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1. Abbreviations 

• Cryo-EM: Cryo-electron microscopy. 

• EMDB: Electron Microscopy Data Bank. 

• HAP40: huntingtin-associated protein 40. 

• NMR: Nuclear magnetic resonance. 

• PDB: Protein Data Bank. 

• RMSF: Root Mean Square Deviation. 

2. Summary 

The biological function of a molecule is highly related to its structure and dynamics. 

There are numerous techniques to study them, which include cryo-electron microscopy (cryo-

EM) and molecular simulations. 

Matsumoto et al. (2021) developed and trained a deep neural network called DefMap, 

which combines data from these two sources to predict local dynamics using data. As this 

tool can benefit researchers interested in studying protein dynamics, for this project, it has 

been incorporated into the Scipion framework, which bundles and integrates a variety of 

software packages for structural biology, to improve its accessibility to potential users. 

The plugin created, scipion-em-defmap, includes a protocol in which DefMap is 

integrated along with a workflow for pre-processing and analysing the results. In addition, to 

facilitate the interpretation of the results, the plugin includes a visualiser with different 

options, allowing users to choose the one that best matches their needs. An extra protocol for 

adapting files has also been created, so that users can benefit from this viewer outside the 

main protocol. 

The plugin was tested on different structures from the Human Huntingtin-HAP40 

complex and SARS-CoV-2 Spike glycoprotein. The test concluded that there is a relationship 

between the plugin output (RMSF) with other measures of variability or uncertainty of the 

atomic positions, specifically B-factors and, to a lesser extent, local resolutions. Future 

improvements for the plugin and for the analysis of these variables have also been identified 

in the discussion. 
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3. Keywords 

DefMap, Cryo-EM, Scipion, Molecular Dynamics. 

4. Introduction 

In order to understand the molecular mechanisms that allow different biological 

processes to take place, it is necessary to understand how the molecular components involved 

behave. Focusing on proteins, several studies have shown that their functions are associated 

with their three-dimensional (3D) structure and dynamic behaviour, not only from a global 

perspective of the protein, but also at the level of its constituent atoms (Boehr et al., 2009; 

Kohen, 2015; Matsumoto et al., 2023). 

4.1.  Experimental techniques for structural characterisation 

In order to obtain atomic structures, there are several experimental techniques that 

allow the 3D characterisation of proteins. The most common ones are X-ray crystallography, 

nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM), 

which each have their advantages and limitations (Table 1).   

Table 1 

Advantages and disadvantages of experimental techniques for structural characterisation. 

Technique Advantages Disadvantages 

X-ray 

crystallography 

High-resolution structures Limited dynamic information and it 

cannot be used with non crystallizable 

samples. 

NMR High-resolution results, providing 

information about structure and 

dynamics. 

The output is hard to interpret and 

dependent on averaging of the signals. 

Cryo-EM High-resolution reconstructions, with 

information about structure and 

dynamics. 

Dynamic information can be altered by 

physical and computational factors. 

 

Note. The table shows information about the three most commonly used methods to study the 

structure of molecules. 
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X-ray crystallography consists of passing a beam of X-rays through a crystal of the 

protein under study. The beam is diffracted in several directions and it generates a pattern of 

intensities, which can be interpreted according to the location of the atoms in the crystal and 

its symmetry (Smyth & Martin, 2000).  This method is often capable of generating high-

resolution structures. Nevertheless, due to the methodology for the generation of the crystals, 

only one type of structure is usually obtained, losing most information about its dynamics. 

Therefore, for large and dynamic molecules, such as those with many domains that move 

relative to each other, it is important to complement their output with other methods 

(Srivastava et al., 2018; Zheng et al., 2015). An example of this would be transmembrane 

receptors such as viral ones (Lengyel et al., 2014) or immunoglobulin G (Yanaka et al., 

2020). 

In contrast, in NMR spectroscopy a magnetic field is applied to the sample, causing a 

change in the spin of the atomic nuclei at different frequencies. As the magnetic field is 

removed, the nucleus returns to equilibrium, generating an electromagnetic signal, which can 

be translated into an energy peak in the spectrum. Then, the experimental results will be 

processed with different techniques to facilitate its interpretation (Libretexts, 2023). As with 

the previous method, this one generates results with good resolution, but it also provides 

information about the conformational dynamics of the molecule, by keeping proteins in 

solutions with near native conditions and assembling different conformations, which can be 

extracted from the ensemble-averaged observables. However, it presents complications to 

analyse the results in case of large molecules, therefore, further improvements are still being 

developed, such as applying chemical transformations like selective isotope labelling, to 

minimise the signal of many of the atoms. In addition, in order to facilitate its interpretation, 

some authors combine its results with AI protein structure predictors such as AlphaFold2 and 

specialised AI for analysing NMR spectra (Shukla et al., 2023). 

The last method to mention is the cryo-EM technique, whose outputs are the ones 

used in this project. The experimental procedure consists of freezing the samples in liquid 

nitrogen, to fix and protect them before using the electron microscope to record images of the 

molecule. This protection is applied to avoid damage and variations in the structure of the 

proteins, due to electron radiation (Murata & Wolf, 2018). One advantage of freezing over 

crystallising is that it allows more than one type of conformation to be recorded, as it fixes 
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each particle in their current structural state from the original dynamic ensemble in solution 

(Wang & Wang, 2017).  

After obtaining the images, they are combined to reconstruct one or more average 

three-dimensional maps of the molecule, which are then used to build atomic models (Vilas 

et al., 2022). Therefore, single-particle fixation gives an advantage over NMR,  since it is less 

dependent on general averaging and enables more direct characterisation of the structure and 

dynamics within particular conformational states. In this respect, there have been many 

advances in algorithms that analyse the conformational heterogeneity of particles. These 

methods use approaches such as linear and non-linear transformations or deep neural 

networks, sometimes in combination with structure prediction tools (Tang et al., 2023). 

4.2. Resolution concepts of Cryo-EM reconstructions 

 

As mentioned above, Cryo-EM generates reconstructions of the molecules. One of the 

properties to be taken into account when evaluating a reconstruction is the resolution. 

According to Vilas (2019), “resolution describes the degree of detail that an optical system is 

able to discriminate, the higher resolution the higher quality and details can be seen in the 

image” (p.53). In practice, resolution is treated as a value that indicates the minimum distance 

at which we can distinguish two objects; therefore, high resolution corresponds to a low 

numeric value. 

4.3. Advantages and limitations of dynamic information provided by Cryo-EM 

Despite having overall high resolution, one interesting feature of these reconstructions 

is that the resolution varies locally over the map, with some regions having lower local 

resolutions. This phenomenon may have many causes, one major reason for this is the effect 

of structural dynamics and class averaging, since more inconsistent positions of atoms make 

the average of the atoms worse. In consequence, flexible regions tend to have worse 

resolution in the reconstruction.  

Local resolution is therefore related to other measures, such as B-factors and root 

mean square fluctuation (RMSF) values, which have also been considered in this project. The 

B-factors represent the relative uncertainty of an atom's position, arising from atomic 

displacement due to thermal and static vibrations among other factors (Trueblood et al., 



7 

 

 

1996), while RMSF values measure the degree to which the positions deviate from the 

average of a set of structures under study (Bagewadi et al., 2023). 

In addition to structural dynamics, further reasons can reduce the local resolution of a 

region, such as preferred orientations of the molecule, damage at the air-water interface or 

other sample-related sources (Glaeser, 2018; Li et al., 2021). This last aspect also causes 

biases during computational image analysis, such as changes in the structure because of the 

experimental protocol or a bad recognition of the particles, among others (Sorzano et al., 

2022). In this regard, computational solutions are still being developed to try to mitigate the 

effect of these deviations on the results. 

4.4. Computational techniques for dynamic characterisation 

Given the above mentioned difficulties of capturing structural dynamics from 

experiments, one frequent alternative is to execute molecular simulations. In these 

simulations, the position of each atom is calculated as a function of time, according to 

physical models of atomic interactions (Hollingsworth & Dror, 2018). Nevertheless, such 

simulations are very costly in terms of time and resources, as all the forces from non-bonded 

interactions have to be computed (AlRawashdeh & Barakat, 2023; Bock et al., 2023). This 

issue makes them not feasible for all cases, and generates limitations in the analysis of large 

molecules with complex assemblies. They also suffer from their own limitations, such as 

force field inaccuracies and insufficient sampling, due to the limitation on the timestep that 

often does not give enough time to explore the complete movement of the molecule. 

Although there are considerable efforts in overcoming these limitations (Bock et al., 

2023; Hénin et al., 2022), some authors opt for combining the output from the molecular 

simulations with data from different sources, in order to obtain more refined models. It can be 

retrieved from experimental techniques, such as NMR (Doktorova et al., 2023; Zadorozhnyi 

et al., 2024) and cryo-EM (Costa et al., 2023; Vant et al., 2022).  

Other authors combine them with information from neural network predictions (Tsai 

et al., 2020), in addition to the ones mentioned above (Qi et al., 2022). In this context, the 

work of Matsumoto et al. (2021)  is particularly noteworthy. They developed and trained a 

deep neural network, called DefMap, to predict local dynamics using data not only from 

molecular simulations but from cryo-EM maps as well. As Matsumoto et al. (2021) explain in 

their article, for obtaining the training data, they retrieved 25 maps and atomic models from 
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the Electron Microscopy Data Bank (EMDB) (Turner et al., 2023b) and Protein Data Bank 

(PDB) and performed molecular dynamics (MD) simulations. With this data, they trained the 

supervised learning algorithm in such a way that it could learn the relation between local 

densities, from the volumes, and root mean square fluctuation (RMSF) values from 

simulations (see Figure 1). 

Figure 1 

Workflow for training DefMap Neural Network from Matsumoto et al. (2021). 

 

Note. The first step was to perform the molecular simulations, then the network was trained with its 

output and volumes from the Electron Microscopy Data Bank (EMDB). Afterwards, the trained neural 

network was tested with experimentally obtained volumes. Image retrieved from “Extraction of 

protein dynamics information from cryo-EM maps using deep learning” by S. Matsumoto, S. Ishida, 

M. Araki, T. Kato, K. Terayama, and Y. Okuno, 2021, Nature Machine Intelligence 3(2), p. 154 

(https://doi.org/10.1038/s42256-020-00290-y). 

 

 

 

https://doi.org/10.1038/s42256-020-00290-y
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Nonetheless, they pointed out that this neural network has limitations for predicting 

the dynamics of structures with transmembrane regions or post-translational modifications. 

The reason for this lies in the fact that they could not be incorporated in the training dataset, 

given the difficulty of performing molecular simulations with these types of structures and 

issues with Cryo-EM map reconstruction around membrane mimetics and post-translational 

modifications. 

4.5. Justification of the project 

Despite its limitations, DefMap is undoubtedly a tool that can benefit researchers 

interested in studying protein dynamics. For this reason, incorporating it into the Scipion 

workflow engine for Cryo-EM and structural biology (Conesa et al., 2023) will allow users to 

find, install and run it more easily. Scipion is an open source framework that bundles and 

integrates a variety of software packages into protocols that form workflows, primarily for 

processing electron microscopy images, but also other functionalities such as atomic model 

building (Martínez et al., 2020) and molecular simulations (Del Hoyo et al., 2023). Scipion 

has a graphical interface, from which users can access the different protocols. Therefore, by 

integrating DefMap into this application, it will be more accessible to both researchers and 

developers. 

The plugin was tested on different structures from two molecules: Human Huntingtin-

HAP40 complex and SARS-CoV-2 Spike glycoprotein. The former was chosen because it 

was already analysed by Matsumoto et al. (2021), therefore, it was convenient to use it to 

compare the new features of the plugin with those already developed by them. On the other 

hand, Spike glycoprotein is a molecule whose structure and dynamics have been extensively 

studied by Cryo-EM and molecular simulations, among other techniques, due to its role in the 

SARS-CoV-2 virus infection process, that triggered a global pandemic in 2020 (Abduljalil et 

al., 2023; Sinha et al., 2023; Zaidi & Dawoodi, 2024). Therefore, since it is so well 

characterised, the information available in the public databases was reliable and suitable for 

testing the plugin. 
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5. Objectives 

The main objective of this project is to enhance the understanding of the molecular 

structure and functions of biological particles. For this purpose, the following specific goals 

were defined: 

1. Generate a plugin that integrates the DefMap neural network approach in the 

Scipion framework. 

2. Apply this plugin to real molecules and analyse the results. 

6. Material and Methods 

6.1. Design of the project 

According to the specific objectives mentioned in the previous section, the first step 

was to create a plugin in Scipion (scipion-em-defmap) using the template recommended in 

the documentation. Within this plugin, two protocols and one viewer were created. The first 

protocol developed (defmap - prediction) was the one that implements DefMap, in which six 

stages can be distinguished, steps 3 to 5 being those that directly run DefMap programs: 

1. Validation and handling of input file formats. 

2. Preprocessing of volumes. 

3. Preparation of the dataset for prediction. 

4. Inference with the neural network.  

5. Postprocessing of the results. 

6. Analysis of the results. 

Afterwards, a specific viewer has also been created to facilitate the analysis of the 

results. In addition, another protocol was created in case users would like to use the viewer 

outside DefMap. This extra protocol (defmap - analysis) converts the file formats indicated in 

the input to pdb and generates a PyMOL script file, similary to the analysis step of the other 

protocol. The code of the plugin can be retrieved in https://github.com/Sofia-GMT/scipion-

em-defmap  

 

https://github.com/Sofia-GMT/scipion-em-defmap
https://github.com/scipion-em/scipion-em-template
https://scipion-em.github.io/docs/release-3.0.0/index.html
https://github.com/Sofia-GMT/scipion-em-defmap
https://github.com/Sofia-GMT/scipion-em-defmap
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6.2. Sources of data 

The code from Matsumoto et al. (2021) was obtained from Github and includes 

example input files, the source of these and other input files used to test the plugin are shown 

in Table 2. The conformations with PDB ids 6vyb and 7bnn of Spike are variants of the open 

state of the molecule, therefore, they are expected to predict a higher flexibility than the 

conformation with id 6vxx, associated with a closed state. 

Table 2 

Sources of data for testing the plugin.  

Molecule Volumes Atomic Structure 

 

SARS-CoV-2 Spike 

glycoprotein 

EMD-21457 PDB: 6vyb 

EMD-12230 PDB: 7bnn 

EMD-21452 PDB: 6vxx 

 

Human Huntingtin-

HAP40 complex  

 

EMD-3984 

 

PDB: 6ez8 

Matsumoto et al. (2021) GitHub Matsumoto et al. (2021) GitHub 

 

Note. Three conformations of Spike protein and one of Huntingtin were analysed. Most volumes and 

atomic structures were retrieved from the Electron Microscopy Data Bank (EMDB) and Protein Data 

Bank (PDB), respectively, with the exception of those in the last row.  

6.3. Preprocessing of data (steps 1-3) 

Before running the neural network, it is necessary to preprocess the input cryo-EM 

data via two types of processing.  

The first one was performed by executing different protocols of an existing plugin, 

specifically the scipion-em-xmipp plugin for Xmipp (Střelák et al., 2021) in our case, 

distinguishing four functional phases that ensure the maps have appropriate characteristics for 

the network: 

1. Resize of the sampling rate to 1.50 Å/px, to be consistent with the training dataset. 

2. Filter in Fourier space to 5 Å maximum resolution, eliminating higher resolution 

details which are less informative for dynamics and more sensitive to noise. 

3. Create and apply a mask for smoothing the shape of the volume. 

4. Apply a threshold to remove contaminants. 

https://github.com/clinfo/DEFMap
https://github.com/I2PC/scipion-em-xmipp
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This first preprocessing is embedded in scipion-em-defmap and is optional, when 

Xmipp is available, which is often the case as it is a software and plugin that users usually 

already have installed. However, Scipion offers similar operations with other plugins like 

scipion-em-eman2 or scipion-em-relion in case the user prefers to use them instead. 

The second preprocessing step is mandatory and consists of executing the script 

“prep_dataset.py” provided by Matsumoto et al. (2021) on their GitHub, to generate the 

dataset for the inference in the appropriate format. 

6.4. Statistical Analysis (step 6) 

To analyse the results, three common measures have been used to quantify the 

mobility of the atomic positions: Root Mean Square Deviation (RMSF; predicted by DefMap 

as normalized logarithms), B factors and local resolutions. The latter were calculated using 

DeepRes (Ramírez-Aportela et al., 2019). 

The reference values used for comparing were: 

• B-factors of atomic structures obtained from Protein Data Bank 

• Local resolution extracted from volumes of EMDB. 

To measure the correlation of the plugin results with the references, both linear 

regression and Pearson's correlation coefficient with their corresponding p-value were 

calculated. For the linear regression, the r-squared value was also calculated, which reflects 

what proportion of variance is explained by the model. 

The variables considered in the analysis are: 

• Dependent variables: B-factors and local resolution. 

• Independent variables: log RMSF values. 

The null hypothesis for the different tests are: 

• For the linear regression: the slope of the regression is zero, so the variables 

are not related. 

• For the correlation: the coefficient is zero, so the variables are not related. 

For the contrasts of hypotheses, the p-value 0.01 was set as the maximum threshold 

for accepting the null hypothesis. It is also important to note that the lowest double value that 

https://github.com/scipion-em/scipion-em-eman2
https://github.com/scipion-em/scipion-em-relion
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can be determined with precision in this machine is 2.220446049250313e-16, lower values 

cannot be determined with precission. 

In order to facilitate their interpretation of the statistical analysis, four graphs have 

been plotted: 

• Distribution of DefMap output values. 

• DefMap output values vs Residue index. 

• B factors of the reference structures vs DefMap output values. 

• Local resolutions of the reference volumes vs DefMap output. 

The plugin allows the users to decide whether they prefer to show the DefMap output 

values in logarithmic scale. 

6.5. Equipment 

The machine used to test the plugin was carver.cnb.csic.es, which has the following 

characteristics: 

• Processor: Intel® Xeon® E5-2630 v4. 

• Graphics: NVIDIA Corporation TU104GL. 

• Four GPUs with 15360 MB of memory with 5060 CUDA cores. The main 

protocol uses one GPU for running Tensorflow in the inference step. 

• Memory: 540 GB. Matsumoto et al. (2021) recommended users to have at 

least 96 GB. 

• Machine epsilon for double precision:  2.220446049250313e-16. It is the 

lowest double value that can be determined with precision.  

6.6. Workflow in Scipion application 

As previously mentioned, Scipion has a graphical interface, from which the plugin 

can be used. Figure 2 illustrates the project created, inside the application, for predicting the 

dynamics of Spike structure 6vxx using DefMap and the DeepRes local resolution method. 

The rest of the molecules have followed a similar procedure. After executing this workflow, 

the graphs were generated by pressing the button “Analyze Results” and choosing the 

corresponding display option (Figure 3). 
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Figure 2 

Screenshot of Scipion's project for the Spike structure 6vxx. 

 

Note. In the left column we find the location of the two protocols generated in the plugin within a 

purple rectangle. The right column shows the workflow in which the “defmap - prediction” protocol is 

integrated. The input files were imported in the first two right rectangles and in the third one DefMap 

(darker outline) is executed. The following rectangles were used to extract the local resolutions. The 

“defmap - analysis” protocol adapts the input files generated outside the plugin, enabling them to be 

analysed with the viewer. 
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Figure 3 

Viewer options panel. 

 

Note. The results can be viewed in PyMOL or as graphs. In the first rectangle, the file with the local 

resolutions can optionally be specified. If it is not indicated, this graphic will not be generated and the 

option for removing the zeros will not be displayed. 

7. Results 

Five executions of the plugin have been carried out, two for the complex of huntingtin 

with huntingtin-associated protein 40 (HAP40) and three for the SARS-CoV-2 Spike. 

7.1. Human Huntingin-HAP40  

In Figure 4, we can observe a comparison between the results generated using the 

files provided by Matsumoto et al. (2021) and the ones generated using public databases 

(PDB and EMDB). In general, both executions offer a similar prediction, which is in line 

with the dynamics seen in the original B-factors from the PDB. This suggests that the 

preprocessing provided by the plugin developed here generates reasonable predictions with 

DefMap, similar to the ones that performed by Matsumoto et al. (2021) using EMAN2. 
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Figure 4 

Visualisation in PyMOL of predicted Huntingtin-HAP40 dynamics against the reference structure B-

factors.  

(A)

 

(B)  

 

Note. Atoms have been coloured using the command “spectrum b, slate_orange_red” in PyMOL. This 

command also had the arguments (minimum=1, maximum=2) to colour the prediction. The regions in 

red reflect more mobility than the ones in slate blue. 

(A) The prediction (left) using as input the volume and the atomic structure (right) provided by 

Matsumoto et al. (2021).  

(B) As in (A) but using input files from EMDB and PDB. The prediction (left) is quite similar to the 

reference (right), although in the latter the basal region has traces with higher mobility in orange 

(green arrows). 
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In Figures A1 to A4 of the Annexes, we can observe the statistics calculated for the 

runs with the input from Matsumoto et al. (2021) and from the public databases. In both 

executions it is observed that most of the log(RMSF) values are between -1 Å and 1, although 

there are some peaks until 3. 

Considering that the p-value reflects the probability of observing the results assuming 

the null hypothesis; as it is lower than 0.01, we can consider that there is a significant 

correlation between B-factors and the values of log(RMSF), in both executions, with r-

squared values between 60% and 70%. 

On the other hand, the contrast of hypothesis for the local resolutions in the execution 

with input files from Matsumoto et al. (2021) accepts the null hypothesis, with a p-value of 

0.04, while on the other it is rejected, but with a p-value of 3.87e-3. In all cases, the r-squared 

value in these comparisons with local resolutions are extremely low, not reaching 1%. This is 

consistent with the graphs since there are many points that are relatively far away from the 

regression line. 

7.2. Spike 

 

In Figure 5, we can compare the predictions generated using different conformations 

of the Spike glycoprotein. Overall, the three runs offer a similar prediction, the main 

differences are on the periphery, although in all cases it is predicted a higher mobility there 

than in the rest of the structure. However, both open structures (Figures 5A and 5B) predict 

higher mobility in the RBD and NTD domains (S1) in contrast to the closed conformation 

(Figure 5C) as expected. 
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Figure 5 

Visualisation in PyMOL of predicted Spike against the reference structure. 

(A)  

(B)  

(C)  

Note. Atoms have been coloured using the command “spectrum b, slate_orange_red”. The regions in 

red reflect more mobility than the ones in slate blue. The predictions are on the left while the 

reference with B-factors is on the right. Both the predictions and the references show a higher 

mobility in the S1 (top right) and S2 (bottom left) domains, although the predictions show more 

movement in the S2 domain in comparison to the reference. The conformations 6vyb (A) and 7bnn 

(B) correspond to an open state of Spike, while the conformation 6vxx (C) is associated to a closed 

state. 
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The graphs and statistics calculated using the three different structures of Spike can be 

observed from Figures A4 to A12 of the Annexes. In the three of them, most log(RMSF) 

values are between -1 and 1, although many residues close to the C-terminal have values 

between -2 and 0. However, extreme C-terminal residues have higher values. 

When checking the statistics for the comparison with the B-factors, it is found that the 

p-values are less than 0.01, and that the regression models explain between 60% and 70% of 

the variability of the data. The graphs from the structure 7bnn from the open conformation 

show that the atoms from chain B have higher log(RMSF) values than those predicted in the 

regression model, while in the graphs from 6vxx the origin of the outliers is distributed 

between the three chains.  

On the other hand, when analysing the local resolution against log(RMSF) values, the 

regression models explain less than 5% of the data, even if a statistically significant positive 

correlation is calculated. Consistently with the graphs, a high dispersion with respect to the 

regression line is noted. 

8. Discussion 

The comparison of the B-factors and the local resolutions against the output of the 

scipion-em-defmap plugin (RMSF in logarithmic scale), has shown that in four of the five 

cases both relationships are proportional and significant. This is consistent with what was 

explained in the introduction, since the three variables measure the degree of variability or 

uncertainty of the atomic positions in different ways. The only execution, where the 

relationship has not been accepted, has a p-value greater than 0.01 but less than 0.05, thus the 

support for the null hypothesis is very low. 

In all cases, both statistics and graphs show that the relationship with the B-factors is 

much stronger than with the local resolutions. In the case of B-factors, the models explained 

between 50% and 70% of the variability, being generally more explanatory in the Huntingtin-

HAP40 complex executions than in the Spike executions.  

On the contrary, the models in the Spike executions were a bit more explanatory in 

the local resolutions, but it was less than 5% and the slope of the regression was close to 0. 

Consequently, it can be concluded that there might be a relationship between the RMSF 



20 

 

 

values and local resolutions, but that they are insufficient to serve as a unique predictor of 

each other depending on the molecule.  

Furthermore, the graphs show that different chains from distinct structures can fit a 

logarithmic model in a different way. In the cases of the Huntingtin-HAP40 complex, and the 

chains A and C of Spike, the trend of the points is roughly similar. However, for the open 

conformation 6vyb, the distribution of the points in chain B clearly follows a different 

logarithmic function, with an initial increase in the vertical axis much more pronounced than 

the rest of the chains, as the B-factors are higher than the predictions in that area. Therefore, a 

more in-depth study for each chain in the different conformations would be recommendable, 

and it would be convenient to analyse this relationship with more molecules in future studies, 

in order to identify a more suitable model for predicting B-factors as a function of RMSF, 

and vice versa. For example, it would be desirable to study further cases with asymmetry of 

conformation and dynamics across states, similar to Spike. 

Observing the PyMOL representations in Figures 4 an 5, it is clear that, despite the 

intensity differences in the intermediate regions, predictions and references show a high 

degree of similarity. Considering that representations are coloured along a spectrum based on 

the B-factor column of the PDB files, where the DefMap log RMSF values are also stored, 

this is consistent with the detected relationship between the DefMap log RMSFs and the B-

factors. However, there are still some differences, generally taking warmer colors in the 

plugin predictions. These differences can be better understood thanks to the graphs and 

statistics. 

Moreover, comparative analysis was also carried out between predictions generated 

using the pre-processed volumes of Matsumoto et al. (2021) and those in which the volumes 

were pre-processed with the Xmipp plugin. The graphs and the statics show that both 

preprocessing methods offer quite similar results; therefore, the preprocessing integrated 

within the plugin it is a good option for the majority of Scipion’s users that have Xmipp and 

not EMAN2. 

In addition, when looking at the graphs with the local resolutions, there are some 

outliers at 0 Å. This was the reason why there is an option in the viewer to prevent them from 

being displayed and included in the statistics. A possible cause could be the application of a 

too tight mask in the protocol for obtaining the local resolutions. 
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Additionally, during the construction and development of the plugin, some difficulties 

were encountered. 

Firstly, indicating a threshold in the command for the creation of the dataset produced 

an error in the post-processing step, when relating it with the atomic structure. As an 

alternative, the threshold was more convenient to apply prior to the dataset creation 

command. In addition, an issue was created in their Github repository. 

Secondly, one of the concerns reported in the follow-up study by Matsumoto et al. 

(2023) was corroborated. They indicated that the inference step was notably longer, when 

predicting the dynamics of molecules that were not included in the test dataset. Considering 

that the Huntington-HAP40 complex was included and Spike was not, both executions of the 

former took around 10 minutes, while the executions from the second one took between 30 

and 50 minutes. Nevertheless, it is still much faster than running a molecular simulation (on 

the order of weeks).  

Another concern from Matsumoto et al. (2023) was that DefMap was not thought to 

be used with molecules with transmembrane regions or complex post-translational 

modifications, like Spike, due to the computational difficulty of executing molecular 

simulations with them. In addition to extending the learning dataset, as they pointed out, it 

would also be recommendable, in future versions of the plugin, to give users the option to 

train the neural network with their own data, instead of using the already trained network. 

Overall, despite the limitations mentioned above, DefMap's results are promising, 

making it a useful tool for Scipion users. Furthermore, its integration in the plugin, with the 

pre-processing workflow with Xmipp and with the statistical analyses, will facilitate its 

accessibility and the interpretation of its results. 
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9. Conclusion 

In conclusion, this project could be summarised in the following points: 

• The scipion-em-defmap plugin has been incorporated into the Scipion 

framework, as a tool for predicting molecular dynamics. 

• The plugin integrates the DefMap neural network with a pre-processing and 

analysis workflow. 

• Analyses show a relationship between the plugin output (RMSF) with B-

factors and, to a lesser extent, with local resolutions. 

For future versions of the plugin, it would be desirable to allow users to train the 

neural network with their own data. Additionally, further studies on the relationship of 

RMSFs with B-factors and local resolutions would also be helpful in order to obtain more 

significant results. 



23 

 

 

10. Bibliography 

 

Abduljalil, J. M., Elghareib, A. M., Samir, A., Ezat, A. A., & Elfiky, A. A. (2023). How 

helpful were molecular dynamics simulations in shaping our understanding of SARS-

CoV-2 spike protein dynamics? International Journal Of Biological Macromolecules, 

242, 125153. https://doi.org/10.1016/j.ijbiomac.2023.125153  

AlRawashdeh, S., & Barakat, K. (2023). Applications of Molecular Dynamics Simulations in 

Drug Discovery. En Methods in molecular biology (pp. 127-141). 

https://doi.org/10.1007/978-1-0716-3441-7_7  

Bagewadi, Z. K., Khan, T. M. Y., Gangadharappa, B., Kamalapurkar, A., Shamsudeen, S. M., 

& Yaraguppi, D. A. (2023). Molecular dynamics and simulation analysis against 

superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites 

from Bacillus licheniformis recognized by genome mining approach. Saudi journal of 

biological sciences, 30(9), 103753. https://doi.org/10.1016/j.sjbs.2023.103753  

Bock, L. V., Gabrielli, S., Kolář, M., & Grubmüller, H. (2023). Simulation of Complex 

Biomolecular Systems: The Ribosome Challenge. Annual Review Of Biophysics, 

52(1), 361-390. https://doi.org/10.1146/annurev-biophys-111622-091147  

Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational 

ensembles in biomolecular recognition. Nature Chemical Biology, 5(11), 789-796. 

https://doi.org/10.1038/nchembio.232 

 

 

https://doi.org/10.1016/j.ijbiomac.2023.125153
https://doi.org/10.1007/978-1-0716-3441-7_7
https://doi.org/10.1016/j.sjbs.2023.103753
https://doi.org/10.1146/annurev-biophys-111622-091147
https://doi.org/10.1038/nchembio.232


24 

 

 

Conesa, P., Fonseca, Y. C., Jiménez de la Morena, J., Sharov, G., de la Rosa-Trevín, J. M., 

Cuervo, A., … Sorzano, C. O. S. (2023). Scipion3: A workflow engine for cryo-

electron microscopy image processing and structural biology. Biological Imaging, 3, 

e13. https://doi.org/10.1017/S2633903X23000132  

Costa, M. G. S., Gür, M., Krieger, J., & Bahar, İ. (2023). Computational biophysics meets 

cryo‐EM revolution in the search for the functional dynamics of biomolecular 

systems. Wiley Interdisciplinary Reviews. Computational Molecular Science, 14(1). 

https://doi.org/10.1002/wcms.1689  

Del Hoyo, D., Salinas, M., Lomas, A., Ulzurrun, E., Campillo, N. E., & Sorzano, C. (2023). 

Scipion-Chem: An Open Platform for Virtual Drug Screening. Journal Of Chemical 

Information And Modeling, 63(24), 7873-7885. 

https://doi.org/10.1021/acs.jcim.3c01085  

Doktorova, M., Khelashvili, G., Ashkar, R., & Brown, M. F. (2023). Molecular simulations 

and NMR reveal how lipid fluctuations affect membrane mechanics. Biophysical 

Journal, 122(6), 984-1002. https://doi.org/10.1016/j.bpj.2022.12.007  

Glaeser, R. M. (2018). Proteins, interfaces, and cryo-EM grids. Current Opinion In Colloid & 

Interface Science, 34, 1-8. https://doi.org/10.1016/j.cocis.2017.12.009  

Hénin, J., Lelièvre, T., Shirts, M. R., Valsson, Ó., & Delemotte, L. (2022). Enhanced 

Sampling Methods for Molecular Dynamics Simulations [Article v1.0]. Living 

Journal Of Computational Molecular Science, 4(1). 

https://doi.org/10.33011/livecoms.4.1.1583  

Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 

99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011 

https://doi.org/10.1017/S2633903X23000132
https://doi.org/10.1002/wcms.1689
https://doi.org/10.1021/acs.jcim.3c01085
https://doi.org/10.1016/j.bpj.2022.12.007
https://doi.org/10.1016/j.cocis.2017.12.009
https://doi.org/10.33011/livecoms.4.1.1583
https://doi.org/10.1016/j.neuron.2018.08.011


25 

 

 

Kohen, A. (2014). Role of Dynamics in Enzyme Catalysis: Substantial versus Semantic 

Controversies. Accounts Of Chemical Research, 48(2), 466-473. 

https://doi.org/10.1021/ar500322s  

Lengyel, J., Hnath, E., Storms, M., & Wohlfarth, T. (2014). Towards an integrative structural 

biology approach: combining Cryo-TEM, X-ray crystallography, and NMR. Journal 

Of Structural And Functional Genomics, 15(3), 117-124. 

https://doi.org/10.1007/s10969-014-9179-9 

Li, B., Zhu, D., Shi, H., & Zhang, X. (2021). Effect of charge on protein preferred orientation 

at the air–water interface in cryo-electron microscopy. Journal Of Structural Biology, 

213(4), 107783. https://doi.org/10.1016/j.jsb.2021.107783  

Libretexts. (2023, 30 enero). Introduction to NMR. Chemistry LibreTexts. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbo

ok_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectrosco

py/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Ma

gnetic_Resonance_II 

Martínez, M., Jiménez-Moreno, A., Maluenda, D., Ramírez-Aportela, E., Melero, R., Cuervo, 

A., Conesa, P., Del Caño, L., Fonseca, Y. C., Sánchez-García, R. J., Střelák, D., 

Conesa, J. J., Fernández-Giménez, E., De Isidro, F., Sorzano, C., Carazo, J. M., & 

Marabini, R. (2020). Integration of Cryo-EM Model Building Software in Scipion. 

Journal Of Chemical Information And Modeling, 60(5), 2533-2540. 

https://doi.org/10.1021/acs.jcim.9b01032  

https://doi.org/10.1021/ar500322s
https://doi.org/10.1007/s10969-014-9179-9
https://doi.org/10.1016/j.jsb.2021.107783
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Magnetic_Resonance_II
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Magnetic_Resonance_II
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Magnetic_Resonance_II
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Magnetic_Resonance_II
https://doi.org/10.1021/acs.jcim.9b01032


26 

 

 

Matsumoto, S., Ishida, S., Araki, M., Kato, T., Terayama, K., & Okuno, Y. (2021). Extraction 

of protein dynamics information from cryo-EM maps using deep learning. Nature 

Machine Intelligence, 3(2), 153-160. https://doi.org/10.1038/s42256-020-00290-y  

Matsumoto, S., Ishida, S., Terayama, K., & Okuno, Y. (2023). Quantitative analysis of 

protein dynamics using a deep learning technique combined with experimental cryo-

EM density data and MD simulations. Biophysics and physicobiology, 20(2), 

e200022. https://doi.org/10.2142/biophysico.bppb-v20.0022 

Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic 

biological macromolecules. Biochimica Et Biophysica Acta. G, General 

Subjects/Biochimica Et Biophysica Acta. General Subjects (Online), 1862(2), 324-

334. https://doi.org/10.1016/j.bbagen.2017.07.020  

Qi, G., Vrettas, M. D., Biancaniello, C., Sanz-Hernández, M., Cafolla, C. T., Morgan, J. W. 

R., Wang, Y., De Simone, A., & Wales, D. J. (2022). Enhancing Biomolecular 

Simulations with Hybrid Potentials Incorporating NMR Data. Journal Of Chemical 

Theory And Computation, 18(12), 7733-7750. 

https://doi.org/10.1021/acs.jctc.2c00657  

Ramírez-Aportela, E., Mota, J., Conesa, P., Carazo, J. M., & Sorzano, C. (2019). DeepRes: a 

new deep-learning- and aspect-based local resolution method for electron-microscopy 

maps. IUCrJ, 6(6), 1054-1063. https://doi.org/10.1107/s2052252519011692 

Shukla, V. K., Heller, G. T., & Hansen, D. F. (2023). Biomolecular NMR spectroscopy in the 

era of artificial intelligence. Structure, 31(11), 1360-1374. 

https://doi.org/10.1016/j.str.2023.09.011  

https://doi.org/10.1038/s42256-020-00290-y
https://doi.org/10.2142/biophysico.bppb-v20.0022
https://doi.org/10.1016/j.bbagen.2017.07.020
https://doi.org/10.1021/acs.jctc.2c00657
https://doi.org/10.1107/s2052252519011692
https://doi.org/10.1016/j.str.2023.09.011


27 

 

 

Sinha, A., Sangeet, S., & Roy, S. (2023). Evolution of Sequence and Structure of SARS-

CoV-2 Spike Protein: A Dynamic Perspective. ACS Omega, 8(26), 23283-23304. 

https://doi.org/10.1021/acsomega.3c00944  

Smyth, M. S., & Martin, J. H. (2000). x ray crystallography. Molecular pathology: 

MP, 53(1), 8–14. https://doi.org/10.1136/mp.53.1.8  

Sorzano, C. O. S., Jiménez-Moreno, A., Maluenda, D., Martínez, M., Ramírez-Aportela, E., 

Krieger, J., Melero, R., Cuervo, A., Conesa, J., Filipovic, J., Conesa, P., Del Caño, L., 

Fonseca, Y. C., Jiménez-de la Morena, J., Losana, P., Sánchez-García, R., Strelak, D., 

Fernández-Giménez, E., de Isidro-Gómez, F. P., Herreros, D., … Carazo, J. M. 

(2022). On bias, variance, overfitting, gold standard and consensus in single-particle 

analysis by cryo-electron microscopy. Acta crystallographica. Section D, Structural 

biology, 78(4), 410–423. https://doi.org/10.1107/S2059798322001978 

Srivastava, A., Nagai, T., Srivastava, A., Miyashita, O., & Tama, F. (2018). Role of 

Computational Methods in Going beyond X-ray Crystallography to Explore Protein 

Structure and Dynamics. International Journal Of Molecular Sciences, 19(11), 3401. 

https://doi.org/10.3390/ijms19113401 

Střelák, D., Jiménez-Moreno, A., Vilas, J. L., Ramírez-Aportela, E., Sánchez-García, R. J., 

Maluenda, D., Vargas, J., Herreros, D., Fernández-Giménez, E., De Isidro-Gómez, F. 

P., Horáček, J., Myška, D., Horáček, M., Conesa, P., Fonseca-Reyna, Y. C., Jiménez, 

J., Martínez, M., Harastani, M., Jonić, S., . . . Sorzano, C. Ó. S. (2021). Advances in 

Xmipp for Cryo–Electron Microscopy: From Xmipp to Scipion. Molecules/Molecules 

Online/Molecules Annual, 26(20), 6224. https://doi.org/10.3390/molecules26206224  

https://doi.org/10.1021/acsomega.3c00944
https://doi.org/10.1136/mp.53.1.8
https://doi.org/10.1107/S2059798322001978
https://doi.org/10.3390/ijms19113401
https://doi.org/10.3390/molecules26206224


28 

 

 

Tang, W., Zhong, E. D., Hanson, S. M., Thiede, E. H., & Cossio, P. (2023). Conformational 

heterogeneity and probability distributions from single-particle cryo-electron 

microscopy. Current Opinion In Structural Biology, 81, 102626. 

https://doi.org/10.1016/j.sbi.2023.102626  

Trueblood, K. N., Bürgi, H., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H., 

Shmueli, U., & Abrahams, S. C. (1996). Atomic Dispacement Parameter 

Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter 

Nomenclature. Acta Crystallographica. Section A, Foundations Of 

Crystallography/Acta Crystallographica. Section A, 52(5), 770-781. 

https://doi.org/10.1107/s0108767396005697  

Tsai, S. T., Kuo, E. J., & Tiwary, P. (2020). Learning molecular dynamics with simple 

language model built upon long short-term memory neural network. Nature 

Communications, 11(1). https://doi.org/10.1038/s41467-020-18959-8 

Turner, J., Abbott, S., Da Fonseca, N. J., Carrijo, L., Duraisamy, A. K., Salih, O., Wang, Z., 

Kleywegt, G. J., Morris, K. L., Patwardhan, A., Burley, S., Crichlow, G., Feng, Z., 

Flatt, J. W., Ghosh, S., Hudson, B. P., Lawson, C. L., Liang, Y., Peisach, E., . . . Ma, 

X. (2023b). EMDB—The Electron Microscopy Data Bank. Nucleic Acids Research, 

52(D1), D456-D465. https://doi.org/10.1093/nar/gkad1019 

Vant, J., Sarkar, D., Nguyen, J., Baker, A., Vermaas, J. V., & Singharoy, A. (2022). 

Exploring cryo-electron microscopy with molecular dynamics. Biochemical Society 

Transactions, 50(1), 569-581. https://doi.org/10.1042/bst20210485  

https://doi.org/10.1016/j.sbi.2023.102626
https://doi.org/10.1107/s0108767396005697
https://doi.org/10.1038/s41467-020-18959-8
https://doi.org/10.1093/nar/gkad1019
https://doi.org/10.1042/bst20210485


29 

 

 

Vilas, J. L., Carazo, J., & Sorzano, C. (2022). Emerging Themes in CryoEM─Single Particle 

Analysis Image Processing. Chemical Reviews, 122(17), 13915-13951. 

https://doi.org/10.1021/acs.chemrev.1c00850  

Vilas, J.L. (2019). Local quality assessment of cryo-EM reconstructions and its applications 

[Doctoral dissertation, Universidad Autónoma de Madrid]. UAM Institutional 

repository. https://repositorio.uam.es/handle/10486/688556  

Wang, H. W., & Wang, J. W. (2016). How cryo-electron microscopy and X-ray 

crystallography complement each other. Protein science: a publication of the Protein 

Society, 26(1), 32–39. https://doi.org/10.1002/pro.3022 

Yanaka, S., Yogo, R., & Kato, K. (2020). Biophysical characterization of dynamic structures 

of immunoglobulin G. Biophysical Reviews, 12(3), 637-645. 

https://doi.org/10.1007/s12551-020-00698-1  

Zadorozhnyi, R., Gronenborn, A. M., & Polenova, T. (2024). Integrative approaches for 

characterizing protein dynamics: NMR, CryoEM, and computer simulations. Current 

opinion in structural biology, 84, 102736. https://doi.org/10.1016/j.sbi.2023.102736 

Zaidi, A. K., & Dawoodi, S. (2024). Structural biology of SARS-CoV-2. Progress in 

molecular biology and translational science, 202, 31-23. 

https://doi.org/10.1016/bs.pmbts.2023.11.001 

Zheng, H., Handing, K., Zimmerman, M., Shabalin, I., Almo, S. C., & Minor, W. (2015). X-

ray crystallography over the past decade for novel drug discovery – where are we 

heading next? Expert Opinion On Drug Discovery, 10(9), 975-989. 

https://doi.org/10.1517/17460441.2015.1061991 

https://doi.org/10.1021/acs.chemrev.1c00850
https://repositorio.uam.es/handle/10486/688556
https://doi.org/10.1002/pro.3022
https://doi.org/10.1007/s12551-020-00698-1
https://doi.org/10.1016/j.sbi.2023.102736
https://doi.org/10.1016/bs.pmbts.2023.11.001
https://doi.org/10.1517/17460441.2015.1061991


31 

 

 

11. Annexes 

Figure A1 

Representation of the occurrences of RMSF values in logarithmic scale from the prediction for the Human 

Huntingin-HAP40 complex. 

(A) 

 
(B) 

 
Note. In (A), the prediction was generated using the input from Matsumoto et al. (2021), while in (B) the input 

was retrieved from EMDB and PDB databases and pre-processed with Xmipp. 
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Figure A2 

Representation of the RMSF values in logarithmic scale from the prediction against the residue number, for 

the Human Huntingin-HAP40 complex.  

(A) 

 
 

(B) 

 

Note. In (A), the prediction was generated using the input from Matsumoto et al. (2021), while in (B) the input 

was retrieved from EMDB and PDB databases and pre-processed by Xmipp. 

 



33 

 

 

Figure A3 

B-factors of the reference structure against RMSF values in logarithmic scale from the prediction, for the 

Human Huntingin-HAP40 complex. 

(A) 

 
(B) 

 

Note. P-values equal to zero means that its real value is lower than the epsilon machine value. In (A), the 

prediction was generated using the input from Matsumoto et al. (2021). Pearson’s coefficient is 0.77, r-squared 

is 0.61 and p-values lower than 0.01. In (B) the input was retrieved from EMDB and PDB databases and pre-

processed with Xmipp. Pearson’s coefficient is 0.79, r-squared is 0.63, with a p-values lower than 0.01. 
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Figure A4 

Local resolution of the reference structure against RMSF values in logarithmic scale from the prediction, for 

the Human Huntingin-HAP40 complex. 

(A)  

 
(B) 

 

Note. In (A), the prediction was generated using the input from Matsumoto et al. (2021). Pearson’s coefficient 

is 0.04 and r-squared is 0.0016 with p-values higher than 0.01 and lower than 0.05. In (B) the input was 

retrieved from EMDB and PDB databases and pre-processed with Xmipp. Pearson’s coefficient is 0.056 and 

r-squared is 0.003 with p-values lower than 0.01.
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Figure A5 

Representation of the occurrences of RMSF values in logarithmic scale from the prediction for the open 

conformation of Spike. 

(A) 

 

(B) 

 

Note. (A) represents the values for 6vyb structure while (B) shows the values for 7bnn structure. Both are 

unimodal distributions, with the main peak between -1 and 1 in the horizontal axis. 
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Figure A6 

Representation of the RMSF values in logarithmic scale from the prediction against the residue number, for 

open conformation of Spike. 

(A) 

 

(B)  

 

 

Note. (A) represents the values for 6vyb structure while (B) shows the values for 7bnn structure. Most 

residues close to the C-terminal have more atoms with low values. 
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Figure A7 

B-factors of the reference structure against RMSF values in logarithmic scale from the prediction, for the open 

conformation of Spike. 

(A) 

 

(B) 

 

Note. P-values equal to zero means that its real value is lower than the epsilon machine value. (A) represents 

the values for 6vyb structure. Pearson’s coefficient is 0.65, r-squared is 0.42, with a p-values lower than 0.01. 

(B) shows the values for 7bnn structure. Pearson’s coefficient is 0.82, r-squared is 0.68, with a p-values lower 

than 0.01. 
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Figure A8 

Local resolution of the reference structure against RMSF values in logarithmic scale from the prediction, for 

the open conformation of Spike. 

(A) 

 

(B) 

 

Note. (A) represents the values for 6vyb structure. Pearson’s coefficient is 0.21 and r-squared is 0.04 with p-

values lower than 0.01. (B) shows the values for 7bnn structure. Pearson’s coefficient is 0.22 and r-squared is 

0.05 with p-values lower than 0.01. 
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Figure A9 

Representation of the occurrences of the values from the prediction for the closed conformation of Spike. 

 

Figure A10 

Representation of values from the prediction for closed conformation of Spike against the residue number. 

 

Note. Residues close to the C-terminal have more atoms with low RMSF values. 
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Figure A11 

B-factors of the reference structure against values from the prediction for the open conformation of Spike. 

 

Note. P-values equal to zero means that its real value is lower than the epsilon machine value. Pearson’s 

coefficient is 0.71, r-squared is 0.51, with a p-values lower than 0.01.  

Figure A12 

Local resolution of the reference structure against values from the prediction for the closed conformation of 

Spike. 

 

Note. Pearson’s coefficient is 0.21 and r-squared is 0.04 with p-values lower than 0.01. 


