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ABSTRACT 

This project presents the development of an automated and modular virtual drug 

screening (VDS) workflow within the Scipion-chem framework. The pipeline integrates 

ligand and protein preparation, binding site prediction, molecular docking with multiple 

engines, consensus analysis, rescoring using the Vina function, molecular dynamics 

(MD) simulations and machine learning–based affinity prediction. The workflow was

validated using two therapeutically relevant protein targets, ROS1 and RIPK1, and a set

of known inhibitors with experimental binding data, alongside drugs approved by the

Food and Drug Administration (FDA) from the ZINC database. Among the docking

engines tested, AutoDock-GPU demonstrated the most consistent and thermodynamically

favourable performance, while AutoDock showed poor reliability. Consensus strategies

based on binding energy and Vina scores improved the prioritization of ligands and

partially reproduced experimental affinity rankings. MD simulations confirmed the

structural stability of strong binders. Machine learning models (Pafnucy and PLAPT)

offered additional predictive insights, but showed limited consistency, particularly in

ranking high-affinity ligands. Overall, the workflow proved effective in filtering, ranking

and validating candidate compounds, highlighting the importance of combining diverse

computational methods. The modular architecture of Scipion-chem enables flexibility and

reproducibility, offering a robust platform for early-stage drug discovery and a foundation

for future enhancements, such as, absorption, distribution, metabolism, excretion and

toxicity (ADMET) filtering and large-scale screening scalability.
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RESUMEN 

Este proyecto presenta el desarrollo de un flujo de trabajo automatizado y 

modular para el cribado virtual de fármacos (VDS) dentro del entorno Scipion-chem. El 

flujo integra la preparación de ligandos y proteínas, predicción de sitios de unión, 

acoplamiento molecular con múltiples motores, análisis por consenso, valoración con la 

función de Vina, simulaciones de dinámica molecular (MD) y predicción de afinidad 

mediante modelos de aprendizaje automático. El flujo fue validado con dos dianas 

terapéuticas, ROS1 y RIPK1, utilizando inhibidores con datos experimentales y una 

biblioteca de compuestos aprobados por la Administración de Alimentos y Medicamentos 

(FDA) obtenida de la base de datos ZINC. AutoDock-GPU mostró el rendimiento más 

estable y termodinámicamente favorable, mientras que AutoDock resultó poco fiable. Las 

estrategias de consenso basadas en energía de unión y Vina permitieron una priorización 

más precisa de ligandos, reproduciendo parcialmente los rankings experimentales. Las 

simulaciones de MD confirmaron la estabilidad estructural de los ligandos de mayor 

afinidad. Los modelos Pafnucy y PLAPT ofrecieron predicciones complementarias, 

aunque con limitaciones en la clasificación de ligandos potentes. En conjunto, el flujo 

demostró ser eficaz en la priorización de candidatos, destacando el valor de combinar 

enfoques computacionales. Scipion-chem ofrece una plataforma flexible y reproducible, 

con potencial de expansión hacia filtrado ADMET (absorción, distribución, metabolismo, 

excreción y toxicidad) y cribado a gran escala. 
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1 INTRODUCTION 

Drug discovery is a challenging, time-consuming and costly process that 

involves identifying small molecules capable of modulating biological targets. It includes 

several stages [1], beginning with discovery and development, where potential 

compounds are studied for their biological effects, followed by preclinical research, 

where their safety, toxicity and pharmacokinetics are assessed through laboratory and 

animal testing. Promising candidates then move into clinical research, where they are 

tested in human volunteers across multiple phases to evaluate safety, efficacy and dosage. 

Once sufficient data is gathered, the Food and Drug Administration (FDA) reviews the 

findings to decide on approval or necessary modifications. Even after approval, the FDA 

continues monitoring through post-market surveillance to track long-term effects or 

adverse reactions. The process is lengthy and costly—developing a new drug is estimated 

to cost around $2.6 billion [2] and the chemical space of potential drug-like molecules is 

estimated at 10⁶³ compounds [3], making the search extremely difficult.  

To address these challenges, Virtual Drug Screening (VDS) has emerged as a 

computational approach that allows researchers to screen large chemical libraries and 

predict ligand-target interactions, significantly reducing the number of compounds 

requiring experimental testing and accelerating early-stage drug discovery. 

1.1 State of the Art in Virtual Drug Screening 

As previously mentioned, VDS consists of computational techniques designed 

to identify promising drug candidates by filtering out compounds unlikely to interact with 

a biological target. Initial VDS approaches emerged in the 1990s with molecular docking 

methods like AutoDock [4], enabling the prediction of ligand-receptor interactions. With 

increased computational power and access to large chemical databases in the early 2000s 

[5], docking algorithms became more efficient and broadly applicable. A major advance 

came with the release of AutoDock Vina in 2010 [6], which significantly improved 

docking speed and accuracy. Subsequent developments, such as high-throughput virtual 

screening, machine learning and molecular dynamics (MD) simulations [7], have further 

enhanced VDS by offering more dynamic and detailed evaluations of ligand-protein 
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interactions. MD simulations help overcome the limitations of traditional rigid docking 

models by analysing ligand-target stability over time. 

VDS methods are mainly classified into Structure-Based Virtual Screening 

(SBVS) and Ligand-Based Virtual Screening (LBVS) [4]. SBVS uses the receptor’s 

physicochemical properties, often a protein, to identify ligands. It includes molecular 

docking, which predicts ligand binding orientation and estimates binding affinity using 

scoring functions, with tools such as AutoDock, Vina and Schrödinger Glide [8]. Another 

SBVS technique is the novo drug design [4], which generates new molecules designed 

for specific targets. In contrast, LBVS relies on the structural features of known active 

compounds to identify new candidates. Techniques like Quantitative Structure-Activity 

Relationship (QSAR) modelling [9] establish statistical correlations between molecular 

descriptors and biological activity. Pharmacophore modelling [10] also plays a key role 

by identifying the essential chemical features required for activity, guiding the search for 

structurally similar bioactive molecules. 

To support these approaches, various computational tools have been developed, 

including LePhar, Fpocket and P2Rank [8], along with the aforementioned Schrödinger 

and AutoDock. However, many of these tools are tailored for specific tasks, often 

requiring researchers to integrate multiple platforms to perform a complete analysis. More 

recently, innovations such as artificial intelligence, cloud computing and multi-scale 

modelling [11] have further transformed VDS. These advancements have improved its 

efficiency, accuracy and predictive capabilities, making it an increasingly powerful asset 

in modern drug discovery. 

1.2 Project Overview and Objectives 

This project is part of a larger initiative: Scipion-chem, a framework designed to 

extend Scipion's capabilities for computational chemistry and drug discovery. Scipion is 

a workflow engine that is particularly well suited for structural studies of biological 

macromolecules [12]. Although it was originally created in Madrid, its development has 

become a collaborative effort involving several academic institutions, with the Centro 

Nacional de Biotecnología (CNB-CSIC) remaining one of its principal contributors [12]. 



Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

 3 

During my internship at CNB, I gained hands-on experience with Scipion, 

learning about its functionalities and practical applications. For this Final Degree Project, 

I have applied the knowledge acquired during that internship, alongside ongoing research 

efforts at CNB, to develop a workflow that automates SBVS within Scipion. 

The main objective of this project is to design and implement a structured and 

automated SBVS workflow that integrates molecular docking, scoring and MD 

simulations into a single, reproducible pipeline. This approach addresses a key limitation 

of existing drug discovery software, where most tools specialize in individual tasks, but 

do not offer a fully integrated workflow. To achieve this goal, the project pursues the 

following specific objectives: 

• Develop a modular and automated SBVS workflow within the Scipion-chem 

environment. 

• Integrate the main stages of virtual screening into a single pipeline. 

• Improve reproducibility and minimize manual intervention throughout the 

screening process. 

• Validate the workflow using two therapeutically relevant protein targets: 

Proto-oncogene tyrosine-protein kinase 1 (ROS1) and Receptor-interacting 

serine/threonine-protein kinase 1 (RIPK1). 

• Assess its performance in terms of accuracy, reproducibility and scalability. 

• Contribute to the broader Scipion-chem initiative by adding tools and 

functionalities useful for computational drug discovery. 

By consolidating these processes within Scipion-chem, this project aims to 

provide a standardized, efficient and user-friendly approach to SBVS, enhancing both 

reproducibility and accessibility for future research. 
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2 MATERIAL AND METHODS 

This section outlines the materials and methods used in the study, emphasizing 

the use of Scipion and Scipion-chem as core computational tools. It details the design and 

implementation of an SBVS workflow and the integration of new plugins and custom 

protocols to extend Scipion-chem’s functionality.  

2.1 The Scipion Platform 

As introduced in Section 1.2, Scipion is a workflow engine designed to generate 

3D models of macromolecular complexes from electron microscopy images (3DEM) 

[12,13]. It unifies a variety of structural biology tools within a single platform, providing 

automation of complex workflows, interoperability between software packages and 

complete traceability of each protocol executed.  

Scipion is an open-source tool primarily developed for Linux environments and 

implemented in Python programming language, ensuring flexibility, extensibility and 

compatibility with a wide range of scientific computing libraries. Basic installation steps 

are provided in APPENDIX A, while a more comprehensive guide is available at 

https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/how-to-install.html. 

2.1.1 Modular Architecture 

Scipion is built on a plugin-based framework that enables modular integration 

of external computational tools [14]. This architecture provides an efficient, adaptable 

and customizable environment, allowing researchers to extend the platform without 

altering its core. Each plugin functions as an independent software module that organizes 

related tools and methodologies, contributing to a coherent structure for managing 

computational workflows. 

Plugins may include various components that collectively enhance both the 

functionality and usability of the platform. Among these, protocols, viewers and wizards 

play a central role. Protocols represent the core functional units of Scipion, defining step-

by-step computational procedures to execute specific algorithms or operations within a 

workflow. Viewers, on the other hand, are visualization tools that generate graphical 

https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/how-to-install.html


Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

5 

representations of output data, including 3D structures, molecular interactions and 

docking results. They enable users to explore and interpret complex computational 

outputs in a more intuitive and interactive manner. Complementing these, wizards are 

task-specific graphical interfaces designed to guide users through parameter selection, 

data input and workflow configuration. By offering real-time feedback or previews, 

wizards help users understand the impact of different settings before applying them to 

entire datasets, ultimately reducing errors, improving usability and ensuring proper 

protocol setup. 

The modular design of Scipion allows users to install only the components they 

need, optimizing performance and resource use. Plugins can be added through the built-

in Plugin Manager [12], or manually, as described in APPENDIX B. Once installed, 

plugins integrate seamlessly into the platform, ensuring compatibility with existing 

workflows and minimizing disruptions. The Plugin Manager provides a user-friendly 

interface, as illustrated in Figure 1. On the left side of the window, it displays a list of all 

available plugins retrieved from Scipion’s servers, with installed plugins marked by filled 

checkboxes. On the right, two panels offer additional functionality: the upper panel 

presents detailed information about the selected plugin, while the lower panel contains 

two tabs. The first tab, labelled Operations, shows pending or ongoing tasks related to 

plugin installation or removal. The second tab, Output Log, records terminal output 

generated during these operations. 

Figure 1. Plugin Manager Window. 
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  Installing a plugin is straightforward. Selecting a plugin’s checkbox adds the 

installation task to the queue, while unchecking it schedules it for removal. Finally, 

clicking the Run button, represented by a circular icon with a triangle inside, executes 

all queued installation and uninstallation actions, streamlining the overall management 

of computational tools within Scipion.

2.1.2 Graphical User Interface (GUI) 

 Scipion offers a structured and intuitive environment for managing 

computational workflows by organizing tasks into projects, ensuring reproducibility, 

automation and efficient data processing. Upon launching the software, users are 

presented with the Project Manager Window, as shown in Figure 2, which allows them 

to create new projects using the Create Project button, import existing ones via the 

Import Project button, or select from previously created projects. A Filter text box 

enables quick navigation by searching for projects by name. The interface also includes 

several dropdown menus for essential functionalities: the File menu provides access to 

data folders and an option to exit the framework; Configuration opens settings for 

general parameters, computing hosts and protocols; Help links to official documentation 

and displays installation information; and Others contains additional tools, including the 

Plugin Manager, which is essential for extending the platform’s capabilities.

Figure 2. Project Manager Window. 
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Once a project is selected, the Project Window becomes the main workspace for 

managing and executing computational workflows, as shown in Figure 3. The 

interface is divided into three main sections [13]. On the left, a hierarchical panel 

organizes installed plugins and protocols by functionality, providing quick access to 

tools. The central panel serves as the core workspace where workflows are built by 

connecting protocol boxes, which represent data flow and task dependencies. Users 

can switch between a list view and a flowchart view for clearer visualization. At 

the bottom, an information panel displays detailed data about selected protocols. 

This includes a Summary tab with input/output types and execution details; a 

Methods tab showing the protocol name and related scientific publications; a Project 

Log tab for general execution history and events; and an Output Log tab, further divided 

into run.stdout, run.stderr and schedule.log, which together record execution traces, 

error messages and task scheduling respectively, ensuring full workflow traceability 

and robust troubleshooting support. In addition, it includes an Analyze Results 

button, which provides access to the viewer interface associated with the 

corresponding protocol. This interactive feature allows users to seamlessly explore 

prediction outputs, enabling efficient post-processing and visualization directly 

within the Scipion environment. 

Figure 3.  Project Window. 
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When a protocol is added to the workflow, the Protocol Form Window opens 

(Figure 4), allowing users to configure execution parameters. While its general structure 

remains consistent across all protocols, the upper section includes standard fields, such 

as, the protocol name, optional comments, execution settings, queue management and 

dependencies. The lower section is protocol-specific, displaying custom fields defined by 

the developer, each with labels, data types, default values and additional settings. Help 

icons provide brief descriptions for each field. In addition, input-selection tools, such as 

a magnifying glass icon or a wizard icon represented by a magic wand, allow users to 

browse the file system or use guided interfaces for selecting files, directories or Scipion 

data types. For fields that support visualization, an eye icon enables real-time inspection 

of intermediate results, including 2D previews and 3D model visualizations. 

At the bottom, three action buttons—Close, Save and Execute—help manage 

configurations, with execution starting automatically once all required inputs and 

dependencies are satisfied. To maintain a clean interface while supporting advanced use, 

the Expert Level: Advanced option reveals additional parameters for greater control over 

protocol execution. 

Figure 4. Example of a Protocol Form Window. 
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2.2 Scipion-chem 

Scipion-chem is an advanced plugin of the Scipion workflow engine designed to 

optimize VDS by automating software management and enhancing interoperability 

across tools [15,16]. It enables seamless integration of molecular modelling software, 

automates file conversion and supports complete workflows encompassing ligand and 

receptor preparation, docking, scoring, consensus analysis and result visualization. As 

previously mentioned, the manual installation steps for Scipion-chem are outlined in 

APPENDIX B; however, the plugin can also be conveniently installed through the Plugin 

Manager. 

Scipion-chem comprises around 40 protocols [16], organized into four main 

categories that collectively support all stages of the computational drug discovery 

process: general protocols, database protocols, sequence protocols and VDS protocols. 

General protocols handle file and object management, enabling structure conversion, 

metadata refinement and CSV export for external analysis. 

Database protocols allow seamless interaction with public repositories, such as, 

UniProt and ZINC. These include the import of molecule identifiers, conversion of 

SMILES (Simplified Molecular Input Line Entry System) strings [17] into structured 3D 

formats, retrieval of UniProt cross-references [18], filtering of chemical subsets from the 

ZINC database [19] and the extraction of ligands associated with specific protein entries. 

These tools streamline data acquisition and compound selection for virtual screening. 

Sequence protocols support the import and analysis of protein or nucleotide 

sequences from FASTA files or online databases. They include functionalities, such as, 

pairwise and multiple sequence alignment (MSA) [20], handling of genetic variants and 

definition of sequence regions of interest (ROIs), which can be mapped onto atomic 

structures for structural and functional evaluation [21]. These tools are particularly 

valuable for understanding protein conservation and mutation impact in drug discovery. 

VDS protocols cover essential steps in virtual screening, including ligand and 

receptor preparation, molecular docking, compound filtering, scoring and consensus 

analysis. Ligands are prepared using RDKit or OpenBabel [16], which enable hydrogen 

addition, charge assignment and 3D conformer generation. However, receptor 



Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

 10 

preparation, performed with BioPython [22], ensures protein structures are cleaned, 

irrelevant elements are removed and missing atoms are added. To further refine candidate 

selection, several filtering protocols are applied: ADME (Absorption, Distribution, 

Metabolism and Excretion) [23] evaluates pharmacokinetic properties; PAINS (Pan-

Assay Interference Compounds) [24] removes compounds prone to false positives; shape-

based filtering selects molecules based on 3D geometry; and fingerprint filtering encodes 

molecular structures for similarity-based searches. Following this, docking and consensus 

protocols are used to rank potential inhibitors through pharmacophore generation, 

consensus analysis and rescoring. Additionally, RMSD (Root Mean Square Deviation) 

assesses the consistency of predicted ligand poses, consensus docking integrates outputs 

from multiple simulations to identify robust binders and SASA (Solvent-Accessible 

Surface Area) [25], calculated with BioPython, determines the extent of solvent exposure 

of ligands within the binding site, providing insight into binding stability. 

Together, these protocols offer a robust, modular and reproducible computational 

pipeline for the identification, evaluation and prioritization of potential drug candidates 

in virtual screening projects. 

2.3 Workflow Methodology for Virtual Drug Screening 

Having introduced the materials used, this section details the VDS workflow 

designed to evaluate potential ligands. To validate the workflow, we selected two well-

characterized protein targets: RIPK1 (Receptor-Interacting Protein Kinase 1) and ROS1 

(Proto-Oncogene Tyrosine Kinase 1). 

RIPK1 is a serine/threonine kinase involved in TNF-mediated apoptosis, 

necroptosis and immune responses [26]. It functions through both kinase activity and 

scaffold roles, regulating cell death and survival. Under stress, RIPK1 activates 

necroptosis via RIPK3 and MLKL phosphorylation [27]  and promotes pro-inflammatory 

cytokine production, such as, IL-6 [27]. 

On the other hand, ROS1 is a receptor tyrosine kinase (RTK) related to ALK and 

involved in oncogenic signalling through pathways such as, STAT3, PI3K/AKT and 

RAS/RAF/MAPK [28]. Although its physiological role is not fully understood, ROS1 
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gene rearrangements are common in non-small cell lung cancer (NSCLC), leading to 

constitutive kinase activation and tumour progression. Fusion genes like CD74-ROS1, 

SLC34A2-ROS1 and EZR-ROS1 drive ligand-independent signalling and uncontrolled 

cell growth [29].  

RIPK1 and ROS1 were selected to benchmark the workflow's predictive 

accuracy due to their key roles in disease mechanisms and the availability of well-

characterized inhibitors. These proteins provide a reliable reference framework for 

comparing computational predictions with experimental data. Additionally, by including 

both high- and low-affinity inhibitors, the workflow’s ability to distinguish between 

strong and weak ligands can be assessed, as well as its potential to identify novel drug 

candidates. 

For ROS1 and RIPK1, we selected 10 and 9 well-characterized inhibitors 

respectively from PubChem [30, 31], all of which have experimentally determined 

affinity values, specifically the inhibitory constant (Ki) and the dissociation constant (Kd). 

Ki represents the concentration of an inhibitor required to reduce enzyme activity by half, 

while Kd measures the strength of the interaction between the ligand and its target, with 

lower values indicating a higher binding affinity [32]. A strong binding affinity (low 

Ki and Kd values) suggests that a compound has the potential to be an effective drug, as 

it can tightly interact with its target at lower concentrations, thereby increasing its 

therapeutic efficiency.  

In addition, we included a diverse set of 1300 FDA-approved drugs from the 

ZINC database, which were imported using Scipion without requiring any prior 

knowledge of their identities. Unlike the known inhibitors, these compounds lack 

experimental affinity data and are not necessarily strong inhibitors of the target proteins. 

Their inclusion allows us to assess whether the workflow can effectively differentiate the 

confirmed inhibitors from the broader set of FDA-approved drugs.  

In VDS, particularly in molecular docking studies, the free binding energy (ΔG) 

is commonly used as a key parameter to evaluate and rank potential drug candidates [33]. 

The binding energy represents the free energy change that occurs when a ligand binds to 

a protein, with more negative values indicating stronger interactions and a higher 
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likelihood of effective inhibition. It is calculated in kilocalories per mole (kcal/mol) and 

provides an estimate of the stability of the ligand-protein complex, guiding drug discovery 

efforts [33]. However, for the 19 known inhibitors from PubChem, experimental binding 

energy values are not directly available. Since multiple Ki and Kd values are reported for 

each ligand under different experimental conditions, we first calculated their logarithmic 

mean to obtain a representative affinity measure before converting it into experimental 

binding energy. Using the logarithmic mean instead of the arithmetic mean for affinity 

values is essential due to the exponential nature of binding equilibria. Ki and Kd values 

span several orders of magnitude, meaning that their distribution is typically log-normal 

rather than linear. Applying a logarithmic mean ensures that extremely high or low values 

do not disproportionately influence the average, providing a more balanced and 

representative measure of ligand affinity. Mathematically, the logarithmic mean of 

multiple Ki or Kd values (K1,  K2,……,  Kn) is given by Eq. 1: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒
1
𝑛𝑛∑

𝑛𝑛
𝑗𝑗=1 𝑙𝑙𝑙𝑙 𝑘𝑘𝑗𝑗                                                   (1) 

Once the logarithmic mean of the affinity values was obtained, we converted these 

values into binding free energy using the standard thermodynamic equation [33] in Eq. 2: 

Δ𝐺𝐺 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾𝑑𝑑)                                                 (2) 

where: 

• ΔG is the binding free energy (kcal/mol).  

• R is the universal gas constant (1.987 × 10⁻³ kcal·mol⁻¹·K⁻¹). 

• T is the temperature, assumed to be physiological (298K). 

• Kd is the dissociation constant (measured in molar concentration, M). In this 

case Kd is replaced by the logarithmic mean of the experimental values. 

 For this study, we assume that Ki and Kd are equivalent, as we focus solely on 

ligand binding without considering its effect on the substrate. This assumption is valid in 

cases where both constants describe binding at the same allosteric or orthosteric site, 

without taking enzymatic activity into account [33]. By making this simplification, we 
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ensure a standardized approach to binding affinity calculation while maintaining 

consistency across different ligands.  

By calculating the experimental ΔG values beforehand, we prepared a solid 

reference for comparing computational predictions. In the following tables, we present 

the selected ligands for each target protein, including their common names. For RIPK1, 

due to the length and complexity of the compound names, we also include their molecular 

formulas. Additionally, we report the PubChem Compound ID (CID), the type of 

experimental affinity values available for each ligand, the logarithmic mean of these 

values and the resulting ΔG calculated using Eq. 2. To enhance visual interpretation, ΔG 

are color-coded: darker green shades represent ligands with more negative ΔG values, 

indicating stronger binding affinity, while red shades denote less favourable (more 

positive) binding energies. However, a red-coded ligand is not necessarily a poor 

inhibitor—it simply exhibits weaker binding relative to others in the dataset. 

Drug Name Molecular 
Formula 

PubChem 
CID 

Activity 
Type 

Activity 
Value [µM] 

Logarithmic 
Mean 

Activity 
Value [µM] 

𝚫𝚫𝐆𝐆𝐞𝐞𝐞𝐞𝐞𝐞 
[kcal/mol] 

Gsk-3145095 C20H17F2N5O2 118557502 Kd 0,00005  
0,001 0,0002236 –13,16

Methyl N-[(3S)-3-[(5-benzyl-
1,2-oxazole-3-carbonyl) 

amino]-5-methyl-4-oxo-2,3-
dihydro-1,5-benzoxazepin-7-yl] 

carbamate 

C23H22N4O6 118564402 Ki 0,00028 0,00028 –13,02

Necrostatin 2 racemate C13H12ClN3O2 643953 Ki 
0,000063 
 0,00094 

0,002 
0,00049 –12,69

(R)-5-benzyl-N-(5-methyl-4-
oxo-2,3,4,5-

tetrahydrobenzo[b][1,4] 
thiazepin-3-yl) isoxazole-3-

carboxamide 

C21H19N3O3S 90345378 Kd 0,0005 0,0005 –12,68

5-benzyl-N-[(3S)-5-methyl-4-
oxo-2,3-dihydro-1,5-

benzoxazepin-3-yl]-1,3-oxazole-
2-carboxamide

C21H19N3O4 137632484 Ki 
0,0004 
0,0005 
0,0016 

0,0006839 –12,50

https://pubchem.ncbi.nlm.nih.gov/#query=C20H17F2N5O2
https://pubchem.ncbi.nlm.nih.gov/#query=C23H22N4O6
https://pubchem.ncbi.nlm.nih.gov/#query=C13H12ClN3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C13H12ClN3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O3S
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O4
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(3S)-3-(2-benzyl-3-chloro-7-
oxo-4,5-dihydropyrazolo[3,4-c] 
pyridin-6-yl)-5-methyl-4-oxo-

2,3-dihydro-1,5-benzoxazepine-
7-carbonitrile

C24H20ClN5O3 135309066 Kd 0,0008511 0,0008511 –12,37

RIPK1-IN-15  C19H19N3O2 162385864 Kd 0,00032 
0,01 0,001788 –11,93

RIPK1-IN-10 C30H28F2N6O4 164946835 Ki 
0,0005 
0,004 
0,01 

0,00271 -11,68

1-[3-(3-Fluorophenyl)-3,4-
dihydropyrazol-2-yl]-2,2-

dimethylpropan-1-one 
C14H17FN2O 122703743 Kd 3,97 

3,55 3,75413 -7,39

Table 1. Selected RIPK1 ligands with experimental affinity data and calculated binding energies. 

Drug Name PubChem CID Activity Type Activity Value 
[µM]        

Logarithmic 
Mean Activity 

Value [µM] 
𝚫𝚫𝐆𝐆𝐞𝐞𝐞𝐞𝐞𝐞 [kcal/mol] 

Entrectinib 25141092 Ki 
0,00002 

0,000025 
0,0001 

0,000037 -14,23

Brigatinib 68165256 Ki 

0,00007 
0,000145 

0,0002 
0,001 

0,000212 -13,19

Ceritinib 57379345 Ki 
0,00017 
 0,00007 
 0,0084 

0,000464 -12,73

Staurosporin 44259 Ki 0,0019 0,0019 -11,90

Crizotinib 11626560 Ki 

0,007 
0,005 

0,0002 
0,012 

0,003027 -11,62

Nintedanib 135423438 Ki 
0,0004 
0,0007 
0,23 

0,004 -11,45

Foretinib 42642645 Ki 
 0,0006 
0,0058 
0,33 

0,01047 -10,89

https://pubchem.ncbi.nlm.nih.gov/#query=C24H20ClN5O3
https://pubchem.ncbi.nlm.nih.gov/#query=C19H19N3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C30H28F2N6O4
https://pubchem.ncbi.nlm.nih.gov/#query=C14H17FN2O
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Dasatinib 3062316 Ki 
0,0082 
0,016 
0,02 

0,013793 -10,72

Lorlatinib 71731823 Ki 
0,0082 
0,02 
0,018 

0,01434 -10,69

Repotrectinib 135565923 Kd 3,7 3,7 -7,41

Table 2. Selected ROS1 ligands with experimental affinity data and calculated binding energies. 

2.3.1 Step-by-Step Execution of the VDS Workflow 

The VDS workflow developed for this study consists of a sequence of well-

defined steps aimed at preparing, analysing and evaluating both target proteins and small 

molecule ligands. Each step corresponds to a specific protocol within the Scipion-chem 

environment and the overall execution order has been carefully structured to ensure 

methodological reproducibility and consistency across the dataset. In the following 

subsections, each workflow step is described in detail, including its objective and the 

specific parameters used for execution. 

Before addressing each step in detail, a visual overview of the complete VDS 

workflow is presented in APPENDIX C due to space constraints. Figure Appendix 1 

illustrates the main stages and their interconnections, providing a comprehensive 

perspective on the data flow from the initial inputs—namely, target proteins and ligand 

libraries—to the final outputs. These outputs include docking scores and molecular 

dynamics-derived metrics, which can support informed decision-making in the context of 

drug discovery. 

While some steps, such as data import and structural preparation, are considered 

fundamental and common to most computational workflows, the core contribution of this 

methodology lies in how molecular filtering strategies are integrated with consensus 

protocols and ligand ranking processes.  
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2.3.1.1 Molecule Import 

The first step of the workflow involves importing both small molecule ligands 

and the target protein structures into the Scipion environment. This preliminary setup 

ensures that all structural data are available for subsequent analysis. Two specific 

protocols were used for this purpose: Import Small Molecules, provided by the Scipion-

chem plugin, and Import Atomic Structure, available through the Scipion-em plugin. 

The Import Small Molecules protocol allows integration of compound libraries 

either from user-provided files or directly from predefined databases such as ZINC or 

ECBL. In this show case, the set of 1300 FDA-approved drugs were imported directly 

from the ZINC database. To facilitate this, the parameter Format molecules from smiles 

was set to Yes, allowing the protocol to interpret the SMILES strings and convert them 

into 3D structures and choosing RDKit as the structure manager—preferred over 

OpenBabel, which is currently deprecated. As ZINC already provides 3D-optimized 

molecular structures, the Optimize 3D structure option was set to No, avoiding 

unnecessary geometry refinement. The complete configuration of this protocol can be 

more clearly observed in Figure 5, which illustrates the setup used during the import 

process of the ligands. 

 

Figure 5.  Protocol Form configuration for importing FDA-drugs from the ZINC database. 
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To complement the FDA drug set, an additional group of well-characterized 

inhibitors per target protein was included. These molecules were manually downloaded 

from PubChem [30, 31] in SDF format, although the protocol also supports formats such 

as .smi, .mol2, .mae, and .pdb. These files were imported using the same Import Small 

Molecules protocol. The corresponding Protocol Form was configured to specify the 

local directory path and the file naming pattern for batch import. Again, RDKit was 

selected for structure processing and geometry optimization was turned off, since the 

downloaded SDF files already contained valid 3D conformations. The full setup is 

illustrated in Figure 6. 

 

Figure 6. Protocol Form configuration for importing potential known ligands from local SDF files. 

The Import Atomic Structure protocol was employed to incorporate the target 

protein structures into the workflow (Figure 7). For ROS1, the structure was retrieved 

automatically from the Protein Data Bank (PDB) using its PDB ID 3ZBF [31], thereby 

streamlining the import through direct database integration. In contrast, the structure of 

RIPK1 was previously downloaded in PDB format from PubChem [30] and imported as 

a local file by specifying the appropriate path during protocol configuration.  
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Figure 7. Protocol Form configuration for importing ROS1 (left) and RIPK1 (right). 

2.3.1.2 Molecule Preparation 

Before initiating the structure preparation protocols, all ligands intended for each 

target protein were unified into a single set. This step was necessary because the 

molecules, FDA-approved drugs from ZINC and known inhibitors from PubChem, had 

been initially imported through separate protocol configurations, resulting in two distinct 

sets within the workflow. Although optional, this unification step simplifies subsequent 

protocol application and ensures that ligand preparation and analysis are carried out 

consistently across all compounds. 

To merge the two sets, the Operate Set protocol from the Scipion-chem plugin 

was employed. This protocol offers a range of functionalities to manipulate objects via 

their internal SQLite representation. Among the available operations—such as Unique, 

Union, Intersection, Difference, Filter, Remove Column and Ranking—the Union 

operation was selected to combine the ligand sets corresponding to each target protein. 

This process integrates all elements from both sets into a single, unified collection, 

ensuring that all compounds are included and prepared for subsequent stages of analysis. 

In this case, duplicate removal was not necessary, as no overlap existed between the 

imported datasets. The reference attribute used to define the merging criterion was the 

ligand name: for FDA drugs, this corresponded to their ZINC ID, while for the known 

inhibitors from PubChem, it matched the common name as presented in Table 1 and Table 
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2. The resulting unified set constitutes a comprehensive compound library per protein, 

combining both benchmark inhibitors and a broader spectrum of FDA-approved 

molecules for virtual screening. The full configuration of this protocol, along with the list 

of available attributes, is shown in Figure 8. 

 

Figure 8. Protocol Form configuration for merging ligand sets using the Operate Set protocol. 

Once the structures were successfully imported into the Scipion workflow and 

all ligands were consolidated into a single set, separate preparation steps were carried out 

for the protein targets and the ligand libraries to ensure compatibility with subsequent 

protocols.  

Protein structures obtained from databases may contain elements that are 

unnecessary or even detrimental for downstream computational analyses, such as water 

molecules, heteroatoms or non-relevant protein chains. Additionally, they may lack 

hydrogen atoms or include incomplete residues, which can compromise the accuracy of 

docking or molecular dynamics simulations. To address these potential issues, the Target 

Preparation protocol was applied. This protocol integrates PDBFixer, a molecular 

modeling tool that facilitates preprocessing of protein structures by removing undesired 

components [34], preserving specific chains and completing missing atoms or residues 

when necessary. In this case, the configuration was deliberately kept minimal, as 

illustrated in Figure 9. PDBFixer was disabled, as no missing atoms or problematic 

residues had been identified in the structures of ROS1 or RIPK1. Similarly, the option to 
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retain a specific protein chain was also deactivated, as no chain-level selection was 

required. However, the options to remove water molecules and remove heteroatoms were 

enabled to eliminate non-essential components from the structures prior to docking. This 

protocol was selected over alternatives, such as LePro Target Preparation (Lephar 

plugin), Target Preparation ADT (AutoDock plugin) or Target Preparation (prepwizard) 

(Schrödinger plugin), due to its native availability within the Scipion-chem plugin, 

eliminating the need to install or configure additional plugins. Moreover, alternative 

protocols often involve a larger number of chemical and structural parameters, requiring 

a deeper understanding of protein structure refinement and force field selection.  

 

Figure 9. Protocol Form configuration for the target protein preparation. 

Ligands also require thorough preparation to ensure chemical correctness and 

compatibility with docking protocols. Scipion offers multiple protocols for ligand 

preparation, including Ligand Preparation ADT, Meeko Ligand Preparation and Ligand 

Preparation Scrubber (from the AutoDock plugin), Ligand Preparation LigPrep (from 

the Schrodinger plugin), as well as protocols based on RDKit and OpenBabel within the 

Scipion-chem plugin. Among these, RDKit Ligand Preparation (Figure 10) was selected 

for this study due to its broad applicability, efficiency, independence from external 

docking suites and consistency with the previous import step, where RDKit was also used 

for structure processing. The RDKit preparation protocol was configured to reassign 

hydrogen atoms, ensuring accurate protonation states that reflect the chemical and 
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physiological properties of each ligand. This step is essential for maintaining structural 

validity and for correctly modelling potential hydrogen bonding interactions during 

docking. Additionally, Gasteiger partial charges were recalculated, as these charges 

significantly influence electrostatic interactions with the target protein and are, therefore, 

critical for reliable docking outcomes. For this calculation, the MMFF94 force field was 

selected due to its broad applicability and proven accuracy for drug-like molecules. 

Although the protocol also offers the use of MMFF94s, a variant fine-tuned for certain 

functional groups like sp²-hybridized nitrogens [35], MMFF94 was chosen for its general 

robustness across a wider range of chemical scaffolds. The option to generate conformers 

was disabled in this case, primarily due to the large number of molecules processed. 

Generating multiple conformers per molecule increases computational demand 

significantly. However, in scenarios involving smaller ligand libraries, enabling this 

feature is strongly recommended, as it enhances docking performance by exploring 

multiple low-energy 3D conformations, thereby increasing the likelihood of identifying 

optimal binding poses. 

  

Figure 10. Protocol Form configuration of the RDKit Ligand Preparation protocol. 
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2.3.1.3 ROI Definition and Structural Consensus of ROIs 

Defining the regions of interest within a target protein is a fundamental step. 

These ROIs typically correspond to potential binding pockets or interaction sites, 

allowing docking protocols to focus on the most relevant areas instead of the entire 

protein surface. In Scipion-chem, ROIs are defined as atom-level groups within the 

protein structure and can be located directly on atoms, on the molecular surface or in the 

surrounding space. Their main function is to reduce the conformational search space, 

enhancing the precision and efficiency of docking and filtering protocols. Additionally, 

ROIs may serve broader purposes within the platform, such as mapping known mutations 

or analysing functional residues. 

Scipion-chem offers several protocols for ROI definition, which can be grouped 

into four categories. First, ROIs can be defined manually by selecting specific residues or 

atoms based on coordinates, existing ligands, known functional sites or interchain 

interfaces. Second, ROIs can be determined based on structural properties of the protein, 

such as selecting residues with high SASA. Third, Scipion-chem includes integration with 

several pocket prediction tools that identify likely ligand-binding regions. Some of these 

tools are Fpocket, which uses geometric cavity analysis through alpha-spheres and 

evaluates pocket properties; P2Rank, which applies machine learning trained on surface 

features to predict ligand sites; and AutoSite, which uses grid-based energy scoring to 

identify regions with favourable interaction energies [8]. Lastly, ROIs can also be defined 

from protein sequences, based on conservation, natural variants or user-defined interest. 

These sequence-based ROIs can be mapped onto structural models for spatial analysis. 

 In this study, although binding pockets for ROS1 and RIPK1 have been previously 

described in the literature [36,37], multiple pocket prediction tools were employed to test 

the available protocols and to showcase the flexibility and integrative capacity of Scipion-

chem for defining ROIs. Rather than manually specifying predefined ROIs—often 

narrowly focused on published studies—the decision was made to predict them 

computationally to ensure a more exploratory and comprehensive analysis. Three pocket 

prediction tools were applied: Fpocket, P2Rank and AutoSite, each relying on distinct 

theoretical approaches as previously described. This multi-tool strategy enhances the 
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robustness of the analysis by increasing confidence in the identification of druggable 

regions. 

 To configure the three pocket prediction protocols, different parameterization 

strategies were applied depending on the target. For ROS1, the parameters were adapted 

from a previously published study [38] that used similar tools, ensuring alignment with 

established methodologies. In contrast, for RIPK1, no literature references were found 

employing these specific tools, so the default parameters provided by Scipion-chem were 

used. This approach highlights the platform’s flexibility in adapting to both well-studied 

and less-characterized targets. Among the tools used, P2Rank offers the most accessible 

setup, requiring only the input of the prepared protein structure, making it especially 

suitable for users with limited prior knowledge of the target. In comparison, AutoSite 

requires manual configuration of the step size (the distance between points in the 

electrostatic grid) and the number of neighbours, which defines the minimum number of 

adjacent grid points needed for a region to be identified as a pocket. Fpocket, on the other 

hand, requires the specification of parameters related to alpha-sphere detection and 

clustering criteria, which may require deeper understanding of the underlying pocket 

prediction algorithm. The complete configuration details for each of these protocols are 

illustrated in Figure 11 and Figure 12. 

 

Figure 11. Configuration of P2Rank (left) and AutoSite (right) protocol for ROS1 and RIPK1. 
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Figure 12. Configuration of the Fpocket Find Pockets protocol for ROS1 (left) and RIPK1 (right). 

After obtaining the binding site predictions from the selected tools, the next 

essential step is to integrate these results using the Consensus ROI protocol available. 

This protocol consolidates the predicted ROIs by comparing multiple input sets and 

retaining only those regions that appear consistently across different methods. It clusters 

ROIs based on residue overlapping, identifying shared or partially overlapping binding 

pockets. For this study, the protocol was configured so that two ROIs are considered 

overlapping if they share a sufficient proportion of involved residues, using the default 

distance threshold provided by Scipion-chem to define spatial proximity (Figure 13). By 

applying this consensus analysis, the workflow filters out tool-specific artifacts and 

highlights the most robust and druggable regions.  

 

 

 

 

 

 

 Figure 13. Configuration of the Consensus Structural ROIs protocol. 
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2.3.1.4 Docking  

This step involves executing molecular docking simulations using three 

independent docking programs: AutoDock-GPU, AutoDock and LeDock. These 

protocols are applied to the consensus predicted ROIs and the prepared ligands using 

default parameters for both target proteins. Docking represents one of the most 

computationally demanding stages in a VDS workflow and often becomes a performance 

bottleneck, particularly when processing many ligands, such as, those used in this study. 

Therefore, appropriate allocation of computational resources is critical. The docking 

protocols allow users to specify the number of CPU threads and in the case of AutoDock-

GPU, the number of GPUs to use, providing significant acceleration over traditional 

CPU-based execution (Figure 14).  Although AutoDock-GPU offers clear advantages in 

terms of performance and scalability, the inclusion of AutoDock (CPU version) and 

LeDock adds valuable methodological diversity and strengthens the robustness of the 

workflow. AutoDock remains one of the most widely validated docking programs in 

computational chemistry [5]. LeDock, on the other hand, is a fast and resource-efficient 

docking tool, noted for its ability to rank ligands accurately and generate diverse 

conformational poses with minimal computational cost [39]. By employing three distinct 

docking engines, the workflow benefits from a multi-perspective evaluation of ligand-

receptor interactions. This approach reduces the potential bias of relying on a single 

algorithm and enables a consensus scoring strategy based on diverse methodologies. 

Figure 14. Configuration of docking protocols: AutoDock-GPU (right) and AutoDock (left). 
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2.3.1.5 First Filtering  

The output of each docking protocol consists of a set of docked poses, with each 

ligand typically associated with multiple poses, each representing a potential binding 

configuration within the target’s binding site. Every pose includes a predicted binding 

energy, which reflects the estimated strength of the ligand-target interaction. Although 

the specific energy scoring functions differ across docking engines, the general principle 

remains the same: the more negative the binding energy, the more favourable the 

predicted interaction. To streamline the dataset and prioritize the most promising 

candidates, a preliminary filtering step was applied independently to the output of each 

docking protocol. For this purpose, the Operate Set protocol, previously introduced 

during the molecule preparation step, was used in filtering mode. The filtering criterion 

was straightforward: retain only those poses with strictly negative binding energy values 

[33]. 

Since positive binding energies correspond to thermodynamically unfavourable 

interactions, these poses were excluded from further analysis. This initial filtering step 

effectively reduces the number of poses carried forward, ensuring that only the most 

plausible binding configurations are considered in subsequent stages of the VDS 

workflow. 

2.3.1.6 Score Docking Poses 

To ensure consistent comparison across docking results, all filtered poses with 

negative binding energies were rescored using the ODDT Score Docking protocol, which 

leverages the Open Drug Discovery Toolkit (ODDT). Among the available scoring 

functions—Vina, RFScore (Random Forest Score), NNNScore (Nearest Neighbour 

Neural Network Score) and PLECScore (Protein–Ligand Extended Connectivity 

Score)—the Vina score (Figure 15) was selected due to its wide compatibility, 

computational speed and reliance on interaction features, such as, steric fit, hydrogen 

bonding, hydrophobic contacts and torsional penalties.  

Unlike the machine learning–based alternatives, Vina does not require target-

specific training, making it particularly suitable for rescoring large pose sets in a 
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standardized manner. As a result of this step, the same docking poses were retained, but 

each now includes a unified attribute applied consistently across all docking engines.  

 

Figure 15. Configuration of the ODDT Score Docking Protocol for Vina rescoring. 

2.3.1.7 Second Filtering  

To further narrow down the docking poses to the most promising ligand–target 

interactions, a second filtering step was performed, but this time based on the rescoring 

values generated by the ODDT Vina score. Unlike binding energies, where more negative 

values indicate stronger binding affinity, the Vina score interprets higher values as better 

predicted interactions. 

Using the Operate Set protocol in filtering mode, only poses with positive Vina 

scores were retained, while those with negative scores indicating unreliable interactions, 

were discarded. This approach was adopted following recommendations from the 

Scipion-chem development team, who advise filtering out negative-scoring poses to 

avoid artefactual ligand–receptor associations. This filtering was applied independently 

to the outputs of AutoDock-GPU, AutoDock and LeDock, refining each dataset to focus 

on high-confidence docking results. 
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2.3.1.8 Consensus Docking 

 To integrate the docking results from AutoDock-GPU, AutoDock and LeDock, a 

Consensus Docking protocol was applied over the filtered sets of poses. This protocol 

clusters individual ligand conformations based on their three-dimensional atomic 

similarity, using RMSD between atomic coordinates as the primary metric. Two 

clustering strategies are available: the default method uses the Scipy library to compute 

all pairwise RMSD distances between poses, ensuring high clustering accuracy at the cost 

of greater computational effort; the alternative method accelerates the process by 

comparing each new pose only against the representative pose of each existing cluster 

reducing the number of RMSD calculations. However, this method is order-dependent, 

as the outcome may vary depending on the sequence in which poses are processed. After 

clustering, a single pose is selected from each cluster as the representative, typically the 

one with the lowest binding energy or highest score, depending on the scoring scheme. 

To assess the robustness of the consensus approach, two separate consensus 

configurations were performed (Figure 16): one uses their predicted docking energies and 

the other their rescored Vina values. In both cases, only clusters containing poses from at 

least two out of the three docking programs were retained. Additionally, the maximum 

RMSD threshold for cluster overlaps and the hierarchical clustering linkage method were 

kept at their default values, as these parameters are well-supported in the literature for 

producing reliable and consistent clustering results [40]. 

Figure 16. Configuration of Consensus Docking protocols based on binding energy (left) and Vina 

score (right). 
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The dual consensus executions assess the protocol’s performance using two 

scoring schemes: the Vina score, uniformly calculated across all docking protocols, and 

the predicted binding energy, which varies with each docking engine. This comparison 

helps determine which approach better selects representative poses and preserves 

therapeutically relevant ligands. 

2.3.1.9 Third Filtering 

After completing the consensus docking step, a final filtering stage was 

performed using the Operate Set protocol to further refine the pool of docking poses. In 

this third filtering step, only poses with a predicted binding energy lower than −7 kcal/mol 

were retained. Although poses with slightly less favourable energies may still represent 

plausible interactions, the objective at this stage was to isolate only the most promising 

candidates with the strongest predicted affinities.  

The threshold of −7 kcal/mol was chosen because ligands with binding energies 

below this value are generally considered to exhibit high binding affinity and are, 

therefore, more likely to perform well in downstream experimental validation [33]. In 

addition, this cutoff aligns with the binding energy range observed in the weakest of the 

known inhibitors initially included in the study.  

2.3.1.10 Ranking of Docking Scores 

After the third filtering step, the Rank Docking Score protocol is applied, which 

is designed to support the prioritization of candidate molecules by evaluating all available 

docking poses for each ligand. This protocol first groups all poses by their common ligand 

name and then selects the optimal pose within each group based on a user-defined 

criterion.  

As with the consensus step, the protocol will be evaluated under different 

configurations (Figure 17), ranking the ligands based either on predicted docking energy 

or on Vina score.   In addition, the protocol assigns a rankScore to each ligand, reflecting 

its priority based on its performance across multiple docking rankings. A higher 

rankScore indicates that the ligand consistently ranked well across different scoring lists, 
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providing a unified and interpretable candidate list for downstream analyses like MD 

simulations. 

 

2.3.1.11 Molecular Dynamics 

The final step of the VDS workflow involves molecular dynamics simulations 

to validate the stability and plausibility of the predicted ligand–target interactions. MD is 

a powerful computational technique that simulates the atomic-level motion and 

interactions of molecules over time, offering a dynamic and more realistic representation 

of binding behaviour compared to static docking methods. However, due to its high 

computational cost, applying MD to all docked ligands is generally unfeasible. 

Instead, MD is best reserved for a small subset of compounds that have already 

passed stringent filtering criteria. In this study, simulations were selectively performed 

on the top-ranked and lowest-ranked reference ligands (according to the experimental 

energy in Table 1 and Table 2) for each target protein. This approach enables direct 

assessment of whether the most promising candidate maintains stable interactions within 

the binding site and whether the weakest candidate fails to do so—thus validating the 

docking-based ranking. 

Figure 17. Configuration of Ranking Docking Score protocols based on binding energy 

(left) and Vina score (right). 
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Scipion-chem integrates several MD engines for system preparation and 

simulation, including GROMACS, AmberTools, OpenMM and Schrödinger. In this case, 

Schrödinger was chosen over other MD engines because, unlike some alternatives 

integrated in Scipion-chem, it allows the user to extract results specifically for the ligand, 

not just the target protein. 

Molecular dynamics in Scipion-chem requires the sequential execution of two 

dedicated protocols (Figure 18): one for system preparation and another for running the 

simulation. First, the Schrödinger System Preparation (Desmond) protocol constructs the 

solvated system, defining the solute boundary box, selecting the force field and adding 

ions either to neutralize the system or to match a desired ionic concentration. In this study, 

all preparation parameters were maintained at their default values to ensure 

standardization. Following this, the Schrödinger MD Simulation (Desmond) protocol was 

used to perform molecular dynamics on the prepared systems. While the protocol 

interface supports the definition of multiple sequential stages, including energy 

minimization, equilibration and production runs, this study employed the default 

simulation scheme, NPT Desmond Relaxation, which executes a standard relaxation 

process. This default configuration was chosen for its reliability and consistency across 

systems. 

 

Figure 18. Configuration of Schrödinger MD Simulation (Desmond) protocol (left) and of 

Schrödinger System Preparation (Desmond) protocol (right). 
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By comparing the dynamic behaviour of the best and worst ligands, particularly 

their ability to remain stably bound in the receptor pocket, this step offers an additional 

level of validation. It enhances the biological relevance of the VDS results and helps 

prioritize candidates with not only favourable docking scores, but also robust interaction 

profiles under dynamic, physiologically relevant conditions. 

Throughout the development and execution of the VDS workflow, several issues 

were encountered that impacted the pipeline. Although the major steps of the workflow 

were successfully implemented, multiple failures and unexpected behaviours emerged 

during their practical execution. All identified errors and the corresponding 

troubleshooting measures are documented in detail in APPENDIX D.  

2.3.2 Custom Protocols and Plugins Developed for the Workflow 

Although Scipion and Scipion-chem offer a wide range of pre-implemented 

protocols covering most stages of a typical VDS pipeline, during the execution of this 

study, certain functionalities were found to be missing or insufficient for the specific goals 

of the workflow. 

2.3.2.1 Protocol for Experimental Binding Energy Integration 

A key limitation was the inability to import experimental binding data from 

external files into Scipion. To address this, a custom protocol called Experimental Order 

was developed, allowing researchers to enrich ligand sets with experimental affinities and 

directly benchmark computational predictions, enhancing the VDS workflow's 

comparative power. The full implementation of the protocol is openly available at 

https://github.com/veronicagamo/Experimental-Order-Protocol.git  

This protocol reads a user-provided CSV (or similarly structured) file that must 

contain at least two fields: molName (the ligand’s unique identifier) and the 

experimental_energy (the corresponding experimentally determined binding value).  

Upon execution, the protocol matches the entries in the file with those in a given 

SetOfSmallMolecules object and appends a new attribute (experimental_energy) to the 

appropriate ligand entries. The user must provide three inputs shown in Figure 19: the 

path to the CSV file containing the experimental values, the ligand set to be updated, and 

https://github.com/veronicagamo/Experimental-Order-Protocol.git
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the delimiter used in the file (e.g., comma or tab). This last parameter is explicitly 

requested in the configuration form to follow the design pattern of other Scipion protocols 

that read data from external files, ensuring consistent file parsing and user experience 

across the platform. 

 

Figure 19. Protocol Form configuration for the Experimental Order custom protocol. 

 Internally, the protocol validates the file structure, skips improperly formatted 

lines and ensures each molecule is correctly annotated without disrupting existing 

attributes. The resulting output is a new, updated ligand set that can be seamlessly 

reintegrated into the workflow for downstream tasks, such as, scoring, ranking or 

statistical correlation with predicted values. This custom protocol is designed to be 

integrated primarily in the final stages of the VDS workflow (after ranking), as shown in 

Figure Appendix 6. However, due to its flexible design, the Experimental Order protocol 

can also be incorporated at any point in the pipeline where it is relevant to correlate 

experimental values with intermediate computational results. 

2.3.2.2 Pafnucy Plugin  

To further enhance the predictive power of the VDS workflow, a plugin named 

Pafnucy was integrated into the Scipion-chem framework. This plugin was developed to 

simplify and automate the traditionally complex and multi-step process associated with 

docking workflows (molecular docking, filtering, rescoring, consensus analysis and final 
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ranking). These operations are not only time-consuming, but also prone to errors. 

Moreover, within the workflow, they often result in execution failures due to their high 

computational cost, the large number of ligands typically processed and the complexity 

of protocol dependencies. Automating and consolidating these steps through the Pafnucy 

plugin significantly mitigates these issues, enhancing overall workflow stability, 

efficiency and reproducibility. The plugin adheres to the standard Scipion plugin 

architecture, as detailed in APPENDIX E, ensuring full compatibility with the broader 

Scipion ecosystem and facilitating future modular expansions. 

The core predictive engine behind this plugin is Pafnucy, a deep learning model 

originally developed for estimating protein–ligand binding affinities. It was trained on the 

PDBbind dataset and benchmarked using the CASF scoring power benchmark [41]. 

Importantly, Pafnucy model remained unaltered; both the neural network architecture and 

its training process are entirely external to this study. The source code is available at 

https://github.com/realfolkcode/Pafnucy.git. The contribution here lies in its integration 

into Scipion, allowing to function seamlessly as part of a larger automated VDS pipeline. 

The full plugin implementation is openly available at 

https://github.com/veronicagamo/TFG-Pafnucy-Plugin.git  

The Pafnucy model is based on a 3D convolutional neural network that processes 

voxelized representations of protein–ligand complexes. Each voxel encodes atomic-level 

features, such as, atom type, hybridization and partial charge. The network architecture 

consists of three convolutional layers with 64, 128 and 256 filters respectively, each with 

a filter size of 5 Å, followed by max-pooling layers with a patch size of 2 Å [41]. This is 

followed by three fully connected (dense) layers with 1000, 500 and 200 neurons [41]. 

The final layer is a regression output node that predicts the pKa value (negative logarithm 

of the acid dissociation constant), which quantifies the binding affinity between the ligand 

and the protein target. A higher pKa involves a stronger affinity.  

Within Scipion, execution of this model is managed by the Pafnuncy Ligand-

Target Predictions protocol. It is composed of two main stages. The first stage, 

runPreparation, accepts as input a SetOfSmallMolecules object (ligands) and a single 

AtomStruct object (protein structure), as shown in Figure 20. These are combined and 

https://github.com/realfolkcode/Pafnucy.git
https://github.com/veronicagamo/TFG-Pafnucy-Plugin.git
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passed to Pafnucy’s prepare.py script to generate a merged HDF5 input file 

(complexes.hdf). This file encodes the 3D voxelized structures required by the model.  

 

Figure 20. Protocol Form configuration of the Pafnuncy Ligand-Target Predictions protocol. 

The second stage, runPrediction, uses Pafnucy’s predict.py script to process the 

complexes.hdf input and generate a CSV file containing the predicted binding affinities 

pKa. These predictions are then incorporated into the Scipion environment by appending 

a new attribute (Predicted_pKa_Pafnucy) to each ligand entry. In addition, the associated 

protein file is stored as metadata for traceability. Thus, the output is an enriched ligand 

set containing the predicted affinities. 

This protocol is designed to be integrated after the ligand and target preparation 

steps, making it a logical extension once the molecular structures are ready for evaluation. 

An example of how this protocol fits into the overall workflow is shown in Figure 

Appendix 7.  

2.3.2.3 PLAPT Plugin  

The PLAPT plugin, adapted from an existing tool available at 

https://github.com/Bindwell/PLAPT.git, was integrated into Scipion-chem to provide 

deep learning-based binding affinity predictions, enhancing usability, reproducibility and 

https://github.com/Bindwell/PLAPT.git
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accessibility within VDS workflows. The full plugin implementation is openly available 

at https://github.com/veronicagamo/TFG-PLAPT-Plugin.git.  

A key advantage of PLAPT is its ability to operate directly on 1D protein 

sequences, removing the need for 3D structural inputs or computationally expensive 

preprocessing steps for protein targets, such as protonation or optimization (Figure 

Appendix 8). This makes it particularly well-suited for early-stage screening or for targets 

lacking structural data. In this study, protein sequences were imported into Scipion using 

the Import Sequence protocol from Scipion-em plugin, which supports multiple sources 

including UniProtKB, PDB files and local text entries. ROS1 and RIPK1 sequences were 

retrieved via UniProtKB using their PubChem IDs [30,31], as shown in Figure 21. 

PLAPT leverages transfer learning from pretrained transformers: ProtBERT for 

proteins and ChemBERTa for ligands [42]. These models generate rich embeddings from 

sequence data, which are then processed by a branching neural network architecture. 

Protein and ligand features are first handled by bifurcated linear layers and then 

concatenated and passed through fully connected layers to output predicted binding 

affinities as pKd  values. This design enables accurate predictions with minimal 

computational load, ideal for high-throughput virtual screening. 

The plugin is implemented in Scipion through the PLAPT Analysis protocol. It 

takes as input a SetOfSmallMolecules object and a Sequence object (Figure 22). Ligands 

are converted to SMILES strings internally and together with the sequence, are fed into 

PLAPT’s prediction engine. Results are returned in JSON format and parsed to extract 

Figure 21. Protocol Form configuration used for importing RIPK1 (right) and ROS1 (left). 

 

https://github.com/veronicagamo/TFG-PLAPT-Plugin.git
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the predicted pKd  and corresponding micromolar affinities, which are added as attributes 

(pKd_PLAPT, Affinity_uM_PLAPT) to each ligand entry, yielding an updated, analysis-

ready ligand set. 

 

Figure 22. Configuration for PLAPT Analysis protocol. 

To enhance interpretability, the PLAPT plugin includes a dedicated viewer 

(ProtChemInteractionViewer) that converts the model’s prediction output into a 

structured and color-coded HTML report. Unlike other protocols, such as, Pafnucy, which 

focus solely on numerical predictions, this viewer was specifically designed to offer 

additional interpretive value by incorporating categorical assessments and visual styling. 

Upon execution, the report is automatically launched in the user's default browser, 

enabling quick and intuitive evaluation of prediction results. To access this viewer, users 

must first click the Analyze Results button once the PLAPT protocol has completed. This 

opens the viewer interface with the available analysis option (Figure 23). From there, 

clicking on the eye icon launches the interactive HTML report.  
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Figure 23. PLAPT viewer GUI. 

Each ligand entry in the PLAPT output report is displayed in a structured table 

and includes its SMILES string, the predicted binding affinity (expressed as pKd ), the 

corresponding value in micromolar units (µM) and a qualitative classification of the 

interaction strength. This classification groups predictions into three categories: high 

affinity (pKd > 8, highlighted in red), good affinity (6 ≤ pKd ≤ 8, shown in yellow), and 

moderate affinity (pKd < 6, displayed in blue). This intuitive color-coding allows users to 

quickly identify the most promising ligands, facilitating prioritization during high-

throughput virtual screening. The classification scheme is based on the interpretative 

framework proposed by the original PLAPT developers [42].  

Overall, the plugin enables rapid and interpretable affinity predictions from 

sequence inputs and adheres to Scipion’s plugin architecture (APPENDIX E), ensuring 

full integration and future extensibility. 



Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

 39 

3 RESULTS 

This section presents the outputs generated at each stage of the VDS workflow 

for both target proteins: ROS1 and RIPK1. Most visualizations were generated using 

Scipion's graphical interface and reference-specific figures are available in APPENDIX 

G when space constraints apply. 

Firstly, the evolution of the number of candidate molecules throughout the 

workflow is shown in Figure 24, including only stages where the compound count was 

modified. The MD simulation stage is not shown, as it was limited to two ligands per 

target. Red asterisks in the figure indicate stages where reference ligands were lost. This 

helps assess how well the workflow retains experimentally validated inhibitors.  

 

Figure 24. Evolution of ligand count across the VDS workflow for ROS1 and RIPK1 targets. 
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The structures of ROS1 and RIPK1 before and after preparation are displayed in 

Figure 25 and Figure 26 using PyMOL. Proteins are shown using cartoon and surface 

representations, with surfaces color-coded according to electrostatic and hydrophobic 

properties. Prior to preparation, both proteins include co-crystallized ligands and water 

molecules.  

 

Figure 25. Structural visualization of ROS1 before and after preparation. 

 

Figure 26. Structural visualization of RIPK1 before and after preparation. 
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Due to space constraints, only protein visualizations are included. Additional 

examples of ligand structures, before and after preparation, can be found in Figure 

Appendix 9 and Figure Appendix 10.  

Binding site prediction identified 13, 21 and 11 pockets for ROS1 using AutoSite, 

Fpocket and P2Rank, respectively, consolidated into 10 consensus ROIs. For RIPK1, 26, 

34, and 23 pockets were identified, resulting in 16 consensus ROIs. The consensus ROIs 

are shown in Figure 27. 

 

Figure 27. Consensus ROIs predictions for ROS1 (left) and RIPK1 (right) visualized in PyMOL. 

Docking simulations were run across all consensus-derived pockets. While 

AutoDock generated poses, it failed to retain any reference inhibitors for ROS1 and 

preserved only two for RIPK1 (Necrostatin-2 racemate and RIPK1-IN-10). In contrast, 

LeDock and AutoDock-GPU successfully retained all reference inhibitors. Docking 

results are stored as tables listing predicted binding energies (_energy column) and can 

also be visualized structurally. A representative table (Figure Appendix 13) and two 

docked poses (Figure Appendix 14 and Figure Appendix 15) are in APPENDIX G.  

Due to the high number of positive and extreme binding energy values —

especially in AutoDock with outliers exceeding 700000 kcal/mol, a first filtering step was 

applied to remove all poses with positive energies. The resulting negative energy 

distributions for AutoDock are shown in Figure 28, while those for LeDock and 

AutoDock-GPU are in Figure Appendix 16 and Figure Appendix 17. 
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Figure 28. Distribution of predicted ΔG for RIPK1 and ROS1 after 1st filtering step (AutoDock). 

The first filtering step for LeDock and AutoDock-GPU preserved all referenced 

inhibitors for both targets.  

The next step involved calculating the Vina score using the ODDT Score Docking 

protocol. The output consisted of the same sets of filtered molecules from the previous 

docking stage, now enriched with an additional attribute in the results table. Since only 

one scoring function was applied, the new column was labelled oddtScore1_. Figure 29 

shows scatter plots comparing Vina scores with predicted binding energies for ROS1 and 

RIPK1 based on AutoDock filtered results. Similar plots for LeDock and AutoDock-GPU 

are included in Figure Appendix 18 through Figure Appendix 21. 

The scatter plots revealed many poses with negative Vina scores, prompting a 

second filtering step to exclude these unfavourable interactions. After filtering, only 

favourable poses were retained, and no additional reference inhibitors were lost. The 

Figure 29. Scatter plots showing the correlation between AutoDock predicted binding energy and 

ODDT Vina scores for filtered ROS1 (left) and RIPK1 (right) ligand poses. 
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results after filtering for AutoDock are shown in Figure 30, while those for LeDock and 

AutoDock-GPU are presented in Figure Appendix 22 through Figure Appendix 25 . 

Figure 30. Vina scores for ROS1 (left) and RIPK1 (right) after second filtering 

After rescoring and filtering, the two consensus protocol configurations were 

applied (Figure 31). In both cases, no additional reference inhibitors were lost. However, 

the resulting consensus sets remained too large for downstream processing. Therefore, a 

third filtering step was applied, retaining only poses with binding energies ≤ –7 kcal/mol. 

Post-filtering figures are provided in Figure Appendix 26 and Figure Appendix 27.  

Figure 31. Consensus results for ROS1 (top) and RIPK1 (down). 
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Repotrectinib is absent from the Vina–based consensus set, as all its docking 

poses exhibited binding energies greater than –7 kcal/mol and were eliminated during the 

third filtering step. The same exclusion applies to the RIPK1 inhibitors RIPK1-IN-15, 

RIPK1-IN-10, and 1-[3-(3-Fluorophenyl)-3,4-dihydropyrazol-2-yl]-2,2-dimethylpropan-

1-one, regardless of the consensus configuration used.

As in the consensus step, two configurations were tested during the penultimate 

ranking stage. This protocol generated a new attribute, rankScore, for each ligand. The 

energy, Vina score, and rank score obtained for each reference ligand across the different 

combinations of consensus and ranking strategies are provided in Table Appendix 1 due 

to space constraints. Scatter plots displaying the corresponding results for all ligands are 

included in Figure Appendix 28 through Figure Appendix 35.  

Two ligands per target were selected for MD simulations. RMSD overtime is 

shown in Figure 32 and Figure 33 for ROS1 and RIPK1, respectively. These provide 

structural validation of binding stability post-docking. 

Figure 32. RMSD trajectories over time for the best and worst ROS1 ligands during MD. 

Figure 33. RMSD trajectories over time for the best and worst RIPK1 ligands during MD. 
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The following scatter plots in Figure 34 and Figure 35 display the reference 

ligands for each protein target, showing the relationship between experimental binding 
energy and the predicted affinity values: pKd predicted by the PLAPT model and pKa  

predicted by the Pafnucy model. Additionally, Table Appendix 2 includes a table showing 

the rank positions of the reference ligands among all ligands, sorted in descending order 

based on their predicted values. This is accompanied by screenshots of the corresponding 

visual reports generated by the PLAPT viewer interface in Figure Appendix 36 and Figure 

Appendix 37.  

Figure 34. Predicted affinity vs. experimental ΔG for ROS1 reference ligands using Pafnucy (left) 

and PLAPT (right). 

Figure 35. Predicted affinity vs. experimental ΔG for RIPK1 reference ligands using Pafnucy (left) 

and PLAPT (right). 
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4 DISCUSSION 

This section critically evaluates the performance of each workflow component, 

their limitations and the system’s overall ability to identify, rank and prioritize ligands 

with known experimental binding data. 

The workflow began with molecular preparation, a critical step for ensuring 

reliable docking predictions. Ligands prepared using RDKit retained correct three-

dimensional geometry and partial charges, whereas OpenBabel produced flattened and 

chemically unrealistic structures, rendering it unsuitable for this purpose. Protein 

preparation through the built-in Target Preparation protocol effectively cleaned the 

structures without the need for external tools, as the targets were structurally complete 

(Figure 25 and Figure 26). 

Binding pocket prediction conducted using Fpocket, AutoSite and P2Rank, 

successfully identified relevant ROIs. Fpocket detected the highest number of pockets 

and consensus across the tools accurately reproduced known binding sites (Figure 27). 

For ROS1, the ATP-binding site was consistently identified, while for RIPK1, predicted 

pockets matched the catalytic cleft and adjacent grooves reported in the literature, 

confirming the validity of the site detection strategy. 

Docking simulations revealed marked differences between engines. AutoDock 

proved highly unreliable under the present conditions, failing to generate valid poses for 

a substantial portion of the ligand set, including all reference inhibitors for ROS1 and 

several for RIPK1. Even in successful cases, AutoDock frequently produced implausible 

binding energies, often yielding extremely high positive values—far beyond those 

observed with the other engines—further undermining its reliability. Although LeDock 

and AutoDock-GPU also occasionally generated poses with positive binding energies, 

these were comparatively less frequent and never as extreme. Therefore, AutoDock 

cannot be recommended as a standalone docking tool without additional validation or the 

support of alternative methods. 

Analysis of binding energy distributions after the initial filtering step highlighted 

notable differences. For ROS1, AutoDock-GPU provided the broadest and deepest energy 

range (–11,10 to –0,64 kcal/mol), followed by LeDock (–10,61 to 0 kcal/mol), while 
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AutoDock had the narrowest range (–8,94 to –0,01 kcal/mol). For RIPK1, AutoDock-

GPU again generated the most favourable energies (–15,17 to –0,001 kcal/mol), followed 

by LeDock (–12,83  to 0 kcal/mol) and AutoDock (–10,77 to 0,23 kcal/mol). These results 

confirm that AutoDock-GPU yielded more thermodynamically favourable 

conformations, particularly for RIPK1. LeDock also performed well, while AutoDock 

(Figure 28) showed limited range and failed to recover high-affinity candidates, 

reinforcing its limitations for robust VDS. 

Rescoring with the Vina function (ODDT) showed clear differences in agreement 

across engines. AutoDock-GPU exhibited the strongest correlation with rescoring results, 

followed by AutoDock for its valid subset. LeDock presented weaker correlations, 

especially for RIPK1, suggesting lower alignment between its energy and Vina score. 

Prior to the second filtering stage, LeDock produced the most negative Vina scores, likely 

due to geometric optimization not aligned with Vina’s scoring criteria. AutoDock-GPU 

yielded fewer negative scores, indicating better compatibility with rescoring, while 

AutoDock produced negative scores only in a limited and less reliable set, as illustrated 

in Figure 29. After removing all negative Vina scores, the retained score ranges for ROS1 

were: 0–7,5 (AutoDock), 0–10,21 (LeDock), and 0–9,2 (AutoDock-GPU). For RIPK1, 

the score ranges were: 0–9,69 (AutoDock), 0–12,09 (LeDock), and 0–11,37 (AutoDock-

GPU). While LeDock preserved the widest ranges, AutoDock-GPU offered more uniform 

and consistent score distributions, supporting its overall robustness in pose quality and 

rescoring alignment. 

A comparative analysis of predicted binding energies, Vina scores and rankScores 

across all consensus and ranking configurations (Table Appendix 1) provided key insights 

into their ability to replicate experimental affinities. For both ROS1 and RIPK1, energy-

based consensus combined with energy-based ranking produced the most negative 

binding energies and best approximations to experimental ΔG values. Although absolute 

energies were systematically 2–4 kcal/mol less negative than experimental values, the 

relative order of ligands was generally preserved. For example, in the case of ROS1, the 

reference inhibitors Entrectinib, Brigatinib and Ceritinib also exhibited the most 

favourable predicted binding energies within this configuration. 



Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

48 

In terms of ligand prioritization, energy-based consensus combined with Vina-

based ranking offered the best separation between strong and weak binders for both target 

proteins. While rankScore values were low, the relative ordering closely matched known 

binding affinities. For example, Entrectinib and Brigatinib were consistently ranked 

above weaker compounds, such as, Crizotinib or Repotrectinib. This indicates that Vina 

rescoring, when applied to reliable docking poses, enhances the prioritization of ligands 

according to their potency. 

By contrast, the configuration using Vina-based consensus with energy-based 

ranking showed the weakest alignment with experimental data. In some cases, potent 

reference ligands were ranked below moderate ones—for example, GSK-3145095 

received a lower rankScore than C24H20ClN5O3, highlighting potential misprioritization 

when rescoring is not aligned with thermodynamic strength. 

Interestingly, the Vina-based consensus combined with Vina-based ranking 

yielded results largely comparable to the energy-based consensus with Vina-based 

ranking for ligands that passed all three filtering stages. However, its more restrictive 

nature led to the exclusion of several reference ligands during the third filtering step. 

Specifically, RIPK1-IN-15, RIPK1-IN-10, and 1-[3-(3-Fluorophenyl)-3,4-

dihydropyrazol-2-yl]-2,2-dimethylpropan-1-one were eliminated by all configurations at 

this stage, confirming their consistently poor performance. In contrast, Repotrectinib was 

excluded exclusively under the Vina-based consensus, while it was retained in energy-

based workflows. This reveals a notable trend: when the Vina-based consensus is applied, 

reference ligands with less negative experimental binding energies—despite their known 

activity—are more likely to be discarded. These exclusions, although consistent with the 

applied thermodynamic thresholds, underscore a potential limitation of overly strict 

consensus strategies, which may filter out moderately active yet biologically relevant 

compounds. 

MD simulations further confirmed the stability of ligand binding modes. As 

shown in Figure 32 and Figure 33, RMSD trajectories over time clearly distinguish 

between high- and low-affinity ligands. In ROS1, Entrectinib showed minimal 

fluctuations (protein and ligand RMSD < 2.0 Å), indicating high structural stability. In 

contrast, Repotrectinib showed greater variability (ligand RMSD > 2.5 Å), suggesting 

https://pubchem.ncbi.nlm.nih.gov/#query=C24H20ClN5O3
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weaker binding. Similar trends were observed for RIPK1: GSK-3145095 remained stably 

anchored in the binding pocket, while low-affinity ligands exhibited significant RMSD 

fluctuations. These results support a positive correlation between experimental affinity, 

docking-based prioritization and dynamic stability. 

The evaluation of binding affinity predictions for reference ligands using the 

machine learning models Pafnucy and PLAPT (Figure 34 and Figure 35) revealed notable 

inconsistencies when compared with experimental binding energies, particularly in the 

case of ROS1. Theoretically, a higher pKd and pKa value should be associated with a 

more negative experimental binding energy. Additionally, those with the highest pK 

should correspond to the most potent binders, reflected in top ranking positions. However, 

this expected relationship was not consistently observed in Table Appendix 2. For ROS1, 

both models showed a weak and erratic alignment between predicted pK and 

experimental ΔG exp. Entrectinib, which exhibited the most favourable ΔG exp, was 

assigned a relatively low pK by both models and ranked near the bottom: 1002nd by 

Pafnucy and 678th by PLAPT. Conversely, Lorlatinib, with a less favourable ΔG exp, 

received the highest pKd value from PLAPT and was ranked 2nd overall, representing a 

significant overestimation of its binding potential. In contrast, for RIPK1, the models 

demonstrated better alignment with experimental affinities, particularly in terms of 

deprioritizing weak ligands. Ligands such as 1-[3-(3-Fluorophenyl)-3,4-dihydropyrazol-

2-yl]-2,2-dimethylpropan-1-one, were correctly assigned low pK values and placed in the

lower ranks by both models. This suggests that the models reliably identify weak binders,

though inconsistencies persist among ligands with moderate to high affinity.

In summary, Pafnucy and PLAPT predictions showed limited agreement with 

experimental binding energies. Their rank-based prioritization correlated weakly with 

ligand potency and often misclassified key compounds. Overall, neither model proved 

reliable for accurate ligand prioritization on its own. 
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5 CONCLUSIONS 

This project presents the design and validation of an automated VDS workflow 

within the Scipion-chem framework, integrating docking, rescoring, consensus analysis, 

MD simulations and machine learning–based affinity prediction. The system was 

evaluated using two therapeutically relevant targets, ROS1 and RIPK1, alongside known 

reference ligands with experimental data and a diverse FDA-approved compound library. 

The workflow demonstrated strong predictive capacity, especially under energy-

based consensus with Vina rescoring, which consistently preserved the relative ranking 

of ligands according to their experimental affinities. Among the docking engines tested, 

AutoDock-GPU yielded the most thermodynamically favourable and consistent results. 

LeDock also performed reliably, while AutoDock showed significant limitations, 

frequently failing to generate valid poses or yielding unrealistic energy estimates. 

Post-docking scoring and filtering strategies proved effective in distinguishing 

strong from weak binders. Molecular dynamics simulations further confirmed the 

structural stability of top-ranked ligands and the instability of poor binders, supporting 

the robustness of the prioritization strategy. However, machine learning models (Pafnucy 

and PLAPT) showed variable performance: although useful for deprioritizing weak 

ligands, they often misranked high-affinity compounds—particularly in ROS1—and thus 

should be used only in combination with other methods. 

In conclusion, the workflow offers a reproducible and modular platform for 

virtual drug screening, integrating complementary methods to enhance early-stage drug 

discovery. Future work should focus on incorporating additional docking engines (e.g., 

Glide, GOLD), improving scoring functions with deep learning and addressing 

inconsistencies in ML-based affinity prediction through model retraining or contextual 

enrichment. Moreover, extending the workflow to include ADMET filtering, toxicity 

prediction, ensemble docking and improved handling of receptor flexibility will increase 

its pharmacological relevance and scalability for large-scale applications. 
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APPENDIX 

A. Scipion Installation

If you don't have conda installed, check by running the following command in 

your console: 

which conda 

If conda is not installed, follow the steps below to install Miniconda. 

Alternatively, proceed to step 3. 

1. Install Miniconda:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-

Linux-x86_64.sh 

bash Miniconda3-latest-Linux-x86_64.sh -b -p /path/to/miniconda 

2. Verify you are using bash:

echo $SHELL 

3. Initialize conda:

source /path/to/miniconda/etc/profile.d/conda.sh 

4. Activate the base conda environment and install the Scipion installer:

conda activate 

pip3 install --user scipion-installer 

5. Install Scipion and generate default config files:

python3 -m scipioninstaller -conda -noAsk /path/to/scipion 

/path/to/scipion/scipion3 config –overwrite 

6. To make launching Scipion easier, add the following alias to your .bashrc

file:

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
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alias scipion3='/path/to/scipion/scipion3' 

To launch Scipion, you only need to type the name of the alias you selected in 

your .bashrc file in the terminal. 

B. Plugin Installation  

 To install each plugin, follow these steps: 

1. Clone the plugin repository (replace <plugin-repo-url> with the actual plugin 

repository URL): 

git clone <plugin-repo-url> 

2. Navigate to the cloned directory: 

cd <plugin-directory> 

3. Checkout the development branch (if necessary): 

git checkout devel 

4. Install the plugin with Scipion (replace <path-to-plugin> with the path to the 

cloned plugin directory): 

scipion3 installp -p <path-to-plugin> --devel 

For example, to install the Scipion-chem plugin, follow these steps: 

git clone https://github.com/scipion-chem/scipion-chem.git 

cd scipion-chem 

git checkout devel 

scipion3 installp -p /path/to/scipion-chem –devel 



Development of a Workflow for Virtual Drug Screening Using the Scipion Framework 

 56 

C. VDS Workflow Overview 

 

Figure Appendix 1. Visual representation of the VDS workflow in Scipion.  

D. Issues and Challenges Encountered 

Several protocols encountered runtime failures caused by software bugs or 

hardware limitations. Memory allocation issues and extended execution times became 

significant obstacles during computationally intensive stages, such as large-scale docking 

and consensus analysis. These phases, particularly when processing large ligand libraries, 

occasionally lead to workflow interruptions or system crashes. To mitigate these 
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challenges, it was often necessary to manually adjust protocol parameters, split tasks into 

smaller batches and re-run failed steps. 

Crucially, all technical issues identified during the implementation process were 

carefully communicated to the Scipion-chem development team. In some instances, 

proposed solutions (direct code modifications) were suggested to resolve the problems. 

These contributions were reviewed by the developers, who evaluated their suitability and 

decided whether to incorporate them into the official version of the plugin based on their 

technical soundness and overall utility. 

D.1 Conflict with Object IDs in Rank Docking Protocol 

During the execution of the Rank Docking Score protocol, a runtime error was 

encountered due to ID conflicts in the internal database. The error traceback revealed a 

sqlite3.IntegrityError: UNIQUE constraint failed: Objects.id, which indicated 

that newly generated molecules were being assigned duplicate object identifiers. 

To resolve the issue, a manual fix was introduced at line 147 of the protocol script 

(protocol_rank_docking_score.py) from https://github.com/scipion-chem/scipion-

chem.git by resetting the object ID using: 

mol.setObjId(None) 

This command clears the current object ID, allowing Scipion’s SQLite-based 

backend to automatically assign a new, unique ID upon insertion. Importantly, this 

operation only affects the ID of the current molecule object and does not modify other 

entries in the dataset. It is unknown whether a permanent fix has been applied in more 

recent versions of the Scipion-chem plugin. 

D.2 Conflict with Parameter Parsing in OpenMM’s System Preparation 

Although Schrödinger’s Desmond engine was ultimately chosen for the final 

simulations, other MD tools, such as, OpenMM were also explored during the evaluation 

phase. 

https://github.com/scipion-chem/scipion-chem.git
https://github.com/scipion-chem/scipion-chem.git
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An error was encountered during the execution of the OpenMM System 

Preparation protocol when attempting to read the solvationParams.txt file. The issue was 

traced to the original parameter parsing function. The specific traceback observed was: 

Traceback (most recent call last): 

File "/home/veronica/scipion-chem 

openmm/openmm/scripts/openmmPrepareSystem.py", line 69, in <module> sysName = 

os.path.splitext(os.path.basename(pDic['receptorFile']))[0] 

KeyError: 'receptorFile' 

This error occurred because the original function, parseParams(), did not 

account for missing or incorrectly formatted lines in the parameter file. To resolve this, a 

custom version of the parseParams() function was implemented in the utils.py script in 

the Scipion-chem-openmm plugin (available at https://github.com/scipion-chem/scipion-

chem-openmm.git). 

The revised function introduced several key enhancements. It handles malformed 

lines that do not contain the expected separator (::) safely, preventing unexpected crashes 

during execution. Additionally, it avoids exceptions by skipping improperly formatted 

entries rather than attempting to process them. Finally, it ensures clean and consistent 

data parsing by removing unnecessary whitespace from both keys and values. The custom 

implementation is shown below: 

def parseParams(filename, sep='::'): 

    pDic = {} 

    with open(filename, 'r') as f: 

        for line in f: 

            line = line.strip() 

            if sep in line: 

                key, value = line.split(sep, 1) 

    return pDic 

https://github.com/scipion-chem/scipion-chem-openmm.git
https://github.com/scipion-chem/scipion-chem-openmm.git
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D.3 Obsolete Performance of OpenBabel in Ligand Preparation

Another issue encountered during the workflow was related to ligand preparation 

using the OpenBabel Ligand Preparation protocol. Although the protocol executed 

without any reported errors, the resulting molecular structures were completely planar, 

indicating a failure in generating proper 3D conformers. This issue affected not only 

ligands manually downloaded from PubChem, but also those imported directly from the 

ZINC database, demonstrating that the problem was systematic rather than input specific. 

The underlying cause appears to be the outdated state of the OpenBabel 

integration within Scipion-chem. As this tool is no longer actively maintained in the 

platform, its reliability and compatibility with current molecular formats have 

significantly declined. Moreover, its lack of error feedback allowed incorrect geometries 

to pass unnoticed, further complicating downstream analyses. 

Due to these limitations, RDKit was adopted as the preferred tool for ligand 

preparation. Its modern architecture, active development and robust geometry handling 

ensured consistent and chemically accurate structures across all ligand sources, making it 

a more dependable choice for high-throughput virtual screening workflows. Figure 

Appendix 2 and Figure Appendix 3 illustrate two examples of ligand structures visualized 

in PyMOL visualization tool. On the left, the molecules 1-[3-(3-Fluorophenyl)-3,4-

dihydropyrazol-2-yl]-2,2-dimethylpropan-1-one (RIPK1 inhibitor) and 

ZINC000000000456 are shown after being processed with the OpenBabel, exhibiting 

fully planar geometries. On the right, the same molecules are shown after preparation 

with RDKit, displaying proper three-dimensional geometry and realistic molecular 

conformations. 
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Figure Appendix 2. Distorted planar geometry of RIPK1 inhibitor after OpenBabel preparation 

(left) compared to correct 3D structure via RDKit (right). 

 

Figure Appendix 3. ZINC ligand rendered as fully planar by OpenBabel (left) versus properly 

prepared 3D conformer using RDKit (right). 

D.4 Addressing Resource Bottlenecks in Large-Scale Docking 

Finally, another significant challenge encountered during the execution of the 

workflow was the limitation of computational resources. Several protocols, particularly 

those involving molecular docking and MD, either failed to complete or required 

prohibitively long runtimes. These performance issues were primarily due to the large 

number of ligands included in the screening phase, the presence of multiple predicted 
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binding pockets per target and the inherently high computational demands of MD 

simulations. 

To address these bottlenecks, a practical optimization strategy was implemented 

during the docking stage. After ligand preparation, the full dataset was divided into 

smaller subsets, typically containing around 500 molecules each. This subdivision 

allowed docking protocols to be executed independently for each subset, significantly 

reducing memory consumption and minimizing execution failures. 

Subset generation was carried out using the Split Set protocol from Scipion-em 

(Figure Appendix 4), which allows users to divide a ligand set into a user-defined number 

of parts. The number of partitions can be adapted to the size of the dataset and an optional 

randomization feature ensures an even distribution of compounds across subsets. 

 

Figure Appendix 4. Configuration of the Split Set protocol. 

Once docking was completed for all subsets, the results were recombined using 

the Operate Set protocol in Union mode, enabling the workflow to proceed without 

interruption. Although splitting is not strictly mandatory, it is strongly recommended 

when working with large ligand libraries, as it improves both performance and reliability. 

A visual overview of this procedure is presented in Figure Appendix 5, which summarizes 

the subset generation workflow and its integration within the docking phase of the VDS 

pipeline. 
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Figure Appendix 5. Integration of the Split Set protocol into the VDS workflow. 

For example, the AutoDock-GPU protocol encountered runtime issues when 

attempting to dock all ligands simultaneously. In the case of the ROS1 target, executing 

the protocol without subset partitioning required over 11 hours. In contrast, for RIPK1, 

where ligands were divided into three subsets, each subset completed in less than 3 hours. 

This clearly demonstrates how partitioning enhances workflow scalability when tackling 

resource-intensive tasks. 

E. Plugin Structure Adopted for Integrated Tools

The design and implementation of the plugins developed in this project followed 

the standard Scipion plugin architecture. This modular structure ensures compatibility 

with the Scipion framework and allows for easy development, integration, and 

maintenance of new functionalities within the platform. 

Each plugin is implemented as a Python package, with a clearly defined folder 

hierarchy and configuration files. The directory structure adopted for the plugins in this 

work follows this canonical layout: 

scipion-chem-namePlugin/ 

├── CHANGES.txt 

├── LICENSE 

├── MANIFEST.in 

├── README.rst 
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├── requirements.txt 

├── setup.py 

├── myplugin/ 

│   ├── __init__.py 

│   ├── bibtex.py 

│   ├── constants.py 

│   ├── objects.py 

│   ├── protocols.conf 

│   ├── protocols/ 

│   │   ├── __init__.py 

│   │   ├── protocol_namePlugin.py 

│   ├── viewers/ 

│   │   ├── __init__.py 

│   │   ├── viewer_nameProtocol.py 

│   ├── wizards/ 

│   │   ├── __init__.py 

│   │   ├── wizard_nameProtocol.py 

│   ├── tests/ 

│   │   ├── __init__.py 

│   │   ├── test_nameProtocol.py 

At the root level, several files handle metadata, configuration, and distribution. 

CHANGES.txt documents the plugin’s version history and update log. LICENSE outlines 

the licensing terms under which the plugin is distributed. MANIFEST.in defines which 

non-code files (e.g., documentation or icons) should be included during packaging. 

README.rst contains a long-form description of the plugin, useful for users and for 
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publishing the plugin to PyPI. Requirements.txt lists Python dependencies that the plugin 

needs. Lastly, setup.py specifies how the plugin is installed, including its metadata and 

where it appears in Scipion’s protocol tree. 

The core plugin logic resides in the myplugin/ directory. Here, __init__.py 

defines the main Plugin class and sets up its environment. Bibtex.py includes BibTeX-

format references that Scipion uses to automatically manage citations. Constants.py stores 

global constants such as environment variable names. Objects.py defines custom Python 

objects or data structures used within protocols. The protocols.conf file configures how 

the plugin's protocols are organized and displayed in Scipion’s graphical interface. 

The protocols/ subdirectory contains the implementation of the plugin’s 

computational logic. It includes its own __init__.py and one or more protocol definition 

files, such as protocol_namePlugin.py, which encapsulate the core functionality. 

Two additional subdirectories, viewers/ and wizards/, are optional but can be 

included when needed. The viewers/ folder enables custom graphical representations of 

results, enhancing the interpretation of complex outputs. The wizards/ folder provides 

interactive configuration tools that help users set parameters correctly through guided 

interfaces. If such custom visualization or configuration tools are not required, these 

folders may remain empty. 

Lastly, the tests/ directory contains testing scripts to validate the correct 

operation of the plugin. It includes __init__.py and files such as test_nameProtocol.py, 

which are used during development and deployment to verify that the protocols function 

as expected within the Scipion environment. 

F. Overview of the Workflows Integrating Custom-Developed 

Protocols  

Figure Appendix 6, Figure Appendix 7 and Figure Appendix 8 illustrate the 

sequential organization of the custom protocols developed in this project, integrated into 

a structured and automated pipeline within the Scipion-chem framework. 
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Figure Appendix 6. Integration point of the Experimental Order protocol within the workflow. 

 

Figure Appendix 7. Workflow overview integrating Pafnucy. 

 

Figure Appendix 8. Workflow overview integrating PLAPT. 

G. Extended Results 

This section contains supplementary figures corresponding to the RESULTS 

section that were not included in the main body of the document due to space constraints. 
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These additional visualizations support and complement the analyses presented 

throughout the workflow.  

Figure Appendix 9 and Figure Appendix 10 illustrate two ligands—Entrectinib, 

a potential inhibitor of ROS1, and ZINC000410428674—visualized in PyMOL before 

and after structural preparation. These images highlight key changes introduced during 

the preparation process, such as geometry optimization and hydrogen atom addition. As 

observed in the case of Entrectinib, no significant modifications were necessary, since the 

structure, like all ligands imported from PubChem, was already downloaded in a pre-

optimized 3D format. In contrast, the ligand retrieved from the ZINC database, 

representative of all ZINC-imported compounds, underwent notable structural 

adjustments during preparation to ensure proper 3D conformation and molecular 

integrity. 

 

Figure Appendix 9. Structural visualization of Entrectinib before and after preparation. 

 

Figure Appendix 10. Structural visualization of ZINC000410428674 before and after preparation. 
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Additional visualizations of individual ROI predictions for ROS1 and RIPK1, 

generated by AutoSite, Fpocket and P2Rank, are provided in Figure Appendix 11 and 

Figure Appendix 12. They include full surface renderings and pocket annotations to 

support the consensus analysis presented in the main text. 

 

Figure Appendix 11. ROI predictions for ROS1 by AutoSite, Fpocket and P2Rank. 

 

Figure Appendix 12. ROI predictions for RIPK1 by AutoSite, Fpocket and P2Rank. 
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The table in Figure Appendix 13 provides an example of the output format 

generated by any of the docking protocols used in the workflow, including the predicted 

binding energy for each ligand–pocket complex. 

 

Figure Appendix 13. Example of docking protocol output table showing predicted binding energies 

and pose information. 
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Figure Appendix 14 and Figure Appendix 15 illustrate two representative cases 

generated using the Chimera visualizer tool: Brigatinib docked into ROS1 using the 

AutoDock-GPU protocol and GSK-3145095 docked into RIPK1 using the LeDock 

protocol. These visualizations display the ligand embedded within its predicted binding 

pocket, allowing for detailed structural evaluation of ligand–receptor interactions and 

spatial complementarity. 

 

Figure Appendix 14. Brigatinib docked into ROS1 using AutoDock-GPU. 

 

Figure Appendix 15. GSK-3145095 docked into RIPK1 using LeDock. 
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And subsequently, the remaining histograms are shown, representing the filtered 

outputs of LeDock (Figure Appendix 16) and AutoDock-GPU (Figure Appendix 17) for 

both ROS1 and RIPK1 targets after removing all docking poses with positive binding 

energies. 

Figure Appendix 16. Distribution of predicted binding energies for RIPK1 and ROS1 after first 

filtering step (LeDock). 

Figure Appendix 17. Distribution of predicted (pred.) binding energies for RIPK1 and ROS1 after 

first filtering step (AutoDock-GPU). 

Additional scatter plots showing the correlation between predicted binding 

energies and ODDT Vina scores for LeDock and AutoDock-GPU and both targets are 

provided below from Figure Appendix 18 to Figure Appendix 21. These plots 

complement the main text by illustrating the full set of comparative scoring data not 

shown earlier due to space constraints. 
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Figure Appendix 18. Scatter plot showing the correlation between AutoDock-GPU binding energies 

and ODDT Vina scores for filtered RIPK1 ligand poses. 

Figure Appendix 19. Scatter plots showing the correlation between AutoDock-GPU binding 

energies and ODDT Vina scores for filtered ROS1 ligand poses. 
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Figure Appendix 20. Scatter plots showing the correlation between LeDock binding energies and 

ODDT Vina scores for filtered RIPK1 ligand poses. 

Figure Appendix 21. Scatter plots showing the correlation between LeDock binding energies and 

ODDT Vina scores for filtered ROS1 ligand poses. 

The scatter plots from Figure Appendix 22 to Figure Appendix 25 display the 

relationship between the predicted binding energies from AutoDock-GPU and LeDock, 
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and ODDT Vina scores before and after applying the second filtering step, in which all 

poses with negative Vina scores were removed. 

Figure Appendix 22. Scatter plot showing the correlation between LeDock binding energies and 

ODDT Vina scores for filtered RIPK1 ligand poses after second filtering. 

Figure Appendix 23. Scatter plot showing the correlation between AutoDock-GPU binding energies 

and ODDT Vina scores for filtered RIPK1 ligand poses after second filtering. 
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Figure Appendix 24. Scatter plot showing the correlation between LeDock binding energies and 

ODDT Vina scores for filtered ROS1 ligand poses after second filtering. 

Figure Appendix 25. Scatter plot showing the correlation between AutoDock-GPU binding energies 

and ODDT Vina scores for filtered ROS1 ligand poses after the second filtering. 

The results after the application of the third filtering step (binding energy ≤ –7 

kcal/mol) are presented in Figure Appendix 26 and Figure Appendix 27.  

Figure Appendix 26. Scatter plots of Vina scores versus predicted binding energies after the third 

filtering step based on the energy-based consensus configuration for RIPK1 (left) and ROS1 (right). 
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Figure Appendix 27. Scatter plots of Vina scores versus predicted binding energies after the third 

filtering step based on the energy-based consensus configuration for RIPK1 (left) and ROS1 (right). 

 For each combination of consensus and ranking configuration, Figure Appendix 

28 through Figure Appendix 35 display the relationship between either the Vina score or 

the rank score and the predicted binding energy and Table Appendix 1 presents these 

same attributes for each of the reference ligands. This allows for a direct comparison of 

scoring behaviour and ranking outcomes across configurations. 

Figure Appendix 28. Scoring and ranking metrics across energy-based consensus and Vina-based 

ranking for ROS1. 
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Figure Appendix 29. Scoring and ranking metrics across energy-based consensus and energy-based 

ranking for ROS1. 

Figure Appendix 30. Scoring and ranking metrics across Vina-based consensus and energy-based 

ranking for ROS1. 

Figure Appendix 31. Scoring and ranking metrics across Vina-based consensus and Vina-based 

ranking for ROS1. 
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Figure Appendix 32. Scoring and ranking metrics across energy-based consensus and Vina-based 

ranking for RIPK1. 

Figure Appendix 33. Scoring and ranking metrics across energy-based consensus and energy-based 

ranking for RIPK1. 

Figure Appendix 34. Scoring and ranking metrics across Vina-based consensus and energy-based 

ranking for RIPK1. 
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Figure Appendix 35. Scoring and ranking metrics across Vina-based consensus and Vina-based 

ranking for RIPK1. 

Protein 
Target 

Drug Name 
/Formula 

Energy Consensus + 
Energy Ranking 

Energy Consensus 
+ Vina Ranking

Vina Consensus + 
Energy Ranking 

Vina Consensus + 
Vina Ranking 

ROS1 

Entrectinib 

Energy = -11,1 
kcal/mol 

Vina Score = 7,39 
Rank Score = 

0,000773 

Energy = -7,42 
kcal/mol 

Vina Score = 6,09 
Rank Score = 

0,00776 

Energy = -9,58 
kcal/mol 

Vina Score = 7,49 
Rank Score = 

0,000766 

Energy = -7,42 
kcal/mol 

Vina Score = 6,09 
Rank Score = 0,00776 

Brigatinib 

Energy = -10,48 
kcal/mol 

Vina Score = 7,16 
Rank Score = 

0,000867 

Energy = -7,27 
kcal/mol 

Vina Score = 5,49 
Rank Score = 

0,00757 

Energy = -9,1 
kcal/mol 

Vina Score = 7,16 
Rank Score = 

0,000861 

Energy = -7,27 
kcal/mol 

Vina Score = 5,49 
Rank Score = 0,00757 

Ceritinib 

Energy = -10 
kcal/mol 

Vina Score = 5,94 
Rank Score = 

0,003033 

Energy = -7,43 
kcal/mol 

Vina Score = 4,64 
Rank Score = 

0,00186 

Energy = -10,0 
kcal/mol 

Vina Score = 5,94 
Rank Score = 

0,003008 

Energy = -7,43 
kcal/mol 

Vina Score = 4,64 
Rank Score = 0,00186 

Staurosporin 

Energy = -9,62 
kcal/mol 

Vina Score = 4,16 
Rank Score = 

0,001372 

Energy = -7,61 
kcal/mol 

Vina Score = 3,87 
Rank Score = 

0,000694 

Energy = -8,36 
kcal/mol 

Vina Score = 4,16 
Rank Score = 

0,001362 

Energy = -7,61 
kcal/mol 

Vina Score = 3,87 
Rank Score = 

0,000694 

Crizotinib 

Energy = -9,1 
kcal/mol 

Vina Score = 6,09 
Rank Score = 

0,000086 

Energy = -7,41 
kcal/mol 

Vina Score = 3,33 
Rank Score = 

0,000788 

Energy = -7,56 
kcal/mol 

Vina Score = 5,10 
Rank Score = 

0,000242 

Energy = -7,41 
kcal/mol 

Vina Score = 3,33 
Rank Score = 

0,000788 
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Nintedanib 

Energy = -8,43 
kcal/mol 

Vina Score = 5,10 
Rank Score = 

0,000244 

Energy = -7,27 
kcal/mol 

Vina Score = 2,79 
Rank Score = 

0,0000697 

Energy = -11,1 
kcal/mol 

Vina Score = 7,55 
Rank Score = 

0,002415 

Energy = -7,27 
kcal/mol 

Vina Score = 2,79 
Rank Score = 

0,0000697 

Foretinib 

Energy = -7,76 
kcal/mol 

Vina Score = 7,55 
Rank Score = 

0,002434 

Energy = -7,28 
kcal/mol 

Vina Score = 1,58 
Rank Score = 

0,0000792 

Energy = -8,43 
kcal/mol 

Vina Score = 6,61 
Rank Score = 

0,000827 

Energy = -7,28 
kcal/mol 

Vina Score = 1,58 
Rank Score = 

0,0000792 

Dasatinib 

Energy = -7,34 
kcal/mol 

Vina Score = 6,61 
Rank Score = 

0,000832 

Energy = -7,79 
kcal/mol 

Vina Score = 1,06 
Rank Score = 
0,00000681 

Energy = -10,48 
kcal/mol 

Vina Score = 5,19 
Rank Score = 

0,002313 

Energy = -7,79 
kcal/mol 

Vina Score = 1,06 
Rank Score = 
0,00000681 

Lorlatinib 

Energy = -7,25 
kcal/mol 

Vina Score = 5,19 
Rank Score = 

0,002331 

Energy = -8,5 
kcal/mol 

Vina Score = 0,58 
Rank Score = 
0,00000636 

Energy = -8,69 
kcal/mol 

Vina Score = 5,74 
Rank Score = 

0,001252 

Energy = -8,5 
kcal/mol 

Vina Score = 0,58 
Rank Score = 
0,00000636 

Repotrectinib 

Energy = -7,11 
kcal/mol 

Vina Score = 5,74 
Rank Score = 

0,001261 

Energy = -7,74 
kcal/mol 

Vina Score = 0,43 
Rank Score = 
0,00000577 

RIPK1 

C20H17F2N5O2 

Energy = -8,7 
kcal/mol 

Vina Score =7,8175 
Rank Score =0,00018 

Energy = -7,63 
kcal/mol 

Vina Score=12,0868 
Rank Score 
=0,00031 

Energy = -8,38 
kcal/mol 

Vina Score =7,8175 
Rank Score =0,00011 

Energy = -
7,63kcal/mol 

Vina Score =11,65 
Rank Score =0,0003 

C23H22N4O6 

Energy = -8,38 
kcal/mol 

Vina Score =3,1974 
Rank Score =0,0003 

Energy = -8,13 
kcal/mol 

Vina Score =5,3694 
Rank Score =0,0002 

Energy = -8,7 
kcal/mol 

Vina Score =3,1974 
Rank Score =0,00029 

Energy = -
8,13kcal/mol 

Vina Score =4,34 
Rank Score =0,0002 

C13H12ClN3O2 

Energy = -7,73 
kcal/mol 

Vina Score = 5,4043 
Rank Score =0,00004 

Energy = -
7,39kcal/mol 

Vina Score =4,7074 
Rank Score 
=0,00019 

Energy = -7,73 
kcal/mol 

Vina Score =5,54043 
Rank Score =0,00008 

Energy = -7,39 
kcal/mol 

Vina Score =4,70 
Rank Score =0,00014 

C21H19N3O3S 

Energy = -7,54 
kcal/mol 

Vina Score = 3,9752 
Rank Score =0,0001 

Energy = -7,5 
kcal/mol 

Vina Score = 3,4468 
Rank Score 
=0,00014 

Energy = -
7,54kcal/mol 

Vina Score =3,9752 
Rank Score =0,0012 

Energy = -7,5 
kcal/mol 

Vina Score =3,4468 
Rank Score 
=0,000144 

C21H19N3O4 

Energy = -7,16 
kcal/mol 

Vina Score =4,7074 
Rank Score =0,00007 

Energy = -7,16 
kcal/mol 

Vina Score =3,0718 
Rank Score =0,0001 

Energy = -7,16 
kcal/mol 

Vina Score =3,1974 
Rank Score =0,001 

Energy = -7,16 
kcal/mol 

Vina Score =3,0718 
Rank Score =0,0001 

https://pubchem.ncbi.nlm.nih.gov/#query=C20H17F2N5O2
https://pubchem.ncbi.nlm.nih.gov/#query=C23H22N4O6
https://pubchem.ncbi.nlm.nih.gov/#query=C13H12ClN3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O3S
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O4
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C24H20ClN5O3 

Energy = -7,01 
kcal/mol 

Vina Score =12,088 
Rank Score 
=0,000067 

Energy = -7,01 
kcal/mol 

Vina Score =3,1 
Rank Score 
=0,00004 

Energy = -7,01 
kcal/mol 

Vina Score =12,0868 
Rank Score =0,003 

Energy = -7,01 
kcal/mol 

Vina Score =3,01 
Rank Score =0, 00004 

Table Appendix 1. Predicted binding energy, Vina score and rank score for reference ligands 

across all combinations of consensus and ranking strategies for ROS1 and RIPK1. 

Reports generated by the PLAPT viewer interface are also included in Figure 

Appendix 36 and Figure Appendix 37 to enhance clarity and completeness. 

https://pubchem.ncbi.nlm.nih.gov/#query=C24H20ClN5O3
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Figure Appendix 36. Output table from the PLAPT viewer interface showing predicted affinity 

values and interaction classifications for ligand–ROS1 pairs. 
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Figure Appendix 37. Output table from the PLAPT viewer interface showing predicted affinity 

values and interaction classifications for ligand–RIPK1 pairs. 
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Finally, Table Appendix 2 lists the ranking positions of the reference ligands 

among all drugs, based on predicted affinity values from the Pafnucy and PLAPT models. 

Rankings are sorted in descending order of predicted affinity, with lower rank numbers 

indicating stronger predicted binding. 

Protein Target Drug Name/Formula Pafnucy Position PLAPT Position 

ROS1 

Entrectinib 1002 678 
Brigatinib 68 604 
Ceritinib 124 299 

Staurosporin 154 398 
Crizotinib 255 100 
Nintedanib 631 901 
Foretinib 296 136 
Dasatinib 478 169 
Lorlatinib 550 2 

Repotrectinib 878 1158 

RIPK1 

C20H17F2N5O2 171 304 
C23H22N4O6 191 397 

C13H12ClN3O2 671 214 
C21H19N3O3S 230 189 
C21H19N3O4 302 346 

C24H20ClN5O3 74 57 
 C19H19N3O2 391 526 
C30H28F2N6O4 544 124 
C14H17FN2O 604 422 

Table Appendix 2. Ranking positions of reference ligands according to predicted affinity by 

Pafnucy and PLAPT. 

https://pubchem.ncbi.nlm.nih.gov/#query=C20H17F2N5O2
https://pubchem.ncbi.nlm.nih.gov/#query=C23H22N4O6
https://pubchem.ncbi.nlm.nih.gov/#query=C13H12ClN3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O3S
https://pubchem.ncbi.nlm.nih.gov/#query=C21H19N3O4
https://pubchem.ncbi.nlm.nih.gov/#query=C24H20ClN5O3
https://pubchem.ncbi.nlm.nih.gov/#query=C19H19N3O2
https://pubchem.ncbi.nlm.nih.gov/#query=C30H28F2N6O4
https://pubchem.ncbi.nlm.nih.gov/#query=C14H17FN2O
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