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Block I. Knowledge-driven AI
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• Early AI focused on explicit knowledge: facts, rules, ontologies.

• Computers reason by logic (propositional, first-order).

• Expert systems use “if–then” rules and inference engines.

• Applications in biomedicine:

• Clinical decision support (diagnosis from symptoms).

• Ontologies (Gene Ontology, SNOMED CT) for structuring biological 

knowledge.

• Rule-based planning in experimental workflows.

• Key idea: Instead of learning from data, the system reasons from encoded human 

knowledge.
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https://geneontology.org/
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Knowledge graph https://copenmed.org/
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Knowledge graph
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Knowledge graph
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Block II. Machine learning
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Naïve Bayes classifier
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Introduction: Why Knowledge Representation (KR)?
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1. From Data to Knowledge

• Data: raw measurements (e.g., gene expression values, protein structures, patient records).

• Information: structured data with context (e.g., gene annotations, protein–protein 

interactions).

• Knowledge: integrated, interpretable representation that supports reasoning and decision-

making.



Introduction: Why Knowledge Representation (KR)?
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2. Why Knowledge Representation Matters

A central question in AI: how should an intelligent system represent what it knows about 

the world?

• Different tasks require different representations:

• Storing and querying biological datasets (tables).

• Modeling relationships (graphs).

• Using domain vocabularies (ontologies).

• Capturing similarity (embeddings).

• Handling uncertainty (probabilistic models).

• Leveraging implicit knowledge (LLMs).

3. The Bioinformatics Perspective

Biological systems are complex, multi-layered, and noisy. KR helps:

• Integrate heterogeneous data (omics, literature, clinical).

• Enable semantic interoperability across databases.

• Support reasoning about biological function, disease mechanisms, and treatment 

options.



Tabular representations
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Strengths:

• Simplicity: intuitive and widely understood.

• Standardization: CSV, Excel are universal.

• Efficiency: great for storage, querying, and statistics.

• First step for most bioinformatics pipelines.

Limitations:

• Poor at capturing relationships between entities (e.g., 

protein A interacts with protein B).

• Rigid structure — difficult to represent hierarchies

(species taxonomy) or uncertain information.

• Not well-suited for temporal or causal dependencies.

Gene expression matrix:

•Rows = genes, Columns = samples, Values = expression levels.

Clinical trial data:

•Rows = patients, Columns = age, treatment, response, side effects.



Tabular representations: Database
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Structured Query Language (SQL)

SNPpy - Database Management for SNP Data from Genome Wide Association Studies



Tabular representations: Database
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Tabular representations: Database
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Graph-based representations
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Strengths:

• Natural for representing complex biological systems.

• Flexible: can represent directed/undirected, weighted/unweighted, temporal edges.

• Enables graph algorithms: shortest path, clustering, community detection.

• Foundation for knowledge graphs and graph neural networks (GNNs).

Limitations:

• Can be computationally expensive for very large graphs.

• Requires careful design of ontology/edge semantics.

• Not always ideal for numeric, tabular-style queries.



Graph-based representations
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• Protein–Protein Interaction (PPI) networks:

Nodes = proteins, Edges = physical/functional interactions.
• Metabolic and signaling pathways:

Nodes = metabolites/enzymes, Edges = reactions.

• Gene co-expression networks:

Nodes = genes, Edges = correlation links.
• Disease–gene networks:

Nodes = diseases and genes, Edges = associations.

• Knowledge Graphs (modern extension):
Bio2RDF, Hetionet, Wikidata (biomedical subset).



Graph-based representations
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Graph-based representations
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Graph-based representations
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Knowledge graph
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Graph-based representations
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Graph-based representations
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Ontology and Taxonomy representations
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Taxonomy

hierarchical classification of entities



Ontology and Taxonomy representations
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Ontology

Strengths:

• Provides shared vocabulary for a community.

• Supports reasoning and inference (e.g., if “all kinases 

phosphorylate proteins” and “X is a kinase”, then infer 

X phosphorylates proteins).

• Enables data integration across heterogeneous 

databases.

• Foundation of the Semantic Web and FAIR principles.

Limitations

• Building and maintaining ontologies is labor-

intensive.

• Ambiguity, synonyms, and evolving biology 

pose challenges.

• Reasoning can be computationally 

expensive on large ontologies.

richer web of 

concepts and 

relations



Ontology and Taxonomy representations
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Fruit ontologyChemical ontology



Ontology and Taxonomy representations

20



Ontology and Taxonomy representations
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Vector-space representations (Embeddings)
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Strengths

• Captures semantic similarity even without 

explicit links.

• Continuous, compact representation → good for 

ML and deep learning.

• Supports clustering, classification, search, and 

integration across modalities (e.g., genes + text 

+ images).

Limitations:

• Often opaque / hard to interpret (“black box”).

• Doesn’t directly capture hierarchical or causal 

structure.

• Requires large, high-quality training data.



Vector-space representations (Embeddings)
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Vector-space representations (Embeddings)
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Vector-space representations (Embeddings)

25



Probabilistic representations
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•Real-world biological data is noisy, incomplete, and uncertain.

•Probabilistic models represent uncertainty about facts and relationships.

Bayesian networks



Probabilistic representations
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Bayesian networks



Probabilistic representations
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Markov Random Fields and Conditional Random Fields



Probabilistic representations
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Markov Random Fields and Conditional Random Fields



Probabilistic representations
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Hidden Markov Models



Probabilistic representations
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Hidden Markov Models

https://www.ebi.ac.uk/training/online/courses/pfam-creating-

protein-families/what-are-profile-hidden-markov-models-hmms/



Causal representations
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Causal graphs

https://matheusfacure.github.io/python-causality-handbook/04-Graphical-Causal-Models.html



Causal representations
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LLMs
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Core idea:

• LLMs (e.g., GPT, BioBERT, ESM, ProtGPT2) store knowledge in their parameters after training 

on massive corpora.

• Represent knowledge implicitly rather than through explicit symbols, graphs, or equations.

• Can answer questions, generate hypotheses, and integrate across domains.

Strengths:

• Scalable knowledge capture: billions of facts encoded in weights.

• Natural language interface: can interact using plain text, bridging expert and machine.

• Cross-domain reasoning: integrate biological, clinical, and chemical knowledge.

• Few-shot/zero-shot learning: apply to new tasks without retraining.

Limitations:

• Hallucinations: may generate plausible but false statements.

• Lack of explicit semantics: hard to guarantee correctness or trace reasoning.

• Updating knowledge requires retraining or fine-tuning.

• Interpretability challenge: we don’t know exactly “where” a fact is stored.



LLMs
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https://www.wisecube.ai/blog/combining-large-language-models-and-knowledge-graphs/



LLMs
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Propositional logic
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Propositional logic
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First-order Logic
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First-order Logic
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First-order Logic
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Knowledge base
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Structure of a Knowledge Base

A KB typically includes:

• Facts: atomic assertions known to be true (e.g., "BRCA1 is a human gene").

• Rules: implications or constraints (e.g., "If a gene is related to DNA repair, then it is relevant for 

cancer").

• Ontology / Vocabulary: definitions of the terms used (e.g., what counts as a gene, protein, 

disease).



Knowledge base
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Knowledge base
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Which genes are candidate 

biomarkers for BreastCancer?

Facts: Triples in RDF model (Resource Description Framework)

Rules: Semantic Web Rule Language (SWRL) style (used with OWL ontologies)

Inference: SPARQL

Vocabulary: OWL



Knowledge base
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Knowledge base
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Knowledge engineering process



Reasoning in propositional logic
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Reasoning in propositional logic
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Reasoning in propositional logic
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SAT=Boolean SATisfiability Problem



Reasoning in propositional logic
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Reasoning in propositional logic
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KB

Operators



Reasoning in propositional logic
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Reasoning in propositional logic
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Horn clauses
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Horn clauses
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Rules

Query



Expert systems
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Expert systems
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Expert systems
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Expert systems
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Expert systems
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AI Planning
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AI Planning
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AI Planning
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GraphPlan example
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Adversarial games
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Adversarial games
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Adversarial games
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Adversarial games

37



Adversarial games
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Adversarial games
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Adversarial games
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Adversarial games
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Adversarial games
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https://github.com/cossorzano/COSS_DataAnalysis_notebooks/blob/main/ArtificialIntelligence/

Host_Pathogen.ipynb
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Overview

3

• Machine Learning = algorithms that learn patterns from data

• Not explicitly programmed with rules
• Goal: make predictions or decisions on new data

• Two main paradigms: Supervised and Unsupervised learning



Overview

4

�� , �� → � = �(�)��  

Examples:

Customer segmentation in marketing

Reducing image data for visualization

Examples:

•Email → spam or not spam

•House features → market price

� ∈ ℕ� ∈ ℝ�



Overview
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Regression

Dimensionality reduction

Classification Clustering



Overfitting and underfitting
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• Underfitting

• Model is too simple
• Fails to capture patterns in training data

• Both training and test error are high

• Overfitting

• Model is too complex
• Learns noise and idiosyncrasies in training data

• Training error very low, but test error high

• Good fit
• Balance between complexity and generalization

• Low training error + low test error



Overfitting and underfitting
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Evaluation metrics

8

The performance of a machine learning model must be measured quantitatively. 

The choice of metric depends on the task.

For regression problems, common metrics include:

• Mean Squared Error (MSE): the average of squared differences between 

predicted and true values. It penalizes large errors heavily.

• Root Mean Squared Error (RMSE): the square root of MSE, expressed in the 

same units as the data, which makes interpretation easier.

• Mean Absolute Error (MAE): the average of absolute differences between 

predictions and true values. It is less sensitive to outliers.

• R² (Coefficient of Determination): measures the proportion of variance in the 

data explained by the model, with values closer to 1 indicating a better fit.



Evaluation metrics
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Evaluation metrics
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Pearson’s correlation coefficient

�� = ��



Evaluation metrics
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For classification problems, metrics are based on comparing predicted labels to 

true labels.

• Accuracy: the fraction of correctly classified examples. It is easy to 

understand but may be misleading in imbalanced datasets.

• Precision: the fraction of predicted positives that are true positives, measuring 

reliability of positive predictions.

• Recall (Sensitivity): the fraction of actual positives correctly identified, 

measuring how many relevant cases are found.

• F1 Score: the harmonic mean of precision and recall, useful when a balance 

between the two is needed.

• ROC curve and AUC: graphical and numerical summaries of the trade-off 

between true positives and false positives.



Evaluation metrics
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Cross validation
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To evaluate how well a model generalizes, we cannot rely only on training error. We 

need to test the model on data it has not seen.

• Hold-out validation is the simplest approach: the dataset is split into a training set 

and a test set. The model is trained on one part and evaluated on the other. The 

drawback is that the result may depend too much on how the data was split.

• k-fold cross-validation addresses this. The dataset is divided into k equal parts. The 

model is trained k times, each time leaving out one part for testing and using the 

remaining k–1 parts for training. The final score is the average of all k tests. This 

reduces the dependence on a particular split.

• Leave-one-out cross-validation (LOOCV) is the extreme case where k equals the 

number of data points. Each observation is used once as the test set. It uses all data 

for training but can be computationally expensive.

Cross-validation provides a more reliable estimate of model performance and helps in 

selecting models and hyperparameters.



Cross validation

14



Bias and variance
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A model’s prediction error has two main sources: bias and 

variance.

Bias is the error due to simplifying assumptions.

• A model with high bias is too rigid.

• It fails to capture the true patterns in the data.

• Leads to systematic errors (underfitting).

Variance is the error due to sensitivity to training data.

• A model with high variance adapts too much to noise.

• Predictions change strongly with small changes in the 

data.

• Leads to poor generalization (overfitting).

The trade-off:

• Increasing complexity reduces bias but increases 

variance.

• Decreasing complexity reduces variance but increases 

bias.

• The goal is to find a model with low total error, 

balancing both.



Bias and variance
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Bias and variance
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No free lunch theorem
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No free lunch theorem
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Overview
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Linear Non-linear

Logistic Hazard



Overview
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GWAS (Genome Wide Association Study)



Overview
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QC=Quality Control



Overview
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Simple linear regression
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Ordinary Least Squares (OLS)



Multiple linear regression
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Ordinary Least Squares (OLS)



Multiple linear regression
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Example



Multiple linear regression
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�� = 2.479 + 0.517
� − 0.484
� + 1.221
�

�� = 0.388 + 0.987
� − 0.102
� − 0.567
�



Multiple linear regression
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Multiple linear regression
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Multiple linear regression
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Assumptions



Multiple linear regression

14

Residual analysis



Multiple linear regression
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Multiple linear regression
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Multiple linear regression
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Polynomial fitting



Multiple linear regression
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Multiple linear regression
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Converting a problem into a linear one



Multiple linear regression
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Multiple linear regression
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Regression with Radial Basis Functions (RBFs)



Multiple linear regression
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Multicollinearity



Regularization
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Ridge regression



Regularization
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Lasso regression



Regularization
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�� = 2.479 + 0.517
� − 0.484
� + 1.221
�

�� = 0.388 + 0.987
� − 0.102
� − 0.567
�

Example (OLS)

Example (Lasso)
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Generalized Linear Models
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Generalized Linear Models
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https://medium.com/@sahin.samia/a-comprehensive-introduction-to-generalized-linear-models-fd773d460c1d



Generalized Linear Models
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Example: Predict disease status (e.g., cancer vs. control) from gene expression.



Generalized Linear Models
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Non-linear regression
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Non-parametric regression
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Non-parametric regression
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Challenges in Bioinformatics
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Challenges in Bioinformatics

35



Contents

• Overview

• Linear regression

– Simple, Multiple, Residual analysis, RBF

• Regularization

– Ridge, Lasso

• Generalized Linear Models

• Non-linear regression

• Non-parametric regression

• Challenges in Bioinformatics

36



Lesson 6. Classification

Medicin School



Contents

• Overview

• Data preparation

• Linear classifiers

– LDA, QDA, Logistic regression

• Non-linear

– SVM, kNN, Tree, Random Forest, Naïve Bayes

• Ensemble methods

• Challenges in Bioinformatics

2



Overview

3



Overview
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Overview
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ROC Curve and AUC
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6



Overview
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Data preparation
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Data preparation
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Data preparation
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Data preparation
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Data preparation
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Stratified cross-validation



Data preparation
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Linear classifiers
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Linear Discriminant Analysis (LDA)



Linear classifiers
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Linear Discriminant Analysis (LDA)



Linear classifiers
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Linear Discriminant Analysis (LDA)



Linear classifiers
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Quadratic Discriminant Analysis (QDA)



Linear classifiers
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Linear classifiers
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Logistic regression



Linear classifiers
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Non-linear classifiers
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Support Vector Machine (SVM)



Non-linear classifiers
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Non-linear classifiers
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Non-linear classifiers
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Non-linear classifiers
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Non-linear classifiers
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Non-linear classifiers
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k-Nearest Neighbors (kNN) classifier



Non-linear classifiers
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Non-linear classifiers
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S=Covariance matrix



Non-linear classifiers
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Non-linear classifiers
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Classification tree



Non-linear classifiers
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Non-linear classifiers
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Boundaries



Non-linear classifiers

34



Non-linear classifiers
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Random forests



Non-linear classifiers
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Feature importance



Non-linear classifiers
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Non-linear classifiers
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Non-linear classifiers
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3. Shapley values



Non-linear classifiers
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3. Shapley values



Non-linear classifiers
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3. Shapley values

How to interpret the shap summary 
plot?
• The y-axis indicates the variable 

name, in order of importance from 

top to bottom. The value next to them 

is the mean SHAP value.

• On the x-axis is the SHAP value. 

Indicates how much is the change in 

log-odds. From this number we can 

extract the probability of success.

• Gradient color indicates the original 

value for that variable. In booleans, it 

will take two colors, but in number it 

can contain the whole spectrum.

• Each point represents a row from the 

original dataset.



Non-linear classifiers
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Naïve Bayes



Non-linear classifiers
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Gaussian Naïve Bayes



Non-linear classifiers
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Ensemble methods
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Ensemble methods
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Ensemble methods
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Ensemble methods

48



Ensemble methods
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AdaBoost



Ensemble methods
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XGBoost



Ensemble methods
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Challenges in Bioinformatics
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Challenges in Bioinformatics
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Challenges in Bioinformatics
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Challenges in Bioinformatics
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Overview

4



Overview

5



Overview

6

We saw this in the 

previous lecture



Overview
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Feature extraction



Linear dimensionality reduction
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Principal Components Analysis (PCA)



Linear dimensionality reduction
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Linear dimensionality reduction
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Linear dimensionality reduction
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Linear dimensionality reduction
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Linear dimensionality reduction
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Linear dimensionality reduction
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Non-linear dimensionality reduction
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Manifolds



Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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https://www.nature.com/articles/s41467-019-13056-x



Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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Autoencoders



Non-linear dimensionality reduction
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Non-linear dimensionality reduction
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https://github.com/sdawley1/ML-Cancer-Classification/blob/main/Final%20Project.ipynb
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Overview

Stochastic optimization



Overview

• Many parameters require many training examples (big data).

• GPUs have largely accelerated the calculations:

– Tensorflow/Keras (Google)

– Pytorch (Facebook)

– Jax (Google)

• Advances in stochastic optimization.

• Advances in network architectures.

Why deep learning now
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Architecture



Deep neural network

Architecture



Overview



Overview

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b



Overview

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b
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Basic networks
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Basic networks
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A single neuron



Basic networks
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Multilayer Perceptron



Basic networks
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Forward pass



Basic networks
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Loss function



Basic networks
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Backward pass



Basic networks
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Basic networks
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Backward pass

Forward pass



Basic networks
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Basic networks
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Regularization
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Regularization
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Architectures
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Architectures
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Architectures
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Pooling operation



Architectures

28



Architectures
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Architecture
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Local receptive field
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Architecture

32



Architecture
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Architecture
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Long Short-Term Memory (LSTM)



Architecture
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Architecture
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Transformers



Architecture
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Attention

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

We can think of self-attention as a mechanism that enhances 

the information content of an input embedding by including 

information about the input’s context. In other words, the self-

attention mechanism enables the model to weigh the 

importance of different elements in an input sequence and 
dynamically adjust their influence on the output.



Self Attention, Step 1: Embedding



Self Attention, Step 2: Query, key, value

construction

*+ and *, are -, × - matrices*/ is a                 -/× - matrix



Self Attention, Step 3: Compute attention scores

Unnormalized query Normalized attention scores



Self Attention, Step 4: Compute weighted value



Positional encoding

Without positional encoding, the input symbols would be treated as independent tokens. Positional
encoding allows the network to consider the location of the symbol within the sequence.



Positional encoding



Generative Pre-trained Transformer (GPT)

https://www.mdpi.com/2227-7390/11/11/2451



BERT
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Masked language training

Next sentence training



BERT
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https://towardsdatascience.com/a-complete-guide-to-bert-with-code-9f87602e4a11/



Autoencoders
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Variational autoencoders
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Generative Adversarial Networks (GANs)
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This

person

does not

exist.com



Diffusion models
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Applications
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Applications
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Applications
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https://github.com/cossorzano/COSS_DataAnalysis_notebooks/blob/main/

ImageProcessing/micCleaner_Unet.ipynb
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Overview
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https://www.youtube.com/watch?v=C5LOgWMtFrY

https://www.youtube.com/watch?v=fBiataDpGIo



Overview
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• Learn Optimal Policies: The primary goal is to learn a policy (a mapping from states to 

actions) that maximizes cumulative reward over time.

• Maximize Long-Term Reward: RL seeks immediate gains and long-term benefits by 

optimizing for the expected return, often discounted over time.

• Balance Exploration and Exploitation: An RL agent must explore new actions to discover 

their potential while exploiting known actions that yield high rewards.

• Adapt to Dynamic Environments: RL systems aim to learn and adapt their behavior through 

interaction in possibly changing or unknown environments.

• Learn from Interaction Without Supervision: Unlike supervised learning, RL does not rely 

on labeled input/output pairs; instead, it learns through trial and error by interacting with an 

environment.



Overview
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Overview
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Multiarmed bandits
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https://gibberblot.github.io/rl-notes/single-agent/multi-armed-bandits.html

Imagine you have several slot machines, each giving random rewards from unknown distributions. 

Some pay off more often than others, but you don’t know which ones. The challenge is to pull the 

levers in a way that maximizes your total reward over time, balancing exploration of new machines 

with exploitation of those that seem best.



Multiarmed bandits
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Multiarmed bandits

9

Action-value methods



Multiarmed bandits
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Action-value methods: �-greedy strategy



Multiarmed bandits
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Action-value methods: �-greedy strategy

True distribution

The first 10 actions are exploratory.



Multiarmed bandits
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Action-value methods: bandit algorithm

Stationary bandits

Non-stationary bandits



Algorithms
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Action-value methods: UCB algorithm



Algorithms
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Dynamic programming



Algorithms
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Dynamic programming



Algorithms
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Dynamic programming



Algorithms
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Algorithms
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Algorithms
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Comparison SARSA vs Q-learning

Monte Carlo 

Tree Search
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Practice
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Dynamic programming

https://github.com/cossorzano/COSS_DataAnalysis_notebooks/blob/main/MachineLearning/reinf

orcementLearning_Grid.ipynb


