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Block I. Knowledge-driven Al
* Representation of knowledge, propositional & first-order logic.
Contents

* Expert systems: rules, facts, ontologies.
* Heuristic search, planning (STRIPS, GraphPlan).

» Adversarial games, alpha—beta pruning, Monte Carlo Tree Search.

Block Il. Classical Machine Learning

* Fundamentals: supervised learning, overfitting, cross-validation, evaluation metrics.
* Regression (linear, logistic), k-NN, decision trees, Random Forest.

* Support Vector Machines (SVM), ensemble methods (boosting).

* Dimensionality reduction (PCA, t-SNE).

Block Ill. Deep Learning

* Neural networks: MLPs, backpropagation, optimization, regularization.
* (CNNs for biomedical images.
* RNNs, LSTMs, GRUs for biological sequences & time-series.
D Evaluation * Transformers (BERT, GPT, ProtBERT, ESM) for text, genomics, proteomics.

* Continuous evaluation (ordinary call): e Generative models: Autoencoders, VAEs, GANSs, diffusion models.
¢ Class tests & participation (SE2, 80%). — Applications: protein design, synthetic biological data.
* Programming projects (SE3, 20%).

+ Extraordinary call: Block IV. Reinforcement Learning
* Final exam (SE1, 80%).

* Continuous activities (209%).

= Agents, environments, rewards, policies.

* (Q-learning, SARSA, Policy Gradient, DQN.
* Requirement: 75% attendance in theory, 100% in practicals.

» Biomedical applications: molecule design, experimental planning.
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Block I. Knowledge-driven Al

« Early Al focused on explicit knowledge: facts, rules, ontologies.
* Computers reason by logic (propositional, first-order).
* Expert systems use “if—then” rules and inference engines.
* Applications in biomedicine:
* Clinical decision support (diagnosis from symptoms).
* Ontologies (Gene Ontology, SNOMED CT) for structuring biological
knowledge.
* Rule-based planning in experimental workflows.
* Key idea: Instead of learning from data, the system reasons from encoded human
knowledge.




Block I. Knowledge-driven Al
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Block I. Knowledge-driven Al

Knowledge graph  https://copenmed.org/

Diabetes «

Tipo Entidad: GroupOfDiseases

© DETALLES ~

Entidad ¥ Idioma Nivel
- . . -
rd CIE-11: Blogue [ 2-5A1 {Diabetes mellitus) Espariol 2
. . -
4 Diabetes Espariol 0
4 . .
V4 Diabetes English 0
/. {CD-11: Block L2-5A1 (Diabetes mellitus) English 2

© DESCRIPCIONES EXTENDIDAS ~

R Idioma
Descripcion ¥

Diabetes is a chronic (long-lasting) health condition that affects how your body turns food into energy. Your body breaks down most of the food vou eat into sugar (glucose) and releases it into your bloodstream. When vour blood sugar goes
V4 up, it signals your pancreas to release insulin. Insulin acts like a key to let the blood sugar into your body's cells for use as energy. With diabetes, your body doesn't make enough insulin or can't use it as well as it should. When there isn't English
enough insulin or cells stop responding to insulin, too much blood sugar stays in your bloodstream. Over time, that can cause serfous health problems, such as heart disease, vision loss, and kidney disease.

La diabetes es una enfermedad en la que los niveles de glucosa (azicar) de la sangre estan muy altos.La insulina es una hormona que ayuda a que [a glucosa entre a las células para suministraries energia. En la diabetes tipo 1, el cuerpo no
produce insulina. En la diabetes tipo 2, |a mds comtin, el cuerpo no produce o no usa la insulina de manera adecuada. 5in suficiente insulina, Ia glucosa permanece en la sangre. Con el tiempo, el exceso de glucosa en la sangre puede causar
7 problemas serios. Puede dariar los ofos, los rifiones y los nervios. La diabetes también puede causar enfermedades cardiacas, derrames cerebrales y la necesidad de amputar un miembro. Las mujeres embarazadas tambien pueden desarrollar Espaniol
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Block I. Knowledge-driven Al

Knowledge graph

© ASOCIACIONES: Diabetes — ...

Entidad Tipo de Asociacion ¥ Fuerza
/. Endocrinologia Group belongs to the domain of Specialty 1
/. Andlisis de sangre (glucosa) Group can be diagnosed with Test 0.9
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Block I. Knowledge-driven Al

Knowledge graph
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Block I. Knowledge-driven Al

Knowledge-based Systems
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Block Il. Machine learning

Artificial Intelligence

¢—————— Creating intelligent machines
mimicking human intelligence.

Machine Learning ¢«—————— Algorithms enabling computers to
learn from data.

Computational models with
interconnected artificial neurons.

Deep

Learning Neural networks with multiple

layers for hierarchical
representation learning.
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Block Il. Machine learning

Input Machine Learning
> Techniques

Output

5 = : i
Stock Data « Regression Stock Price Prediction
* Customer _ * Market Segmentation
Transaction Data e Clustering
: B * Recommendations
* Streaming Data * Association Rule Systems
* Email text » Classification * Spam Detection
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MACHINE LEARNING

Block Il. Machine learning
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Block Il. Machine learning

Naive Bayes classifier

classifier /
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Block lll. Deep learning
Machine Learning

& -k -2 -l

Input Feature extraction Classification

Deep Learning

e — 55237 — I

Input Feature extraction + Classification
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Block lll. Deep learning
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Block lll. Deep learning
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AlphaFold Experiment
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Block lll. Deep learning

John J. Hopfield Geoffrey Hinton

“for foundational discoveries and inventions that “for foundational discoveries and inventions that
enable machine learning with artificial neural enable machine learning with artificial neural
networks” networks”

© Nobel Prize Outreach. Photo: Nanaka Adachi © MNobel Prize Outreach. Photo: Clement Morin
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Block lll. Deep learning

David Baker Demis Hassabis John Jumper

“for computational protein design” “for protein structure prediction” “for protein structure prediction”
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Block IV. Reinforcement learning

Action




Block IV. Reinforcement learning

naturemedicine

Explore content ¥ About the journal ¥  Publish with us v

nature > nature medicine > comment > article

Comment | Published: 07 January 2019

Guidelines for reinforcement learning in healthcare

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale Doshi-Velez

& Leo Anthony Celi &

Nature Medicine 25, 16-18 (2019) | Cite this article

Observed
decisions and
response

% e i 1 Unobserved

responses
Mechanical
ventilation? Sedation? Vasopressors?
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Block IV. Reinforcement learning

BM]Journals lodla™s  Piste REINFORCEMENT LEARNING
Annals of the A
Rheumatic Diseases

Home Archive Volume 81, Issue 8

OBSERVATIONS
r State changes: 5,
=2 Thinking the unthinkable Reward: r,
A{tic{e
- Learning from chess engines: how reinforcement learning could

redefine clinical decision-making in rheumatology &
Airrlllge ® Thomas Hiigle

ié 1. Department of Rheumatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland AGENT EMNVIROMNMENT
Citation (Chess engine) Sends commands: a, $
e Correspondence to Professor Thomas Hiigle, Department of Rheumatology, University of Lausanne, Lausanne 1011, Switzerland;

% thomas.hugle@chuv.ch

B CLINCAL
DBSERVATIONS
: PRO, DAS28-CRP, digital
biornarker, biosensors
&
Drug ABC | —» stop
AGENT PATIENT
. Physiotherapy, nutrition ect.
{Rheumatologist) PY: i
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Block I. Knowledge-driven Al
* Representation of knowledge, propositional & first-order logic.
Contents

* Expert systems: rules, facts, ontologies.
* Heuristic search, planning (STRIPS, GraphPlan).

» Adversarial games, alpha—beta pruning, Monte Carlo Tree Search.

Block Il. Classical Machine Learning

* Fundamentals: supervised learning, overfitting, cross-validation, evaluation metrics.
* Regression (linear, logistic), k-NN, decision trees, Random Forest.

* Support Vector Machines (SVM), ensemble methods (boosting).

* Dimensionality reduction (PCA, t-SNE).

Block Ill. Deep Learning

* Neural networks: MLPs, backpropagation, optimization, regularization.
* (CNNs for biomedical images.
* RNNs, LSTMs, GRUs for biological sequences & time-series.
D Evaluation * Transformers (BERT, GPT, ProtBERT, ESM) for text, genomics, proteomics.

* Continuous evaluation (ordinary call): e Generative models: Autoencoders, VAEs, GANSs, diffusion models.
¢ Class tests & participation (SE2, 80%). — Applications: protein design, synthetic biological data.
* Programming projects (SE3, 20%).

+ Extraordinary call: Block IV. Reinforcement Learning
* Final exam (SE1, 80%).

* Continuous activities (209%).

= Agents, environments, rewards, policies.

* (Q-learning, SARSA, Policy Gradient, DQN.
* Requirement: 75% attendance in theory, 100% in practicals.

» Biomedical applications: molecule design, experimental planning.
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Lesson 2. Representation of knowledge

Medicine School




Contents

* Introduction

« Tabular representations

« (@Graph-based representations

« Ontologies and taxonomies

« Vector-space representations

« Probabilistic representations

« Causal representations

« Large Language Models as implicit representations
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Introduction: Why Knowledge Representation (KR)?

1. From Data to Knowledge

Data: raw measurements (e.g., gene expression values, protein structures, patient records).
Information: structured data with context (e.g., gene annotations, protein—protein

interactions).
Knowledge: integrated, interpretable representation that supports reasoning and decision-
making.
Atomic Coordinates: PDB Format
Tissue Crow wxpravsitn Wil Diagnosis Amino Acid fmuiil:q§:::a Number
Genel Gene2 Gene3 Gene4 Gene5 \ A
1 0405 0326 0234 0348 0748  normal s R T A - - i i e
2 0089 0293 0192 0123 0385  normal gt e e 3 Sapee Erll  DelBR0 D
3 0459 0.125 0543 0334 0.218 tumor Ram - gt il s AR i
4 0123 0389 0238 0651 0972 normal i S & AW & gt R
5 0951 0.040 0490 0283 0.321 normal At : gEaawe R X EAfe Pam -
6 0297 0.859 0219 0783 0.984 tumor \

Element position within aming acid
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Introduction: Why Knowledge Representation (KR)?

2. Why Knowledge Representation Matters
A central question in Al: how should an intelligent system represent what it knows about
the world?
* Different tasks require different representations:
* Storing and querying biological datasets (tables).
* Modeling relationships (graphs).
* Using domain vocabularies (ontologies).
* Capturing similarity (embeddings).
* Handling uncertainty (probabilistic models).
* Leveraging implicit knowledge (LLMs).
3. The Bioinformatics Perspective
Biological systems are complex, multi-layered, and noisy. KR helps:
* Integrate heterogeneous data (omics, literature, clinical).
* Enable semantic interoperability across databases.
* Support reasoning about biological function, disease mechanisms, and treatment
options.
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Tabular representations

Tabular Data

columns = attributes for those observations

N 1 Strengths:

Dlayer | Minutes | Polnts |Rebounds| Asslsts | ° SlmpllClt)j: 1n:[u1tlve and widely und(arstood.
. " - - = . e Standardization: CSV, Excel are universal.
5 20 2 7 . « Efficiency: great for storage, querying, and statistics.
2 - ; , : * First step for most bioinformatics pipelines.
o - . 3 g Limitations:
Rows = observations | i 20 0 . . * Poor at capturing relationships between entities (e.g.,
protein A interacts with protein B).
F 9 6 14 14 .. e . .
* Rigid structure — difficult to represent hierarchies
G 14 22 8 3 . o e .
(species taxonomy) or uncertain information.
I 22 36 0 9 . .
e Not well-suited for temporal or causal dependencies.
= J 34 8 1 3

Gene expression matrix:

*Rows = genes, Columns = samples, Values = expression levels.
Clinical trial data:

*Rows = patients, Columns = age, treatment, response, side effects.
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Tabular representations: Database

Structured Query Language (SQL)

pheno_sex.id_fkey pheno.race.id fkey
wﬂuﬂ} PK
nn-ndnl.mdo mm

Figure

Caption

Figure 2. Database Schema. Geno Single
database schema for the Affymetrix plat-
form. In this diagram, the rectangles corre-
spond to database tables, and the rows in
each rectangle correspond to database table
columns. The four columns in a row corre-
spond to, from left to right, database name
(column 1), data type (column 2 ... Read more

Available via license: CC BY 4.0
Content may be subject to copyright.

SNPpy - Database Management for SNP Data from Genome Wide Association Studies
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Tabular representations: Database

@ General Sequence Databases

* GenBank (NCBI, USA) — Comprehensive DNA sequence database.
» EMBL-EBI/ENA (Europe) — European Nucleotide Archive.
» DDBJ (Japan) — DNA Data Bank of Japan.

— | Together, these form the INSDC (International Nucleotide Sequence Database Collaboration).

@ Protein Sequence & Functional Databases

* UniProt — The gold standard for protein sequences & annotations.
* UniProtKB/Swiss-Prot (curated, manually reviewed).
* UniProtKB/TrEMBL (automatically annotated).

» RefSeq (NCBI Reference Sequences) — curated reference proteins and transcripts.

@ Protein Structure Databases

» PDB (Protein Data Bank) — 3D structures of proteins, nucleic acids, complexes.

» AlphaFold DB (EMBL-EBI & DeepMind) — predicted protein structures at proteome scale.
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Tabular representations: Database

@ Gene & Genome Databases
* Ensembl (EMBL-EBI) — genome browser & annotations for many species.
» NCBI Gene — gene-specific information (function, sequence, references).

» UCSC Genome Browser — visualization of genomic data.

@ Functional Annotation & Pathways
* Gene Ontology (GO) — standardized vocabulary for gene/protein function.
» KEGG (Kyoto Encyclopedia of Genes and Genomes) — pathways, interactions, and molecular networks.

» Reactome - curated human pathways and reactions.

@ Expression & Variation Databases
* GEO (Gene Expression Omnibus, NCBI) — transcriptomics datasets (microarray, RNA-seq).
* ArrayExpress (EBI) — gene expression and functional genomics data.
* dbSNP - single nucleotide polymorphisms.

* gnomAD - large-scale human genome variation database.
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Graph-based representations

Directed graph G(V,E) Undirected graph G(V,E) Knowledge graph G(V,E) Weighted graph G(V,E)

Strengths:

« Natural for representing complex biological systems.

« Flexible: can represent directed/undirected, weighted/unweighted, temporal edges.
* Enables graph algorithms: shortest path, clustering, community detection.

* Foundation for knowledge graphs and graph neural networks (GNNs).
Limitations:

* (Can be computationally expensive for very large graphs.

* Requires careful design of ontology/edge semantics.

* Not always ideal for numeric, tabular-style queries.
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Graph-based representations

Protein—Protein Interaction (PPIl) networks:

Nodes = proteins, Edges = physical/functional interactions.
Metabolic and signaling pathways:

Nodes = metabolites/enzymes, Edges = reactions.
Gene co-expression networks:

Nodes = genes, Edges = correlation links.
Disease—gene networks:

Nodes = diseases and genes, Edges = associations.
Knowledge Graphs (modern extension):

Bio2RDF, Hetionet, Wikidata (biomedical subset).




Graph-based representations
%7 STRING =

Your Input:

® GNAQ1 meodulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated
by RGS14; Belongs to the G-alpha family. G(i/o/t/z) subfamily. (354 aa)
Predicted Functional Partners:

GNB1 Guanine nucleotide-binding protein G(1)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involve...
RGS16 Regulator of G-protein signaling 16; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by i...
RGS4 Regulator of G-protein signaling 4, Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits th...

@ RGS7 Regulator of G-protein signaling 7; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by in...
GNG2  Guanine nucleotide-binding protein G(1)/G(S)/G(0) subunit gamma-2; Guanine nucleotide-binding proteins (G proteins) are invo...

@ ADRA2A Alpha-2A adrenergic receptor; Alpha-2 adrenergic receptors mediate the catecholamine- induced inhibition of adenylate cyclas..

DRD2
@ GNB4
@ RICBA
GNB5
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Guanine nucleotide-binding protein G{o) subunit alpha, Guanine nucleotide-binding proteins (G proteins) are involved as

D(2) dopamine receptor; Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase; Belongs ...
Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulat...

Synembryn-A; Guanine nucleotide exchange factor (GEF), which can activate some, but not all, G-alpha proteins. Able to activa...

Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein...

Neighborhood
Gene Fusion

Cooccurrence
Coexpression

e e e Experiments

e Databases
o o @ e o Textmining

[Homology]

0.996
0.993
0.989
0.981
0.980
0.956
0.950
0.947
0.946
0.935




Graph-based representations

CPK spheres ball & stick

licorice trace
tube ribbon cartoon surface
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Graph-based representations

Knowledge graph

LAJOCONDE |
A WASHINGTON

DA VINCI

paMsIA sey

is a friend of

Jan 11984
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Graph-based representations

Diseases

Phenotypes

Exposures

Genes

. Pathways

Anatomical

regions

A spectrum of developmental
disorders that includes autism,
and Asperger syndrome. Signs
and symptoms include poor
communication skills, defective
social interactions, and
repetitive behaviors.Each child
with autism spectrum disorder
is likely to have a unique
pattern of behavior [...] Autism
spectrum disorder has no
single known cause. [...]
Autism spectrum disorder
affects children of all races
and nationalities, but certain
factors increase a child's risk
[...] There's no way to prevent
autism spectrum disorder, but

there are treatment options.
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Disease-drug
indications

Disease-drug
contraindications

Disease-drug
off-label use

Disease-phenotype
associations (+/-)

Disease-disease
associations

Disease-protein
associations

Disease-exposure
associations

N NNNNS

scientific data

Explore content ¥ About the journal ¥ Publish with us v

Risperidone is a second-generation
antipsychotic (SGA) medication used
in the treatment of a number of mood
and mental health conditions including
schizophrenia and bipolar disorder.
The half-life is 3 hours in extensive
metabolizers. Though its precise
mechanism of action is not fully
understood, current focus is on the
ability of risperidone to inhibit the D2
dopaminergic receptors and 5-HT2A
serotonergic receptors in the brain.
[...] Risperidone and its active metabo-
lite, 9-hydroxyrisperidone, are ~88%
and ~77% protein-bound in human
plasma, respectively. [...] The primary
action of risperidone is to decrease
dopaminergic and serotonergic
pathway activity in the brain, therefore
decreasing symptoms of schizophre-
nia and mood disorders.

nature » scientific data » data descriptors » article

Data Descriptor = Open access = Published: 02 February 2023
Building a knowledge graph to enable precision

medicine

Payal Chandak, Kexin Huang & Marinka Zitnik &3

Scientific Data 10, Article number: 67 (2023) | Cite this article




Graph-based representations

@ Protein—-Protein Interaction (PPI) Databases

» STRING — protein—protein interaction networks (experimental + predicted).

* BioGRID — curated database of protein and genetic interactions.

* |IntAct (EMBL-EBI) — molecular interaction database.

» DIP (Database of Interacting Proteins) — experimentally determined interactions.

*« MINT - molecular interactions curated from literature.

@ Pathways & Biological Networks

» KEGG (Kyoto Encyclopedia of Genes and Genomes) — pathway maps (metabolic, signaling, disease).
*» Reactome — curated biological pathways, with graph export.
» WikiPathways — community-curated pathways in graph form.

* MetaCyc — metabolic pathways across organisms.
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Graph-based representations

@ Disease-Gene & Heterogeneous Graphs
» DisGeNET — gene—disease associations.

» Hetionet — heterogeneous biomedical knowledge graph (compounds, diseases, genes, side effects).

* PharmGKB - pharmacogenomic networks linking genes, drugs, and diseases.

€ Chemical & Drug Networks

* DrugBank — drug-target and drug—drug interactions.
* STITCH — chemical-protein interaction networks (extension of STRING).
* ChEMBL - bioactive molecules and targets (graph queries possible).

@ Integrated Knowledge Graphs

* Bio2RDF - converts multiple biomedical databases into RDF linked data.
* OpenBiolink — benchmark KG for drug-target/disease prediction.

» Wikidata (biomedical subset) — large open KG including genes, proteins, pathways, drugs.
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Ontology and Taxonomy representations

Taxonomy
Vehicles
Domain
Eukarya
Kingdom
Animalia
Shared Personal Cargo
Phylum
Chordata
Mammalia
— Order — Trains — Bicycle —  Train
Carnivora
Family — Planes — Helicopter _Conta'uner
Canidae Ship
— Rideshare —  Plane —  Truck
Species — Ferry — Sailboat
Vulpes vulpes
Red fox (Vulpes vulpes) —  Yacht

hierarchical classification of entities
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Ontology and Taxonomy representations

information science

_ knowledge
Ontology °°"“"“3‘"'°““ © ®
richer web of subjectof | Sublectof A N
concepts and st of °°"°ep'5 of domain
relations contains °m°|°97 — @
containg \ description of
ooncop':// \*“
contains
relatlonsrips reasoning
Strengths: Limitations
* Provides shared vocabulary for a community. * Building and maintaining ontologies is labor-
* Supports reasoning and inference (e.g., if “all kinases intensive.
phosphorylate proteins™ and “X is a kinase”, then infer e Ambiguity, synonyms, and evolving biology
X phosphorylates proteins). pose challenges.
* Enables data integration across heterogeneous * Reasoning can be computationally
databases. expensive on large ontologies.

Foundation of the Semantic Web and FAIR principles.
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Ontology and Taxonomy representations

Chemical ontology Fruit ontology

(e e
OBJECT ABSTRACT
ﬁ OBJECT
POLYMER “NON-
POLYMER X

:
! RED
ff PHOSPHORUS LE
III‘I'IER GREE mLo L%

- /BEOXYRIBO
RI
s N,_,c,_:g,me . \wucteomog . N
— I5A i T - = .
™ = |SAspecific l""'-..,‘ “""'-.‘ ______ T ,_,-"'f

b ; — — — » HasColor
: -7 — — — » HasTaste
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Ontology and Taxonomy representations

@ Core Biological Ontologies

* Gene Ontology (GO) — functions, processes, and cellular components of genes/proteins.
* Sequence Ontology (SO) — terms for genomic features (exon, intron, promoter, variant types).
* Protein Ontology (PRO) — structured vocabulary of protein forms, complexes, and modifications.

» NCBI Taxonomy (strictly a taxonomy, but used as an ontology backbone for species classification).

€ Chemical & Molecular Ontologies

* ChEBI (Chemical Entities of Biological Interest) — small molecules and roles.
* Rhea - curated reactions ontology (linked with ChEBI and UniProt).
* PSI-MOD - controlled vocabulary of protein modifications.

* OBI (Ontology for Biomedical Investigations) — experimental methods, assays, instruments.

@ Disease & Phenotype Ontologies

» Disease Ontology (DO) — human diseases with hierarchical classification.

* Human Phenotype Ontology (HPO) — standardized vocabulary of phenotypic abnormalities.
* MONDO Disease Ontology — unified disease ontology integrating DO, Orphanet, OMIM.

* Orphanet Rare Disease Ontology (ORDO) - rare disease classification.
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Ontology and Taxonomy representations

@ Clinical & Medical Ontologies

* SNOMED CT - large-scale clinical terminology (signs, symptoms, diagnoses).
* ICD-10 / ICD-11 - WHO's classification of diseases.
* LOINC - standard for laboratory tests and measurements.

e UMLS (Unified Medical Language System) — meta-ontology integrating multiple vocabularies.

@ Systems Biology & Pathways

* Reactome Ontology — structured vocabulary for biological pathways.
» BioPAX (Biological Pathway Exchange ontology) — exchange format for pathways.
* Cell Ontology (CL) — controlled vocabulary of cell types across species.

* Uberon — multi-species anatomy ontology.
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Vector-space representations (Embeddings)

/ 06|03(01| -----
Object 2 Embedding Model _—ﬂo_g 05|03 -----

Object 1

Object 3 \1
0.4[0209]-----
Set of Objects Objects as Vectors

Strengths
* Captures semantic similarity even without

explicit links. & . \
* Continuous, compact representation — good for dgg 0 anin}‘?us

ML and deep learning. airplane Ll T
« Supports clustering, classification, search, and 9 1 Clusf;,-:f:;em

integration across modalities (e.g., genes + text e A

+ images). P
Limitations: Sear;m,:;sme = 1 ®
e Often opaque / hard to interpret (“black box”). \\v ‘\\O ®
e Doesn’t directly capture hierarchical or causal ) -

structure.
* Requires large, high-quality training data.

& ceu

Universidad
San Pablo




Vector-space representations (Embeddings)

Gene Embedding Clusters
A
a
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8 >
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Vector-space representations (Embeddings)
@ Protein Sequence Embeddings

* ESM (Evolutionary Scale Models) — large-scale transformer models trained on UniProt; strong in

structure/function prediction.

* ProtBERT / ProtT5 / ProtTrans — protein language models trained on millions of sequences, inspired by
NLP transformers.

* ProtVec - early word2vec-style embeddings of protein k-mers.

* UniRep - LSTM-based embeddings of proteins from UniRef50.

* SeqVec — protein embeddings using ELMo-like architectures.

@ Molecular & Drug Embeddings

Mol2Vec — word2vec-like embeddings of molecular substructures (SMILES-based).

ChemBERTa — transformer-based embeddings for small molecules.

DeepChem / Chemprop — GNN-based embeddings for molecules.

STITCH embeddings — drug—chemical—protein interaction networks converted to vectors.

& cru
Universidad 24
San Pablo



Vector-space representations (Embeddings)

@ Biomedical Text Embeddings
* BioBERT - BERT pretrained on PubMed abstracts and PMC articles.
* SciBERT - BERT trained on a large corpus of scientific text (biomedical-heavy).
* PubMedBERT - BERT trained from scratch on PubMed abstracts.
* ClinicalBERT — domain-specific embeddings for clinical notes.

e BlueBERT - trained on PubMed + MIMIC clinical notes.

@ Graph & Network Embeddings

* node2vec / DeepWalk — unsupervised embeddings of biological networks (e.g., PPl networks, gene—
disease graphs).

* GraphSAGE - inductive embeddings for large graphs.

* HetGNN / Heterogeneous GNNs — embedding multimodal biomedical networks (e.g., Hetionet).

* LINE - scalable embeddings for large biological knowledge graphs.
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Probabilistic representations

*Real-world biological data is noisy, incomplete, and uncertain.
*Probabilistic models represent uncertainty about facts and relationships.

Bavyesian networks

P(C=T) P(C=F)
0,5 0,5

c |p(rR=T) P(R=F)
T 0,8 0,2
F| o2 0,8

1

c |P(s=T) P(S=F)

T ‘ 0,1 0,9

1 08 e WetGrass s R |Pw=T) p(W=F)
T T| 099 0,01
T F 0,9 0,1
F T 0,9 0,1
E F 0,0 1,0
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Bavyesian networks

smoking

yes  23.8
no 76.2

A

Probabilistic representations

A

age
over forty 220
over fifty 36.6
over sixty 29.7
over seventy  11.8

BMI
underweight  1.67
normal 39.5
overweight 42.5
obesity 16.3

sex
male 42.4
female 57.6
A4
Hcy
abnormal  66.5
normal 33.5
A
SBP
low 14.9
normal  46.5
high 38.6
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MCR
normal 88.2
abnormal  11.8

FPG

normal 88.7
impaired 5.85
abnormal 543
\ 4
GHb
normal 89.4
abnormal  10.6
diet
vegetable 335
balanced 61.9
meat 4.62

scientific reports
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nature > scientific reports > articles > article

Article = Open access | Published: 28 January 2023
Using Bayesian networks with Tabu-search algorithm
to explore risk factors for hyperhomocysteinemia

Wenzhu Song, Zhiqi Qin, Xueli Hu, Huimin Han, Aizhong Li, Xiaoshaung Zhou Yafenggg&@gshan Li
[

Scientific Reports 13, Article number: 1610 (2023) ‘ Cite this article




Probabilistic representations

Markov Random Fields and Conditional Random Fields

&, 35888

Markov models

Generative

Directional Models

Maive B
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Probabilistic representations

Markov Random Fields and Conditional Random Fields

BMC Bioinformatics

Home About Articles Submission Guidelines Collections Join The Board

Submit manuscript (%

Research = Open access = Published: 26 October 2021
A Markov random field model for network-based

differential expression analysis of single-cell RNA-seq
data

Hongyu Li, Biging Zhu, Zhichao Xu, Taylor Adams, Naftali Kaminski & Hongyu Zhao ™

BMC Bioinformatics 22, Article number: 524 (2021) | Cite this article
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From: A Markov random field model for network-based differential expression analysis of single-cell RNA-seq data
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Cell Type Clusters. A shows the UMAP of eighteen immune cell types, and B shows the network among these immune cell types that are determined by

domain knowledge
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Probabilistic representations
Hidden Markov Models
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Probabilistic representations

Hidden Markov Models
. . seqi ACG-LD
Start with a .multlple s Bl
sequence alignment seqg3 NCGg F&
seqgd TCG-WQ yeletion
.' 123 14 5
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https://www.ebi.ac.uk/training/online/courses/pfam-creating-
protein-families/what-are-profile-hidden-markov-models-hmms/
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Causal representations

Causal graphs

https://matheusfacure.github.io/python-causality-handbook/04-Graphical-Causal-Models.html
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Causal representations

A Single Dataset -> A Single Graph

Variables

Dol

xt |1 )| .2].29

Learn
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Input: Observed Samples
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(=)

Output: Causal Graph

BMC Medical Informatics and Decision Making

Home About Articles Submission Guidelines Collections  Join The Board Submit manuscript (7

Research = Open access

Published: 27 May 2024

Developing a novel causal inference algorithm for
personalized biomedical causal graph learning using

meta machine learning

Hang Wu, Wenqi Shi & May D. Wang

BMC Medical Infermatics and Decision Making 24, Article number: 137 (2024) ‘ Cite this article
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Observations

Multiple Datasets -> Multiple Graphs
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(c) Proposed Method: Meta Learning
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Decoupled Learning: Treat tasks
separately without knowledge sharing

Joint Learning: Slow adoption to new tasks due
to inefficient learning strategy

Our work: 1) knowledge sharing across tasks;
2) fast adaptation of the knowledge to new tasks.
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LLMs

Core idea:

 LLMs (e.g., GPT, BioBERT, ESM, ProtGPT2) store knowledge in their parameters after training
on massive corpora.

* Represent knowledge implicitly rather than through explicit symbols, graphs, or equations.

» Can answer questions, generate hypotheses, and integrate across domains.

Strengths:

* Scalable knowledge capture: billions of facts encoded in weights.

* Natural language interface: can interact using plain text, bridging expert and machine.
* Cross-domain reasoning: integrate biological, clinical, and chemical knowledge.

* Few-shot/zero-shot learning: apply to new tasks without retraining.

Limitations:

« Hallucinations: may generate plausible but false statements.

« Lack of explicit semantics: hard to guarantee correctness or trace reasoning.
« Updating knowledge requires retraining or fine-tuning.

* Interpretability challenge: we don’t know exactly “where” a fact is stored.
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Knowledge Graphs (KGs)

L L M S Cons: Pros:

Implicit Knowledge Structural Knowledge

Hallucination Accuracy
Indecisiveness / \

Decisiveness
Black-box

Interpretability
Lacking Domain- Domain-specific Knowledge
specific/New Knowledge

Evolving Knowledge

Pros: Cons:

* General Knowledge * Incompleteness

« Language Processing » Lacking Language

- Generalizability \ Understanding
—“+ Unseen Facts

Large Language Models (LLMs)

LLMs
Factual Knowledge

k
Structural Fact General Knowledge ﬁ\

Domain-specific Knowledge Language Processing
Generalizability { LLMs ] [ KGs ]
Text

Symbofic-reascning
&
o ut-:::{ LLMs }=:> Output "‘GT';EE“E::[ KGs J=::~ Output \J

Knowledge Representation

L I ]
¥ ® B ¥

a. KG-enhanced LLMs b. LLM-augmented KGs c. Synergized LLMs + KGs

https://www.wisecube.ai/blog/combining-large-language-models-and-knowledge-graphs/
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LLMs

@ Biomedical & Clinical Text LLMs

* BioBERT - BERT pretrained on PubMed abstracts + PMC full-text.

* PubMedBERT - trained from scratch only on PubMed abstracts (better biomedical domain fit).
* SciBERT - trained on a large corpus of scientific publications (biomedical-heavy).

* ClinicalBERT — fine-tuned on MIMIC-III clinical notes for clinical NLP.

* BlueBERT - pretrained on PubMed + MIMIC-III clinical data.

* BioClinicalBERT — variant of BioBERT adapted to clinical text.

* Med-BERT - trained on structured EHR data for patient-level prediction.

€ Multimodal / Knowledge-Integrated Biomedical LLMs

* BioMegatron - large transformer trained on PubMed and clinical text (NVIDIA).

* MedGPT / BioGPT - GPT-style biomedical text generators trained on PubMed.

* GALEN - LLM integrating biomedical text with UMLS ontology.

» GatorTron — very large clinical LM trained on de-identified EHRs (UF Health + NVIDIA).
» DRAGON - integrates protein sequences + drug data for drug repurposing tasks.
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Propositional logic

Introduction to Propositional Logic

Propositional logic (also called Boolean logic) is the simplest form of logic used to represent knowledge.

It deals with propositions — statements about the world that can be either true or false, but not both.

1. Basic Elements

* Propositions: atomic statements, usually written as capital letters:
e P = "BRCA1l is a gene"
®* (Q = "BRCAl is associated with breast cancer"

* Truth values: each proposition is either true (T) or false (F).

2. Logical Connectives

We can build more complex statements using connectives:

Symbol Mame Example Meaning

- NOT -P “not P (true if P is false)

A AND PaAQ “P and Q" (true if both are true)

W OR PwvQ “P or Q" (true if at least one is true)
- IMPLIES P—-Q “If P then Q"

o IFF P=Q “Pif and only if Q"
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Propositional logic

3. Semantics (Truth Tables)

Each connective has a truth table. Example: implication (P — Q):

P

T

F

Q P—-Q
T T
F F
T T
F T

4. Knowledge Bases

A knowledge base (KB) in propositional logic is a set of sentences.

Example (bioinformatics KB):

* Gene(BRCA1) — represented as proposition G.

* Associated(BRCA1l, BreastCancer) — proposition a.

* Rule: G A A - CandidateBiomarker .
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Propositional logic

5. Inference
* Entailment (E): KB = a means that a must be true in every situation (model) where KB is true.

* Inference algorithms (model checking, resolution, forward/backward chaining) try to derive whether o

follows from KB.

Example:
If P = "BRCA1 encodes a DNA repair protein” and Q = "BRCA1 is cancer-relevant” ,

and KB contains the rule p = @, then knowing P allows us to infer Q.
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First-order Logic
Introduction to First-Order Logic (FOL)

First-Order Logic (FOL) extends propositional logic by introducing objects, relations, and quantifiers,

allowing us to express much richer statements about the world.

1. Basic Elements

* Constants: represent specific objects (e.g., BRCA1, BreastCancer ).

* Predicates: describe properties of objects or relations between them (e.g., Gene(x) , Associated(x,y) ).

* Variables: placeholders for objects (e.g., x, v ).

* Functions: map objects to other objects (less common in bioinformatics, but possible: Encodes(BRCA1) =

Protein_ BRCA1 ).

Example:

* Gene(BRCA1l) means "BRCA1 is a gene.”

* Associated(BRCALl, BreastCancer) means "BRCA1 is associated with Breast Cancer.”

& ceu
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2. Quantifiers

Two quantifiers extend expressiveness beyond propositional logic:
¢ Universal quantifier (V): "for all”
* Example: ¥x: Gene(x) — HasDNA(x)
(“All genes have DNA").
* Existential quantifier (3): "there exists”

* Example: 3x: Associated(x, BreastCancer)

(“There exists a gene associated with breast cancer”).




First-order Logic

3. Syntax of FOL

* Atomic sentences: Predicate(terml, .., termn)

* Complex sentences: built with logical connectives (-, A, v, —, <) and quantifiers.

Example:

Vg, d: (Gene(g) A Disease(d) n Associated(g, d)) — CandidateBiomarker(g, d)

"Any gene associated with a disease is a candidate biomarker for that disease.”

4. Semantics
* A model in FOL specifies:
* a set of objects (the domain),
* the meaning of constants,
* the truth of each predicate over objects.

* Sentences are true or false with respect to a model.

Example model:

* Domain = {BRCA1, TP53, BreastCancer, LungCancer}

¢ |Interpretation: Gene(BRCA1)=true, Associated(TP53, LungCancer)=true, eic.
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First-order Logic

5. Why FOL is More Expressive than Propositional Logic
* Propositional logic: P = "BRCA1 is a gene", Q = "TP53 is a gene" — each fact is separate.

* FOL: vx: Gene(x) » HasDNA(x) — one general rule covers all genes.

* This compactness and generality make FOL essential for domains like bioinformatics, where rules apply

to large sets of entities.
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Knowledge base

Structure of a Knowledge Base

A KB typically includes:

* Facts: atomic assertions known to be true (e.g., "BRCA1 is a human gene").

* Rules: implications or constraints (e.g., "If a gene is related to DNA repair, then it is relevant for
cancer").

* Ontology / Vocabulary: definitions of the terms used (e.g., what counts as a gene, protein,
disease).

Input Matching Knowledge Base
(Facts)
User Reasoning Domain Ontology
Interface Engine Rule
\—/ \J Base Classes/Instances
New Facts
Output +
Rule
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Knowledge base

Facts:

* Gene(BRCA1)

*  Gene(TP53)

®* Disease(BreastCancer)

* Disease(LungCancer)

®*  Encodes(BRCA1l, Protein BRCA1)

*  Encodes(TP53, Protein p53)

®*  Associated(BRCA1l, BreastCancer)
* Associated(TP53, LungCancer)

®*  DNARepair(Protein BRCA1)

®*  TumorSuppressor(Protein_p53)
Rules:

1. Vg, p: Encodes(g, p) A DNARepair(p) =+ CancerRelevant(g)
2. Vg, d: Associated(g, d) » CandidateBiomarker(g, d)

3. Yp: TumorSuppressor(p) + CancerRelevantGeneOf(p)

Possible inference:

* From Encodes(BRCA1, Protein BRCA1) and DNARepair(Protein BRCA1) , we infer
CancerRelevant(BRCA1) .

* From Associated(BRCA1, BreaStCancer).\Neinfer CandidateBiomarker(BRCA1, BreastCancer) .
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Knowledge base

Facts: Triples in RDF model (Resource Description Framework)

:BRCA1 rdf:type :Gene .
:TP53 rdf:type :Gene .

Vocabulary: OWL

:BreastCancer rdf:type :Disease .

:LungCancer rdf:type :Disease . :Gene r‘d‘F:type owl:Class .
:Disease rdf:type owl:Class .
:BRCA1 :encodes :Protein_BRCA1 . -Protein rdf :type owl:=-Class .

:TP53 :encodes :Protein_p53 .

:Protein BRCA1 :hasFunction :DNARepair .

:Protein p53 :hasFunction :TumorSuppressor .
:BRCA1 :associatedWith :BreastCancer .
:TP53 :associatedWith :LungCancer .

Rules: Semantic Web Rule Language (SWRL) style (used with OWL ontologies)

Gene(?g) " encodes(?g, ?p) * hasFunction(?p, DMARepair) - CancerRelevant(?g)

Inference: SPARQL

_ _ SELECT ?gene WHERE {
Which genes are candidate

biomarkers for BreastCancer?

?gene :associatedWith :BreastCancer .
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Knowledge base

Procedural vs Declarative Knowledge

Aspect

Definition

Representation

Execution

Flexibility

Example (general Al)

Bioinformatics Example

Procedural Knowledge

“Know-how": instructions for
performing tasks, encoded as

procedures or algorithms.

Programs, code, procedures

(imperative).

Directly executed by the system

(algorithm follows the steps).

Hard to modify or reuse; knowledge

is embedded in the procedure.

A function sort(list)

implementing bubble sort.

A Python script that runs BLAST and

parses results step by step.

Declarative Knowledge

"Know-that": explicit statements of facts, rules, and

relationships about the world.

Sentences in a logical or ontology-based knowledge

representation language (e.g., RDF, OWL, rules).

Requires an inference engine to derive new facts or answer

queries.

Easy to update; new facts/rules can be added without

rewriting the whole system.

Alogical rule: ¥x,y: Greater(xy) — —Greater(y,x).

RDF triples: :BRCA1 :associatedWith :BreastCancer . +

rule: Gene(?g) ~ associatedwith(?g, 2d) -

CandidateBiomarker(?g, 2d) .



Knowledge base

Procedural vs Declarative Knowledge

Aspect Procedural Knowledge Declarative Knowledge

Advantages Efficient; optimized for specific Transparent, explainable; reusable across tasks; supports
tasks. reasoning.

Disadvantages Brittle; hard to adapt; not Inference can be computationally expensive; needs good
explainable. knowledge engineering.

Knowledge engineering process
Identify the task.

Assemble relevant knowledge.

Choose a vocabulary (ontology).

Encode axioms (rules).

Encode problem instances (data).

oy oswnN=

Pose queries.

7. Debugthe KB O .

& This is exactly what bioinformatics projects like the Gene Ontology or Reactome have done: careful

ontology design, curated axioms, and then queries/inference over large datasets.
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Reasoning in propositional logic
1. Entailment vs. Inference

* Entailment (E): A sentence a is entailed by a KB if a is true in every model where KB is true.
* Example: KB = {"P — Q", "P"} entails Q.
* Inference (): The mechanical process of deriving o from KB using rules.

* A sound inference algorithm only produces sentences that are actually entailed.

How Natural Language Inference (NLI) Works

/ Ha //ﬂ__m“\\
/ - \‘ / y \ "f
L4 / \!
| ’ | \
,u"ll\ v JII\
\,& /.// i S
o - _._ -
Premise Hypothesis Classification
The given A statement Al determines one
statement to be evaluated of the following: =

Neutral

The hypothesis logically The hypothesis conflicts The hypothesis is possible
follows from the premise with the premise but not directly supported
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Reasoning In propositional logic

2. Key Inference Rules
Some reasoning steps are so standard they are given names:

* Modus Ponens (Implication Elimination):
From (p » @) and P, infer Q.
* Example: “If BRCA1 repairs DNA, then BRCA1 is cancer-relevant. BRCA1 repairs DNA. = BRCA1 is
cancer-relevant.”
* And-Elimination:
From (P A @), infer P (and also Q).
* And-Introduction:
From P and @, infer (P A Q).
* Double-Negation Elimination:
From -(-P), infer p.
* Contrapositive:
From (P » @), infer (-Q » -P) .
* De Morgan’s Laws:
~(PAQ) = (-PV-Q)
-(Pv Q) = (-P A-Q)

These rules allow chaining reasoning steps into proofs.
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Reasoning In propositional logic
3. Proofs and Search

A proof is a sequence of applications of inference rules leading from KB to the goal sentence.

* Finding proofs can be seen as a search problem, where states are sentences and operators are inference
rules.

* This connects inference to earlier search algorithms (breadth-first, depth-first, etc.).

4. Resolution Rule

* A single, powerful inference rule:
From (p v @) and (-Q v R).infer (p v R) .

Resolution is sound and complete: together with search, it can derive any entailed conclusion in
propositional logic.

» This is the basis of SAT solvers used in many computational tasks today. = SAT=Boolean SATisfiability Problem
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Reasoning In propositional logic

5. Forward and Backward Chaining
* Forward chaining (data-driven):
Start from known facts, apply rules until the query appears.
» Efficient with Horn clauses.
* Example in bioinformatics: "If Gene(g) and Associated(g, d) then Biomarker(g, d).” Start from facts
about BRCAT and derive biomarkers.
* Backward chaining (goal-driven):
Start from the query and work backward through rules until reaching known facts.
* Used in logic programming (Prolog).

* Example: "Is BRCA1 a biomarker?” — Check whether the rule conditions can be satisfied.

6. Soundness, Completeness, Monotonicity
* Soundness: inference never produces false conclusions.
¢ Completeness: inference can derive all true conclusions.
* Monotonicity: once something is inferred, it remains true even if more knowledge is added (contrast

with non-monotonic reasoning in later Al).
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Reasoning In propositional logic
Search Strategies in Propositional Inference

1. Inference as Search
* A proof is a sequence of applications of inference rules leading from the knowledge base (KB) to the
query (a).
¢ This can be modeled as a state space search problem:
= States = sets of sentences derived so far.
= Operators = inference rules (e.g., Modus Ponens, And-Elimination, Resolution).
= Start state = initial KB.

* Goal test = does the query o appear in the current set of sentences?

Thus, proving a is like finding a path from KB to a in the space of logical consequences.

Breadth First Search Depth First Search
@ @ «
~ Operators
b
@ @ @ <
o Vs i
& @ ® L

& ceu

Universidad
San Pablo




Reasoning In propositional logic

Search Complexity and Strategies
*» Naive proof search: can be very inefficient, since the space of possible sentences is huge.
» Systematic search strategies:
» Breadth-First Proof Search: guarantees shortest proof (fewest steps), but memory-heavy.
» Depth-First Proof Search: memory-light, but may get lost in irrelevant inference chains.
* Heuristic Search: prioritizes inference steps that seem closer to the query (e.g., focusing on symbols

that appear in the goal).

__Diagnostic vs. Causal Reasoning
*» The chapter distinguishes diagnostic rules (from effect to cause) and causal rules (from cause to effect).
* In bioinformatics:
» Diagnostic reasoning — “If tumor shows microsatellite instability, then mismatch repair genes may
be mutated.”
» (Causal reasoning — “If BRCA1 is mutated, then DNA repair is impaired, leading to increased cancer
risk.”

*» Modern systems biology integrates both reasoning styles.
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Reasoning In propositional logic

1. Heuristic Search
» Search = systematic exploration of possible states to find a solution (already seen in pathfinding, game
search, and logical inference).
* In logical inference, proof search can be framed as a search problem: states = partial proofs, operators
= inference rules, goal = prove a query.
* Heuristics = guidance functions that estimate "how close” a state is to a goal, to avoid brute-force
search.
* Example in expert systems: choose which rule to apply next based on relevance to the query.
* In bioinformatics: heuristics guide sequence alignment (e.g., BLAST uses heuristics to prune search),

or pathway reconstruction (focus on biologically plausible steps).

7 So in this context: heuristic search = goal-directed inference, where rules are not applied blindly but

guided by measures of relevance or probability.
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Horn clauses

1. What is a Horn clause?

A Horn clause is a special kind of logical sentence in first-order logic with at most one positive literal.

 In propositional terms, a clause is a disjunction of literals (e.g. =PV =Q V R).

* A Horn clause has < 1 positive literal.

Examples:
« PV =@V R (which is equivalent to P A Q — R)
» P (equivalent to P — Flalse)
* R (afact equivalent to True — R)

2. Why Horn clauses are important
+ They form the logical core of rule-based systems.
* Inference is efficient: forward and backward chaining with Horn clauses can be done in linear time
relative to the size of the KB, unlike general FOL inference which is semi-decidable and potentially

exponential.

* They are the foundation of logic programming languages such as Prolog.
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Horn clauses

3. Forms of Horn clauses

» Definite clause: exactly one positive literal.
(-P,v-PVv---VaP,VQ) = (PPAP,AN---NP)—Q

— Used as production rules in expert systems.

» Fact: no negative literals, only one positive literal.

Example: Gene(BRCA1) .

* Goal clause (query): no positive literals (only negated terms).
PV -aPV-e-- VAP,

Equivalent to asking whether Py A\ Py A ... A P, can be proven.
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Horn clauses

Facts (Horn clauses with no premises):

*  Gene(BRCA1).
*  Gene(TP53).
*  Encodes(BRCA1l, Protein BRCA1).

* DNARepair(Protein BRCA1).

Rules

CancerRelevant(G) :- Gene(G), Encodes(G, P), DNARepair(P).

uer

?- CancerRelevant(BRCA1).

— The inference engine matches the rule, finds that BRCA1 encodes Protein_BRCA1, and Protein_BRCA1 has

DNARepair, so it concludes cancerRelevant(BRCA1) is true.
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Expert systems

1. Definition

An expert system is a computer program designed to emulate the decision-making ability of a human

expert.

* |t contains a knowledge base (facts + rules) and an inference engine (reasoning mechanism).

* Famous examples: MYCIN (medical diagnosis), DENDRAL (chemistry).

2. Foundations
* Expert systems are rooted in propositional and first-order logic reasoning.
» But they usually do not implement full logical inference (too expensive).
* Instead, they use restricted subsets:
* Production rules: IF <conditions> THEN <conclusion/action>.
* Horn clauses: efficient fragment of FOL.

* Forward chaining (data-driven) or backward chaining (goal-driven).

So, expert systems are practical implementations of the logical agents we discussed.
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Expert systems

3. Key Differences vs. General Logical Agents

Aspect

Representation

Inference

Scope

Knowledge Acquisition

Explanations

Uncertainty

Logical Agents (R&N Ch.7-8)

Sentences in propositional or FOL;

general-purpose logic.

Sound & complete inference possible
(but expensive).

General-purpose reasoning about any

domain.

Abstractly: define ontology, axioms, facts.

Logic entails proofs; proofs can be shown

as chains.

Classical logic = crisp true/false.

Expert Systems

Production rules (IF-THEN), frames, or Horn

clauses; domain-specific.

Heuristic or restricted inference
(forward/backward chaining); often

incomplete.

Narrow, specialized domain (medicine,

chemistry, etc.).

Pragmatically: extract rules from experts
{knowledge engineers interviewing doctors,

scientists).

Expert systems emphasized explainability.
“The system concluded X because rules R1,
R3 fired.”

Many expert systems added certainty factors
{MYCIN used probabilities / confidence

scores).




Expert systems

R
- [ ]
UmPro.t.; BLAST Align Peptidesearch IDmapping SPARQL ARBA - Advanced

ARBA - ARBA00004015

& Download View proteins *

THEN

InterPro signature | IPRO01279 % function | Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl-glutathione to form glutathione

InterPro signature | IPRO177820%F and D-lactic acid

PANTHER signature | PTHR11935:5F80 4

FunFam signature | 3.60.15.10:FF:000019 12

taxon | Mammalia

Annotated UniProtKB entries

Browse all 1,125 entries

B4DTO1 - BADTO1_HUMAN

Hydroxyacylglutathione hydrolase, mitochondrial - Homo sapiens (Human) - EC:3.1.2.6 - 305 amino acids - Evidence at transcript level - Annotation score: @

#Hydrolase

1domain - 1 publication
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Expert systems

1. Sequence Analysis & Annotation
* GENAID (1980s) — an expert system for automatic DNA sequence interpretation.
+ EMBL-EBI RuleBase / HAMAP (UniProtKB) — rule-based annotation pipelines; although modernized,
they still embody expert system principles (IFF-THEN rules for annotating protein function).

* Prolog-based gene analysis systems — early use of Horn clause inference to detect motifs and gene

structures.

2. Structural Biology

+ DENDRAL (chemistry, precursor of expert systems in molecular analysis) — though not bioinformatics in
the modern sense, it inspired later systems for protein mass spectrometry interpretation.

* ESPRIT — expert system for protein structure prediction, combining rules about secondary structure with
experimental constraints.

* PROSPECTOR — expert system for predicting protein tertiary structures, used rules derived from known

motifs.
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Expert systems

3. Clinical Bioinformatics / Medical Expert Systems
* MYCIN (Stanford, 1970s) — medical diagnosis of bacterial infections; not bioinformatics per se, but a
prototype that influenced many biomedical expert systems.
* PUFF — rule-based system for interpreting pulmonary function tests.
* ONCOCIN - cancer chemotherapy treatment planning.
* DXplain — a medical decision support system still used in some clinical environments.
* These clinical expert systems influenced bioinformatics approaches for linking molecular markers to

diagnoses.

4. Pathway & Metabolism Modeling

» PathFinder — rule-based system for metabolic pathway reconstruction.

* MetaCyc/Pathway Tools (SRI International) — combines expert rules with databases to predict metabolic

pathways in newly sequenced organisms.

* EcoCyc - originally contained expert-system components for metabolic annotation in E. coli.
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Al Planning

While inference is about what is true, planning is about what to do (sequence of actions to achieve a goal).

Both rely on logical representations.

» STRIPS (Stanford Research Institute Problem Solver, 1970s):
* A classical planning language and algorithm.
s States are sets of facts (propositions).
* Actions are defined by preconditions (what must be true to apply the action) and effects (how the
world changes).
* Planning = search in the space of states, applying actions until a goal is satisfied.
¢ Example: In the Wumpus world — action "Grab" has precondition at(agent, Gold) and effect
Has(Agent, Gold) .
* In bioinformatics: could be used to model workflows (e.g., precondition = “sequence assembled”,
action = "annotate with GO term").
* GraphPlan (1995):
* Builds a planning graph that alternates levels of actions and propositions.
¢ Compactly represents which actions can occur and which facts can hold at each step.
s Uses graph structure to extract a valid plan (if one exists) or prove impossibility.
* More efficient than naive STRIPS search.
* In bioinformatics: analogous to workflow systems (like Galaxy, Scipion, or Taverna), where tasks

must follow dependencies.
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Al Planning

Example: Variant Annotation Pipeline as a Planning Problem

Context

Goal: annotate genetic variants (e.g., from a VCF file) with functional consequences.

This requires sequencing data, a reference genome, and annotation databases.

1. States 2. Actions (with Preconditions — Effects)

Represented as sets of propositions. * AlignReads
e  Has(RawReads) * Preconditions: Has(RawReads) A Has(ReferenceGenome)

. * Effects: add Has(AlignedReads)
* Has(AlignedReads)

* CallVariants

®* Has(Variants)
* Preconditions: Has(AlignedReads)

*  Has(AnnotatedVariants) e Effects: add Has(Variants)
* AnnotateVariants
* Preconditions: Has(Variants) A Has(AnnotationDB)

» Effects: add Has(AnnotatedVariants)
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Al Planning

3. Initial State

SC5S

{ Has(RawReads), Has(ReferenceGenome), Has(AnnotationDB) }

4. Goal

5C5S

{ Has{AnnotatedVariants) }

5. Plan Found (sequence of actions)
1. AlignReads — produces aligned reads.
2. CallVariants — produces list of variants.

3. AnnotateVariants — produces annotated variants (goal achieved).

Why This Is Planning
* FEach step has preconditions and effects, exactly like STRIPS.
* The system must search through possible action sequences to reach the goal.

+ If something is missing (e.g., no annotation database), the plan cannot succeed — planning detects
infeasibility.
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Al Planning

GraphPlan example

Level 0 Level 1 Level 2 Level 3 Level 4
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Adversarial games

2. How Adversarial Search differs from Logical Agents / Planning

Dimension

Focus

Uncertainty

Search structure

Domain use
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Logical Agents (Ch.7-8)

Reason about truth (facts, rules,

queries).

Can be deterministic (FOL) or
probabilistic.

Proof trees, entailment, resolution.

Knowledge bases (ontology

reasoning, diagnosis).

Planning (STRIPS/GraphPlan)

Plan sequences of your own actions

to reach a goal.

Typically deterministic state
transitions (though later extended

to stochastic).

Planning graphs, forward/backward

search in state space.

Automated lab workflows, pathway

assembly, experiment planning.

Adversarial Games (Ch.5-6)

Plan under competition: actions

alternate with an opponent’s moves.

Opponent’s moves create uncertainty;
modeled via minimax search

(adversarial uncertainty).

Game trees with MAX and MIN nodes:

search for strategies, not just solutions.

Competitive or adversarial scenarios

(games, negotiations, host—pathogen

arms races).
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Adversarial games

Adversarial Games: Old-Style Al vs. Modern Reinforcement Learning

Aspect

Representation

Search Method

Evaluation

Knowledge Source

Strengths

Limitations

Traditional Al (1970s-1990s)

Explicit game tree: states and legal

moves encoded symboaolically.

Minimax search with depth-limited
lockahead; alpha-beta pruning for
efficiency.

Static evaluation functions

(heuristics hand-crafted by experts).

Human knowledge encoded in
rules/heuristics (e.g., “control the

center in chess”).

Transparent reasoning; explainable
(can show which branch of the tree

led to a move).

Explodes combinatorially; limited

depth and coverage; requires

strong human-designed heuristics.

Modern RL (2000s-today)

Environment modeled as a Markov Decision Process (MDP);

often implicit via simulation, not an explicit tree.

Trial-and-error learning: agents learn by interacting with the

environment, optimizing long-term reward.

Value functions or policies learned from data (Q-learning,
policy gradient, actor-critic). Often approximated with neural

networks (Deep RL).

Self-play and large-scale experience; agent discovers

strategies automatically (AlphaGo, AlphaZera).

Handles very large or continuous state spaces; adapts by
learning. Scales to Go, StarCraft, protein folding, drug
design.

Requires enormous data/simulation; learned policies can be

opaque (black box); weaker guarantees on optimality.




Adversarial games

Examples

* Old Al:

IBM Deep Blue (1997) beat Kasparov at chess using alpha—beta search with expert-crafted heuristics
and huge computational power.

* Modern RL:
» AlphaGo /AlphaZero (2016-2018) beat world champions in Go and chess by combining

reinforcement learning, self-play, and deep neural networks for policy/value approximation.
Similar principles now applied in drug design (reinforcement learning for molecule generation) and

protein folding (AlphaFold2’s learning framework has RL components).
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Adversarial games
Alpha-Beta Pruning

1. Context
* In adversarial games (like chess), the traditional algorithm is minimax search:
+ MAX nodes = our moves (we want to maximize utility).
* MIN nodes = opponent's moves (they want to minimize our utility).

* Search proceeds down the game tree to a fixed depth, then evaluates leaf states with a heuristic.
* Problem: The game tree is huge. Even for chess, there are more possible states than atoms in the

universe.
*» Alpha-beta pruning is an optimization that cuts off branches of the tree that cannot influence the final

decision.

2. Core Ildea
*  While doing minimax search:
* « (alpha): the best value that MAX can guarantee so far (lower bound for MAX).
* B (beta): the best value that MIN can guarantee so far (upper bound for MAX).
* If at some point we find that the current node’s value is worse than an already known alternative, we

can stop exploring that branch — it will never affect the outcome.
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Adversarial games
3. Simple Example

Suppose MAX must choose between moves A and B:

»  While exploring A, we find that its best outcome is at least +5 (a = 5).
* Now we start exploring B, where MIN will try to minimize. If at some point we find that B cannot
possibly do better than 5 (p < 5), we prune the rest of B's branches — no need to explore further, since

MAX will never prefer B over A.

4. Effect

* Alpha—beta does not change the result of minimax — it just avoids wasting time on irrelevant branches.

*  With perfect move ordering, alpha—beta can reduce the effective branching factor from b to Vb, roughly
doubling the search depth for the same computational cost.

» This was crucial for systems like Deep Blue, which could search 10-12 moves deep in chess instead of

just 6—7.
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Adversarial games

5. Analogy in Bioinformatics

While alpha—beta pruning comes from games, the idea of pruning the search space by bounding outcomes

is very relevant:

* In sequence alignment, heuristic pruning (BLAST's word filter) avoids exploring alignments that can't
beat the best score.

* In protein docking, pruning rules discard conformations that already exceed an energy threshold.

* |n phylogenetic tree search, heuristics prune branches of evolutionary trees that can't lead to better

likelihood scores.

So you can present alpha—beta pruning as an early example of search-space reduction, a principle used

widely in bioinformatics algorithms.
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Adversarial games
Monte Carlo Search

1. Motivation
* |n many domains (Go, protein folding, drug design), the search space is astronomically large.
* Even alpha—beta pruning cannot explore deep enough.

* Solution: Instead of exploring the entire tree, use random sampling (Monte Carlo) to approximate the

value of states.

2. Basic Monte Carlo Search
* To evaluate a move:
1. From the current state, simulate many random games (rollouts) until the end.
2. Record the outcome (win/loss, or a score).
3. Estimate the value of the move as the average outcome of these simulations.

¢ The more simulations, the better the estimate.
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Adversarial games
3. Monte Carlo Tree Search (MCTS)

A powerful extension that builds a partial search tree guided by random exploration. It has four phases:

1. Selection: Navigate the tree from the root, choosing child nodes using a heuristic like UCT (Upper
Confidence Bound for Trees) that balances exploration vs exploitation.
Expansion: If a leaf node is not fully explored, add a new child (new possible move).

Simulation (Rollout): Play randomly (or with a simple policy) from that child to the end.

o WM

Backpropagation: Update the values (win/loss averages) along the path back to the root.
* Over many iterations, the search tree grows where it matters most.

* Used famously by AlphaGo and AlphaZero to master Go and Chess.

Repeated X times

_[ Selection ]—>[ Expansion ]—)[ Simulation ]—)[ Backpropagation
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Adversarial games

4. Comparison with Minimax/Alpha-Beta

Aspect Minimax + Alpha-Beta

Tree exploration Systematic, deterministic

Evaluation Requires heuristic function at cut-off
Completeness Exact (with enough depth)

Strength Strong in shallow, tactical domains (e.g.

chess with strong heuristics)
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Monte Carlo Search / MCTS

Random sampling of promising branches

Uses simulated rollouts (no hand-coded

heuristics needed)

Approximate, improves with more simulations

Strong in deep, complex domains (e.g. Go, large

biological search spaces)




Adversarial games

5. Bioinformatics Analogies

Monte Carlo methods map very naturally to bioinformatics:
* Protein folding / docking:
» Search space of conformations is enormous.
* Random sampling (Monte Carlo simulations) + scoring functions approximate good solutions.
* Molecular dynamics simulations:
* Monte Carlo sampling used to explore possible trajectories.
* Drug discovery:
» Reinforcement learning + MCTS used to generate molecules, simulating possible maodifications to
optimize activity.
* Pathway modeling:

* Explore alternative regulatory interactions by sampling possible network states.
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Practice

https://github.com/cossorzano/COSS DataAnalysis notebooks/blob/main/Artificiallntelligence/
Host Pathogen.ipynb

v Host—-Pathogen Arms Race as an Adversarial Game

In this notebook we will explore a toy model of the evolutionary arms race between a host (or clinician) and a pathogen.
The aim is to illustrate how concepts from adversarial Al and decision-making can be applied to bioinformatics and systems biology.

# Problem Setup

» Pathogen genotype:
Represented as an 8-bit binary string ( eeeeeeee ).

o Each bit corresponds to the presence (1) or absence (0) of a resistance mutation.
o Mutations can make the pathogen resistant to certain drugs, but each resistance bit carries a fitness cost.

» Host (Leader):
Chooses a treatment policy at the beginning and sticks with it for the whole simulation.
Available policies:

o Drugh
o DrugB
o Combo (A + B together)
o Holiday (no treatment)
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* Overview

« Overfitting and underfitting
« Evaluation metrics
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« Bias and variance tradeoftf
* No free lunch theorem
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Overview

« Machine Learning = algorithms that learn patterns from data
* Not explicitly programmed with rules

« Goal: make predictions or decisions on new data

« Two main paradigms: Supervised and Unsupervised learning

Rules _> Classical —> Answers
— Programming

Data =) .
Machine —) Rules
Answers —)-| learning
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Overview

Examples: Examples:
Customer segmentation in marketing *Email — spam or not spam
Reducing image data for visualization [ Non-Exh. ] *House features — market price
|
[ vasspervisea | () | Supervisea | (x> ¥ = f@)
I
~
[ Clustering ] Dimensionality y € Rn[ Regression ] [ Classification ]y €N
reduction
|
[KMemz] Hiemchim!]kPCﬁ][UM] | | ANN I[SP’M] [HW]
I SVM

[ Density ] ‘ tSNE I [ ][ ]
GB KNN | RE
+ CEU
Un r b i(ja(J
San Pablo



Overview
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Overfitting and underfitting

« Underfitting
* Model is too simple
» Fails to capture patterns in training data
« Both training and test error are high
« Overfitting
* Model is too complex
« Learns noise and idiosyncrasies in training data
« Training error very low, but test error high
« Good fit
« Balance between complexity and generalization
» Low training error + low test error




Overfitting and underfitting

Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be true) laTal

|
L
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Underfitting Balanced Owverfitting
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Evaluation metrics

The performance of a machine learning model must be measured quantitatively.
The choice of metric depends on the task.

For regression problems, common metrics include:

* Mean Squared Error (MSE): the average of squared differences between
predicted and true values. It penalizes large errors heavily.

* Root Mean Squared Error (RMSE): the square root of MSE, expressed in the
same units as the data, which makes interpretation easier.

 Mean Absolute Error (MAE): the average of absolute differences between
predictions and true values. It is less sensitive to outliers.

* R? (Coefficient of Determination): measures the proportion of variance in the
data explained by the model, with values closer to 1 indicating a better fit.




Evaluation metrics
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Evaluation metrics

Pearson’s correlation coefficient
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Evaluation metrics

For classification problems, metrics are based on comparing predicted labels to

true labels.

* Accuracy: the fraction of correctly classified examples. It is easy to
understand but may be misleading in imbalanced datasets.

* Precision: the fraction of predicted positives that are true positives, measuring

reliability of positive predictions.

Recall (Sensitivity): the fraction of actual positives correctly identified,

measuring how many relevant cases are found.

F1 Score: the harmonic mean of precision and recall, useful when a balance

between the two 1s needed.

ROC curve and AUC: graphical and numerical summaries of the trade-off

between true positives and false positives.
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Evaluation metrics

POSITIVE NEGATIVE P TP o TP
recision = ———— ecall = ——
a TP + FP TP+ FN
% posimve | TP | FN ) TP + TN
ccuracy =
> Y = TP+FP+FN+TN
<
S
£ NEGATIVE FP | TN Precision X Recall
< Flscore=2 % —
Precision + Recall
P red icted True Positives

True Negatives

False Positives

Not animal
False Negatives

Accuracy 83% o
Animal
Precision 75% 3
3+1
Actual .
Recall 100% .
. 340
Not animal

F1score 86% 2.07-1
0.75+1
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Cross validation

To evaluate how well a model generalizes, we cannot rely only on training error. We

need to test the model on data it has not seen.

* Hold-out validation is the simplest approach: the dataset is split into a training set
and a test set. The model 1s trained on one part and evaluated on the other. The
drawback is that the result may depend too much on how the data was split.

* Kk-fold cross-validation addresses this. The dataset is divided into k equal parts. The
model is trained k times, each time leaving out one part for testing and using the
remaining k—/ parts for training. The final score is the average of all k tests. This
reduces the dependence on a particular split.

* Leave-one-out cross-validation (LOOCY) is the extreme case where k equals the
number of data points. Each observation is used once as the test set. It uses all data
for training but can be computationally expensive.

Cross-validation provides a more reliable estimate of model performance and helps in

selecting models and hyperparameters.
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Cross validation

Orginal Dataset

Split into training
and testing data

Training Set Testing Set J

Split training data
into 5 folds
I o N o s
[Fold 1 I Fold 2 IEoIdEI Fold 4 I Fold 5 D

Perform k-fold
cross-validation

Train Validate

Train Validate Train
Train Validate Train

Train Validate Train

Validate Train

Final model
evaluation

4
Perform model selection, tune parameters, etc. *

{ Testing Set }
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Bias and variance

A model’s prediction error has two main sources: bias and

variance.

Bias is the error due to simplifying assumptions.

* A model with high bias is too rigid.

[t fails to capture the true patterns in the data.

* Leads to systematic errors (underfitting).

Variance is the error due to sensitivity to training data.

* A model with high variance adapts too much to noise.

* Predictions change strongly with small changes in the
data.

* Leads to poor generalization (overfitting).

The trade-off:

* Increasing complexity reduces bias but increases
variance.

* Decreasing complexity reduces variance but increases
bias.

* The goal is to find a model with low total error,
balancing both.
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High Variance
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Bias and variance
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Bias and variance

Let the true relationship be
Y = f(X) + ¢,

where ¢ is random noise with mean zero and variance o 2.

Let f(X) be the prediction of a learning algorithm trained on a dataset.

The expected prediction error at a point & can be decomposed as

E[(Y - f@)] = (Bf@)] - f)° + E[(f@) - Ef@)] + o
e el Irreducible error

Bias? Variance

* Bias: the squared difference between the average prediction and the true function, (E[f(:r:)] - f[:v:))2

 Variance: the variability of predictions across different training sets, £ [(f(:r:) — E[f(m)])z]

 Irreducible error: the variance of the noise, o2, which cannot be eliminated.
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No free lunch theorem

In machine learning there is no universally best algorithm.

Performance always depends on the problem and the assumptions we make about the data.
Intuition:

* Suppose two algorithms, A and B, are compared across all possible datasets.
* On some datasets, A will perform better; on others, B will perform better.
* When averaged over all possible problems, they perform the same.

* This means: an algorithm'’s advantage comes only from how well its inductive bias matches the data.

Formal idea:
Let F be the set of all possible functions mapping inputs to outputs.

If we assume a uniform prior over JF, then for any two learning algorithms A and B:

ZErrorf(A) = ZErmr_,r(B).

feF feF

Thus, no algorithm has lower error across all possible functions.

Implication:

* We cannot pick "the best” algorithm in general.

* Success comes from choosing the right model and assumptions for the domain and data at hand.
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No free lunch theorem

&

Average Performance

Performance

L 4

Possible Problems/Data Sets

highly specialized algorithm

gwﬂl_ptwiwb

type of problem
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« Linear regression
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Overview
GWAS (Genome Wide Association Study)

DNA Sequencing f \g
ﬁbillion DNA positions
5% (B B

DNA Sequencing §>$&/$$%$$&/

Case (group with disease)

GWAS finding
associations between
DNA mutations, and

ié)_%j @%} @? particular diseases

Q DNA Sequencing &$ﬁ‘/$$m‘&$&/

Control (healthy group)
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Overview

At a biallelic SNP, each individual carries two alleles:

1 The data structure * 0 = homozygous major allele (e.g., AA)
* 1= heterozygous (e.g., Aa)

* 2 = homozygous minor allele (e.g., aa)

We typically have:

e e So in the simplest case:
* n individuals (samples)

X;; €{0,1,2}

* p genetic variants (usually SNPs)

Data can be arranged in:

» Genotype matrix X € R"*P, where X;; € {0, 1,2} encodes the number of minor alleles of SNP j in
individual ¢ (after QC and imputation, values may be fractional). QC=Quality Control
* Phenotype vector y € R", which can be:
* continuous (e.g. height, blood pressure),
* Dbinary (e.g. disease status),
* categorical or time-to-event in some extended models.

» Covariates matrix C' € R"™Y for age, sex, ancestry principal components, etc.
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Overview

2. Single-variant association model

GWAS is usually performed SNP by SNP, testing for association between phenotype 1y and each genotype
X while controlling for C'.

(a) Linear regression (quantitative traits):
y:a+Xjﬁj + C~v + ¢, ENN(U,ETQI)

* Null hypothesis: Hj; : ,Bj = 0 (no effect of SNP )
» Test statistic: £ = Bj/SE(}éj}, compared to standard normal.

(b) Logistic regression (case-control traits):

1
L+ exp(—(a + B; Xij + Ciy))

Pr(y; = 1| X;5,Ci) =

* Null hypothesis: Hy : 3; =0

* Test statistic: likelihood ratio test, Wald test, or score test.
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Simple linear regression

Problem setup

* Inputvariable: z (e.g., gene length).
* Qutput variable: y (e.g., expression level).

* Goal: predict ¥ as a linear function of .

Model
yi=PB+ Pizi +e, i=1,...,n

* By intercept
B slope (effect of z on 1) Ordinary Least Squares (OLS)

* g; error term Idea
» Find Bpy, B1 that minimize squared errors:
n
min » (yi — Bo — fizi)

J‘gnhﬁl i1

Solutions

s 22 —2) Wi -9 5 _
P = Sz 0 T )
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Multiple linear regression
Setup

* n:number of samples (e.g., patients, genes).
+ p: number of input variables (features).

* g number of outputs (responses).

Model
Y=—XB+F
o Y:n x g response matrix Ordinarv Least Squares (OLS)
L T Goal
Y — . . ' . )
' ' B = argmin||Y — XB|?
Yn1 e ynq g B H ”F
» X:n % (p+ 1) design matrix (includes intercept column of 1's) (where || - || is the Frobenius norm = sum of squared residuals).
1 11 crr T1p
X = |: . . . Solution (Normal Equations)
1 zpp - Lnp B = (XTX)_IXTY

* B:(p-+ 1) x g matrix of coefficients

« FE:n x g error matrix
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Multiple linear regression

Example

Obs Iy I3 I3 h [k
1 4 5 3 5.75 1.43

2 5 5 2 5.09 430

3 3 3 3 7.48 1.30

4 5 4 3 6.96 3.04

5 5 2 4 8.40 2.87

5] 2 4 5 7.95 -1.02

7 1 4 2 3.19 -0.28

a8 5 4 1 423 4.30

9 1 3 3 5.09 -0.71
10 2 4 4 5.97 0.35
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Multiple linear regression

We model:
Y=-XB+FE

X (10 x 4): design matrix with intercept + 3 predictors
« B (4 x 2): coefficients (for each predictor and each output)
« Y (10 x 2): outputs

(5.75  1.43 1 4 5 3
500 4.30 1 5 5 2
748 1.30 1 3 3 3 ] ]
6.96 3.04 1 5 4 3 2.479  0.388
8.40 2.87 |15 2 4] 5 | 0517 0987
Y=1705 —102] X701 2 4 5| B®|-0484 —0102
319 —0.28 11 4 2 | 1221 —0.567]
423  4.30 1 5 4 1
5.09 —0.71 113 3 Y, = 2.479 + 0.517X, — 0.484X, + 1.221X4
5.97  0.35 | 1 2 4 4 Y, = 0.388 + 0.987X, — 0.102X, — 0.567X,
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term

Intercept

x1

¥2

¥3

Fitted y1
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Multiple linear regression

y1 Coef. y1 Std.Err. ylt y1 p-value y2 Coef. y2 Std.Err. y2t
2479 1.347 1.840 0.115 0.388 1.032 0.376
0.517 0.128 4,055 0.007 0.987 0.098 10.101
-0.484 0.239 -2.026 0.089 -0.102 0.183 -0.556
1.221 0.197 6.205 0.001 -0.567 0.151 -3.758
Observed vs. Fitted for y1 Observed vs. Fitted for y2
X observed vs fitted X observed vs fitted X
——~- ideal fit (y=x) 41 ——- ideal fit (y=x) ,/,
/,,, i
ok 3 /xz
x ///z (; ot X ,,//
Pie hel JRe
Pad 8 e
el £ X
3('/, Or //’,,
,/” //» x
X ,”/ ,)5'
#% —1F )5/
3 4 5 6 7 1 0 1 2 3 4

Observed y1

Observed y2

y2 p-val

0.720

0.000

0.598

0.009




Multiple linear regression

Residuals vs Fitted for y1 Residuals vs Fitted for y2
1.25¢ X X
0.6} x
1.00}
0.4}
0.75}
0.2}
n 0.50f 0
3 L S S S —
v 0.25F x @ x X X
& x & 0l X X %
0.00 f-==========-= e e '
X X 0.4}
-0.25} o
X
-0.50f x -0.6}
X X
4 5 6 7 8 9 -1 0 1 2 3 4
Fitted y1 Fitted y2
Dutput RE .AdjLIStEd RE
i 0.908 0.862
Yo 0.961 0.94.2
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Multiple linear regression

. 1. Linearity
Assumptions

* The relationship between predictors X and response Y is linear:

Y=XB+F

* No strong nonlinear patterns remain in residuals.
2. Independence

* Observations are independent of each other.

* Residuals are uncorrelated (no autocorrelation, important in time-series or spatial data).
3. Homoscedasticity (Constant Variance)

* The variance of errors g; is the same for all levels of the predictors.

* Residuals should show equal scatter across fitted values.
4. Normality of Errors

* The error terms g; are normally distributed.

* Important for hypothesis testing and confidence intervals (less critical for prediction).
5. No Perfect Multicollinearity

¢ Predictors are not exact linear combinations of each other.

* High multicollinearity inflates standard errors of coefficients.
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Multiple linear regression

1. Linearity

Residual analvsis * Plot residuals vs. fitted values.

¢ Look for patterns: a curved shape suggests nonlinearity.

* Remedy: add polynomial terms, splines, or use nonlinear models.

2. Independence
e Examine study design (e.g., repeated measures?).
¢ For time-series: Durbin-Watson test for autocorrelation.

* For spatial data: Moran’s | or variogram analysis.

3. Homoscedasticity (constant variance)

» Plot residuals vs. fitted values.
» If the spread increases with fitted values — heteroscedasticity.

* Remedies: transform response (log, sqrt), or use robust standard errors.

4. Normality of Errors

* Q-0 plot of residuals against the normal distribution.
* Histogram of residuals.

* Shapiro-Wilk or Kolmogorov-Smirnov test (caution: sensitive to 7).

5. Multicollinearity

e Compute correlation matrix of predictors.
# Variance Inflation Factor (VIF):

¢ Rule of thumb: VIF > 10 = problematic.

¢ Remedies: remove redundant predictors, use PCA, or apply Ridge regression.
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Multiple linear regression

IR R Graphics: Device 2 (inactive)
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Multiple linear regression

Polynomial fitting

Motivation
* Many biological relationships are nonlinear (e.g., enzyme kinetics, dose-response).
* But polynomial models can capture curvature while remaining linear in the parameters.

Model (Quadratic Example)

y; = Bo + Brz; + 52%? + &

ay e . .. Fitted Line Plot
» Still linear in coefficients By, 81, B2. length = 12.62 + 54.05 age
- 4719 age~2
* Nonlinear only in the predictor . 200- s
R-Sq B01%
175+ R-Sglad) 7963

150

125

length

100

75

age
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Multiple linear regression

Simple linear model Polynomial model
A YA

Matrix Formulation

For n observations and a degree-2 polynomial: »
X
1 =z 3
1 x> 3
1z,

» X contains polynomially expanded features.

* Then apply OLS as usual:

B — (XTX)_IXTy
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Multiple linear regression

Converting a problem into a linear one

70 .
Michaelis—Menten model 60 - .
50 4 =
Vmax [S] - %7
V= —F—"""7= 30
Kn+ (8] a0
10 — A
e v:reaction velocity 0 : : . . .
. . 0 10 20 30 40 50
* [S]: substrate concentration (predictor) <

* Parameters to estimate: Vm.ﬂ_x, Km

Why it is not linear regression

* In polynomial regression: model is linear in coefficients (3y, 31, . . .).

¢ |n Michaelis—-Menten:

v — Vinax
1+ K, /[S]

— nonlinear in parameters (Vipax, K).
* No transformation makes it linear in both parameters simultaneously.

* Estimation requires nonlinear least squares (iterative numerical optimization).
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Multiple linear regression

Lineweaver-Burk transformation:

m 1 1

+

v Viax 1S] | Vina

— looks like a linear regression in Lys. A
v 7S]

Problem: transformation distorts error structure (no longer homoscedastic).

Modern practice: fit directly with nonlinear regression.

1/v

| —

Notice the greater °
dispersion at high 1/a
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Multiple linear regression

Regression with Radial Basis Functions (RBFs)

Idea

* Approximate nonlinear functions by combining "bumps” centered at different points.

* Each bump is an RBF, typically Gaussian:

¢j(z) = EKP(—(:B_—Cj)z)

202
WhEI’e Cj = Center’, T = Wldth Analysis of mixture of peaks by multiple regression
14 ¢
12}
Model 1

Tr

_ naf
y(x) =B+ Y _ B di(x) +e
Jj=1 06|
* Nonlinear in z, but linear in coefficients 3;. 04l
* Design matrix:
ozt
Xij = ¢j(zi)

D L 1 1 L 1 ]
o 100 200 300 400 500 6&O0O 700 800 900 1000

* Fit b}' OLS or Rldgel;LASSOJUSt like before. Calored bands are the true and measured compaonents
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Multiple linear regression

Multicollinearity

Motivation

*  When predictors are correlated, regression coefficients become unstable.
» Standard errors inflate — harder to judge significance.

* VIF quantifies how much multicollinearity inflates variance of a coefficient.

Definition

For predictor x;:

1. Regress x; on all the other predictors.
2. Compute R_.? (coefficient of determination).

3. Variance Inflation Factor:

7T 1-R?
Interpretation

» VIF; = 1: no correlation with other predictors.
» 1 < VIF; < 5: moderate correlation, usually acceptable.
» VIF; > 10: high multicollinearity — problematic.
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Regularization

Motivation

* In high-dimensional settings (p >3 n), OLS estimates are unstable.
* Multicollinearity inflates variances of coefficients.

* Need reqgularization: shrink coefficients to stabilize the model.

Ridge regression

Model

B = argmin (|| — XB|} + A|BI3)

» First term: residual sum of squares (fit).
» Second term: penalty on size of coefficients (L? norm).

* A > 0: regularization parameter (controls shrinkage).

Closed-form solution
éridge _ (XTX + /\I)—leY

» Adds AT to X " X, which removes singularity and stabilizes inversion.
* As A — 0, Ridge — OLS.

e As XA — 00, coefficients shrink towards 0.
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Regularization

Lasso regression

Motivation

* In high-dimensional data, many predictors may be irrelevant.

* We want a model that not only stabilizes coefficients (like Ridge) but also selects features automatically.
Model

Blasso _ a,rgmé'm (||Y — XBH% + /\HBHl)

» First term: fit (residual sum of squares).
» Second term: penalty on the absolute size of coefficients (L' norm).

* A > (): controls strength of penalty.

Key Property
» Ridge shrinks coefficients continuously but never exactly to zero.

* LASSO can set some coefficients exactly to 0 — performs variable selection.

» The larger A, the more coefficients are zeroed out.
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Regularization
Example (OLS)

Y, = 2.479 + 0.517X, — 0.484X, + 1.221X,
Y, = 0.388 + 0.987X, — 0.102X, — 0.567X4

term y1 Coef. y1 Std.Err. ylt y1 p-value y2 Coef. y2 Std.Err. y2t y2 p-val
Intercept 2.479 1.347 1.840 0.115 0.388 1.032 0.376 0.720
x1 0.517 0.128 4.055 0.007 0.987 0.098 10.101 0.000
x2 -0.484 0.239 -2.026 0.089 -0.102 0.183 -0.556 0.598
X3 1.221 0.197 6.205 0.001 -0.567 0.151 -3.758 0.009
Example (LaSSO) Coefficient Comparison for y1 Coefficient Comparison for y2
25¢ . OLS 1.0 . OLS
= LASSO . LASSO
0.8}
201
0.6}
5 15t E
© o 04f
> >
g Llof 3 o2f I
S osf g oo .
R
0.0
m
=051 i | —0.6f | !
o m
x k3

x1
X2 ¢
x3
X1}

intercept -

.
-
o
[
o
=
a
=
£
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[ What ar; GLMs? ]

Generalized Linear Models

Extend linear models to handle
different types of response vriables

Motivation

e Linear regression assumes:

¢ Errors are Gaussian 1. Exponential Family Distribution

2. Predict E(T(y) 1 x]
3. Linear Relationship

e But in bioinformatics:
e Counts (RNA-seq, mutations) m

* Response Y is continuous, unbounded

* Binary outcomes (disease vs. healthy) L 1 1
e Rates, survival times Bernoulli Gaussian f Poisson
Distribution Distribution Distribution
* GLMs extend linear regression to other data types. - - -
Logistic Linear Poisson
| Regression Regression Regression

GLM Framework

1. Random component: distribution of ¥ (from exponential family: Normal, Binomial, Poisson, Gamma ...).

2. Systematic component: linear predictor

n=Xp

3. Link function: connects mean of ¥ to 7

g(p) =n, p=LEY|X]
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Generalized Linear Models

Examples of GLMs in Bioinformatics

* Logistic Regression (Binary outcome)

g(p) = log 1L, Y ~ Binomial
M
Predict disease status from SNPs, gene expression, or imaging features.

* Poisson Regression (Count data)

g(p) =log(pn), Y ~ Poisson

Model read counts in RNA-seq or number of mutations per gene.
* Gamma Regression (Positive, skewed outcomes)

Useful for waiting times, reaction rates.

Key Idea
» Still linear in the predictors (X/3).

* Nonlinear transformation (link function) ensures predictions respect the nature of data:
* Probabilities between 0-1
¢ Counts 20

* Variance linked to mean
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Generalized Linear Models

Generalized Linear

Linear Regression Model

-
The general linear model Model
Categorical Outcome Count Data ‘
Other Models
Logistic multinomiz Ordina Exponential
tegrassion loglsti Logistic Eamm_a
regression egression Poisson Negative Regression
Regression Binomial nets
s o v Regression?
|
15 i + ¥ = .
Truncated Censored Zero-Inflated Extensions
Generalized estimating equations (GEEs)
Counts Counts Hurdle Models Count Models Generalized linear mixed models (GLMMs)
Generalized additive models (GAMSs)

https://medium.com/@ sahin.samia/a-comprehensive-introduction-to-generalized-linear-models-fd773d460c1d
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Generalized Linear Models

Example: Predict disease status (e.g., cancer vs. control) from gene expression.

Logistic Regression (Binary GLM)
Problem

* Inputs z; € R? (e.g., gene expression vector).
e Outputy; € {0,1} (e.g, disease vs. healthy).
* Goal: model P(y; =1 | z;).
Model
* Linear predictor: 1; = :r;rﬁ (include intercept in ;).
o Link (logit): g(wi) = log Tﬁj = 7.
* Mean: p; = o‘(‘r]ﬁ-) = ﬁ
Likelihood (Bernoulli)
* y; ~ Bernoulli(y;).
* Log-likelihood:

6p) = i yilog i + (1~ i) log(1 — o) | = Zn: i B~ log (1+ ¢ 7)]

i=1
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Generalized Linear Models

Estimation

» Maximize £() (no closed form).

* Gradient (score):
VEB)=X"(y ), n=o(XB).
« Hessian (negative definite):
VH(B)= - XWX, W =dag{u(l )}

* Algorithms: Newton—-Raphson / IRLS; or first-order methods (SGD, LBFGS).
* Regularization (common in omics):

 Ridge (L2): maximize £(3) — %”,@”%

e LASSO (L1): maximize £(3) — A||B||1 (feature selection).

Interpretation

e QOdds: T_'”T = e'ri_ﬁ.

» Coefficient 3j: a 1-unit increase in ; multiplies the odds by efi,

e Decision boundary: ' 8 = 0 (i.e, . = 0.5).
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Non-linear regression

Regression models where the mean function is nonlinear in parameters:

y; = f(zi; 0) + &
Estimation

¢ No closed form for coefficients.

* Parameters estimated by Nonlinear Least Squares (NLS):
n
mind_ (v - f(:;0))’
* Requires iterative numerical optimization (Gauss—Newton, Levenberg—-Marquardt, gradient descent).

* Convergence depends on good initial guesses.

Key Differences vs. Linear Regression

* Linear regression: closed-form OLS solution.
* Nonlinear regression: iterative, no guarantee of global optimum.

» Standard errors and confidence intervals obtained via approximations (e.g. observed Fisher information).
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Non-parametric regression

» Goal: estimate f(x) iny = f(x) + £ without fixing a finite parametric form.
* Flexibility: lets the data shape f.

Linear vs KNN Regression

* Trade-off: higher variance, needs more data; careful smoothing is key.

k-Nearest Neighbors (kNN) Regression g

¢ 1
* Rule: f(z) = ¢ EéENk(zj Yi
» Local averaging over the k closest points to .

* Hyperparameter: k (smoothness 1 with larger k).

* Pros: simple, no training; Cons: poor in high-D, discontinuous, sensitive to scaling.

Kernel (Nadaraya—Watson) Regression

; Yoy Kn(z — i) yi
* Estimator: f(z) = 5
RN VY ey
« Kernel Kj(u) = + K (u/h) (e.g. Gaussian).
* Key knob: bandwidth h (small h — wiggly; large i — smooth).

* Pros: smooth fits; Cons: boundary bias, bandwidth selection critical.
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Non-parametric regression

Local Linear Regression (LLR)

» Fit a line near & with kernel weights; predict at .

* Reduces boundary bias vs. Nadaraya—Watson; better MSE generally.

-~

« Estimator: f(x) = Bﬂ.(m) from weighted least squares.

Splines & Smoothing Splines

« Basis view: f(z) = Zj 3;B; () (B-splines) with many knots.
* Smoothing penalty: min; > (y; — F(z))?+ A f(f”{t})2df

» Controls roughness via A; solved in a spline basis.

* Pros: fast, interpretable smoothness; Cons: knot placement (if not smoothing splines).

LOESS / LOWESS (Locally Weighted Scatterplot Smoothing)

* Locally weighted polynomial (usually degree 1) in a window around .
* Span controls smoothness (fraction of neighbors).

* Robust versions down-weight outliers.

Gaussian Process (GP) Regression (Bayesian NP)
e PutaGPprioron f: f ~ GP(0,ks(-,-))

* Posterior mean = predictor, posterior variance = uncertainty.
» Kernel kg (e.g., RBF/Matern) encodes smoothness; & by ML or CV.

* Pros: uncertainty quantification; Cons: O(n3) scaling (use sparse/inducing methods).
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Challenges in Bioinformatics

1. High dimensionality, low sample size

* Typical omics data: p > n (e.g., 20,000 genes vs. 200 patients).
« OLS unstable or undefined (cannot invert X " X).
* Remedies:

* Regularization (Ridge, LASSQO, Elastic Net).

* Dimension reduction (PCA, autoencoders, feature filtering).

» Careful cross-validation to avoid overfitting.

2. Multicollinearity

* Biological variables are highly correlated (e.g., co-expressed genes, pathways).
* Effects:

* large standard errors for coefficients.

» Difficult to interpret predictor importance.
* Remedies:

* Use Ridge or Elastic Net (stabilizes estimates).

* Group predictors (pathway-level features, latent factors).

* Variance Inflation Factor (VIF) to diagnose redundancy.
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Challenges in Bioinformatics

3. Missing data

*» Common in clinical and omics datasets (failed assays, dropouts).
» Naive deletion — information loss, bias.
* Strategies:
* Simple: mean/mode imputation (weak).
* Advanced: kNN imputation, matrix factorization, multiple imputation, deep generative models.

» Consider mechanism of missingness (MCAR, MAR, MNAR).
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Overview

0.4

0.2

e Input space X € R”, outputlabelsY € {1,2,...,K}.

» Classifier: function f : X — Y. o
* Goal: minimize classification error / maximize predictive accuracy. -0.4
-0.6
-0.5 -04 -03 -0.2 -0.1 0 0.1 0.2 20 30 40 50 60 70 80 90 100
CLASSIFICATION REGRESSION
Binary Classification Multi-class Classification

> O
oC > D> O O
X2 OO

A J
A J
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Overview

p(X=x|Y=0)

X
FN
100% —
,4 o
P(TP), TPR| .-~ 7
. -~ no skill
L',' >
0% P(FP), FPR 100%
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Overview

ROC Curve and AUC
1. Why Not Accuracy?

* Inimbalanced datasets (e.g., rare disease detection), accuracy can be misleading.
*  Example: 95% healthy, 5% diseased.
* A classifier that always predicts "healthy” has 95% accuracy, but is useless.
* Instead, we need metrics that consider true positives and false positives.
2. ROC Curve (Receiver Operating Characteristic)
* Plot that shows trade-off between sensitivity and specificity at different thresholds.

* Definitions:

¢ True Positive Rate (TPR / Recall / Sensitivity):

TP
TPR = ————
R TP + FN
* False Positive Rate (FPR):
FP
FPR = FP + TN

* Procedure:
¢ C(Classifier outputs probabilities or scores.
* Vary the decision threshold (e.g. 0.1, 0.2, ..., 0.9).
* Compute TPR and FPR at each threshold.
¢ Plot TPR (y-axis) vs FPR (x-axis).
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Overview

ROC CURVE
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Overview

3. AUC (Area Under the Curve)

* The area under the ROC curve:

1
AUC — f TPR(FPR) d(FPR)
0

* Interpretation:
* Probability that a randomly chosen paositive is ranked higher than a randomly chosen negative.

« AUC = 1.0 - perfect classifier.

« AUC = 0.5 — random guessing.
« AUC < 0.5 — worse than random (predictions reversed).
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Data preparation

1. Feature Selection & Dimensionality Reduction
* Why?
* Bioinformatics data often has p >> n (e.g. thousands of genes, few samples).
* Redundant or irrelevant features — noise, overfitting.
* Methods
* Filter: correlation, mutual information, statistical tests (t-test, ANOVA).
* Wrapper: recursive feature elimination.

* Embedded: LASSO, decision tree importance. ( |

Feature Selection I . . .
» Dimensionality reduction: PCA, t-SNE, UMAP. ‘Selection. | Leaming Performance
l %

09:000
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Data preparation

1. Filter Methods

» ldea: Select features independently of the classifier.
* How? Rank features by a statistical criterion — keep top ones.
* Examples of criteria:
* Correlation with the class label.
* Mutual information.
» Statistical tests (t-test, ANOVA, chi-square).
* Advantages
» Very fast, scalable to high-dimensional data (e.g. gene expression).
* C(lassifier-agnostic.
* Disadvantages
* Ignores interactions between features.

* May discard useful combinations.

7 Bioinformatics example: Selecting the top 100 genes most correlated with cancer vs. healthy samples

before training a classifier.
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Data preparation

2. Wrapper Methods

Idea: Use the classifier itself to evaluate subsets of features.
How? Try different feature subsets — train model — keep best-performing subset.
Search strategies:

* Forward selection (start empty, add features one by one).

* Backward elimination (start full, remove features).

¢ Recursive Feature Elimination (RFE).
Advantages

* Accounts for feature interactions.

* Usually yields better performance than filters.
Disadvantages

* Computationally expensive (repeated model training).

* Risk of overfitting if dataset is small.

7 Bioinformatics example: Using recursive feature elimination with an SVM to identify the optimal set of

genes for distinguishing tumor subtypes.

& ceu

Universidad

San Pablo



Data preparation

2. Handling Missing Values & Normalization

* Missing values

¢ Deletion (if few).

* Imputation (mean, kNN, model-based).

* Important in genomic/proteomic data with experimental gaps.
* Normalization

e Scale features to comparable ranges.

_ - , X=X ., Xx—m
* Log-transformation for skewed biological measures. x' = x =
o : : Sy M—m
» Z-score standardization, min-max scaling.
1 2z 3 m 1 2 m
X %X LT X X X X N
Training _ I Training 2
set | J set ‘
" Missingdata:
' - imputation [
SRl b
Test Test — |- deletion
set | set
I |
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Data preparation

3. Training, Validation & Test Sets

* Why? Prevent overfitting and ensure generalization.

* Splits All

* Training set: fit model parameters. / \ \

» Validation set: hyperparameter tuning.

* Test set: unbiased evaluation. Training Validation -

¢ Cross-validation

* k-fold CV widely used with small bio datasets. Models learn the task Which model H?;”tﬁfsﬂd
e Stratified CV for class imbalance. 's the best? model truly?
class 1 class 2 See classn
round 1| | | . |

Stratified cross-validation round2 | | | | | |

round 3 | | | I [ |

round 4 | | | | [ |

. k-1:1 k-1:1 k-1:1
round K | | | [ |

training data validation data
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Data preparation

4. Class Imbalance in Bioinformatics

* Problem: Rare diseases or rare mutations — minority class.

» Consequences: Classifier biased toward majority class.

* Solutions
* Resampling: oversample minority (SMOTE), undersample majority.
» Cost-sensitive learning (higher penalty for misclassifying minority).

» Evaluation metrics beyond accuracy (precision, recall, AUC).
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Linear classifiers

Linear Discriminant Analysis (LDA)

1. Basic Idea ; .

* LDA is a linear classifier.

il
el i L
[

* [t assumes that data from each class follows a multivariate normal distribution with:

& gm g
‘ﬂl..‘i L |

Fa m®

» Different means (yu, for each class k).

-
Lo
i

e Same covariance matrix (2).

* It finds a linear boundary between classes that maximizes separation.

Strengths and Weaknesses !
{
Strengths ¥ ]

* Simple, fast, interpretable. 2T, II." % ¥

*  Works well with small datasets.
K Weaknesses erirr
""'-"'l:h
* Assumes normality and equal covariance.

» Struggles with non-linear boundaries or highly correlated features.

& ceu
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Linear classifiers

Linear Discriminant Analysis (LDA)

2. Mathematical Formulation

¢ Forclass k:

plzly = k) ~ N, ¥)

* By Bayes' theorem, the posterior is:

P(y = ko) o meexp (~ b(o — )T e — o)) -

> H 3 = - -1 o
X1 X1

Where ?Tk IS the p rl or pro ba b I | Ity Of CIaSS k . PDF of the distribution, covariance = 0 PDF of the distributien, covariance = 0.7

* The discriminant function (log-posterior, ignoring constants):

or(z) = mTE_lpk %,ufE_l,uk - log i
¢ Classification rule:

Assign x to the class k with the largest 0 ().

& ceu
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Linear classifiers

Linear Discriminant Analysis (LDA)

3. Decision Boundaries

» Boundaries between classes are linear hyperplanes.

» Fortwo classes k = 1, 2, the decision boundary is:
(m1 — p2) =7tz =c

— a straight line in 2D, a hyperplane in higher dimensions.

* Intuition: LDA projects data onto a line that best separates classes, then sets thresholds.

2D subspace of classifier 1

10 My

= \“\. . 5. d

o . - .
~ \"'\ » .4 x = p .
v . A R -Lhirt T
= - b e R o 8
2 01 . d R LR
2 . L "’. 3 - ) . »
< ~ [R A

. - o " &
[ - . 14
= _5 ’/’ " g% wm ®
'
-
-
-
z"
—-10 -~
ot
,f
’f
T T T T T T
-6 -4 -2 0 2 4

LDA feature 1
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Linear classifiers

Quadratic Discriminant Analysis (QDA)

1. Basic Idea

* QDA is an extension of LDA.
* Assumes that each class follows a multivariate normal distribution, but allows different covariance
matrices for each class.

e Forclass k:

p(zly = k) ~ N(up, Z)
* This leads to quadratic decision boundaries, instead of linear ones.
2. Discriminant Function
* The log-posterior (up to a constant) becomes:
Op(z) = — 3 log |Zy| — 3(z — pk)TE;l(:r — ) + log mp,
* Classification rule: Assign & to the class with the largest d; ().
3. Decision Boundaries

* In QDA, the terms include quadratic functions of .
* Boundaries between classes are conic sections (ellipses, parabolas, hyperbolas).

* Much more flexible than LDA — can adapt to more complex class distributions.
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Linear classifiers
4. Comparison with LDA

Aspect LDA QDA

Covariance Same across classes Different for each class

Boundaries Linear Quadratic

Flexibility Less flexible More flexible

Data needs Fewer parameters, works with small data More parameters, needs larger data
Risk May underfit May overfit
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Linear classifiers

Logistic regression

1. Basic Idea

* Logistic regression is a probabilistic linear classifier.
» |Instead of predicting a class directly, it models the probability of class membership.

» Useful for binary (yes/no) or multiclass problems.

2. Binary Logistic Regression

* Suppose classes are y € {O, 1}.
* Model:

Ply=1|z)=o(By + B'z)

where o(z) = is the logistic (sigmoid) function.

_1
l+e =
* Decision rule:
* Predict class 1if P(y = 1|z) > 0.5.
e Otherwise predict class 0.

* Interpretation: Coefficients 3; correspond to the log-odds ratio of the outcome given feature x;.

& ceu
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Linear classifiers

3. Multiclass Logistic Regression

e For K classes, use the softmax function:

T
Py = ) = Pt AL

251 exp(Boj + Bj z)

* Strategies:
* One-vs-Rest (OvR): Train one binary classifier per class.

* Multinomial (Softmax): Single model, all classes handled together.

4. Decision Boundaries

* Logistic regression produces linear decision boundaries.

* In 2D, this is a straight line; in higher dimensions, a hyperplane.

Strengths and Weaknesses

Strengths
* Probabilistic interpretation (confidence in predictions).
e Simple, interpretable coefficients.
*  Works well for binary and multiclass classification.
¥ Weaknesses
¢ Only linear boundaries.

* Performance degrades with high-dimensional correlated features unless regularized.
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Non-linear classifiers
Support Vector Machine (SVM)

1. Basic Idea

* SVMs are powerful margin-based classifiers.
* Goal: find the hyperplane that best separates classes.
* "Best” = the one that maximizes the margin (distance from hyperplane to nearest training points).

* The nearest training points are called support vectors — they define the boundary.

2. Linear SVM
For binary classification with labels y; € {—11 +1}: SVM Hyperplane -

» Decision function:
flz)=w'z+b

» Classification rule:

i = sign(f(z))

* Optimization problem (hard margin):

1

T 2
min o fjuw|
//
subject to
yt-('wT:ni + b) E 1 Vi //

Maximizes margin ”TE'”

& ceu
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Non-linear classifiers

3. Soft Margin (C parameter)

* Real-world data are noisy and not perfectly separable.

* Allow slack variables £; for misclassifications:

yi(w'a; +b) >1-&, & >0
* Objective:

B
min 5 w|”+C &

* Trade-off:
» Large C: penalizes errors heavily — smaller margin, fewer misclassifications.

» Small C: allows more violations — larger margin, more generalization.

Hard margin Soft margin
b ®
® o e Margin
* L] P ';
%A
- - “ ]
& o
Decision Decision
boundary - L] ™ boundary ™
d L 5] - [ ] ™
* @
CEU ® Class1 () Support vector

Universidad ® Class2? © Sample violating constraint
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Non-linear classifiers

4. Kernel Trick

* Linear SVM only works if data are linearly separable.

Kernel functions map data into higher-dimensional space without explicit computation.
* Decision boundary becomes non-linear in the original space.

*  Common kernels:

* Polynomial: K (z,z') = (2’2’ + ¢).

* Radial Basis Function (RBF):

© +1reg
K(I-, :EIF) = Exp (—‘T”:ﬂ — :EJ”E) 15 ; ;11:-;‘:;:
* Sigmoid: K(ﬂj, ﬂ"'_,f) = taﬂh(amT:ﬂ + C). 1 o -

0.5

z o
=

0.5

-1

-1.56

-1.5 -1 -0.5 0 0.5 1 1.5
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Non-linear classifiers

1. Linear SVM Recap
We want to classify samples (:L'.,:, yi), with y; € {—l, —|—1}.

s Decision function:
flz)=wlz+b

* Optimization problem (soft-margin):
1 2
min o lwl? + c§ ¢

subject to

yi(wle; +b) >1-§, & >0

& ceu
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Non-linear classifiers

2. Dual Formulation
By introducing Lagrange multipliers c; > (), we obtain:

T

mﬁ?x Zai — % Z Z Q0 Y Y (Zi, T5)
i=1 j

i=1 j=1

subject to

* Only inner products (z;, ;) appear.

¢ Decision function:
f(z) = Z ;Y (Tiyx) + b
i=1

where only support vectors (a; > 0) contribute.
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Non-linear classifiers

3. Kernel Trick
* Replace inner product (z;, ;) with a kernel function K (x;, z;).

* A kernel implicitly maps data into a higher-dimensional feature space gb(:x):

K(zi,z;) = (), d(x;))

* Dual problem becomes:

mc?x Z o — % Z Z ﬂiajyiyjK{I-ia 93;')
i=1

i=1 j=1

* Decision function:

fl@) =) awyiK(zi,z) +b
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Non-linear classifiers

k-Nearest Neighbors (kKNN) classifier

¥-Axis

1. Basic Idea
A non-parametric classifier.

To classify a new sample x:

. Find the k training points closest to .
2. Assign the class that is most common among those neighbors

* No explicit training — the "model” is just the training set

2. Distance Metrics

* The notion of closeness depends on the chosen metric

* Common metrics:
¢ Euclidean distance:

d(z,z') = x/Z(mj — )2

(default for continuous features).
* Cosine similarity (useful in high-dimensional data like gene expression)

¢ Manhattan distance: sum of absolute differences

CEU
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Non-linear classifiers

Picture Method Application Features Disadvantages Formula
. . . - . .- -
. General distance Measures the straight line distance Sensitive to outliers,
Euclidean : - : : O(n)
: measurement, Clustering, between two points in n-dimensional Can be affected by scale
Distance : . g ; Fast
® Classification, Regression space. differences

Distance on grid networks, = Measures the distance between two

Muuhwian Routing algorithms, Image oints on a grid network, where tenoves digonal movement, nof. o)
Distance utimg aigert i & p sn S useful for high-dimensional data, Fast
° processing movement is limited.
e Text document clusteri Ignores magnitude of vectors
F Cosine % 4 i Measures the cosine of the angle & goiiace o1y ? O(n)
£ s Text analysis, Not useful for negative values or
/o, Candy Similarity . between two vectors ; ; Fast
S Recommendation systems high degree of correlation data
P
® ;
Minkowski General distance Measlures ﬂ.]e dlst.ance between two o ; O(n)
. points in n-dimensional space, where r Sensitive to outliers
Distance measurement ; : Fast
- determines the metric used.
L : : ; . Only applicable for continuous
Measuring maximum Measures the maximum difference 7 e .
Chebyshev : : ; data, Sensitive to outliers, may O(n)
| ; difference, Clustering,  between corresponding components of ;
; Distance i not be as useful for highly Fast
P i Anomaly detection two vectors
correlated data
Measuring string 2 ;
: g Measures the number of positions at Only for same length strings,
Hamming similarity, : \ O(n)
i . which the corresponding symbols are May not be as useful for
Distance Error-correcting codes, ; A Fast
: different. continuous data
DNA sequencing
Tiveniditaii , S e o Measures the minimum nur}rlber of : : O(n*2)
: Measuring string similarity single-character edits required to More expensive for long strings
Distance s s Slow
transform one string into another.
3 3 Set similarity i 4
' Measures the similarity between two  Ignores magnitude of sets, May
Jaccard measurement, Text , 2 : : O(n)
Sriesrot . : sets by comparing their intersection  not be as useful for continuous
. Similarity analysis, recommendation ; Fast
and union. data
systems
2x 1 1 1 1
CEU ' Sarensen-Dice Measurmg 51mlle_1r1ty b Measures the similarity between two Me}y not o asusefl. for O(n)
. . Inilex sets, Ecology, Biology, i continuous data and Ignores Fast
Universidad Genetics magnitude of sets
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Non-linear classifiers

d(z,5) = /(@ -

§)' 571z - 9).

S=Covariance matrix
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Non-linear classifiers

3. Choice of k
« Smallk (eg, k= 1)
* \Very flexible.

* Low bias but high variance (sensitive to noise).
* Llarge k:
* Smoother decision boundary.

* Higher bias but lower variance.

* Rule of thumb: choose k == 4/n, then tune by cross-validation.

4. Curse of Dimensionality

* In high-dimensional spaces (e.g., thousands of gene expression features):

» Distances between points become less meaningful.
» All samples tend to be “equally far apart”.

* kNN performance deteriorates.

» Typical fix in bioinformatics: apply feature selection or dimensionality reduction (PCA, autoencoders)

before using kNN.
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Is a Person Fit?
Non-linear classifiers

Age <307

Classification tree
Yes? Mo?
1. Basic Idea .

& ceu

I - -
A tree-structured classifier. Eat's a lot Exercisesin

. . ., } of pizzas? the morning?
Each internal node: a decision rule on a feature (e.g., “Gene X > 2.57").

Each branch: outcome of the rule. \’ES?/\ND? TES?/\ND?
Each leaf: a class label (or probability distribution over classes). N .

Unfit! Fit Fit it!
Classification = follow the path from root to leaf. Unfit

2. Splitting Criteria
At each node, we must decide which feature and threshold best split the data.

* Gini Impurity (used in CART):

G = prk(l ) Zpk

where py = proportion of samples of class k in the node.

* Low (G = node is “pure” (most samples in one class).

* Entropy / Information Gain (used in ID3, C4.5):

K
> pilogs (pi)
k=1

* Splits chosen to maximize information gain: reduction in entropy.

Universidad 7 Both aim to create "pure” nodes where samples belong mostly to one class.
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Non-linear classifiers

iris versicolor iris virginica

petal length (cm) = 2. 45
gini = 0.6667
samples = 150
value =[50, 50, 50]
class = setosa

True \:‘alse

petal width (cm) = 1.75
gini=05

samples = 100 J
valuep [0, 50, 50] petal sepal petal  sepal

class = versmolor

==
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Non-linear classifiers

X2<0.537

A

X2<0.297 X1<0.11?

yes km

X1<0.637

X1<0.977

VS

Boundaries

X1<0.19?

X2<(0.407
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Non-linear classifiers
3. Interpretability

* Trees are easy to interpret:
* Each path is a set of if-then rules.
* Example in bioinformatics:
* |If “gene A expression > 5.2" and “protein B absent” — predict cancer subtype 1.

* Very useful when explainability is important (e.g., clinical decision support).

4. Overfitting and Pruning
* Overfitting:
* If we grow the tree fully, it can memorize the training data.
* Result: very low training error, poor generalization.
* Pruning:
* Cut back branches that do not improve generalization.
* Two approaches:
* Pre-pruning: stop splitting when node has too few samples or impurity reduction is small.
* Post-pruning: grow full tree, then remove weak branches using validation error.

* Result: simpler tree, better generalization.
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Non-linear classifiers

Random forests

Labelled

training set

Bootstrap subsample subsample subsample ves
sampling 1 2 3 n ///’
3 B .'_'
o b4 level 1

Building the trees ® o) n-mumzf’,
on a random set =

of features ) 0 - laval 3~ 13

& )

0 © ¢ ©00¢

Bootstrap Decision Tree-1 Decision Tree 2 Decision Tree 3 Decision Tree n
aggregation
Class & ClassB Class A Class n
l | | !
L hypothetical
Majority voting example of partition
‘ representation of
. classification tree
Final class
across levels
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Non-linear classifiers

Feature importance

Random Forest Feature Importance Plot (SHAP Values)

Ferritin

Triglyceride

Transferrin

Alkaline Phosphatase

Alanine Aminotransferase
Gamma-Glutamyl Transferase
Platelet Count

Albumin

Aspartate Aminotransferase
HOMA-IR

Features List (Top 15)

Gastro-Esophageal Reflux Disease
High-Density Lipoprotein

Body Mass Index

Total Bilirubin

Total Cholesterol

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Variable Weight on Outcome Prediction
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Non-linear classifiers

1. Impurity-Based Importance (a.k.a. Gini Importance)

¢ At each split in a tree, we measure how much the chosen feature reduces impurity (e.g., Gini index or
entropy).

* For a split s on feature j:
. nL ne . .
Al(s,j) = I(parent) — (—I(left) + —I(nght))
n n

. I(-): impurity (Gini or entropy).
* nyz,ng:samples in left/right child nodes.
* n:samples in parent node.

* Importance of feature j:

FI(j)= )  AI(s,j)
splits on j
* Averaged across all trees in the forest.

Intuition: a feature is important if it is often chosen to split, and those splits greatly reduce impurity.
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Non-linear classifiers

2. Permutation Importance

* Alternative, model-agnostic method.

* Steps:
1. Compute accuracy of the trained forest on the test set.
2. Randomly permute feature j across samples (break its relationship with the target).
3. Recompute accuracy.
4. Importance = drop in accuracy.

* |If accuracy drops a lot — feature was important.

» If accuracy barely changes — feature was not important.

Intuition: permuting an important feature destroys predictive structure.

& ceu
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Non-linear classifiers

3. Shapley values

For a model f, feature set N, and feature i:

o=y, BHEC SR s 0y - ps)
SCN\{i}

» S subset of features not including i.
« f(S): model prediction using only features in S.

» Weight: fraction of permutations where S precedes i.

Intuition: contribution of ¢ = improvement in prediction when adding %, averaged over all possible

feature orders.

Key Properties (Why It's “Fair”)
Efficiency: total contribution = difference between prediction and baseline.
Symmetry: if two features contribute equally, they get equal Shapley values.
Dummy: a feature that contributes nothing always has Shapley = 0.

Additivity: values can be added across models.

& ceu
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Non-linear classifiers
3. Shapley values

Shapley values explain individual predictions, not just global feature importance.

For a sample x:
f(z) = f(baseline) + } _ ¢i(x)

* Baseline = average prediction.

» FEach ¢;(x) = how much feature i pushed the prediction up or down.

Advantages
Theoretically grounded (game theory).

Works for any model (tree, linear, deep learning).

Provides local explanations (per sample) and global importance (average across samples).

Disadvantages
Computationally expensive: need to consider many feature subsets (2F).
Approximations (e.g., SHAP for tree ensembles) are used in practice.
Applications in Bioinformatics

Identifying which genes drive a disease prediction in a given patient.
Explaining why a sample was classified as resistant vs. sensitive to a drug.

- Providing interpretable explanations for complex ML models in biomedical contexts
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Non-linear classifiers
3. Shapley values

e ————————

How to interpret the shap summary

temp | 1147140

hum

44740 & oo EibEBEEDEe—

plot?

The y-axis indicates the variable
name, in order of importance from

season.WINTER | 220.756 e
I P | top to bottom. The value next to them
e s | is the mean SHAP value.
workingday WORKING DAY | 48.783 = * On the x-axis is the SHAP value.
o sep | 46208 - Indicates how much is the change in

weathersit. RAIN/SNOW/STORM

36.846

log-odds. From this number we can
extract the probability of success.
Gradient color indicates the original

mnth.FEB | 31.710 - e =
value for that variable. In booleans, it
Woekday.SAT | 30821 ™ will take two colors, but in number it
weekday.MON | 27.431 wap can contain the whole spectrum.
.o 2 250 - Each point represents a row from the
SHAP value (impact on model output) Original dataset.
Feature value _
Low High
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Non-linear classifiers

Naive Bavyes

1. Basic ldea

* A probabilistic classifier based on Bayes’ theorem:

Plin = PEB 2

» Goal: choose the class 7 that maximizes the posterior probability P(y|z).

* “Naive” assumption: features are conditionally independent given the class.
2. Mathematical Formulation

For input vector & = (z1, @2, ..., Tp):

p
P(ylz) o< P(y) | [ P(=;lv)
=1
e Prior: P(y) = class probability.
e Likelihood: P(z; 1) estimated from training data.
» Posterior: proportional to prior x likelihoods.
o Classification rule:
p
= a,rgma.xP HP z;ly)

& ceu
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Non-linear classifiers

px1A)
The probability
of observing x,

if x came from p(x|B)
the Class A The probability
distribution

of observing x,
" if x came from
the Class B
distribution

Gaussian Naive Bayes

(x—p4)lo, (x—pp)loy
z-score distance of x z-score distance of x
from Class A from Class B




Non-linear classifiers

3. Types of Naive Bayes
* Gaussian NB: assumes continuous features x; are Gaussian.
* Multinomial NB: common for text (word counts, k-mers in genomics).

* Bernoulli NB: for binary features (presence/absence of mutation, motif).

4. Why It Works Despite “Naive” Assumption
* Independence rarely holds in real data (genes are highly correlated!).

* But the model often still performs well in practice, especially when the number of features is very large.

* The independence assumption makes estimation feasible even with small sample sizes.

Strengths and Weaknesses

Strengths
* Very fast to train and predict.
*  Works well with high-dimensional data (common in genomics).
* Requires few training samples.

¥ Weaknesses
* Independence assumption often violated.
* Probabilities may be poorly calibrated (outputs can be overconfident).

* Less flexible than more complex classifiers.
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Ensemble methods

1. Basic ldea

* Instead of relying on a single classifier, combine many “weak learners” to form a stronger classifier.

* Principle: “Wisdom of the crowd” — multiple models, when combined, usually generalize better than one

model.

Advantages of Ensembles

Higher accuracy than single models.
Reduce overfitting (especially bagging/random forests).
Handle complex data distributions.

Disadvantages

Less interpretable (especially boosting and stacking).

Computationally more expensive.

Risk of overfitting if not tuned (especially boosting).
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Ensemble methods

(a) Bagging (Bootstrap Aggregating)

* Train multiple models on bootstrapped samples of the training set.

* Aggregate predictions by majority vote (classification) or averaging (regression).

* Reduces variance, stabilizes unstable learners (like decision trees).

. Example: Random Forests.
Original data

v v v
Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample n
ecooo0o00 000000 |(ee0ceeoe
o000 O0O (N N N N N 0900000
¥ + B
Model 1 Model 2 Model n
© AIML.com Research J

Ensemble Model
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Bootstrapping
(Sampling with replacement)

Model Training

(Different models such as Decision
Trees, SVM, Logistic can be used)

Aggregation

(Classification: Majority vote is taken
Regression: Average of outputs)

Bagging




Ensemble methods

(b) Random Forests

* Extension of bagging applied to decision trees.
* At each split:
* Select a random subset of features instead of all features.
» Decorrelates trees — more diversity — stronger ensemble.
* Provides feature importance measures.

*  Widely used in bioinformatics (gene expression classification, biomarker discovery).

Dataset

Fearure selection
———————————————————— i———————————————————“l
Randomized fearures |
|
! : } ! ! |
Features Features Features Features |
! ! ! ! ! |
|
|
|
|
|
Tree-1 Tree-2 Tree-3 Tree-n |
|
|
|
|
|
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Ensemble methods
(c) Boosting
* Sequentially train weak learners (often shallow trees).
* Each new learner focuses on samples misclassified by previous ones.
* Final prediction: weighted vote of all learners.
* Reduces bias and variance, often very accurate.
* Key algorithms:
* AdaBoost (Adaptive Boosting).
* Gradient Boosting Machines (GBM).
* XGBoost, LightGBM, CatBoost (modern scalable implementations).

099e o 09 o0
0ed00g 202 o4 o0 ©
o200 o % 7 Q
09.® 0a® e ® o
o0 o0 ory )
Original Data Weighted Data Weighted Data
Ensemble
Classifer
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Ensemble methods

AdaBoost
1. AdaBoost (Adaptive Boosting)

*» Core idea: build an ensemble of weak learners (often shallow decision stumps).
* Training process:
* Start with equal weights for all training samples.
* Train a weak learner — compute its error.
* Increase weights of misclassified samples (make them "harder to ignore”).
* Next learner focuses more on previously misclassified data.
* Final model: weighted vote of all weak learners.

* Loss function: based on exponential loss.

Exponential Loss (AdaBoost)
L(y, f(z)) = exp(—yf(z)), ye{-1,+1}

* Penalizes misclassified points exponentially.
* Correct predictions with large margin — very small loss.
* Wrong predictions — rapidly growing loss.

* This is why AdaBoost focuses on misclassified samples in later iterations.
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Ensemble methods
XGBoost

* A modern, highly optimized implementation of gradient boosting.

* Key differences from AdaBoost:

Aspect AdaBoost XGBoost
Optimization principle Reweights samples — minimizes Directly optimizes a differentiable loss (e.g.,
exponential loss implicitly. logistic loss, squared error) via gradient
descent.
Weak learner Usually decision stumps (depth = 1). Uses deeper CART trees (depth 4-10
common).
Regularization No explicit regularization — risk of Built-in L1/L2 regularization on weights to
overfitting. control complexity.
Handling missing values Not explicitly handled. Handles missing data automatically by

learning default split directions.

Computation Sequential, slower for large data. Highly optimized (parallelization, sparsity-

aware, cache-efficient, GPU support).

Interpretability Simple, since stumps are used. More complex, but still provides feature

importance and SHAP values.
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Ensemble methods

(d) Stacking (Stacked Generalization)
* Train different types of classifiers (e.g., SVM, logistic regression, trees).
* Combine their outputs using a meta-learner (often logistic regression).
* Flexible — can exploit strengths of different models.

* More complex, but often achieves state-of-the-art results.

Different Subsets L]
of the Training Data Base Models i

ZZI:: ﬁ . Most Frequent or = :
=== P \ Average Predicton || @~~~ % ~ % Prediction
== & . . = -
= —)"@\ —> {7 = rredtin e & -
""" 7 i EEE e Eel
P R The training set 3
S & e is modified based
===== % / Bagglng on the predictions - - — - -

Different Models
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Challenges in Bioinformatics

1. High-dimensionality vs. Small Sample Size (p > n)

* In many omics datasets:
* p = number of features (e.g., genes, SNPs, proteins) can be thousands or millions.
* 1 = number of samples (patients, experiments) is often dozens or hundreds.
» Consequences:
* Models can easily overfit — memorize the training data but fail to generalize.
* Distances (in kNN) and covariance estimates (in LDA/QDA) become unreliable.
* Solutions:
* Feature selection (filters, wrappers, embedded methods).
* Dimensionality reduction (PCA, autoencoders).

* Regularization (LASSO, ridge regression).

7 Example: Gene expression data with 20,000 genes but only 100 patients.
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Challenges in Bioinformatics

2. Noisy Data

* Bioinformatics data are prone to measurement errors:
* Sequencing artifacts, dropouts in single-cell RNA-seq.
* Variability between labs, instruments, or protocols.
» Consequences:
* Noise can mask true biological signals.
* (lassifiers may pick up spurious correlations.
* Solutions:
» (Careful quality control and data cleaning.
* Robust classifiers (Random Forests, SVMs with soft margins).

* Cross-validation to ensure stability of results.

7 Example: Technical noise in RNA-seq can look like differential expression.
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Challenges in Bioinformatics

3. Class Imbalance
* Rare diseases, rare mutations — one class is much smaller than others.
» (Consequences:
* (lassifier biased toward the majority class.
* Accuracy misleading (e.g., 95% accuracy by always predicting "healthy”).
* Solutions:
* Resampling: oversample minority class (SMOTE), undersample majority.
*» Cost-sensitive learning: higher penalty for misclassifying minority.

* Use metrics beyond accuracy: precision, recall, F1, ROC-AUC.

7 Example: In a cancer study, only 5% of patients respond to a given drug.
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Challenges in Bioinformatics

4. Interpretability vs. Accuracy Trade-off
* Simple models (LDA, logistic regression, decision trees):
* FEasy to interpret, but may miss complex non-linear patterns.
*» Complex models (Random Forests, Boosting, SVM with RBF):
* Higher accuracy, but often "black-box” models.
» (Challenge in bioinformatics:
» Clinicians and biologists often require interpretability to trust predictions.
* Sometimes a slightly less accurate but interpretable model is more useful.
» Solutions:
* Use explainable Al tools: feature importance, SHAP values, LIME.

* Balance accuracy with interpretability depending on application.

7 Example: Logistic regression provides clear odds ratios for biomarkers, while XGBoost may classify better

but is harder to interpret directly.
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Overview

The Curse of Dimensionality
In bioinformatics we routinely deal with very high-dimensional data:
* Gene expression microarrays or RNA-seq: tens of thousands of genes per sample.
* SNP arrays: millions of genetic variants per individual.
* Proteomics and metabolomics: thousands of features, often with missing values.

As the number of features (dimensions) grows:

* Data points become sparse in high-dimensional space — similarity measures (e.g., Euclidean

distance) lose discriminative power.

* Volume grows exponentially — we need exponentially more samples to cover the space.
10000 points from a normal distribution

* Many dimensions may contain noise rather than signal.
F' 3

10°—

Perfomance
=
Q
2,
Hl

=)

Euclidean distance
=
(=]

Number of Features/Dimensions

"~ 7 |%-® Distance to nearest neighbor
~i | %% Distance to neighbor #10 .
. |%-9 Distance to furthest neighbor |

Optimal number of features
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Overview

Problems with High-dimensional Data
Computational cost
* Algorithms scale poorly with the number of features (e.g., covariance matrix computation in PCA,
training deep models).
* Storage and memory requirements explode for omics datasets.
Overfitting in predictive models
* With many more features than samples (p >> n scenario, typical in biology), models can fit noise
rather than signal.
* Leads to poor generalization to new data (e.g., biomarkers that "work” only in the discovery cohort).
Difficulty in visualization and interpretation
* Humans can visualize only 2D or 3D.
» Without dimensionality reduction, it's impossible to see structure such as clusters of cell types or

disease subgroups.
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Overview

Benefits of Dimensionality Reduction
Data compression
* Represent thousands of genes with a handful of principal components.
* Useful for downstream storage, faster computation, and efficient search.
Noise reduction
* By projecting onto the dominant axes of variation, we filter out measurement noise and batch
effects.
* Especially valuable in high-throughput experiments where technical noise is common.
Feature extraction and biological insight
* Latent dimensions can correspond to biological processes (e.g., immune activation, cell cycle,
metabolic states).

* Helps to identify biomarkers, stratify patients, or reveal hidden structure in the data.
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Overview

Aspect Feature Selection Feature Extraction

Definition Keep a subset of original features Create new transformed features

Interpretability High (original biological features Often low (latent variables, PCs hard to
preserved) interpret)

Computation Simpler, cheaper Sometimes expensive (matrix

decomposition, neural nets)

Risk May ignore feature interactions May obscure biological meaning
Example in Bioinformatics Selecting 50 most variable genes in Using PCA to reduce 20,000 genes to 20
cancer study components

T

We saw this in the
previous lecture
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Overview

Feature extraction

* Idea: Instead of picking features from the original set, we construct new features that capture the
essence of the data.
* Goal: Represent the data in a lower-dimensional space while retaining most of its variance or structure.
Linear methods
* Principal Component Analysis (PCA): new axes that maximize variance.
* Linear Discriminant Analysis (LDA): new axes that maximize class separability.
Nonlinear methods (Manifold learning)
* t-SNE / UMAP: nonlinear embeddings that preserve local/global structure.
* Autoencoders: neural networks that learn compact latent representations.
Advantages
* (Can uncover hidden patterns not obvious in the original features.
» Often very effective for visualization and compression.
Limitations

* New features (principal components, latent variables) are often not directly interpretable biologically.

* Risk of losing important signal if reduction is too aggressive.

& cru
Universidad 7
San Pablo



Linear dimensionality reduction
Principal Components Analysis (PCA)

Intuition
* Goal: Find a new coordinate system (set of axes) in which:
* The first axis captures the maximum variance in the data.
* The second axis captures the maximum variance orthogonal to the first.
* And so on.
* The new coordinates are called principal components (PCs).
* By keeping only the first few PCs, we approximate the dataset in fewer dimensions while retaining most
of the variability.
Geometric Interpretation
* Imagine gene expression profiles of thousands of genes plotted in a 20,000-dimensional space.
* PCA finds the directions in that space where samples differ the most.
* Each sample is then projected onto those new axes (principal components).

* Instead of describing a patient by 20,000 genes, we can describe them by a handful of PCs (e.g., PC1,
PC2).
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Linear dimensionality reduction
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Linear dimensionality reduction

Given a dataset with n samples and p features, represented as a matrix

11 T2 coe L1y

Ia1 Ta9 R o
X = . . . . ' X e R*P.

[ Tn1 Lha - .T.np_

Each row corresponds to a sample (e.g., a patient or a cell), and each column to a feature (e.g., gene

expression level).

Step 1: Compute the mean of each feature

For feature j (column 7 of X):

1 n
Hi= th‘j-

i=1

This is the average expression of gene 7 across all samples.

& ceu
Universidad 1 O
San Pablo



Linear dimensionality reduction
Step 2: Center the data
We subtract the mean from each entry in that column:
i‘éj = ‘:"-'”éj — _;'.LJ.

The centered data matrix is

X=X-1,,u",
where 1,, is a column vector of ones of length 1, and p is the vector of feature means.

Result: Each feature now has zero mean, which ensures that PCA captures variance and not absolute offsets.

Step 3: Compute the covariance matrix

Using the centered matrix X

o Y € RPFP
*» Entry X is the covariance between feature j and feature k.

» The diagonal entries X;; are the variances of each feature.
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Linear dimensionality reduction

Step 4: Eigenvalue Decomposition

We now solve the eigenvalue problem for the covariance matrix:
Yo, =Nv;, i=1,...,p.
» v; € R? are the eigenvectors (principal directions, or loadings).

* A; = 0 are the eigenvalues, corresponding to the variance explained by each principal component.

Since X is symmetric and positive semi-definite:

» All eigenvalues are real and non-negative.

» FEigenvectors form an orthogonal basis.

Step 5: Ordering Components

o
(=]
]

* Sort eigenvalues in descending order:

o~
o
1

AL Z A = s 2 A
* The first eigenvector vy corresponds to the direction of maximum variance.

e The fraction of variance explained by component i is:

Percentage of explained variances
3
;

Ai
VarExpl(i) = = -
j=1 Aj &

12% 1.1% 0.7% 059

1 3 3 4 5 6 T8 9 Ao
. . . . . . Dimensions
We often visualize this with a scree plot to decide how many components k to retain.
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Linear dimensionality reduction

Step 6: Projection onto Principal Components
To transform the original data into the lower-dimensional space:
Z =XV,

where:

« X € R"™7 s the centered data.
s Vi € RP*F contains the first k eigenvectors as columns.

s 7 € R"*¥ are the new coordinates (principal component scores).

Each row of Z represents one sample in the reduced k-dimensional space.

Step 7: Reconstruction (Optional)

If we keep only k << p components, we can reconstruct an approximation of the original data:
X - ZV.;.T + 111.‘-51_1

where we add back the feature means.

* This reconstruction minimizes the squared error between the original data X and X.

* In practice: dimension reduction is a trade-off between compression and accuracy.
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Linear dimensionality reduction

Step 8: Practical Notes

* In practice, we often use Singular Value Decomposition (SVD) of X rather than explicitly computing 2.
X=Uuzv'

Here, columns of V' are the eigenvectors, and the squared singular values correspond to eigenvalues.
* SVD is numerically stable and efficient when n <€ p or p < n, which is common in bioinformatics (e.g.,

100 samples x 20,000 genes).
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Non-linear dimensionality reduction

Manifolds

Motivation

Linear methods like PCA assume that the variability in the data can be well represented as a linear
combination of features.
But in many biological datasets, the structure is nonlinear:
» Single-cell RNA-seq data often follows trajectories (e.qg., cell differentiation paths).
* Protein conformations can lie on curved manifolds in high-dimensional structural space.
* Population genetics data may form clusters connected by nonlinear relationships (migration,
admixture).
The idea of manifold learning:
+ Data lies (approximately) on a low-dimensional nonlinear manifold embedded in a high-
dimensional space.

* Nonlinear methods try to recover that manifold for visualization and analysis.
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Non-linear dimensionality reduction

What is a Manifold? (Informal Introduction)

* A manifold is a space that may be curved and complex in high dimensions, but if you zoom in close
enough, it looks flat like ordinary Euclidean space.
Everyday Examples
* The surface of the Earth:
* Globally it's curved (a sphere).
* Locally (in a small city or neighborhood), it looks flat and can be described with 2D coordinates.
* Arolled sheet of paper (Swiss roll):
* Globally it's curled up in 3D.
* Locally it's still a flat 2D sheet.
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
t-SNE (t-distributed Stochastic Neighbor Embedding)

Intuition
* Goal: Map high-dimensional data (e.g., thousands of genes) into 2D or 3D while preserving local
neighborhoods.
* Think: if two cells look similar in gene expression space, they should appear close together in the 2D
plot.
¢ Unlike PCA (which preserves global variance), t-SNE focuses on who is close to whom.
*  Widely used for visualization of clusters in single-cell RNA-seq, flow cytometry, and other high-

dimensional bioinformatics data.

Formal Construction

1. High-dimensional similarities

* For two points z;, x; € R?, define the probability that x; is a neighbor of x;:

- exp(—||z; — z,]|2/20?)
I s exp(— ||z — 2 [2/207)°

* Here, g; is chosen so that the “effective number of neighbors” matches a user-defined perplexity

parameter (= neighborhood size).

¢ The joint probability is symmetrized:

_ Djji +DPyj
Yoo
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Non-linear dimensionality reduction

2. Low-dimensional similarities
* Each point is mapped to y; € R? (or ).

* Define similarities with a Student-t distribution (heavy tails prevent crowding):

-1
(L+ llyi — %)
Zk?ﬂ (14 llye — y1||2)_1

qij =

3. Optimization
* Find embeddings {yt-} that minimize the Kullback-Leibler divergence between the two

distributions:
C =KL(P | Q) =} pijlog 2.

* Optimization is done with gradient descent.
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Non-linear dimensionality reduction

Key Features
* Preserves local neighborhoods: clusters remain intact.

* Student-t distribution in low-dim space avoids the "crowding problem.”

* Perplexity parameter controls the balance between local vs. more global structure.

Limitations

* Global distances not preserved: two clusters far apart in 2D may not be as distant in reality.
* Non-deterministic: different runs may yield slightly different embeddings.
* Hyperparameter sensitive (especially perplexity).

* Computationally expensive for very large datasets (though approximations exist).

Applications in Bioinformatics

* Single-cell RNA-seq: visualize cell populations and subtypes.
* Flow/mass cytometry: cluster immune cell phenotypes.

* Metagenomics: detect microbial community structure.
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Non-linear dimensionality reduction

a Macosko et al.®* b Shekhar et al.?® C Harris et al.?®

https://www.nature.com/articles/s41467-019-13056-x
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Non-linear dimensionality reduction
UMAP (Uniform Manifold Approximation and Projection)

Intuition
* Goal: Like t-SNE, embed high-dimensional data into 2D/3D while preserving neighborhood structure.
» Difference: UMAP is based on manifold theory and algebraic topology, aiming to preserve both local
and global structure.
* Think of it as: "find a fuzzy graph of neighborhoods in high-dim space, then optimize a low-dim
embedding that preserves this graph.”
*  Widely adopted in single-cell transcriptomics because it often gives clearer trajectories and faster

computation than t-SNE.

Formal Construction (sketch)

1. High-dimensional fuzzy simplicial complex
* For each data point ; € R?, find its k-nearest neighbors.

* Define edge weights using a smooth exponential kernel:

max(0, d(z;, z;) — ﬂi)) ?

T

T.Ut'j = €exXp (—

where:
o d(xz;, Ij} = distance between points (e.g., Euclidean).
» p; = distance to the closest neighbor (local connectivity).

* oy = scaling parameter ensuring smooth decay.
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Non-linear dimensionality reduction

2. Low-dimensional embedding graph
* Place points y; € R? or R?,

* Define a similar fuzzy graph in the low-dimensional space using:

wi; = (1+allyi — ?J:sz)

where a, b are parameters controlling the shape of the curve (learned from data).

3. Optimization

* Minimize the cross-entropy between the high-dimensional and low-dimensional graphs:

W, ; 1 — w;
C:Z{wﬂlogiﬁ_)—i_( zj)logl_ J:|'
i, B

* This ensures that strong connections in the high-dim graph are preserved in the low-dim

embedding.
Key Features

* Local + global preservation: captures both clusters and trajectories.

* Speed and scalability: typically faster than t-SNE, works well for millions of points.
* Deterministic (given fixed random seed).
* Parameters:

* n_neighbors : controls local vs. global balance (like t-SNE's perplexity).

* min_dist : controls how tightly points are packed in the embedding.

& ceu
Universidad 2 3
San Pablo



PCA 2
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Non-linear dimensionality reduction

Limitations

* Less interpretable mathematically than PCA (nonlinear).

» Hyperparameters can affect visualization strongly.

* Like t-SNE, distances in 2D/3D are not absolute: structure is qualitative, not quantitative.

t-SNE

t-SNE 2

UMAP 2

PCA1
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Non-linear dimensionality reduction

Autoencoders
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Non-linear dimensionality reduction

Epoch 0, accuracy: 0.171 Epoch 20, accuracy: 0.752 Epoch 40, accuracy: 0.817

T <

Epoch 80, accuracy: 0.851 Epoch 100, accuracy: 0.856




Non-linear dimensionality reduction

Method Reconstruction possible? How? Bioinformatics interpretation

PCA Yes Linear projection + inverse Compress omics data, denoise,
approximate reconstruction of

expression profiles

t-SNE ¥ No Not a projection, embedding only Only for visualization (clusters, cell
types)
UMAP ¥ /== Not standard (only with Embedding preserves Visualization and manifold discovery
parametric UMAP) neighborhoods, but no inverse
Autoencoders Yes Neural network encoder—decoder Nonlinear compression and

reconstruction of omics data
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Practice

https://github.com/sdawley 1/ML-Cancer-Classification/blob/main/Final%20Project.ipynb

This dataset comes from a proof-of-concept study published in 1999 by Golub et al. It showed how new cases of cancer could be classified
by gene expression monitoring (via DNA microarray) and thereby provided a general approach for identifying new cancer classes and
assigning tumors to known classes. These data were used to classify patients with acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL).

There are two datasets containing the training/initial ( training , 38 samples) and test/independent ( independent , 34 samples) datasets
used in the paper. These datasets contain measurements corresponding to ALL and AML samples from Bone Marrow and Peripheral Blood.
Intensity values have been re-scaled such that overall intensities for each chip are equivalent.

References

Golub, et al.

https://www.science.org/doi/10.1126/science.286.5439.5317url_ver=739.88-
2003&rfr_id=ori%3Arid%3Acrossref.org&rir_dat=cr_pub++0pubmed&amp;

Information on data set

https://www.kaggle.com/crawford/gene-expression
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Overview
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Overview
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Overview

Stochastic optimization

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

SlngieMode| _ _ GE'“Snapshg‘tEnsemble o |
: _.StandaqfqLR-Sche_dul;e.._m“g-.__; . 04 Cyclic LR Schedule: gAML

o P Loty ) ' YT Dt 024
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Overview

Why deep learning now

« Many parameters require many training examples (big data).
« GPUs have largely accelerated the calculations:
— Tensorflow/Keras (Google)
— Pytorch (Facebook)
— Jax (Google)
« Advances in stochastic optimization.
« Advances in network architectures.
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Overview

Architecture
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Deep neural network

Architecture
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Overview
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Overview

A Brief History of Al with Deep Learnmg
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Overview

DL C NN C ML C Al

Artificial Intelligence (Al)

* Al refers to a set of technigue that enable computers Machine Learning
to mimic human behavior.

Machine Learning (ML)

ML is a subfield of Al , which enables machines to Neural Networks
learn and make prediction based on data.

Neural Networks (NN)

* NN are a subfield of ML that use artificial neural Deep Learning
networks to extract patterns from data, inspired by
the human brain.

Deep Learning (DL)

* DL is a subfield of NN that utilizes multi-layered
neural networks to achieve high performance on
complex tasks.

Artificial Intelligence

.tt -//mediu
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Basic networks

Loss Functions in Deep Learning

Role of the loss function

* The loss function measures how far the network’s predictions are from the true labels.

* Training a neural network means minimizing this loss by adjusting the weights through optimization

(e.g., gradient descent).

* The choice of loss function depends on the task type (regression vs. classification).

1. Regression Losses
When the output is a continuous value (e.g., predicting gene expression levels, protein stability scores):

* Mean Squared Error (MSE):
1 N
_ P RY: y
L= Z;(ya )

Penalizes large errors heavily (quadratic growth). Smooth, differentiable, widely used.

* Mean Absolute Error (MAE): Error ——>

1 N
LZﬁZly-i—ﬁH

i=1

More robust to outliers, but less smooth for optimization.
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Basic networks

2. Classification Losses

When the output is categorical (e.g., classifying tumor vs. normal samples, predicting protein family):

* Binary Cross-Entropy (logistic loss, for 2 classes):

N

3 [uilog(5) + (1 — i) og(1 - 7))

i=1

1

L=——
N

Encourages predicted probability p; to be close to the true label y; € {0,1}.

» Categorical Cross-Entropy (multiclass): Class A4
1 e . :
L=—% ; ; Yir log(pix) %
Here y;1 is 1 if sample 4 belongs to class k, else 0. Binoxf‘lf Class B

Used with softmax outputs, where Py, are predicted class probabilities.  o|agsification Moole.l

|
True lakel y — ]_ m‘moﬁty: y — O majority

I S e OE(p’y) — {

Prol:abil?‘tt/ ~
output Y= 03

log loss —log(03)

& ceu
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Basic networks

A single neuron

2 T
x! m— dentity
m— ReL
— L:a::JyReLU
151 |emgGeLU
m— LOgistic
y=g (WO +2wix! )
i > 2
Axon: Output to ¥
another neuron -
Cell body:
Dendrites: Inputs Linear weighting
from other neurons
X
1 x=0
ulx) = RELU(x) = xu(x)
0 x<0

Leaky RELU (x) = xu(x) + axu(—x)
Logistic(x) = 1/(1 + exp(—x))
GELU(x) = xCDFggyssign (X)
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Basic networks

Multilayer Perceptron

lllustrative example of Multilayer perceptron, a Feedforward neural network

Input layer Hidden layer Output layer
w
input X .-, 1
w, ok X,, X,  input data features

w, :weights of the network

h,. h,: nodes in the hidden layer

w

w w Y, : output variable

input X e

. £ AIML.com Research

w

mlgel This example consists of: (a) an input layer with two input nodes and
bias a bias node, (b) one hidden layer with two neurons, and (c) an output

layer with one neuron
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Basic networks

Forward pass
Input layer Hidden layer Output layer

Xl
wlk
Output = a,
Target =y
=0 5*y-13 )2
Loss (L) =0.5%(y-a,)
w')
Activation functions like Loss calculation using
X, Sigmoid, Softmax used in the Mean Squared error
output layer
Activation functions like ReLU, © AIML.com Research

tanh, Maxout can be used

& ceu
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Basic networks

LLoss function
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Basic networks

Backward pass

Backpropagation
Goal

» Compute gradients of the loss with respect to each parameter (weights, biases).

* Needed to update parameters via gradient descent.

Key Idea

* Neural networks are compositions of functions:

g = f(z;0)

e Loss function:

L(6) = L(9,y)

* Backpropagation uses the chain rule to compute %.

& ceu
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Basic networks

Steps Input layer Hidden layer Output layer

1. Forward pass
s Input flows through the network.
« Compute activations layer by layer until output 4.
Output = a,

s Evaluate the loss L. Target = y

2. Backward pass Loss (L) = 0.5(y - a,)°
= Start at the loss and propagate gradients backwards.

s For each layer:

OL OL Oda 0z . i .
OW  Ha Oz OW -....y Theseweights are
______ """ updated in backprop

Where z = Wﬂ? + b, a = U(Z} ¢ -"'"'_________________________________________________"T-E'-'_-m_

3. Update parameters

* Gradient descent step: e In stochastic gradient descent, weights (w, ) are updated as below:
w, o= w +Aw,
if i if
oL Aw,=-n* 6L(wﬂ)/6wq,

where 1) is the learning rate and aL(wr.’) / awﬁ.is the gradient of loss w.r.t the model weights

¢ Intermediate variables calculated during forward prop (z , z , z,a,a, aq) are used for
gradient calculation aL(wq) / awu

& ceu
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Basic networks

Inputs enter Input has
Forward pass the input Layer weights
OQutputsare

@ assigned to it
predicted Predicted

Inputs outpet
@ Outputs ® Error - difference

b between predicted
® output and actual

L output

Output

InputLayer Hidden Layer Output Layer
Error is sent back to
each neuron in backward
Gradient of error is @ direction
calculated with respect to
Backward pass each weight
Outputs Error - difference
. ——+  Error— betweenpredicted
Predicted output and actual
output output

Input Layer Hidden Layer Output Layer
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Basic networks

Gradient Descent

¢ Update rule:

6«86 —nVyL(0)
« 17 = learning rate (step size).

* Uses the full dataset — computationally expensive.

Stochastic Gradient Descent
* Instead of all data, update with one sample (or a small batch) at a time.

* Update rule for sample i:

0« 0 —nVeL(f(2:;0), )

s Faster, introduces noise in updates (helps escape local minima).

Mini-batch SGD
* Balance between efficiency and stability.

s Use batches of size B:

66— néZV&ﬁ(f(mi;g)syi}

i=1

& ceu
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Hyperparameters

Learning rate 7): too high — divergence, too low — slow learning.

Batch size: small — noisy but fast, large — stable but expensive.




Loss

0.70

Basic networks

Loss Curves
T T

0.65 H

0.60 -

0.55

0.50

0.45 -

0.40 +

— Training loss
— Validation Loss |-

0.35
0
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Regularization

Why?
* Deep networks have millions of parameters — risk of overfitting.

* Regularization = techniques to improve generalization.

1. Weight Decay (L2 Regularization)

s Add penalty on large weights:
penalty g g Overfitting zone

Leg=L+X) w}

J
« Encourages smaller, smoother weights. generalization
»  Widely used (default in most frameworks). training i S eReralization gap
error I R e i e s Y.
2. Dropout optimal Capacity
* Randomly "turn off” neurons during training (with probability p). capacity
* Prevents co-adaptation of features.
» At inference: scale activations to use the full network. 7
3. Early Stopping / Dropout
* Monitor validation loss. Jlan
* Stop training when validation loss stops decreasing. KQ—OQ
* Simple and very effective.

. Dropped
activations
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Regularization

4. Batch Normalization
¢« Normalize activations within a mini-batch.

¢ Reduces internal covariate shift.

* Acts as both accelerator (faster convergence) and regularizer.

Per-feature mean and variance (across the batch)

—
.

For feature j:

| M 1 M
Hi= 37 izz;fl?a'ja 0’? =M ;(i“ij - pj)’

. Tij — Wy / Batch Norm \

2. Normalization

Ti; =
(}‘2 —|— € Features Mean and Std Dev i Scale and Shift Features
J e E or———m—_
w | * eatures : 9 Features : @
3. Scale and shift (learnable parameters) [ R S e i ' . =
B pissdeadondond | TR oo [N | @
~ = =
- ] . o bl ) e F ] i S 1 b Ll | T
y't_} Tj’ [5] + 18_1 Al BN;
4. BatchNorm output
_ (Movi
BN(EEJ) = Yij Moving Average Features
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Architectures

Convolution Operation
* Instead of connecting every input to every neuron, a filter (kernel) slides over the input.
* Each filter detects a specific local pattern (edges, motifs, secondary structures).

* Formula for 2D convolution (image-like input):

(I+K)(i,j) =YY I(i+m,j+n)K(m,n)

m mn

where I = input, K = kernel (shared weights).

Source layer

Convolutional

kernel
\ Destination layer
(0] [k

-1
211

2|0 5

'1\

w|lo|wn|mx n—ufw slw
o|Nn|o| s L} olw|~
o|o|w mﬁa N|ls o
Nmlo|o N/O‘t sluw oo/
a|lw|rr|lw/|o|~w]|~ N/
N N Nfo Nfjo | o |-
n| = w/on | o w/u

~0.]
9
7
2

s
0
6
3

(-1x5) + (0x2) + (1x6) +
(2%4) + (1x3) + (2x4) +
(1x3) + (-2x9) + (0x2) =5
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Architectures

Sobel Edge Detection

-1 0 1
Ge=1-2 0 2| %I
-1 0 1
=1 =3 =i
Gy,=10 0 0O I
12 1

® Find pixels with large gradients

G=4/62 1G>
\

Pixel-wise operation on images
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Architectures

Pooling operation

Motivation

» After convolutions, feature maps are often still large.
* Pooling reduces dimensionality while keeping the most important information.

* Makes the representation more robust to small shifts/noise in the input.

1. Max Pooling
» Takes the maximum value in a local patch. .
* Keeps the strongest activation (most confident feature detection). i pOOhng
¢ Formula (patch size p X p): ~ 9l 7
Yi; = Max Tiitm,j+n 8 7 5 .
(m,n)epxp 2x2 pooling, 13| 14
2. Average Pooling 121957 stride 2
¢ Takes the average of the patch. 131 2 (10l 3
» Smooths the representation, keeps overall intensity. Average pooling
* Formula: 914|5|14 9 5
1 X
Yij = — Z Litm,j+n 7 s
(mn)ep=p
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Architectures

Convolution Neural Network (CNN)

nput L+~ [ Output
— Pooling Pooling Pooling P
B - Horse
- | - Zebra
. | - Dog
NS : SnftM;?x
Convolution Convolution  Convolution =L T:Etrl'uﬁitéonn
Kernel R;-LU R;-LU R;-LU Tgtteﬁ'rn
Y Fully
~ Feature Maps '—COE;yeecrtedg
Feature Extraction Classification Eﬁ‘s’gf‘;ﬂ't'fg':

Universidad
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Weight Sharing
In fully connected networks, each neuron has its own set of weights.

In CNNs, the same kernel (set of weights) is applied across the whole input.

This means:

¢ One filter detects the same feature (2.g., an edge, a DNA motif) at any position in the input.

* Greatly reduces the number of parameters.

s Gives the network translation invariance: it doesn't matter where the feature occurs, only that it

occurs.
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Architectures

Conv-1
VGG-16 CNN Architecture
Conv-2
Conv-3
Conv-4
Conv-5
. FC-6 FC-7 FC-8
14 % 14 % 512 Ix1x4096 1x1x1000
28 x 28 x 512
56 % 56 x 256 TxTx3512
AN
12/x 112 x 128 @ convolution+ReLU
@ max pooling
@ fully connected+ReLU
L/

224 x 224 x 64
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Architecture

Local receptive field

NN A
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u
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Architectures

Recurrent Neural Networks (RNNs)

Motivation

* Standard neural networks assume independent inputs.
» Sequences (text, genomes, signals) have dependencies over time/position.

* RNNs introduce recurrence: the hidden state carries information from the past.

.
.
.

(a) Recurrent Neural Network (b) Feed-Forward Neural Network

& ceu
Universidad 3 1
San Pablo




Architecture

Unfold IW IW IW
\Y
v [ Jw (e Jv[lhe )
v [u [u

Recurrent Neuron

1. Hidden state update

h; = t&ﬂh{UX; + th_])
2. Output (before loss)

o= Why

3. Loss at each step (depends on task, e.qg., classification with cross-entropy)

L, = ﬁ{ﬁrsyr)
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Architecture

The problem with basic RNNs
* RNNs are trained with Backpropagation Through Time (BPTT).

* At each step, gradients are multiplied by the recurrent weight matrix V.
» If eigenvalues of V' are < 1, gradients shrink exponentially — vanishing gradients.
» If eigenvalues of V" are > 1, gradients grow uncontrollably — exploding gradients.
* Asaresult:

* RNNs can learn short-term dependencies (a few steps).

* They fail to capture long-term dependencies (e.g., motifs far apart in DNA, long protein domains,

long sentences).
The LSTM solution (Hochreiter & Schmidhuber, 1997)

* Introduces a cell state ¢; that acts like a “memory conveyor belt”.

* Adds gates (input, forget, output) that regulate information flow.

¢ Crucial: the cell state allows gradients to flow unchanged across many steps — solves the vanishing
gradient problem.

* Result:
* (Can learn long-range dependencies.

* Training is more stable.

*» Became the backbone of sequence modeling for two decades (until Transformers).
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A
Architecture Forgetgate _Input gate
C.y _..4—’1—.—. e
Long Short-Term Memory (LSTM) | i +
Inputs i E i
s Current input: x; i J) E if 1) et
= Previous hidden state: h;_ i - E i - o
* Previous cell state: C;_4 I, [P p—— u--.l ..... .l--- .--1____ - .
1. Forget gate T
Xt

Decides what fraction of the previous cell state to keep:

fo=0(Wy - [he-1, 2] + by)

2. Input gate

Decides how much new information to write:

* (Candidate cell content:

éﬁ = tanh{Wc : [ht—laﬂ?a] +b,)

* Input gate activation:

1 = {T(H;';; ' [hi—la :EE] + bﬂ)

& ceu
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AI‘C h ite Ctu Fe Forget gate  Input gate Output gate

- -
3. Cell state update : i t E i
Combine the "old memory” and the “new candidate™ i E i E i
o || em| e
Ci=fioC1+14 6C | b il
: g |, 6 tanh, o
S R et St St S R
hf—]—.- -I -l 1 > hz
4. Output gate ;r
Xt

Controls how much of the cell state is exposed as hidden state:

* Qutput gate activation:

o, =o(W,- [ht—ls mr] + b,)
* Hidden state update:

h.; = o ta.nh(c;)

Limitations of RNNs/LSTMs

* Sequential processing: must handle tokens one after another — slow, hard to parallelize.

* Long-range dependencies: information must pass through many steps — still prone to forgetting.
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Architecture

Transformers

Core Idea of Transformers (Vaswani et al., 2017)

* Attention mechanism: each element in the sequence can directly attend to all others, no matter their
distance.
* Replace recurrence with parallel attention layers.
* This enables:
» Parallel training (all tokens processed at once).
* Direct modeling of long-range dependencies.

» Scalability to very large models (e.g., protein language models, AlphaFold, GPT).

Key Concept: “Attention is All You Need"”

* Every token computes a weighted combination of all other tokens.
* The weights represent relevance (learned by the model).

* Result: flexible, global context capture.
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Architecture

Output
Probabilities

(
Add & Norm
Feed
Forward
' 1 ~\ | Add & Norm |<_:
Al AN Mutt-Head
Feed Attention
Forward T 7 Nx
—
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At At
e J \_ p—
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)




Attention

Can you me help this sentence to translate

[ L

Kannst du mir helfen diesen Satz  zu uebersetzen ?

animal anirmal
didn't didn't
) cross Cross
Can you help me to translate this sentence

D |

Kannst du mir helfen diesen Satz  zu uebersetzen ?

because . because
it ] it
We can think of self-attention as a mechanism that enhances e e
the information content of an input embedding by including too too
information about the input’s context. In other words, the self- wida wide
attention mechanism enables the model to weigh the

importance of different elements in an input sequence and
dynamically adjust their influence on the output.

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
& cru
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Self Attention, Step 1: Embedding

s N s mg @ a8y 1
FEE LT L] LR L] g™ g
(Pl P e F

T

Prediction

Olo|=]lolo|o|©

L !

One-hot encoding Word Embeddings
of a word
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Self Attention, Step 2: Query, key, value
construction

« Query sequence: q =W, x) fori € [1 T]
- Key sequence: k'?) ka{‘} fori € [1,T]
« Value sequence: v(") = W, x(¥) fori € [1,T]

I
q()

r % 0 W, and Wy are dj, X d matrices
[y W,isa d, X d matrix
w,_~ | q®
58] <w
W | ,@
¥,
=D <
L. (1)
v
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Self Attention, Step 3: Compute attention scores

Unnormalized query

Normalized attention scores

Wq

W,

v

;

ruird

4
@, 4

J-Current input ("query")

®)
: ]

E)

e

(1))

2,0
where a,; = softmax :
Vd,
| %22
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Self Attention, Step 4: Compute weighted value

reral Note that the attention scores are
¢ specific to the current input token
W L5
k | N
W,
@ 4,0
““Current input ("query”) E
[ 4@ ) T
= EE T e o for
[v® ] / j=1
KT
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Positional encoding

Without positional encoding, the input symbols would be treated as independent tokens. Positional
encoding allows the network to consider the location of the symbol within the sequence.
Positional encoding visualization

p0 p1 p2 p3

| 0.000 | | 0.841 | | 0.909 | | 0.141 | i=0

| 1.000 | ‘ 0.540 | | 0416 | | -0.990 | i=1

By | 0.000 | ‘ 0.638 | | 0.983 | | 0.875 | i=2

0] | 1.000 | ‘ 0.770 | | 0.186 | | -0.484 | i=3

00 . ‘ . . , : , : , Positional Encoding
g 18 20 .
04+ o P E(pos,2i) = 811 155503 a )

=

P
L
ra
S
@
=
=
=
X}
[
=
-
@

. — ___pos
10+ (o} o PE(pos.Zz +1) — CO'S( 10000% Fmodel )

ol ' ‘ Settings: d = 50

e The value of each positional encoding depends on
the position (pos) and dimension (d). We calculate
054 Q result for every index (i) to get the whole vector.

& ceu

Universidad
San Pablo




Positional encoding

Positional Encoding

0 1.00
0.75
20
0.50
40
x 0.25
(9]
=
E o 0.00
£
€ go -0.25
-0.50
100
)

120

0 100 200 300 400 500
Encoding Dimension
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Generative Pre-trained Transformer (GPT)

Fully-connected

1

LayerNorm

i

Block #L

ﬂ
m

Block #1

i

Dropout

Fa

B
)

Embedding

Input

Block Output
b

Fully-connected

——

LayerNorm

3

1

Dropout

[

7

-

J
Multi-head
Attention

Module J

Block Input

https://www.mdpi.com/2227-7390/11/11/2451
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=
S
SE
P
s&
==
S &

--



BERT

Masked language training

you has the highest probability F

ovput [ 5 [ I |

tr tz t3 ta
1 s t t
| Classification Layer: Gelu + Normalization

1 1

w1 w2

s L2

[ Transformer Model

—>
> E> T

Input
12x

Next sentence training

Positional

Encoding @
T

t1 t2 [MASK] ta ts

Sentence. | Sentence Next Serntence?

J I o going outside) | T will be back afrerc. | YES

R
L om 3’03;\31 outside, | [You ](v(aw/uo-rﬁn? ﬁbhn Snow. MO
s ’ T L ;
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BERT

Transformer

QOutput
Probabilities

Add & Norm
Feed
Forward
J
(Add & Norm J<—
Add & Norm Vit -Hoad
Feed Attention
Forward Nx
N Add & Norm
SddieHonm Masked
Multi-Head Multi-Head
Attention Attention
A 7) A 2
\ J "
Positional & Positional
Encodin & i
g Encoding
Input Output
Embedding Embedding
Inputs OQutputs
(shifted right)

tonend Canend

Encoder

Decoder

GPT*

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Masked
Multi-Head
Attention
LN J
. =)
@ Positional
Encoding

Output
Embedding

Outputs
(shifted right)

Gyl

Decoder-only

BERT*

Output
Probabilities

Linear

Nx

Multi-Head
Attention

Positional g
Encoding D
Input
Embedding
Inputs
Encoder-only

*lllustrative example, exact model architecture may vary slightly

https://towardsdatascience.com/a-complete-guide-to-bert-with-code-9f87602e4all/
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Autoencoders

Reconstructed
Input <o Ideally they are identical. ------------------ -
put

X~ x
Bottleneck!

Encoder Decoder ,

x. EEE— P
g¢ fo X

An compressed low dimensional
representation of the input.
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Variational autoencoders

Minimize 1:(x — X)?

1
Encoder z Decoder
X B
e

d

Z = U+to0Oe

N(0,[) =P, g

Minimize 2: %Z‘E\Ll(exp(ﬁi) — (14+0;) + ;%)
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Generative Adversarial Networks (GANS)

Real faces

B | Discriminator Fake
el eraimy
\Wivi

(E;{"'_

RVAVAVAY,

IXIX XX

Generator

& This
person
does not
exist.com

Generated faces
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Diffusion models




Applications

1. Protein Structure Prediction & Modeling

AlphaFold2 / AlphaFold3 (DeepMind)

Transformer-based architecture predicting 3D protein structures from sequences; revolutionized
structural biology.

RoseTTAFold (UW / Baker Lab)

Three-track network integrating sequence, distance, and coordinate information; inspired by AlphaFold
but open-source.

OmegaFold

Lightweight model for protein structure prediction using large-scale pretraining.

Graph-based protein models (e.g., GearNet, GVP-GNN)

Neural networks operating on protein contact graphs, capturing spatial interactions.

2. Protein Language Models

& ceu
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ESM (Evolutionary Scale Modeling, Meta)

Transformer protein language models (ESM-1b, ESM-2) trained on massive sequence datasets; used for
embeddings, structure prediction, and function annotation.

ProtTrans (ProtBERT, ProtT5, ProtXLNet)

Transfer of NLP architectures to proteins; useful for embedding, secondary structure prediction,
mutational effect prediction.

ProGen

Generative Transformer for protein design and novel enzyme discovery.




Applications

3. Genomics & Epigenomics
* Basenji / Basenji2 (Kundaje Lab)
Deep CNNs predicting gene expression and regulatory activity from DNA sequences.
* Enformer (DeepMind)
Transformer-based model extending Basenji to predict gene expression across long genomic contexts.
= DeepSEA
CNN predicting chromatin effects and transcription factor binding from raw sequence.
= BPNet

Base-pair resolution CNN for transcription factor binding profiles.

4. Drug Discovery & Chemoinformatics
* Graph Neural Networks for molecules (MPNN, Chemprop, GIN)
Learning molecular properties from molecular graphs.
+ Diffusion-based generative models (e.g., DiffDock)
Predict protein-ligand docking poses.
* MolFormer

Transformer for SMILES-based or graph-based molecular representation learning.
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Applications

5. Single-cell Omics & Systems Biology
» scVI / totalVl (Bayesian VAE frameworks)

Variational autoencoders modeling single-cell transcriptomics and multi-omics data.
» CellBERT / scBERT

Transformers embedding single-cell data and gene—cell relationships.
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Contents

* Overview

» Basic networks
« Regularization
» Architectures

— Convolutional, RNN, LSTM, Transformer, GPT, BERT,
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Practice

https://eithub.com/cossorzano/COSS DataAnalysis notebooks/blob/main/
ImageProcessing/micCleaner Unet.ipynb

Image GT mask Pred mask
.
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Overview

https://www.youtube.com/watch?v=C5LOgWMtFrY
https://www.youtube.com/watch?v=fBiataDpGlo

This diagram illustrates the interaction loop between an agent and its environment in a reinforcement
learning setting. At each time step £, the agent observes the current state S; of the environment and selects

an action A;. The environment responds by transitioning to a new state S;, and providing a reward R, .

The agent uses this feedback to improve its policy in order to maximize cumulative future rewards.

IZ Agent /‘

State reward action
S, R A

t t

t+1

<
< St+l
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Overview

* Learn Optimal Policies: The primary goal is to learn a policy (a mapping from states to
actions) that maximizes cumulative reward over time.

 Maximize Long-Term Reward: RL seeks immediate gains and long-term benefits by
optimizing for the expected return, often discounted over time.

* Balance Exploration and Exploitation: An RL agent must explore new actions to discover
their potential while exploiting known actions that yield high rewards.

* Adapt to Dynamic Environments: RL systems aim to learn and adapt their behavior through
interaction in possibly changing or unknown environments.

* Learn from Interaction Without Supervision: Unlike supervised learning, RL does not rely
on labeled input/output pairs; instead, it learns through trial and error by interacting with an

environment.
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Overview o 83
9
Y

RL Concept Tic-Tac-Toe Example
Agent The player learning to play (could be X or Q).
Environment The game board and the rules of tic-tac-toe.
State S, The current configuration of the board (e.g., 3x3 grid with Xs, Os, and empty cells). 39 = 19683 states
Action A; The move chosen by the agent (i.e., placing an X or O in an empty cell).
Reward R; ; Numerical feedback: +1 for a win, 0 for a draw, -1 for a loss, or sometimes 0 for non-terminal
moves.
Policy m The agent’s strategy for selecting actions based on the current state.
Episode A complete game from an empty board to a win, loss, or draw.
Goal Learn a policy that maximizes the expected reward (i.e., learns to win or draw rather than lose).
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Overview

How It Works in Practice
1. Initial State: The board is empty.
2. Agent Makes a Move: Based on its policy, the agent picks an action (e.g., put X in the center).

3. Environment Responds: The opponent (could be another agent, a fixed strategy, or human) plays,

updating the board.
4. State Transitions: The board changes to a new configuration.
5. Reward Given: After a terminal state (win/loss/draw), a reward is given.

6. Learning: The agent updates its policy using learning algorithms (like Monte Carlo methods or Q-

learning) to improve performance over time.
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Multiarmed bandits
Imagine you have several slot machines, each giving random rewards from unknown distributions.
Some pay off more often than others, but you don’t know which ones. The challenge is to pull the

levers in a way that maximizes your total reward over time, balancing exploration of new machines
with exploitation of those that seem best.

https://gibberblot.eithub.io/rl-notes/single-agent/multi-armed-bandits.html
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Multiarmed bandits

In the k-armed bandit problem, you are faced with k different actions (or "arms"), each associated with an

unknown expected reward. The true value of an action a is denoted by:
q'(a) =E[R, | A = q]

This is the expected value (mean) of the reward R, received at time £, given that you selected action 4, =
. Since q*{a] is unknown, the agent maintains an estimate of it, denoted by @, (a), which is updated over

time based on observed rewards.
At each time step £, the agent can either:

» Exploit: Choose the action a with the highest estimated value Q;(a) (a greedy action), aiming to

maximize immediate reward.
* Explore: Choose a non-greedy action, which might have a lower Qt(a), in order to gather more
information and potentially improve future estimates.
This creates a trade-off between:
* Short-term gain (exploitation): Selecting the action believed to be best now.
* Long-term gain (exploration): Trying other actions to reduce uncertainty and possibly discover better

options.

The optimal strategy for this trade-off depends on factors such as the accuracy of the current estimates

Ql{a), the variance in rewards, and the number of remaining steps. This is a fundamental challenge in

reinforcement learning and is addressed by various algorithms (e.g., £-greedy, UCB, Thompson sampling).
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Multiarmed bandits

Action-value methods

Action-value methods are strategies for estimating the value of each action a, denoted by q*(a) = E[R; |

A= a], and using these estimates to guide action selection.

A basic way to estimate q*(a) is through the sample average of past rewards received when action a was

taken:

L YUIR A =a)
Qt( ) Ei;}H{Ag:a} 1

where I[{At- = a} is an indicator function that equals 1 if action a was taken at time 2, and 0 otherwise. If

action a has never been selected before time ¢, ;(a) is initialized to a default value (e.g., 0). By the law of

large numbers, Q,(a) — q*(a) as the number of times a is selected approaches infinity.
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Multiarmed bandits

Action-value methods: e-greedy strategy

To select actions, the greedy strategy chooses the action with the highest current estimate:

A, = argmax Q,(a).

This method exploits current knowledge to maximize immediate reward but never explores other actions.

To balance exploration and exploitation, the e-greedy method selects the greedy action with probability

1 — &, and with small probability £, it chooses an action uniformly at random:

» Ensures all actions are tried infinitely often (in expectation).

 Guarantees that Q;(a) — q*(a) for all @, and that the probability of selecting the optimal action

converges to at least 1 — &,

Though these guarantees are asymptotic, s-greedy remains simple and effective in practice for many

problems.
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Multiarmed bandits

Action-value methods: e-greedy strategy

The first 10 actions are exploratory.

True distribution s
==0.1
c=0.01
1 ] |.,||Ill\iﬂ
3 Average =10 (greedy)
reward
2 054
q.(3)
1
Reward B &V B 0. . | . .
distribution 1 250 500 750 1000
P 9.(2) Steps
2 100%
3 80% | .
| : % 8% c—0.01
[ | | | | | | | | - c=u.
1 2 3 4 5 6 7 8 9 10 Optimal
action 4o0%
Action
20%
D%' I T T T 1
1 250 500 T50 1000
Steps
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Multiarmed bandits

Action-value methods: bandit algorithm

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) « 0
N(a) + 0

Stationary bandits Loop forever:

A4 . | argmax, Q(a) with probability 1 — s  (breaking ties randomly)
a random action with probability

R + bandit(A)

N(A)+ N(A)+1

Q(4) « Q(A) + i [R— Q(A)]

Initialize, fora = 1 to k:

Q(a) « 0
Loop forever:

Non-stationary bandits Y {arg max, Q(a)  with probability 1 — ¢

arandom action with probability
R + bandit(A)

Q(A) < Q(A) + a[R— Q(A4)]
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Algorithms

Action-value methods: UCB algorithm

Upper-Confidence-Bound (UCB) Action Selection

UCB is a method that balances exploration and exploitation by selecting actions based not only on their

estimated value Q;(a), but also on the uncertainty or potential for that estimate to improve.

At each time step t, the action selected is:

Atzargmf.x Qi(a) +¢ No(@)

where:

» Qi(a) is the estimated value of action a at time ¢,
« N;(a) is the number of times action a has been selected up to time ¢,
» Int grows slowly over time and promotes exploration,

» ¢ > (is a tunable parameter that controls the degree of exploration.
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Algorithms

Dynamic programming

Dynamic Programming (DP) refers to a class of algorithms for solving Markov Decision Processes (MDPs)
when the full model of the environment is known. That is, the transition probabilities p(s’, r | s,a)are

available for all states s € S, actions a € A(s), next states s’ € S, and rewards r € R.

The key idea in DP is to use value functions to iteratively compute optimal or policy-specific behavior.

1. Bellman Equations for Optimality

The optimal state-value function v*(s) satisfies: \

v¥(s) = mﬂa.x]E[R;H + 0" (S21) | St =8, A =a| = mfxz p(s',r | s,a)[r + v (")

s

The optimal action-value function q*{s,a) satisfies: > v* (S) = max q* (S, EL)

g (s,a) = Zp(s’,fr | s,a) {'r —I—'yn:?xq*(s’}a’)]

r
s

These form the Bellman optimality equations, which define fixed points that DP algorithms aim to )

approximate.
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Algorithms

Dynamic programming

2. Policy Evaluation (Prediction)

Given a policy (a | 8), the state-value function v™(s) is:

v (s) =E;[G: | S: = s] = Zﬂr(a | S)Zp(s’,r | s,a) [r+yv™(s')]

a s

We can approximate v™ iteratively by computing a sequence vy, v1, . . ., using the update:

vea(5) = S n(a | 8) S (s | 5,) [r +yui(s))]

@

This is called iterative policy evaluation.
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Algorithms

1 . Loop (until policy is stable):
Dvnamlc programming P policy

1. Policy Evaluation:

* Repeatuntil A < 6
Policy Iteration: Policy Evaluation + Policy Improvement e A0
Input:

* Foreachs € &:
* Initial policy m

« Transition model p(s',7 | 8, a) v V(S)
» Small threshold 8 > 0 for evaluation accuracy . V(S) — Zﬂ ‘Z-’T({I | 8) Es’,r p(s’, T | 8, EI) [T + '}’V(S!)]
* Discount factor y € [0, 1] « A+ max(A,|v— V(B)D

Initialize: .
2. Policy Improvement:

« Arbitrary V (s) forall s € 8T, with V' (terminal) = 0 . policy stable < True
» Foreachs € &:
» old_action < 7(s)
« 7(s8) + arg max, zs,,r p(s',7r | s,a)[r +V(s')]
» Ifw(s) # old_action, then set policy_stable < False

Until policy_stable is True

& cru
Universidad 1 6
San Pablo



Algorithms

What is Q-Learning?

Q-Learning is one of the simplest and most widely used reinforcement learning algorithms. It teaches an
agent how good each action is in each state so it can act optimally, even without knowing the
environment's dynamics.
* Goal: Learn an action-value function (s, a) — the expected cumulative reward starting in state s,
taking action a, and then following the best policy.
* Key feature: Off-policy — the agent can explore using one policy (e.g., e-greedy) but updates as if it

followed the optimal policy afterwards.

Core ldea

For each state-action pair (8, a), Q-learning updates its estimate of the long-term return by combining:

* the immediate reward received after taking a in s,

¢ the best future Q-value from the next state.
Exploration vs Exploitation

This is based on the Bellman optimality equation. . . _
* Exploration: Try new actions to discover rewards.

Key Advantages * Exploitation: Choose the action with highest Q-value.

* Simple, intuitive. * Balance via e-greedy or other strategies.
* Works without a model of the environment (model-free).

* The basis for many modern RL algorithms, including DQN.
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Algorithms

Update Rule (Tabular Case)
Q(s,a) < Q(s,a) +afr + ymaxQ(s',a) — Q(s,a)|

Where:
* & current state The Learning Loop
* a:action taken - Initialize (s, a) arbitrarily.
* 7:reward received . Observe the current state s.
» s’ next state . Choose an action a (g-greedy).

* y:discount factor (0-1)

1
2
3
* : learning rate 4. Take the action, observe reward r and new state s’.
5. Update (s, a) using the rule above.
6

« max, Q(s',a’): best future action value . Repeat until convergence.

Why It Works

» Q-learning converges to the optimal Q-function Q* under mild conditions (sufficient exploration,
decreasing learning rate).

» Once Q" is known, the optimal policy is simply:

" (s) = arg max Q*(s,a)
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Algorithms

What is SARSA?

SARSA (State-Action—Reward-State—-Action) is a value-based, on-policy reinforcement learning algorithm.
Like Q-learning, it estimates (s, a), but instead of updating towards the best possible next action, it
updates towards the actual action the policy chose in the next state.

Core ldea

* Learn an action-value function (s, a).
* Update using the sequence actually experienced:
(s,a,r,s',a").
* Thus, SARSA learns the value of the current policy (on-policy), not an implicitly optimal one.

Why Use SARSA?

* On-policy: Learns about the behavior you're actually executing (important if exploration has significant

cost).

Safer learning: Better in environments where “risky” exploratory actions might lead to large penalties.

* Smooth transition: Conceptually close to Q-learning but highlights the on/off policy distinction.

& cru
Universidad 1 9
San Pablo



Algorithms
Update Rule (Tabular Case)
Qs,a) < Q(s,a) +a[r +1Q(s'a') - Q(s,0)]

Where:

* & current state The Learning Loop

a: action taken

_ Initialize (s, a) arbitrarily.
T reward received

; Observe initial state s.
* 5 nextstate

» a': next action chosen by the same policy Choose an action a from s (e-greedy).

Take action, observe reward r and next state s’

«: learning rate
Choose next action a’ from s’ using the same policy.

Update (s, a) using the SARSA rule.

Set s < s, a < a' and repeat.

* ~:discount factor

Nl oa W N R
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Algorithms

Comparison SARSA vs Q-learning

Reinforcement Learning
: Model-Based Model-Free
MCTS Summary: SARSA and related algorithms
%Z;‘tgeif;ﬂ" I action SARSA: you actual perform next action,
state ? according to the policy,
SARSA Q-Learning e action and then you update Q(s,a)

Sarsa

action Exp. SARSA: you look ahead and average
state ./([K over potential next actions
¢ » actions

and then you update Q(s,a)

T action Q-learning: you look ahead and imagine

state greedy next action to update Q(s,a)
./%\. best (but you then perform the actual next action

Q-leaming action based on your current policy)
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Algorithms

3% Introduction to Policy Gradient Methods

From Value Functions to Policies
* Value-based methods (Q-learning, SARSA) learn a value function (e.g., Q(s, a)} and derive a policy

indirectly by choosing actions with the highest estimated value.
* Policy Gradient methods skip this step and directly learn the policy 7g(a|s), parameterized by 8 (often

a neural network).

Why Use Policy Gradients?

* Handle continuous action spaces naturally (no need to pick max over discrete actions).
* Learn stochastic policies directly (important for exploration and uncertainty).

* Flexible: can incorporate constraints, prior knowledge, or complex architectures.

When to Use Policy Gradients

* Continuous control tasks (adjusting lab conditions, dosing, tuning hyperparameters).
» Stochastic decision making (sampling molecules, simulating biological systems).

*  When value-based methods become impractical due to large/discrete action spaces.
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Algorithms ©Objective

Maximize the expected return under the policy:
We perform gradient ascent on J(6):

0 « 6+aVeJ(0)

Policy Gradient Theorem

It provides a way to compute the gradient of .J(#) without knowing the environment's dynamics:
VoJ(0) = Eﬂﬁ[ Volog me(als) Q™ (s, a,}]

This is the foundation of all policy-gradient algorithms.

Basic Algorithm: REINFORCE

1. Collect trajectories (s, ag, 1, - - . ) by following .
2. For each step, compute the return Gj.

3. Update parameters:
0 « 0+ aG,Vylogmy(ays;)

4. Repeat until convergence.
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Algorithms

Variance Reduction

 Use baseline functions (e.g. value estimates V'(s)) to reduce gradient variance:
VoJ (8) ~ E[Vylogm(als) (Q(s,a) — V(s))]

This leads to Actor-Critic methods, where:
 Actor = the policy mg(a|s),
e Critic = estimates V'(s) or Q(s, a).

Policy Gradient Family Tree

Method Learns Main Trait

REINFORCE Policy only Simple Monte-Carlo gradient
Actor—Critic Policy + Value Lower variance, faster learning
PPO / TRPO / A3C Advanced forms Stability and efficiency for deep RL

& ceu
Universidad 24
San Pablo



Algorithms
3% Introduction to Deep Q-Networks (DQN)

From Q-Learning to Deep Q-Learning
* Problem with Q-learning: The Q-table explodes for large or continuous state spaces (like images,
sequences, or molecular graphs).

* Solution: Use a neural network to approximate (Q(s, a; w) instead of a table.

* This approach — first popularized by DeepMind — is called a Deep Q-Network (DQN).

Reward (rt) |

i
-

Agent * : l

Deep Neural Network

Qfs, a)
Optimal Action
3 4 ] (ad
— 5 t G| -
= % M > Environment
Input i Output
layer Hidden layers layers

St+1
Observe State (s,
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Algorithms
Core Idea

* Input: state (often high-dimensional).
* Output: Q-values for each possible action.

* Update network weights w to minimize the temporal-difference (TD) error:
L(w)=[r+7~ max Q(s',a’;w ) — Q(s, a;w)]2
a

where w ™ are the parameters of a target network (see below).

Key Innovations Over Plain Q-Learning

1. Experience Replay Buffer

* Store past experiences (s, a,r, s") in memory.

* Sample mini-batches randomly to break correlations and improve data efficiency.
2. Target Network

* Maintain a separate, slowly updated copy of the Q-network.

* Stabilizes learning by fixing the TD target for several updates.
3. Neural Network Approximation

* Deep network encodes states into useful representations.

* Allows working with images or high-dimensional feature spaces.
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Algorithms

The Learning Loop (Simplified)

1. Initialize Q-network Q(s, a; w) and target network Q(s, a; w ™).

2. For each step:
» Observe state 8, choose action a (ge-greedy from current Q-network
* Execute a, observe reward r and next state s’.
 Store (s,a,r,s") in replay buffer.
* Sample a mini-batch from the buffer.
e Compute TD targets y = r + ymax, Q(s',a’;w™).
 Update Q-network weights w to minimize (y — Q(s, a; w))?.
* Periodically update the target network w™ < w.

3. Repeat.

Advantages

* Scales to very large and complex state spaces.
» Still value-based, off-policy like Q-learning.
* Basis for many extensions (Double DQN, Dueling DQN, Rainbow DQN).
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Algorithms

When to Use DQN

» Large discrete action spaces (like selecting a mutation, a molecular configuration, or a lab action from
many possibilities).

*  When you have high-dimensional inputs (images, protein graphs, gene expression vectors).
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Applications

& 1. Drug & Molecule Design

* De novo molecule generation: RL agents propose molecular structures (SMILES strings or graphs) and
get rewards based on predicted binding affinity, toxicity, or pharmacokinetics.
Example: REINVENT, MolDQN — RL to generate molecules satisfying multiple biological constraints.

* Lead optimization: Agent modifies existing compounds step by step to improve binding scores or

ADMET properties.

il 2. Protein & Nucleic Acid Design

* Protein sequence optimization: RL to find amino acid substitutions that improve stability, binding, or
enzymatic activity.
* RNA secondary structure design: Agents generate sequences folding into desired target structures

(Inverse RNA Folding).
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Applications

Application Area Example Task Reward Signal

Molecule design Generate high-binding molecules Docking score, toxicity penalties

Protein design Optimize stability of sequence Energy/stability metrics

Adaptive experiments Choose next CRISPR target Information gain, prediction error reduction
Workflow optimization Schedule HPC jobs Throughput, waiting time

Clinical decisions Recommend drug dosing Patient outcomes, toxicity penalties
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Practice

Dynamic programming

https://github.com/cossorzano/COSS DataAnalysis notebooks/blob/main/Machinel_earning/reinf
orcementlearning Grid.ipynb

€3 Problem Being Solved: Gridworld Navigation (Toy MDP)

The code implements Policy Iteration to solve a simple finite Markov Decision Process (MDP) defined as

follows:

Optimal Value Function with Policy Arrows

K Environment: 4x4 Gridworld 0.00

e There are 16 states, arranged in a 4x4 grid.

-0.25
* Each state represents a position in the grid, numbered from 0 (top-left) to 15 (bottom-right).
- —0.50
& Copiar ¥ Editar
- —0.75
e 1 2 3 v
4 5 6 7 --1.008
8 9 18 11
12 13 14 15 - -1.25
[ Goal: Reach a Terminal State Efficiently -1.50
* States 0 and 15 are terminal.
-1.75

* All other states are non-terminal: the agent can move up, down, left, or right, unless it would fall off

the grid (in which case it stays in place).

* The agent receives a reward of —1 per move, encouraging it to reach a terminal state in as few steps as

possible.
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