Overview

Frequent item set mining

Christian Borgelt*

Frequent item set mining is one of the best known and most popular data mining
methods. Originally developed for market basket analysis, it is used nowadays
for almost any task that requires discovering regularities between (nominal) vari-
ables. This paper provides an overview of the foundations of frequent item set
mining, starting from a definition of the basic notions and the core task. It contin-
ues by discussing how the search space is structured to avoid redundant search,
how it is pruned with the a priori property, and how the output is reduced by
confining it to closed or maximal item sets or generators. In addition, it reviews
some of the most important algorithmic techniques and data structures that were
developed to make the search for frequent item sets as efficient as possible. ©

2012 Wiley Periodicals, Inc.

How to cite this article:
WIREs Data Mining Knowl Discov 2012, 2: 437-456 doi: 10.1002/widm.1074

INTRODUCTION

It is hardly an exaggeration to say that the pop-
ular research area of data mining was started by
the tasks of frequent item set mining and associa-
tion rule induction. At the very least, these tasks have
a strong and long-standing tradition in data mining
and knowledge discovery in databases, and triggered
an abundance of publications in data mining confer-
ences and journals. The huge research efforts devoted
to these tasks had considerable impact and led to a va-
riety of sophisticated and efficient algorithms to find
frequent item sets. Among the best-known methods
are Apriori,!? Eclat,>> FP-Growth (Frequent Pattern
Growth),®? and LCM (Linear time Closed item set
Miner)'%12; but there is also an abundance of alterna-
tives. A curious historical aspect is that researchers in
the area of neurobiology came very close to frequent
item set mining as early as 1978 with the accretion
algorithm,'® thus preceding Apriori by as much 15
years.

This paper surveys some of the most important
ideas, algorithmic concepts, and data structures in
this area. The material is structured as follows: Ba-
sic Notions introduces the basic notions such as item
base, transaction, and support; formally defines the

*Correspondence to: christian@borgelt.net

European Centre for Soft Computing, Edificio de Investigacion,
Calle Gonzalo Gutiérrez Quirds s/n, Mieres, Asturias, Spain.
Email: christian@borgelt.net, christian.borgelt@softcomputing.es;
WWW: http://www.borgelt.net/, http://www.softcomputing.es/

DOI: 10.1002/widm.1074

Volume 2, November/December 2012

frequent item set mining problem; shows how the
search space can be structured to avoid redundant
search; and reviews how the output can be reduced
by confining it to closed or maximal item sets or gen-
erators. Item Set Enumeration derives the general top-
down search scheme for item set enumeration from
the fundamental properties of the support measure,
resulting in breadth-first and depth-first search, with
the subproblem and item order providing further dis-
tinctions. Database Representations reviews differ-
ent data structures by which the initial as well as
conditional transaction databases can be represented
and how these are processed in the search. Advanced
Techniques collects several advanced techniques that
have been developed to make the search maximally
efficient, including perfect extension pruning, condi-
tional item reordering, the k-items machine, and spe-
cial output schemes. Intersecting Transactions briefly
surveys intersecting transactions as an alternative to
item set enumeration for finding closed (and maximal)
item sets, which can be preferable in the presence of
(very) many items. Extensions discusses selected ex-
tensions of the basic approaches, such as association
rule induction, alternatives to item set support, associ-
ation rule and item set ranking and filtering methods,
and fault-tolerant item sets. Finally, Summary sum-
marizes this survey.

BASIC NOTIONS

Frequent item set mining is a data analysis method
that was originally developed for market basket

© 2012 John Wiley & Sons, Inc. 437

analysis. It aims at finding regularities in the shop-
ping behavior of the customers of supermarkets, mail-
order companies, and online shops. In particular, it
tries to identify sets of products that are frequently
bought together. Once identified, such sets of asso-
ciated products may be used to optimize the orga-
nization of the offered products on the shelves of a
supermarket or the pages of a mail-order catalog or
Web shop, or may give hints which products may
conveniently be bundled. However, frequent item set
mining may be used for a much wider variety of tasks,
which share that one is interested in finding regulari-
ties between (nominal) variables in a given data set.

Problem Definition

Formally, frequent item set mining is the following
task: we are given a set B = {iy, ..., i,} of items,
called the item base, and a database T = (¢4, ..., t,)
of transactions. An item may, for example, represent
a product. In this case, the item base represents the
set of all products offered by a supermarket. The term
item set refers to any subset of the item base B. Each
transaction is an item set and may represent, in the
supermarket setting, a set of products that has been
bought by a customer. As several customers may have
bought the same set of products, the total of all trans-
actions must be represented as a vector (as above) or
as a multiset. Alternatively, each transaction may be
enhanced by a transaction identifier (tid). Note that
the item base B is usually not given explicitly, but only
implicitly as the union of all transactions, that is, B =
Ukeqt,....mytk-

The cover Kr(I) = {k € {1, ..., m}|I C #,}
of an item set I C B indicates the transactions it is
contained in. The support sp(I) of I is the number of
these transactions and hence st(I) = IKt(I)l. Given a
user-specified minimum support smin € N, an item set
I is called frequent (in T) iff sp(I) > smin. The goal of
frequent item set mining is to find all item sets I C B
that are frequent in the database T and thus, in the
supermarket setting, to identify all sets of products
that are frequently bought together. Note that fre-
quent item set mining may be defined equivalently
based on the (relative) frequency or(I) = st(I)im
of an item set I and a corresponding lower bound
O min-

As anillustration, Figure 1 shows a simple trans-
action database with 10 transactions over the item
base B = {a, b, ¢, d, e}. With a minimum support
of smin = 3, a total of 16 frequent item sets can be
found in this database, which are shown, together
with their support values, in the table on the right in
Figure 1. Note that the empty set is often discarded

438 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

(a) (b)

Transactions Frequent item sets (with support)

0: {a,d, e (minimum support: spin = 3)

1:{b,c d} 0 items | 1item | 2 items | 3 items

2: {a,ce} :
3:{a,cde) @: 10 {a}:7 | {a,c}: 4 | {a.cd}:3
4 {a,e) {b}:3 | {a,d}:5 | {a,ce}:3
5:{a,c d) {c}:7 | {ae}: 6 | {ade}:4
6: (b, c) {d}: 6 | {bc}:3

7:la,c d,e) {e}: 7 | {cd}: 4

8: {b,c e} lee}: 4

9: {a,d,e} {del: 4 |

FIGURE 1] (a) A simple example database with 10 transactions
(market baskets, shopping carts) over the item base B= {a, b, ¢, d, e}
and (b) the frequent item sets that can be found in it if the minimum
support is chosen to be s, = 3 (the numbers state the support of
these item sets).

(not reported) because it is trivially contained in all
transactions and thus not informative.

Search Space and Support Properties

It is immediately clear that simply generating every
candidate item set in the power set 28, determining
its support, and filtering out the infrequent sets is
computationally infeasible, because even small super-
markets usually offer thousands of different products.
To make the search efficient, one exploits a fairly ob-
vious property of item set support, namely that it is
antimonotone: ¥YI C | C B: st(I) > st(J), regardless
of the transaction database T. In other words, if an
item set is extended (if another item is added to it),
its support cannot increase. Together with the user-
specified minimum support, we immediately obtain
the Apriori property'?: YI C | € B: st(I) < Smin
= s7(J]) < Smin, that is, no superset of an infre-
quent item set can be frequent. It follows that the set
Fr(smin) of item sets that are frequent in a database T
w.r.t. minimum support Syin is downward closed:
VI € Fr(smin) :] cl=] € F1(Smin)-

As a consequence, the search space is naturally
structured according to the subset relationships be-
tween item sets, which form a partial order on 25,
This partial order can be nicely depicted as a Hasse
diagram, which is essentially a graph, in which each
item set I € B forms a node and there is an edge
between the nodes for two sets I, J with I C J if
ZK : 1 ¢ K C J. As an example, Figure 2(a) shows
a Hasse diagram for the partial order of 28 for B =
{a, b, ¢, d, e}, the item base underlying Figure 1.

Due to the Apriori property (or the fact that
the set of frequent item sets is downward closed),
the frequent item sets are dense at the top of such a
Hasse diagram (see Figure 2b). Thus frequent item
sets are naturally found by a top-down search in this
structure.

Volume 2, November/December 2012

«; WIREs Data Mining and Knowledge Discovery

Frequent item set mining

FIGURE 2| (a) Hasse diagram for the partial order induced by C on 2{2:6:¢:%-¢} and (b) frequent item sets for the database shown in Figure 1

and spin = 3.

(a) Empty set

Item Base Item Base

FIGURE 3| Schematic illustration of maximal (a) and closed item
sets (b) demonstrating their relation.

Closed and Maximal Item Sets and

Generators

An annoying problem in frequent item set mining is
that the number of frequent item sets is often huge
and thus the output can easily exceed the size of the
transaction database to mine. To mitigate this prob-
lem, several restrictions of the set of frequent item sets
have been suggested. A frequent item set I € Fr(Smin)
is called

e a maximal (frequent) item set'*13
iff VDI s7(]) < Smin;

e a closed (frequent) item set'"**
iff VIDI: s7(]) < st(I);

e a (frequent) generator'®-25-%°

iff VICI: s7(]) < sp(l).

Due to the contraposition of the Apriori prop-
erty, thatis, VI €] € B : s7(J) > Smin = ST(I) > Smin,
the set of all frequent item sets can easily be recov-
ered from the set M(spin) of maximal item sets as
Fr(Smin) = UIEMT(Smin) 21, However, for the sup-
port of nonmaximal item sets it only pre-
serves a lower bound: VI € Fr(smin): st(I)>

Volume 2, November/December 2012

8
BMS-Webview-1
—— Frequent
=71 —o— Closed
D —e— Maximal
(95]
fE
PED > -x\\o\‘
4 4 —0

3 34 35 36 37 38 39 40
Absolute minimum support

FIGURE 4| The number of frequent, closed, and maximal item
sets on a common benchmark data set (BMS-Webview-1).

MaxXjeMy(smn)nj21 ST(J). As an intuitive illustration,
the schematic Hasse diagram in Figure 3(a) shows the
maximal item sets as red dots, whereas all frequent
item sets are shown as a blue region.

The set Cr(smin) of all closed item sets,
however, also preserves knowledge of all sup-
port values according to VI € Fr(smn):sT(I) =
maxjec,(sm)nj21 ST(J), because any frequent item set
is either closed or possesses a uniquely determined
closed superset. Note that maximal item sets are
obviously also closed, but not vice versa. The ex-
act relationship of closed and maximal item sets is:
total number of transactions. This relationship is il-
lustrated schematically in Figure 3(b).

As an illustration of the huge savings that can
result from restricting the output to closed or even
maximal item sets, Figure 4 shows the number of
frequent, closed, and maximal item sets for a common
benchmark data set (BMS-Webview-1, see Ref 30;
note the logarithmic scale).

© 2012 John Wiley & Sons, Inc. 439

@ -

[ab 1 ac) ad][ae][bc][bd [be J[cd |[ce][de]

wires.wiley.com/widm

(b)

Lalblcldle]

a b c d
[ab [ac [ad] ae][bc [bd [be][cd] ce]l[de]

[@e] abdabpacdacebcdbm

0| [abde] [acde] [bede]
d

FIGURE 5| (a) A subset tree that results from assigning a unique parent to each item set and (b) a prefix tree in which sibling nodes with the

same prefix are merged.

The set Gr(smin) of generators (or free item sets)
has the convenient property that it is downward
closed, that is, VI € Gr(smin) :] €I =] € G1(Smin)-
Unfortunately, though, Gr(smin) does not preserve
knowledge which item sets are frequent. However,
because every generator possesses (like any frequent
item set) a uniquely determined closed superset with
the same support, one may report with each genera-
tor the difference to this closed superset. In this way,
one preserves the same knowledge as with the set
of closed item sets. Note, however, that |G1(smin)| >
|CT(Smin)|, although recovering the support values
from a generator-based output may be somewhat eas-
ier or more efficient than recovering them from the
set of closed item sets. Note also that generators are
often induced alone (i.e., without reporting the differ-
ence to their closed supersets), because they are seen
as more useful features for classification purposes, as
they contain fewer items than closed sets.

Alternative lossless compressions of the set of
frequent item sets, which can reduce the output even
more, are, for example, nonderivable item sets’' and
closed nonderivable item sets.>> However, the better
the compression, the more complex it usually becomes
to derive the support values of item sets that are not
directly reported.

ITEM SET ENUMERATION

Due to the Apriori property, most frequent item set
mining algorithms search top-down in (the Hasse di-
agram representing) the partial order C on 25, thus
enumerating the (frequent) item sets. A notable alter-
native (intersecting transactions) is discussed in Inter-
secting Transactions.

440

© 2012 John Wiley & Sons, Inc.

Organizing the Search

Searching the partial order € on 28 top-down means
growing item sets from the empty set or from single
items toward the item base B. However, a naive im-
plementation of this scheme leads to redundant search
because the same item set can be constructed multiple
times by adding its items in different orders. To elimi-
nate this redundancy, the Hasse diagram representing
the partial order is reduced to a tree by assigning a
unique parent set 7 (I) to every item set I C B. This
is achieved by choosing an arbitrary, but fixed order
of the items and setting 7(I) = I — {max(I)}. As an
example, Figure 5(a) shows the resulting item sub-
set tree for B = {a, b, ¢, d, e} and the item order
a<b<c<d<e. Clearly, this tree is a prefix tree be-
cause sibling sets differ only in their last item. Thus it
is often convenient to combine these siblings into one
node as shown in Figure 5(b). This structure is used
in the following to explain and illustrate the different
search schemes.

Breadth-First/Levelwise Search

The most common ways to traverse the nodes of a tree
are breadth-first and depth-first. The former is used
in the Apriori algorithm,!? which derives its name
from the Apriori property. It is most conveniently im-
plemented with a data structure representing a prefix
tree such as the one shown in Figure 5(a). This tree is
built level by level. A new level is added by creating a
child node for every frequent item set on the current
level. From these child nodes all item sets are deleted
that possess an infrequent subset (a@ priori pruning).
Then the transaction database is accessed to count the
support of the remaining candidate item sets. This
is usually done by traversing the transactions and
constructing, with a doubly recursive procedure, all

Volume 2, November/December 2012

«; WIREs Data Mining and Knowledge Discovery

@ [a:7]b:3]c:7]d:6]e:7]
ZM: c:4|d:5]e:6] [c:3 % X | [d:4]e:4][e:4
® [a:7]0:3]c:7]d:6]e:7]
a d

4le:4

[c: Bh‘%' ;; {114
XX

FIGURE 6 | Two steps of the Apriori algorithm: (a) adding the
second level; (b) adding the third level (blue: a priori pruning, red: a
posteriori pruning for syin = 3).

@

[labc [abd | abe | [acd

c d d
abcd|abee| [abde]
d
® CaloTcldlel]
b c d
(e T'bd [be | [Ced [ce] [de]
b c d d

c
abed] abce]
d
FIGURE 7| lllustration of the divide-and-conquer approach to find
frequent item sets: (a) first split, (b) second split; blue: split item/prefix,

green: first subproblem (include split item), red: second subproblem
(exclude split item).

subsets of the size that corresponds to the depth of the
new tree level. Afterward, all item sets that are found
to be infrequent are eliminated (a posteriori pruning).
Technical and optimization details can be found, for
example, in Refs 33-37.

As an example, Figure 6 shows two steps of
the Apriori algorithm for the transaction database
shown in Figure 1, namely, adding the second and
the third level (item sets with two and three items).
A posteriori pruning is indicated by red crosses, and
Apriori pruning by blue ones.

It should be noted, though, that nowadays
the Apriori algorithm is mainly of historical inter-
est as one of the first frequent item set mining and
association rule induction algorithms, because its per-
formance (in terms of both speed and memory con-
sumption) usually cannot compete with that of state-
of-the-art depth-first approaches.

Volume 2, November/December 2012

Frequent item set mining

Depth-First Search

Although a depth-first version of Apriori has been
suggested,’® depth-first search is usually known
from algorithms such as Eclat,>> FP-Growth,*”
LCM,'%12 and many others. The general approach
can be seen as a simple divide-and-conquer scheme.
For a chosen item i, the problem to find all frequent
item sets is split into two subproblems: (1) find all
frequent item sets containing 7 and (2) find all fre-
quent item sets #of¢ containing i. Each subproblem
is then further divided based on another item j: find
all frequent item sets containing (1.1) both 7 and j,
(1.2) i, but not j, (2.1) j, but not i, (2.2) neither i
nor j, and so on. This division scheme is illustrated in
Figure 7.

All subproblems occurring in this recursion can
be defined by a conditional transaction database and
a prefix. The prefix is a set of items that has to be
added to all frequent item sets that are discovered
in the conditional transaction database. Formally, all
subproblems are pairs § = (C, P), where C is a con-
ditional database and P C B is a prefix. The initial
problem, with which the recursion is started, is § =
(T, 9), where T is the given transaction database and
the prefix is empty.

A subproblem Sy = (Cy, Py) is processed as fol-
lows: choose an item i € By, where By is the set of
items occurring in Cy. This choice is, in principle,
arbitrary, but often follows some predefined order
of the items. If s¢,({i}) > Smin, then report the item
set Py U {i} as frequent with the support s¢, ({i}), and
form the subproblem S = (Cy, Py) with Py = Py U {i}.
The conditional database C; comprises all transac-
tions in Cj that contain the item 7, but with the item
i removed. This also implies that transactions that
contain no other item than i are entirely removed:
no empty transactions are ever kept. If C; is not
empty, process S; recursively. In any case (i.e., re-
gardless of whether s¢,({i}) > smin Or not), form the
subproblem S, = (C,, P,), where P, = Py. The con-
ditional database C, comprises all transactions in
Co (including those that do not contain the item i),
but again with the item i (and resulting empty trans-
actions) removed. If C, is not empty, process S,
recursively.

Note that in this search scheme, due to the
conditional transaction databases, one needs only to
count the support of individual items (or singleton
sets). As an illustration, Figure 8 shows the (top lev-
els of) a subproblem tree resulting from this divide-
and-conquer search. The indices of the transaction
databases T indicate which (split) items have been
included (no bar) or excluded (bar).

© 2012 John Wiley & Sons, Inc. 441

(T,2)
/ \é>
(Ta,{a}) (Ta®)
Q‘ 'y b
(ab/ a,b) (Tab/ {a)) (abr b}) (Tah X)
\E ¢ ¢ ¢
C,
(Tavz, {a, b)) Th Tape, [b] Tbc @
(aber { a,0, C]) (Tabu a, C abu uhu { c

FIGURE 8| (Top levels of) the subproblem tree of the
divide-and-conquer scheme (with a globally fixed item order).

Order of the Subproblems

Whereas it is irrelevant in which order the child nodes
are traversed in a breadth-first/levelwise scheme (since
the whole next level is needed before the support
counting can start), the depth-first search scheme al-
lows for a choice whether the subproblem §; or the
subproblem S, is processed first. In the former case,
the item sets are considered in lexicographic order
(w.r.t. the chosen item order), in the latter case this
order is reversed. At first sight, this does not seem
to make much of a difference. However, depending
on how conditional transaction databases are repre-
sented, processing subproblem S, first can be advan-
tageous, because then one may be able to use (part
of) the memory storing the conditional database Cy
to store the conditional databases C; and C,.

Intuitively, this can be understood as follows: C,
is essentially Cy, only that the split item is eliminated
or ignored. Hence it may not require extra memory,
as Cp (properly viewed) may be used instead (ex-
amples are provided in Vertical Representation and
Hybrid Representations). Cy is never larger than C,
as it is a subset of the transactions in C,, namely,
those that contain the split item in Cy. Therefore, one
may reuse C;’s (and thus Cy’s) memory for represent-
ing and processing C;. Hence, processing subproblem
S, before S; can lead to effectively constant mem-
ory requirements (all computations are carried out on
the memory storing the initial transaction database).
This is demonstrated by LCM!%12 and the so-called
top-down version of FP-Growth.3* However, if S; is
solved before S, representing the transaction selec-
tion needed for S; may need extra memory, because
the transaction database without this selection (i.e.,
all transactions) needs to be maintained for later solv-
ing S,.

The traversal order can also be relevant if the
output is to be confined to closed or maximal item
sets, namely, if this restriction is achieved by a repos-
itory of already found closed item sets, which is
queried for a superset with the same support: in this
case 1 must be processed before S;. Analogously,

442 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

if one filters for generators with a repository that is
queried for a subset with the same support, S, must
be processed before S;.

Order of the Items

Apart from the order in which the subproblems are
processed, the order in which the items are used to
split the subproblems (or the order used to assign
unique parents to single out a prefix tree from the
Hasse diagram, see Figure 5) can have a considerable
impact on the time needed for the search. Experimen-
tally, it was determined very early that it is usually
best to process the items in the order of increasing
frequency or, even better, in the order of increasing
size sum of the transactions they are contained in. The
reason for this behavior is that the average size of the
conditional transaction databases tends to be smaller
if the items are processed in this order. This observa-
tion holds for basically all database representations
(see Vertical Representation for more details).

Note, however, that the order of the items influ-
ences only the search time, not the result of the algo-
rithms. To emphasize this fact, in the following some
algorithms will be illustrated with a default alpha-
betic order of the items, others with items reordered
according to their frequency in the given transaction
database.

DATABASE REPRESENTATIONS

Algorithms that enumerate (frequent) item sets with
the divide-and-conquer scheme outlined in Depth-
First Search (such as Eclat, FP-growth, LCM, and so
on) differ in how conditional transaction databases
are represented: horizontally (Horizontal Represen-
tation), vertically (Vertical Representation), or in a
hybrid fashion (Hybrid Representations), which com-
bines a horizontal and a vertical representation. With
the general algorithmic scheme of subproblem splits
(see Depth-First Search), all that is needed in this sec-
tion to obtain a concrete algorithm is to specify how
the conditional transaction databases are constructed
that are needed for the two subproblems.

Horizontal Representation

In a horizontal representation, a transaction database
is stored as a list (or array) of transactions, each of
which lists the items contained in it. This is the most
obvious form of storing a transaction database, which
was used in the problem definition in Problem Def-
inition and for the example in Figure 1. The Apri-
ori algorithm as well as some transaction intersection

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

@ad @ @ad

g1 cd £y
acde f:2 eacd ecbd @L
bd 3 bd ebd |1
bcdg a4 cbd abd |1
bef 5 cbh abd 12
abd b: 8 abd ad 1
bde d: 8 ebd cbd 1]
bede ecbd cb B
be chb cb BN
abdf | Smin=3 abd bd =

FIGURE 9| Preprocessing a transaction database: (a) original
form; (b) item frequencies; (c) transactions with sorted items and
infrequent items eliminated (syin = 3); (d) lexicographically sorted
reduced transactions; (e) data structure used in the SaM (Split and
Merge) algorithm.

Split

Prefix e

[T [Haleld]
[c[o[d]

1

FIGURE 10| The basic operations of the SaM (Split and Merge)
algorithm: split (left; first subproblem, include split item) and merge
(right; second subproblem, exclude split item).

approaches naturally use this representation. How-
ever, it can also be used in a divide-and-conquer/
depth-first algorithm, as is demonstrated by the SaM
(Split and Merge) algorithm.*0

The SaM algorithm requires some preprocessing
of the transaction database, which usually includes
reordering the items according to their frequency in
the transaction database. The steps of this preprocess-
ing are illustrated for a simple example database in
Figure 9, together with the final data structure, which
is a simple array of transactions. Note, however, that
equal transactions are merged and their multiplicity
is kept in a counter.

How this list is processed in a subproblem split
is demonstrated in Figure 10: The left part shows split-
ting off the transactions starting with the split item e
(first subproblem; note that due to the lexicographic
sorting done in the preprocessing all of these trans-
actions are consecutive). The right part shows how
the split-off transactions, with the split item removed,
are merged with the rest of the transaction list (sec-
ond subproblem). The merge operation is essentially a
single phase of the mergesort sorting algorithm, with
the only difference that it combines equal transactions
(or transaction suffixes). It also ensures that the trans-
actions (suffixes) are lexicographically sorted for the
next subproblem split.

Volume 2, November/December 2012

Frequent item set mining

@O:ade
l:bcd
2:ace [0]
3acde
4:ae
5:acd
6:bc
Z:acde
8bce 9]
9:ade

FIGURE 11 Split into subproblems in the Eclat algorithm:

(a) transaction database; (b) vertical representation with split item in
blue; (c) conditional transaction database after intersection with split
item list (first subproblem: include split item); (d) transaction index list
of split item removed (second subproblem: exclude split item).

Vertical Representation

In a vertical representation of a transaction database,
the items are first referred to with a list (or array)
and for each item the transactions containing it are
listed. As a consequence, a vertical scheme essen-
tially represents the item covers Kr({i}) for all i € B.
As an example, Figure 11(b) shows the vertical rep-
resentation of the example transaction database of
Figure 11(a) (the second row states the support val-
ues of the items).

A vertical representation is used in the Eclat
algorithm? and its variants. The conditional transac-
tion database for the first subproblem is constructed
by intersecting the list of transaction indices for the
split item with the lists of transaction indices for
the other items. This is illustrated in Figure 11(b),
in which the transaction index list for the split item
is highlighted in blue, and Figure 11(c), which shows
the result of the intersections and thus the conditional
transaction database for the first subproblem. Con-
structing the conditional transaction database for the
second subproblem is particularly simple: one merely
has to delete the transaction index list for the split
item, see Figure 11(d).

The execution time of the Eclat algorithm de-
pends mainly on the length of the transaction index
lists: the shorter these lists, the faster the algorithm.
This explains why it is advantageous to process the
items in the order of increasing frequency (see Order
of the Items): if a split item has a low frequencys, it has
a short transaction index list. Intersecting this list with
the transaction index lists of other items cannot yield
a list that is longer than the list of the split item (this
is another form of the Apriori property). Therefore, if
the first split item has a low support, the transaction
index lists that have to be processed in the recursion
for the first problem have a low average length. Hence
one should strive to use items with a low support as
early as possible, that is, when there are still many
other items, so that the lists of many items are reduced

© 2012 John Wiley & Sons, Inc. 443

by the intersection. Only later, when fewer items re-
main (in the branches for the second subproblem),
items with higher support, which yield longer inter-
section lists, are processed, thus reducing the num-
ber of long lists. In this way the average length of
the transaction lists is reduced. This insight, applied
to the general average size of conditional transaction
databases, can be transferred to other algorithms as
well.

Especially, if the transaction database to mine is
dense (that is, if the average transaction size (number
of items) is large relative to the size of the item base),
it can happen that intersecting two transaction index
lists removes fewer transaction indices than it keeps.
This observation led to the idea to represent a con-
ditional transaction database not by covers, but by
so-called diffsets (short for difference sets).* Diffsets
are defined as follows: VIC B:Vae B —I: Dy(all) =
Kr(I) — Kr(IU{a}). In other words, D(alI) contains
the indices of the transactions that contain I but not
a. With diffsets, the support of direct supersets of I
can be computedasVIC B:Vae B—1:sp(IU{a}) =
st(I) — IDt(all)l, and the diffsets for the next level
(subproblems) can be computed with the help of
ViIeB:Va,be B—-1,a#b:Drbllu{a}) =
Dr(b|I) — Dy(all).

As an alternative, Eclat can be improved for
dense transaction databases by transferring certain el-
ements of the FP-Growth algorithm. This extension,
which uses lists of transaction ranges instead of plain
lists of transaction indices, is described in the follow-
ing section after the FP-Growth algorithm has been
discussed.

Hybrid Representations

Although algorithms that use a purely horizontal or
purely vertical transaction database representation
are attractive (because they are, to some degree, con-
ceptually simpler), they are often outperformed by al-
gorithms that use a hybrid data structure, exploiting
elements of both vertical and horizontal representa-
tions. The simplest form of such a hybrid structure
can be found in the LCM algorithm!%-12: it employs a
purely vertical and a purely horizontal representation
in parallel. Its processing scheme is best understood
by viewing it as a variant of the Eclat algorithm, in
which the intersection of transaction index lists is re-
placed by a scheme called occurrence deliver. This
scheme accesses the horizontal representation to fill
the transaction index lists as illustrated in Figure 12
for the same subproblem split used to illustrate the
Eclat algorithm in Figure 11. The transaction index
list of the split item is traversed and for each index

444 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

0 0

FIGURE 12| Occurrence deliver scheme used by LCM (Linear time
Closed item set Miner) to find the conditional transaction database for
the first subproblem (needs a horizontal representation in parallel).

the corresponding transaction is retrieved. The item
list of this transaction is then traversed (up to the split
item) and the transaction index is added to the lists
of the items that are encountered in the transaction.

LCM has the advantage that to construct the
conditional transaction database (for the first sub-
problem) it only reads memory linearly and stores
the transaction indices through direct access. In con-
trast to this, the intersection procedure of the standard
Eclat algorithm needs if-then-else statements, which
are difficult to predict by modern processors (see Ref
41 for details). However, LCM has the disadvantage
that it is more difficult to eliminate infrequent and
other removable items; even though their vertical rep-
resentations can be eliminated, removing them also
from the horizontal representation requires a special
projection operation. Nevertheless, with state-of-the-
art optimizations, LCM is one of the fastest frequent
item set mining algorithms: it won (in version 2'1)
the second Frequent Item Set Mining Implementa-
tions (FIMI) Workshop competition*? and version 312
is even faster.

Note that due to its hybrid transaction database
representation, LCM can be implemented in such a
way that only an amount of memory linear in the size
of the transaction database is needed: if the second
subproblem is processed before the first, the trans-
action index lists can be reused for the conditional
transaction databases.

A more sophisticated hybrid structure is used by
the FP-Growth algorithm,* namely, a so-called FP-
Tree (Frequent Pattern Tree), which combines a hor-
izontal and a vertical representation. The core idea is
to represent a transaction database by a prefix tree,
thus combining transactions with the same prefix. At
the same time an FP-Tree keeps track of the trans-
actions an item is contained in by linking the prefix
tree nodes referring to the same item into a list. This
structure is enhanced by a header table, each entry of
which refers to one item and contains the head of the
item list as well as the item support.

An FP-Tree is best explained by how it is
constructed from a transaction database, which is

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

@ (@4 |© @ 6 3 & e
acde dbc ; * i i
bd dba 3 1 - 1 3
bed dba | 1
bef dbe ; \\@
abd dc v‘ i i V
bde dc [d:8]x———c:2]—Ha:1]
bcecde da : ‘
bc bc \-'1 : ;
abdf bce ‘—-‘—E

FIGURE 13| Building an FP-tree (Frequent Pattern Tree):

(a) original transaction database; (b) lexicographically sorted
transactions (infrequent items eliminated, other items sorted according
to descending frequency); (c) resulting FP-tree structure.

illustrated in Figure 13 for a simple example, shown
in Figure 13(a). This transaction database is first pre-
processed in a similar manner as for the SaM algo-
rithm (see Figure 10) by sorting the items according to
their frequency and then the transactions lexicograph-
ically. However, in contrast to the SaM algorithm, for
an FP-Tree the items should be ordered according to
descending frequency in the transactions. This trans-
forms the transaction database into the form shown
in Figure 13(b). From this database, the FP-Tree can
be built directly by representing it as a prefix tree, see
Figure 13(c). Note that sorting the items in the order
of descending frequency is essential for obtaining a
compact tree (even though it cannot be guaranteed
that the tree needs less memory than a simple hor-
izontal representation due to the overhead for the
support and the pointers). Note also that the pre-
fix tree is essentially a (compressed) horizontal rep-
resentation, whereas the links between the branches
(shown as dashed lines in Figure 13) are a vertical
representation.

An FP-Tree is processed in the subproblem split
as follows: the rightmost item is chosen as the split
item and its list is traversed, see Figure 14(a). This se-
lects all transactions that contain the split item. From
nodes on the split item list, the parent pointers of
the prefix tree are followed to recover the rest of the
transactions containing the split item. To build the
FP-Tree for the conditional transaction database, the
encountered nodes are copied and linked. Note, how-
ever, that the support values are derived from the sup-
port values in the nodes for the split item: only these
state in how many transactions the split item is con-
tained. After the split item list has been fully traversed,
the created FP-Tree is detached (see Figure 14b) and
processed recursively (first subproblem). Note, how-
ever, that for an implementation it may be easier to
extract the transactions one by one, see Figure 14(d)
and to insert them into a new (and initially empty) FP-
Tree than to copy nodes. Of course, in this approach
no full horizontal database representation is created,

Volume 2, November/December 2012

Frequent item set mining

©----

® @ & &

Co i el
|
, | s l
i i i
i :

@ Transactions with item e

@ - - - - prefix e

1 1 1 db
| L dea
v : v v b c
-d:Z 1 1
2] P (item e is in the prefix;
. represented implicitly)

FIGURE 14| Subproblem split in the FP-growth (Frequent Pattern
Growth) algorithm: (a) projecting an FP-tree (Frequent Pattern Tree)
(to item e); (b) detached projection (FP-tree of conditional transaction
database); (c) remaining FP-tree after split item level is removed; (d)
conditional transaction database in horizontal representation.

but each extracted transaction is immediately inserted
into a new tree and then discarded again, which can
be achieved with a single transaction buffer. For the
second subproblem, the nodes on the list for the
split item are simply discarded (or ignored; note that
an explicit deletion is not necessary) as shown in
Figure 14(c).

The advantages of the FP-Growth algorithm are
that its data structure allows for an easy removal of
infrequent and other eliminated items and that it re-
duces, for some data sets, the amount of memory
needed to store the transaction database (due to the
combination of transactions with the same prefix). Its
disadvantages are that the FP-Tree structure is com-
paratively complex and that the overhead for the sup-
port values and the pointers in the nodes can also have
the effect that an FP-Tree is larger than a purely hori-
zontal representation of the same database. Neverthe-
less, in a state-of-the-art implementation FP-Growth
is usually one of the fastest frequent item set mining
algorithms, as exemplified by the fact that the version
of Ref 7 won the first FIMI Workshop competition.*3
An even faster version, which represents the FP-Tree
very cleverly with the help of only two integer arrays
was presented in Ref 8.

Variants of FP-Growth include a version that
uses Patricia trees to improve the compression** and
a compressed coding of a standard FP-Tree to process
particularly large data sets.*®

As already mentioned in Vertical Representa-
tion, certain aspects of the FP-Growth algorithm can
be transferred to Eclat to improve the performance
on dense data sets. The core idea is that Eclat also
allows to combine transaction prefixes if one uses

© 2012 John Wiley & Sons, Inc. 445

@O:db 5 dc
1. dbec 6: dcae
2: dba 7: da
3:dba 8 brc
4: dbe 9: bce

FIGURE 15| Eclat with transaction ranges: (a) lexicographically
sorted transactions; (b) transaction range lists.

transaction range lists instead of plain transaction
index lists. This is illustrated in Figure 15 for the
same example database used to illustrate FP-Growth
(a range is represented as start—end:support). Clearly,
using ranges can reduce the length of the lists consid-
erably, especially for dense data sets, and can thus
reduce the processing time, even though intersecting
transaction range lists is more complex than intersect-
ing plain transaction index lists.

ADVANCED TECHNIQUES

The basic algorithms as defined above by a gen-
eral divide-and-conquer/depth-first approach and a
representation form and processing scheme for con-
ditional transaction databases can be enhanced by
various optimizations to increase their speed. The
following sections list the most important and most
effective ones. Note, however, that none of these can
change the fact that the asymptotic time complexity
of frequent item set mining is essentially linear in the
number of item sets, and thus potentially exponential
in the number of items.

Reducing the Transaction Database

One of the simplest and most straightforward opti-
mizations consists in eliminating all infrequent items
from the initial transaction database. This not only
removes items that cannot possibly be elements of fre-
quent item sets (due to the Apriori property), but also
increases the chances to find equal transactions in the
database, which can be combined keeping their multi-
plicity in a counter. We already saw this technique for
the SaM algorithm (see Figure 10) and it is implicit in
the construction of an FP-Tree (see Figure 13), but it
can also be applied for Eclat-style algorithms (includ-
ing LCM). This makes the support counting slightly
more complex in these algorithms, because it requires
an additional array holding the transaction weights
(multiplicities), but it can significantly improve speed
for certain data sets and minimum support values and
thus is worth the effort.

446 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

Perfect Extension Pruning

The basic divide-and-conquer/depth-first scheme can
easily be improved with so-called perfect extension
pruning: an item i & [is called a perfect extension
of an item set I (or a parent equivalent item or a
full support item), iff I and IU {i} have the same sup-
port. Perfect extensions have the following properties:
(1) if an item ¢ is a perfect extension of an item set
I, then it is also a perfect extension of any item set
J 2 1Taslongasi ¢] and (2) if K is the set of all
perfect extensions of an item set I, then all sets [UJ
with | € 2K (power set of K) have the same support
as I. These properties can be exploited by collecting
in the recursion not only prefix items, but also, in
a third element of a subproblem description, perfect
extension items. These items are also removed from
the conditional databases and are only used when an
item set is reported to generate all supersets of the
reported set that have the same support.

The correctness of this approach can also be un-
derstood by realizing that if a perfect extension item
is chosen as the split item, the conditional transac-
tion databases C; and C, are identical (since there
are no transactions in Cy that do not contain the
split item). The only difference between the subprob-
lems is the prefix, which contains the split item for
the first subproblem, whereas it is missing in the sec-
ond subproblem. As a consequence, the frequent item
sets reported in the solutions of the two subproblems
are essentially the same, only that the item sets re-
ported for the first subproblem contain the split item,
whereas those of the second subproblem do not. Or
formally: let i be the split item and S(Sg) the frequent
item sets in the solution of the kth subproblem, & =
1,2. Then I € 8(S) & T Ui} € S(S1).

Note that closed item sets (see Closed and Maxi-
mal Item Sets and Generators) may be defined as item
sets that do not possess a perfect extension. However,
note also that using perfect extension pruning is not
sufficient to restrict the output to closed item sets (see
Closed and Maximal Item Set Filtering for the addi-
tional requirements).

Few Items

One of the core issues of making an item set enumer-
ation approach efficient is that in the recursion the
set of items in the conditional transaction databases
is reduced. This can make it possible to combine
(projected) transactions that differed initially in some
item, but became equal w.r.t. the reduced item base.
We have seen a direct example of this in the illus-
tration of the SaM algorithm (see Figure 10) and
the FP-growth algorithm does essentially the same.

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

@ Highest items/set bits of transactions (constant)
“*1a.0][b.1]b.1][c2]c2]c2][c.2][d.3]d.3]d.3]d.3]d.3]d.3[d.3]d.3]

0000 0001 0010 0011 0100 0101 0110 OIIT 1000 1001 1010 1011 1100 1101 1110 1111
o b _ba _c_ _ca _cb _cba d_ d_a db_ dbe d_ dea db_ dcba

@ Transaction weights/multiplicities
[ofoJ[oJoJ[ofofofoJ[oJo[o[o[o[o[o00]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Transaction lists (one per item)
d.3 ; l

Loyl o [0]
(N N N N A

a0
@ Transaction weights/multiplicities

0f1]fofo]Jfof1T2]o0][0]2]0[00[3]1]0]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
transaction lists (one per item)
L LIo LLI0s Ty Lo [11]
a0 b1 c2 d.3

fooor]][[Jforotforro] [J[ootfrrrofuoa] [T T []

@ Transaction weights/multiplicities
(ol7][3foJ[oT4[3T0][0[2]0]0[0[3T1]0]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
transaction lists (one per item)

L7 L3 3] 7 [1]h]
a0 b1 c2

d3

[ooor] Jfooto] Jforotforto] [J[wootfrrrofuzoa] [T [[]

FIGURE 16| lllustration of a 4-items machine: (a) table of highest
set bits; (b) empty 4-items machine (no transactions); (c) after inserting
the transactions of Figure 1 (without e); (d) after propagating the
transaction lists left-/downward.

However, the computational overhead for this trans-
action combination procedure can be considerably
reduced with a special data structure if the set of re-
maining items becomes sufficiently small (as it will
necessarily be at some point in the recursion).

The core idea is to represent a certain number k
of the most frequent items in a horizontal representa-
tion as bit arrays, in which each bit stands for an item.
A set bit indicates that the item is contained in a trans-
action, a cleared bit that it is missing. Provided that
k is sufficiently small, we can then represent all possi-
ble (projected) transactions with k items as indices of
an integer array, which simply holds the multiplicities
of these transactions. Together with transaction lists
holding the transactions containing an item (in a simi-
lar style as for the LCM algorithm), we arrive at what
will be called a k-items machine in the following. This
data structure was proposed in Ref 12 for the LCM
algorithm (version 3). However, the same technique
can equally well be used with other algorithms, in-
cluding SaM, Eclat (with plain transaction index lists
as well as with transaction ranges), FP-Growth, and
many others.

To illustrate this method, Figure 16 shows the
elements of a 4-items machine as well as different
states. Figure 16(b) shows the main components of
the 4-items machine (in an empty state, i.e., without
any transactions). The top array records the multi-
plicities of transactions, which are identified by their
index (see Figure 16a for the correspondence of bit

Volume 2, November/December 2012

Frequent item set mining

patterns and item sets). The bottom arrays record,
for each item, the transactions it is contained in (in
a bit representation). Note that these data structures
explain why k needs to be small for a k-items machine
to be feasible: the multiplicities array at the top has
2k elements, which is also the total (maximum) size
of the transaction lists.

Bit-represented transactions are entered into a
k-items machine by simply indexing the transaction
weights array to check whether an equal transaction
is already contained: if the corresponding weight is
zero, the transaction is not yet represented, otherwise
it is. The principle underlying this aspect is essentially
that of binsort. If a transaction is not yet represented,
the array shown in Figure 16(a) is used to determine
the highest set bit (and the item corresponding to it;
in the array denoted as i.b, where i is the item and b
the corresponding bit index). Then the transaction is
appended to the list for this item. Executing this pro-
cedure for all transactions in the database of Figure 1
(without item e) yields Figure 16(c).

However, after this step only the list for the
highest item (in this case d) lists all the transactions
containing it, because a transaction has been added
only to the list for its highest item. To complete the
assignment, the transaction lists are traversed from
the highest item downward, the bit corresponding to
the list is masked out, and the (projected) transactions
are, if necessary, assigned to the list for the next high-
est bit. If the transaction is already contained in this
list (determined from the entry in the weights arrays
as above), only the transaction weight/multiplicity is
updated. This finally yields Figure 16(d), in which
new list entries created in the second step are shown
in blue and which can then be processed recursively
in the usual way.

Conditional Item Reordering

Although the differences are often fairly small, in cer-
tain transaction databases the frequency order of the
items in the conditional transaction databases can dif-
fer considerably from the global frequency order. Be-
cause the order in which split items are chosen is,
in principle, arbitary, it can be beneficial to reorder
the items to reduce the average size of the condi-
tional transaction databases in the deeper levels of
the recursion. This is one of the core features under-
lying the speed of the FP-growth implementations of
Refs 7, 9. However, the same idea can be used (and
even much more easily) with an Eclat-based scheme
(although it is slightly more difficult to implement for
the LCM variant). It should be noted, though, that
the cost of reordering can also slow down the search

© 2012 John Wiley & Sons, Inc. 447

unnecessarily if the frequency orders do not differ
much. It depends heavily on the data set whether item
reordering is advantageous or not.

Generating the Output

In the described divide-and-conquer/depth-first
scheme the item sets are enumerated in lexicographic
order (if the first subproblem is processed before the
second) or in reverse lexicographic order (if the sec-
ond is processed before the first). This can be ex-
ploited to optimize the output, by avoiding the need to
generate the textual description of each item set from
scratch. Due to the lexicographic order, it will often
be the case that the next item set to be reported shares
a prefix with the last one reported. The output, and
with it the whole search, can be made considerably
faster by using an output buffer for the textual de-
scription of an item set. It is then recorded which part
is still valid and this part is reused. That this should
be relevant may sound surprising, but the benchmark
results of Ref 41 clearly indicate that a well-designed
output routine can be orders of magnitude faster than
a basic one and thus can decide which implementation
wins a speed competition.

Closed and Maximal Item Set Filtering

All techniques discussed up to now are essentially
geared to find all frequent item sets. If one wants
to confine the output to closed or maximal item sets,
additional filtering procedures are needed. The most
straightforward is perfect extension pruning: if an
item set has a perfect extension, it cannot be closed
(and thus also not maximal). However, not all perfect
extensions are easy to detect. Only if the perfect ex-
tension item is in the conditional transaction database
associated with the item set to check, it will be imme-
diately detected in the recursion and thus can be used
without effort to suppress the output of the item set
in question.

However, if the path to the current subproblem
contains calls for the second type of subproblem, there
can be perfect extension items that will not be checked
in the recursion, namely among those that were elim-
inated in these calls (eliminated items). To find such
perfect extensions, essentially two approaches are em-
ployed: the first refers to the definition of a perfect ex-
tension, goes back to the original transaction database
and checks whether there is an eliminated item that
is contained in all originals of the projected transac-
tions of the current conditional transaction database.
This check is best carried out with a horizontal trans-
action representation by intersecting the set of elimi-

448 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

nated items incrementally with the transactions. The
advantage of such a scheme is that if the set becomes
empty, there is no perfect extension and no further in-
tersections are necessary. If, on the other hand, items
remain after all relevant transactions have been inter-
sected, there is a perfect extension, choices of which
have even been identified in the intersection result.
This approach is used in LCM, %12 where it is par-
ticularly fast, especially due to a bit representation of
the k& most frequent items.

An alternative to a direct test of the defining
condition is to maintain a repository of already found
closed item sets, which is queried for a superset with
the same support. (Note that this requires that the
first subproblem is processed before the second one.)
If there is such a superset, there is a perfect extension
among the eliminated items and the current item set
cannot be closed.

It is important to note that a repository ap-
proach is competitive only if not only a single global
repository is used, because the number of item sets ac-
cumulating in it in the course of the recursive search
severely impedes the efficiency of looking up a found
item set. The solution is to create, alongside the con-
ditional transaction databases, conditional reposito-
ries, which are filtered in the same way by the pre-
fix/split item. This approach works extremely well in
the FP-Growth implementations of Refs 7, 9, where
the repository is laid out as an FP-Tree, which makes
the retrieval very efficient. However, a simple top-
down prefix tree may be used as well.

Additional pruning techniques for closed item
sets as well as special algorithms have been suggested,
for example, in Refs 19, 20, 22, 23, 37, 46-48.
Since maximal item sets are also closed, they allow
for basically the same or at least analogous filtering
techniques as closed item sets. Some additional tech-
niques, as well as other specialized algorithms, can be
found, for instance, in Refs 14-15, 49, 50.

INTERSECTING TRANSACTIONS

The general search schemes reviewed in the preceding
sections all enumerate candidate item sets and then
prune infrequent candidates. However, there exists an
alternative, which intersects (sets of) transactions to
find the closed (frequent) item sets. Different variants
of this approach were proposed in Refs 24, 51, 52
and it was combined with an item set enumeration
scheme in Ref 53.

The fundamental idea of methods based on in-
tersecting transactions is that closed item sets cannot
only be defined as in Closed and Maximal Item Sets

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

and Generators (no superset has the same support),
but also as follows: an item set I C B is (frequent and)
closed if st(I) = |Kp(I)| = smin A I = ﬂkeKT(” . In
other words, an item set is closed if it is equal to
the intersection of all transactions that contain it (its
cover). This definition is obviously equivalent to the
one given in Closed and Maximal Item Sets and Gen-
erators: if an item set is a proper subset of the intersec-
tion of the transactions it is contained in, there exists
a superset (especially the intersection of the contain-
ing transactions itself) that has the same cover and
thus the same support. If, however, an item set is
equal to the intersection of the transactions contain-
ing it, adding any item will remove at least one trans-
action from its cover and will thus reduce the item set
support.

Intersection approaches can nicely be justified in
a formal way by analyzing the Galois connection be-
tween the set of all possible item sets 28 and the set of
all possible sets of transaction indices 21"} (where
m is the number of transactions),** as it was empha-
sized and explored in detail in Ref 55: the Galois con-
nection gives rise to a bijective mapping between the
closed item sets and closed sets of transaction indices.

The intersection approach is implemented in the
Carpenter algorithm?* by enumerating sets of trans-
actions (or, equivalently, sets of transaction indices)
and intersecting them. This is done with basically the
same divide-and-conquer scheme as for the item set
enumeration approaches, only that it is applied to
transactions (i.e., items and transactions exchange
their meaning, cf., Ref 55). Technically, the task to
enumerate all transaction index sets is split into two
subtasks: (1) enumerate all transaction index sets that
contain the index 1 and (2) enumerate all transaction
index sets that do not contain the index 1. These sub-
tasks are then further divided w.r.t. the transaction in-
dex 2: enumerate all transaction index sets containing
(1.1) both indices 1 and 2, (1.2) index 1, but not index
2, (2.1) index 2, but not index 1, (2.2) neither index
1 nor index 2, and so on.

Formally, all subproblems occurring in the re-
cursion can be described by triples S = (I, K, £). K C
{1,...,m} isaset of transaction indices, I = (\pcx >
that is, I is the item set that results from intersecting
the transactions referred to by K, and ¢ is a transac-
tion index, namely, the index of the next transaction
to consider. The initial problem, with which the re-
cursion is started, is S = (B, @, 1), where B is the item
base, no transactions have been intersected yet, and
transaction 1 is the next to process.

A subproblem Sy = (I, Ko, £o) is processed as
follows: form the intersection I} = Iy N#,. If [= @,
do nothing (return from recursion). If IKol + 1 > spin

Volume 2, November/December 2012

Frequent item set mining

and there is no transaction ¢; withj € {1, ..., m} — Ko
such that I C ¢, report I; with support st(I1) = IKol
+ 1.If £y < m, form the subproblem Sy = (I, Ky, £1)
with K1 = KoU{€} and £; = £y + 1 and the sub-
problem S, = (Iz, Kz, Ez) with I, = Io, K; =Ky and
£, = ¢ + 1 and process them recursively. For the nec-
essary optimizations to make this approach efficient,
see Refs 24, 52, 56.

An alternative to transaction set enumeration
is a scheme that maintains a repository of all closed
item sets, which is updated by intersecting it with the
next transaction (incremental approach).’’3¢ To jus-
tify this approach formally, we consider the set of all
closed frequent item sets for sy, = 1, that is, the set
C(T)={ICB|3SCT:S#BAI=(),st). This
set satisfies the following simple recursive relation:
(1) CW@) =9, (2) C(TU{t))=C(T)U{}U{l|3s e
C(T): I =snNt}). As a consequence, we can start the
procedure with an empty set of closed item sets and
then process the transactions one by one, each time
updating the set of closed item sets by adding the
new transaction itself and the additional closed item
sets that result from intersecting it with the already
known closed item sets. In addition, the support of
already known closed item sets may have to be up-
dated. Details of an efficient data structure and up-
dating scheme can be found in Ref 56.

It should be noted that the performance of the
intersection approaches is usually not competitive for
standard data sets (like supermarket data). However,
they can be the method of choice for data sets with
few transactions and (very) many items as they oc-
cur, for instance, in gene expression analysis*®37 or
text mining. On such data, transaction intersection
approaches can outperform item set enumeration by
orders of magnitude.

EXTENSIONS

Frequent item set mining approaches have been ex-
tended in various ways and considerable efforts have
been made to reduce the output to the relevant pat-
terns. This section is certainly far from complete and
only strives to give a flavor of some of the many
possibilities.

Association Rules

Although historically preceding frequent item set min-
ing, association rules®® have to be considered an ex-
tension. The reason is that association rule induction
is a two step process: in the first step the frequent
item sets are found, from which association rules are

© 2012 John Wiley & Sons, Inc. 449

generated in the second step. The idea is simply to
split a frequent item set into two disjoint subsets, the
union of which is the frequent item set (2-partition).
One of the subsets is used as the antecedent of a rule,
the other as its consequent. This rule is then evalu-
ated by computing its so-called confidence, which for
a rule X — Y and a given transaction database T is
defined as c7(X — Y) = sp(XUY)/sp(X). Intuitively,
the confidence estimates the conditional probability
of the consequent given the antecedent of the rule.
Rules are then filtered with a user-specified minimum
confidence cpin : only rules reaching or exceeding this
threshold are reported.

Extensions of standard association rule induc-
tion include, among many others, the incorporation
of taxonomies for the items,’” quantitative associa-
tion rules,’® and fuzzy association rules,®" which use
fuzzy sets over continuous domains as items.

A popular way to rank association rules is

, XY Xo Y :
the lift*? I7(X— Y) = CCTT(M:Y)) = CSTT((Y;W[), which mea-

sures how much the relative frequency of Y is in-
creased if the transactions are restricted to those that
contain X. Alternatives include leverage®® Ar(X — Y)
=s7(XUY) — st(X)st(Y)/m, which states how much
more often X and Y occur together than expected
under independence, and conviction®® yp(X— Y) =
}:ETT((?;?) = 11__51((}?_/)";,, which measures how much
more often the rule would be incorrect if X and Y
occurred independently. Overviews of ranking and
selection measures can be found in Refs 64-66. In
general, any measure for the dependence of two bi-
nary variables (X is contained in a transaction or not,
Y is contained in a transaction or not) is applica-
ble. Approaches based on statistical methods to select
the best k patterns have been proposed, for example,
in Ref 67, 68. Generally, the task to select relevant
rules from the abundance that is produced by unfil-
tered mining has become a strong focus of current
research.

Cover Similarity

Support-based frequent item set mining has the dis-
advantage that the support does not say much about
the actual strength of association of the items in the
set: a set of items may be frequent simply because
its elements are frequent and thus their frequent co-
occurrence can be expected by chance. As a conse-
quence, the (usually few) interesting item sets drown
in a sea of irrelevant ones.

One of several approaches to improve this situa-
tion is to replace the support by a different antimono-
tone measure. Such a measure can, for instance, be
obtained by generalizing measures for the similarity

450 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

of sets or binary vectors®® to more than two argu-
ments and applying them to the covers of the items in
a set.””

As an example, consider the Jaccard index,”!
which for two sets A and B is defined as J(A, B) =
|A N BI/IA U BIl. Obviously, J(A, B) is 1 if the sets coin-
cide (i.e., A = B) and 0 if they are disjoint (i.e., AN B
= }). To generalize this measure to more than two sets
(here: item covers), one defines the carrier Lt(I) of an
item set [as Lp(I)={ke{l,....m} | INK #0} =
Uicr Kr({i}). The extent rr(I) of an item set [w.r.t.
a transaction database T is the size of its carrier,
that is, r7(I) = ILp(I)l. Together with the notions
of cover and support (see Problem Definition), the
generalized Jaccard index of an item set I is then de-
fined as its support divided by its extent, that is, as
‘]T(I).z zgi = % It is easy to show that Jr(I)
is antimonotone.

Depending on the application, Jaccard item set
mining can yield better and more informative results
than a simple support-based mining, but should al-
ways be combined with an additional filter for the
support.

Notable other modifications of the sup-
port criterion include a size-decreasing minimum
support’>72 (i.e., the larger an item set, the lower the
support threshold) and using the area of the binary
matrix tile corresponding to an item set as a selection
criterion,”* which is analogous to a size-dependent
support.

Item Set Ranking and Selection

To reduce the number of reported item sets, addi-
tional measures to rank and filter them can be em-
ployed. A straightforward approach simply compares
the support of an item set I to its expected sup-
port under independence, for example, as ep(I) =
st/ JiersT(i). However, this has the disadvantage
that adding an independent item j to a well scoring
set still yields a high value, as in this case er(I U {j})
=st(f)st(D/(sT()[LiersT(i)) = er(I). Better approaches
rely on measures for association rule evaluation and
ranking (see Association Rules): form all possible as-
sociation rules that can be created from a given item
set I (or only those with a single item in the con-
sequent) and aggregate (average, take minimum or
maximum) their evaluations to obtain an evaluation
for the item set I.

However, any such measure-based evaluation
suffers from the multiple testing problem due to which
one loses control of the significance level of statisti-
cal tests: in a large number of tests some positive re-
sults are to be expected simply by chance, which can

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

lead to many false discoveries. Common approaches
to deal with this problem are to apply Bonferroni
correction”®7¢ or the Holm-Bonferroni method”” in
the search,®®:7® mining only part of the data and sta-
tistically validating the results on a hold-out subset®®
as well as randomization approaches,” 8" which cre-
ate surrogate data sets that implicitly encode the null
hypothesis.

An extended problem is the selection of so-
called pattern sets, for example, as sets of (binary)
features for classification purposes. In this case, not
individual item sets, but sets of such patterns are de-
sired, for example, a (small) pattern set that covers the
data well or exhibits little overlap between its mem-
ber patterns (low redundancy). To find such pattern
sets, various approaches have been devised, for exam-
ple, finding pattern sets with which the data can be
compressed well®!-82 or pattern sets in which all pat-
terns contribute to partitioning the data.?? A general
framework for this task, which has become known as
constraint based pattern mining, has been suggested
in Ref 84. An alternative, statistics based reduction
of the output in the spirit of closed item sets are self-
sufficient item sets®>: item sets the support of which
is within expectation are removed.

Fault-Tolerant Item Sets

In standard frequent item set mining only transac-
tions that contain all of the items in a given set are
counted as supporting this set. In contrast to this, in
fault-tolerant (or approximate) item set mining trans-
actions that contain only a subset of the items can still
support an item set, though possibly to a lesser degree
than transactions containing all items. To cope with
missing items in the transaction data to analyze, sev-
eral fault-tolerant item set mining approaches have
been proposed (for an overview see, e.g., Ref 86).
They can be categorized roughly into three classes:
(1) error-based, (2) density-based, and (3) cost-based
approaches.

Error-based approaches: Examples of error-
based approaches are Refs 87 and 88. In the former,
the standard support measure is replaced by a fault-
tolerant support, which allows for a maximum num-
ber of missing items in the supporting transactions,
thus ensuring that the measure is still antimonotone.
The search algorithm itself is derived from the Apri-
ori algorithm (see Breadth-First/Levelwise Search). In
Ref 88, constraints are placed on the number of miss-
ing items as well as on the number of (supporting)
transactions that do not contain an item in the set.
Hence, it is related to the tile-finding approach in
Ref 89. However, it uses an enumeration search

Volume 2, November/December 2012

Frequent item set mining

scheme that traverses sublattices of items and trans-
actions, thus ensuring a complete search, whereas
Ref 89 relies on a heuristic scheme.

Density-based approaches: Rather than fixing
a maximum number of missing items, density-based
approaches allow a certain fraction of the items in a
set to be missing from the transactions, thus requiring
the corresponding binary matrix tile to have a min-
imum density. This means that for larger item sets
more items are allowed to be missing than for smaller
item sets. As a consequence, the measure is no longer
antimonotone if the density requirement is to be ful-
filled by each individual transaction. To overcome
this, Ref 90 requires only that the average density
over all supporting transaction must exceed a user-
specified threshold, whereas Ref 91 defines a recursive
measure for the density of an item set. The approach
in Ref 92 requires both items and transactions to sat-
isfy a density constraint and defines a corresponding
fault-tolerant support that allows for efficient mining.

Cost-based approaches: In error- or density-
based approaches all transactions that satisfy the con-
straints contribute equally to the support of an item
set, regardless of how many items of the set they con-
tain. In contrast to this, cost-based approaches define
the support contribution of transactions in proportion
to the number of missing items. In Refs 40, 93, this
is achieved by means of user-provided item-specific
costs or penalties, with which missing items can be
inserted. These costs are combined with each other
and with the initial transaction weight of 1 with the
help of a t-norm. In addition, a minimum weight for
a transaction can be specified, by which the number
of insertions can be limited.

Note that the cost-based approaches can be
made to contain the error-based approaches as a lim-
iting or extreme case, as one may set the cost/penalty
of inserting an item in such a way that the transac-
tion weight is not reduced. In this case, limiting the
number of insertions obviously has the same effect as
allowing for a maximum number of missing items.

Related to fault-tolerant item set mining—but
nevertheless fundamentally different—is the case of
uncertain transactional data. In such data, each item is
endowed with a transaction-specific weight or proba-
bility, which is meant to indicate the degree or chance
with which it is a member of the transaction. Ap-
proaches to this problem can be found, for example,
in Refs 94-96. The problem of determining the (ex-
pected) support of an item set is best treated (in the
case of independent occurrences of items in the trans-
actions) by simple sampling and then applying stan-
dard frequent item set mining®” or by using a normal
distribution approximation.”®

© 2012 John Wiley & Sons, Inc. 451

SUMMARY

Frequent item set mining has been a fruitful and in-
tensely researched topic, which has produced remark-
able results. The currently fastest frequent item set
mining algorithms are the Eclat-variant LCM and
FP-Growth, provided they are equipped with state-of-
the-art optimizations, and there seems to be very little
room left for speed improvements. Lasting challenges

REFERENCES

1. Agrawal R, Srikant R. Fast algorithms for mining asso-
ciation rules. In: Proceedings of the 20th International
Conference on Very Large Databases (VLDB 1994,
Santiago de, Chile). San Mateo, CA: Morgan Kauf-
mann; 1994, 487-499.

2. Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo A. Fast discovery of association rules. In:
Advances in Knowledge Discovery and Data Mining.
Cambridge, CA: AAAI Press/MIT Press; 1996, 307-
328.

3. Zaki MJ, Parthasarathy S, Ogihara M, Li W. New
algorithms for fast discovery of association rules. In:
Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (KDD 1997,
Newport Beach, CA). Menlo Park, CA: AAAI Press;
1997, 283-296.

4. Zaki MJ, Gouda K. Fast vertical mining using diffsets.
In: Proceedings of the 9th ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2003; Washington, DC). New York: ACM Press; 2003,
326-335.

5. Schmidt-Thieme L. Algorithmic features of Eclat. In:
Proceedings of the Workshop Frequent Item Set Min-
ing Implementations (FIMI 2004; Brighton, UK).
Aachen, Germany: CEUR Workshop Proceedings 126;
2004.

6. Han J, Pei J, Yin Y. Mining frequent patterns with-
out candidate generation. In: Proceedings of the 19th
ACM International Conference on Management of
Data (SIGMOD 2000, Dallas, TX). New York, NY:
ACM Press; 2000, 1-12.

7. Grahne G, Zhu]. Efficiently using prefix-trees in min-
ing frequent itemsets. In: Proceedings of the Work-
shop Frequent Item Set Mining Implementations (FIMI
2003; Melbourne, FL). Aachen, Germany: CEUR
Workshop Proceedings 90; 2003.

8. Racz B. Nonordfp: an FP-growth variation without
rebuilding the FP-tree. In: Proceedings of the 2nd
International Workshop on Frequent Itemset Min-
ing Implementations (FIMI 2004; Brighton, UK).
Aachen, Germany: CEUR Workshop Proceedings 126;
2003.

452 © 2012 John Wiley & Sons, Inc.

wires.wiley.com/widm

of frequent item set mining are to find better ways
to filter the produced frequent item sets and associa-
tion rules (or produce fewer in the first place), as even
with the methods discussed above (such as closed and
maximal item sets), the really interesting patterns still
run the risk of drowning in a sea of irrelevant ones.
Additional filtering with quality measures or statisti-
cal tests improves the situation, but still leaves a lot
of room for improvements.

9. Grahne G, Zhu J. Reducing the main memory con-
sumptions of Fpmax* and FPclose. In: Proceedings of
the Workshop Frequent Item Set Mining Implementa-
tions (FIMI 2004; Brighton, UK). Aachen, Germany:
CEUR Workshop Proceedings 126; 2004.

10. Uno T, Asai T, Uchida Y, Arimura H. LCM: an efficient
algorithm for enumerating frequent closed item sets.
In: Proceedings of the Workshop on Frequent Item Set
Mining Implementations (FIMI 2003; Melbourne, FL).
TU Aachen, Germany: CEUR Workshop Proceedings
905 2003.

11. Uno T, Kiyomi M, Arimura H. LCM ver. 2: efficient
mining algorithms for frequent/closed/maximal item-
sets. In: Proceedings of the Workshop Frequent Item
Set Mining Implementations (FIMI 2004; Brighton,
UK). Aachen, Germany: CEUR Workshop Proceedings
1265 2004.

12. Uno T, Kiyomi M, Arimura H. LCM ver. 3: collab-
oration of array, bitmap and prefix tree for frequent
itemset mining. In: Proceedings of the 1st Open Source
Data Mining on Frequent Pattern Mining Implemen-
tations (OSDM 2005; Chicago, IL). New York, NY:
ACM Press; 2005, 77-86.

13. Gerstein GL, Perkel DH, Subramanian KN. Identifi-
cation of functionally related neural assemblies. Brain
Res 1978, 140:43-62.

14. Bayardo R]. Efficiently mining long patterns from
databases. In: Proceedings of the ACM International
Conference Management of Data (SIGMOD 1998;
Seattle, WA). New York, NY: ACM Press; 1998, 85—
93.

15. Lin D-I, Kedem ZM. Pincer-search: a new algorithm
for discovering the maximum frequent set. In: Pro-
ceedings of the 6th International Conference on Ex-
tending Database Technology (EDBT 1998; Valencia,
Spain). Heidelberg, Germany: Springer-Verlag; 1998,
103-119.

16. Agrawal RC, Aggarwal CC, Prasad VVV. Depth first
generation of long patterns. In: Proceedings of the 6th
ACM International Conference on Knowledge Discov-
ery and Data Mining (KDD 2000; Boston, MA). New
York, NY: ACM Press; 2000, 108-118.

Volume 2, November/December 2012

q; WIREs Data Mining and Knowledge Discovery

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Volume 2, November/December 2012

Aggarwal CC. Towards long pattern generation in
dense databases. SIGKDD Explor 2001, 3:20-26.

Burdick D, Calimlim M, Gehrke J. MAFIA: a maximal
frequent itemset algorithm for transactional databases.
In: Proceedings of the 17th International Conference
on Data Engineering (ICDE 2001; Heidelberg, Ger-
many). Piscataway, NJ: IEEE Press; 2001, 443-452.

Pasquier N, Bastide Y, Taouil R, Lakhal L. Discover-
ing frequent closed itemsets for association rules. In:
Proceedings of the 7th International Conference on
Database Theory (ICDT 1999; Jerusalem, Israel). Lon-
don, United Kingdom: Springer-Verlag; 1999, 398-
416.

Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal
L. Mining frequent patterns with counting inference.
SIGKDD Explor 2002, 2:66-75.

Zaki M]J. Generating non-redundant association rules.
In: Proceedings of the 6th ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2000, Boston, MA). New York, NY: ACM Press; 2000,
34-43.

Cristofor D, Cristofor L, Simovici D. Galois connection
and data mining. | Univ Comput Sci 2000, 6:60-73.

Pei], Han], Mao R. Closet: an efficient algorithm for
mining frequent closed itemsets. In: Proceedings of the
SIGMOD International Workshop on Data Mining
and Knowledge Discovery (DMKD 2000; Dallas, TX).
ACM Press, New York, NY; 2000, 21-30.

Pan F, Cong G, Tung AKH, Yang J, Zaki M]. Carpen-
ter: finding closed patterns in long biological datasets.
In: Proceedings of the 9th ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2003; Washington, DC). New York, NY: ACM Press;
2003, 637-642.

Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal
L. Mining minimal non-redundant association rules
using frequent closed itemsets. In: Proceedings of the
1st International Conference on Computational Logic
(CL 20005 London, UK). London, United Kingdom:
Springer-Verlag, 2000, 972-986.

Bykowski A, Rigotti C. A condensed representation
to find frequent patterns. In: Proceedings of the 20th
ACM Symposium on Principles of Database Systems
(PODS 2001; Santa Barbara, CA). New York, NY:
ACM Press; 2001, 267-273.

Kryszkiewicz M, Gajek M. Concise representation of
frequent patterns based on generalized disjunction-
free generators. In: Proceedings of the 6th Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing (PAKDD 2002; Paipei, Taiwan). New York, NY:
Springer-Verlag; 2002, 159-171.

Liu G, Li J, Wong L, Hsu W. Positive borders or nega-
tive borders: how to make lossless generators based
representations concise. In: Proceedings of the 6th
SIAM International Conference on Data Mining (SDM
2006; Bethesda, MD). Philadelphia, PA: Society for In-

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

© 2012 John Wiley & Sons, Inc.

Frequent item set mining

dustrial and Applied Mathematics (STAM); 2006, 469—
473.

Liu G, Li J, Wong L. A new concise representation
of frequent itemsets using generators and a positive
border. | Knowl Inf Syst 2008, 17:35-56.

Kohavi R, Bradley CE, Frasca B, Mason L, Zheng Z.
KDD-Cup 2000 organizers’ report: peeling the onion.
SIGKDD Explor 2000, 2:86-93.

Calders T, Goethals B. Mining all non-derivable fre-
quent itemsets. In: Proceedings of the 6th Euro-
pean Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2002; Helsinki, Fin-
land). Berlin, Germany: Springer; 2002, 74-85.
Muhonen], Toivonen H. Closed non-derivable item-
sets. In: Proceedings of the 10th European Conference
on Principles and Practice of Knowledge Discovery
in Databases (PKDD 2006; Berlin, Germany). Berlin,
Germany: Springer; 2006, 601-608.

Bodon F. A fast apriori implementation. In: Proceed-
ings of the Workshop on Frequent Item Set Mining
Implementations (FIMI 2003; Melbourne, FL). TU
Aachen, Germany: CEUR Workshop Proceedings 90;
2003.

Borgelt C. Efficient implementations of apriori and
Eclat. In: Proceedings of the Workshop on Frequent
Item Set Mining Implementations (FIMI 2003; Mel-
bourne, FL). TU Aachen, Germany: CEUR Workshop
Proceedings 90; 2003.

Bodon F. Surprising results of trie-based fim algo-
rithms. In: Proceedings of the 2nd Workshop Fre-
quent Item Set Mining Implementations (FIMI 2004;
Brighton, UK). Aachen, Germany: CEUR Workshop
Proceedings 126; 2004.

Borgelt C. Recursion pruning for the apriori algorithm.
In: Proceedings of the 2nd Workshop Frequent Item Set
Mining Implementations (FIMI 2004; Brighton, UK).
Aachen, Germany: CEUR Workshop Proceedings 126;
2004.

Bodon F, Schmidt-Thieme L. The relation of closed
itemset mining, complete pruning strategies and item
ordering in apriori-based FIM algorithms. In: Proceed-
ings of the 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD
2005; Porto, Portugal). Berlin Germany: Springer-
Verlag; 2005.

Kosters WA, Pijls W. Apriori: a depth first implemen-
tation. In: Proceedings of the Workshop on Frequent
Item Set Mining Implementations (FIMI 2003; Mel-
bourne, FL). TU Aachen, Germany: CEUR Workshop
Proceedings 90; 2003.

Wang K, Tang L, Han], Liu J. Top-down FP-growth
for association rule mining. In: Proceedings of the 6th
Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2002; Taipei,
Taiwan). London, United Kingdom: Springer-Verlag;
2002, 334-340.

453

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

454

Borgelt C, Wang X. SaM: a split and merge algo-
rithm for fuzzy frequent item set mining. In: Pro-
ceedings of the 13th International Fuzzy Systems As-
sociation World Congress and 6th Conference of
European Society for Fuzzy Logic and Technology
(IFSA/EUSFLAT’09; Lisbon, Portugal). Lisbon, Por-
tugal: IFSA/EUSFLAT Organization Committee; 2009,
968-973.

Racz B, Bodon F, Schmidt-Thieme L. Benchmarking
frequent itemset mining algorithms: from measurement
to analysis. In: Proceedings of the 1st Open Source
Data Mining on Frequent Pattern Mining Implemen-
tations (OSDM 2005, Chicago, IL). New York, NY:
ACM Press; 2005, 36-45.

Bayardo R, Goethals B, Zaki M], eds. In: Proceed-
ings of the 2nd Workshop Frequent Item Set Mining
Implementations (FIMI 2004; Brighton, UK). Aachen,
Germany: CEUR Workshop Proceedings 126; 2004.

Goethals B, Zaki M], eds. In: Proceedings of the
Workshop Frequent Item Set Mining Implementa-
tions (FIMI 2003; Melbourne, FL). Aachen, Germany:
CEUR Workshop Proceedings 90; 2003.
Pietracaprina A, Zandolin D. Mining frequent itemsets
using patricia tries. In: Proceedings of the Workshop
on Frequent Item Set Mining Implementations (FIMI
2003; Melbourne, FL). TU Aachen, Germany: CEUR
Workshop Proceedings 90; 2003.

Schlegel B, Gemulla R, Lehner W. Memory-efficient
frequent-itemset mining. In: Proceedings of the 14th
International Conference on Extending Database
Technology (EDBT 2011; Uppsala, Sweden). New
York, NY: ACM Press; 2011, 461-472.

Zaki M]J, Hsiao C-J. CHARM: an efficient algorithm
for closed itemset mining. In: Proceedings of the 2nd
SIAM International Conference on Data Mining (SDM
2002; Arlington, VA). Philadelphia, PA: Society for In-
dustrial and Applied Mathematics (SIAM); 2002, 457-
473.

Wang J, Han], Pei J. Closet+: searching for the
best strategies for mining frequent closed itemsets. In:
Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2003;
Washington, DC). New York, NY: ACM Press; 2003.

Lucchese C, Orlando S, Perego R. DCI closed: a fast
and memory efficient algorithm to mine frequent closed
itemsets. In: Proceedings of the 2nd Workshop Fre-
quent Item Set Mining Implementations (FIMI 2004;
Brighton, UK). Aachen, Germany: CEUR Workshop
Proceedings 126; 2004.

Gouda K, Zaki M]. Efficiently mining maximal fre-
quent itemsets. In: Proceedings of the 1st IEEE In-
ternational Conference on Data Mining (ICDM 2001,
San Jose, CA). Piscataway, NJ: IEEE Press; 2001, 163—
170.

Burdick D, Calimlim M, Flannick J, Gehrke], Yiu
T. MAFIA: a performance study of mining maximal
frequent itemsets. In: Proceedings of the Workshop

© 2012 John Wiley & Sons, Inc.

S1.

52.

53.

54.

5S.

S6.

57.

S8.

59.

60.

61.

62.

wires.wiley.com/widm

on Frequent Item Set Mining Implementations (FIMI
2003; Melbourne, FL). TU Aachen, Germany: CEUR
Workshop Proceedings 90; 2003.

Mielikdinen T. Intersecting data to closed sets with
constraints. In: Proceedings of the Workshop Frequent
Item Set Mining Implementations (FIMI 2003; Mel-
bourne, FL). Aachen, Germany: CEUR Workshop Pro-
ceedings 90; 2003.

Cong G, Tan KI, Tung AKH, Pan F. Mining frequent
closed patterns in microarray data. In: Proceedings of
the 4th IEEE International Conference on Data Min-
ing (ICDM 2004; Brighton, UK). Piscataway, NJ: IEEE
Press; 2004, 363-366.

Pan F, Tung AKH, Cong G, Xu X. Cobbler: combin-
ing column and row enumeration for closed pattern
discovery. In: Proceedings of the 16th International
Conference on Scientific and Statistical Database Man-
agement (SSDBM 2004; Santori Island, Greece). Pis-
cataway, NJ: IEEE Press; 2004, 21-30.

Ganter B, Wille R. Formal Concept Analysis: Mathe-
matical Foundations. Berlin: Springer, 1999.

Rioult F, Boulicaut J-F, Crémilleux B, Besson J. Using
transposition for pattern discovery from microarray
data. In: Proceedings of the 8th ACMSIGMOD Work-
shop on Research Issues in Data Mining and Knowl-
edge Discovery (DMKD2003; San Diego, CA). New
York, NY: ACM Press; 2003, 73-79.

Borgelt C, Yang X, Nogales-Cadenas R, Carmona-
Saez P, Pascual-Montano A. Finding closed frequent
item sets by intersecting transactions. In: Proceedings
of the 14th International Conference on Extending
Database Technology (EDBT 2011; Uppsala, Sweden).
New York, NY: ACM Press; 2011, 367-376.

Creighton C, Hanash S. Mining gene expression
databases for association rules. Bioinformatics 2003,
19:79-86.

Agrawal R, Imielienski T, Swami A. Mining associa-
tion rules between sets of items in large databases. In:
Proceedings of the ACM International Conference on
Management of Data (SIGMOD 1993; Washington,
DC). New York, NY: ACM Press; 1993, 207-216.

Srikant R, Agrawal R. Mining generalized associa-
tion rules. In: Proceedings of the 21st International
Conference on Very Large Databases (VLDB 1995;
Zurich, Switzerland). San Mateo, CA: Morgan Kauf-
mann; 1995, 407-419.

Srikant R, Agrawal R. Mining quantitative associa-
tion rules in large relational tables. In: Proceedings of
the ACM International Conference on Management of
Data (SIGMOD 1996; Montreal, Canada). New York,
NY: ACM Press; 1996, 1-12.

Kuok C, Fu A, Wong M. Mining fuzzy association rules
in databases. SIGMOD Rec 1998, 27:41-46.

Brin S, Motwani R, Ullman JD, Tsur S. Dynamic item-
set counting and implication rules for market bas-
ket data. In: Proceedings of the ACM International

Volume 2, November/December 2012

J;L WIREs Data Mining and Knowledge Discovery

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Volume 2, November/December 2012

Conference on Management of Data (SIGMOD 1997,
Tucson, AZ). New York, NY: ACM Press; 1997, 265-
276.

Piatetsky-Shapiro G. Discovery, analysis, and presen-
tation of strong rules. In: Piatetsky-Shapiro G, Fraw-
ley WJ, eds. Knowledge Discovery in Databases. Palo
Alto, CA: AAAI Press; 1991, 229-248.

Tan P-N, Kumar V, Srivastava J. Selecting the right in-
terestingness measure for association patterns. In: Pro-
ceedings of the 8th ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2002;
Edmonton, Canada). New York, NY: ACM Press;
2002, 32-41.

Tan P-N, Kumar V, Srivastava J. Selecting the right ob-
jective measure for association analysis. Inf Syst 2004,
29:293-313.

Geng L, Hamilton HJ. Interestingness measures for
data mining: a survey. ACM Comput Surv (CSUR)
2006, 38:Article 9.

Webb GI, Zhang S. k-Optimal-rule-discovery. Data
Min Knowl Discov 2005, 10:39-79.

Webb GI. Discovering significant patterns. Mach Learn
2007, 68:1-33.

Choi S-S, Cha S-H, Tappert CC. A survey of binary
similarity and distance measures. | Syst Cybern Inf
2010, 8:43-48.

Segond M, Borgelt C. Item set mining based on cover
similarity. In: Proceedings of the 15th Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD 2011; Shenzhen, China). Berlin, Germany:
Springer-Verlag; 2011, LNCS 6635:493-505.

Jaccard P. Etude comparative de la distribution flo-
rale dans une portion des Alpes et des Jura. Bulletin
de la Société Vaudoise des Sciences Naturelles 1991;
37:547-579. France 1901.

Seno M, Karypis G. LPMiner: an algorithm for find-
ing frequent itemsets using length decreasing support
constraint. In: Proceedings of the 1st IEEE Interna-
tional Conference on Data Mining (ICDM 2001; San
Jose, CA). Piscataway, NJ: IEEE Press; 2001, 505—
S512.

Wang J, Karypis G. BAMBOO: accelerating closed
itemset mining by deeply pushing the length-decreasing
support constraint. In: Proceedings of the SIAM Inter-
national Conference on Data Mining (SDM 2004; Dis-
neyworld, FL). Philadelphia, PA: Society for Industrial
and Applied Mathematics; 2004, 432-436.

Geerts F, Goethals B, Mielikiinen T. Tiling databases.
In: Proceedings of the 7th International Conference
on Discovery Science (DS 2004; Padova, Italy). Berlin,
Germany: Springer; 2004, 278-289.

Bonferroni CE. Il calcolo delle assicurazioni su gruppi
di teste. Studi in Onore del Professore Salvatore Ortu
Carboni 1935, 13-60.

Abdi H. Bonferroni and Sidak corrections for multi-
ple comparisons. In: Salkind NJ, ed. Encyclopedia of

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

© 2012 John Wiley & Sons, Inc.

Frequent item set mining

Measurement and Statistics. Thousand Oaks, CA: Sage
Publications; 2007.

Holm S. A simple sequentially rejective multiple test
procedure. Scand J Stat 1979, 6:65-70.

Webb GI. Layered critical values: a powerful direct ad-
justment approach to discovering significant patterns.
Mach Learn 2008, 71:307-323.

Megiddo N, Srikant R. Discovering predictive asso-
ciation rules. In: Proceedings of the 4th International
Conference on Knowledge Discovery and Data Mining
(KDD 1998; New York, NY). Menlo Park, CA: AAAI
Press; 1998, 27-78.

Gionis A, Mannila H, Mielikdinen T, Tsaparas P. As-
sessing data mining results via swap randomization.
In: Proceedings of the 12th ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2006; Philadelphia, PA). New York, NY: ACM Press;
2006, 167-176.

Siebes A, Vreeken J, van Leeuwen M. Item sets that
compress. In: Proceedings of the SIAM International
Conference on Data Mining (SDM 2006; Bethesda,
MD). Philadelphia, PA: Society for Industrial and Ap-
plied Mathematics; 2006, 393-404.

Vreeken J, van Leeuwen M, Siebes A. Krimp: mining
itemsets that compress. Data Min Knowl Discov 2011,
23:169-214.

Bringmann B, Zimmermann A. The chosen few: on
identifying valuable patterns. In: Proceedings of the
7th IEEE International Conference on Data Mining
(ICDM 2007; Omaha, NE). Piscataway, NJ: IEEE
Press; 2007, 63-72.

De Raedt L, Zimmermann A. Constraint-based pattern
set mining. In: Proceedings of the 7th IEEE Interna-
tional Conference on Data Mining (ICDM 2007; Om-
aha, NE). Piscataway, NJ: IEEE Press; 2007, 237-248.

Webb GI. Self-sufficient itemsets: an approach to
screening potentially interesting associations between
items. ACM Trans Knowl Discov Data (TKDD) 2010,
4:Article 3.

Cheng H, Yu PS, Han J. Approximate frequent itemset
mining in the presence of random noise. In: Maimon O,
Rokach L, eds. Soft Computing for Knowledge Discov-
ery and Data Mining. Vol. IV. Berlin: Springer; 2008,
363-389.

Pei J, Tung AKH, Han J. Fault-tolerant frequent pat-
tern mining: problems and challenges. In: Proceedings
of the ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMKD
2001; Santa Babara, CA). New York, NY: ACM Press;
2001.

Besson], Robardet C, Boulicaut J-F. Mining a new
fault-tolerant pattern type as an alternative to formal
concept discovery. In: Proceedings of the International
Conference on Computational Science (ICCS 2006;
Reading, United Kingdom). Berlin, Germany: Springer-
Verlag; 2006, 144-157.

455

89.

90.

91.

92.

93.

456

Gionis A, Mannila H, Seppinen JK. Geometric and
combinatorial tiles in 0-1 data. In: Proceedings of the
8th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD 2004;
Pisa, Italy). Berlin, Germany: Springer-Verlag; 2004,
LNAI 3202:173-184.

Yang C, Fayyad U, Bradley PS. Efficient discovery of
error-tolerant frequent itemsets in high dimensions.
In: Proceedings of the 7th ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD
2001; San Francisco, CA). New York, NY: ACM Press;
2001, 194-203.

Seppinen JK, Mannila H. Dense itemsets. In: Proceed-
ings of the 10th ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2004;
Seattle, WA). New York, NY: ACM Press; 2004, 683—
688.

Liu J, Paulsen S, Sun X, Wang W, Nobel A, Prins J.
Mining approximate frequent itemsets in the presence
of noise: algorithm and analysis. In: Proceedings of the
6th SIAM Conference on Data Mining (SDM 2006;
Bethesda, MD). Philadelphia, PA: Society for Indus-
trial and Applied Mathematics (STAM); 2006, 405-
416.

Wang X, Borgelt C, Kruse R. Mining fuzzy fre-
quent item sets. In: Proceedings of the 11th Inter-
national Fuzzy Systems Association World Congress
(IFSA 2005; Beijing, China). Beijing, China; Heidel-

© 2012 John Wiley & Sons, Inc.

94.

95.

96.

97.

98.

wires.wiley.com/widm

berg, Germany: Tsinghua University Press; Springer-
Verlag; 2005, 528-533.

Chui C-K, Kao B, Hung E. Mining frequent item-
sets from uncertain data. In: Proceedings of the 11th
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD 2007; Nanjing, China). Berlin,
Germany: Springer-Verlag; 2007, 47-58.

Leung CK-S, Carmichael CL, Hao B. Efficient mining
of frequent patterns from uncertain data. In: Proceed-
ings of the 7th IEEE International Conference on Data
Mining Workshops (ICDMW 2007; Omaha, NE). Pis-
cataway, NJ: IEEE Press; 2007, 489-494.

Aggarwal CC, Lin Y, Wang], Wang J. Frequent pattern
mining with uncertain data. In: Proceedings of the 15th
ACM International Conference on Knowledge Discov-
ery and Data Mining (KDD 2009; Paris, France). New
York, NY: ACM Press; 2009, 29-38.

Calders T, Garboni C, Goethals B. Efficient pattern
mining of uncertain data with sampling. In: Proceed-
ings of the 14th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2010; Hyder-
abad, India). Berlin, Germany: Springer-Verlag; 2010,
1:480-487.

Calders T, Garboni C, Goethals B. Approximation of
frequentness probability of itemsets in uncertain data.
In: Proceedings of the IEEE International Conference
on Data Mining (ICDM 2010; Sydney, Australia). Pis-
cataway, NJ: IEEE Press; 2010, 749-754.

Volume 2, November/December 2012

