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ABSTRACT

Therapeutic antibodies are a central class of biopharmaceuticals used for the
treatment of infectious diseases, cancer, and immune-related disorders. They usually
require optimization to improve their affinity and stability. In this project, we developed
a computational workflow in Scipion-Chem to analyze point mutations in antibodies. We
tested our workflow with an antibody directed against the receptor-binding domain

(RBD) of SARS-CoV-2.

The workflow included the import of the structure, the identification of paratope
residues through a distance-based protocol, and the prediction of the energetic impact of
mutations using two complementary tools: SAAMBE-3D (machine-learning model) and
FoldX (empirical force field). Both tools generated independent AAG predictions that
were later integrated through the rank fusion protocol, using ZMUV normalization and
the CombMED method to obtain a consensus ranking. The top-ranked mutations were
A40F, A40D, A40K, A40Q and A59W, all of them located in key interfacial regions and
predicted as stabilizing by both methods.

Overall, the study demonstrates that Scipion-Chem enables the systematic
identification of potentially beneficial mutations and provides a reproducible framework

for the computational optimization of antibodies.
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RESUMEN

Los anticuerpos terapéuticos constituyen una clase central de biofarmacos
utilizados para el tratamiento de enfermedades infecciosas, cancer y trastornos
relacionados con el sistema inmunitario. Normalmente suelen requerir una optimizacion
precisa de sus interfaces de union para mejorar su afinidad y estabilidad. En este
proyecto se desarrollo un flujo de trabajo computacional en Scipion-Chem para analizar
mutaciones puntuales en anticuerpos. En particular, evaluamos un flujo de trabajo con

un anticuerpo dirigido frente al dominio de union al receptor (RBD) del SARS-CoV-2.

El flujo de trabajo incluyo la importacion de la estructura, la identificacion de
los residuos del paratopo mediante un protocolo basado en distancias y la prediccion del
impacto energético de las mutaciones mediante dos herramientas complementarias:
SAAMBE-3D (modelo de aprendizaje automdtico) y FoldX (campo de fuerza empirico).
Ambas herramientas generaron predicciones independientes de AAG que posteriormente
se integraron mediante el protocolo de rank fusion, utilizando normalizacion ZMUYV y el
método CombMED para obtener una clasificacion consensuada. Las mutaciones mejor
posicionadas fueron A40F, A40D, A40K, A40Q y A59W, todas ellas localizadas en

regiones clave del interfaz y predichas como estabilizadoras por ambos métodos.

En conjunto, el estudio demuestra que Scipion-Chem permite identificar de
forma sistematica mutaciones potencialmente beneficiosas y proporciona un marco

reproducible para la optimizacion computacional de anticuerpos.

il
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1 INTRODUCTION

1.1 Therapeutic antibodies: biological relevance, challenges,

and the need for optimization

Nowadays in the biological drug development landscape, therapeutic antibodies
have become a major player and a true growth engine for the pharmaceutical industry.
Their biological effects are based on their ability to target specific molecular sites with
impressive affinity and precision, allowing for incredibly accurate treatments across a
range of diseases. Over the past three decades, antibodies have revolutionized how we
approach inflammatory and infectious diseases, cancer, neurodegenerative disorders, and
even metabolic syndromes. Their journey into clinical use has solidified their status as

one of the most successful classes of biotherapeutics [1], [2], [3], [4].

Figure 1 illustrates the structural basis of antibody—antigen recognition, showing
how the antigen binds specifically to the antibody paratope through a network of non-
covalent interactions that define both binding affinity and specificity. Figure 2
complements this structural view by placing the interaction in a broader biological

context, illustrating the role of antigens within the adaptive immune response.

Variable

Epitope '
region

Constant
region

Immunogen or Antigen Paratope

Figure 1 Structural representation of an antibody—antigen interaction.
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Role of Antigens in the Adaptive
Immune Response

Antigens B cell

R-cell
B-cell activation

v

activation

Pathogen l
Antibodies
Figure 2 Role of antigens in the adaptive immune response.

The complementarity-determining regions of the variable domains are the site of
a complex network of precisely calibrated molecular reactions that give rise to antibody
function. These regions come together to form the so-called paratope, which is the part of
the antibody that interacts with and binds to a specific area of an antigen known as the
epitope. The underlying energetic and structural aspects of this interaction are quite
intricate. Factors like hydrogen bonding, van der Waals forces, electrostatic interactions,
hydrophobic packing, and the flexibility of the bound ligand all contribute uniquely to the
overall affinity and specificity. Even a single amino acid can tip the scales significantly,
meaning that even small changes can greatly affect stability, conformational dynamics,

or how well an antigen is recognized [5], [6].

The immune system naturally produces antibodies, but these are not always
perfect for therapeutic use. Most candidates need to demonstrate better affinity, reduced
off-target binding, greater stability, or other improvements that make it easier to
manufacture or formulate. The methods used to enhance the natural properties of these
binding molecules are known as antibody optimization, and this process is crucial for

transforming a natural binder into an effective therapeutic agent.

For many years, optimization primarily relied on experimental techniques like

directed evolution, phage display, and error-prone PCR, along with high-throughput
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mutagenesis screens. These approaches generated numerous mutants and enabled the
selection of superior molecules through multiple rounds of testing. While they have been
effective, they come with significant downsides. These methods can be slow and tedious,
often requiring researchers to sort through thousands or even millions of mutations each
time to pinpoint candidates with the desired biochemical or biophysical traits [7]. There
is a practical limit to how much of the mutational space we can explore. Typically, the
variable region of an antibody is made up of around two hundred amino acids, but the
number of possible point mutations already surpasses three thousand. Trying to fully

search for this space is just not feasible in most experimental scenarios [8].

A key challenge in antibody engineering is the vastness of the search space.
Relying solely on brute-force experimentation to navigate these high-dimensional
mutational landscapes just does not cut it. It also complicates our ability to predict how
small changes can ripple through the protein structure or to pinpoint the role of individual
residues at the interface. These limitations have led to a gradual shift towards methods
that can guide experimental efforts with a solid understanding of structure, energy, and
mechanics. As a result, computational antibody optimization has become an essential

component of modern antibody design processes [9], [10].

1.2 Computational antibody engineering: principles, tools, and

advantages

In the world of designing therapeutic antibodies, computational methods are
playing an increasingly vital role. They research into the antibody—antigen interface,
examining how each residue contributes to binding and predicting how specific mutations
could impact affinity, stability, and overall developability. By providing a structured and
mechanistic approach, these techniques not only save time and reduce costs but also ease
the experimental burden by pinpointing the most promising mutations before any lab

work begins [11], [12], [13].

When it comes to designing antibodies using computational methods,
researchers typically follow a well-defined process. It all starts with techniques like
crystallography or computational modeling to build a three-dimensional model of the

antibody-antigen complex. Once they have that structure, the next step is to figure out
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which residues are most important for interaction. This means identifying specific areas
that are key for binding, making them ideal candidates for mutagenesis, all based on

distance thresholds or energetic criteria.

The next step involves performing silico mutagenesis to determine the expected
changes in binding free energy for each variant. These values, referred to as AAG, give
us insight into how a mutation might affect things. If the values come out positive, it
indicates a negative impact, while negative values suggest that the mutation could
stabilize or boost affinity. Once we crunch these numbers, we rank the mutations
according to their anticipated energetic effects, which guides us in selecting the variants

that are most likely to enhance the therapeutic properties of the antibody.

Machine learning has been gaining a lot of traction lately, especially since it can
reveal intricate relationships between sequences and structures by utilizing large datasets.
Deep learning models are also stepping up, playing a crucial role in optimizing potential
therapies and predicting how antigens will behave based solely on their sequences [14].
In this context, we must make sure that model predictions are generated under consistent
and well-defined conditions, allowing reliable comparison across different computational
approaches [15], [16]. When using purely physics-based methods, these models often

catch tiny interaction patterns that might slip under the radar otherwise.

When it comes to predicting AAG, which is the change in binding free energy
due to mutations at protein—protein interfaces, there is a whole range of tools designed
for this crucial task. These tools are super helpful because they provide a clear idea of
whether a mutation will boost or reduce binding. Some predictors rely on machine
learning to estimate AAG from structural or sequence data, while others take a more
physics-based route, calculating energetic contributions directly from the structure itself.
Often, using a mix of different predictors in a consensus approach yields more reliable
estimates, since each method has its own unique strengths and weaknesses [6], [15], [16],

[17].

The field of antibody engineering has really taken off thanks to the rise of
computational techniques. Now, researchers can whip up a targeted list of candidates that

are likely to boost performance, rather than shifting through thousands of variants in the




Computational optimization of antibodies

lab. This approach helps researchers focus on the designs that are most likely to lead to
meaningful improvements. This is especially crucial when dealing with rapidly evolving
pathogens like SARS-CoV-2, where quickly optimizing neutralizing antibodies can make
all the difference in developing effective therapies. In these situations, computational pre-

screening becomes an invaluable tool.

1.3 Workflow-based platforms for structural bioinformatics

and the emergence of Scipion-Chem

Virtual drug screening (VDS) enables a rapid evaluation of large numbers of
molecular variants before experimental testing. By combining structural data with
computational scoring functions, VDS can estimate how mutations affect stability,
affinity, or specificity, reducing the need for extensive laboratory assays. In antibody
engineering, this approach is especially valuable because it allows efficient exploration
of the mutational landscape of paratope residues and the prioritization of candidates with

the greatest potential to improve antigen binding.

The landscape of tools for computational antibody design is still fragmented,
despite its rapid evolution. Each software package has its own distinct data formats,
dependencies, and methods of operation, whether that involves structural analysis,
machine learning, or energy calculations. The end results depend not only on the
algorithm itself but also on how it is set up, how files are managed, and the decisions
made by the user. This diversity can make reproducing results quite challenging.
Consequently, many computational pipelines feel like a black box, making it difficult to
determine which software version was used, how intermediate files were handled, or how

each result was derived [18].

In response to this fragmentation, workflow engines emerged to create unified
frameworks that help organize diverse tools into coherent computational pipelines. One
of the most recognized engines in structural biology is Scipion, which was originally
designed to manage image-processing workflows for cryo-electron microscopy. With the
addition of a graphical user interface and a modular plugin system, Scipion enables users
with different levels of computational skills to run numerous interconnected protocols in

a way that is both repeatable and traceable. It guarantees complete reproducibility and
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auditability by automatically logging every action taken within Scipion, including the

software versions, parameters used, and all intermediate outputs.

To expand the platform's reach into chemical and structural bioinformatics,
Scipion-Chem was developed on this existing infrastructure. It utilizes the same workflow
system as cryo-EM, seamlessly integrating computational tools that are essential for
virtual screening, protein engineering, and drug design. This integration brings a host of
advantages. Researchers can handle structural imports, mutagenesis, AAG predictions,
ranking, and visualization all from a single interface, eliminating the need to switch
between different programs. Every time a protocol is executed (whether it involves
FoldX, SAAMBE-3D, docking modules, or scoring techniques) it is automatically logged.
The platform is also designed to be easily expanded with new plugins, allowing for the
incorporation of the latest algorithms as they emerge. By standardizing data formats and
parameter structures, the graphical environment significantly reduces the chances of user

CITOorS.

Scipion-Chem is the ideal environment for optimizing antibodies. It ensures
complete traceability, streamlines the assessment of extensive mutational libraries, and
allows for direct comparisons of different AAG predictors (all crucial components of

high-quality computational engineering workflows) [11].

Scipion-Chem is much more than just a collection of computational tools. It
represents a workflow-driven approach that ensures the design of computational
antibodies meets the same rigorous scientific standards as traditional experimental

methods.

In addition to Scipion-Chem, several other platforms have been developed to
support computational studies in structural bioinformatics. General workflow managers
like Galaxy and Nextflow allow users to connect different tools in a reproducible way.
However, they are not specifically designed for structure-based analyses. Other platforms
focused on molecular modeling, such as Rosetta and HADDOCK, and offer strong
methods for protein design, docking, and energy evaluation. However, they often focus
on specific tasks and may need custom scripting or manual coordination between tools.

In this setting, Scipion-Chem stands out by combining workflow automation with a
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design focused on structure. This makes it easier to systematically compare different

prediction methods within one reproducible framework.

1.4 Antibody optimization in the context of SARS-CoV-2 and
the receptor-binding domain (RBD)

The swift advancement and fine-tuning of therapeutic antibodies have been
essential, especially highlighted by the worldwide spread of SARS-CoV-2. The receptor-
binding domain of the spike protein, which helps the virus enter our cells, has a direct
interaction with the human ACE2 receptor. Neutralizing antibodies, whether produced
during a natural infection or after vaccination, mainly focus on this specific area. To block
the virus from attaching, a variety of therapeutic monoclonal antibodies have been

developed to target the RBD.

On the other hand, SARS-CoV-2 changes remarkably quickly. Concerning
variations like Alpha, Delta, Omicron, and their numerous sub lineages have accumulated
many RBD mutations. A number of these modifications result in immune evasion with
decreased neutralization potency and significantly altering antibody binding. Individual
substitutions can alter the RBD surface, break hydrogen bond networks, or produce steric
barriers that impair previously successful interactions with antibodies, according to

structural and thermodynamic studies [19], [20].

SARS-CoV-2 serves as an excellent model for designing computational
antibodies due to its rapid and ongoing evolution. We can pinpoint variants that are likely
to maintain strong binding even as the virus diversifies by using predictive methods that
assess the energetic effects of mutations. These tools can also help in the smart re-
engineering of existing antibodies by identifying stabilizing mutations that lessen the

impact of antigenic drift.

In this context, Scipion-Chem plays a vital role by offering an effective way to
import the antibody (RBD complex, pinpoint energetic hotspots at the interface, and
evaluate the thermodynamic effects of mutations through various AAG predictors). In
addition, users can easily select the variants that have the highest potential for improved

stability or affinity by directly comparing the results on the platform.
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The RBD serves as a robust benchmark for evaluating computational pipelines,
thanks to its well-defined structure and the extensive research on its interactions with
neutralizing antibodies. Insights gained from studying SARS-CoV-2 can be leveraged for
any therapeutic antibody that requires affinity maturation, as well as for other rapidly

changing viruses.

1.5 Objectives of the project

The main objective of this project is to computationally optimize an antibody
targeting the receptor-binding domain (RBD) of SARS-CoV-2 by using Scipion-Chem as

a workflow-based platform for structure-driven antibody engineering.
To achieve this general goal, we defined the following subobjectives:

e Import and prepare the antibody—antigen atomic structure within Scipion-
Chem, ensuring correct organization of the structural model and accurate

identification of protein chains.

o Identify the structural regions of interest (ROIs) corresponding to antibody
paratope residues involved in the interaction with the antigen, using a distance-

based interface detection protocol.

o Evaluate the energetic impact of single-point mutations at the antibody—
antigen interface by applying AAG prediction protocols available in Scipion-

Chem.

e Compare complementary prediction strategies, combining empirical force-
field calculations (FoldX) and machine-learning—based models (S44MBE-3D) to

assess mutation-induced stability changes.

o Integrate and rank mutation predictions through a consensus-based rank
fusion strategy, enabling the identification of mutations consistently predicted as

stabilizing across different algorithms.
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o Assess the suitability of Scipion-Chem as a reproducible and traceable
platform for computational antibody optimization, highlighting the advantages

of workflow-based approaches for systematic mutational analysis.

Although the case study focuses on an antibody against SARS-CoV-2, the

proposed methodology is designed to be transferable to other antibody—antigen systems.
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2 MATERIAL AND METHODS

2.1 Material
2.1.1 Software

The Scipion-Chem platform (version 3.8.3) was utilized for all analyses. This
platform allows the integration of external programs into traceable workflows, enhancing
the Scipion workflow engine for tasks like virtual drug screening and protein engineering.
Scipion-Chem simplifies the entire process, making it easy to repeat and reuse by

meticulously tracking all parameters and intermediate files within a project database.

In this work, we employed several Scipion-Chem plugins and protocols. The
analysis made use of the Import Atomic Structure protocol for structural data handling,
the Define Structural ROIs protocol for interface residue identification, the SAAMBE-3D
protocol from the scipion-chem-alexov plugin for AAG prediction, the FoldX protocol
from the scipion-chem-foldxsuite plugin for empirical energy evaluation, and the rank

fusion protocol included in Scipion-Chem for consensus-based ranking of mutations.

2.1.2 Structural data

The structural data used in this study correspond to an antibody—antigen complex
obtained from the Protein Data Bank (PDB). The structure represents the interaction
between an antibody (or nanobody) and its target antigen, the receptor-binding domain
(RBD) of the SARS-CoV-2 spike protein. The atomic model includes full three-
dimensional coordinates for all residues involved in the interaction, providing a detailed

description of the binding interface.

The PDB structure contains experimentally determined atomic coordinates,
chain identifiers, residue numbering, and spatial arrangements that define the geometry
of the antibody—antigen interface. These data allow the identification of interface residues
and the evaluation of local physicochemical environments relevant for mutational
analysis. The availability of a high-resolution structural model is essential for structure-
based approaches, as AAG prediction methods rely on accurate representations of residue

contacts, distances, and interaction networks.

10
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All analyses performed in this work were based on this single experimentally
derived structure, which served as the structural reference for the study. Using a consistent
atomic model ensures that energetic predictions and comparative analyses reflect
differences arising from mutations rather than from variations in structural input, which

is a standard practice in computational studies of protein—protein interactions.

2.2 Methodology

This project's computational workflow relies on the step-by-step execution of
various Scipion-Chem protocols. It involves tasks like importing structures, defining
interface residues, calculating AAG values, and merging the resulting scores. The
workflow transitioned fluently from structural preparation to the final energetic analysis,
thanks to the fact that each step was carried out in a controlled and traceable way. All the

phases of this workflow can be seen in Figure 3.

Import Atomic Define Structural Adjusiments required SAAMBE-3D AAG
Structure > ROIs > for Rank Fusion *  Prediction
compatibility
¥ ¥

Rank Fusion (ZMUY

_—
Foldx AAG Prediction| ——— ] + CombMED)

Figure 3 Computational workflow used for antibody optimization in Scipion-Chem.

2.2.1. Installation and preparation of the Scipion-Chem environment

The Scipion platform (version 3.8.3) was installed on a Linux system and
configured to support all the protocols needed for this investigation before starting the
computational workflow. After completing the base installation, the necessary plugins
were added through the Scipion plugin manager. To enable chemical and structural

bioinformatics workflows, we installed the scipion-chem plugin, which included

11
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integrating the SAAMBE-3D AAG predictor with scipion-chem-alexov, as well as

incorporating the FoldX modules into Scipion using scipion-chem-foldxsuite.

Every plugin was carefully checked in the graphical user interface to make sure
it was registered correctly and functioning properly. Once this verification was complete,
the Scipion-Chem environment was fully equipped with all the necessary protocols for
the workflow, covering everything from AAG prediction and rank fusion to structure
import and Region of Interest (ROI) definition. Thanks to Scipion's ability to manage
internal dependencies, ensure protocol compatibility, and organize data automatically,

there was no need for any extra scripting or handling of external files.
2.2.2 Import of the atomic structure

The first step in the workflow was to use the Import Atomic Structure protocol
to load the antibody—antigen complex into the Scipion-Chem environment. This protocol
is essential because it allows the software to manage the molecule internally in the later
stages of the analysis. It is done by reading the coordinates from a PDB file and converting

them into a Scipion atomic structure object.

Scipion took care of identifying the protein chains in the file and neatly
organized them in the workspace as it went along. The import protocol automatically
managed file validation and formatting, which meant there was no need for any manual
editing or preprocessing of the PDB file. After that, the workflow moved on to defining
structural regions of interest and running the AAG prediction procedures, all using the

imported structure.
2.2.3 Definition of structural ROIs

The Define Structural ROIs procedure in Scipion-Chem was used to identify the
regions directly involved in the antibody—antigen interaction after the structure had been
imported. By examining the spatial proximity between the two chains in the complex, this

protocol enables the automatic detection of interface residues.

In this step, the antigen chain was identified as the key player, while the antibody

or nanobody chain served as the reference point. Scipion took on the task of measuring

12
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the distances between every atom in both chains and selected the residues whose atoms
fell within a specific range. By employing this distance-based approach, the software

successfully pinpointed the set of residues that were most likely to play a role in binding.

In this step, we identified the antigen chain as the interacting partner, while the
antibody or nanobody chain served as the reference. Scipion analyzed the Euclidean
distance between every atom in both chains and selected the residues whose atoms fell
within a specific range. By employing this distance-based approach, the software

successfully pinpointed the set of residues that were most likely to play a role in binding.

A list of interface residues that indicate the structural area where mutations are
most likely to impact the interaction energy was the outcome of this analysis. All
subsequent AAG predictions made using the SAAMBE-3D and FoldX protocols were

based on this list.
2.2.4 Prediction of mutation-induced AAG using SAAMBE-3D

We used the SAAMBE-3D protocol, which is part of the scipion-chem-alexov
plugin to carry out the initial evaluation of how mutations affect energy levels after
identifying the interface residues. This protocol predicts the change in binding free energy

(AAG) associated with specific point mutations at the antibody-antigen interface.

Scipion started automatically generating candidate mutations for evaluation,
using the imported structure along with a list of interface residues as its starting point. To
figure out if a substitution would either stabilize or destabilize the interaction, SAAMBE-
3D relied on its machine-learning model based on gradient boosting decision trees, trained
on experimentally validated mutation datasets. The protocol then created a table with the
expected AAG values for all the mutations assessed. These results were saved in Scipion
and later combined with the FoldX predictions during the consensus ranking phase of the
rank fusion protocol. Additionally, we made a modification in the default output table of
the SAAMBE-3D protocol to include an extra column containing the mutation identifier.
This ensured that each AAG value could be directly associated with its corresponding

mutation during the downstream analysis.

13
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Internally, SAAMBE-3D generates its predictions by extracting a wide set of
structural, energetic and physicochemical descriptors from the three-dimensional
geometry of the complex. For each mutation, the algorithm characterizes the local
environment surrounding the substituted residue and quantifies variables such as solvent-
accessible surface area, residue depth, hydrogen-bond networks, -electrostatic
contributions and pairwise interaction potentials. These features are incorporated into a
machine-learning regression model that has been trained on experimentally measured
AAG values from mutational datasets. Learning the nonlinear relationships between local
structural changes and their energetic consequences allows SAAMBE-3D to estimate
whether a mutation weakens, preserves or reinforces the antibody—antigen interface. This
integrative, feature-based approach allows the method to capture effects that are often
difficult to model with purely physics-driven techniques, which makes SAAMBE-3D a
useful and complementary tool for assessing mutational stability within protein—protein

complexes.
2.2.5 Prediction of mutation-induced AAG using FoldX

We also used the scipion-chem-foldxsuite plugin with the FoldX AAG protocol
to perform a second energetic evaluation alongside the SAAMBE-3D analysis. FoldX
employs an empirical force-field model to assess how single-point mutations influence
the stability of protein—protein complexes. It was provided with the same set of interface
residues and the same imported atomic structure as those used in the SAAMBE-3D
protocol. The protocol generated the relevant mutations and calculated the AAG value for
each residue within the area of interest. Positive values indicate a destabilizing effect,

while negative values suggest that the mutation enhances the stability of the interaction.

Internally, FoldX predicts the AAG values using a physics-based empirical force
method that estimates the folding free energy (AG) as a weighted sum of different energy

terms, as Equation 1 shows.

AG = Wvdw-AGvdW + WsolvH-AGsolvH + WsolvP-AGsolvP + AGwb
+ AGhbond + AGel + AGKon+Wmc-T-ASmc + Wsc-T-ASsc (1)
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These terms refer to the main contributions to protein stability: AGvdw covers
van der Waals interactions (with a weight Wvdw usually set to 0.33 because of differences
in the reference states), AGsolvH and AGsolvP handle solvation penalties or gains for
hydrophobic and polar groups when the protein folds. WsolvH an WsolvP are their
weights. AGwb adds the extra stabilization from water bridges, AGhbond captures the
balance between intra-protein hydrogen bonds and those with solvent, AGel includes
electrostatics like charged groups and helix dipoles, AGKon deals with electrostatic
effects on binding in complexes, and the last two terms (ASmc and ASsc) represent the
entropic costs of restricting backbone and side-chain flexibility (multiplied by

temperature T and their respective weights Wmc and Wsc) [22].

When FoldX analyses a mutation, it builds a model of the mutant by introducing
the new residue and then optimizes the local structure around it. It calculates AG for both
the wild-type and the mutant, and the difference between them gives AAG. Breaking
down the energy into these individual terms it can be seen what is driving the change,

which gives a nice insight into how the mutation affects the protein-protein interface.

Since FoldX is based on this fixed, physics-inspired model rather than being
trained on large datasets, it provides a different angle compared to machine learning tools

like SAAMBE-3D, and combining both makes the predictions more robust.

The FoldX protocol produces a structured table that outlines the AAG predictions
for each mutation we are evaluating. As in the previous case, we adapted the FoldX AAG
protocol so that the resulting table included a column with the mutation name. This
modification allowed a clear correspondence between each mutation and its predicted

AAG value.
2.2.6 Rank Fusion: consensus scoring of AAG predictions

The Rank Fusion protocol was used to integrate the AAG predictions generated
independently by SAAMBE-3D and FoldX. This approach allows Scipion-Chem to merge
the heterogeneous scoring outputs produced by both methods into a single ranking that
offers a consensus view of which mutations are most likely to stabilize or destabilize the

antibody—antigen complex. The protocol begins by applying Z-score normalization
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(ZMUYV) to the AAG values from each predictor so that the scores become comparable
despite the different scales and statistical behaviours of the underlying algorithms, and its
mathematical calculation is shown in Equation 2. This normalization scales the scores so

that their mean becomes zero and their variance 1.

S — S
ZMUVNorm(s) = —=2 (2)
Sstd

where s represents the original score assigned to a mutation by a given predictor,
SmeancOrresponds to the mean value of the score distribution, and sygdenotes its standard

deviation [23].

After normalization, the rankings are combined using the CombMED rule, a
fusion strategy that prioritizes mutations consistently ranked among the best candidates
by multiple predictors while reducing the impact of outliers. In this approach, each
predictor assigns a relative ranking position 7, (m) to every mutation m according to its
predicted energetic impact. It can be seen in Equation 3. The CombMED strategy then

computes the median of these ranking positions to obtain a consensus score, defined as:

CombMED(m) = median(rl(m),r2 (m), ...,rK(m)) 3)

where Krepresents the number of predictors considered. This rank-based fusion
method emphasizes agreement between independent predictors and avoids direct
comparison of energetic scales that may differ across models by relying on the median of
rankings rather than on absolute AAG values. As a result, mutations that are consistently
ranked among the top candidates are prioritized, while the influence of method-specific

outliers is reduced.

The final ranking, therefore, highlights mutations for which both SA4AMBE-3D
and FoldX show strong agreement, increasing confidence in the stability-enhancing
candidates identified through the workflow. The table produced by the Rank Fusion
protocol represents the final output of the energetic analysis and serves as the basis for

selecting the top-scoring mutations for downstream interpretation.
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2.2.7 Adjustments required for Rank Fusion compatibility

During workflow development, a problem occurred when merging predictions
from SAAMBE-3D and FoldX using the Rank Fusion protocol. Although both tools
successfully computed AAG values for all target mutations, their default output tables did
not include the mutation identifier next to each prediction. Instead of listing the mutations
by name, such as A40F or A59W, the tables indexed the results numerically. This
prevented Rank Fusion from matching the AAG values from the two predictors to the

correct mutation during the fusion step.

To solve this issue, both protocols were adjusted so that their output tables
included an additional column containing the mutation name. This modification created
a direct link between each AAG value and its corresponding mutation, allowing Rank
Fusion to correctly align, normalize and combine the datasets. With this change in place,
the consensus ranking was generated without errors, and the final list of stabilizing

mutations became more accurate, reproducible and easier to interpret.
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3 RESULTS

3.1 Structural data import (Import Atomic Structure)

Bringing the antibody-antigen complex into the Scipion-Chem environment
kicked off our workflow. We started by loading the PDB file that holds the antibody and
the SARS-CoV-2 RBD, transforming it into an atomic structure object that Scipion could
work with using the Import Atomic Structure protocol. Scipion automatically identified
the protein chains in the file and organized them within the project to make things easier

for the following steps.

The import protocol handles all the file validation and formatting, so there was
no need for any manual adjustments to the structure. Thanks to the successful importation
of the complex, we were able to visually examine the chains, confirming that the structure
could indeed be used as a basis for defining ROI and predicting AAG. Figure 4 illustrates
the imported structure as seen in the Scipion viewer, showing the recognized chains of

the complex.

Figure 4 Imported antibody—antigen complex.
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3.2 Definition of ROIs

After importing the atomic structure, the next step was to identify the residues
involved in the antibody-antigen interaction. For this, we utilized the Define Structural
ROIs protocol available in Scipion-Chem. This handy tool automatically detects interface
residues by examining the spatial relationships between the selected chains, all based on

a set distance threshold.

In this case, the antigen chain was identified as the interaction partner, while the
antibody chain was selected as the reference chain. To compile the list of interface
residues that form the structural region of interest, Scipion calculated the minimum
distances between all atoms from both chains and picked the residues that fell within the
specified cutoff. During the subsequent AAG prediction protocols, these residues became
the targets for mutation. The results from the Define Structural ROIs protocol, which

includes the list of interface residues identified by Scipion-Chem, are shown in Figure 5.

Region Residues ([aa][pos])

1-2 Q1 v2

R30, T31, C32, N33

Q39, A40, P41, G42, K43, E44, L45, E46

550, 151, 552

G54, S55, T56, N57, Y58, A59, G6D, S61, V62, K63, Gb4, R65

87 E8BY

N Va1

93 Y93

98-100 198, S99, R100

103-114 5103, L104, w105, C106, E107, E108, Y109, W110, G111, Q112, G113, T114

Figure 5 Residues identified at the antibody—antigen interface using the Define Structural

ROIs protocol in Scipion-Chem.
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3.3 Generation of mutant models

Scipion-Chem created a complete set of single-point mutations that will be
evaluated in the upcoming AAG prediction steps, following the identification of interface
residues through the ROI definition protocol. The workflow produced every possible

amino acid substitution for each residue of interest.

The output of this step was a well-organized list detailing each mutation created
from the selected residues. Each entry in the list clearly indicates the location of the
residue, the original amino acid, and the proposed substitution. This mutational library
was then used as input for both SAAMBE-3D and FoldX, ensuring that all prediction tools
evaluated the same set of variants consistently. Figure 6 displays an excerpt of the list of
mutations generated in Scipion, which includes all the single-point variants derived from

the residues located at the antibody—antigen interface.

Figure 6 Mutational library generated from the ROI residues.
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3.4 AAG predictions obtained with SAAMBE-3D

We used the SAAMBE-3D protocol integrated into Scipion-Chem to evaluate
how single-point mutations affect energy levels after specifying the structural regions of
interest. This method allows for an initial evaluation of how each residue change might
influence the stability of the antibody-antigen interaction by generating predictions

specific to each mutation regarding changes in binding free energy (AAG).

Additionally, we created a table displaying the predicted AAG values for each
mutation we evaluated using the protocol. Each row highlights a unique mutation at one
of the interface residues, along with the numerical value assigned by the SAAMBE-3D
model. If the AAG value is negative, it suggests a stabilizing effect on the interaction,
while positive values point to destabilizing mutations. We successfully generated results

for every mutation listed in the ROL

The predicted AAG values for the examined mutations are shown in an excerpt
of the SAAMBE-3D output table in Figure 7. The first column shows the mutation name,

the second one the AAG values calculated with the protocol, and the last one the values

normalized.

mutation ddg § zscore
1 AB40F -1.85 -3.49
2 AB40OD -1.7 -3.26
3 ABADK -1.61 -3.13
4 AB40Q -1.58 -3.08
5 AB40OL -1.36 -2.76
i] AB4ON -1.35 -2.74
7 AB40OE -1.34 -2.73
8 AB40C -1.32 -2.7
9 AB4OI  -1.3 -2.67
10 AB40OR -1.28 -2.64
11 ABSOF -1.26 -2.61
12 AB4OM| -1.21 -2.53
13 AB40H -1.11 -2.38
14 AB40OY -1.02 -2.25

Figure 7 SAAMBE-3D AAG predictions.
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3.5 AAG predictions obtained with FoldX

Using the FoldX AAG protocol, which is integrated through the scipion-chem-
foldxsuite plugin, we conducted a second independent evaluation of how mutations affect
the antibody—antigen interaction. This protocol utilized the empirical force-field model
from FoldX to estimate the changes in binding free energy for each mutation within the

designated area of interest.

The protocol generated a result table listing all evaluated mutations and their
corresponding AAG values. Just like the output from SAAMBE-3D, positive values point
to destabilizing mutations, while negative values indicate stabilizing effects on the
interaction. This table provides the second independent ranking required for the upcoming
fusion analysis and enables a direct comparison of FoldX predictions across all candidate

mutations.

An excerpt portion of the FoldX results table produced by Scipion-Chem, which

lists the AAG values connected to each mutation, is shown in Figure 8.

mutation ddg J zscore
1 YB1O9E -2.35 -3.06
2 SBE1R -2.06 -2.73
3 ¥YBS8T -1.68 -2.28
4 SB55W -1.54 -2.13
5 EB44H -1.29 -1.84
B SB55Y -1.28 -1.82
7 YB58l -1.24 -1.78
8 SB52E -1.17 -1.69
9 NBE33L -1.14 -1.66
10 ABS9W -1.12 -1.64
11 NE33M -1.06 -1.56
12 GB42W -1.06 -1.56
13 EB46Y -1.01 -1.51
14 EB44R -0.98 -1.47

Figure 8 AAG values predicted by the FoldX protocol.
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3.6 Consensus ranking with Rank Fusion

Using the Rank Fusion protocol that is part of Scipion-Chem, we conducted a
consensus analysis to merge the predictions from SAAMBE-3D and FoldX. This protocol
employs normalization and aggregation techniques to bring together multiple ranked lists,
ultimately producing a single ranking that reflects the consensus among the different AAG

predictors.

The protocol started by applying a zero-mean, unit-variance transformation
(ZMUV) to standardize the scores after it received the output tables from SA4AMBE-3D
and FoldX. This step ensured that both predictors were now aligned on a similar numerical
scale. Once the normalization was complete, the individual rankings for each mutation
were merged into a single consensus score using the CombMED aggregation rule. Both
methods suggest that mutations with lower consensus values are likely to have a more

significant stabilizing effect.

The protocol produced a ranked list that featured every mutation evaluated,
along with its final position in the combined ranking and consensus score. Figure 9 shows
the table generated by the rank fusion protocol, which contains the total scores and the

resulting order of mutations.

mutation J RanxScore
1 AB40OF -1.9
2 AB4OD -1.79
3 ABADK -1.72
4 AB40Q -1.7
5 ABSOW -1.67
& AB40ON -1.57
7 ABADE -1.54
12 AB4OL -1.53
] AB40C -1.5
10 ABAOR -1.48
11 AB4DI -1.47
12 AB4OM -1.42
13 AB59F -1.41
14 AB40H -1.31

Figure 9 Consensus ranking obtained with the Rank Fusion protocol.
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3.7 Global analysis of mutational effects

We evaluated a total of 940 single-point mutations for each predictor,
corresponding to the complete set of variants generated from the residues selected in the
region-of-interest analysis. For each mutation, both S4A4MBE-3D and FoldX provided an
estimated change in binding free energy (AAG), together with a normalized score
expressed as a z-score. This comprehensive dataset allowed a global analysis of the
mutational landscape at the antibody—antigen interface beyond the inspection of

individual top-ranked variants.

The overall distribution of predicted AAG values indicates that most mutations
produce either neutral or destabilizing effects on the interaction, while only a limited
subset is predicted to be stabilizing. This behavior is consistent with the general
expectation for protein—protein interfaces, where only a small fraction of possible
substitutions improves binding affinity, and the majority either disrupt favorable
interactions or have a negative energetic impact. As a result, prioritization strategies are

required to distinguish meaningful candidates from background noise.

Comparison between SAAMBE-3D and FoldX predictions reveals partial
agreement across the full set of mutations. While individual AAG values may differ
between methods due to their distinct modelling approaches, both predictors tend to
converge on a small group of mutations with consistently favorable energetic profiles.
This observation supports the use of a consensus-based ranking strategy, as agreement
between independent predictors increases confidence in the relevance of the selected

candidates.

The addition of z-score normalization further facilitated comparison between
predictors by placing their outputs on a common scale. Normalization reduces the
influence of differences in score distributions and ensures that rankings are driven by
relative performance rather than absolute numerical values. Consequently, the subsequent
rank fusion step emphasizes mutations that perform well across both predictors instead of

those supported by a single method.

This global analysis emphasizes the highly selective nature of stabilizing

mutations at the antibody—antigen interface and justifies the need for ranking and fusion

24



Computational optimization of antibodies

strategies when exploring large mutational datasets. Rather than focusing only on
absolute AAG values, the workflow captures general trends across hundreds of variants,

enabling a robust prioritization of mutations for further analysis.
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4 DISCUSSION

The analysis combining SAAMBE-3D and FoldX identified a small subset of
mutations within the antibody paratope that consistently show stabilizing effects on the
interaction with the SARS-CoV-2 RBD. The top-ranked variants (AB40F, AB40D,
AB40K, AB40Q and AB59W) correspond to substitutions at positions 40 and 59 of chain
B, both of which belong to interface regions previously detected by the ROI selection

protocol.

The four highest-scoring mutations were all located at residue 40, originally an
alanine. The substitutions A40F, A40D, A40K and A40Q seem to decrease the binding
free energy (AAG < 0) leading to their prioritization in the fused ranking. This consistent
agreement between predictors suggests that position 40 plays a relevant role within the
antibody—antigen interface, and that altering its physicochemical properties may enhance

the stability of the complex [10], [17].

In addition to residue 40, the mutation AS9W also ranked among the best
candidates. Position 59 is part of a different paratope region, indicating that multiple
interface segments contain residues with potential for stabilization through single-point
substitution. Although SAAMBE-3D and FoldX rely on different modelling principles,
both identified this mutation as energetically favorable, reinforcing the validity of the

consensus-based prioritization.

From a structural perspective, the concentration of stabilizing mutations within
paratope regions is consistent with the central role of these residues in antigen
recognition. The paratope constitutes the antibody surface directly involved in binding
and is therefore particularly sensitive to physicochemical changes introduced by point
mutations. Even subtle substitutions at the interface can modulate local packing,
electrostatic complementarity, or solvent exposure, leading to measurable energetic
effects. The identification of multiple stabilizing mutations within distinct paratope
segments suggests that the antibody—antigen interface contains several positions

amenable to optimization rather than a single dominant hotspot.

These results collectively indicate that positions 40 and 59 concentrate the

mutations with the strongest predicted stabilizing effects and therefore represent
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promising targets for future experimental evaluation. The fact that two independent AAG
predictors converged on these residues increases the confidence in the computational
predictions, although experimental validation would still be required to confirm their

actual impact on binding affinity.

The use of the strategy based on ROI was important in focusing the mutational
analysis on residues most likely to influence binding. By restricting the search space to
interface residues identified through distance-based criteria, the workflow avoided the
exploration of mutations with limited structural relevance. This targeted approach not
only improves computational efficiency but also increases the interpretability of the
results, as predicted energetic changes can be directly linked to spatial proximity to
antigen. The consistency between ROI selection and the location of the top-ranked

mutations further supports the validity of this strategy.

The convergence of SAAMBE-3D and FoldX predictions on the same set of top-
ranked mutations highlights the utility of combining AAG predictors within a consensus-
based workflow. While each method relies on different modelling assumptions (machine-
learning features in the case of SA4MBE-3D and an empirical force-field prediction in
FoldX) the agreement observed for residues 40 and 59 suggests that the stabilizing trends
detected are not artefacts of a single algorithm. This reinforces the robustness of the rank
fusion strategy, as mutations prioritized by both approaches are more likely to represent

genuine energetic improvements rather than method-specific biases.

Similar consensus-based strategies have been increasingly adopted in
computational protein engineering to mitigate the limitations of individual predictors.
Single-method approaches may be biased by their underlying assumptions or training
data, whereas combining complementary models can improve robustness and confidence
in the selected candidates. In this context, the agreement observed between a machine-
learning—based predictor and a physics-based force-field model aligns with current best
practices in computational antibody optimization, where consensus scoring is often

preferred over reliance on a single algorithm.

Despite these results, there are several limitations in the present study. The

predictions are based on a single static structure of the antibody—antigen complex and do
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not account for conformational flexibility or long-timescale dynamics that may influence
binding. Furthermore, AAG estimates obtained from computational models provide
relative trends rather than absolute affinity changes, and their accuracy depends on the
quality of the underlying structural data and training datasets. The stabilizing effect
predicted for the selected mutations should be interpreted as hypotheses that require

experimental validation for this reason.

Despite these limitations, the results obtained provide valuable guidance for
rational antibody design. Computational prioritization of stabilizing mutations can
significantly reduce the experimental burden by narrowing down the number of variants
that need to be tested in vitro. In particular, mutations consistently predicted as stabilizing
across multiple models represent strong candidates for subsequent experimental
characterization, such as binding affinity measurements or stability assays. As such, the
present workflow can be seen as an effective filtering step within a broader antibody

engineering pipeline.

Finally, although this study focuses on a single antibody—antigen system, the
proposed workflow is not system-specific. The modular design of Scipion-Chem allows
the same pipeline to be applied to other antibody targets or protein—protein interactions
with minimal adaptation. Additional predictors or alternative ranking strategies could also

be incorporated in future applications, further enhancing the flexibility of the approach.

Beyond the specific mutations identified, this work demonstrates the
applicability of Scipion-Chem as a reproducible workflow-based platform for antibody
optimization. The integration of structure preparation, interface definition, AAG
prediction, and rank fusion within a single environment simplifies the exploration of
mutational landscapes and reduces manual intervention. This modular approach
facilitates the comparison of multiple predictors and can be readily extended to other

antibody—antigen systems or additional scoring methods.
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5 CONCLUSIONS

This project demonstrates the applicability of Scipion-Chem as an integrated and
reproducible platform for the computational optimization of antibody—antigen
interactions. Combining structure-based analysis, interface residue selection, AAG
prediction, and consensus ranking within a single workflow, we established a systematic
approach to explore the energetic impact of single-point mutations at the antibody
paratope. This integration allowed the entire mutational analysis to be carried out in a
transparent and traceable manner, minimizing manual intervention and ensuring

consistency across all computational steps.

The use of two complementary AAG predictors, SAAMBE-3D and FoldX,
enabled the evaluation of mutational effects from distinct methodological perspectives.
While SAAMBE-3D relies on machine-learning models trained on structural and
physicochemical descriptors of protein—protein interfaces, FoldX applies an empirical
force-field framework to estimate energetic contributions. The agreement observed
between both methods for a subset of mutations underscores the value of combining
heterogeneous predictors when assessing protein stability and binding affinity. Rather
than relying on a single scoring function, the consensus-based strategy implemented
through rank fusion increased confidence in the prioritization of candidate mutations by

reducing method-specific biases.

Through this consensus approach, a small group of mutations affecting residues
40 and 59 of chain B was consistently identified as potentially stabilizing the interaction
with the SARS-CoV-2 receptor-binding domain. These residues were previously detected
as part of the antibody—antigen interface during the region-of-interest selection step,
supporting the relevance of the structural filtering strategy employed. Although the
present study does not provide experimental validation, the convergence of predictions
across independent models suggests that these positions represent promising targets for

further investigation in vitro or in vivo.

Beyond the identification of specific mutations, one of the main contributions of
this work lies in the establishment of a generalizable computational workflow for

antibody optimization. The modular design of Scipion-Chem allows each stage of the

29



Computational optimization of antibodies

analysis (structure import, interface definition, mutation generation, energy evaluation,
and ranking) to be adapted or extended with minimal changes. As a result, the same
pipeline could be applied to other antibody—antigen systems or expanded to include
additional predictors, scoring strategies, or structural models, depending on the needs of

future studies.

In addition to the specific mutations identified, the present study highlights
several strengths of the proposed computational approach. One of the main advantages is
the integration of all analysis steps within a single workflow-based platform, which
ensures reproducibility and traceability throughout the entire process. By combining
structure import, interface definition, mutational analysis, energetic prediction, and
consensus ranking in a unified environment, the workflow minimizes manual intervention
and reduces the risk of inconsistencies between intermediate results. Furthermore, the use
of complementary predictors and rank-based aggregation increases the robustness of
prioritization, as candidate mutations are selected based on consistent trends rather than

isolated predictions from a single method.

Despite its strengths, this work also presents several limitations inherent to
structure-based computational approaches. The analysis was based on a single static
structural model of the antibody—antigen complex and therefore does not account for
conformational flexibility, induced fit effects, or long-timescale dynamics that may
influence binding. In addition, AAG predictions obtained from computational models
provide relative energetic trends rather than absolute affinity measurements.
Consequently, the stabilizing effects predicted for the selected mutations should be
interpreted as hypotheses that require experimental validation through biochemical or

biophysical assays.

Nevertheless, within these limitations, the proposed workflow represents an
effective strategy for analysing large mutational spaces and guiding experimental efforts
toward the most promising candidates. The approach can significantly reduce the
experimental burden associated with antibody engineering and accelerate early-stage
optimization by prioritizing mutations with consistent stabilizing predictions across

multiple models.
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From a broader perspective, the methodology developed in this project can serve
as a flexible framework for future computational antibody optimization studies. The same
workflow could be readily applied to other antibody—antigen systems or adapted to
include additional AAG predictors and alternative ranking strategies. Future work could
also extend the analysis to account for conformational flexibility, for example through
molecular dynamics simulations, or explore combinations of mutations to assess potential
cooperative effects. In this context, the present study provides a solid starting point for
iterative optimization pipelines in which computational predictions guide experimental

validation, contributing to more efficient and rational antibody engineering strategies.

In conclusion, this project highlights the potential of workflow-driven
computational platforms such as Scipion-Chem to support rational antibody design. The
combination of reproducibility, scalability, and consensus-based evaluation provides a
robust framework for exploring antibody—antigen interactions and identifying candidate
mutations for further development. As computational methods continue to evolve and
integrate more accurate predictive models, these workflows are expected to play an
increasingly important role in the design and optimization of next-generation therapeutic

antibodies.
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