
Computers & Operations Research 35 (2008) 2964–2987
www.elsevier.com/locate/cor

Biclustering in data mining

Stanislav Busygina, Oleg Prokopyevb,∗, Panos M. Pardalosa

aDepartment of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA
bDepartment of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Available online 6 February 2007

Abstract

Biclustering consists in simultaneous partitioning of the set of samples and the set of their attributes (features) into subsets
(classes). Samples and features classified together are supposed to have a high relevance to each other. In this paper we review the
most widely used and successful biclustering techniques and their related applications. This survey is written from a theoretical
viewpoint emphasizing mathematical concepts that can be met in existing biclustering techniques.
� 2007 Published by Elsevier Ltd.

Keywords: Data mining; Biclustering; Classification; Clustering; Survey

1. The main concept

Due to recent technological advances in such areas as IT and biomedicine, the researchers face ever-increasing
challenges in extracting relevant information from the enormous volumes of available data [1]. The so-called data
avalanche is created by the fact that there is no concise set of parameters that can fully describe a state of real-world
complex systems studied nowadays by biologists, ecologists, sociologists, economists, etc. On the other hand, modern
computers and other equipment are able to produce and store virtually unlimited data sets characterizing a complex
system, and with the help of available computational power there is a great potential for significant advances in both
theoretical and applied research. That is why in recent years there has been a dramatic increase in the interest in
sophisticated data mining and machine learning techniques, utilizing not only statistical methods, but also a wide
spectrum of computational methods associated with large-scale optimization, including algebraic methods and neural
networks.

The problems of partitioning objects into a number of groups can be met in many areas. For instance, the vector
partition problem, which consists in partitioning of n d-dimensional vectors into p parts has broad expressive power
and arises in a variety of applications ranging from economics to symbolic computation (see, e.g., [2–4]). However,
the most abundant area for the partitioning problems is definitely data mining. Data mining is a broad area covering a
variety of methodologies for analyzing and modeling large data sets. Generally speaking, it aims at revealing a genuine
similarity in data profiles while discarding the diversity irrelevant to a particular investigated phenomenon. To analyze
patterns existing in data, it is often desirable to partition the data samples according to some similarity criteria. This
task is called clustering. There are many clustering techniques designed for a variety of data types—homogeneous and

∗ Corresponding author.
E-mail addresses: busygin@ufl.edu (S. Busygin), prokopyev@engr.pitt.edu (O. Prokopyev), pardalos@ufl.edu (P.M. Pardalos).

0305-0548/$ - see front matter � 2007 Published by Elsevier Ltd.
doi:10.1016/j.cor.2007.01.005

http://www.elsevier.com/locate/cor
mailto:busygin@ufl.edu
mailto:prokopyev@engr.pitt.edu
mailto:pardalos@ufl.edu

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2965

nonhomogeneous numerical data, categorical data, 0–1 data. Among them one should mention hierarchical clustering
[5], k-means [6], self-organizing maps (SOM) [7], support vector machines (SVM) [8,9], logical analysis of data (LAD)
[10,11], etc. A recent survey on clustering methods can be found in [12].

However, working with a data set, there is always a possibility to analyze not only properties of samples, but also
of their components (usually called attributes or features). It is natural to expect that each associated part of samples
recognized as a cluster is induced by properties of a certain subset of features. With respect to these properties we can
form an associated cluster of features and bind it to the cluster of samples. Such a pair is called a bicluster and the
problem of partitioning a data set into biclusters is called a biclustering problem.

In this paper we review the most widely used and successful biclustering techniques and their related applications.
Previously, there were published few surveys on biclustering [13,14], as well as a Wikipedia article [15]. However,
we tried to write this survey from a more theoretical viewpoint emphasizing mathematical concepts that can be found
in existing biclustering techniques. In addition this survey discusses recent developments not included in the previous
surveys and includes references to public domain software available for some of the methods and most widely used
benchmarks data sets.

2. Formal setup

Let a data set of n samples and m features be given as a rectangular matrix A = (aij)m×n, where the value aij is the
expression of ith feature in jth sample. We consider classification of the samples into classes

S1,S2, . . . ,Sr , Sk ⊆ {1, . . . , n}, k = 1, . . . , r ,

S1 ∪ S2 ∪ · · · ∪ Sr = {1, . . . , n},
Sk ∩ S� = ∅, k, � = 1, . . . , r, k �= �.

This classification should be done so that samples from the same class share certain common properties. Correspond-
ingly, a feature i may be assigned to one of the feature classes

F1,F2, . . . ,Fr , Fk ⊆ {1, . . . , m}, k = 1, . . . , r ,

F1 ∪ F2 ∪ · · · ∪ Fr = {1, . . . , m},
Fk ∩ F� = ∅, k, � = 1, . . . , r, k �= �,

in such a way that features of the class Fk are “responsible” for creating the class of samples Sk . Such a simultaneous
classification of samples and features is called biclustering (or co-clustering).

Definition 1. A biclustering of a data set is a collection of pairs of sample and feature subsets B = ((S1,F1)

(S2,F2), . . . , (Sr ,Fr)) such that the collection (S1,S2, . . . ,Sr) forms a partition of the set of samples, and the
collection (F1,F2, . . . ,Fr) forms a partition of the set of features. A pair (Sk,Fk) will be called a bicluster.

It is important to note here that in some of the biclustering methodologies a direct one to one correspondence between
classes of samples and classes of features is not required. Moreover, the number of sample and feature classes is allowed
to be different. This way we may consider not only pairs (Sk,Fk), but also other pairs (Sk,F�), k �= �. Such pairs
will be referred to as co-clusters. Another possible generalization is to allow overlapping of co-clusters.

The criteria used to relate clusters of samples and clusters of features may have different nature. Most commonly, it
is required that the submatrix corresponding to a bicluster either is overexpressed (i.e., mostly includes values above
average), or has a lower variance than the whole data set, but in general, biclustering may rely on any kind of common
patterns among elements of a bicluster.

3. Visualization of biclustering

One popular tool for visualizing data sets is heatmaps. A heatmap is a rectangular grid composed of pixels each of
which corresponds to a data value. The color of a pixel ranges between bright green or blue (lowest values) and bright
red (highest values) visualizing the corresponding data value. This way, if the samples or/and features of the data set
are ordered with respect to some pattern in the data, the pattern becomes obvious to observe visually.

2966 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

Fig. 1. Partitioning of samples and features into three clusters.

When one constructs a reasonable biclustering of a data set and then reorders samples and features by cluster
numbers, the heatmap is supposed to show a “checkerboard” pattern as diagonal blocks show biclusters that are the
distinguished submatrices according to the used biclustering method. Fig. 1 is an example of data set with three
biclusters of overexpressed values visualized as the heatmap (in the black-and-white diagram darker pixels correspond
to higher values).

To create a heatmap, one can use Heatmap Builder software [16].

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2967

4. Relation to SVD

Singular value decomposition (SVD) is a remarkable matrix factorization which generalizes eigendecomposition
of a symmetric matrix providing the orthogonal basis of eigenvectors. SVD is applicable to any rectangular matrix
A = (aij)m×n. It delivers orthogonal matrices U = (uik)m×p and V = (vjk)n×p (i.e., the columns of the matrices are
orthogonal to each other and have the unit length) such that

UTAV = diag(�1, . . . , �p), p = min(m, n). (1)

The numbers �1 ��2 � · · · ��p �0 are called singular values, the columns of U are called left singular vectors and
the columns of V are called right singular vectors of A. This way, left singular vectors provide an orthonormal basis for
columns of A, and right singular vectors provide an orthonormal basis for rows of A. Moreover, these bases are coupled
so that

Avk = �kuk ,

ATuk = �kvk ,

where uk is kth left singular vector, and vk is kth right singular vector of the matrix. The singular values of A are
precisely the lengths of the semi-axes of the hyperellipsoid E = {Ax : ‖x‖2 = 1}.

The SVD provides significant information about properties of the matrix. In particular, if �r is the last nonzero
singular value (i.e., �r+1 = · · · = �p = 0), then

rank(A) = r ,

null(A) = span{vr+1, . . . , vn},
ran(A) = span{u1, . . . , ur},

where span{x1, . . . , xk} denotes the linear subspace spanned by the vectors x1, . . . , xk , null(A) = {x : Ax = 0} is the
nullspace of the matrix, and ran(A) is the linear subspace spanned by the columns of A. It is easy to see from these
properties that the SVD is a very useful tool for dimensionality reduction in data mining. Taking also into account that
the Frobenius norm of the matrix

‖A‖2
F =

m∑
i=1

n∑
j=1

a2
ij =

r∑
k=1

�2
k ,

one can obtain the best in sense of Frobenius norm low-rank approximation of the matrix by equating all singular values
after some �� to zero and considering

Ã =
�∑

k=1

�kukv
T
k .

Such a low-rank approximation may be found in principal component analysis (PCA) with � first principal components
considered. PCA applies SVD to the data matrix after certain preprocessing (centralization or standardization of data
samples) is performed. We refer the reader to a linear algebra text [17] for more theoretical consideration of the SVD
properties and algorithms.

One may relate biclustering to the SVD via consideration an idealized data matrix. If the data matrix has a block-
diagonal structure (with all elements outside the blocks equal to zero), it is natural to associate each block with a
bicluster. On the other hand, it is easy to see that each pair of singular vectors will designate one such bicluster by
nonzero components in the vector. More precisely, if the data matrix is of the form

A =

⎛
⎜⎜⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...

0 0 . . . Ar

⎞
⎟⎟⎠ ,

where {Ak}, k = 1, . . . , r are arbitrary matrices, then for each Ak there will be a singular vector pair (uk, vk) such that
nonzero components of uk correspond to rows occupied by Ak and nonzero components of vk correspond to columns

2968 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

occupied by Ak . In a less idealized case, when the elements outside the diagonal blocks are not necessarily zeros but
diagonal blocks still contain dominating values, the SVD is able to reveal the biclusters too as dominating components
in the singular vector pairs.

Hence, the SVD represents a handy tool for biclustering algorithms. Below we show that many biclustering methods
either use the SVD directly or have a certain association with the SVD concept. Furthermore, we believe that the
introduction into SVD must precede any discussion on biclustering methods because its theoretical value for simul-
taneous analysis of samples and features of data cannot be overestimated. As of now, not many biclustering methods
are theoretically justified in sense that it is not clear what mathematical properties of sample/feature vectors would tie
them together in a common bicluster in one or another biclustering routine. Next, it is not obvious whether results of
two arbitrarily chosen biclustering methods applied to the same data matrix are expected to contradict each other or
not, and, if the contradiction occurs, whether it is natural (e.g., two methods analyze completely different properties of
data) or tells us that one method is more precise than the other. We see SVD as the tool for resolution of such issues as
we may hope to bring biclustering to the common ground, for example, by relating each biclustering method to SVD
after a certain algebraic transformation applied to the data.

5. Methods

5.1. “Direct clustering”

Apparently the earliest biclustering algorithm that may be found in the literature is so-called direct clustering by
Hartigan [18] also known as block clustering. This approach relies on statistical analysis of submatrices to form the
biclusters. Namely, the quality of a bicluster (Sk,Fk) is assessed by the variance

VAR(Sk,Fk) =
∑
i∈Fk

∑
j∈Sk

(aij − �k)
2,

where �k is the average value in the bicluster:

�k =
∑

i∈Fk

∑
j∈Sk

aij

|Fk‖Sk| .

A bicluster is considered perfect if it has zero variance, so biclusters with lower variance are considered to be better than
biclusters with higher variance. This, however, leads to an undesirable effect: single-row, single-column submatrices
become ideal biclusters as their variance is zero. The issue is resolved by fixing the number of biclusters and minimizing
the objective

VAR(S,F) =
r∑

k=1

∑
i∈Fk

∑
j∈Sk

(aij − �k)
2.

Hartigan mentioned that other objective functions may be used to find biclusters with other desirable properties,
e.g., minimizing variance in rows, variance in columns, or biclusters following certain patterns.

5.2. Node-deletion algorithm

A more sophisticated criterion for constructing patterned biclusters was introduced by Cheng and Church [19]. It
is based on minimization of so-called mean squared residue. To formulate it, let us introduce the following notation.
Let

�(r)
ik = 1

|Sk|
∑

j∈Sk

aij (2)

be the mean of the ith row in the sample cluster Sk ,

�(c)
jk = 1

|Fk|
∑
i∈Fk

aij (3)

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2969

be the mean of the jth column in the feature cluster Fk , and

�k =
∑

i∈Fk

∑
j∈Sk

aij

|Fk‖Sk|
be the mean value in the bicluster (Sk,Fk). The residue of element aij is defined as

rij = aij − �(r)
ik − �(c)

jk + �k , (4)

i ∈ Fk , j ∈ Sk . Finally, the mean squared residue score of the bicluster (Sk,Fk) is defined as

Hk =
∑
i∈Fk

∑
j∈Sk

(rij)
2.

This value is equal to zero if all columns of the bicluster are equal to each other (that would imply that all rows are
equal too). A bicluster (Sk,Fk) is called a �-bicluster if Hk ��. Cheng and Church proved that finding the largest
square �-bicluster is NP-hard. So, they used a greedy procedure starting from the entire data matrix and successively
removing columns or rows contributing most to the mean squared residue score. The brute-force deletion algorithm
testing the deletion of each row and column would be still quite expensive in the sense of time complexity as it would
require O((m + n)mn) operations. However, the authors employed a simplified search for columns and rows to delete
choosing a column with maximal

d(j) = 1

|Fk|
∑
i∈Fk

r2
ij ,

a row with maximal

d(i) = 1

|Sk|
∑

j∈Sk

r2
ij ,

or subsets of columns or rows for which d(j) or d(i) exceeds a certain threshold above the current mean square residue
of the bicluster. They have proved that any such deletion can only decrease the current mean square residue. These
deletions are performed until a �-bicluster is obtained. Then, as the constructed co-cluster can be not maximal (i.e.,
some of the previously removed columns or rows can be added without violating the �-bicluster condition), the authors
used a column and row addition algorithm. Namely, they proved that adding any column (row) with d(j) (d(i)) below
the current mean square residue does not increase it. Therefore, successive addition of such columns and rows leads to
a maximal �-bicluster.

Software implementation of the method as well as some test data sets are available at [20].
Bryan et al. improved the node-deletion algorithm of Cheng and Church applying a simulated annealing technique.

They reported a better performance on a variety of data sets in [21].

5.3. FLOC algorithm

Yang et al. generalized the definition of residue used in the node-deletion algorithm to allow missing data entries
(i.e., some aij may be unknown) [22,23]. For a bicluster (Sk,Fk), they introduced the notion of alpha-occupancy
meaning that for each sample j ∈ Sk the number of known data entries aij , i ∈ Fk is greater than �|Fk| and for each
feature i ∈ Fk the number of known data entries aij , j ∈ Sk is greater than �|Sk|. They also defined the volume of

a bicluster as the number of known data entries in the bicluster, and the average values �(r)
ik , �(c)

jk and �k are calculated
with respect to the known data entries only. The authors developed a heuristic algorithm FLOC (flexible overlapped
clustering) to find r biclusters with low average residue. First, the biclusters are generated randomly with a chosen
probability � for each sample and feature to be included in a bicluster. Then, for each feature and sample, and for
each bicluster it is calculated how much the addition of this feature/sample (if it is currently not in the bicluster) or its
removal (if it is currently in the bicluster) reduces the residue of the bicluster. If at least one of such actions reduces
the residue, the one achieving the largest reduction is performed.

2970 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

When no further residue reduction is possible, the method stops. It is easy to show that the computational complexity
of the method is O((m + n)mnrp), where p is the number of iterations till termination. The authors claim that in the
computational experiments they performed p is of the order of 10.

The FLOC algorithm is also able to take into account various additional constraints on biclusters by eliminating
certain feature/sample additions/removals from consideration.

5.4. Biclustering via spectral bipartite graph partitioning

In [24] Dhillon proposed the following method of biclustering. Represent each sample and each feature of a data set
as a vertex of a graph G(V, E), |V | = m + n. Between the vertex corresponding to sample j = 1, . . . , n and the vertex
corresponding to feature i = 1, . . . , m introduce an edge with weight aij . The graph has no edges between vertices
representing samples, as well as between vertices representing features. Thus, the graph is bipartite with F and S
representing its color classes. The graph G has the following weighted adjacency matrix

M =
(

0 A

AT 0

)
. (5)

Now, a partition of the set of vertices into r parts V1, V2, . . . , Vr ,

V = V1 ∪ V2 ∪ · · · ∪ Vr ,

Vk ∩ V� = ∅, k �= �, k, � = 1, . . . , r ,

will provide a biclustering of the data set. Define the cost of the partition as the total weight of edges cut by it:

cut(V1, . . . , Vr) =
r−1∑
k=1

r∑
�=k+1

∑
i∈Vk

∑
j∈V�

mij . (6)

When we are looking for a biclustering maximizing in-class expression values (thus creating dominating submatrices of
biclusters) it is natural to seek minimization of the defined cut value. Besides, we should be looking for rather balanced
in size biclusters as otherwise the cut value is most probably minimized with all but one biclusters containing one
sample-feature pair only. This problem can be tackled with an SVD-related algorithm. Let us introduce the following:

Definition 2. The Laplacian matrix LG of G(V, E) is a |V | × |V | symmetric matrix, with one row and one column
for each vertex, such that

Lij =
⎧⎨
⎩
∑

kmik if i = j,

−mij if i �= j and (i, j) ∈ E,

0, otherwise.

Let a partition V = V1 ∪ V2 of the graph be defined via a ±1 vector p = (pi)i=1,...,|V | such that

pi =
{+1, i ∈ V1,

−1, i ∈ V2.

The Laplacian matrix is connected to the weight of a cut through the following:

Theorem 1. Given the Laplacian matrix LG of G and a partition vector p, the Rayleigh Quotient

pTLp

pTp
= 4

|V |cut(V1, V2).

By this theorem, the cut is obviously minimized with the trivial solution, i.e., when all pi are either −1 or 1. So, to
achieve a balanced partition we need to modify the objective function. Let us assign a positive weight wi to each vertex

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2971

i ∈ V , and let W = diag(w1, w2, . . . , w|V |) be the diagonal matrix of these weights. We denote

weight(V�) =
∑
i∈V�

wi .

Now, the following objective function allows us to achieve balanced clusters:

Q(V1, V2) = cut(V1, V2)

weight(V1)
+ cut(V1, V2)

weight(V2)
.

Let us denote �� =∑
i∈V�

wi and introduce the generalized partition vector with elements

qi =

⎧⎪⎪⎨
⎪⎪⎩

+
√

�2

�1
, i ∈ V1,

−
√

�1

�2
, i ∈ V2.

The following theorem generalizes Theorem 1.

Theorem 2.

qTLq

qTWq
= cut(V1, V2)

weight(V1)
+ cut(V1, V2)

weight(V2)
. (7)

Minimizing expression (7) is NP-hard. However, a relaxed version of this problem can be solved via a generalized
eigendecomposition (notice that qTWe = 0).

Theorem 3. The problem

min
x �=0

xTLx

xTWx

s.t. xTWe = 0, (8)

is solved when q is the eigenvector corresponding to the second smallest eigenvalue �2 of the generalized eigenvalue
problem

Lz = �Wz. (9)

We can solve this problem for the bipartite graph case via the SVD. Choosing the weight matrix W to be equal to the
degree matrix, we have

L =
(

D1 −A

−AT D2

)

and

W =
(

D1 0

0 D2

)
,

where D1 and D2 are diagonal matrices such that D1(i, i) =∑
j aij and D2(j, j) =∑

i aij . Then (9) becomes

(
D1 −A

−AT D2

)(
x

y

)
= �

(
D1 0

0 D2

)(
x

y

)
,

2972 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

or denoting u = D
1/2
1 x and v = D

1/2
2 y,

D
−1/2
1 AD

−1/2
2 v = (1 − �)u,

D
−1/2
2 ATD

−1/2
1 u = (1 − �)v,

which precisely defines the SVD of the normalized matrix Â = D
−1/2
1 AD

−1/2
2 . So, the balanced cut minimization

problem can be solved by finding the second largest singular value of this normalized matrix and the singular vector
pair corresponding to it that can be used to obtain the biclustering to two classes. In case of multiclass partitioning,
Dhillon used � =
log2 r� singular vectors u2, u3, . . . , u�+1 and v2, v3, . . . , v�+1 to form the �-dimensional data set

Z =
(

D
−1/2
1 U

D
−1/2
2 V

)
,

where U = (u2, . . . , u�+1) and V = (v2, . . . , v�+1). After such a significant dimensionality reduction is performed, the
rows of the matrix Z (which represent both samples and features of the original data set) are clustered with a simple
k-means algorithm [6].

Dhillon reports encouraging computational results for text mining problems. Very similar spectral biclustering
routines for microarray data have been suggested by Kluger et al. [25]. In addition to working with the singular vectors
of Â, they considered two other normalization methods that can be used before applying the SVD. The first one is
bistochastization. It makes all row sums equal and all column sums equal too (generally, to a different constant). It is
known from Sinkhorn’s theorem that under quite general conditions on the matrix A there exist diagonal matrices D1
and D2 such that D1AD2 achieves bistochastization [26]. The other approach is applicable if sample/feature subvectors
within a bicluster are expected to be shifted by a constant with respect to each other (i.e., vectors a and b are considered
similar if a ≈ b + �e, where � is the constant and e is the all-one vector). When similar data are expected to be scaled
by different constants (i.e., a ≈ �b), the desirable property can be achieved by applying a logarithm to all data entries.
Then, defining

āi· = 1

n

n∑
j=1

aij ,

ā·j = 1

m

m∑
i=1

aij ,

and

ā·· = 1

mn

m∑
i=1

n∑
j=1

aij ,

the normalized data are obtained as

bij = aij − āi· − ā·j + ā·· .

After computing the singular vectors, it is decided which of them contain the relevant information about the optimal
data partition. To extract partitioning information from the system of singular vectors, each of them is examined by
fitting to a piecewise constant vector. That is, the entries of an eigenvector is sorted and all possible thresholds between
classes are considered. Such a procedure is equivalent to searching for good optima in one-dimensional k-means
problem. Then few best singular vectors can be selected to run k-means on the data projected onto them.

5.5. Matrix iteration algorithms for minimizing sum-squared residue

Cho et al. proposed a co-clustering algorithm minimizing the sum-squared residue throughout all co-clusters [27].
Thus, this approach does not take into account any correspondence between clusters of samples and clusters of features,

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2973

but considers all the submatrices formed by them. The algorithm is based on algebraic properties of the matrix of
residues.

For a given clustering of features (F1,F2, . . . ,Fq), introduce a feature cluster indicator matrix F = (fik)m×q

such that fik = |Fk|−1/2 if i ∈ Fk and fik = 0 otherwise. Also, for a given clustering of samples (S1,S2, . . . ,Sr),
introduce a sample cluster indicator matrix S = (sjk)n×r such that sjk = |Sk|−1/2 if j ∈ Sk and sjk = 0 otherwise.
Notice that these matrices are orthonormal, that is, all columns are orthogonal to each other and have unit length. Now,
let H = (hij)m×n be the residue matrix. There are two choices for hij definition. It may be defined similar to (4):

hij = aij − �(r)
ik − �(c)

j� + �k�, (10)

where i ∈ F�, j ∈ Sk , �(r) and �(c) are defined as in (2) and (3), and �k� is the average of the co-cluster (Sk,F�):

�k� =
∑

i∈F�

∑
j∈Sk

aij

|F�‖Sk| .

Alternatively, hij may be defined just as the difference between aij and the co-cluster average:

hij = aij − �k�. (11)

By direct algebraic manipulations it can be shown that

H = A − FF TASST (12)

in case of (11) and

H = (I − FF T)A(I − SST) (13)

in case of (10).
The method tries to minimize ‖H‖2 using an iterative process such that on each iteration a current co-clustering is

updated so that ‖H‖2, at least, does not increase. The authors point out that finding the global minimum for ‖H‖2 over
all possible co-clusterings would lead to an NP-hard problem. There are two types of clustering updates used: batch
(when all samples or features may be moved between clusters at one time) and incremental (one sample or one feature
is moved at a time). In case of (11) the batch algorithm works as follows:

Algorithm 1 (CoclusH1).

Input: data matrix A, number of sample clusters r, number of feature clusters q.
Output: clustering indicators S and F.
1. Initialize S and F.
2. objval := ‖A − FF TASST‖2.
3. 	 := 1,
 := 10−2‖A‖2{Adjustable}.
4. While 	 >
:

4.1. AS := FF TAS;
4.2. for j := 1 to n assign jth sample to cluster Sk with smallest ‖A·j − |Sk|−1/2AS

·k‖2;
4.3. update S with respect to the new clustering;
4.4. AF := F TASST;
4.5. for i := 1 to m assign ith feature to cluster Fk with smallest ‖Ai· − |Fk|−1/2AF

k·‖2;
4.6. update F with respect to the new clustering;
4.7. oldobj := objval, objval := ‖A − FF TASST‖2;
4.8. 	 := |oldobj − objval|.

5. STOP.

2974 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

In case of (10) the algorithm is similar but uses a bit different matrix manipulations:

Algorithm 2 (CoclusH2).

Input: data matrix A, number of sample clusters r, number of feature clusters q.
Output: clustering indicators S and F.
1. Initialize S and F.
2. objval := ‖(I − FF T)A(I − SST)‖2.
3. 	 := 1,
 := 10−2‖A‖2{Adjustable}.
4. While 	 >
:

4.1. AS := (I − FF T)AS, AP := (I − FF T)A;
4.2. for j := 1 to n assign jth sample to cluster Sk with smallest ‖AP·j − |Sk|−1/2AS

·k‖2;
4.3. update S with respect to the new clustering;
4.4. AF := F TA(I − SST), AP := A(I − SST);
4.5. for i := 1 to m assign ith feature to cluster Fk with smallest ‖AP

i· − |Fk|−1/2AF
k·‖2;

4.6.update F with respect to the new clustering;
4.7. oldobj := objval, objval := ‖(I − FF T)A(I − SST)‖2;
4.8. 	 := |oldobj − objval|.

5. STOP.

To describe the incremental algorithm, we first note that in case of (10) H is defined as in (13), and minimization
of ‖H‖2 is equivalent to maximization of ‖F TAS‖2. So, suppose we would like to improve the objective function by
moving a sample from cluster Sk to cluster Sk′ . Denote F TA by Ā and the new sample clustering indicator matrix
by S̃. As S and S̃ differ only in columns k and k′, the objective can be rewritten as

‖ĀS̃·k′ ‖2 − ‖ĀS·k′ ‖2 + ‖ĀS̃·k‖2 − ‖ĀS·k‖2. (14)

So, the inner loop of the incremental algorithm looks through all possible one sample moves and chooses the one
increasing (14) most. A similar expression can be derived for features. Next, it can be shown that in case (11) when H
is defined as in (12), the objective can be reduced to

‖AS̃·k′ ‖2 − ‖AS·k′ ‖2 + ‖AS̃·k‖2 − ‖AS·k‖2 − ‖ĀS̃·k′ ‖2 + ‖ĀS·k′ ‖2 − ‖ĀS̃·k‖2 + ‖ĀS·k‖2, (15)

so the incremental algorithm just uses (15) instead of (14).
Notice the direct relation of the method to the SVD. Maximization of ‖F TAS‖2 if F and S were just constrained to

be orthonormal matrices would be solved by F =U and S =V , where U and V are as in (1). F and S have the additional
constraint on the structure (being a clustering indicator). However, the SVD helps to initialize the clustering indicator
matrices and provides a lower bound on the objective (as the sum of squares of the singular values).

Software with the implementation of both cases of this method is available at [28].

5.6. Double conjugated clustering

Double conjugated clustering (DCC) is a node-driven biclustering technique that can be considered a further devel-
opment of such clustering methods as k-means [6] and Self-Organizing Maps (SOM) [7]. The method was developed
by Busygin et al. [29]. It operates in two spaces—space of samples and space of features—applying in each of them
either k-means or SOM training iterations. Meanwhile, after each one-space iteration its result updates the other map
of clusters by means of a matrix projection. The method works as follows.

Introduce a matrix C=(cik)m×r which will be referred to as samples nodes or samples map and a matrix D=(djk)n×r

which will be referred to as features nodes or features map. This designates r nodes for samples and r nodes for features
that will be used for one-space clustering iterations such as k-means or SOM (in the latter case, the nodes are to be
arranged with respect to a certain topology that will determine node neighborhoods). We start from the samples map,
initialize it with random numbers and perform a one-space clustering iteration (for instance, in case of k-means we

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2975

assign each sample to closest node and then update each node storing in it the centroid of the assigned samples).
Now the content of C is projected to form D with a matrix transformation:

D := B(ATC),

where B(M) is the operator normalizing each column of matrix M to the unit length. The matrix multiplication that
transforms nodes of one space to the other can be justified with the following argument. The value cik is the weight of
ith feature in the kth node. So, the kth node of the features map is constructed as a linear combination of the features
such that cik is the coefficient of the ith feature in it. The unit normalization keeps the magnitude of node vectors
constrained. Next, after the projection, the features map is updated with the similar one-space clustering iteration, and
then the backwards projection is applied:

C := B(AD),

which is justified in the similar manner using the fact that djk is the weight of the jth sample in the kth node. This cycle
is repeated until no samples and features are moved anymore, or stops after a predefined number of iterations.

To be consistent with unit normalization of the projected nodes, the authors have chosen to use cosine metrics for
one-space iterations, which is not affected by differences in magnitudes of the clustered vectors. This also prevents
undesirable clustering of all low-magnitude elements into a single cluster that often happens when a node-driven
clustering is performed using the Euclidean metric.

The DCC method has a close connection to the SVD that can be observed in its computational routine. Notice that
if one “forgets” to perform the one-space clustering iterations, then DCC executes nothing else but the power method
for the SVD [17]. In such case all samples nodes would converge to the dominating left singular vector and all features
nodes would converge to the dominating right singular vector of the data matrix. However, the one-space iterations
prevent this from happening moving the nodes towards centroids of different sample/feature clusters. This acts similarly
to re-orthogonalization in the power method when not only the dominating but also a bunch of next singular vector
pairs are sought. This way DCC can be seen as an alteration of the power method for SVD relaxing the orthogonality
requirement for the iterated vectors but making them more appealing to groups of similar samples/features of the data.

5.7. Consistent biclustering via fractional 0–1 programming

Let each sample be already assigned somehow to one of the classes S1,S2, . . . ,Sr . Introduce a 0–1 matrix
S = (sjk)n×r such that sjk = 1 if j ∈ Sk , and sjk = 0 otherwise. The sample class centroids can be computed as the
matrix C = (cik)m×r :

C = AS(STS)−1, (16)

whose kth column represents the centroid of the class Sk .
Consider a row i of the matrix C. Each value in it gives us the average expression of the ith feature in one of the

sample classes. As we want to identify the checkerboard pattern in the data, we have to assign the feature to the class
where it is most expressed. So, let us classify the ith feature to the class k̂ with the maximal value c

ik̂
:

i ∈ F
k̂

⇒ ∀k = 1, . . . , r, k �= k̂ : c
ik̂

> cik . (17)

Now, provided the classification of all features into classes F1, F2, . . . ,Fr , let us construct a classification of
samples using the same principle of maximal average expression and see whether we will arrive at the same classification
as the initially given one. To do this, construct a 0–1 matrix F = (fik)m×r such that fik = 1 if i ∈ Fk and fik = 0
otherwise. Then, the feature class centroids can be computed in form of matrix D = (djk)n×r :

D = ATF(F TF)−1, (18)

whose kth column represents the centroid of the class Fk . The condition on sample classification we need to verify is

j ∈ S
k̂

⇒ ∀k = 1, . . . , r, k �= k̂ : d
jk̂

> djk . (19)

The framework for feature selection and supervised biclustering proposed in [30,76] is based on the following
definition:

2976 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

Definition 3. A biclustering B will be called consistent if both relations (17) and (19) hold, where the matrices C and
D are defined as in (16) and (18).

In contrast to other biclustering schemes, this definition of consistent biclustering is justified by the fact that consistent
biclustering implies separability of the classes by convex cones [30]:

Theorem 4. Let B be a consistent biclustering. Then there exist convex cones P1,P2, . . . ,Pr ⊆ Rm such that all
samples from Sk belong to the cone Pk and no other sample belongs to it, k = 1, . . . , r .

Similarly, there exist convex cones Q1,Q2, . . . ,Qr ⊆ Rn such that all features from Fk belong to the cone Qk and
no other feature belongs to it, k = 1, . . . , r .

It also follows from the conic separability that convex hulls of classes are separated, i.e., they do not intersect.
We also say that a data set is biclustering-admitting if some consistent biclustering for it exists. Furthermore, the data

set will be called conditionally biclustering-admitting with respect to a given (partial) classification of some samples
and/or features if there exists a consistent biclustering preserving the given (partial) classification.

Assuming that we are given the training set A = (aij)m×n with the classification of samples into classes
S1,S2, . . . ,Sr , we are able to construct the corresponding classification of features according to (17). Next, if
the obtained biclustering is not consistent, our goal is to exclude some features from the data set so that the biclustering
with respect to the residual feature set is consistent.

Formally, let us introduce a vector of 0–1 variables x = (xi)i=1,...,m and consider the ith feature selected if xi = 1.
The condition of biclustering consistency (19), when only the selected features are used, becomes

∑m
i=1aij fik̂

xi∑m
i=1fik̂

xi

>

∑m
i=1aij fikxi∑m

i=1fikxi

∀j ∈ S
k̂
, k̂, k = 1, . . . , r, k̂ �= k. (20)

We will use the fractional relations (20) as constraints of an optimization problem selecting the feature set. It may
incorporate various objective functions over x, depending on the desirable properties of the selected features, but one
general choice is to select the maximal possible number of features in order to lose minimal amount of information
provided by the training set. In this case, the objective function is

max
m∑

i=1

xi . (21)

The optimization problem (21), (20) is a specific type of fractional 0–1 programming problem, which can be solved
using the approach described in [30].

Moreover, we can strengthen the class separation by introduction of a coefficient greater than 1 for the right-hand
side of inequality (20). In this case, we improve the quality of the solution modifying (20) as

∑m
i=1aij fik̂

xi∑m
i=1fik̂

xi

�(1 + t)

∑m
i=1aij fikxi∑m

i=1fikxi

(22)

for all j ∈ S
k̂
, k̂, k = 1, . . . , r , k̂ �= k, and t > 0 is a constant that becomes a parameter of the method, which we call

the parameter of separation.
After the feature selection is done, we perform classification of test samples according to (19). That is, if b =

(bi)i=1,...,m is a test sample, we assign it to the class S
k̂

satisfying

∑m
i=1bifik̂

xi∑m
i=1fik̂

xi

�
∑m

i=1bifikxi∑m
i=1fikxi

(23)

for all k = 1, . . . , r , k̂ �= k.

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2977

5.8. Information-theoretic based co-clustering

In this method, developed by Dhillon et al. in [31], we treat the input data set (aij)m×n as a joint probability
distribution p(X, Y) between two discrete random variables X and Y, which can take values in the sets {x1, x2, . . . , xm}
and {y1, y2, . . . , yn}, respectively.

Formally speaking, the goal of the proposed procedure is to cluster X into at most k disjoint clusters X̂={x̂1, x̂2, . . . , x̂k}
and Y into at most l disjoint clusters Ŷ ={ŷ1, ŷ2, . . . , ŷl}. Put differently, we are looking for mappings CX and CY such
that

CX : {x1, x2, . . . , xm} −→ {x̂1, x̂2, . . . , x̂k},
CY : {y1, y2, . . . , yn} −→ {ŷ1, ŷ2, . . . , ŷl},

i.e., X̂ = CX(X) and Ŷ = CY (Y), and a tuple (CX, CY) is referred to as co-clustering.
Before we proceed with a description of the technique let us recall some definitions from probability and information

theory.
The relative entropy, or the Kullback–Leibler (KL) divergence between two probability distributions p1(x) and p2(x)

is defined as

D(p1‖p2) =
∑
x

p1(x) log
p1(x)

p2(x)
.

Kullback–Leibler divergence can be considered as a “distance” of a “true” distribution p1 to an approximation p2.
The mutual information I (X; Y) of two random variables X and Y is the amount of information shared between these

two variables. In other words, I (X; Y) = I (Y ; X) measures how much X tells about Y and, vice versa, how much Y
tells about X. It is defined as

I (X; Y) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)‖p(x)p(y)).

Now, we are looking for an optimal co-clustering, which minimizes the loss in mutual information

min
X̂,Ŷ

I (X; Y) − I (X̂, Ŷ). (24)

Define q(X, Y) to be the following distribution

q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ), (25)

where x ∈ x̂ and y ∈ ŷ. Obviously, p(x|x̂) = p(x)/p(x̂) if x̂ = CX(x) and 0, otherwise.
The following result states an important relation between the loss of information and distribution q(X, Y) [32]:

Lemma 1. For a fixed co-clustering (CX, CY), we can write the loss in mutual information as

I (X; Y) − I (X̂; Ŷ) = D(p(X, Y)‖q(X, Y)). (26)

In other words, finding an optimal co-clustering is equivalent to finding a distribution q defined by (25), which is
close to p in KL divergence.

Consider the joint distribution of X, Y, X̂ and Ŷ denoted by p(X, Y, X̂, Ŷ). Following the above lemma and (25) we
are looking for a distribution q(X, Y, X̂, Ŷ), an approximation of p(X, Y, X̂, Ŷ), such that:

q(x, y, x̂, ŷ) = p(x̂, ŷ)p(x|x̂)p(y|ŷ),

and p(X, Y) and q(X, Y) are considered as two-dimensional marginals of p(X, Y, X̂, Ŷ) and q(X, Y, X̂, Ŷ),
respectively. The next lemma lies in the core of the proposed algorithm from [31].

2978 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

Lemma 2. The loss in mutual information can be expressed as

(i) a weighted sum of the relative entropies between row distributions p(Y |x) and “row-lumped” distributions q(Y |x̂),

D(p(X, Y, X̂, Ŷ)‖q(X, Y, X̂, Ŷ)) =
∑
x̂

∑
x:CX(x)=x̂

p(x)D(p(Y |x)‖q(Y |x̂)),

(ii) a weighted sum of the relative entropies between column distributions p(X|y) and “column-lumped” distributions
q(X|ŷ), that is,

D(p(X, Y, X̂, Ŷ)‖q(X, Y, X̂, Ŷ)) =
∑
ŷ

∑
y:CY (y)=ŷ

p(y)D(p(X|y)‖q(X|ŷ)).

Due to Lemma 2 the objective function can be expressed only in terms of the row-clustering, or column-clustering.
Starting with some initial co-clustering (C0

X, C0
Y) (and distribution q0) we iteratively obtain new co-clusterings

(C1
X, C1

Y), (C2
X, C2

Y), . . . , using column-clustering in order to improve row-clustering as

Ct+1
X (x) = arg min

x̂
D(p(Y |x)‖qt (Y |x̂)), (27)

and vice versa, using row-clustering to improve column-clustering as

Ct+2
Y (y) = arg min

ŷ
D(p(X|y)‖qt (X|ŷ)). (28)

Obviously, after each step (27), or (28) we need to recalculate the necessary distributions qt+1 and qt+2. It can be
proved that the described algorithm monotonically decreases the objective function (24), though it may converge only
to a local minimum [31].

Software with the implementation of this method is available at [28].
In [32] the described alternating minimization scheme was generalized for Bregman divergences, which includes

KL-divergence and Euclidean distance as special cases.

5.9. Biclustering via Gibbs sampling

The Bayesian framework can be a powerful tool to tackle problems involving uncertainty and noisy patterns. Thus
it comes as a natural choice to apply it to data mining problems such as biclustering. Sheng et al. proposed a Bayesian
technique for biclustering based on a simple frequency model for the expression pattern of a bicluster and on Gibbs
sampling for parameter estimation [33]. This approach not only finds samples and features of a bicluster but also
represents the pattern of a bicluster as a probabilistic model defined by the posterior distribution for the data values
within the bicluster. The choice of Gibbs sampling also helps to avoid local minima in the expectation–maximization
procedure that is used to obtain and adjust the probabilistic model.

Gibbs sampling is a well-known Markov chain Monte Carlo method [34]. It is used to sample random variables
(x1, x2, . . . , xk) when their marginal distribution of the joint distribution are too complex to sample directly from, but
the conditional distributions can be easily sampled. Starting from initial values (x

(0)
1 , x

(0)
2 , . . . , x

(0)
k), the Gibbs samples

draws values of the variables from the conditional distributions:

x
(t+1)
i ∼ p(xi |x(t+1)

1 , . . . , x
(t+1)
i−1 , xt

(i+1), . . . , x
t
k),

i = 1, . . . , k, t = 0, 1, 2, It can be shown that the distribution of (x
(t)
1 , x

(t)
2 , . . . , x

(t)
k) converges to the true joint

distribution p(x1, x2, . . . , xk) and the distributions of sequences {x(t)
1 }, {x(t)

2 }, . . . , {x(t)
k } converge to true marginal

distribution of the corresponding variables.
The biclustering method works with m + n 0–1 values f = (fi)i=1,...,m (for features) and s = (sj)j=1,...,n

(for samples) indicating which features and samples are selected to the bicluster. These indicators are considered
Bernoulli random variables with parameters �f and �s , respectively. The data are discretized and modeled with

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2979

multinomial distributions. The background data (i.e., all the data that do not belong to the bicluster) are considered to
follow one single distribution � = (�1, �2, . . . ,��), 0��k �1,

∑
k�k = 1, k = 1, . . . , �, where � is the total number

of bins used for discretization. It is assumed that within the bicluster all features should behave similarly, but the
samples are allowed to have different expression levels. That is, for data values of each sample j within the bicluster we
assume a different distribution (�1j , �2j , . . . , ��j), 0��kj �1,

∑
k�kj = 1, k = 1, . . . , �, and it is independent from the

other samples. The probabilities �f , �s , {�k} and {�kj } are parameters of this Bayesian model, and therefore we need
to include in the model their conjugate priors. Typically for Bayesian models, one chooses Beta distribution for the
conjugate priors of Bernoulli random variables and Dirichlet distribution for the conjugate priors of multinomial random
variables:

� ∼ Dirichlet(�),

�·j ∼ Dirichlet(j),

�f = Beta(�f), �s = Beta(�s),

where � and j are parameter vectors of the Dirichlet distributions, and �f and �s are parameter vectors of the Beta
distributions.

Denote the subvector of s with jth component removed by sj̄ and the subvector of f with ith component removed by
fī . To derive the full conditional distributions, one can use the relations between distributions

p(fi |fī, s, D) ∝ p(fi, fī , s, D) = p(f, s, D),

and

p(sj |f, sj̄ , D) ∝ p(f, sj , sj̄ , D) = p(f, s, D),

where D is the observed discretized data. The distribution p(f, s, D) can be obtained by integrating �, �, �f and �s

out of the likelihood function L(�, �, �f , �s |f, s, D):

L(�, �, �f , �s |f, s, D) = p(f, s, D|�, �, �f , �s) = p(D|f, s, �, �)p(f |�f)p(s|�s).

Using these conditional probabilities, we can perform the biclustering with the following algorithm:

Algorithm 3 (Gibbs biclustering).

1. Initialize randomly vectors f and s.
2. For each feature i = 1, . . . , m:
2.1. Calculate pi = p(fi = 1|fī, s, D);
2.2. Assign fi := 1 with probability pi or fi := 0 otherwise.

3. For each sample j = 1, . . . , n:
3.1. Calculate pj = p(sj = 1|f, sj̄ , D);
3.2. Assign sj := 1 with probability pi or sj := 0 otherwise.

4. Repeat Steps 2–4 a predetermined number of iterations.

To obtain the biclustering, the probabilities pi’s and pj ’s are averaged over all iterations and a feature/sample is
selected in the bicluster if the average probability corresponding to it is above a certain threshold. More than one
bicluster can be constructed by repeating the procedure while the probabilities corresponding to previously selected
samples and features are permanently assigned to zero.

5.10. Statistical-algorithmic method for bicluster analysis (SAMBA)

Consider a bipartite graph G(F,S, E), where the set of data features F and the set of data samples S form two
independent sets, and there is an edge (i, j) ∈ E between each feature i and each sample j iff the expression level of
feature i changes significantly in sample j. Obviously, a bicluster B0 = (S0,F0) should correspond to a subgraph

2980 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

H(F0,S0, E0) of G. Next assign some weights to the edges and nonedges of G in such a way that the statistical
significance of a bicluster matches the weight of the respective subgraph. Hence, in this setup biclustering is reduced to
a search for heavy subgraphs in G. This idea is a cornerstone of the statistical-algorithmic method for bicluster analysis
(SAMBA) developed by Tanay et al. [35,36]. Some additional details on construction of a bipartite graph G(F,S, E)

corresponding to features and samples can be found in the supporting information of [37].
The idea behind one of the possible schemes for edges’ weight assignment from [36] works as follows. Let pf,s be

the fraction of bipartite graphs with the degree sequence same as in G such that the edge (f, s) ∈ E. Suppose that
the occurrence of an edge (f, s) is an independent Bernoulli random variable with parameter pf,s . In this case, the
probability of observing subgraph H is given by

p(H) =
⎛
⎝ ∏

(f,s)∈E0

pf,s

⎞
⎠ ·

⎛
⎝ ∏

(f,s)/∈E0

(1 − pf,s)

⎞
⎠ . (29)

Next consider another model, where edges between vertices from different partitions of a bipartite graph G occur
independently with constant probabilitypc > max(f,s)∈(F,S) p(f,s).Assigning weights log(pc/p(f,s)), to edges (f, s) ∈
E0 and log(1 − pc)/(1 − p(f,s)) to (f, s) /∈ E0 we can observe that the log-likelihood ratio for a subgraph H

log L(H) =
∑

(f,s)∈E0

pc

pf,s

+
∑

(f,s)/∈E0

1 − pc

1 − pf,s

(30)

is equal to the weight of the subgraph H. If we assume that we are looking for biclusters with the features behaving
similarly within the set of samples of the respective bicluster then heavy subgraphs should correspond to “good”
biclusters.

In [36] the algorithm for finding heavy subgraphs (biclusters) is based on the procedure for solving the maxi-
mum bounded biclique problem. In this problem we are looking for a maximum weight biclique in a bipartite graph
G(F,S, E) such that the degree of every feature vertex f ∈ F is at most d. It can be shown that maximum bounded
biclique can be solved in O(n2d) time. At the first step of SAMBA for each vertex f ∈ F we find k heaviest bicliques
containing f. During the next phase of the algorithm we try to improve the weight of the obtained subgraphs (biclusters)
using a simple local search procedure. Finally, we greedily filter out biclusters with more than L% overlap.

SAMBA implementation is available as a part of EXPANDER, gene expression analysis and visualization tool,
at [38].

5.11. Coupled two-way clustering

Coupled two-way clustering (CTWC) is a framework that can be used to build a biclustering on the basis of any
one-way clustering algorithm. It was introduced by Getz et al. [39]. The idea behind the method is to find stable clusters
of samples and features such that using one of the feature clusters results in stable clustering for samples and vice versa.
The iterative procedure runs as follows. Initially, the entire set of samples S0

0 and the entire set of features F0
0 are

considered stable clusters. F0
0 is used to cluster samples and S0

0 is used to cluster features. Denote by {F1
i } and {S1

j }
the obtained clusters (which are considered stable with respect to F0

0 and S0
0). Now every pair (Fs

i ,St
j), t, s = {0, 1}

corresponds to a data submatrix, which can be clustered in the similar two-way manner to obtain clusters of the second
order {F2

i } and {S2
j }. Then again the process is repeated with each pair (Fs

i ,St
j) not used earlier to obtain the clusters

on the next order, and so on until no new cluster satisfying certain criteria is obtained. The used criteria can impose
constraints on cluster size, some statistical characteristics, etc.

Though any one-way clustering algorithm can be used within the described iterative two-way clustering procedure,
the authors chose a hierarchical clustering method SPC [40,41]. The justification of this choice comes from the natural
measure of relative cluster stability delivered by SPC. The SPC method originates from a physical model associating
a break up of a cluster with a certain temperature at which this cluster loses stability. Therefore, it is easy to designate
more stable clusters as those requiring higher temperature for further partitioning.

Online implementation of CTWC is available at [42].

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2981

5.12. Plaid models

Consider the perfect idealized biclustering situation. We have K biclusters along the main diagonal of the data matrix
A = (aij)m×n with the same values of aij in each bicluster k, k = 1, . . . , K:

aij = �0 +
K∑

k=1

�k�ik�jk , (31)

where �0 is some constant value (“background color”), �ik = 1 if feature i belongs to bicluster k (�ik = 0, otherwise),
�jk = 1 if sample j belongs to bicluster k (�jk = 0, otherwise) and �k is the value, which corresponds to bicluster k
(“color” of bicluster k), i.e., aij = �0 + �k if feature i and sample j belongs to the same bicluster k. We also require that
each feature and sample must belong to exactly one bicluster, that is,

∀i

K∑
k=1

�ik = 1 and ∀j

K∑
k=1

�jk = 1, (32)

respectively.
In [43] Lazzeroni and Owen introduced a more complicated plaid model as a natural generalization of idealization

(31)–(32). In this model, biclusters are allowed to overlap, and are referred to as layers. The values of aij in each layer
are represented as

aij = �ij0 +
K∑

k=1

�ijk�ik�jk , (33)

where the value of �ij0 corresponds to a background layer and �ijk can be expressed as �k , �k + �ik , �k + jk , or
�k + �ik + jk depending on a particular situation.

We are looking for a plaid model such that the following objective function is minimized:

min
m∑

i=1

n∑
j=1

(
aij − �ij0 −

K∑
k=1

�ijk�ik�jk

)2

. (34)

In [43] the authors developed a heuristic iterative-based algorithm for solving (34). Next we briefly describe the
main idea of the approach. Suppose we have K − 1 layers and we are looking for the Kth layer such that the objective
function in (34) is minimized. Let

Zij = ZK−1
ij = aij − �ij0 −

K−1∑
k=1

�ijk�ik�jk . (35)

Substituting �ijK by �K + �iK + jK , the objective function from (34) can be rewritten in terms of Zij as

m∑
i=1

n∑
j=1

(Zij − (�K + �iK + jK)�ik�jk)
2. (36)

Let �(0)
iK and �(0)

jK be some starting values of our iteration algorithm. At each iteration step s = 1, 2, . . . , S we update

the values of �(s)
iK , �(s)

jK and �(s)
ijK applying the following simple procedure. The value of �(s)

ijK is obtained from �(s−1)
iK

and �(s−1)
jK , then the values of �(s−1)

iK and �(s−1)
jK are updated using �(s)

ijK and �(s−1)
jK , or �(s)

ijK and �(s−1)
jK , respectively.

Variables �(s)
iK and �(s)

jK are relaxed, i.e., they can take values between 0 and 1. We fix them to be {0, 1} during one of
the last iterations of the algorithm.

2982 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

More specifically, given �iK and �jK , the value of �ijK = �K + �iK + jK is updated as follows:

�K =
∑

i

∑
j�iK�jKZij

(
∑

i�
2
iK)(

∑
j�

2
jK)

,

�iK =
∑

j (Zij − �K�iK�jK)�jK

�iK

∑
j�

2
jK

, jK =
∑

i (Zij − �K�iK�jK)�iK

�jK

∑
i�

2
iK

.

Given �ijK and �jK , or �ijK and �iK , we update �iK , or �jK as

�iK =
∑

j�ijK�jKZij∑
j�

2
ijK�2

jK

or �jK =
∑

i�ijK�iKZij∑
i�

2
ijK�2

iK

,

respectively.
For more details of this technique including the selection of starting values �(0)

iK and �(0)
jK , stopping rules and other

important issues we refer the reader to [43].
Software with the implementation of the discussed method is available at [44].

5.13. Order-preserving submatrix (OPSM) problem

In this model introduced by Ben-Dor et al. [45,46], given the data set A = (aij)m×n, the problem is to identify
a k × � submatrix (bicluster) (F0,S0) such that the expression values of all features in F0 increase or decrease
simultaneously within the set of samples S0. In other words, in this submatrix we can find a permutation of columns
such that in every row the values corresponding to selected columns are increasing. More formally, let F0 be a set of
row indices {f1, f2, . . . , fk}. Then there exists a permutation of S0, which consists of column indices {s1, s2, . . . , s�},
such that for all i = 1, . . . , k and j = 1, . . . , � − 1 we have that

afi ,sj < afi,sj+1 .

In [45,46] it is proved that the OPSM problem is NP-hard. So, the authors designed a greedy heuristic algorithm for
finding large order-preserving submatrices, which we briefly outline next.

Let S0 ⊂ {1, . . . , n} be a set of column indices of size � and � = (s1, s2, . . . , s�) be a linear ordering of S0.
The pair (S0, �) is called a complete OPSM model. A row i ∈ {1, . . . , m} supports a complete model (S0, �) if

ai,s1 < ai,s2 < · · · < ai,s� .

For a complete model (S0, �) all supporting rows can be found in O(nm) time.
A partial model � = {〈s1, . . . , sc〉, 〈s�−d+1, . . . , s�〉, �} of a complete model (S0, �) is given by the column indices

of the c smallest elements 〈s1, . . . , sc〉, the column indices of the d largest elements s�−d+1, . . . , s� and the size �. We
say that � is a partial model of order (c, d). Obviously, a model of order (c, d) becomes complete if c+d = �. The idea
of the algorithm from [45,46] is to increase c and d in the partial model until we get a good quality complete model.

The total number of partial models of order (1, 1) in the matrix with n columns is n(n − 1). At the first step of the
algorithm we select t best partial models of order (1, 1). Next we try to derive partial models of order (2, 1) from the
selected partial models of order (1, 1). Pick t best models of order (2, 1). At the step two we try to extend them to partial
models of order (2, 2). We continue this process until we get t models of order (
�/2�,
�/2�). Overall complexity of
the algorithm is O(tn3m) [45,46].

5.14. OP-cluster

The order preserving cluster (OP-cluster) model is proposed by Liu and Wang in [47]. This model is similar to the
OPSM-model discussed above and can be considered, in some sense, as its generalization. It aims at finding biclusters
where the features follow the same order of values in all the samples. However, when two feature values in a sample are
close enough, they are considered indistinguishable and allowed to be in any order in the sample. Formally, if features

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2983

i, i + 1, . . . , i + �i are ordered in a nondecreasing sequence in a sample j (i.e., aij �ai+1,j � · · · �ai+�i,j) and a
user-specified grouping threshold � > 0 is given, the sample j is called similar on these attributes if

ai+�i,j − aij < G(�, aij),

where G is a grouping function defining where feature values are equivalent. Such a sequence of features are called
a group for sample j. The feature i is called the pivot point of this group. The function G may be defined in different
ways. The authors use a simple choice

G(�, aij) = �aij .

Next, a sequence of features is said to show an UP pattern in a sample if it can be partitioned into groups so that
the pivot point of each group is not smaller than the preceding value in the sequence. Finally, a bicluster is called an
OP-cluster is there exists a permutation of its features such that they all show an UP pattern.

The authors presented an algorithm for finding OP-clusters with no less than the required number of samples ns
and number of features nf. The algorithm essentially searches through all ordered subsequences of features existing in
samples to find maximal common ones, but due to a representation of feature sequences in a tree form allowing for an
efficient pruning technique the algorithm is sufficiently fast in practice to apply to real data.

5.15. Supervised classification via maximal �-valid patterns

In [48] the authors defined a �-valid pattern as follows. Given a data matrix A = (aij)m×n and � > 0, a submatrix
(F0,S0) of A is called a �-valid pattern if

∀i ∈ F0 max
j∈S0

aij − min
j∈S0

aij < �. (37)

The �-valid pattern is called maximal if it is not a submatrix of any larger submatrix of A, which is also a �-valid pattern.
Maximal �-valid patterns can be found using the SPLASH algorithm [49].

The idea of the algorithm is find an optimal set of �-patterns such that they cover the samples’ set. It can be done
using a greedy approach selecting first most statistically significant and most covering patterns. Finally, this set of
�-patterns is used to classify the test samples (samples with unknown classification). For more detailed description of
the technique we refer the reader to [48].

5.16. cMonkey

cMonkey is another statistical method for biclustering that has been recently introduced by Reiss et al. [50]. The
method is developed specifically for genetic data and works at the same time with gene sequence data, gene expression
data (from a microarray) and gene network association data. It constructs one bicluster at a time with an iterative
procedure. First, the bicluster is created either randomly or from the result of some other clustering method. Then,
on each step, for each sample and feature it is decided whether it should be added to/removed from the bicluster. For
this purpose, the probabilities of the presence of the considered sample or feature in the bicluster with respect to the
current structure of the bicluster at the three data levels is computed, and a simulated annealing formula is used to make
the decision about the update on the basis of the computed probabilities. This way, even when these probabilities are
not high, the update has a nonzero chance to occur (that allows escapes from local optima as in any other simulated
annealing technique for global optimization). The actual probability of the update also depends on the chosen annealing
schedule, so earlier updates have normally higher probability of acceptance while the later steps get almost identical
to local optimization. We refer the reader to [50] for the detailed description of the Reiss et al. work.

6. Applications

6.1. Biomedicine

The importance of data analysis in life sciences is steadily increasing. Up to recently, biology was a descriptive science
providing relatively small amount of numerical data. However, nowadays it has become one of the main applications of
data mining techniques operating on massive data sets. This transformation can be, particularly, attributed to two recent

2984 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

advances which are complementary to each other. First, the Human Genome Project and some other genome-sequencing
undertakings have been successfully accomplished. They have provided the DNA sequences of the human genome and
the genomes of a number of other species having various biological characteristics. Second, revolutionary new tools
able to monitor quantitative data on the genome-wide scale have appeared. Among them, there are the DNA microarrays
widely used at the present time. These devices measure gene expression levels of thousands of genes simultaneously,
allowing researchers to observe how the genes act in different types of cells and under various conditions. A typical
microarray data set includes few classes of samples each of which represents a certain medical condition or type of
cells. There may be also a control class (group)representing healthy samples or cells in a predominant state.

Microarray data sets are a very important application for biclustering. When biclustering is performed with high
reliability, it is possible not only to diagnose conditions represented by sample clusters, but also identify genes (features)
responsible for them or serving as their markers.A great variety of biclustering methods that have been used in microarray
data analysis are described in [19,27,29,33,37,39,43,45,46,48].

Among the publicly available microarray data sets that are often used to test biclustering algorithms we should
point out:

• ALL vs. AML data set [51,52];
• HuGE (Human GEnome) data set [53,54];
• Colon Cancer data set [55];
• B-cell lymphoma data set [56,57];
• Yeast Microarray data set [58,59];
• Lung Cancer data set [60];
• MLL Leukemia data set [61].

Apart from DNA microarray data, biclustering was used in a number of other biomedical applications. In [47]
biclustering was applied to drug activity data to associate common properties of chemical compounds with common
groups of their descriptors (features). Also [43] presents the application of biclustering to nutritional data. Namely, each
sample is associated with a certain food while each feature is an attribute of the food. The goal was to form clusters of
foods similar with respect to a subset of attributes.

6.2. Text mining

Another interesting application of biclustering approaches is in text mining. In a classical text representation technique
known as the vector space model (sometimes also called bag-of-words model) we operate with a data matrix A =
(aij)m×n, where each row (feature) correspond to a word (or term), each column (sample) to a document and the value
of aij is a certain weight of word i in the document j. In the simplest case, this weight can be, for example, the number
of times word i appears in text j.

Text mining techniques are of crucial importance for text indexing, various document organization, text filtering,
web search, etc. For a recent detailed survey on text classification techniques we refer the reader to [62].

Classical mining of the text data involve one-way clustering of either word, or document data into classes of related
words or documents, respectively [62–64]. Biclustering of text data allows not only to cluster documents and words
simultaneously, but also discovers important relations between document and word classes. Successful biclustering
approaches for text mining are based on SVD-related [24] or information theoretic techniques [31,32].

Some of the well-known data sets for text mining include:

• 20 Newsgroups data set (collected by Lang [65], available at [66,67]);
• SMART collection [68];
• Reuters-21578 [69];
• RCV1-v2/LYRL2004 [70,71].

6.3. Others

Biclustering has been also applied to a number of other areas. Among them is marketing. In collaborative filtering
the goal is to find groups of customers with similar attitude or behavior toward a subset of products. The practical value

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2985

of this problem is to plan target marketing or recommendation system. Then, if each sample represents a customer,
each feature represents a product, and each data value expresses in some way the investigated attitude or behavior,
biclustering comes as a handy tool to handle the problem. There is a number of papers considering collaborative filtering
of movies, where the data values are either binary (i.e., showing whether a certain customer watched a certain movie
or not) or express the rate at which a customer is assigned to a movie. We refer the reader to papers [22,23,72–74] for
details.

Finally, biclustering has been also used for dimensionality reduction of databases via automatic subspace cluster-
ing of high dimensional data [75], electoral data analysis (finding groups of countries with similar electoral prefer-
ences/political attitude toward certain issues) [18], and analyzing foreign exchange data (finding subsets of currencies,
whose exchange rates create similar patterns over certain subsets of months) [43].

7. Discussion and concluding remarks

In this survey we reviewed the most widely used and successful biclustering techniques and their related applications.
Generally speaking many of the approaches rely on not mathematically strict arguments and there is a lack of methods
to justify the quality of the obtained biclusters. Furthermore, additional efforts should be made to connect properties
of the biclusters with phenomena relevant to the desired data analysis.

Therefore, future development of biclustering should involve more theoretical studies of biclustering methodology
and formalization of its quality criteria. More specifically, as we observed that the biclustering concept has remarkable
interplay with algebraic notion of the SVD, we believe that biclustering methodology should be further advanced in
the direction of algebraic formalization. This should allow effective utilization of classical algebraic algorithms. In
addition, more formal setup for desired class separability can be achieved with establishing new theoretical results
similar in spirit to conic separability theorem in [30].

The number of biclustering applications can be also extended with other areas, where simultaneous clustering of data
samples and features (attributes) makes a lot of sense. For example, one of the promising directions may be biclustering
of stock market data. This way clustering of equities may reveal to us groups of companies whose performance is
dependent on the same (but possibly hidden) factors, while clusters of trading days may reveal unknown patterns of
stock market returns.

To summarize, one should emphasize that further successful development of biclustering theory and techniques is
essential for the progress in data mining and its applications such as text mining, computational biology, etc.

References

[1] Abello J, Pardalos PM, Resende MG, editors. Handbook of massive data sets. Dordrecht: Kluwer Academic Publishers; 2002.
[2] Barnes ER, Hoffman AJ, Rothblum UG. Optimal partitions having disjoint convex and conic hulls. Mathematical Programming 1992;54:

69–86.
[3] Granot D, Rothblum UG. The Pareto set of the partition bargaining game. Games and Economic Behavior 1991;3:163–82.
[4] Hwang FK, Onn S, Rothblum UG. Linear shaped partition problems. Operations Research Letters 2000;26:159–63.
[5] Johnson SC. Hierarchical clustering schemes. Psychometrika 1967;2:241–54.
[6] MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth symposium on mathematics

and probability. CA, USA: Berkeley; 1967.
[7] Kohonen T. Self-organization maps. Berlin-Heidelberg: Springer; 1995.
[8] Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge

University Press; 2000.
[9] Vapnik V. The nature of statistical learning theory. Berlin: Springer; 1999.

[10] Boros E, Hammer P, Ibaraki T, Cogan A. Logical analysis of numerical data. Mathematical Programming 1997;79:163–90.
[11] Boros E, Hammer P, Ibaraki T, Cogan A, Mayoraz E, Muchnik I. An implementation of logical analysis of data. IEEE Transactions Knowledge

and Data Engineering 2000;12:292–306.
[12] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Transactions on Neural Networks 2005;16:645–8.
[13] Madeira SC, Oliveira AL. Biclustering algorithms for bilogical data analysis: a survey. IEEE Transactions on Computational Biology and

Bioinformatics 2004;1:24–45.
[14] Tanay A, Sharan R, Shamir R. Biclustering algorithms: a survey, Handbook of bioinformatics, 2004, to appear. Available at 〈http://www.

cs.tau.ac.il/∼rshamir/papers/bicrev_bioinfo.ps〉, last accessed August 2006.
[15] Biclustering—Wikipedia, the Free Encyclopedia, 〈http://en.wikipedia.org/wiki/Biclustering〉, last accessed August 2006.
[16] Quertermous Laboratory, Stanford University, HeatMap Builder Software, 〈http://quertermous.stanford.edu/heatmap.htm〉, last accessedAugust

2006.

http://www.cs.tau.ac.il/rshamir/papers/bicrev_bioinfo.ps
http://www.cs.tau.ac.il/rshamir/papers/bicrev_bioinfo.ps
http://en.wikipedia.org/wiki/Biclustering
http://quertermous.stanford.edu/heatmap.htm

2986 S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987

[17] Golub GH, Van Loan CF. Matrix computations. Baltimore, MD: The Johns Hopkins University Press; 1996.
[18] Hartigan JA. Direct clustering of a data matrix. Journal of the American Statistical Association 1972;67:123–9.
[19] ChengY, Church GM. Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent systems for molecular

biology. 2000. p. 93–103.
[20] Cheng Y, Church GM. Biclustering of expression data. Supplementary information, 〈http://arep.med.harvard.edu/biclustering/〉, last accessed

August 2006.
[21] Bryan K, Cunningham P, Bolshakova N, Biclustering of expression data using simulated annealing. In: Proceedings of the 18th IEEE symposium

on computer-based medical systems, 2005. p. 383–8.
[22] Yang J, Wang W, Wang H, Yu P. �-Clusters: capturing subspace correlation in a large data set. In: Proceedings of the 18th IEEE international

conference on data engineering. 2002. p. 517–28.
[23] Yang J, Wang W, Wang H, Yu P. Enhanced biclustering on expression data. In: Proceedings of the third IEEE conference on bioinformatics and

bioengineering. 2003. p. 321–7.
[24] Dhillon IS. Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD

international conference on knowledge discovery and data mining(KDD), August 26–29, 2001, San Francisco, CA, USA [also UT CS technical
report #TR-01-05, March 2001].

[25] Kluger Y, Basri R, Chang JT, Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research 2003;
703–16.

[26] Bapat RB, Raghavan TES, Non-negative matrices and applications. Cambridge, UK: Cambridge University Press; 1997 [chapter 6].
[27] Cho H, Dhillon IS, Guan Y, Sra S. Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of the fourth SIAM

international conference on data mining. 2004.
[28] Cho H, Guan Y, Sra S. Co-clustering Software, Version 1.1 (2005), 〈http://www.cs.utexas.edu/users/dml/Software/cocluster.html〉.
[29] Busygin S, Jacobsen G, Krämer E, Double conjugated clustering applied to leukemia microarray data. SIAM data mining workshop on clustering

high dimensional data and its applications, 2002.
[30] Busygin S, Prokopyev OA, Pardalos PM. Feature selection for consistent biclustering via fractional 0–1 programming. Journal of Combinatorial

Optimization 2005;10/1:7–21.
[31] Dhillon IS, Mallela S, Modha DS. Information-theoretic co-clustering. In: Proceedings of the ninth ACM SIGKDD international conference

on knowledge discovery and data mining(KDD). August 2003. p. 89–98.
[32] Banerjee A, Dhillon IS, Ghosh J, Merugu S, Modha DS, Generalized maximum entropy approach to Bregman co-clustering and matrix

approximations. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining(KDD), August
2004. p. 509–14.

[33] Sheng Q, Moreau Y, De Moor B. Biclustering microarray data by Gibbs sampling. Bioinformatics 2003;19:ii196–205.
[34] Casella G, George EI. Explaining the Gibbs sampler. The American Statistician 1992;46:167–74.
[35] Tanay A. Computational analysis of transcriptional programs: function and evolution. PhD thesis, August 2005. Available at 〈http://www.

cs.tau.ac.il/∼rshamir/theses/amos_phd.pdf〉, last accessed August 2006.
[36] Tanay A, Sharan R, Shamir R. Discovering statistically significant bilcusters in gene expression data. Bioinformatics 2002;18:S136–44.
[37] Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of

highly heterogeneous genomewide data. Proceeding of the National Academy of Science USA 2004;101:2981–6.
[38] Computational Genomics Laboratory, School of Computer Science, Tel Aviv University, Israel, EXPANDER, A gene expression analysis and

visualization software, 〈http://www.cs.tau.ac.il/∼rshamir/expander/expander.html〉, last accessed August 2006.
[39] Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. PNAS 2000;97:12079–84.
[40] Blatt M, Wiseman S, Domany E. Data clustering using a model granular magnet. Neural Computation 1997;9:1805–42.
[41] Domany E. Super-paramagnetic clustering of data. Physica A 1999;263:158–69.
[42] Weizmann Institute of Science, The coupled two way clustering algorithm, 〈http://ctwc.weizmann.ac.il/〉, last accessed August 2006.
[43] Lazzeroni L, Owen A. Plaid models for gene expression data. Statistica Sinica 2002;12:61–86.
[44] Plaid models, for microarrays and DNA expression, 〈http://www-stat.stanford.edu/∼owen/plaid/〉, last accessed August 2006.
[45] Ben-Dor A, Chor B, Karp R, Yakhini Z, Discovering local structure in gene expression data: the order-preserving submatrix problem. In:

Proceedings of the sixth annual international conference on computational biology (RECOMB ’02). New York: ACM Press; 2002. p. 49–57.
[46] Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal

of Computational Biology 2003;10:373–84.
[47] Liu J, Wang W. OP-cluster: clustering by tendency in high dimensional space. In: Proceedings of the third IEEE international conference on

data mining. 2003. p. 187–94.
[48] Califano A, Stolovitzky S, TuY. Analysis of gene expression microarrays for phenotype classification. In: Proceedings of the eighth symposium

on intelligent systems for molecular biology, San Diego, 2000.
[49] Califano A, SPLASH: structural pattern localization analysis by sequential histograms. Bioinformatics 16 (2000), pp. 341–57. The algorithm

is available at 〈http://www.research.ibm.com/splash/〉.
[50] Reiss DJ, Baliga NS, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks.

BMC Bioinformatics 2006;7:280.
[51] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP. et al. Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring. Science 1999;286:531–7.
[52] Cancer Program Data Sets, BROAD Institute, MIT, 〈http://www.broad.mit.edu/cgi-bin/cancer/data sets.cgi〉, last accessed August 2006.
[53] Hsiao L-L, Dangond F,Yoshida T, Hong R, Jensen RV, Misra J. et al. A compendium of gene expression in normal human tissues. Physiological

Genomics 2001;7:97–104.

http://arep.med.harvard.edu/biclustering/
http://www.cs.utexas.edu/users/dml/Software/cocluster.html
http://www.cs.tau.ac.il/rshamir/theses/amos_phd.pdf
http://www.cs.tau.ac.il/rshamir/theses/amos_phd.pdf
http://www.cs.tau.ac.il/rshamir/expander/expander.html
http://ctwc.weizmann.ac.il/
http://www-stat.stanford.edu/owen/plaid/
http://www.research.ibm.com/splash/
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

S. Busygin et al. / Computers & Operations Research 35 (2008) 2964–2987 2987

[54] The Human Gene Expression Index, 〈http://www.hugeindex.org〉, last accessed August 2006.
[55] Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 1999; (96) 6745–50.
[56] Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene

expression profiling. Nature 2000;403:503–11.
[57] Lymphoma/Leukemia Molecular Profiling Project, NIH, 〈http://llmpp.nih.gov/lymphoma/index.shtml〉, last accessed August 2006.
[58] Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nature Genetics

1999;22:281–5.
[59] Systematic determination of genetic network architecture, Harvard University, 〈http://arep.med.harvard.edu/network_discovery/〉, last accessed

August 2006.
[60] Gordon GJ, Jensen RV, Hsiao L-L, Gullans SR, Blumenstock JE, Ramaswamy S. et al. Translation of microarray data into clinically relevant

cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 2002;62:4963–7.
[61] Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD. et al. MLL translocations specify a distinct gene expression

profile that distinguishes a unique leukemia. Nature Genetics 2002;30:41–7.
[62] Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 2002;34:1–47.
[63] Baker LD, McCallum AK, Distributional clustering of words for text classification In : Croft WB, Moffat A, van Rijsbergen CJ, Wilkinson

R, Zobel J, editors. Proceedings of SIGIR-98, 21st ACM international conference on research and development in information retrieval. New
York, ACM Press; US: 1998 p. 96–103.

[64] Crouch CJ. A cluster-based approach to thesaurus construction. In: Proceedings of the 11th annual international ACM SIGIR conference on
research and development in information retrieval. France: Grenoble; 1988. p. 309–20.

[65] Lang K. NewsWeeder: learning to filter netnews. In: Proceedings of the 12th international conference on machine learning. San Mateo, CA,
USA: Morgan Kaufmann Publishers Inc.; 1995. p. 331–9.

[66] CMU Text Learning Group Data Archives, 20 Newshroup DataSet, 〈http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
news20.html〉, last accessed August 2006.

[67] 20 Newsgroups Data Set, 〈http://people.csail.mit.edu/jrennie/20Newsgroups/〉, last accessed August 2006.
[68] Cornell University, SMART, 〈ftp://ftp.cs.cornell.edu/pub/smart〉, last accessed August 2006.
[69] Lewis DD. Reuters-21578 text categorization test collection, Distribution 1.0, 2004. 〈http://www.daviddlewis.com/resources/

testcollections/reuters21578/〉, last accessed August 2006.
[70] Lewis DD. RCV1-v2/LYRL2004: The LYRL2004 distribution of the RCV1-v2 text categorization test collection (14 October 2005 Version).

〈http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm〉, last accessed August 2006.
[71] Lewis DD, Yang Y, Rose T, Li F. RCV1: a new benchmark collection for text categorization research. Journal of Machine Learning Research

2004;5:361–97.
[72] Ungar L, Foster DP. A formal statistical approach to collaborative filtering. In: Proceedings of the conference on automated learning and

discovery (CONALD’98). 1998.
[73] Hofmann T, Puzicha J. Latent class models for collaborative filtering. In: Proceedings of the 16th international joint conference on artificial

intelligence. 1999. p. 688–93.
[74] Wang H, Wang W, Yang J, Yu P., Clustering by pattern similarity in large data sets. In: Proceedings of the 2002 ACM SIGMOD international

conference on management of data. 2002. p. 394–405.
[75] Agrawal R, Gehrke J, Gunopulos D, Raghavan P, Automatic subspace clustering of high dimensional data for data mining applications.

In: Proceedings of the 1998 ACM SIGMOD international conference on management of data. 1998. p. 94–105.
[76] Pardalos PM, Busygin S, Prokopyev OA. On biclustering with feature selection for microarray data sets. In: Mondaini R, editor. BIOMAT

2005—international symposium on mathematical and computational biology. Singapore: World Scientific; 2006. p. 367–78.

http://www.hugeindex.org
http://llmpp.nih.gov/lymphoma/index.shtml
http://arep.med.harvard.edu/network_discovery/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://ftp://ftp.cs.cornell.edu/pub/smart
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

	Biclustering in data mining
	The main concept
	Formal setup
	Visualization of biclustering
	Relation to SVD
	Methods
	``Direct clustering''
	Node-deletion algorithm
	FLOC algorithm
	Biclustering via spectral bipartite graph partitioning
	Matrix iteration algorithms for minimizing sum-squared residue
	Double conjugated clustering
	Consistent biclustering via fractional 0--1 programming
	Information-theoretic based co-clustering
	Biclustering via Gibbs sampling
	Statistical-algorithmic method for bicluster analysis (SAMBA)
	Coupled two-way clustering
	Plaid models
	Order-preserving submatrix (OPSM) problem
	OP-cluster
	Supervised classification via maximal delta-valid patterns
	cMonkey

	Applications
	Biomedicine
	Text mining
	Others

	Discussion and concluding remarks
	References

