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Real-space heterogeneous reconstruction,
refinement, and disentanglement of CryoEM
conformational states with HetSIREN

David Herreros 1 , Carlos Perez Mata 1,2, Chari Noddings3, Deli Irene4,
James Krieger 1, David A. Agard5,6, Ming-Daw Tsai 4,
Carlos Oscar Sanchez Sorzano 1,7 & Jose Maria Carazo 1,7

Single-particle analysis by Cryo-electronmicroscopy (CryoEM) provides direct
access to the conformations of macromolecules. Traditional methods assume
discrete conformations, while newer algorithms estimate conformational
landscapes representing the different structural states a biomolecule explores.
This work presents HetSIREN, a deep learning-based method that can fully
reconstruct or refine a CryoEM volume in real space based on the structural
information summarized in a conformational latent space. HetSIREN is defined
as an accurate space-based method that allows spatially focused analysis and
the introduction of sinusoidal hypernetworks with proven high analytics
capacities. Continuing with innovations, HetSIREN can also refine the images’
pose while conditioning the network with additional constraints to yield
cleaner high-quality volumes, as well as addressing one of the most confusing
issues in heterogeneity analysis, as it is the fact that structural heterogeneity
estimations are entangled with pose estimation (and to a lesser extent with
CTF estimation) thanks to its decoupling architecture.

Cryo-electron microscopy (CryoEM) Single Particle Analysis (SPA)1

ability to capture individual images of biological samples brings to
light the challenging capacity to identify several conformational
and/or compositional states from the acquired image dataset.
Classically, compositional heterogeneity and conformational het-
erogeneity/flexibility have been addressed through rounds of 3D
classification2 under the assumption that macromolecules adopt a
discrete set of states. Discrete classification has been applied suc-
cessfully and is at the heart of the so-called “Resolution
Revolution”3. However, the discrete approach introduces a series of
limitations that arise from the assumptions on which it is based.
Removing this discretization constraint is methodologically a very
challenging task. However, the pay-offs are clear in obtaining richer
conformational landscapes than is currently done, providing

improved algorithmic stability and objectivity, removing assump-
tions not supported by the data, and streamlining the analysis
process without trial error tests and decisions on the quality and
number of classes.

Algorithms for identifying continuous heterogeneity from parti-
cle images were first introduced in 20144,5. More recently, CryoDRGN6

introduced the concept of heterogeneous reconstruction, applying
advanced neural network techniques to address the approximation of
the conformational continuum through the decodification of per-
particle structural states. Similarly, other approaches have been pro-
posed to tackle the heterogeneous reconstruction problem, such as
heterogeneous reconstruction with Gaussian Mixtures7 or hetero-
geneous reconstruction with a priori information on conformational
latent space8, among others.
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In addition to the reconstruction of heterogeneous states, other
methods have focused on estimating molecular motions/flexibility
using deformation fields. Some methods rely on a neural network to
decode the deformation field directly from a latent space
representation9,10, while other approaches have proposed to expand
the field on a different basis and then use a reduced set of parameters
to estimate the complete field11,12.

This work proposes a different approximation to the hetero-
geneous reconstruction problem, moving the reconstruction process
ultimately to real space. This approach makes it possible to fine-tune
the neural network architecture to improve the quality of decoded
volumes, reduce noise overfitting, and perform focused/exclusion
heterogeneous reconstructions. We achieve these goals by combining
three critical innovations. The first one is introducing (in CryoEM)
SIREN activation functions in the network architecture. Indeed, com-
pared to other popular approaches to approximate functions with a
decoder architecture, such as ReLU with positional encoding, SIREN
activations have been shown to preserve much better the quality and
high-frequency features of theoriginal signals fed to thenetwork13. The
second factor is the effective decoupling of pose and CTF effects from
the estimation of conformational landscapes, a key issue considering
how intertwined these processes are, as noted in14. This second goal is
achieved by introducing constraints in latent space relating multiple
projections of the same structure from different directions. Finally, we
introduce a set of regularizers, including L1 and Total Variation mini-
mization, that helps to obtain high-resolution maps from individual
coordinates of conformational space.

The practical result of HetSIREN’s capabilities is that conforma-
tional landscapes are now substantially better at presenting structu-
rally relevant heterogeneity information, and their exploration can be
done at high resolution. This fact can significantly affect many biolo-
gical systems when rounds of 3D classification lead to reduced data
sets and low resolution.

Our major contributions are:
• Wepropose a encoder decoupling architecture to disentangle the
pose and CTF estimation explicitly from the structural informa-
tion in the structural landscapes, directly tackling one of the pri-
mary sources of error heterogeneity algorithms face. This
approach generates more understandable, accurate, and inter-
pretable landscapes than standard network architectures.

• Application of meta-sinusoidal layers and hypernetworks to
decode high-resolution 3D conformational states with enhanced
local resolution and structural features compared to standard
reconstruction methods.

• Efficient reconstruction of complete 3D volumes in real space,
including the possibility to add structural priors to improve the
representation of the electron density maps. To that end, real
space constraints are added to explicitly mitigate the noise and
negative values in the decoded volumes. In addition, con-
straints in real space to enhance the continuity and sharpness
of the protein signal against the noise are included in the
network.

• Possibility to include reconstructionmasks to focus on or exclude
unwanted structures during the heterogeneous reconstruction
process.

• We propose a robust multiresolution training scheme to simplify
training on high-resolution data where noise becomes a solid
limiting factor.

• Weapply thesemethods to identifymultiple conformations of the
SARS-CoV-2 Spike protein from single datasets and demonstrate
their variation with temperature.

Results
This section analyzes a simulateddataset, followedbya classical public
data set commonly used when presenting heterogeneous

reconstructionmethods, endingwith the presentation of collaborative
work on challenging specimens.

All the datasets were analyzed with Scipion 3.8.0 software pack-
age. Inside Scipion, CryoSPARC 4.5.1, Relion 4.0, and Xmipp 3.24.12.0
packages were also used to process the data.

Simulated adenylate kinase landscape and landscape
disentanglement
To accurately evade the effect of decoupling pose and CTF from the
estimated HetSIREN landscape, we propose a simple and conceptual
experiment based on the simulation of an open-to-closed trajectory of
the adenylate kinase protein (PDB entry 4AKE) using Normal Mode
Analysis with HEMNMA15. The simulated trajectory is recovered from
the excitation of two modes, leading to a ground truth landscape with
a straight-line shape. The trajectorywas then sampled to generate a set
of 500 projections with uniformly distributed poses and variable CTF
information.

The simulated projections were imported into Scipion16 to train
two different HetSIREN networks: a network without pose and CTF
decoupling and a network with a pose and CTF decoupling encoder.
The resulting landscapes are provided in Fig. 1a, b.

As seen in Fig. 1a, the standard autoencoder architecture does not
recover the ground truth landscape. However, it effectively captures
the simulated motion along the first principal component of the
landscape. In general, this is the type of effect expected to arise on
standard heterogeneity algorithms due to unwanted factors that
compromise the quality of the latent spaces and significantly limit the
interpretability of the landscape.

Figure 1b shows the landscape obtained from the decoupling
architecture of HetSIREN. In this case, the new landscape successfully
captures a structure resembling the ground truth landscape, mainly
arising from a more prominent structural component. Therefore, the
combination of the decoupling encoder and the decoder in HetSIREN
dramatically aids in the interpretation and understanding of the
molecular transition captured in a given dataset.

Conformational landscape of EMPIAR 10028 dataset
To allow the direct evaluation of HetSIREN compared to other popular
heterogeneity tools, we have performed a heterogeneity analysis of
EMPIAR-1002817, which has become one of the de facto standard
datasets in the field to address the performance of heterogeneity
methods.

EMPIAR-10028 entry corresponds to a CryoEM acquisition of the
P. falciparum 80S ribosome bound to emetine. The raw data from the
database was further processed with Scipion16, resulting in about
50,000 particles. The workflow within Scipion included several con-
sensus and cleaning steps, trying to reduce unwanted images to a
minimal representation and increasing the stability of the angular
assignment, shifts, and Contrast Transfer Function (CTF) estimations,
which are inputs to the algorithm. It should be noted that most het-
erogeneity algorithms (but not HetSIREN) treat these inputs as fixed
variables, increasing the need to work only with well-curated datasets
to avoid misleading conclusions during the heterogeneity analysis.

The particles resulting from the previous analysis were fed to the
HetSIREN network during the training phase, followed by the analysis
of the latent spaceencoded from the experimental images. To this end,
the latent space mentioned here was explored with the help of inter-
active tools integratedwithin the Scipion Flexibility Hub18. A landscape
visualization and exploration example is provided in Fig. 2. Two
landscapes are presented in Fig. 2 in the form of 3D UMAPs19 obtained
from the original 10-dimensional space encoded by the network; the
one on the left is without pose and CTF decoupling, while the one on
the right implements decoupling. Although a ground truth does not
exist for this data set, the landscape after pose andCTFdecoupling can
be segmented much more easily, a fact that we interpret as an
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enhancement of structural information over positional and CTF
“noise”. Furthermore, the decoupled landscape was then explored
(Fig. 2b) by visualizing a set of maps corresponding to the cluster
representatives (centroids) obtained from the 10-dimensional space
using the K-Means algorithm, which was later decoded with the net-
work to recover the electron density maps at those points. An initial
landscape inspection through themaps shows a non-negligible degree
of compositional heterogeneity affecting the ribosome, mainly
focused on the 40S ribosomal subunit. Furthermore, it was possible to
identify a low-populated state (as shown onMap 12) characterized by a
complete lack of the 40S subunit, which is usually not detected due to
its low representation (close to 600particles - around 1.3%of the data).
As shown in Fig. 2b, Map 12, HetSIREN successfully identified this
evasive state and decoded a map with a resolution similar to those
obtained from other more populated landscape regions.

In addition to the compositional heterogeneity analysis of the
sample, HetSIREN also allows the identification of the continuous
changes captured by the images and the interplay of continuous
and compositional changes resulting from their combined influence
on the structural characteristics of the complex. In Fig. 3a, b, we
provide an example of four decoded maps showing continuous
conformational states with and without an extra compositional
component, respectively; in each case, the change of conformation
is shown by superimposing two maps in two different colors (blue
and yellow). The structural change presented in Fig. 3a corresponds
to a rotation from left to right of the 40S subunit, one of the main
structural changes captured in this dataset. In contrast, the pro-
posed structures in Fig. 3b represent a compositional variation of
one of the RNAs found in the ribosomal structure and a significant
motion of another RNA generally undetected due to its low resol-
vability. These examples demonstrate the capacity of HetSIREN to
analyze various types of heterogeneity in the same landscape and to

understand the interplay of the different structural modifications
that a biomolecule may undergo.

One of the characteristics included in HetSIREN is the possibility
of focusing the conformational landscape on a regionof interest rather
than considering the whole complex during the training phase. This
functionality allows us to identify the relevant motions of those
regionsmore easily, which is especially important for small areas since
theymay have weak relevance in the overall conformational landscape
or exclude certain regions from the variability analysis, such as mem-
branes or nanodiscs. In the case currently analyzed, we decided to
perform a focused heterogeneity analysis of the ribosomal L1 stalk
region, a substantially small area compared to the ribosome but that
exhibits a high degree of flexibility. Due to size differences, the con-
tribution of L1 to the general landscape is not predominant, limiting
the interpretability of the motions that the L1 stalk undergoes.

To focus on the L1 stalk, we trained a new HetSIREN network with
the same particles presented before but providing a spherical mask
that covers only the L1 stalk region. HetSIREN can only modify the
L1 stalk region thanks to the previous mask, effectively focusing the
landscape on this region andexcluding the contributions of everything
outside the mask. The L1 stalk landscape approximated by HetSIREN
and reduced with UMAP is presented in Supplementary fig. 1a. The
landscape shows two main motion directions, which can be isolated
with PCA as shown in Supplementary fig. 1b. The two main motions
correspond to a non-negligible lateral and vertical translation of the
L1 stalk, which is more easily identified thanks to the focusing cap-
abilities of HetSIREN.

In addition, in Fig. 4a, b, we provide a comparison of the local
resolution computed with DeepRes20 between a map decoded by
HetSIREN and the primary reconstruction obtained from the initial
image processing workflow performed in Scipion (that is, the map
obtained from the 3D refinement carried out with the complete

Fig. 1 | Comparison of HetSIREN standard and pose-CTF decoupled landscapes
for the adenylate kinase protein’s open-to-close simulated transition. Ideally,
the landscape should approximate the ground-truth trajectory defined as a straight
line arising from the excitation of two protein modes. (a) shows the landscape
obtained with a standard architecture, which suffers from a strong deviation from

the ground truth due to the pose and CTF coupling. (b) shows the pose and CTF
decoupled landscape obtained with HetSIREN. Decoupling the pose and CTF
information makes the structural informationmore prominent, allowing the latent
space to approximate the ground-truth conformational landscape well, which
should be just a straight line.
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Map 6 Map 7 Map 8 Map 9 Map 10
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a)

b)

Decoupled landscapeStandard landscape

Fig. 2 | HetSIREN landscape and exploration for Empiar 10028 dataset. (a)
shows the UMAP19 representation of the landscape obtained from the latent space
encoded by HetSIREN from the particle images after training. The landscape
without pose and CTF decoupling is presented on the left, while decoupling is
implemented on the right landscape. Each dot in the landscape corresponds to the
centroid of the cluster representative obtained from a KMeans clustering of the

decoupledHetSIREN latent space. (b) shows the decodedHetSIRENmaps obtained
from the decoupled latent space coefficients assigned to every representative, as
shown in (a) (right). The maps provide a sensible exploration of the different
conformational states identified by HetSIREN and a comparison of the structural
features learned by the network.
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dataset of 50k particles posteriorly used to train HetSIREN). The
comparison shows that the HetSIREN decoder does not sacrifice
resolution in the decoding process, significantly increasing the local
resolution of the map.

Conformational landscape of the GR:Hsp90:FKBP51 complex
The GR:Hsp90:FKBP51 complex represents a critical molecular
assembly regulating the glucocorticoid receptor (GR), a key player in
numerous physiological processes, including stress response, meta-
bolism, and immune function. This complex involves the chaperone
protein Hsp90 and the immunophilin FKBP51, which together influ-
ence the conformation and activity of GR21. Unlike its counterpart,
FKBP52, which enhances GR activity, FKBP51 acts antagonistically,
inhibiting GR’s ability to bind ligands and translocate to the nucleus.
This inhibition is crucial for maintaining the receptor’s homeostasis
and responsiveness to hormonal signals. The GR:Hsp90:FKBP51 com-
plex’s ability tomodulateGRactivity has significant implications, asGR
dysregulation can lead to various health issues, including immune
dysfunction and increased susceptibility to stress-related disorders.
Understanding this complex provides insight into potential ther-
apeutic targets for diseases influenced by glucocorticoid signaling.

Given the importance of the GR:Hsp90:FKBP51 complex, we
analyzed the intrinsic conformational variability of the dataset pre-
sented in ref. 21 with HetSIREN. The dataset included 106884 particles
with CTF and angular information already estimated as required by the
method.

The images were used to train the network to generate an 8D
conformational latent space, posteriorly reduced by PCA22 to a 3D
space for representation purposes. The resulting PCA landscape is
provided in Fig. 5a. To gain more insight into the motions detected by
HetSIREN, we sampled the leading principal component to generate a
set of five different conformational states. The corresponding latent
space coordinates were transformed into density maps using the
HetSIRENdecoder, as presented in Fig. 5b. The figure highlights one of
the extreme conformations along the sampled PC 1 axis in a black
contour to simplify the understanding of the conformational change
(black contour corresponding toMap 5). The results show a significant
movement of the GR and FKBP51 regions with respect to the HsP90
protein, resulting in a rotational translation of these two components.

In addition to estimated motions, the quality of decoded HetSI-
REN volumes was further analyzed and compared with the deposited
map from21 (EMD-29069 [https://www.ebi.ac.uk/emdb/EMD-29069]).
Figure 6a shows a direct comparison of the published (left) and Het-
SIREN (right) maps colored according to their local resolution esti-
mated with DeepRes20. The local resolution analysis shows a slight
improvement in the resolution of HetSIREN, mainly present in the
GR:FKBP51 region. The previous results highlight the ability of HetSI-
REN to learn and decode high-quality maps, translating into an
improved interpretation of the map even in highly dynamic areas.

Temperature dependence on the conformational landscape of
the SARS-CoV-2 Spike protein
The human respiratory coronavirus SARS-CoV-2 is responsible for
causing COVID-19, an acute and often severe respiratory illness char-
acterized by intense inflammatory responses and lung damage23.
Although the virion contains several structural and non-structural
proteins, much attention has been directed towards the S (Spike)
protein. This glycoprotein forms a trimeric Spike that interacts with
the host cell receptor angiotensin-converting enzyme 2 (ACE2)
through amechanism involving the receptor binding domain (RBD) in
an equilibrium between RBD opening and closing24. Throughout the
pandemic, changes in the conformational equilibrium of the RBD have
been directly related to the evolution of the virus and the emergence
of new variants25. These mutations influence the ability of the virus to
bind to ACE2 and enter host cells, affecting transmission dynamics and
disease severity.

Previous studies have elucidated the impact of the temperature of
storage or incubation on the overall integrity and denaturation of the
Spike protein26,27. It has been reported that the temperature of the
protein, equilibrated before and during vitrification, can have a pro-
nounced effect on protein conformation28, an observation that we
wanted to precisely quantify through continuous heterogeneity ana-
lysis. In this study, we worked with the Spike protein’s beta variant
(B.1.351), initially identified in South Africa in the summer of 2020. The
cryo-EM datasets for the same sample vitrified at 4 °C and 37 °C
according to29 were acquired separately. Following the acquisition of
these datasets and the initial steps of image processing in Scipion, we
employed a continuous flexibility analysis using HetSIREN to further

Fig. 3 | Example of some conformational changes captured in the decoupled
HetSIREN landscape presented in Fig. 2a. (a) shows the main continuous con-
formational change captured in the dataset, corresponding to a coordinated
rotation of the 40S subunit and the R1 stalk of the ribosome. (b) shows a

compositional variation in one of the ribosomal RNAs (better shown in the mag-
nified image), as well as a large continuous motion of the RNA to the left of the
panel, usually not detected due to its low resolvability.
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address the extreme conformational heterogeneity inherent in this
sample and characterize subtle conformational changes between the
two temperatures.

As previously described, imageswere used to train theHetSIREN’s
network to generate an 8D conformational latent space, which was
subsequently reduced to a 3D space for representation and analysis
purposes using UMAP19. To explore the entire conformational land-
scape and detect all potential conformations, we obtained 20 decoded
HetSIREN volumes from a K-Means clustering of the original HetSIREN
latent space for each sample.

At 4 °C, our analysis revealed the presence of 1 Up and 2 Up
conformations (Fig. 7 and see below), which aligns with previous
observations using conventional discrete classification protocols27.
However, when the sample was at 37 °C, we observed a distinct con-
formational landscape, predominantly characterized by the 3 Down
conformation, which was the only conformation identified by discrete
methods (Fig. 8). Nevertheless, our studies benefited from an
improved quantification capacity, thanks to the use of advanced ana-
lysis tools provided by HetSIREN. This allowed for the additional
detection of a reduced contribution from the 1 Up state (Figs. 8, 9b). In
addition to the noticeable differences observed in the RBD, we also
identified additional dynamic patterns in the N-terminal domain

(NTD), particularly pronounced in the sample at 37°C. As further evi-
dence of the influence of temperature on the Spike protein, we
observed that the 1 Up conformation at 37 °C exhibited a less open
rangeof theopening configurationcompared to its counterpart at4 °C
(Fig. 9). Toquantitatively assess differences in theopening range of the
RBD, we generated 29 atomic models that included the 3 Down and 1
Up conformations of the Spike protein at both 37 °C and 4 °C (Sup-
plementary fig. 7). Using the ProDy software tools implemented in
Scipion30, we created an atomic structure ensemble thatwas subjected
to PCA22. The RBD opening motions were accurately described by the
first principal component (PC1) (Supplementary fig. 7a). For this ana-
lysis, we examined several loops in the RBD that exhibit high mobility,
as indicatedby the PCA results (Supplementaryfig. 7b). Toquantify the
opening range of the RBD, we used centroids of two fixed regions
within the core of the Spike protein (S2 domain) as reference points,
specifically residues Val991 and Pro1140 from all three chains. We
measured the angle between these constant regions and the RBD
(Supplementary fig. 7c). The loop spanning residues Thr500-Gly502
provided the most precise description of the differences, showing a
clear transition from the 3 Down (6.6° ± 0.3°) to the 1 Up conformation
at 37 °C (21.6° ± 0.9°), followed by the 1 Up conformation at 4 °C
(24.9° ± 0.7°) (Supplementary fig. 7c inset and Supplementary fig. 7d).

Fig. 4 | Resolution analysis ofHetSIRENmapcompared against themap refined
from the EMPIAR 10028 dataset with CryoSparc38. (a) shows first the CryoSparc
refinement obtained from the 50k particle dataset processed inside Scipion (left)
followed by the HetSIREN decoded map (right), both colored according to their
local resolution estimated with DeepRes20. The comparison shows a significant
improvement in the local resolution of the map decoded by HetSIREN.

b Quantitatively compares the estimated local resolutions based on local resolu-
tions histograms. Similarly to (a), the local resolution of HetSIREN shows a strong
displacement of the voxel resolutions to the high-resolution domain, translating
into an improvement of 2.7 Å in themean resolution. Source data are provided as a
Source Data file.
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Furthermore, we directly compared the local resolution com-
puted by DeepRes20 between the HetSIREN maps and the maps
obtained using discrete image processing procedures, including initial
model generation and subsequent refinement. This comparison
revealed an increase in local resolution on the HetSIREN map, with
particular emphasis on the RBD and NTD, which are typically the most
mobile regions and exhibit lower resolvability (Fig. 10). To quantita-
tively assess the improved local resolution, we performed automatic
RBD modeling with ModelAngelo31, which showed an increase in the
total number of modeled residues of 3.7 to 10.5% depending on the
map (Supplementary Table 2).

By analyzing the volumes presented in Fig. 10, it is also possible to
assess the reliability and precision of themethod compared to discrete
approaches. To that end, we compared the reconstruction obtained by
CryoSparc using the 23k closest particles to the selected state as input
against the map decoded by the network at the centroid of this subset
in latent space. This comparison is a reasonable way to validate the
method’s accuracy in identifying the structural states captured by the
experimental particles, avoiding hallucinations. As seen in Fig. 10, both
HetSIREN and the reconstructed map agree with high confidence
about the conformational state captured in that specific region of the
structural landscape. In addition, the comparison of the different local
resolutions estimated by DeepRes also shows the improved volume
representation capabilities of the network, which is capable of
decoding high-resolution states directly from a single point in the
latent space, helping in those common cases in which several rounds
of discrete classification may end up with reduced data sets. This
capability improved the average local resolution of around 0.7 Å.

Our findings suggest that when the Spike protein is maintained at
4 °C, it tends to adopt more open configurations, predisposing it to

subsequent denaturation, consistent with previous studies26,27 at dif-
ferent conditions. Conversely, at 37 °C, the range ofmolecularmotions
tends toward a more closed and less accessible conformation. Even
when the Spike protein is in a 1 Up state at this temperature, its
opening range is markedly reduced compared to that at 4 °C. This
phenomenon may directly influence the ability of the virus to evade
the immune systemwhilemaintaining its capacity to initiate successful
infections by modulating the equilibrium with ACE232. Given the
importance of the Spike protein in vaccine development, which typi-
cally involves recombinant expression of attenuated versions stored at
low temperatures, our study underscores the importance of further
structural analyses with methods such as HetSIREN. A deeper under-
standing of the conformational dynamics under specific conditions
could have profound implications for the design of new vaccine
formulations33.

Discussion
Continuous heterogeneity is a significant breakthrough in the CryoEM
field, as shown by its increasing popularity and successful applications
to better understandmacromolecular conformational rearrangements
through experimental CryoEM data4,5,7–12.

In this regard, we have introduced a deep learning-based het-
erogeneous reconstruction and refinement method called HetSIREN.
HetSIREN addresses the conformational variability problem in real
space by encoding particle images into a latent space based on their
specific structural state, followed by a decoder capable of translating
the latent space into high-resolution volumes.

HetSIREN presents several critical innovations that set it apart to
all current methods. In a nutshell, by working entirely in real space,
HetSIREN has been able to use and evenmodify altogether (in the field

Fig. 5 | Conformational landscape analysis of the main motions detected by
HetSIREN on the GR:Hsp90:FKBP51 complex. (a) shows the reduced PCA land-
scape obtained from the original 8DHetSIREN latent space learned by the network.
Each dot in the landscape represents an even sampling along the main PC com-
ponent. (b) displays the volumes decoded by the HetSIREN network from the

sampled points shown in (a). The black outline shows the structural state repre-
sented by Map 5, which is provided to simplify the interpretation of the con-
formational change. The detected motion significantly translates the GR and
FKBP51 components against the HsP90 protein.
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of CryoEM) meta-sinusoidal activation fields with many enhanced
analytics capabilities to current approaches13,34. Furthermore, we
implemented a “disentanglement” procedure concerning pose and
CTF so that we introduce a constraint in latent space that makes it
focus on structural differences and not into pose-induced or CTF-
induced differences (indeed, the way structural changes translate into
changes at the image projection level is very different depending on
the particle projection direction, as indicated in ref. 14). HetSIREN also
introduces a range of regularizers, such as L1 and Total Variation
minimization.

The real-space decoded map is further analyzed to enhance the
biomolecule signal and minimize the presence of common artifacts
and errors in CryoEM, such as noise or negative values in the recon-
struction, while preserving the structural features in the map. Fur-
thermore, HetSIREN allows one to customize the reconstruction
region with a mask, which can be applied to exclude unwanted struc-
tures from the decoded volumes (such asmembranes or nanodiscs) or
to focus the heterogeneity analysis on a specific region of space.

In addition to estimating structural states from initially supplied
projection geometry information, HetSIREN can refine the initial per-

particle pose and in-plane shift according to each image’s specific
conformation. To this end, it produces two extra latent spaces, one to
analyze particle configurations and the other to refine the pose and in-
plane shift of the input particles into the network. In this way, the
alignment matrix refinement is also considered during the training
phase, helping to generate better CryoEM maps from the decoder.

In conclusion, HetSIREN adds a new approach to the growing
heterogeneity analysis family of methods. It does so by introducing
unique characteristics that set it apart, including the application of
SIREN-based hypernetworks to improve the quality of the decoded
maps, the ability to disentangle the pose and CTF information in
conformational landscapes, the possibility to customize the analysis
process with user-defined reconstruction masks as well as the inclu-
sion of explicit regularization terms to enhance the structural features
of the decodedmaps while reducing noise and other artifacts. The net
result of all these innovations is two-fold: First, HetSIREN conforma-
tional landscapes are much more structure-focused than with current
approaches in the field, and second, HetSIREN is capable of obtaining
maps from individual points of the landscape with improved resolu-
tion compared to what is currently achievable in the field.

Fig. 6 | Resolution analysis of HetSIREN decoded maps compared with the
deposited map from21. (a) shows on the left the deposited map (EMD-29069) and
the HetSIREN map on the right, both colored by their local resolution estimated
with DeepRes20. The comparison shows an improvement in the local resolution of
themapdecodedbyHetSIREN,mainlyoccurring in theflexible region composedof

GR and FKBP51. (b) quantitatively compares the estimated local resolutions based
on local resolution histograms. Similarly to (a), the local resolution of HetSIREN
shows a displacement of the voxel resolutions to the high-resolution domain.
Source data are provided as a Source Data file.
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Methods
This section starts with a general presentation of the image formation
model in CryoEM and then details the architecture of the HetSIREN
network and training strategies.

In addition, Supplementary Table 1 summarizes the performance
analysis of the proposed method in terms of the usage of computing
resources. Performance metrics were evaluated with default para-
meters on an RTX Ada 6000 generation GPU.

Image formation model in CryoEM
One of the main goals of single particle analysis is to determine the 3D
structure of a biomolecule through a set of 2D images generated by
orthogonally integrating the electrostatic potential duringmicrograph
acquisition. Therefore, the image formationmodel can be represented
as a rotation operator, Rn, a translation operator, Tn, and a posterior
projection, P, of the underlying 3D structure Vn. The subindex n
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Fig. 8 | Conformational landscape analysis of the main motions detected by
HetSIREN on the SARS-CoV-2 Spike protein at 37°C. Panel a) shows the UMAP19

representation of the landscape obtained from the original 8D latent space enco-
ded by HetSIREN from the particle images after training. Each dot in the landscape
corresponds to the position of the cluster representative obtained from a KMeans
clustering of the original HetSIREN latent space. Panel b) shows side views of the
decodedHetSIRENvolumesobtained from the latent space coefficients assigned to
every representative shown in Panel a). The maps provide a sensible exploration of
the different states identified by HetSIREN, including 3 Down and 1 Up
conformations.

Fig. 7 | Conformational landscape analysis of the main motions detected by
HetSIREN on the SARS-CoV-2 Spike protein at 4°C. Panel a) shows the UMAP19

representation of the landscape obtained from the original 8D latent space enco-
ded by HetSIREN from the particle images after training. Each dot in the landscape
corresponds to the position of the cluster representative obtained from a KMeans
clustering of the original HetSIREN latent space. Panel b) shows side views of the
decodedHetSIRENvolumesobtained from the latent space coefficients assigned to
every representative shown in Panel a). The maps provide a sensible exploration of
the different states identified by HetSIREN, including 1 Up and 2 Up conformations.
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emphasizes that each image has a different rotation, translation, and
underlying structure.

Although it is common practice to formulate the image formation
model in Fourier space to take advantage of the central slice theorem,
HetSIREN directly decodes the 3D structure Vn in real space. Equa-
tion 1 shows the formulation of the image formation model in real
space as used in this work.

In = PSFn* P°Tn°Rn

� �
Vn

� �
+ ϵn ð1Þ

where ϵn is a term representing the noise added to the image, PSFn is
the point spread function that captures the optical characteristics of
the CryoEM microscope, and * is the convolution operator.

Sinusoidal Representation Network (SIREN)
HetSIREN is based on a (modified) Sinusoidal Architecture Network
(SIREN)13 to increase the quality of the high-frequency characteristics
of the decoded 3D structures.

The main contribution of SIREN architectures is using sinusoidal
functions as activation functions of the neural network13. This activa-
tion has been shown to have faster convergence and higher repre-
sentation fidelity than other popular representations of signals in deep
learning, such as ReLU with positional encoding, traditionally used in
CryoEM6. In addition, the gradient computation in a sine activation can
be easily modulated, as it is represented by another SIREN activation
functionwith aphase shift, whichallows forfiner tuningof the gradient
computations to improve the representation capabilities of neural
networks.

As described in the next section, the decoder architecture in
HetSIREN relies on the real-space representation of 3D signals modu-
lated by a set of SIREN activations in its hidden layers. A dense layer
with linear activation follows this to compute the map values.

Whereas SIREN-based networks have improved signal approx-
imation capabilities inmany applications13, they suffer from a decrease
inperformancewhen representing awhole set ofdifferent structures35,
which is a critical requirement in an application such as heterogeneity
analysis. Consequently, the success of SIREN in this application has

required the development of a modified architecture so that tradi-
tional meta-sinusoidal representations rely on two different layers
sharing their weights to improve the inpainting capabilities on whole
datasets (Supplementary fig. 3). In thismeta-representation, one of the
layers (commonly represented by a dense representation with ReLU
activation) is used to compute the weights that will be posteriorly
passed to the second SIREN layer to perform the forward pass through
the network. During our experiments, we found themeta-architecture
to have improved performance at the expense of slightly higher
memory consumption.

It should be noted that it is possible to increase the number of
ReLU layers used to compute the shared weights of its associated
meta-sinusoidal layer to increase the inpainting capabilities of the
model at the expense of more restricted time and GPU memory
constraints.

HetSIREN network architecture
HetSIREN network follows an autoencoder architecture detailed in
Supplementary fig. 4.

The proposed encoder implements two different architectures
that lead to a latent space of a number of dimensions determined by
the user and set by default to 10. The architectures implemented in the
encoder include a multilayer perceptron network (MLP) with three
hidden layers of 1024 neurons or a residual convolutional architecture.
In practice, the twoencoder architectures have obtained similar latent-
space representations. However, MLPs have a higher chance of over-
fitting, while the convolutional architecture is more robust at the
expense of slightly longer training times. By default, the convolutional
architecture is chosen (Supplementary fig. 5), although it can be
modified in the Scipion protocol to use the MLP model if desired.

The feature vectors extracted from the latent space z are then
sent through the decoder, which performs the mapping ΔVn = f zn

� �
(i.e., the feature vector of then-th particle ismapped to a specificmap).
Thedensity valuesΔVn are then added to a referencemapV0 to obtain
the final heterogeneous reconstruction:

Vn =V0 +ΔVn ð2Þ

Fig. 9 | Structural differences of the SARS-CoV-2 Spike protein at different
temperatures.Representativemaps of themain conformational statesdetectedby
the HetSIREN network when the Spike protein is kept at 4°C (a) or 37°C (b). At 4°C

(a) the Spike always shows at least one (orange) or two (red) RBDs in its open
position. At 37°C (b) the Spike is mainly detected in its 3 Down conformation
(yellow), with a lower population of particles exhibiting a 1 Up state (orange).
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If the reference volume is empty V0 =0, the decoder will directly
generate the volume representing a given conformation Vn =ΔVn.
Suppose that the reference volume is a homogeneously reconstructed
density map. In that case, the network will produce the changes that
will be applied to the reference to represent a new conformational
state as shown in Eq. 2.

As described in the previous section, the decoder comprises a
series of hidden meta-sinusoidal residual layers followed by a dense
layer with linear activation that recovers ΔVn. To keep the memory
footprint of the decoder as low as possible, the number of hidden
layers is fixed to three, with a total number of neurons and hyper-
neurons (i.e., the number of neurons in the dense ReLU layers com-
posing themeta-sinusoidal layers) equal to the latent space dimension.
The last dense layer has as many features as the density values needed
to recover ΔVn.

The previous decoder is followed by a physics-based decoder that
implements the image formationmodel defined in Eq. 1. Thegenerated
computer-simulated projections are then compared with the experi-
mental images to backpropagate the final loss during the
training phase.

Disetangling of poses and CTF from conformations
Ideally, conformational latent spaces should only capture information
on the structural changes a biomolecule may undergo based on the
experimental data collected. However, conformational latent spaces
suffer from a strong coupling of several factors apart from structural
information, such as image pose and (to a lesser extent) CTF infor-
mation. Indeed, in how structural changes are translated into projec-
tion images, differences depend strongly on the particle’s projection
geometry (the pose). Therefore, the interpretability of the estimated

Fig. 10 | Resolution analysis of HetSIREN compared against the map refined
with standard procedures. (a) shows the HetSIREN decoded map for one of the 1
Up conformation clusters (left), followed by the CryoSparc reconstruction of the
23766 particles closest to that cluster (right). Maps are colored according to their
local resolution estimated with DeepRes20. (b) Quantitatively compares the

estimated local resolutions based on local resolution histograms. Similarly to (a),
the local resolution of HetSIREN (dark red) shows a displacement of the voxel
resolutions to the high-resolutiondomain, translating into an improvement of 0.7 Å
in the mean resolution to the CryoSparc reconstruction with the 23776 particles
(light purple). Source data are provided as a Source Data file.
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landscapes is largely compromised unless the effect of the previous
factors is explicitly decoupled from the conformational landscapes.

Following a similar process to the one conceptually proposed in
ref. 14, HetSIREN includes a decoupling architecture to effectively
disentangle pose and CTF from the structural information captured in
its conformational landscape. By coupling the disentangled land-
scapes with the high-resolution volume decoder, HetSIREN allows us
to explore conformational landscapes with an improved under-
standing of the structural features that participate in different
motions.

Supplementary fig. 6 shows the modified encoder architecture,
including the decoupling workflow for both the poses and the CTF
information. During the training phase, experimental images are for-
warded through the encoder and thedecoder, generating a cleaned set
of theoretical projections, the CTF corrupted theoretical projections,
and the latent space vectors z.

Thepose decoupling step relies on a second forwardpass through
the decoder to generate a new set of cleaned projections. Before that,
the pose information associated with the current batch of images is
shuffled and passed to the decoder with the corresponding latent
space vectors encoded from the experimental images. Therefore, the
second forward pass will generate a new set of cleaned images from
the same conformation as the first generated projections but with a
different pose. A randompose could also be passed to the decoder for
this step, but shuffling ensures that the original pose distribution is
maintained. The two sets of cleaned images are then forwarded
through the pose decoupling encoder and the conformational latent
layer to generate two new sets of latent vectors zt and zp, t . Since these
new latent vectors encode the same conformation as the first-
generated vectors but at different poses, we can impose a constraint
to place them as close as possible in the latent space:

Loss= λp jz � zt j22 + jz � zp, t j22
� �

ð3Þ

Upon convergence, the network will learn to produce the same
conformation independentlyof the imagepose, effectivelydecoupling
the structural and pose information.

TheCTFdecouplingprocess follows aprinciple similar to thepose
decoupling workflow described above. In this case, apart from the CTF
corrupted theoretical projections, a new set of CTF corrupted images
is generated through a third forwardpass through the decoder. Before
this new forward pass, the CTFs associated with the batch are shuffled
without touching the poses. The new sets of images are then passed to
the CTF decoupling encoder and the conformational latent layer to
generate two new sets of latent vectors zc and zp, c. Similarly to the
previous case, the new latent vectors and the first generated vectors
should be as close as possible in the latent space, as they represent the
same conformation up to the CTF corruption. Therefore, we can
impose a new regularization factor as follows:

Loss = λc jz � zcj22 + jz � zp, cj22
� �

ð4Þ

Once convergence is achieved, the network will learn to produce
the same conformation independently of the CTF, effectively decou-
pling the structural and CTF information.

In the last instance, combining the two decoupling workflows
allows the generation of a decoupled latent space where the con-
formational information predominates, increasing the interpretability
of the conformational landscape.

HetSIREN cost function
The possibility of working directly in real space when decoding theo-
retical volumes/images allows the inclusionof additional constraints in
the training objective function. These extra terms prevent the network

from learning unwanted or meaningless features in the experimental
images, such as noise or normalization errors.

Before introducing the different terms included in the HetSIREN
objective function, we provide a simplified guideline of the imple-
mented training strategy. The optimization of network parameters is
based on the Adam optimization method with a custom learning rate
(set by default at 10�5) and a batch size (set by default to 8). Experi-
mental images are forwarded through the network, leading the net-
work output to a set of theoretically decoded projections. The
comparison of experimental and theoretical projections uses, by
default, a standard Mean Square Error (MSE) function as follows:

Loss=
X
b

jIb � D zb
� �j22 ð5Þ

where Ib is an experimental image in the batch of images being con-
sidered, D represents the decoder network, and zb is the latent space
vector associated with Ib by the encoder network:

zb = E Ib
� � ð6Þ

Besides the standard MSE cost function, we provide alternative
means to compare the theoretical and experimental projections to
further customize the network training in the Scipionprotocol, such as
the correlation between the image pair.

Real-space regularization
The low signal-to-noise ratios encountered in particle images extrac-
ted from the acquiredmicrographs are probably the primary source of
errors and overfitting in CryoEM image processing.

In a homogeneous reconstruction, one can use averaging ofmany
images during the reconstruction process to reduce the noise level as
much as possible. Nevertheless, the previous solution does not apply
to the heterogeneous reconstruction case, where, ideally, the recon-
struction of 3D structures per particle is the primary goal.

One possible way to regularize the noise in the decoded volumes
is to apply a low-pass filter in the reconstructed Fourier space at the
expense of decreasing the resolution of the reconstructed structures,
which we tend to avoid. Fortunately, noise can be regularized in real
space without sacrificing the high-frequency information content
discarded by the low-pass filter, as indicated in the next paragraph.

Returning to the image formation model described in Eq. 1, it is
possible to observe that the effect of the noise term ϵ is the addition of
additional unwanted density values to the voxels in the volume/image
grid. Therefore, we may penalize the cost function with an L1 reg-
ularization term:

Loss = . . . + λ1jV0 +ΔVnj1 ð7Þ

The previous term enforces HetSIREN to learn a ΔVn that mini-
mizes noise while preserving the structural high-frequency features of
the decoded volumes.Depending on the conditions of the data set and
the desired denoising level, it is possible to modify the regularization
term λ1 to improve the quality of the decoded structures. By default,
the regularization parameter is set to 1.0, which we have practically
found to introduce a goodbalance between the loss function terms for
all the datasets currently tested.

Negative value mitigation
Ensuring proper background and noise normalization in CryoEM
images introduces an artifact in the reconstructed structures repre-
sented as a set of negative values scattered along the volume grid.
Although this is not usually a significant concern, we found that het-
erogeneous reconstruction benefits from regularizing this artifact,
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allowing the neural network to focus on the protein signal instead of
compensating the generated values with unwanted negative voxels.

Therefore, the objective function is further modified, including a
L1 regularization term that penalizes adding negative values to the
volume.

Loss= . . . + λ2jmin V0 +ΔVn, 0
� �j1 ð8Þ

Similarly to the previous case, controlling the regularization
strength through the regularization parameter λ2 is possible, which is
set by default to 1.0.

Enforcing density continuity in decoded maps
Even in the presence of the denoising regularization term, overfitting
might remain an issue, especially when working with large-volume
grids to achieve high-resolution 3D structures. However, the nature of
the overfitting differs from the addition of noise introduced pre-
viously: The decoded voxel values might appear as artifacts scattered
along the protein signal so that the projection still matches the proper
structure but without providing meaningful structural features at the
volume level.

Therefore, ensuring proper density continuity is essential to allow
the network to learn high-frequency structural details while main-
taining a proper biomolecular shape. Our model controls density
continuity through Total Variation (TV) losses, which account for dif-
ferent continuity features. The rationale behind TV is to promote
overall smoothness in the image by reducing noise and minor fluc-
tuations while allowing for sharper edges. Combining both penaliza-
tions encourages the decoded volume to have smooth transitions with
a reduced likelihoodof abrupt changes in pixel valueswhile preserving
edges that might otherwise be overly smooth.

Our implementation of TV regularizations is:

Loss = . . . + λ3j∇ V0 +ΔVn

� �j1 + λ4j∇ V0 +ΔVn

� �j22 ð9Þ

where ∇V represents the spatial gradient of V .
As in previous regularization terms, the regularization strength

can be controlled through the parameters λ3 and λ4, respectively; by
default, both terms are set to 0.1.

Multiresolution loss to achieve high resolution in a single
training
The two main objectives of heterogeneous reconstructions are to
provide a meaningful latent space that orders the conformational
states captured by the particles according to their similarity and to
decode high-resolution maps with the decoder to explore and explain
the latent space. The previous workflow generally involves training the
network with the original images at full resolution. However, in prac-
tice, the previous approach is not always ensured to converge to a
satisfactory solution due to the large amount of local minima present
when minimizing the objective function.

One possible approach to overcome the local minima problem is
to warm up the neural network. This implies initial training on down-
sampled images, which smooths the solution space, thus minimizing
the chances of getting stuck on spurious local minima. The pretrained
network is then fine-tuned on the unsampled data, allowing it to reach
high-resolution structures without escaping from the initial solution.

However, the previous approximation requires at least two dif-
ferent training steps, which overall impacts the learning time needed
by the network. In HetSIREN, we propose a multiresolution training
approach that allows for robustly obtaining a high-resolution structure
on a single model training step, which implies a significant improve-
ment in the training time compared to the previously described
strategy. The multiresolution approach minimizes the MSE between
different pairs of images at different resolutions, allowing the network

to explore both the smooth solution space defined by the filtered
image pairs and the original solution space. In this way, the loss
function becomes:

Loss=
X
b

X
ω

jLω Ib � D zb
� �� �j22 ð10Þ

where Lω is a lowpass filter followed by a downsampling operator and
ω is chosen from a discrete set of cutoff frequencies.

During multiresolution training, the original experimental images
are forwarded through the network and used to decode volumes at the
same pixel size as the experimental images. A bank of filters and
downsampling operations is posteriorly applied to the experimental
and decoded projections to generate the multi-resolution pairs.
Finally, the pairs are compared through an MSE error loss and com-
bined before backpropagation occurs.

It should be noted that the previously described regularization
terms are only computed with the original decoded map at full reso-
lution. In this way, the network focuses on improving the features of
the unsampled volumes at the original pixel size.

In our tests, we discovered that using only a set of frequencies at
full resolution (R) and half resolution (2R) typically achieves the
desired outcomes, streamlining the trade-off between theMSE costs of
the original and downsampled image pairs.

Focused reconstruction in HetSIREN
On many occasions, 3D structure reconstruction in CryoEM is carried
out on the entire volume grid that contains the biomolecule of interest
(or, for memory-saving purposes, on the sphere inscribed in the cubic
grid). However, the region of interest might bemore complex in some
scenarios. For example, nanodiscs or membranes in the reconstructed
maps are usually undesired as they might affect the proper recon-
struction of the embedded structural features.

In heterogeneous reconstruction, the motivation for designing
such a mask follows a similar reasoning, with the addition of focusing
the latent space so that only the conformational changes in a region of
interest are captured. Therefore, HetSIREN allows custom recon-
struction masks that determine the area to be reconstructed by the
neural network.

The implementation of focused reconstruction in HetSIREN is
based on a mask M designed and input by the user in the form of the
Scipion protocol. The network configuration is modified to accom-
modate the focused reconstruction process if a mask is provided. The
main change applied to the network is to limit the number of voxels
considered in the volume decoderD to only those present in themask
as follows:

ΔVn =DM zð Þ ð11Þ

Here, DM represents the new decoder focused on mask voxels. The
previous modification allows us to generate theoretical projections
only for the structural changes within the mask.

Even though the network will learn to modify only the regions
within themask, we found it helpful to consider the voxels out of these
regions when generating the theoretical 2D projections. Thanks to the
ΔV implementation in HetSIREN, it is possible to project the entire 3D
volume along a given particle projection direction once the desired
reconstruction region has been refined according to the decoded
values. In this way, obtaining a set of theoretical projections with
homogeneous information is possible apart from the area enclosed by
the mask defined by the user.

Once the 2D projections have been generated, it is possible to use
the cost function and regularization previously described to train the
network. However, the previous cost functions will not ensure that the
region being refined/reconstructed will follow a similar voxel value
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distribution to the one in the original map. Therefore, when focusing
on the landscape, an additional regularization parameter is added to
ensure that the application of ΔV respects the voxel value distribution
of the reference volume. Being vD,n and vD, r the vector storing the
voxel values within the region of interest for the HetSIREN and refer-
ence volumes, respectively, the new regularization reads:

Loss = . . . + λ5
X
b

max vD,nb

� ��max vD, rb

� �� �2 

+
X
b

min vD,nb

� ��min vD, rb

� �� �2
+
X
b

μD,n
b � μD, r

b

� �2
+
X
b

σD,n
b � σD, r

b

� �2�
ð12Þ

where μ and σ represent the mean and standard deviation values
stored in the vectors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The atomic coordinates and cryo-EMdensitymaps for the SARS-CoV-2
Spikeprotein at 4 °Cand37 °Cwere deposited in the ProteinData Bank
and EM Data Bank with codes 9GDX and 9GDY and EMD-51279 and
EMD-51280, respectively. The synthetic and ribosomedataset analyzed
in this work can be downloaded as a Scipion test dataset through the
following command: scipion3 testdata --download FlexHub_Tutorials
(assumingScipion is already installed in the system). The atomicmodel
used in the synthetic dataset is deposited in the Protein Data Bankwith
code 4AKE. The source data underlying Figs. 4b, 6b, 10b and Supple-
mentary fig. 7a, b, d are provided as a Source Data file. Source data are
provided with this paper.

Code availability
HetSIREN algorithm is freely available through Scipion 3.016 under the
plugin scipion-em-flexutils36 https://github.com/scipion-em/scipion-
em-flexutils and the package Flexutils-Toolkit37 https://github.com/
I2PC/Flexutils-Toolkit. The protocol corresponding to the algorithm
described in this manuscript is flexutils - flexible align - HetSIREN.
Tutorials on how to setup and use HetSIREN are provided in the fol-
lowing webpage https://scipion-em.github.io/docs/release-3.0.0/
docs/user/tutorials/flexibilityHub/main_page.html#tutorials.
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Supplementary Methods

Cryo-EM sample preparation and data collection for the SARS-CoV-2
samples

0.5 mg/ml of purified Beta variant Spike protein sample in 1X PBS buffer at pH 7 was diluted by
100 mM sodium citrate tribasic dihydrate at pH 5 to a final concentration of 0.25 mg/ml and a
final pH value of 5.5, a condition in which the preferred orientation was minimized. A 4 µl sample
was applied to Quantifoil holey carbon grids R1.2/1.3 200 mesh for 4◦C, and to Quantifoil gold
grids R2/2 200 mesh for 37◦C, with prior incubation at the respective temperatures for 10 min.
The grids had been glow discharged with negative polarity at 25 mA for 30 seconds using an
EMS 100 Glow discharge apparatus. They were used within 30 min to minimize the hydrophilic
recovery of the grids. After application of the sample, the grids were incubated for 10 seconds
in 100% humidity at 4◦C or 37◦C in a Mark IV vitrobot device (Thermo Fisher Scientific) and
then blotted for 3 seconds with blot force 0 before being flash frozen in liquid ethane cooled by
liquid nitrogen.

For the 4◦C and 37◦C samples, 11,137 and 7,064 movie micrographs were automatically
collected on a Bio-quantum-K3 detector (Gatan, Inc.) at a nominal magnification of 81,000x
which resulted in a pixel size of 1,061 Å by using a Titan Krios microscope (Thermo Fisher
Scientific) operating at 300 keV with a GIF Quantum energy filter with a slit width of 20 eV.
50 frames per movie were collected at 1 e-/ Å2 per frame for a total dose of 50 e-/ Å2 on the
sample by using counting mode at a defocus range between -1.5 µm to -2.2 µm.

Standard image processing workflow for the SARS-CoV-2 samples

All image processing steps were performed within the Scipion software framework (1). For
both samples, particles were previously pooled through standard 2D classification approaches
in CryoSPARC (7) conducted by the laboratory of Prof. Ming-Daw Tsai. These particles were
then directly imported into Scipion, with 662,379 and 468,911 particles for the samples at 4◦C
and 37◦C, respectively. The selected particles were downsampled to 1.4 Å/px. These particles
generated four ab initio models imposing C3 symmetry in CryoSPARC (7). All particles were
subjected to non-uniform refinement using the best initial model low-pass filtered to 30 Å as a
reference. This refinement was followed by an angular consensus protocol (8), retaining the best
615,000 and 410,000 particles for the samples at 4◦C and 37◦C, respectively. We then symmetry-
relaxed these C3 symmetry-refined particles into C1 (9) while performing a 3D classification into
10 classes as implemented in Relion (10). We employed a 3D clustering consensus protocol to
retain stable and statistically significant particles across the entire datasets to minimize the
variability in class distribution over replicates of the same protocol. We inspected the particle
clusters with a p-value < 0.05, and to confirm the assignment of particles to the different
conformations, we generated initial models and non-uniform refined them independently. We
then rejected the clusters of particles resulting in junk volumes and selected only the best
clusters, corresponding to 479,908 and 309,062 particles for the samples at 4◦C and 37◦C,
respectively. After this standard image processing workflow, we merged all clusters for each
independent sample and subjected the corresponding particles to HetSIREN.
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Model building and refinement of the SARS-CoV-2 samples

Firstly, we manually docked the model into the density as a rigid body, followed by real space
fitting using the Fit in Map routine in UCSF Chimera (11) for the complete Spike structure,
which includes chains A, B, and C. We used previously deposited structures as starting models,
matching each detected conformation: PDB IDs 7WEV and 7VX1 for Beta variant in the 3
Down and 1 Up states, respectively (12). For the 2 Up state, we computationally modified the 1
Up model (7VX1) by removing one of the RBD Down chains and replacing it with a previously
duplicated and individually fitted RBD Up chain. Real-space refinement was then performed
in Phenix (13) with the enabled global minimization, local grid search, ADP, and rigid body
options. We defined each chain’s NTD, RBD, and S2 domains as independent rigid bodies,
resulting in 9 rigid bodies in total. To preserve the general arrangement of the different domains
within the Spike protein, the starting model was used as a reference model with restraints
and secondary structure restraints. The resulting models were then manually inspected in
Chimera (11) and Coot (14) to check the fit to the density. The quality of the obtained models
was assessed using MolProbity (15) as implemented in Phenix (16) and the Worldwide PDB
(wwPDB) OneDep System (https://deposit-pdbe.wwpdb.org/deposition). Refinement statistics
are listed in Supplementary Table 3 and 4.

Characterization of the decoupling effect on conformational landscapes

The decoupling architecture introduced in HetSIREN minimizes the effects that the pose and
CTF have on the organization of the different images in a latent space. Ideally, a conformational
latent space that considers only the structural differences in the particle images should be
learned. This way, the conformational landscape of the biomolecule under study can be properly
reflected.

To better reflect these effects in the conformational latent spaces, we propose two scenarios
in which the pose and CTF’s downstream effects dominate.

The first test case consists of analyzing the simulated adenylate kinase dataset presented
in the first section of the manuscript. During the simulation, a different CTF corruption was
applied to each projection individually, trying to make the CTF as prominent as possible against
the pose and the conformational variability captured in the images.

The previous images were used to train two different HetSIREN networks. The first network
has a standard architecture without decoupling, while the second network includes the CTF
decoupling architecture but not the pose decoupling part. Comparing the two landscapes allows
one to better observe how the CTF decoupling architecture affects the latent space organization.

The results of this analysis are summarized in Supplementary Figure 8. The landscape colors
represent a clustering of the different images according to their CTF information to simplify the
visualization of the organization of the images based on the CTF information. Supplementary
Figure 8a shows the landscape learned by the network with no decoupling architecture, lead-
ing to a significant landscape spreading to accommodate different ”bands” with similar CTFs.
This is a strong deviation from the gold standard landscape, which should be a straight line, as
discussed in the manuscript section “Simulated adenylate kinase landscape and landscape dis-
entanglement.” In contrast, the CTF-decoupled latent space shown in Supplementary Figure 8b
shows a more condensed latent space, better reflecting the ideal latent space. By combining
images with the same conformation and variable CTF information, HetSIREN effectively learns
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to decouple the CTF effect, minimizing its effect on the organization of the latent space and
leading to a more prominent structural component.

The second test relies on analyzing clean images without CTF, which allows us to better
assess the pose effect on the conformational landscape. To that end, we simulated 2000 images
from two SARS-CoV-2 Spike electron density maps in one-up and three-down conformations.
This simulated dataset describes a very simple conformational latent space, ideally consisting
of two isolated points representing the two discrete states used to simulate the images.

Similar to the previous test, two HetSIREN networks were trained with the new image
dataset: the first network has a standard architecture with no decoupling parts, while the second
includes only the pose decoupling architecture to analyze its effect on the landscape. The results
of this analysis are summarized in Supplementary Figure 9. Supplementary Figure 9a shows the
landscapes obtained from the training dataset, colored according to clustering into four groups
of the projection sphere to better visualize the pose. The non-decoupled landscape suffers from
a similar effect to the CTF case, deviating from the ideal ”two dots” latent space due to a strong
organization induced by the pose. In contrast, the decoupled landscape presented is significantly
condensed towards the ideal ”two dots” representation, showing the ability of the architecture
to effectively learn that images with similar conformation and different poses should be close
in the latent space. A different experiment is proposed in Supplementary Figure 9b, where the
previously trained networks are used to predict the landscape of a new dataset composed of the
original images after applying noise to their poses. As can be seen from this result, the non-
decupled network predicts a disordered landscape, placing the particles in completely different
locations compared to the landscape shown in panel a), even if the images are the same. In
contrast, the decupled landscape is not so much affected by the new poses, as it has learned to
predict that the images represent two distinct conformations independently of their pose.

Comparison of SIREN and ReLU activation in HetSIREN

Applying different activation functions to the outputs of the layers in a neural network may
induce differences in the accuracy and performance of a neural network. In this manuscript,
we propose the application of sine activation functions well known in the deep learning field as
SIRENs. Even though SIREN activation functions usually outperform other popular activations
like ReLU, it is interesting to evaluate their effect on HetSIREN and its architecture.

To properly assess the differences between SIREN and ReLU in HetSIREN, we propose a
test with the EMPIAR 10028 (2) dataset analyzed throughout the manuscript, which will be
used to train two networks: the first one consists of HetSIREN with ReLU activations without
adding the decoupling and the additional cost functions proposed in this work to isolate the
effect of the activation function. The second network follows the same principles as the first
one, changing the activation function to the SIREN activations presented in this work.

After training the two networks, two different conformations were selected from the confor-
mational landscapes, decoding two volumes representing two distinct compositional states found
in the dataset: one of the conformations loses completely its 40S subunit, while the second has
a smaller loss of mass in the 40S subunit of the ribosome. The comparison of these two states
is presented in Supplementary Figure 10.

As can be seen from the decoded volumes, both ReLU and SIREN perform similarly in our
network architecture regarding the structural details of the structures. However, a significant
difference is highlighted in the upper images arising from the change in the activation function.
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While ReLU activations prevent the network from learning how to completely remove the 40S
subunit of the ribosome, SIREN activations lead to a more sensible representation of this evasive
state thanks to a clearer removal of the subunit.

Cost function ablation studies

As discussed in the Methods manuscript section, HetSIREN implements different cost functions
directly affecting the decoded volume representation, trying to guide the network toward learning
more accurate and interpretable 3D volumes from the images.

One of the effects of the proposed cost functions is to directly tackle the noise present in the
images, allowing the network to focus on the signal instead of learning how to add noise to the
decoded volumes. To better assess the effect of the previous denoising, we proposed an ablation
test starting from the simulated adenylate kinase images already described in the manuscript.
The tests first analyze the set of noise-free images, followed by a progressive addition of noise.
In all these steps, two HetSIREN networks were trained: one did not include the additional
denoising cost functions, unlike the second network, which is allowed to learn how to denoise the
decoded volumes. It is important to highlight that the three denoising cost functions proposed
in the manuscript (L1 regularization and the two versions of the total variation) are evaluated
together as they complement each other to reduce the denoise while preserving the relevant
details.

The results obtained from the previous analysis are summarized in Supplementary Figure 11.
As explained before, the first step is analyzing the original 500 noise-free images. The projections
of the decoded volumes show that both HetSIREN networks could identify the correct structure.
However, it is possible to observe a non-uniform background when the denoising cost functions
are not included, probably generated as a CTF effect. As expected, the network properly
detected the conformational change captured by the images.

The analysis continuous with a new set of noisy images simulated to have a medium noise.
When medium noise is added, it is possible to observe a more drastic effect on the two neural
networks. The network without denoising adds a considerable amount of noise to the decoded
volume in an attempt to match the denoise of the projection, unlike the network with denoising
that manages to get a noise-free volume similar to one obtained with the baseline images.
Similarly to the previous case, the detected conformational change is the expected one.

Lastly, a dataset with a high level of noise was analyzed. When no denoising is considered, the
decoded volumes lack any meaningful signal and are completely dominated by noise. However,
the network with denoising manages not only to detect the right signal but also to produce a
noise-free decoded volume with features similar to those of the baseline dataset. This result
shows the strong effect of handling the noise directly with the network, allowing it to learn
accurate and meaningful structure representations even in highly noisy conditions. Moreover,
the network with denoising also manages to properly detect the expected conformational change,
showing the ability of the network to perform heterogeneous reconstruction with small and noisy
datasets.

The next set of cost functions to be evaluated are those related to the focused reconstruc-
tion/refinement introduced in the manuscript. The main purpose of these const functions is to
regularize the neural network so that it learns to refine the map while preserving the original
voxel value characteristics in the reference volume given to the network. Similarly to the case
before, it is required to consider these cost functions simultaneously to properly evaluate their
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effect, as their combination is needed to properly represent the voxel value distribution in the
original volume.

For this test, we trained two neural networks using the EMPIAR 10028 dataset to simplify
comparing the results with those presented in the manuscript. The only difference between the
two networks trained is the consideration of the cost functions related to the focused recon-
struction process. The results from this test are summarized in Supplementary Figure 12. As
can be seen from the figure, when the cost functions are not considered, the network introduces
a strong artifact in the decoded volume. This artifact arises from the freedom the network
has to place any possible voxel value in a given position in the grid, completely breaking the
relation of the decoded values with the original distribution of voxel values in the reference
volume. In contrast, the regularized network effectively learns to refine the region of interest
while considering that the range of values of the decoded region should be as similar as possible
to the reference volume. Thus, the regularized network does not present the artifact previously
described, improving the representation and interpretability of the decoded volume.

Apart from the denoising and focused reconstruction-related losses previously evaluated,
HetSIREN includes an internal sharpening arising as a post-processing effect from the way the
decoded volumes are constructed, which is added to the enhancement effects of the additional
cost functions. However, this internal sharpening does not prevent further post-processing of the
decoded volume to further enhance the structural features in the volume, which is an essential
step to properly understand and interpret a given biomolecular structure.

To better reflect the previous idea, we propose a comparison of HetSIREN when the internal
sharpening and a further post-processed version of the decoded volume with DeepEMhancer (17)
and EMReady (18). To that end, we compared one of the HetSIREN volumes decoded for the
EMPIAR-10028 dataset previously discussed in the manuscript. The comparison is presented
in Supplementary Figure 13. We propose as a baseline of the comparison the CryoSPARC
volume reconstructed from this dataset. The comparison shows how the internal sharpening
of HetSIREN significantly improved the structural features in the volume, which are similar to
the ones present in the CryoSPARC volume post-processed with DeepEMhancer. In addition,
the sharpening post-processing of the HetSIREN volume enhances even further the structural
features compared to its non-sharpened version and the sharpened CryoSPARC volume.
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Supplementary Figure 1: Example of the L1 stalked-focused landscape estimated with HetSIREN. The landscape
was estimated with the pose and CTF decoupling architecture by providing a spherical mask to the network enclosing
the L1 stalk. This way, HetSIREN will only consider the L1 stalk region when determining the motions and
conformational changes captured in the experimental particle images. Panel a) shows the UMAP (3) representation
of the conformational latent space, including the approximate principal direction according to PCA (5). Panel b)
shows the main L1 stalk motions detected by HetSIREN when sampling along the conformational latent space’s
first and second principal components. The motion detected shows a strong lateral and vertical displacement of the
L1 stalk, which is much more easily identified here than when considering the whole particle, thanks to the ability
to focus the landscape in this specific region.



Supplementary Figure 2: Detailed comparison of HetSIREN and the deposited map from (4). The different panels
present several zoom regions of the two volumes to better compare the resolution changes between HetSIREN and
the deposited map. In addition, we highlight in the last row how HetSIREN has the ability to detect small structural
details like side chains in the decoded volumes.



Supplementary Figure 3: Scheme of a meta-sinusoidal layer as implemented in the HetSIREN volume decoder
network. The proposed architecture relies on a fully connected network with several layers (hypernetwork) whose
weights will be updated during the backpropagation phase. The weights of the last layer in the fully connected
network are then shared with the dense layer with the sine activation so that it can decode the appropriate outputs.



Supplementary Figure 4: Scheme of the HetSIREN network architecture and training strategy. In the scheme,
the encoder has a dynamic architecture based on the user inputs (available choices include fully connected and
convolutional architectures). The ∆V decoder directly produces a full 3D volume in real space from the encoded
latent space vectors z. Depending on the availability of the prior volume, the decoded ∆V could translate into a
full reconstruction (without the prior volume) or a refinement. In addition to the conformational latent space z,
two additional bottleneck layers are estimated: a ∆s layer to refine the in-plane shift of the particle and a ∆e layer
to refine the particle projection angle. The previous two vectors are combined to refine the estimated alignment
matrices associated with the experimental image. Regarding the CTF, three possible scenarios are considered:
particles have been previously corrected (no CTF considered inside the network), particles are CTF corrected
before being fed to the encoder (Wiener filter box), or theoretical projections are CTF corrupted (CTF corruption
box).



Supplementary Figure 5: Example of the default encoder architecture implemented in HetSIREN. The encoder relies
on a resizing network followed by convolutional blocks with residual skips. The output images from the residual
blocks are then passed to a fully connected block whose output is posteriorly converted into the three bottlenecks
defined in HetSIREN.



Supplementary Figure 6: HetSIREN poses and CTF decoupling architecture. The decoupling process starts with a
batch of experimental images forwarded through the experimental encoder and the decoder to generate a batch of
clean, and CTF corrupted projections It and Ic. In addition, the original poses and CTFs are shuffled to generate
a new set of clean projections with the same conformation but variable pose and CTF Ip,t and Ip,c. Once all
the projections have been generated, the images It and Ip,t are forwarded through the pose decoupling decoder.
Similarly, the images Ic and Ip,c are fed to the CTF decoupling decoder. In this way, it is possible to generate
several sets of latent space vectors representing the same conformational state but with variable pose and CTF,
which can be used to decouple the pose and CTF effects from the latent space as expressed in Equations ?? and
??.



Supplementary Figure 7: Structural analyses of the SARS-CoV-2 Spike protein. Panel a) shows the PCA (5) for
the atomic structures ensemble encompassing 16 models of 3 Down conformation at 37◦C (blue), 4 models of 1
Up conformation at 37◦C (orange), and 9 models of 1 Up conformation at 4◦C (green). The Root Mean Square
Fluctuations derived from PCA (5) for individual residues are shown in panel b). The inset shows a zoomed area of
the residues exhibiting the highest mobility. Panel c) shows a representative atomic model for the 1 Up conformation
(chain A in light blue, chain B in light red, and chain C in light green). The three magenta spheres represent the
centroids used for the analyses of angle measurements (Thr500-Gly502 at the RBD and Val991 and Pro1140 at the
top and bottom of the S2 domain, respectively). Angle is indicated in the dashed box. Insets show a detail of the
differences between the three analyzed conformations (3 Down at 37◦C in light blue, 1 Up at 37◦C in light orange,
and 1 Up at 4◦C in light green) at atomic models (left) and cryoEM reconstructions (right) levels. Analyses of angle
measurements are shown in panel d), matching the color code of inset c). Source data are provided as a Source
Data file.



Supplementary Figure 8: Assessment of the CTF decoupling architecture on the latent space learned by HetSIREN.
Panels a) and b) show two latent spaces obtained by training two different networks with images with variable CTF
corruption. Panel a) shows the landscape encoded by the network with no decoupling architecture. Panel b) shows
the landscape encoded by the network, including only the CTF decoupling part. The colors used to represent
the landscapes correspond to a clustering of the CTF of the images into three different groups to simplify the
visualization of this information. The comparison of the two panels shows how the decoupling effect effectively
condenses the latent space, reducing the spreading induced by the strong organization of the latent space according
to the CTF of the images.



Supplementary Figure 9: Assessment of the pose decoupling architecture on the latent space learned by HetSIREN.
The panels show the latent spaces obtained by training two different networks with images with variable poses
and no CTF corruption. Panel a) shows the landscapes obtained with the training dataset with a uniform pose
distribution. Panel b) shows the landscapes obtained after predicting from the training dataset after adding noise
to the original poses. The colors used to represent the landscapes correspond to a clustering of the pose of the
images into four different groups to simplify the visualization of this information. The comparison of the two panels
shows how the decoupling effect effectively condenses the latent space, reducing the spreading induced by the strong
organization of the latent space according to the pose of the images.



Supplementary Figure 10: Comparison of the decoded accuracy of HetSIREN when trained using two different
activation functions in the decoded: ReLU and SIREN. The comparison shows that both activations have a similar
performance in representing the structural details in a given state, although SIREN gives more freedom to the
network to represent strong compositional variations, as highlighted in the upper images.



Supplementary Figure 11: Ablation test to analyze the performance of the denoising cost functions implemented
during the training phase of HetSIREN. The test evaluates the denoising capabilities of the network under different
noise conditions: a set of ideal images, images with medium noise (σ = 1), and high noise (σ = 10). In all cases,
two different networks were trained, whose only difference is the presence of the denoising cost functions in one of
them. The 3D volumes shown are decoded with the denoising network in all cases.



Supplementary Figure 12: Evaluation of the focused reconstruction-related cost functions implemented in Het-
SIREN. The test evaluates the effect of adding the cost functions responsible for ensuring that the values in chimera
volume follow a similar distribution. When this regularization is not applied, the decoded volume shows a clear
artifact arising from a strong difference in the value distribution of the refined region and the rest of the volume.
In contrast, the regularized network properly minimizes the previous artifact, yielding a more consistent volume.



Supplementary Figure 13: Comparison of HetSIREN and CryoSPARC reconstruction for the EMPIAR 10028 (2)
dataset. The comparison shows first the original volumes obtained by both approaches. In the case of HetSIREN, the
decoded volume includes the internal sharpening applied during the decoding step, as described in the manuscript.
In addition, the figure shows the previous two volumes further post-processed by DeepEmhancer (17) and EMReady
(18) to further enhance their structural features. This comparison reveals that the internal sharpening implemented
in HetSIREN does not prevent further modification of the decoded volume, yielding a new representation with
significantly enhanced structural features compared to both the CryoSPARC maps and its sharpened representation.



Performance metrics for HetSIREN
Image size Batch size Epochs GPU memory (GB) Time 105 particles

(hours)
128 16 50 (standard) 2.42 2.75
300 8 50 (standard) 17.3 14.2
300 8 50

(disentanglement)
17.3 14.5

Supplementary Table 1: Execution times and GPU memory consumption for HetSIREN. Metrics are referred to in
the training phase.

Automatically modeled residues (ModelAngelo)

CryoSPARC Map

RBD (residues 304-591)

Modelled Residues 310
% Total Residues 35.9%

HetSIREN map 4

365

42.2%

HetSIREN map 9

342

39.6%

HetSIREN map 13

401

46.4%

HetSIREN map 14

326

37.7%

HetSIREN map 15

346

40.0%

Supplementary Table 2: Comparison of automatically modeled residues performed by ModelAngelo.



Refinement statistics for SARS-CoV-2 Spike protein at 4◦C
Refinement Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10
Mask correlation coefficient 0.69 0.69 0.70 0.71 0.64 0.69 0.70 0.72 0.72 0.69
Model composition

Non-hydrogen atoms 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362
Protein residues 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237

ADP (B-factors)
min 56.88 65.32 54.68 67.54 47.65 52.98 59.54 50.81 63.09 62.66
max 428.31 325.45 462.43 318.58 363.74 620.24 539.35 297.54 358.72 455.62
mean 149.62 132.17 156.76 138.32 155.21 157.98 161.59 136.61 131.11 156.43

R.m.s deviations
Bond lengths 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.008
Bond angles 1.428 1.490 1.442 1.500 1.367 1.384 1.446 1.484 1.597 1.455

Validation
Molprobity score 1.65 1.77 1.62 1.81 1.53 1.60 1.58 1.64 1.79 1.69
Clashscore 5.91 6.35 5.95 6.31 4.97 5.77 5.55 6.49 7.64 6.99
Rotamer outliers (%) 1.17 0.74 1.06 0.99 0.78 0.67 0.88 0.99 1.24 0.60

Ramachandran plot
Favoured (%) 95.97 93.05 95.94 95.69 96.03 95.91 96.00 95.91 95.72 95.66
Allowed (%) 3.97 6.95 4.00 4.25 3.91 4.03 3.94 4.03 4.22 4.28
Outlier (%) 0.06 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Refinement statistics for SARS-CoV-2 Spike protein at 4◦C
Refinement Map 11 Map 12 Map 13 Map 14 Map 15 Map 16 Map 17 Map 18 Map 19 Map 20
Mask correlation coefficient 0.68 0.70 0.71 0.72 0.70 0.67 0.69 0.69 0.69 0.71
Model composition

Non-hydrogen atoms 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362 25,362
Protein residues 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237 3,237

ADP (B-factors)
min 54.78 55.29 55.46 58.05 51.09 54.05 55.09 58.39 49.91 51.77
max 579.72 549.59 440.90 259.33 375.42 470.42 454.68 401.38 460.43 657.55
mean 156.63 171.29 150.96 127.42 140.63 155.53 153.43 144.97 159.05 153.25

R.m.s deviations
Bond lengths 0.008 0.007 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007
Bond angles 1.478 1.441 1.608 1.532 1.473 1.402 1.465 1.430 1.433 1.515

Validation
Molprobity score 1.72 1.58 1.65 1.67 1.61 1.58 1.61 1.69 1.58 1.66
Clashscore 6.17 5.47 6.31 6.73 5.89 5.63 6.05 6.93 5.29 6.47
Rotamer outliers (%) 1.41 0.78 0.81 0.92 0.99 0.67 0.81 1.09 0.78 0.81

Ramachandran plot
Favoured (%) 96.03 95.91 95.66 95.66 95.78 95.97 95.97 95.91 95.72 95.69
Allowed (%) 3.91 4.03 4.25 4.28 4.15 3.97 3.97 4.00 4.22 4.25
Outlier (%) 0.06 0.06 0.09 0.06 0.06 0.06 0.06 0.09 0.06 0.06

Supplementary Table 3: Refinement statistics for SARS-CoV-2 Spike protein at 4◦C.



Refinement statistics for SARS-CoV-2 Spike protein at 37◦C
Refinement Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 Map 9 Map 10
Mask correlation coefficient 0.68 0.69 0.74 0.77 0.73 0.75 0.76 0.74 0.69 0.73
Model composition

Non-hydrogen atoms 25,362 25,362 25,482 25,482 25,482 25,482 25,482 25,482 25,362 25,482
Protein residues 3,237 3,237 3,255 3,255 3,255 3,255 3,255 3,255 3,237 3,255

ADP (B-factors)
min 66.33 69.60 73.86 84.37 69.29 71.30 68.22 73.47 63.30
max 469.35 418.14 418.14 331.04 299.72 277.98 319.64 261.50 412.59 336.72
mean 151.83 149.02 197.15 128.96 134.03 124.63 127.39 124.20 151.80 135.49

R.m.s deviations
Bond lengths 0.008 0.008 0.008 0.009 0.009 0.008 0.009 0.009 0.007 0.008
Bond angles 1.603 1.612 1.717 1.840 1.829 1.745 1.777 1.797 1.566 1.738

Validation
Molprobity score 1.69 1.65 1.61 1.80 1.62 1.66 1.59 1.63 1.68 1.63
Clashscore 6.63 6.21 6.06 7.53 6.99 6.26 6.36 6.49 6.69 5.96
Rotamer outliers (%) 1.02 0.88 1.16 1.72 0.88 1.33 1.05 1.19 0.92 1.33

Ramachandran plot
Favoured (%) 95.44 95.50 96.49 96.71 96.49 96.58 96.52 96.61 95.60 96.71
Allowed (%) 4.47 4.40 3.42 3.20 3.42 3.32 3.39 3.29 4.31 3.20
Outlier (%) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Refinement statistics for SARS-CoV-2 Spike protein at 37◦C
Refinement Map 11 Map 12 Map 13 Map 14 Map 15 Map 16 Map 17 Map 18 Map 19 Map 20
Mask correlation coefficient 0.67 0.74 0.75 0.76 0.74 0.74 0.74 0.74 0.75 0.74
Model composition

Non-hydrogen atoms 25,362 25,482 25,482 25,482 25,482 25,482 25,482 25,482 25,482 25,482
Protein residues 3,237 3,255 3,255 3,255 3,255 3,255 3,255 3,255 3,255 3,255

ADP (B-factors)
min 67.35 73.33 75.37 80.29 70.45 66.29 71.37 86.52 76.29 78.77
max 450.55 359.03 350.66 288.60 290.02 330.95 288.01 405.81 421.83 304.79
mean 152.38 130.67 127.95 128.29 127.89 129.61 125.55 131.54 262.12 125.21

R.m.s deviations
Bond lengths 0.007 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
Bond angles 1.549 1.793 1.751 1.739 1.740 1.790 1.812 1.720 1.799 1.746

Validation
Molprobity score 1.70 1.66 1.60 1.58 1.65 1.59 1.69 1.59 1.61 1.57
Clashscore 5.69 6.36 6.57 6.16 6.32 6.16 6.87 5.84 6.45 5.44
Rotamer outliers (%) 0.85 1.37 1.09 1.09 1.30 1.12 1.30 1.19 1.19 1.23

Ramachandran plot
Favoured (%) 95.56 96.74 96.64 96.68 96.64 96.64 96.55 96.64 96.77 96.71
Allowed (%) 4.34 3.17 3.26 3.23 3.26 3.26 3.29 3.26 3.11 3.20
Outlier (%) 0.09 0.09 0.09 0.09 0.09 0.09 0.16 0.09 0.12 0.09

Supplementary Table 4: Refinement statistics for SARS-CoV-2 Spike protein at 37◦C.
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