

region-of-interest analysis. For each mutation, both SAAMBE-3D and FoldX provided an 

estimated change in binding free energy (ΔΔG), together with a normalized score 

expressed as a z-score. This comprehensive dataset allowed a global analysis of the 

mutational landscape at the antibody–antigen interface beyond the inspection of 

individual top-ranked variants. 

The overall distribution of predicted ΔΔG values indicates that most mutations 

produce either neutral or destabilizing effects on the interaction, while only a limited 

subset is predicted to be stabilizing. This behavior is consistent with the general 

expectation for protein–protein interfaces, where only a small fraction of possible 

substitutions improves binding affinity, and the majority either disrupt favorable 

interactions or have a negative energetic impact. As a result, prioritization strategies are 

required to distinguish meaningful candidates from background noise. 

Comparison between SAAMBE-3D and FoldX predictions reveals partial 

agreement across the full set of mutations. While individual ΔΔG values may differ 

between methods due to their distinct modelling approaches, both predictors tend to 

converge on a small group of mutations with consistently favorable energetic profiles. 

This observation supports the use of a consensus-based ranking strategy, as agreement 

between independent predictors increases confidence in the relevance of the selected 

candidates. 

The addition of z-score normalization further facilitated comparison between 

predictors by placing their outputs on a common scale. Normalization reduces the 

influence of differences in score distributions and ensures that rankings are driven by 

relative performance rather than absolute numerical values. Consequently, the subsequent 

rank fusion step emphasizes mutations that perform well across both predictors instead of 

those supported by a single method. 

This global analysis emphasizes the highly selective nature of stabilizing 

mutations at the antibody–antigen interface and justifies the need for ranking and fusion 
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strategies when exploring large mutational datasets. Rather than focusing only on 

absolute ΔΔG values, the workflow captures general trends across hundreds of variants, 

enabling a robust prioritization of mutations for further analysis. 
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4 DISCUSSION 

The analysis combining SAAMBE-3D and FoldX identified a small subset of 

mutations within the antibody paratope that consistently show stabilizing effects on the 

interaction with the SARS-CoV-2 RBD. The top-ranked variants (AB40F, AB40D, 

AB40K, AB40Q and AB59W) correspond to substitutions at positions 40 and 59 of chain 

B, both of which belong to interface regions previously detected by the ROI selection 

protocol. 

The four highest-scoring mutations were all located at residue 40, originally an 

alanine. The substitutions A40F, A40D, A40K and A40Q seem to decrease the binding 

free energy (ΔΔG < 0) leading to their prioritization in the fused ranking. This consistent 

agreement between predictors suggests that position 40 plays a relevant role within the 

antibody–antigen interface, and that altering its physicochemical properties may enhance 

the stability of the complex [10], [17]. 

In addition to residue 40, the mutation A59W also ranked among the best 

candidates. Position 59 is part of a different paratope region, indicating that multiple 

interface segments contain residues with potential for stabilization through single-point 

substitution. Although SAAMBE-3D and FoldX rely on different modelling principles, 

both identified this mutation as energetically favorable, reinforcing the validity of the 

consensus-based prioritization. 

From a structural perspective, the concentration of stabilizing mutations within 

paratope regions is consistent with the central role of these residues in antigen 

recognition. The paratope constitutes the antibody surface directly involved in binding 

and is therefore particularly sensitive to physicochemical changes introduced by point 

mutations. Even subtle substitutions at the interface can modulate local packing, 

electrostatic complementarity, or solvent exposure, leading to measurable energetic 

effects. The identification of multiple stabilizing mutations within distinct paratope 

segments suggests that the antibody–antigen interface contains several positions 

amenable to optimization rather than a single dominant hotspot. 

These results collectively indicate that positions 40 and 59 concentrate the 

mutations with the strongest predicted stabilizing effects and therefore represent 
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promising targets for future experimental evaluation. The fact that two independent ΔΔG 

predictors converged on these residues increases the confidence in the computational 

predictions, although experimental validation would still be required to confirm their 

actual impact on binding affinity. 

The use of the strategy based on ROI was important in focusing the mutational 

analysis on residues most likely to influence binding. By restricting the search space to 

interface residues identified through distance-based criteria, the workflow avoided the 

exploration of mutations with limited structural relevance. This targeted approach not 

only improves computational efficiency but also increases the interpretability of the 

results, as predicted energetic changes can be directly linked to spatial proximity to 

antigen. The consistency between ROI selection and the location of the top-ranked 

mutations further supports the validity of this strategy. 

The convergence of SAAMBE-3D and FoldX predictions on the same set of top-

ranked mutations highlights the utility of combining ΔΔG predictors within a consensus-

based workflow. While each method relies on different modelling assumptions (machine-

learning features in the case of SAAMBE-3D and an empirical force-field prediction in 

FoldX) the agreement observed for residues 40 and 59 suggests that the stabilizing trends 

detected are not artefacts of a single algorithm. This reinforces the robustness of the rank 

fusion strategy, as mutations prioritized by both approaches are more likely to represent 

genuine energetic improvements rather than method-specific biases. 

Similar consensus-based strategies have been increasingly adopted in 

computational protein engineering to mitigate the limitations of individual predictors. 

Single-method approaches may be biased by their underlying assumptions or training 

data, whereas combining complementary models can improve robustness and confidence 

in the selected candidates. In this context, the agreement observed between a machine-

learning–based predictor and a physics-based force-field model aligns with current best 

practices in computational antibody optimization, where consensus scoring is often 

preferred over reliance on a single algorithm. 

Despite these results, there are several limitations in the present study. The 

predictions are based on a single static structure of the antibody–antigen complex and do 
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not account for conformational flexibility or long-timescale dynamics that may influence 

binding. Furthermore, ΔΔG estimates obtained from computational models provide 

relative trends rather than absolute affinity changes, and their accuracy depends on the 

quality of the underlying structural data and training datasets. The stabilizing effect 

predicted for the selected mutations should be interpreted as hypotheses that require 

experimental validation for this reason. 

Despite these limitations, the results obtained provide valuable guidance for 

rational antibody design. Computational prioritization of stabilizing mutations can 

significantly reduce the experimental burden by narrowing down the number of variants 

that need to be tested in vitro. In particular, mutations consistently predicted as stabilizing 

across multiple models represent strong candidates for subsequent experimental 

characterization, such as binding affinity measurements or stability assays. As such, the 

present workflow can be seen as an effective filtering step within a broader antibody 

engineering pipeline. 

Finally, although this study focuses on a single antibody–antigen system, the 

proposed workflow is not system-specific. The modular design of Scipion-Chem allows 

the same pipeline to be applied to other antibody targets or protein–protein interactions 

with minimal adaptation. Additional predictors or alternative ranking strategies could also 

be incorporated in future applications, further enhancing the flexibility of the approach. 

Beyond the specific mutations identified, this work demonstrates the 

applicability of Scipion-Chem as a reproducible workflow-based platform for antibody 

optimization. The integration of structure preparation, interface definition, ΔΔG 

prediction, and rank fusion within a single environment simplifies the exploration of 

mutational landscapes and reduces manual intervention. This modular approach 

facilitates the comparison of multiple predictors and can be readily extended to other 

antibody–antigen systems or additional scoring methods. 
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5 CONCLUSIONS 

This project demonstrates the applicability of Scipion-Chem as an integrated and 

reproducible platform for the computational optimization of antibody–antigen 

interactions. Combining structure-based analysis, interface residue selection, ΔΔG 

prediction, and consensus ranking within a single workflow, we established a systematic 

approach to explore the energetic impact of single-point mutations at the antibody 

paratope. This integration allowed the entire mutational analysis to be carried out in a 

transparent and traceable manner, minimizing manual intervention and ensuring 

consistency across all computational steps. 

The use of two complementary ΔΔG predictors, SAAMBE-3D and FoldX, 

enabled the evaluation of mutational effects from distinct methodological perspectives. 

While SAAMBE-3D relies on machine-learning models trained on structural and 

physicochemical descriptors of protein–protein interfaces, FoldX applies an empirical 

force-field framework to estimate energetic contributions. The agreement observed 

between both methods for a subset of mutations underscores the value of combining 

heterogeneous predictors when assessing protein stability and binding affinity. Rather 

than relying on a single scoring function, the consensus-based strategy implemented 

through rank fusion increased confidence in the prioritization of candidate mutations by 

reducing method-specific biases. 

Through this consensus approach, a small group of mutations affecting residues 

40 and 59 of chain B was consistently identified as potentially stabilizing the interaction 

with the SARS-CoV-2 receptor-binding domain. These residues were previously detected 

as part of the antibody–antigen interface during the region-of-interest selection step, 

supporting the relevance of the structural filtering strategy employed. Although the 

present study does not provide experimental validation, the convergence of predictions 

across independent models suggests that these positions represent promising targets for 

further investigation in vitro or in vivo. 

Beyond the identification of specific mutations, one of the main contributions of 

this work lies in the establishment of a generalizable computational workflow for 

antibody optimization. The modular design of Scipion-Chem allows each stage of the 
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analysis (structure import, interface definition, mutation generation, energy evaluation, 

and ranking) to be adapted or extended with minimal changes. As a result, the same 

pipeline could be applied to other antibody–antigen systems or expanded to include 

additional predictors, scoring strategies, or structural models, depending on the needs of 

future studies. 

In addition to the specific mutations identified, the present study highlights 

several strengths of the proposed computational approach. One of the main advantages is 

the integration of all analysis steps within a single workflow-based platform, which 

ensures reproducibility and traceability throughout the entire process. By combining 

structure import, interface definition, mutational analysis, energetic prediction, and 

consensus ranking in a unified environment, the workflow minimizes manual intervention 

and reduces the risk of inconsistencies between intermediate results. Furthermore, the use 

of complementary predictors and rank-based aggregation increases the robustness of 

prioritization, as candidate mutations are selected based on consistent trends rather than 

isolated predictions from a single method. 

Despite its strengths, this work also presents several limitations inherent to 

structure-based computational approaches. The analysis was based on a single static 

structural model of the antibody–antigen complex and therefore does not account for 

conformational flexibility, induced fit effects, or long-timescale dynamics that may 

influence binding. In addition, ΔΔG predictions obtained from computational models 

provide relative energetic trends rather than absolute affinity measurements. 

Consequently, the stabilizing effects predicted for the selected mutations should be 

interpreted as hypotheses that require experimental validation through biochemical or 

biophysical assays. 

Nevertheless, within these limitations, the proposed workflow represents an 

effective strategy for analysing large mutational spaces and guiding experimental efforts 

toward the most promising candidates. The approach can significantly reduce the 

experimental burden associated with antibody engineering and accelerate early-stage 

optimization by prioritizing mutations with consistent stabilizing predictions across 

multiple models. 
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From a broader perspective, the methodology developed in this project can serve 

as a flexible framework for future computational antibody optimization studies. The same 

workflow could be readily applied to other antibody–antigen systems or adapted to 

include additional ΔΔG predictors and alternative ranking strategies. Future work could 

also extend the analysis to account for conformational flexibility, for example through 

molecular dynamics simulations, or explore combinations of mutations to assess potential 

cooperative effects. In this context, the present study provides a solid starting point for 

iterative optimization pipelines in which computational predictions guide experimental 

validation, contributing to more efficient and rational antibody engineering strategies. 

In conclusion, this project highlights the potential of workflow-driven 

computational platforms such as Scipion-Chem to support rational antibody design. The 

combination of reproducibility, scalability, and consensus-based evaluation provides a 

robust framework for exploring antibody–antigen interactions and identifying candidate 

mutations for further development. As computational methods continue to evolve and 

integrate more accurate predictive models, these workflows are expected to play an 

increasingly important role in the design and optimization of next-generation therapeutic 

antibodies. 
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